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ABSTRACT 

 

This work uses data from the Brazilian yield curve of interbank deposits to employ the Mean-

Variance framework of Markowitz (1952). Expected returns and covariances are calculated 

according to Koop and Korobilis (2013) that relies on a Time-Varying Parameter VAR (TVP-

VAR) with Dynamic-Model Averaging (DMA). It’s found that despite having several desired 

properties and more accurate out-of-sample forecasts, in terms of Mean Squared Forecast 

Error (MSFE) and Mean Absolute Forecast Error (MAFE), the TVP-VAR-DMA performance 

it's not able to beat the random-walk on a risk-adjusted basis (Sharpe-ratio), yielding a near 

zero cumulative excess of return between the period of 2010-jan until 2017-jun. The 

cumulative underperformance over the selected fixed-income benchmarks, IRF-M and IMA-

B 5, under the same period, are 14.25% and 5.48%, respectively. 
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RESUMO  

 

Este trabalho utiliza dados da curva de juros brasileira de depósitos interbancários para 

empregar o modelo de Média-Variância de Markowitz (1952). Os retornos esperados e as 

covariâncias são calculados de acordo com Koop and Korobilis (2013) e se baseiam em um 

modelo com Vetores Autoregressivos com Parâmetros Variáveis no Tempo (TVP-VAR) e 

Dynamic Model Averaging (DMA). Descobriu-se que apesar de conterem várias propriedades 

desejadas e previsões fora da amostra mais precisas, em termos de erro de previsão quadrático 

médio (MSFE) e erro de previsão absoluto médio (MAFE), o desempenho dos modelos TVP-

VAR-DMA não foi capaz de superar Random-Walk em uma base ajustada para o risco 

(Sharpe-Ratio), produzindo um excesso de retorno sobre o CDI próximo de zero entre o 

período de 2010-jan até 2017-jun. A performance acumulada abaixo dos índices de renda fixa 

selecionados, IRF-M e IMA-B 5, no mesmo período, é de 14,25% e 5,48%, respectivamente.  

 

Palavras-chave: Renda-fixa. Otimização de portfólios. DMA 
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1 INTRODUCTION 

 

Interest-rates are the main channel in which economic agents can use to make money go 

back and forth in time. Given this extraordinary feature, interest-rates dynamics have been 

extensively studied during the last 30 years. Litterman and Scheinkman (1991), for example, 

found that yield curve evolution is historically well described by a combination of three 

independent movements, interpreted as level, steepness and curvature. Understanding how these 

factors affect the shape of the term structure is important for predicting, allocating and hedging 

risk. 

By the same token, Markowitz (1952) showed four decades earlier that, for many assets, 

risk and return commovements must be considered as a group in order to maximize return per 

unit of risk. That is, assets should be optimally chosen, and non-systematic risk diversified, 

whenever is possible. Given the solid foundation on which rests the portfolio optimization theory 

and the relevance of correctly managing the yield curve, this paper dives into the literature of 

fixed-income optimization, by applying Mean-Variance as a frame of reference. 

A report from ANBIMA (2016) draws attention on the positive impact that a well-timed 

strategy could have in the Brazilian funds industry. The share of fixed-income assets held by 

retail funds corresponds to 47% locally, which is more than double typically seen worldwide. The 

same report also points out that hedge funds and retirement plans account for nearly 39% of the 

total Assets Under Management (AUM). Whereas this capital is not all invested in fixed-income 

obligations, high interest-rates certainly restrain managers’ prospects in different markets (see 

nefin.com.br/risk_factors, for an example). In the aggregate, the fund industry manages resources 

in order of R$ 2.8 trillion (almost 45% of total public debt). 

Data from B3 (Brazilian stock exchange) reveals that during the period of 2005 until 

2017, interest-rates were responsible for 67% of the total futures contracts traded, followed by 

20% in exchange rates and 6% in other financial products. Only in 2017, almost 2 billion were 

traded daily. 

Given the magnitude of those numbers, it is surprising that so little attention has been 

dedicated to forecasting fixed-income in Brazil. Only recently has the specialized literature tried 

to fill in this gap. Vieira et al. (2017) for example, show that it is possible to improve random-

walk forecasts for the Brazilian yield-curve up to 40%. Their model, however, requires too many 

http://nefin.com.br/risk_factors.html


7 

 

explanatory variables which may prevent investors to make decisions on “real-time”. In a mean-

variance context, Caldeira, Moura and Santos (2016), and Caldeira, Moura and Santos (2017) 

present evidence that forecast combination can pay off in a risk-adjusted base. The same authors 

also show that performance is improved when volatility forecasts are combined in such a way 

that “winning” models are calibrated to receive more weight in the portfolio optimization process 

Caldeira et al. (2017). 

To explore the potential benefits of diversification, this paper relies on Dynamic Model 

Averaging (DMA). DMA is a Bayesian strategy that consists of many time-varying regression 

models formed from combinations that the practioner considers relevant. It’s a flexible method 

that can be applied to univariate or multivariate series. Moreover, DMA also allows the set of 

reasonable models to change with time using what the literature has called “forgetting factors”. 

