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ABSTRACT

Many researchers have been interested in exploring the vast computational power of
recent graphics processing units (GPUs) in applications outside the graphics domain. This
trend towards General-Purpose GPU (GPGPU) development has been intensified with
the release of non-graphics APIs for GPU programming, such as NVIDIA’s Compute
Unified Device Architecture (CUDA). With them, the GPU has been widely studied for
solving many 2D and 3D signal processing problems involving linear algebra and partial
differential equations, but little attention has been given to 1D signal processing, which
may demand significant computational resources likewise.

It has been previously demonstrated that the GPU can be used for real-time signal pro-
cessing, but several processes did not fit the GPU architecture well. In this work, a new
technique for implementing a digital recursive linear filter using the GPU is presented.
To the best of my knowledge, the solution presented here is the first in the literature. A
comparison between this approach and an equivalent CPU-based implementation demon-
strates that, when used in a real-time audio processing system, this technique supports
processing of two to four times more coefficients than it was possible previously. The
technique also eliminates the necessity of processing the filter on the CPU — avoiding
additional memory transfers between CPU and GPU — when one wishes to use the filter
in conjunction with other processes, such as sound synthesis.

The recursivity established by the filter equation makes it difficult to obtain an effi-
cient implementation on a parallel architecture like the GPU. Since every output sample
is computed in parallel, the necessary values of previous output samples are unavailable
at the time the computation takes place. One could force the GPU to execute the filter
sequentially using synchronization, but this would be a very inefficient use of GPU re-
sources. This problem is solved by unrolling the equation and “trading” dependences
on samples close to the current output by other preceding ones, thus requiring only the
storage of a limited number of previous output samples. The resulting equation contains
convolutions which are then efficiently computed using the FFT.

The proposed technique’s implementation is general and works for any time-invariant
recursive linear filter. To demonstrate its relevance, an LPC filter is designed to synthe-
size in real-time realistic sounds of collisions between objects made of different materials,
such as glass, plastic, and wood. The synthesized sounds can be parameterized by the ob-
jects’ materials, velocities and collision angles. Despite its flexibility, this approach uses
very little memory, requiring only a few coefficients to represent the impulse response
for the filter of each material. This turns this approach into an attractive alternative to
traditional CPU-based techniques that use playback of pre-recorded sounds.

Keywords: Digital filters, linear filters, recursive filters, signal processing, sound synthe-
sis, sound effects, GPU, GPGPU, realtime systems.



RESUMO

Uma Implementação Eficiente de Filtros Lineares Recursivos e Sua Aplicação a
Re-Síntese Realistica em Tempo Real para Mundos Virtuais Interativos

Muitos pesquisadores têm se interessado em explorar o vasto poder computacional das
recentes unidades de processamento gráfico (GPUs) em aplicações fora do domínio grá-
fico. Essa tendência ao desenvolvimento de propósitos gerais com a GPU (GPGPU) foi
intensificada com a produção de APIs não-gráficas, tais como a Compute Unified Device
Architecture (CUDA), da NVIDIA. Com elas, estudou-se a solução na GPU de muitos
problemas de processamento de sinal 2D e 3D envolvendo álgebra linear e equações di-
ferenciais parciais, mas pouca atenção tem sido dada ao processamento de sinais 1D, que
também podem exigir recursos computacionais significativos.

Já havia sido demonstrado que a GPU pode ser usada para processamento de sinais
em tempo-real, mas alguns processos não se adequavam bem à arquitetura da GPU. Neste
trabalho, apresento uma nova técnica para implementar um filtro digital linear recursivo
usando a GPU. Até onde eu sei, a solução aqui apresentada é a primeira na literatura.
Uma comparação entre esta abordagem e uma implementação equivalente baseada na
CPU demonstra que, quando usada em um sistema de processamento de áudio em tempo-
real, esta técnica permite o processamento de duas a quatro vezes mais coeficientes do
que era possível anteriormente. A técnica também elimina a necessidade de processar
o filtro na CPU — evitando transferências de memória adicionais entre CPU e GPU —
quando se deseja usar o filtro junto a outros processos, tais como síntese de som.

A recursividade estabelecida pela equação do filtro torna difícil obter uma implemen-
tação eficiente em uma arquitetura paralela como a da GPU. Já que cada amostra de
saída é computada em paralelo, os valores necessários de amostras de saída anteriores
não estão disponíveis no momento do cômputo. Poder-se-ia forçar a GPU a executar o
filtro sequencialmente usando sincronização, mas isso seria um uso ineficiente da GPU.
Este problema foi resolvido desdobrando-se a equação e “trocando-se” as dependências
de amostras próximas à saída atual por outras precedentes, assim exigindo apenas o ar-
mazenamento de um certo número de amostras de saída. A equação resultante contém
convoluções que então são eficientemente computadas usando a FFT.

A implementação da técnica é geral e funciona para qualquer filtro recursivo linear
invariante no tempo. Para demonstrar sua relevância, construímos um filtro LPC para sin-
tetizar em tempo-real sons realísticos de colisões de objetos feitos de diferentes materiais,
tais como vidro, plástico e madeira. Os sons podem ser parametrizados por material dos
objetos, velocidade e ângulo das colisões. Apesar de flexível, esta abordagem usa pouca
memória, exigindo apenas alguns coeficientes para representar a resposta ao impulso do
filtro para cada material. Isso torna esta abordagem uma alternativa atraente frente às téc-
nicas tradicionais baseadas em CPU que apenas realizam a reprodução de sons gravados.

Palavras-chave: Filtros digitais, filtros lineares, filtros recursivos, processamento de si-
nais, síntese de som, efeitos sonoros, GPU, GPGPU, sistemas de tempo-real.
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1 INTRODUCTION

Sound is indispensible to the multimedia experience, conveying both information and
emotion. For this reason, many of today’s multimedia applications (from mobile phones
to video games to the recording studio) make use of some sort of audio processing. Over
time, audio and circuit technologies have developed alongside, with the first electronic
audio applications consisting of analog circuits, then hard-wired on-chip programs, then
software running on modern programmable chips. Currently, most audio software runs on
digital signal processors (DSPs) — such as those found in sound cards — and on CPUs.
Technology has evolved in such a way as to conveniently allow a skilled electronic mu-
sician to undergo all steps of industrial-quality recording production using only a laptop
and music software running on the CPU (and, perhaps, a microphone and an external
audio card, for acoustic recordings).

However, audio processing on personal computers faces some obstacles repeatedly.
For instance, most DSPs are not programmable, containing only a few audio algorithms
(whichever are considered useful and adequate by each particular vendor) and offering
only a few adjustable parameters to the user application. For the DSPs that are pro-
grammable, there are no widely accepted standard software interfaces, and this hinders
large-scale development for these platforms. CPUs, on the other hand, can compute any
given algorithm and allow the development of new ones, but are often unable to handle
high audio processing loads. This is particularly problematic when sound needs to be
immediately produced in response to some event (i.e., in real-time), such as when gen-
erating sounds for events such as collisions in a game, or when generating the sound for
a musician’s keyboard performance. In this respect, DSPs are better because they are
designed for real-time operation. For these reasons, most non-professional audio applica-
tions (such as in games) make use of simple, low-quality audio algorithms, and musicians
usually invest in dedicated equipment able to handle specific processes in real-time.

Professional audio applications (such as those used in recording studios) often make
use of considerably more complex methods in order to produce a wide array of sound
textures with different auditory attributes and, often, superior quality (both in the sense of
signal quality — i.e., less noise and/or distortion — and artistic, subjective quality). Such
processes include reverberation, used in virtual scenes as an auditory clue that provides
the perception of a wide complex space, such as a chamber or a hall. This is often com-
puted as a convolution with another signal (the impulse response that models environment
resonances) (GARCíA, 2002), and thus, this process requires more operations per sample
for larger impulse responses (some consisting of as much as 200.000 samples and some-
times even more than a million). Another common process that may demand considerable
resources is synthesis via sample playback (RUSS, 1996), common in videogames and
some basic music software. This method, when applied to multiple simultaneous sound
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events (e.g., generated by many simultaneous collisions in a scene), easily overloads any
current CPU on the market. Simple and common solutions include halting some of the
currently playing events or simply not beginning the playback of new events, but both ap-
proaches break the auditory expectation of the user. The situation becomes critical when
one decides to combine this synthesis method with a reverberation effect to compose a
full soundstage for the scene, as is often desired in real-time audio applications. The
computational power of CPUs, then, often limits the number and types of processes that
can be combined to build such a soundstage.