Through this mechanism, past model performance receives relatively less weight than current 

models and the estimation procedure can continuously adapt as new information arises. This 

unique feature is in harmony with a large body of literature that demonstrates that combinations 

of different models can be more accurate than the individual models themselves (Aiolfi, 

Timmermann, 2006; Hendry, Clements, 2004; Timmermann, 2006). Positive implications for 

volatility combinations schemes appears to exist as well (Christiansen, Schmeling and Schrimpf , 

2012; Opschoor et al., 2014). This is one of the main theorical reasons of why DMA could be a 

powerful device at bond manager’s disposal. 

From a practical point of view, however, conceiving an efficient DMA algorithm remains 

a challenging issue - see Catania and Nonejad (2016) and Chan et al. (2012). In attempt to solve 

this problem, Koop and Korobilis (2013) developed a method to estimate large TVP-VAR 

models without the need to perform MCMC algorithms. This mechanism can greatly speed up 

calculations. Secondly, the authors allow prior hyper-parameters to expand in a predefined range. 

Since the final estimates are derived from the famous Bayes-Rule, different values for the priors 

can also be thought as a way to define different models. Thirdly, “model uncertainty” is taken 

into account by allowing different VAR dimensions to be estimated simultaneously. This leads to 

Dynamic Size Selection (DSS), in which the algorithm automatically selects the VAR size with 

the highest posterior probability density. Finally, their model only requires three parameters to be 

estimated, which can, ultimately, wipe-out the “dimensionality curse”. This last contribution is of 
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great value, especially for portfolio optimization problems, in which the manager routinely has 

dozens (or hundreds) of assets that have to be considered jointly. 

In short, the problem can be summarized as follows: combination of different forecasting 

schemes seems to improve input estimates. In the same way, the quality of input estimates plays a 

pivotal role in mean-variance optimization. Why not, then, apply a method that can extend those 

ideas to combine both, returns and covariances, whenever is possible? Luckily, DMA is designed 

to do exactly that! 

The text continues as follows: next section reports information about the dataset; section 3 

details the key features of the models used; section 4 shows the results; and section 5 contains the 

final remarks. 
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2 DATA 

 

The dataset used is based on the term structure of Brazilian interbank deposits (DI) 

starting on 2005-01-31 going up to 2017-06-30. The data is computed monthly and relies on 

futures contracts effectively traded at the B3 Exchange. Each contract has a nominal value of R$ 

100.000,00 and a minimum of 5 contracts must be traded to open (or close) a new position. There 

is a total of 14 maturities that goes from a minimum of 3 months up to 5 years distributed in the 

following maturity set {3,6,9,12,15,18,21,24,27,30,36,42,48,60}. 

As prices and rates often go on the opposite direction in fixed-income markets, to open a 

long position the investor must sell the interbank deposit rate, and to go short, the interest rate 

must be bought. A daily adjustment with the net position of each counterpart follows daily, as in 

most marketplaces, to minimize insolvency risk. With more than 2 billion traded daily, slippage 

can usually be managed properly, especially for strategies that cannot be labeled as high-

frequency. 

An important feature of fixed income markets is that asset prices can be recovered from 

the yield curve and transformed into a time series of zero coupon bonds. Simply use the formula: 

 
𝑃𝑡 =

1

(1 + 𝑦𝑡)𝑚
 

(1) 

in which 𝑃𝑡 is the price of the zero-coupon bond at time 𝑡; 𝑦𝑡 is the current yield; 𝑚 is the 

bonds’ maturity expressed in years; a final assumption implies that each asset has a value of R$1 

when issue is due. To see why this makes sense, we need to remind ourselves that the yield of a 

bond is a measure of the average rate of return that will be earned, if the bond is bought at time 𝑡 

and held until maturity. Thus, bringing the traded price to the present, through the discount 

function, (1 + 𝑦𝑡)−𝑚, should result in a zero-coupon bond. 

It’s important to emphasize that the broad acceptance of the term structure as a stochastic 

system, instead of a deterministic process, it’s a recent twist. This new rationale follows from the 

fact that the yield to maturity can generate a poor estimate if (1) expected returns of interest rates 

are volatile; (2) the yield curve is steeply sloped (either upper or downward); (3) there is a 

significant risk of default. In all of those cases the relevant return is the realized return. 

The interest rate dynamics can be visualized on the image that follows. 
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Figure 1- Brazilian Interest-Rate Dynamics 

 

Source: Bloomberg. Written by the author. 

 

First, there is a downward trend in interest rates for all maturities. Second, yields and 

maturities have, most often than not, a positive correlation. This could be due to increasing risk-

premium for long-term landing, as stated by the “Liquidity Preference Theory”. Third, as the 

maturities go longer and longer, interest-rates become more volatile. For long-term maturities, 48 

and 60 months, the annualized standard-deviation goes up to nearly 10%. Given their annualized 

sample return of 13%, uncertainty can be enormous. 