On the other hand, recent graphics processing units (GPUs) have presented theoretical
throughput capabilities that far exceed those of CPUs. For example, the Nvidia GeForce
GTX 280 has 240 stream processors working in parallel, providing a theoretical max-
imum throughput of 933 GFLOPS in single precision mode (NICKOLLS et al., 2008;
NVIDIA CORP, 2008a). Also, graphics hardware companies have recently developed
technologies such as CUDA and CTM (HOUSTON; GOVINDARAJU, 2007) which are
oriented toward general-purpose processing on the GPU (GPGPU). More recently, some
GPU vendors have announced future support to OpenCL, a public standard for develop-
ment for parallel architectures. This reflects a demand for offloading compute-intensive
processes to the GPU, which is the case of some of the audio applications mentioned
previously. If explored properly, the GPU should have the potential to compute larger
amounts of audio data. It would also constitute another alternative for load balancing,
leaving the CPU free for other processes, such as physics simulations and artificial intel-
ligence.

Although 2D and 3D signal processing have been well explored on the GPU
(ANSARI, 2003; JARGSTORFF, 2004; MORELAND; ANGEL, 2003; SPITZER, 2003;
SUMANAWEERA; LIU, 2005), and many mathematical procedures are readily available
on libraries such as CUBLAS and CUFFT (NVIDIA CORP, 2008b,c), very little work has
been done in the area of GPU-based 1D signal processing, probably due to the interdisci-
plinary nature of these processes. For example, excluding the technique presented in this
thesis, no general solution for linear recursive filters on GPUs has been published, except
for evaluating a massive number of recursive filters in parallel (ZHANG; YE; PAN, 2005),
which is reasonably straightforward. Moreover, the lack of an efficient parallel algorithm
for recursive filters (among other less common processes) has prevented GPUs from being
used for professional audio processing, even though there is evidence that the GPU can
be used for real-time audio processing (TREBIEN; OLIVEIRA, 2008) and sometimes
achieve as much as 20× speedups (TREBIEN, 2006). Finally, such work could natu-
rally extend to other applications, such as signal coding and decoding in wireless network
routers (YEO et al., 2002).

Therefore, in order to fulfill this missing link, I presented a new technique (TREBIEN;
OLIVEIRA, 2009) that allows efficient implementation of linear, time-invariant recursive
1D filters on GPUs. To eliminate dependences, the method consists of unrolling the filter
equation until all data dependences refer to available sample values. After unrolling,
the equation can be expressed as a pair of convolutions, which in turn can be computed
efficiently using the FFT algorithm. Compared to an equivalent state-of-the-art CPU-
based technique, this approach supports processing filters with two to four times as many
coefficients in real-time.

The effectiveness of this approach and its relevance to computer graphics are demon-
strated by re-synthesizing realistic sounds of colliding objects made of different materials
(e.g., glass, plastic, and wood) in real time. The sounds can be customized to dynamically
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reflect object properties, such as velocity and collision angle. Since the entire process is
done through filtering, it essentially requires a set of coefficients describing the material
properties, thus having a small memory footprint. This thesis also describes how the co-
efficients required for re-synthesis can be automatically computed from recorded sounds.
Given its flexible and general nature, this approach replaces with advantages, although
not entirely, the traditional CPU-based techniques that perform playback of pre-recorded
sounds.

1.1 Structure of This Thesis

The remaining of this thesis is organized as follows.
Chapter 2 discusses some related work regarding the use of GPUs for audio processing

and some related theoretical works on digital signal processing. Chapter 3 presents the
fundamental concepts of audio processing in digital systems. Chapter 4 introduces digital
filters and the basic theory for building digital audio systems using digital linear filters,
defining concepts such as impulse response, non-recursive and recursive filters, convolu-
tion, the Fourier transform, pole-zero plot and filter stability. Chapter 5 introduces digital
platforms widely available in the consumer market, with which one can build audio sys-
tems and applications.

After all introductory concepts and contextualization are given, Chapter 6 proposes
and investigates a solution for the problem of efficient implementation of recursive filters
on GPUs, which includes both FIR and IIR filters. The technique can be used efficiently
even with very long FIR filters, which are useful for reverb effects. The last section in this
chapter presents a known technique called Linear Predictive Coding (LPC), which will be
used later to provide coefficients for recursive filters.

In Chapter 7, validation of the proposed technique is achieved by coupling the filter
implementation with a graphics process that performs physically-based collision detec-
tion. The process uses the proposed implementation of recursive filters to synthesize in
real-time realistic sounds for the collision of objects made of different materials. The
chapter concludes with results, a performance comparison, some analysis of stability of
the implemented filters and implementation details for reproducing and verifying the re-
sults.

Finally, in Chapter 8, this work is summarized and directions for future research are
provided.
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2 RELATED WORK

This chapter presents a critical description of some related works, establishing the
major differences between them and my work. Due to the interdisciplinary nature of this
research, this chapter is divided in two parts. Section 2.1 discusses some work on signal
processing related in special to Chapter 7. Section 2.2 discusses some related work on
GPU-based audio processing.

2.1 Theoretical Signal Processing

In this section, most works link to basic signal processing techniques. As such, even
though it may come as a surprise, many of them were published several decades ago.
Additionally, rather than reporting previous attempts at solving this problem, they present
problems associated with CPU-based recursive filtering, what turns them into a valuable
source of commonly agreed requirements and methods to evaluate the quality of such
implementations.

Liu (1971) discussed the accuracy problems in digital linear filter implementations
using both finite word length and floating-point representations. He analyzed the effect
of round-off errors on the input signal, filter coefficient quantization and accumulation
errors on recursive filters. He also established error bounds for each of these elements
and defines conditions that ensure filter stability. By treating the signal in an abstract way,
no implications to audible effects of different implementations were drawn.

Kaiser (1965) reviewed some filter design methods and derives an expression that
determines the required coefficient accuracy for a given sampling rate and filter complex-
ity. The effects of limited precision on filter zeros and poles were studied, and he also
determined which of the canonical implementations provide the best accuracy.

Rader and Gold (1967) provided and discussed an alternative implementation of first
and second order recursive filters with significantly reduced errors in poles and zeros
positions. Avenhaus and Schüssler (1970) described a method for determining the ideal
word length. One of the notable conclusions was that, in some cases, a larger word length
may lead to larger filter errors.

Jackson (1969) analyzed and verified experimentally several rules for predicting the
occurrence in frequency of limit cycles (i.e., critically stable output) resulting from round-
off errors in first and second order filters. He found that in such conditions, the output
remains “stable” (i.e., periodic and with similar amplitude) and does not suffer any con-
siderable effect from different input signals. He then estimated the expected behavior of
a filter implemented in the Parallel Form (output of sections are summed, therefore the
output is a sum of all limit cycles) but only made unverified assertions about the Cascade
Form implementation.
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In another paper, Jackson (1970) provided an extensive analysis on the effect of quan-
tization in filter implementation. He derived expressions in the frequency domain that
bound such errors relative to the filter’s transfer function. He did so for multiple filter
implementations, including Direct Form I and II and the Transpose Form. These con-
clusions allow the reader to draw similar conclusions for the Cascade and Parallel Form
implementations as well.

Weinstein and Oppenheim (1969) verified experimentally a statistical model for noise
introduced in a filtered signal as a result of arithmetic quantization. They applied their
experiment using fixed and floating-point arithmetic, and compared the results of the two.
One of the important conclusions is that a floating-point-based filter realization desirably
provides greater signal-to-noise-ratios (SNR) than an equivalent realization using fixed
point with the same word length as the floating-point’s mantissa.