The following table shows some descriptive statistics of bonds returns. 
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Table 1- Descriptive Statistics of Interest Rate Returns 

Maturity 

(months) 
 Minimum Median Maximum 

Standard 

Deviation 
Skewness Kurtosis 

3  -0.0021 0.0000 0.0028 0.0009 0.3042 0.2544 

6  -0.0045 0.0002 0.0066 0.0019 0.2657 0.5434 

9  -0.0068 0.0007 0.0132 0.0031 0.3997 1.3328 

12  -0.0108 0.0009 0.0203 0.0045 0.3408 1.8214 

15  -0.0141 0.0011 0.0275 0.0061 0.2931 2.0876 

18  -0.0196 0.0013 0.0369 0.0077 0.3331 2.9495 

21  -0.0257 0.0016 0.0446 0.0093 0.2944 2.8759 

24  -0.0346 0.0018 0.0544 0.0110 0.3027 3.6515 

27  -0.0447 0.0020 0.0612 0.0127 0.0955 3.6569 

30  -0.0518 0.0022 0.0680 0.0144 0.0899 3.3699 

36  -0.0699 0.0027 0.0815 0.0177 -0.0547 3.7386 

42  -0.0876 0.0031 0.0951 0.0209 -0.1246 3.9252 

48  -0.1138 0.0036 0.1120 0.0247 -0.2475 4.7213 

60  -0.1422 0.0067 0.1442 0.0314 -0.1361 4.5816 

Source: written by the author. 

 

Fixed-income returns seems to have a symmetric distribution, but as maturities increase, 

the empirical distribution smoothly moves from the right (positive skewed) to the left (negative 

skewed). There is also an increase in excess of kurtosis as the maturities expand. 

 

2.1 BENCHMARKS 

 

ANBIMA is the leading Brazilian institution for fixed-income appraisals. Most of its the 

records started only recently but different portfolios have been designed to fulfill investor’s 

needs. From their data warehouse, two indexes seem appropriate for comparisons with the 

interest rates traded at B3 Exchange: IRF-M and IMA-B 5. IFR-M is an index based on a typical 

fixed-income instrument, where you have a pre-determined amount that is paid by the issuer and 

earned by an investor. IMA-B 5, on the other hand, is an index composed of Treasury Inflation 

Protected Securities (TIPS). This is a common instrument for investors that want to manage the 

risks of surprise in inflation. TIPS’ principal adjusts upward along with consumer price inflation 

(IPCA), which provides investors with a guaranteed “real return” (or return net of inflation). In 

IMA-B 5, no asset can have more than 5 years until it is due. 

Table 2 collapses five simple statistics of IMA-B 5 and IRF-M that are often used by 

practioners in the finance industry. 
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Table 2- Descriptive Statistics from the chosen Benchmarks 

 IMA-B-5 IRF-M 

Annualized Excess of Return 0.0168 0.0067 

Annualized Standard Deviation 0.0346 0.0290 

Annualized Sharpe-Ratio 0.4860 0.2304 

Skewness 0.5573 -0.3415 

Kurtosis 4.7906 3.2638 

Source: written by the author. 
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3 THE OPTIMIZATION MODEL  

 
The mean-variance framework allows us to build portfolios at each point in time based on 

returns and the risk appetite of each individual. Markowitz (2010) emphasizes that returns and 

variances must be estimated and obtained based on expected values, rather than on their historical 

performance. These estimates, however, are surrounded by uncertainty and do not always carry 

desirable properties Jorion (1986). Therefore, forecasting errors tend to be significant if the 

assumptions embedded in the estimation process are mispecified. According to Chopra et al. 

(2011), the “optimal” solution can be very sensitive to slight changes in inputs. For this reason, 

the section 3.1 briefly explores the theorical foundation supporting the usage of the quadratic 

utility function. 

 

3.1 RISK AVERSION FORMULATION 

 

The utility maximization problem can be solved by the quadratic utility formulation, 

usually written as 

 𝑚𝑎𝑥 𝑤′𝛍 − 𝜁(𝑤′𝚺𝑤)

𝑠. 𝑡.  ∑ 𝑤𝑖

𝑁

𝑖=1

= 1

𝑤𝑖 ≥ 0

 

(2) 

in which 𝑤 = (𝑤1, 𝑤2, 𝑤3, . . . , 𝑤𝑛) is the vector of weights invested in each asset; 𝛍 is a 

𝑁x𝑀 vector of expected returns for each maturity; 𝚺 is a covariance matrix of dimension 𝑀x𝑀; 

and 𝜁 is the investor’s (subjective) coefficient of risk aversion. When 𝜁 is low, the penalty 

incurred by the additional amount of risk is also low. On the other hand, when 𝜁 is high, the 

portfolio is highly penalized for an increased exposure to risk. A common practice is to calibrate 

the value of 𝜁 in order to fit the portfolio into the investor desired level of risk (Fabozzi et al., 

2007). At the present work, the value of 𝜁 = 1 is settled. 

The quadratic utility function is important for theoretical and practical reasons. The 

theoretical perspective was well explored by Levy and Markowitz (1979) and Michaud, and 

Michaud (2008). As they point out, the quadratic utility is (locally) a good approximation for 

investors utility. Markowitz (2010) also shows that this formulation is well suited for asset 
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returns that lie in the range of R= {-30%, +40%}. Moreover, investment companies routinely 

estimate potential returns for assets they cover. It would be naive to assume that this information 

is not brought into account in the decision-making process. 

The benefits of incorporating constraints in the mean-variance optimization, on the other 

hand, is a topic that was initially explored by Frost and Savarino (1988). But it was in the work of 

Jagannathan and Ma (2003) that we found a robust support for its use. The authors argue that 

constraining portfolio weights to be positive is equivalent to reducing assets covariance by 

specific amount (that is, it has a “shrinkage” effect). By the same token, upper and lower bounds 

act to adjust small covariances upwards meanwhile reducing those that are considered (relatively) 

too high. In an attempt to benefit of those insights a second specification will also be used by 

adding the constraint of 𝑤𝑖 ≤ 0.30 into equation (2). 

 

3.2 MOMENTS ESTIMATION 

 
There is a good evidence showing that it’s difficult to consistently overcome the Random-

Walk forecasts, Diebold and Li (2006), Timmermann and Granger (2004), Demiguel and Uppal 

(2007). Therefore, simple models with few parameters to estimate arise as a natural starting point 

for predicting asset returns. Those will be called “Competitive Models” and are going to be used 

as a benchmark against 25 TVP-VAR specifications. 

 

3.2.1 Random-Walk Model 

 

In the simplest random walk process each successive change in 𝑦𝑡 is drawn independently 

from a probability distribution with 0 mean. Thus, 𝑦𝑡 is determined by 

 𝑦𝑡 = 𝑦𝑡−1 + 𝜖𝑡 (3) 

with 𝐸(𝜖𝑡) = 0 and 𝐸(𝜖𝑡, 𝜖𝑡−1) = 0 for all 𝑡 ≠ (𝑡 − 1). Such a process could be 

generated by successive flips of a coin, where the heads receive a value of 1 and a tail receives a 

value of -1. 

The forecast for such a model is given by 
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 𝑦𝑡+1 = 𝑦𝑡 (4) 

Similarly, the forecast 𝑡 + 𝑇 steps ahead is also 𝑦𝑡. 

For the variance the sample estimator is used 

 
𝛴 =

1

1 − 𝑁
𝑦𝑡𝑦𝑡′ 

(5) 

3.2.2 Autoregressive Model (AR) 

 

This is the famous AR (1) model. It has the main feature of allowing for mean-reverting 

and is described by the following format 

 𝑦𝑡 = 𝜙𝑦𝑡−1 + 𝜖𝑡 (6) 

In which 𝜙 is the short-term impact of 𝑦𝑡−1 in 𝑦𝑡, while the long-term average is given by 

1/(1 − 𝜙). The forecast one step ahead is 

 𝑦𝑡+1 = 𝜙𝑦𝑡 (7) 

For the variance the sample estimator is used 

 
𝛴 =

1

1 − 𝑁
𝑦𝑡𝑦𝑡′ 

(8) 

3.2.3 Vector Autoregressive with Time-Varying Parameters (TVP-VAR) 

 

This model can be written in the state-space model as 

 𝑦𝑡 = 𝑍𝑡𝛽𝑡 + 𝜖𝑡

𝛽𝑡 = 𝛽𝑡−1 + 𝑢𝑡
 

(9) 

in which 𝑦𝑡 is a vector with the variables we want to explain; 𝑍𝑡 is a diagonal 𝑀 x 𝐾 

matrix with 𝑝 lags. 𝑍𝑡 contains 𝑀 variables plus the intercept, so 𝐾 = (1 + 𝑝𝑀); 𝛽 is a 𝐾 x 𝐾 

state vector that contains the time-varying parameters; 𝜖𝑡 is i.i.d. 𝑁 ∼ (0, 𝛴𝑡), 𝑢𝑡 is 𝑁 ∼ (0, 𝑄𝑡) 

and 𝑐𝑜𝑣(𝜖, 𝑢) = 0, ∀𝑡. 
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To avoid burdening computations problems Koop and Korobilis (2013) suggests a new 

method to approximate 𝑄𝑡 and 𝛴𝑡 values. To track closely the behavior of 𝑄𝑡, a forgetting factor 

is added into the Kalman’s filter as it was previously suggested by Raftery and Ettler (2010). The 

predicted covariance estimate of the Kalman Filter has a closed format and is normally written as 

 𝑉𝑡−1 = 𝑍𝑡𝑉𝑡−1𝑍𝑡′ + 𝑄𝑡 (10) 

Koop and Korobilis (2013) suggests that 𝑄𝑡 can be substituted by 

 
𝑉𝑡 =

1

𝜆
𝑉𝑡−1 

(11) 

and does not need to be estimated any longer. A simple algebra shows that 𝑄𝑡 = (𝜆−1 −

1)𝑉𝑡−1. Clearly, we can control the magnitude of the shocks that impact 𝑍𝑡 by adjusting 𝜆 instead 

of directly estimating 𝑄𝑡. If 𝜆 = 1 the constant VAR model emerge, otherwise parameters will be 

time-varying. For instance, when 𝜆 = 0.99, in the context monthly data, observations five years 

ago will receive approximately 55% as much weight as last period’s observation, which 

corresponds to smooth time-variation in 𝑍𝑡. When 𝜆 = 0.96, observations 5 years into the past 

receive only about 8% as much weight as last period’s observations, suggesting that relatively 

larger shocks hit the VAR coefficients. Evidently, while this procedure can be used to “train” the 

model, the increased variability in 𝑍𝑡 also results in higher variance prediction. As a 

consequence, estimating the main equation depends not only on the choice of the predictors in 𝑍𝑡, 

but also the choice of 𝜆. 