Oppenheim (1970) proposed an alternative filter implementation using block-floating-
point arithmetic, in which the filter is implemented using fixed point arithmetic with the
maximum filter gain normalized to 1 to avoid overflow. The inverse of the normalization
factor is then applied to the output. The theoretical characterization of noise in such
an implementation was then experimentally verified and compared to the other existing
implementations.

Welch (1969) established upper and lower bounds on the RMS spectral error of the
FFT algorithm implemented using fixed-point arithmetic. The accuracy was measured
as the spectral RMS of the error introduced in the computation of the FFT. Then, he
proceeded to an experimental verification on a non two’s-complement machine.

Weinstein (1969) also studied the accuracy of the FFT algorithm but using floating-
point arithmetic. He proposed and verified experimentally a statistical model that esti-
mates the SNR for a given FFT configuration. His model showed that using truncation
instead of rounding on floating-point operations greatly reduces SNR, which is not desir-
able. His model also showed that rounding down instead of rounding up also increases
SNR, demonstrating the possible introduction of correlation between round-off noise and
signal, an assumption that is ignored in most studies, including the one described in this
thesis.

Parhi and Messerschmitt (1989) developed an incremental block-state structure for
hardware realization of recursive filters. Their approach combines incremental output
computation and clustered look-ahead and provides minimal use of hardware compo-
nents (e.g., transistors). Though their technique has linear complexity respective to block
size, the implementation is given in pipeline form, thus containing recursive dependences
that prevent direct implementation (without modification) on SIMD machines such as the
GPU.

2.2 GPU-Based Audio Processing

Several works presented adaptations of the FFT algorithm for GPUs (ANSARI, 2003;
MORELAND; ANGEL, 2003; SPITZER, 2003; SUMANAWEERA; LIU, 2005). Imple-
mentations of the FFT are already available in software libraries for both the CPU (FRIGO;
JOHNSON, 2005) and GPUs (GOVINDARAJU; MANOCHA, 2007).

Gallo and Drettakis (2003) presented a method for sound spatialization in a 3D virtual
world that reduces requirements on audio hardware. In their method, a set of 3D sound
sources are clustered according to their relative position to the listener in polar coordi-
nates. Signals from sources of the same cluster are mixed on the GPU, yielding a smaller
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number of voices for playback by the sound card. Signals consist of a single channel with
3 sub-bands at 44.1 kHz, and blocks contain 1,024 samples each. The sub-band format al-
lows a simple form of equalization, and the mixing algorithm also performs Doppler shift-
ing by linear resampling of the input signals through texture access. Gain controls (filter
parameters, panning and distance attenuation) appear to be computed on the CPU once
per frame. No synthesis is performed, so all sound samples are loaded to texture memory
before execution. The authors implemented an application with graphics and sound run-
ning concurrently. Running the application on a 1.8 GHz Pentium 4 Compaq laptop with
audio only, processing the signals on the GPU required about 38% of available CPU time.
The audio consisted of 8-bit samples due to graphics hardware limitations. With an ATI
Radeon 5700 graphics card, they claim a greater frame rate was achieved with graphics
turned on (rendering scene with 70,000 polygons), but no performance metric is given.

Gallo and Tsingos (2004) presented a report on a similar GPU-accelerated audio pro-
cessing application, in which Doppler shifting is simulated through a variable delay line.
The sound is filtered by head-related transfer functions (HRTFs) (BEGAULT, 1994) to
produce the sensation of source position. The signal contains a single channel with 4 sub-
bands at 44.1 kHz and audio blocks contain 1,024 32-bit floating-point samples. When
running their application on a 3.0 GHz Pentium 4 with an AGP 8x Nvidia GeForce FX
5950, they report that the GPU implementation was 20% slower than a CPU-based im-
plementation.

Jedrzejewski and Marasek (2004) used the GPU for a ray-tracing method that com-
putes an impulse response (ANTONIOU, 1980) from source to listener on occluded vir-
tual environments to produce a realistic room reverberation effect. The impulse response
would then be convolved with the source signal, but the authors apparently did not imple-
ment that feature. As such, no signal processing takes place in the GPU.

Robelly et al. (2004) presented a mathematical formulation based on state variables
for computing time-invariant recursive filters on parallel DSP architectures. Their imple-
mentation revealed that high speedups can be achieved when both filter order and number
of parallel processors are high (around 40× for a 60th-order filter on a 128-way parallel
processor). However, when the filter order is low, the achieved speedup is small (not more
than 2× for a 1st-order filter in their test conditions regardless of the number of parallel
paths). The platform for running the implementation was left unspecified, although the
method is sufficiently general for implementation in any parallel architecture.

Whalen (2005) evaluated the performance of the GPU by comparing the speedup
achieved in the implementation of a set of simple non-recursive non-real-time audio pro-
cesses. His tests were run on a 3.0 GHz Pentium 4 with an AGP Nvidia GeForce FX
5200, the signal contained 16-bit samples and a single channel, and the process operated
on blocks of 105,000 samples (around 2,2 seconds at 48 kHz). He found up 4× speedups
for certain algorithms, notably those requiring only sum and multiplication (delay, low-
pass, and high-pass filters), but this is likely a limitation of previous generations of GPUs.
For use in applications, these processes would require modifications, introducing some
overhead.

Zhang et al. (2005) have used GPUs for modal synthesis, a physically-motivated syn-
thesis model that represents a vibrating object as a bank of damped harmonic oscillators.
The inherent recusivity of synthesizing a single mode was eliminated in favor of the goal
of computing a massive number of individual modes. In their approach, for each mode,
one sample is generated at each step of the process, and all these samples are summed
to obtain the output sample. Their method was not applied to any implementation of
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an interactive virtual world, and it did not use masking or culling algorithms to reduce
computational load. They reported having computed 32,768 modes in real-time using a
GeForce 6800 GT card, but achieving only 5,000 modes with a Pentium 4 2.8 GHz.

Trebien and Oliveira (2008) proposed a real-time audio processing system based on
GPUs capable of performing some basic operations and synthesizing basic waveforms.
This was achieved by mapping audio concepts to graphics concepts and using OpenGL to
activate shaders responsible for doing the processing. Textures were used to store input
and output signals, and the signal stream was transferred to main memory and then to the
audio device for playback.

Bonneel et al. (2008) developed a technique for efficiently generating sounds for colli-
sions in virtual worlds using modal synthesis in the frequency domain, with the use of the
Short-Time Fourier Transform (STFT). Their method models well sounds composed of
exponentially decaying narrowband modes, and achieves speedups of 5 to 8× compared
to a time-domain solution. They present a framework allowing the use of pre-recorded
sounds, HRTFs, auditory masking and culling, and they also discuss the impact of dif-
ferent windows for overlapping consecutive STFT frames in the time domain. They also
conducted a blind user test to validate the quality of their method. Collision sounds were
generated on the CPU, even though their technique could be adapted to run on the GPU.

2.3 Summary

This chapter discussed some related work on signal processing and on GPU-based
audio processing. The works related to signal processing mostly serve as a theoretical
background for the discussion that follows. Most of the works on GPU-based audio pro-
cessing do not present a real-time application, and most also report little advantage of
GPU-based audio processing over a corresponding CPU-based one. Two of these works
present some GPU-based implementation of modal synthesis, a subclass of recursive lin-
ear filtering.

In the next chapter, the fundamental concepts necessary for audio processing are pre-
sented. In particular, the representation of the signal on a computer and the processing of
a continuous stream of audio with low delay are discussed.
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3 FUNDAMENTALS OF SIGNAL PROCESSING

In this chapter, fundamental concepts of acoustics are introduced sound. First, sound
is characterized as an oscillatory perturbation of a medium. Then, measures of sound
wave amplitude and frequency are given, along with the capabilities of the human ear
to detect sound waves of different types. This is important when choosing operational
characteristics of an audio application. The term “audio” is defined as well. A distinction
between analog and digital audio is drawn and the representation of audio in a digital
machine is discussed. Finally, block processing, an important mechanism in real-time
audio applications, is presented.

3.1 Basic Concepts of Sound and Acoustics

Sound can be characterized as a mechanical perturbation which propagates over time
in a physical medium (typically the air). It is both produced and propagated through a
cascade of adjacent particle displacements, creating regions of compression and rarefac-
tion and, thereby, altering the local pressure level of the medium. Because pressure varies
continuously and tends to return to an equilibrium point, sound is essentially an oscil-
latory effect. Because of that, instantaneous pressure at a point in space is also labeled
amplitude of the traveling wave sound. The state of a sound field is defined by the in-
stantaneous amplitude levels inside a well-defined region of physical space. When such
waves reach the human ear, they induce nervous stimulation inside a complex biological
apparatus called cochlea. The resulting nervous signals are carried into the brain, which
is responsible for auditory perception and cognition, both complex processes still under
scientific investigation (GUMMER, 2003). As such, sound can also be understood as a
signal (see Chapter 4) containing auditory information.

When sound waves interact with particles of another medium, they undergo well-
known wave phenomena such as absorption, reflection, refraction, diffraction, interfer-
ence, among others. The conversion of energy between two different forms, called trans-
duction, is responsible for many processes of sound generation and absorption. For in-
stance, when an object strikes another, part of the kinetic energy is transformed into ten-
sion as particles near the contact point are displaced to accommodate the impact; as these
particles move toward tension equilibrium, they displace air particles, releasing energy
in the form of sound (MORSE; INGARD, 1986). The set of processes that generate and
transform sound waves are studied in the field of theoretical acoustics. The term “acous-
tic” usually refers to sound waves in air (e.g., acoustic sound, acoustic signal, acoustic
audio).

Particularly, transduction can be exploited to convert a sound signal to/from an analog
electrical form where the instantaneous level of either current or voltage in a circuit repre-



21

sents the instantaneous level of sound amplitude at a specific point in the sound field. This
is the principle under which microphones and loudspeakers operate (EARGLE, 2001).
The term “analog”, therefore, usually refers to sound signals in analog electrical form
(e.g., analog signal, analog audio). Analog signals can be transduced into other forms as
well, such as magnetic impressions in magnetic tapes for permanent recording (i.e., a type
of analog recording), and also transformed by other electrical components and transduced
back to air, producing new sounds. Notably, the human ear is also a transducer because
it converts sound waves into electrical signals in the nervous system. The study of pro-
cesses by which sound can be transduced and transformed in electrical form is called
electroacoustics.

Observing sound waves, one frequently finds instances of harmonic motion, in which
amplitude levels appear to vary in an almost perfect sinusoidal movement. In fact, as
presented in Section 4.4, sound waves can be expressed as a combination of pure sinu-
soids (CARSLAW, 1952). A sinusoid is defined by

y(t) = Asin(ωt +φ) (3.1)

where y(t) represents the actual amplitude of the sinusoid at instant t, A is the peak
(i.e., maximum) absolute (i.e., ignoring the sign) amplitude, ω is the frequency and φ

is the phase of the sinusoid. Notice that, if ω = 2π f , then f represents the number of
sinusoidal cycles per time unit. The human ear is sensitive to different levels of amplitude
and frequency of components of sound and it may be sensitive, to some degree, to their
phase as well (LIPSHITZ; POCOCK; VANDERKOOY, 1982).

As sinusoids are composed of positive and negative cycles, frequency defines the num-
ber of cycles per unit of time. For sound, frequency is usually measured in Hertz (Hz),
which represents the number of cycles per second. The human ear is sensitive to sinu-
soidal sound waves of frequencies between 20 Hz and 20 kHz (ISO/IEC, 2008). Sounds
of frequency below 20 Hz are named infrasound, and those above 20 kHz are named
ultrasound.

At any time, amplitude can only be expressed in respect (as a ratio) to a reference level.
The ratio itself is a dimensionless quantity, but it is usually expressed in logarithmic scale
as decibels (dB), meaning one-tenth of a bel. The dB scale is defined as

A1

A0
= 20log10

(
A1

A0

)
dB (3.2)

where A1 and A0 are the amplitudes being compared, with A0 representing the reference
level. For example, a sinusoidal wave with twice the amplitude of another is rated as
20log10 (2) dB≈ 6.02dB.

When establishing the amplitude of acoustic waves, one can use the dB SPL (sound
pressure level) scale, where the level of 0 dB SPL represents the quietest (i.e., of lowest
amplitude) detectable by the human ear. This level is also called the threshold of hearing.
There is no maximum limit for amplitudes that the ear can detect, but there are thresh-
olds establishing ear damage, pain and ultimately death of the individual. The level of
120 dB SPL is considered the human threshold of pain. This level also establishes the
relationship between the loudest and the quietest sound an individual is likely to listen in
normal conditions, thereby defining the human ear’s dynamic range.

Finally, the term audio can be defined as the audible component of any sound signal.
However, in general, the word “audible” is more often used in reference to the detectable
frequency range and not to amplitude thresholds.
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3.2 Audio Processing Systems

Analog electrical signals can be transformed in a variety of ways in electrical cir-
cuits. In particular, they can be sampled at regular intervals by an analog-digital (A/D)
converter. Each sample, in turn, is a finite (i.e., discrete) digital number that only ap-
proximates the original continuous signal. Such a discrete approximation is called quan-
tization. In digital machines, these samples are usually stored as arrays in memory for
processing. The resulting numbers can also be converted to continuous signals using a
digital-analog D/A converter.

As such, sound can be produced and transformed in all the three forms — acoustic,
analog and digital — and converted between each other. The digital medium, as opposed
to the other two forms, allows for durable storage and for repeated reproduction with-
out loss of quality. It is, then, interesting to use the digital medium both for new audio
processes — where developers are free to create whatever transformation they want —
and also to simulate common transformations occurring in mechanical and/or analog me-
dia, such as reverberation in air (when sound reflects on surfaces and other objects) and
nonlinear distortion in circuits (when amplitude is distorted by the components the signal
goes through).

3.2.1 Representations of Digital Audio

In digital machines, digital audio consists of discrete sequences of discrete samples,
uniformly spaced in time, each sequence representing an underlying continuous signal. In
Equation 3.1 the notation y(t) represents the continuous value of a continuous sinusoidal
signal at time t, which is also a continuous domain. A sampled signal is usually repre-
sented by y [n] where y is the name of the signal and n is the n-th sample of the signal’s
sequence corresponding to time t = nT , where T = 1

R is the sampling interval and R is the
sampling rate. For compactness, y [n] is represented as yn from now on.

According to the Nyquist–Shannon sampling theorem (JERRI, 1979), a signal sam-
pled at rate R can only represent components of frequency between 0 and R

2 . Higher
frequency components are actually “aliased-back” into lower frequency ones. After sam-
pling, these components can no longer be distinguished from the original, non-aliased
ones, and so the original continuous signal is unrecoverable. As such, sampling may
cause loss of sound information. However, if humans have a limited frequency percep-
tion range, ultrasound can be discarded, meaning that it is sufficient to sample audio at
twice the limit of perception, i.e., at 40 kHz or more (e.g., typical sampling rates include
44.1 kHz for CD audio and 48 kHz for DVD audio (BLECH; YANG, 2004)). Sampling at
a rate higher than 40 kHz only has the effect of attenuating certain distortions introduced
in the signal by the sampling devices (however, this is beyond the scope of this thesis). Fi-
nally, it is undesirable to have ultrasonic components aliasing back into the hearing range
of frequencies, and so A/D converters usually also include an analog filter1 that removes
high frequency components.