At time 𝑡 − 1, 𝛽 have a distribution equal to 

 𝛽𝑡−1 ∼ 𝑁(𝛽𝑡−1, 𝑉𝑡−1) (12) 

in which 𝛽𝑡−1 is the filtered state at time 𝑡 − 1 and 𝑉𝑡−1 the variance at the same point in 

time. 

The matrix 𝛴 is an approximation made through the Exponentially Weighted Moving 

Average model (EWMA), widely used in finance. EWMA is expressed as 

 𝛴̂𝑡 = 𝜅 𝛴̂𝑡−1 + (1 − 𝜅) 𝜖̂𝑡 𝜖̂𝑡 ′ (13) 
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The residual of the measurement equation is 𝜖̂𝑡 = 𝑦𝑡 − 𝛽𝑡𝑍𝑡 and can be obtained through 

the Kalman-Filter. Popularized by Morgan (1996), this is a multivariate GARCH that has a 

constant decay factor equal to 𝜅. The decay parameter kappa could be interpreted as volatility 

persistence: the higher the 𝜅, more weight is set into recent observations. On the other hand, (1 −

𝜅) is usually viewed as a metric of reaction to market events. The lower the 𝜅, the higher is (1 −

𝜅) and more pressure is put into impredictable shocks. 

Finally, it worth mention a word about the prior behavior. Its assumed that 𝐸(𝛽0) = 0, 

which is not too far from reality, since asset returns are usually seen as stationary. The prior 

construction is motivated on the work of Litterman and Sims (1984), with minor changes to let 

online estimation and forecasting to be carried forward. The variance has a dimension of 𝐾 x 𝑀, 

which contains, in the principal diagonal, elements of the hyper-parameter 𝛾 that controls the 

degree of shrinkage on the VAR coefficients. Koop and Korobilis (2013) set 𝛾 =

{10−10, 10−5, 0.001,0.005,0.01,0.05,0.1}. Given the differences between short and long-term 

maturities this set is expanded to 𝛾 = {10−10, 10−5, 0.001,0.005,0.01,0.05,0.1,0.5,1,3,5,10}. 

In short, only three parameters are unknown: 𝜆, 𝜅, 𝛽. If they are designed to stay within a 

pre-specified range, however, the recursive nature of the Kalman-Filter takes care of matrix 𝑍𝑡 

and no parameter need to be estimated, which whips out the “dimensionality-curse”. A common 

practice is to initially set 𝛽0 = 1 to emulate a random-walk behavior. For 𝜅 and 𝜆 the following 

values are used: 𝜅 = {0.96,0.97,0.98,0.99,1} and 𝜆 = {0.96,0.97,0.98,0.99,1}. There is one 

option for 𝛽0, five for 𝜅 and five for 𝜆, totaling 25 possible combinations for the TVP-VAR 

specifications (1x5x5). 

 

3.3 DYNAMIC MODEL AVERAGING (DMA) 

 

The objective of Dynamic Model Averaging is to calculate the probability that a given 

model should be used in forecasting, given set of explanatory variables. In simple terms, DMA 

uses the information available at 𝑡 − 1 to predict a set of selected variables each point in time. 

The predictive density is then used to calculate the probability that each model has of been the 

best. The optimal forecast is constructed weighting the different models by their past 

performance. Mathematically: 
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𝜋𝑡 ∝ ∏[

𝑡−1

𝑖=1

𝑝𝑗 ∗ 𝑦𝑡−𝑖]
𝜂 

(14) 

Thus, model 𝑗 will receive more weight at time 𝑡 if its predictive density, 𝑝𝑗, is high, and 

the opposite is also true. Following recommendations of Koop and Korobilis (2013) and Raftery 

and Ettler (2010) the value of 𝜂 is set at 0.99. 

 

 

  



19 

 

4 EMPIRICAL RESULTS 

 

To evaluate model’s accuracy its necessary first to define appropriate tools for forecast 

comparison. Traditionally, the manager is interested not only in the point forecast, but also in the 

magnitude of its expected variance. Some tension will always exist between these two, since its 

not always possible to reduce one without relaxing the other. Therefore, the Mean Squared 

Forecasting Error (MSFE) and Mean Absolute Forecasting Error (MAFE) stands as natural 

evaluation metrics in most papers in applied finance. MSFE is defined as 

 

𝑅𝑀𝐹𝐸 = (∑
(𝑦𝑖 − 𝑦𝑖̂)2

𝑁

𝑁

𝑖=1

)1/2 

(15) 

in which 𝑦𝑖 is the observed time-series; 𝑦𝑖̂ is the value forecasted by the model at hand; 

and 𝑁 is the number of out-of-sample evaluations. For MAFE, on its turn, is labeled as 

 

𝑀𝐴𝐹𝐸 = ∑
|(𝑦𝑖 − 𝑦𝑖̂)|

𝑁

𝑁

𝑖=1

 

(16) 

For portfolio comparisons the out-of-sample Sharpe-Ratio (SR) is computed. Sharpe-

Ratio is characterized by the equation 

 

𝑆𝑅 =

1
𝑇 − 1 [∑ (𝑁−1

𝑖=1 𝑤𝑡𝑅𝑡+1) − 𝐶𝐷𝐼𝑡+1]

1
𝑇 − 1 [∑ (𝑁−1

𝑖=1 𝑤𝑡𝑅𝑡+1 − 𝜇)]
 

(17) 

which can be clearly simplified to 𝑆𝑅 =
𝜇̂𝑡+1

𝜎̂𝑡+1
. 