Quantization introduces an error in the original signal due to round-off. The difference
between the discrete and the continuous signal can be seen as an “error signal”. The
significance of this error is often expressed in terms of the signal-to-noise ratio (SNR)
between the amplitude of the signal being represented and the maximum amplitude of the
error. Given this and the knowledge of the human threshold of hearing, one may infer that

1 An “analog filter” is an analog electronic device — such as a resistor, inductor, etc. or any combination
of these — that transforms analog signals in some way.
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an SNR ratio of 120 dB is needed to ensure that round-off noise remains imperceptible. In
fact, due to auditory masking (NELSON; BILGER, 1974) — a process taking place inside
the cochlea that makes low amplitude components imperceptible in the presence of higher
amplitude signals — and to the fact that recordings are usually listened to in much lower
levels — 60 to 80 dB in average (BENJAMIN, 2004) —, SNR can be lower for most audio
applications. For instance, CD audio is represented using 16-bit integers, and its effective
SNR is given by comparing the maximum round-off error (0.5) with the highest amplitude
sound that can be represented without saturation (215), i.e., 20log10

(
215

0.5

)
dB≈ 96.33dB.

During processing, audio is usually stored in an uncompressed form using arrays in
memory. For storage in files, audio will often be compressed using either a lossy or a
lossless codec. The discussion of audio compression, however, is beyond the scope of
this thesis.

Sound can be captured from microphones at multiple points in a sound field. Each
microphone transduces a different signal, and each signal in this case is called a channel.
The choice of number of channels is completely arbitrary, with a higher number of chan-
nels enhancing human perception of 3D sound position. Channels are also usually treated
independently in audio processes. Audio is usually captured in two channels (stereo),
such as in CD audio, and less often in a single channel (mono). Recently, there has been
a trend toward an inclusion of more channels, used in surround-sound systems where
loudspeakers are placed around the listener.

3.2.2 Block Processing

Sound cards, like most digital audio equipment, provide analog audio inputs coupled
with A/D converters and analog outputs coupled with D/A converters. Once sampled,
audio is usually processed in blocks of samples. Though it would be theoretically pos-
sible to operate on an input sample and convert the resulting output sample to analog
almost immediately, doing so in a PC would introduce a significant communication over-
head between the audio device and the CPU since the communication between the two
is generally much slower than the CPU itself. Processing in blocks, though, requires sig-
nificantly less system messages to synchronize processing and playback. As discussed
in Section 4.4.1, processing audio in blocks may also improve the efficiency of certain
algorithms such as FFTs. Providing blocks of data to any device can also be referred to
as streaming.

With block processing, however, a signal arriving at the sound card’s input would take
longer to produce an effect in the outputs. Such a delay can be long enough to be percepti-
ble, which is an undesirable effect in many situations. For example, for a musician playing
an instrument and using the computer to produce any desired effect on the instruments’
captured output audio, a long delay may confuse the player, disturbing rhythmic abilities
and, at last, disrupting the player’s performance. For this reason, it is important to choose
adequately small block sizes for audio applications running in real-time (i.e., where the
results are expected in a fixed limited amount of time). This contrasts with non-real-time
audio applications such as waveform editors, where processes are expected to take many
seconds and even minutes to provide a result to the user.

It is generally agreed that a delay of 10–20 ms is imperceptible to humans and, there-
fore, tolerable for real-time audio applications. At the typical sampling rate of 44.1 kHz,
this would translate to 441 to 882 samples of delay from input to output. In fact, sound
cards regularly provide a block of samples to the CPU and receive a block of samples for
playback (this process will be referred to as block “exchanging” in this thesis). For any
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input sound to produce an effect in the output, it takes at least two block exchanges, since
a block needs to be fully captured for processing before the result is available for output.
As such, block sizes should range between 220 to 441 samples in order to keep delay
imperceptible. They should be even smaller if when admitting the possibility of greater
delays introduced by multiple block processing steps, as is often the case. Typical block
sizes include 128, 256, 512, 1,024 and 2,048 samples. As discussed in Section 4.4.1,
block sizes of powers of two are usually selected to allow for processes that use the FFT
algorithm to achieve peak performance.

3.3 Summary

At this point, the reader should now know the basics of sound, audio and audio pro-
cessing concepts. Keep in mind that sound is a continuous wave and audio refers to the
audible part of sound. Audio can be transformed by processes in both acoustic, analog
and digital forms, and it can be converted (though imperfectly) between the three forms.
Processing in digital form presents some particular advantages in terms of permanent stor-
age and playback quality, but care must be taken to choose audio format characteristics.
A reference industry-quality format is given by CD audio, with a sampling rate of 44 kHz,
16-bit integer samples and two signal channels (stereo). Block
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4 FILTER THEORY

A signal is a measurable varying quantity that carries information. Signal processing
refers to theoretical methods for extracting or just modifying such information. Signals
can be continuous (such as sound waves in the physical medium) or discrete (such as
digital audio after sampling), deterministic or random (whether the signal can be predicted
or not). A signal f may also be classified as periodic when the equation

f (x+P) = f (x) (4.1)

holds for every x given a constant P. If the equation does not hold for any value of P, the
signal is called aperiodic.

A filter is any device that operates on a signal, producing another (usually different)
signal. Most physical objects are acoustic filters, absorbing and reflecting differently each
component of the sound waves that reach them. Analog components such as resistors,
inductors and capacitors are analog filters operating on analog signals. Any algorithm
operating on the values of a digital signal and producing a new one in a digital machine is
a digital filter.

As such, filters operate on input signals and produce output signals, which also con-
stitute the response of the filter to the input signals. In this text, the letter x is used to
denote an input signal and y to denote an output signal. The n-th sample of a digital signal
x is also represented as xn, and the instantaneous amplitude value at time t of a continuous
signal as x(t).

Unless specified, a filter operates on a single input signal. An interesting exception is
the mixing filter, defined by

yn =
N

∑
s=1

g(s)x(s)
n (4.2)

where s is the index of the input signal x(s), N is the number of input signals and g(s) is the
gain applied to signal x(s). For N = 1, this filter is simply a gain filter, scaling the input
signal at a fixed proportion for every sample. The mixing filter is very common in most
digital audio processing applications and it simulates very closely the acoustic process of
interference, i.e., as if the (scaled) input sound signals were crossing the same point in
space at the time of capture.

All audio processes actually constitute filters and can be classified in certain cate-
gories. A filter may be either linear if it performs any sort of linear combination (i.e., if
it can be expressed as an order-1 polynomial) involving input samples, or nonlinear oth-
erwise. A filter may also be memoryless if the value of an output sample yn is computed
using only the value of the corresponding input sample xn, thus requiring no memory
to store previous input samples (i.e., xn−1, xn−2, . . . ). For instance, the mixing filter in
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Equation 4.2 is both linear and memoryless. The vast majority of filters used in audio ap-
plications are either linear or memoryless nonlinear filters (MOORE, 1990). For instance,
the majority of synthesis techniques are also linear processes. Common memoryless non-
linear filters include waveshaping and amplitude modulation. As discussed in Section 4.1,
filters can also be classified in recursive and non-recursive filters.

4.1 The Linear Filter Equation

A filter is causal when its output depends only on input samples that precede or coin-
cide with the time of the output sample. In real-time filtering applications, all filters must
be causal by definition, since the future samples of the input signal are not available. The
general equation for a time-invariant causal digital linear filter is given by

yn =
P

∑
i=0

bixn−i−
Q

∑
j=1

a jyn− j (4.3)

where bi and a j are respectively feed-forward and feedback coefficients, and P and Q are
the feed-forward and the feedback filter orders, respectively. This equation can alterna-
tively be written as

wn =
P

∑
i=0

bixn−i (4.3a)

yn = wn−
Q

∑
j=1

a jyn− j (4.3b)

where w simply constitutes a theoretical intermediary signal. Equation 4.3a represents
the non-recursive part of the filter since it establishes dependences with input samples
only, whereas Equation 4.3b constitutes the recursive part. When all a j coefficients are
null, Equation 4.3b yields the identity yn = wn and the filter is called a non-recursive
filter; otherwise, it is a recursive filter. Non-recursive filters are also called finite impulse
response (FIR) filters because any input sample affects the value of a limited number
(only P) output samples. A recursive filter, however, establishes a recursion, affecting the
values of all succeeding output samples, and, for this reason, they are also called infinite
impulse response (IIR) filters. If all coefficients bi and a j remain constant (i.e., do not
vary with n), the filter is called time-invariant; otherwise, it is called time-varying.

In filter design, sometimes the filter equation is expressed as the difference equation

P

∑
i=0

bixn−i =
Q

∑
j=0

a jyn− j

where yn, as opposed to Equation 4.3, appears scaled by coefficient a0. This means that,
if a0 6= 1 as a result of the chosen design process, all a coefficients have to be normalized
by a0 (i.e., replaced with a j

a0
) in order to obtain the desired filter implementation. In the

remaining of the text, however, it is assumed that a0 = 1, yielding the definition given by
Equation 4.3.

Filters can be seen as operators over their respective input signals. If the letter H is
used to denote a particular filter from Equation 4.3, then the filter may be denoted by

yn = H{xn}
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4.2 Filter Response to Input

A discrete time-invariant filter can also be completely described by its impulse re-
sponse, which is defined as the output of the filter to the discrete impulse signal

δn =

{
1,n = 0
0,n 6= 0

(4.4)

4.3 Convolution

The discrete convolution of two discrete signals f and g represented by the convolu-
tion operator ∗ is given by

( f ∗g)n =
∞

∑
m=−∞

fmgn−m (4.5)

If either signal is defined only for a range of samples (e.g., a recording with beginning and
end), the values of samples outside the defined range can be safely assumed to be null.
Under this definition, the result has a finite number of non-null samples if both signals are
finite too. For instance, if f is defined for M samples and g is defined for N samples, f ∗g
will have M +N−1 defined samples.

Note that the Equation 4.3a expresses a convolution operation. In fact, the whole
filter in Equation 4.3 could be expressed as a convolution between the input signal and
the filter’s impulse response. For instance, let h the discrete signal representing a time-
invariant linear filter’s impulse response. Then Equation 4.3 can be written as

yn = (h∗ x)n (4.6)

4.4 Fourier Representations of Signals

Notably, all sinusoids from Equation 3.1 can also be defined using the Euler’s formula
given by

e jt = cos(t)+ jsin(t) (4.7)

where j =
√
−1 represents the imaginary number. With this equation, the sinusoids from

Equation 3.1 can be represented using

z(t) = Ae j(ωt+φ) = Ae jφ e jωt (4.8)

which is related to Equation 3.1 by y(t) = Im(z(t)). Writing sinusoids in this form allows
certain formulas to be simplified by using operations with complex numbers to compactly
express trigonometric relationships involving sines and cosines.

Particularly, Euler’s notation can be used to express a Fourier series, a formalism
proposed by Fourier with which arbitrary periodic signals can be approximated as sums
of sinusoids. A periodic signal is mapped to its Fourier series through a function called
Fourier transform (FT). The inverse function is called inverse Fourier transform (IFT).
The series resulting from the FT is sometimes referred to as the Fourier transform of the
signal as well1 (HAYKIN; VEEN, 1998).

1 Haykin and Veen actually present a distinction between Fourier series and Fourier transform which may
not be in common use. The term “series” refers to a summation and is used only for periodic signals. The
term “transform” refers to an integral and is used for aperiodic signals.
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Given a discrete periodic signal f with period N, it can be represented by

fn =
N−1

∑
k=0

Fke jkΩ0n (4.9)

where Fk expresses the k-th sinusoid’s amplitude and Ω0 = 2π

N represents the distance
between the discrete adjacent bins over the Fourier domain. The Fourier domain consists
of all complex numbers of unitary magnitude defined by e jt , each representing a sinusoid
of unitary amplitude. The sequence formed by Fk coefficients is called the Fourier domain
representation of signal f . The Fourier domain is also called frequency domain when f
is a signal in the time domain, such as in analog signals.

The value of each Fk coefficient can be obtained using

Fk =
1
N

N−1

∑
n=0

fne− jkΩ0n (4.10)

which, you should note, is a convolution between f and a sinusoid of frequency −kΩ0.
This equation is widely said to define the discrete Fourier transform (DFT) operation
(HAYKIN; VEEN, 1998, p. 157). Equation 4.9 represents the inverse discrete Fourier
(IDFT) transform since it converts from Fourier domain back to the original domain.

The quantity Fk is a complex number in Equation 4.10 and, thus, contains real and
imaginary components. From Equation 4.9, it can be observed that Fk is representing
attributes of a sinusoid. By defining Fk = a+bi = Ae jφ , it follows that

A = |Fk|=
√

a2 +b2

φ = arg(Fk) =±arctan
(

b
a

)
where A is the magnitude of the k-th component (also its amplitude) and φ is the phase.
This representation, called polar form, may help clarify the kind of information encoded
by the Fourier series.

One of the most important properties of the Fourier representations is an equivalence
between convolution in time domain, as in Equation 4.5, with pointwise multiplication in
the frequency domain. Using the previous notation, this can be stated for discrete signals
as

yn = (h∗ x)n←→ Yk = XkHk (4.11)

and this also holds for both periodic and aperiodic signals. Note that h ∗ x takes O
(
n2)

to compute n output samples for input signals containing n samples, whereas XkHk takes
only O(n) for k input samples. For signals in time domain represented with real numbers,
it can be shown that k = n

2 , and with complex numbers, k = n; in either case, the reduc-
tion in algorithmic complexity is clear. For this reason, multiplication in the frequency
domain is often applied to optimize convolutions. It only requires, though, computing
the coefficients of the Fourier series of x and h followed by computing the time-domain
representation of Y .

4.4.1 Fast Fourier Transform Algorithms

Computing Equation 4.10 should be sufficient for obtaining the Fourier series of a
signal. However, this process has complexity O

(
n3) if Equation 4.5 is used as the imple-

mentation for convolution. It turns out that there is a class of fast methods for computing
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(b) Pole-zero plot. Zeros are depicted as cir-
cles and poles, as crosses. All poles are inside
the unitary circle, therefore this filter is stable.

Figure 4.1: Two important ways of characterizing a digital filter. The magnitude response
is actually the magnitude of the transfer function over the unitary circle in the pole-zero
plot, with its frequency parameter being exactly the angle of the points over this circle.

the DFT called fast Fourier transforms (FFTs) which can compute it in O(nlog(n)). The
most famous algorithm of this class is the Cooley-Tukey algorithm (COOLEY; LEWIS;
WELCH, 1969).

4.5 Pole-Zero Representations and the z-Plane

In filter theory, a filter is sometimes described in terms of its transfer function (HAYKIN;
VEEN, 1998; OPPENHEIM; SCHAFER, 1975), which for Equation 4.3 should be

H (z) =
N (z)
D(z)

=
∑

S
s=0 bsz−i

∑
R
r=0 arz− j

(4.12)

with a0 = 1 and z ∈ Z. The numerator N (z) and the denominator D(z) are very important
in characterizing the filter’s response in the frequency domain. At the roots of N (z), the
value of H (z) is zero, so the values of z for which the numerator is null are called the
zeros of the filter. Similarly, at the roots of D(z), the value of H (z) approaches infinity,
and so the roots of D(z) are called the poles of the filter. Zeros establish which frequencies
the filter attenuates most, while poles determine which frequencies the filter accentuates
most.

To illustrate these concepts, consider Figures 4.1(a) and 4.1(b), which respectively
present the magnitude response of the transfer function and the pole-zero plot of the fol-
lowing filter:

yn = 0.0863xn +0.0557xn−1 +0.1494xn−2 +0.0557xn−3 +0.0863xn−4

+1.6992yn−1−2.1371yn−2 +1.3257yn−3−0.5001yn−4

The filter’s roots are also important in determining the filter’s stability. If any given
pole zk has a magnitude beyond unity (i.e., |zk| > 1), the filter is unstable. This means
that if the input signal contains a sinusoid of frequency arg(zk), the output will contain
an exponentially increasing sinusoid of same frequency and an amplitude envelope that
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(c) Transpose Form.