The first 60 periods of data are used to train the model and forecasting comes after 

recursively. The out-of-sample forecasts are constructed thought direct forecasting, as described 

in Marcellino et al. (2006), starting in jan-2010. Portfolios are rebalanced monthly. In each 

period, 2/3 of the sample (that is, 42 of the 60 realizations) are used to adjust the Minnesota-prior, 

and only then the recursive nature of the Kalman-Filter starts. As informed earlier, the parameters 

are set to obey the following sets 𝜅 = {0.96,0.97,0.98,0.99,1} and 𝜆 = {0.96,0.97,0.98,0.99,1}. 

This yields a total of 25 TVP-VAR models to be tested. 

Table 3 shows the accuracy ratios of each TVP-VAR-DMA against the Random-Walk, 

for different values of 𝜆 and 𝜅. 
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Table 3 - Out-of-Sample Accuracy Measures 
Model λ κ RMFE MAFE 

Random-Walk - - 1.0000 1.0000 

TVP-VAR-DMA 0.96 1.00 1.2180 1.1501 

TVP-VAR-DMA 0.97 1.00 1.2208 1.1506 

TVP-VAR-DMA 1.00 0.96 1.2212 1.1376 

TVP-VAR-DMA 0.98 1.00 1.2262 1.1520 

TVP-VAR-DMA 0.99 0.96 1.2289 1.1437 

TVP-VAR-DMA 0.99 1.00 1.2307 1.1529 

TVP-VAR-DMA 1.00 1.00 1.2328 1.1530 

TVP-VAR-DMA 1.00 0.97 1.2328 1.1458 

TVP-VAR-DMA 0.98 0.96 1.2334 1.1468 

TVP-VAR-DMA 0.99 0.97 1.2350 1.1476 

TVP-VAR-DMA 1.00 0.98 1.2358 1.1490 

TVP-VAR-DMA 0.99 0.98 1.2388 1.1516 

TVP-VAR-DMA 0.97 0.97 1.2393 1.1530 

TVP-VAR-DMA 0.99 0.99 1.2394 1.1531 

TVP-VAR-DMA 1.00 0.99 1.2396 1.1524 

TVP-VAR-DMA 0.98 0.97 1.2397 1.1519 

TVP-VAR-DMA 0.97 0.96 1.2397 1.1520 

TVP-VAR-DMA 0.96 0.96 1.2416 1.1538 

TVP-VAR-DMA 0.97 0.98 1.2417 1.1553 

TVP-VAR-DMA 0.98 0.98 1.2419 1.1543 

TVP-VAR-DMA 0.96 0.97 1.2426 1.1556 

TVP-VAR-DMA 0.98 0.99 1.2426 1.1560 

TVP-VAR-DMA 0.96 0.98 1.2429 1.1572 

TVP-VAR-DMA 0.97 0.99 1.2435 1.1572 

TVP-VAR-DMA 0.96 0.99 1.2436 1.1584 

AR (1) - - 1.3162 1.1737 

Source: written by the author. 

 

In table 3 above, each 𝑀𝑆𝐹𝐸𝑇𝑉𝑃−𝑉𝐴𝑅 and 𝑀𝐴𝐹𝐸𝑇𝑉𝑃−𝑉𝐴𝑅 was divided by the MSFE and 

MAFE of the Random-Walk model. That is 

 
𝑅𝑀𝑆𝐹𝐸𝑖 =

𝑀𝑆𝐹𝐸𝑇𝑉𝑃−𝑉𝐴𝑅

𝑀𝑆𝐹𝐸𝑅𝑊
 

(18) 

and 

 
𝑅𝑀𝐴𝐹𝐸𝑖 =

𝑀𝐴𝐹𝐸𝑇𝑉𝑃−𝑉𝐴𝑅

𝑀𝐴𝐹𝐸𝑅𝑊
 

(19) 

In this case, if either the 𝑅𝑀𝑆𝐹𝐸𝑖 or the 𝑅𝑀𝐴𝐹𝐸𝑖 are higher than 1, the respective model 

displays a more erratic and unstable out-of-sample forecasts compared to the Random-Walk. As 

we can see, there were an average dilution of 24%, in terms of MSFE, and 15% in terms of 

MAFE. Its interesting to note that the average forecast errors do not seems to be too sensitive to 
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changes in 𝜅. Possibly, the high level of colinearity among maturities makes it harder to extract 

relevant information from return and covariance matrices. For 𝜆, the same pattern arises. 

The portfolio returns are evaluated and compared to the Brazilian risk-free rate (CDI), 

which is the most widely used benchmark interest-rate in fixed-income and hedge-fund 

industries. The statistics that follow on table 4 were constructed (and annualized) based on 

portfolios excess of return. 