Figure 4.2: Three common forms of implementing a second order filter.

increases exponentially at a rate of |zk|t , where t ∈ R represents time. Similarly, if any
pole zk has a unit magnitude (i.e., |zk|= 1), the filter is critically stable, with the output at
the pole’s frequency resulting in a sinusoid of constant envelope of amplitude 1. In any
other case, the filter is stable.

4.6 Filter Implementation and Stability

Filter realization on the CPU is usually straightforward. One may choose to directly
evaluate Equation 4.3, called the Direct Form I implementation. However, this form is
subject to quantization errors in both filter coefficients and the computed output signal,
resulting in a z-transform with poles and zeros in slightly different positions. In the worst
case, a pole may become unstable due to these numeric errors.

Another choice is to factor the complex numerator and denominator polynomials
(PINKERT, 1976) and group the factors into second order (i.e., order 2) partial frac-
tions. One then arrives at two other implementations of the filter, the cascade and the
parallel forms. Though all forms are equivalent in a continuous domain, the cascade and
parallel forms produce significantly less numerical errors in a digital, discrete computer.
The cascade form is given by

H (z) = H1 (z)H2 (z)H3 (z) . . .

=
b0

zS−R
∏

S
s=1 (z−qs)

∏
R
r=1 (z− pr)

(4.13)

where ps are the poles of the filter and qr are the zeros, with ps,qr ∈ Z. This form of
implementation is illustrated in Figure 4.3(a). The second order sections of the form z−qs

z−pr
are usually implemented either by directly evaluating Equation 4.3 (called Direct Form I),
by the Direct Form II or by the Transpose Form (ANTONIOU, 1980). Figure 4.2 shows
a flow graph of these forms for second order filters.
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(b) Parallel form.

Figure 4.3: Two common forms for breaking down filters with order higher than 2. Each
box represents a first or second order filter.

The parallel form is given by

H (z) = c′0 + c′1z−1 + c′2z−2 + . . .

+
A1

z− p1
+

A2

z− p2
+ . . .+

AR

z− pR

where the values of cs and Ar are obtained by equating the definition of H (z) in Equa-
tions 4.13 and 4.14 and solving the resulting system. This form is illustrated in Fig-
ure 4.3(b).

The main advantages of computing a recursive filter with the cascade and parallel
forms (LIU, 1971) are that the second order sections have a small size and are much less
prone to numeric errors when compared with higher-order filters. This fact considerably
reduces numeric error in the pole-zero filter structure. Second order filters also have
more stable time-varying implementations (LAROCHE, 2007; WULICH; PLOTKIN;
SWAMY, 1990). When decimated, a filter’s poles can be individually modified as well,
which facilitates controlling a time-varying filter.

One may desire to know how the position of poles and zeros will be moved as a result
of quantization of filter coefficients. Liu (LIU, 1971) provides the expression

∆zk =
R

∑
r=1

zr+1
k

∏
R
m=1
m6=r

(
1− zr

zm

)∆ak (4.14)

where ∆zk represents by how much the pole was moved and ∆ak represents the quantiza-
tion error introduced on coefficient ak, which, for floating-point, is bounded in magnitude
by ak2−t with t representing the number of bits in the mantissa. This equation applies
similarly to zeros by analogy, and thus, allows the study of pole and zero movement in
the implementation of the filter.

4.7 Summary

This chapter presented the concept of convolution, digital linear filters and their most
important properties and a classification of digital filters. The Fourier series representa-



32

tion of a signal was given the property of convolution as multiplication on the Fourier
domain, established. Filter stability was also discussed, establishing that filters with poles
inside the unit circle are stable. This property, however, assumes the operation with real
numbers, not with discrete numbers with finite precision such as in a computer. As will
be seen in the following chapters, stability may change depending on how the filter is
implemented using finite precision.

The next chapter presents digital platforms in which filters can be implemented. Some
properties of those platforms, in special their implementation of floating-point operations,
are discussed.
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5 COMPUTER PLATFORMS FOR SIGNAL PROCESSING

Audio can be processed in a variety of hardware and software platforms. In this thesis,
the discussion of analog platforms processing (JACKSON, 1970) is excluded. First the
characteristics of digital hardware (CPUs and GPUs specifically) for audio processing are
discussed, and then some software libraries that may be used to access this hardware are
briefly presented..

There are a number of software platforms and libraries for developing systems with
the CPU and with the GPU. One also often needs an implementation of the Fast Fourier
Transform (FFT) to perform fast convolution (see Section 4.4), and there are many li-
braries that compute this.

5.1 Digital Signal Processors

Among the multiple digital platforms, CPUs and GPUs are particularly interesting
because of market availability and low cost to the consumer. I have also focused in major
brands and products, such as Intel and AMD CPUs and Nvidia and AMD/ATI GPUs.

For digital signal processing (and, in special, digital audio processing), the most im-
portant criteria for choosing a platform is signal quality. Signals may be represented in a
variety of ways, but currently, most sound processing is performed as floating point oper-
ations, so the implementation of floating point in a platform is central to the discussion.
In this aspect, CPUs and GPUs share some similarities, specially in recent GPU models
which support double precision, 64-bit floating-point. Most GPUs in the market, however,
support only 32-bit floating-point numbers, and even though 64-bit floating point can be
emulated in such platforms, benchmarks reveal that doing this hurts the performance ben-
efits of GPU-based processing (GöDDEKE et al., 2005).

5.2 The CPU

The CPUs by Intel and AMD (which dominate the consumer market) implement the
IEEE-754 floating-point specification (IEEE, 2008), whereas current GPU implementa-
tions deviate in several key aspects (NVIDIA CORP, 2008a), the most significant of which
are:

• Division is achieved by multiplication by the reciprocal, resulting in a bigger arith-
metic error;

• Denormalized numbers are not supported and are rounded to zero whenever used;
and
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• Arithmetic in most arithmetic and transcendental functions are subject to bigger
error compared to their respective CPU implementations (NVIDIA CORP, 2008a;
INTEL CORP, 2004).

In an audio system running on a CPU, performance is primarily determined by the
underlying hardware for most tasks, but as in many systems, a choice of language and
compiler (PRECHELT, 2000) determines how well a compiled program can access the
hardware.

One interesting and freely available FFT library running on CPUs is FFTW3 (FRIGO;
JOHNSON, 2005). This library holds a number of FFT algorithms and it can automati-
cally choose one to run by benchmarking the system it is running on. The full source code
is available, so, if necessary, one may verify the programs and look for potential errors
and bottlenecks. The library also contains benchmarking and accuracy checking routines,
allowing users to submit results for their systems to the project’s website. Most impor-
tantly for market success, the library can be compiled for any of the major commercial
operating system (Windows, Linux, Mac).

A significant competitor are the FFTs of the Intel Math Kernel Library (INTEL CORP,
2006). For the reason of not being free, this library could not be tested directly, so the
information here comes directly from the library’s specification. This library offers a set
of FFTW3 wrappers but, unlike FFTW3, does not require system benchmarking1. The
benchmarks reported by Intel, however, disagree with those found in FFTW3’s project
website, such that both claim to have the best performance in many cases.

5.3 The GPU

The algorithms best suited for parallel architectures, such as GPUs, are those that
present few or no data dependences (EYRE; BIER, 2000; HARRIS, 2005), allowing indi-
vidual parallel processors to work independently on data elements. Because of that, audio
processes are classified according to type of data dependences and discuss the impact of
dependences on the performance of parallel implementations.

Developing systems that run on GPUs is remarkably different due to their graphics-
oriented history. One still needs compilers and libraries that run on the CPU, which in
turn becomes more like a process coordinator than an actual computing device, offloading
part or all the computation to the GPU.