 

Table 4 - Mean-Variance Optimization Statistics 
Model λ Κ Return Standard Deviation Sharpe Average Maturity 

Random-Walk - - 0.0019 0.0220 0.0876 5.3692 

TVP-VAR-DMA 0.98 0.99 -0.0043 0.0094 -0.4591 7.7216 

TVP-VAR-DMA 1.00 0.96 -0.0043 0.0094 -0.4608 4.7312 

TVP-VAR-DMA 1.00 1.00 -0.0040 0.0090 -0.4409 6.1217 

TVP-VAR-DMA 1.00 0.98 -0.0039 0.0090 -0.4394 4.7302 

TVP-VAR-DMA 0.96 0.99 -0.0045 0.0086 -0.5286 4.5410 

TVP-VAR-DMA 0.98 0.97 -0.0045 0.0086 -0.5253 5.7948 

TVP-VAR-DMA 0.96 0.97 -0.0049 0.0085 -0.5763 7.9669 

TVP-VAR-DMA 1.00 0.99 -0.0044 0.0084 -0.5253 5.1827 

TVP-VAR-DMA 0.97 0.96 -0.0048 0.0084 -0.5714 3.7818 

TVP-VAR-DMA 0.97 0.99 -0.0047 0.0081 -0.5810 5.1699 

TVP-VAR-DMA 0.98 0.98 -0.0047 0.0081 -0.5799 5.1958 

TVP-VAR-DMA 0.96 0.98 -0.0049 0.0081 -0.6072 5.1269 

TVP-VAR-DMA 0.99 0.97 -0.0047 0.0081 -0.5867 7.2608 

TVP-VAR-DMA 0.99 1.00 -0.0049 0.0080 -0.6050 9.0805 

TVP-VAR-DMA 0.97 1.00 -0.0047 0.0080 -0.5851 6.2235 

TVP-VAR-DMA 0.96 1.00 -0.0048 0.0080 -0.6030 5.2346 

TVP-VAR-DMA 0.99 0.99 -0.0047 0.0080 -0.5907 4.5176 

AR (1) - - -0.0045 0.0079 -0.5683 7.3117 

TVP-VAR-DMA 0.97 0.98 -0.0049 0.0079 -0.6254 5.4120 

TVP-VAR-DMA 0.98 0.96 -0.0048 0.0079 -0.6052 4.0277 

TVP-VAR-DMA 0.99 0.98 -0.0051 0.0076 -0.6717 4.5274 

TVP-VAR-DMA 1.00 0.97 -0.0051 0.0076 -0.6747 4.0727 

TVP-VAR-DMA 0.97 0.97 -0.0050 0.0076 -0.6632 6.3558 

TVP-VAR-DMA 0.98 1.00 -0.0050 0.0075 -0.6660 7.2257 

TVP-VAR-DMA 0.96 0.96 -0.0052 0.0074 -0.6986 9.1665 

TVP-VAR-DMA 0.99 0.96 -0.0054 0.0071 -0.7585 7.2391 

Source: written by the author. 

 

Table 4 is sorted from the highest to the smallest Sharpe ratio. Stands out that most 

portfolios have a similar shape (exception made to the Random-Walk portfolio, that showed 

higher returns and variances). The end up results rested upon very short maturities, which can be 

seen by the last column. Indeed, returns from the spot rates increase only marginally as we go 

from short to the long maturities. The average annualized sample return of the 3-month rate 

diverged from the 5 year’s rate by only 2.20%, while the annualized sample standard deviation 
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increased by more than 9%. This can partially explain why the Mean-Variance is soo insensitive 

to the TVP-VAR specifications and oriented toward short-term rates. 

The table 5 shows the results for the portfolio optimization when the restriction 𝑤𝑖 ≤ 0.30 

is incorporated into the utility function presented in equation (2). As expected, there is an 

increase in average maturities holdings. But most important, Sharpe ratios, although still 

negative, have a significant improvement. The bulk of the difference comes from standard 

deviations, that for most portfolios, had a symbolic increase. 

 

Table 5 - Mean-Variance Optimization Statistics  

(Weights constrained to be between 0 and 0.30) 
Model λ κ Return Standard Deviation Sharpe Average Maturity 

Random-Walk - - 0.0001 0.0208 0.0045 9.5294 

TVP-VAR-DMA 1.00 0.98 -0.0008 0.0173 -0.0441 8.3131 

TVP-VAR-DMA 0.98 0.99 -0.0012 0.0170 -0.0681 7.8031 

TVP-VAR-DMA 0.96 0.96 -0.0010 0.0169 -0.0595 7.1656 

TVP-VAR-DMA 0.98 1.00 -0.0010 0.0168 -0.0589 8.1051 

TVP-VAR-DMA 0.97 0.97 -0.0012 0.0168 -0.0721 7.4121 

TVP-VAR-DMA 0.99 0.99 -0.0011 0.0167 -0.0644 8.3156 

TVP-VAR-DMA 0.97 0.98 -0.0010 0.0166 -0.0614 7.7259 

TVP-VAR-DMA 1.00 1.00 -0.0013 0.0163 -0.0827 7.1611 

TVP-VAR-DMA 0.96 1.00 -0.0005 0.0162 -0.0320 8.3566 

TVP-VAR-DMA 0.96 0.99 -0.0012 0.0162 -0.0751 9.9417 

TVP-VAR-DMA 0.98 0.97 -0.0013 0.0162 -0.0794 9.0277 

TVP-VAR-DMA 1.00 0.96 -0.0014 0.0162 -0.0880 8.1087 

TVP-VAR-DMA 0.99 0.96 -0.0010 0.0162 -0.0635 8.0369 

TVP-VAR-DMA 0.96 0.98 -0.0013 0.0159 -0.0806 7.2437 

TVP-VAR-DMA 0.99 0.97 -0.0017 0.0159 -0.1059 8.9592 

TVP-VAR-DMA 0.96 0.97 -0.0014 0.0159 -0.0854 9.8886 

TVP-VAR-DMA 0.97 0.99 -0.0014 0.0158 -0.0901 7.7316 

TVP-VAR-DMA 1.00 0.97 -0.0014 0.0158 -0.0881 7.6648 

TVP-VAR-DMA 0.98 0.96 -0.0014 0.0157 -0.0922 9.0277 

TVP-VAR-DMA 0.99 1.00 -0.0016 0.0145 -0.1072 9.1144 

TVP-VAR-DMA 0.99 0.98 -0.0018 0.0145 -0.1244 9.8176 

TVP-VAR-DMA 0.97 1.00 -0.0019 0.0143 -0.1315 7.1088 

TVP-VAR-DMA 1.00 0.99 -0.0020 0.0143 -0.1395 7.1081 

TVP-VAR-DMA 0.98 0.98 -0.0021 0.0139 -0.1524 7.6165 

AR (1) - - -0.0020 0.0136 -0.1490 8.2865 

TVP-VAR-DMA 0.97 0.96 -0.0025 0.0130 -0.1914 8.3638 

Source: written by the author. 

 

A curious reader might raise the question of whether or not the results would be distinct 

under a different parametrization set for 𝜁 and 𝑤𝑖 . It happens that, for this specific dataset, the 

answer could be “not much” and worth spending a few words on why this is the case. The 

parameter 𝜁 that controls the amount of penalization included in the objective function was very 

insensitive to alternative specifications, 𝜁 =  {2, 3, 4, 5}. This can be explained by the fact that 
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𝜁 =  1 is already considered too loose, so increasing 𝜁 did not caused any major changes in the 

end up result. Stated in a different way, the increase in 𝜁 tended to push portfolios towards to a 

more restrictive point in the optimum hyperplane without an equivalent compensation in terms of 

Sharpe Ratio. Obviously, that is the opposite of what we want. The weights vector, on the other 

hand, were also tested for 𝑤𝑖  =  {0.20, 0.40, 0.50} with results almost completely governed by 

the asymmetric relationship within risk and return. As mentioned above, the increase in return 

does not offset the volatility expansion as we go from short term maturities to more extended 

ones. As an immediate consequence, when restriction is set to be too tight, the weight vector is 

always bidding, which effectively defines the optimization. For obvious reasons, this is also an 

undesirable result.  

From the period of 2010-jan until 2017-jun, when the out-of-sample portfolios were 

generated, the IFR-M and IMA-B 5 had a cumulative excess of return over the CDI of 14.25% 

and 5.48%, respectively. Given that the TVP-VAR-DMA portfolios delivered an annualized near 

zero cumulative excess of return, those two values can be viewed as the total underperformance 

of TVP-VAR-DMA under the tested period. 
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5 FINAL CONSIDERATIONS 

 
Brazilian real interest-rates are among the highest in the world. It does not come as a 

surprise, then, that most brazilian asset managers tilt their wealth into fixed-income streams. 

Nevertheless, interest-rates have been falling during the last 15 years and no manager can neglect 

the challenges that may arise in a lower and more stable interest-rates environment. This is 

notably true for retirement funds and insurance companies that hold long-term liabilities covered 

by short-term assets. 

For this reason, this work approached fixed-income management from a singular point of 

view by applying a TVP-VAR-DMA model in a Mean-Variance context. The TVP-VAR model 

designed by Koop and Korobilis (2013) carries interesting properties that can be valuable for 

quantitative asset managers. Among several features its possible to highlight (i) the possibility to 

knock-out the “Dimensionality Course” by the use of forgetting-factors; (ii) the possibility to 

lessen Model Uncertainty thought DMA.  

The first allows the Kalman-filter to be estimated without the need to appeal to MCMC 

algorithms, which is computely efficient. The second is calibrated by the posterior probability 

density, but it can also be regulated by a grid of values in the hyper-parameter 𝛾. 

The end results show that, neither the that portfolios constructed using TVP-VAR-DMA, 

Autoregressive Model, or the Random-Walk, were able to beat the selected fixed-income 

benchmarks, IRF-M and IMA-B 5, on a risk-adjusted basis. Yet, the DMA out-of-sample 

forecasts indicate that the features designed by Koop and Korobilis (2013) may help investors to 

sucesfully extract information from economic data avaiable, as showed in Caldeira, Moura and 

Santos (2015) and Dangl and Halling (2012). 
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