For programming a general-purpose GPU-based program (GPGPU), one may use a
graphics API like OpenGL or Direct3D to access the graphics hardware, and combine
them with shaders written in shading languages like HLSL (for Direct3D only), GLSL
(OpenGL only) or Nvidia Cg (Direct3D and OpenGL). The shader will perform the ac-
tual computation, so one must write, compile and debug it (often a complex task for big
programs), load it in the CPU-based program that accesses the graphics APIs and then
specify the rendering of graphics primitives (such as lines and squares) in order to get the
graphics hardware to run the shader. Many concepts in the problem being solved need
to be mapped into respective graphics rendering concepts, which makes the development
confusing for developers without a background in computer graphics.

At least one FFT library that runs on such a software platform is known, GPUFFTW.
Despite the name, the project is not associated with FFTW3, but only inherits the same

1 FFTW3 does not require benchmarking either actually. When planning a FFT, the program may choose
to estimate the best algorithm to use, though this does not guarantee optimal performance.



35

design goals. Their developers report an at least 4× greater throughput with this library
than using FFTW3 with a dual Intel Xeon 3.6 GHz CPU and a Nvidia 7900 GTX GPU.
The GPUFFTW library, however, is written in Cg and is based on low-level graphics
hardware-specific assembly language, requiring users to own a recent Nvidia graphics
device2.

Recently, graphics device manufacturers have invested in the GPGPU trend and de-
veloped new software platforms (and sometimes, corresponding hardware platforms) to
solve the issue of concept mapping. Some of these include Nvidia’s Compute Unified
Device Architecture (CUDA) platform, AMD/ATI’s Close to Metal (CTM), PeakStream
and OpenCL. PeakStream has been acquired by Google recently and is no longer avail-
able. Only recently has OpenCL become available to developers, which took place after
developing this work.

Nvidia CUDA presents a 6-level memory organization to the developer and a kernel
programming language that is a simple extension of the C language. The platform inte-
grates with Microsoft Visual Studio 2005, allowing developers to easily compile and even
debug (in emulation mode) their GPU programs. Emulation mode is not a perfect simu-
lation, as it uses the native CPU implementation of floating-point operations and runs the
parallel instances as CPU-based threads, which may run in a different order than that on a
GPU. Despite these characteristics, the effects of using CUDA to perform audio process-
ing are similar to those obtained with graphics APIs, with only the “graphical concepts”
replaced with those of a typical “parallel machine”. In CUDA, however, kernels cannot
receive interpolated parameter values as shaders can. This suggests that this interpolation
is implemented as shader instructions in recent Nvidia hardware, but this has yet to be
confirmed.

Most important regarding CUDA may be CUFFT (NVIDIA CORP, 2008c), which is
the FFT library accompanying CUDA. Not unlike the Intel Math Kernel Library and the
GPUFFTW library, CUFFT has an API inspired by FFTW3, requiring planning before
execution. The algorithms run by CUFFT are not specified in the manual and, therefore,
there are no published error bounds. The manual also states that transforming power-of-
two vectors yields the best performance and accuracy (NVIDIA CORP, 2008c, p. 10),
which is on par with most of the other FFT libraries. Unlike FFTW3, CUFFT will trans-
form real vectors into complex vectors prior to processing. When designing a system
where multiple FFTs must be computed one after the other, this means that it may be
more useful to keep data in the complex domain instead of projecting it into the real
domain between each FFT.

Finally, the close CUDA competitor, AMD/ATI’s CTM, does not include an FFT li-
brary, and works around low-level routine calls, which makes development much more
complex.

5.4 Suitability for Audio Processing

In non-recursive processes, numeric error is often treated as a signal that was intro-
duced in the non-quantized, analog signal. The error signal is often assumed to be white
noise. Consider the case of mixing (i.e., adding) two signals, where error is generated due
to rounding. The introduced error signal would have a maximum amplitude of 0.5×2−m,
where m is the number of bits in the mantissa. When processing audio, the relationship
between the amplitude of a full-range signal (with amplitude assumed to be 1) and the

2 Go to http://gamma.cs.unc.edu/GPUFFTW/ for a list of requirements
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Table 5.1: Comparison of precision (in ulps) of floating-point implemen-
tations.

Operation 32-bit CPU 32-bit GPU 64-bit CPU 64-bit CPU

x+ y 0.5 0.5a 0.5 0.5a

x× y 0.5 0.5a 0.5 0.5a

x/y 0.5b 2.5 0.5b 0.5
1/x 0.5 1.5 0.5 0.5√

x 0.5 3.5 0.5 0.5
ex 0.501 2.5 0.502 1.5

log(x) 0.501 1.5 0.501 1.5
log2 (x) 0.501 3.5 0.501 1.5

sin(x), cos(x)c 0.502 2.5 0.503 2.5
tan(x) 0.501 4.5 0.507 3.5

arctan(x,y) 0.507 3.5 0.501 3.5
erf(z) 0.501 8.5 0.502 6.5

a For forced intrinsic operations only. Using FMAD instruction (default compiler
behavior) is less precise due to truncation of intermediary multiplication result.

b Without performance optimizations.
c Also valid for combined SINCOS instruction.

peak amplitude of the noise signal (resulting from rounding), also called signal-to-noise
ratio (SNR), would be 20log10

(
1

0.5·2−24

)
≈ 150dB. Now consider that the human au-

ditory dynamic range is of 120dB. The noise in the resulting signal, reproduced at a
comfortable level of amplification (let’s suppose the worst case, at 120 dB SPL, would
still be 30 dB below the human audibility threshold. Often, people listen to music at 60 to
85 dB SPL, so, using 32-bit floating point, there’s even greater room for error in this pro-
cess. In Table 5.1, I have compiled the precision, given in units in the last place (ulp), of
several arithmetic operations with floating-point values in current Intel CPUs and Nvidia
GPUs.

When synthesizing a sinusoidal wave on the GPU, one gets an additional 2 ulp error.
This essentially means that the two last bits of the results contains an error signal, which
again, can be assumed to be white noise. This would result in a 20log10

(
1

0.5·22·2−24

)
≈

138dB SNR in the resulting signal, showing that noise would still be inaudible. There-
fore, the GPU would be adequate to this type of synthesis. Notably, the future Intel
Larrabee GPUs will be fully IEEE-754 compliant (SEILER et al., 2008) and, therefore,
the expected SNR should be the same as on current CPUs.

Numeric error, however, can and often does become catastrophic in recursive pro-
cesses. Thus, running a linear recursive filter on a GPU will produce a significantly dif-
ferent waveform when compared to an equivalent implementation (i.e., using the same
sequence of instructions) on the CPU. The spectral characteristics of such a waveform
are, however, likely to be similar, with the errors possibly affecting (LIU, 1971):

• The position in frequency of the filter’s zeros and poles; and

• The amplitude of the poles – and, as a result, the filter’s stability.
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Table 5.2: Comparison of speed and accuracy across CPU and GPU implementations.
PPPPPPPPPGPU

CPU
single precision double precision

single precision GPU is faster with slightly
more numerical error

GPU is faster with consid-
erably more numerical er-
ror

native double precision no clear fast winner but the
GPU should present less
numerical error

GPU should be faster with
slightly more numerical er-
ror

simulated double precision CPU should be faster with
considerably more numeri-
cal error given GPU’s addi-
tional precision

CPU should be faster with
slightly less numerical er-
ror because of a larger
mantissa

Actually both errors occur in CPU-based filter designs, even in commercially-available
software, though there are strategies to minimize it, as presented in Chapter 4. Table 5.2
compares the expected characteristics of implementing filters on each available platform
discussed so far.

Greater inacuracy in operations may effectively only increase those effects mildly.
Slight changes to the filter’s poles are usually tolerable for audio processing, and are
usually only noticed for poles with a high Q (i.e., narrow bandwidth). The exact amplitude
of the poles does affect the perception of resonance extracted by the human ear, but often
small changes will pass unnoticed or, if noticed, will not be relevant. The worst case is
that of a filter becoming unstable. In this case, some modes that would naturally decay
over time will begin to grow in amplitude, opposing the expected behavior and quickly
saturating the signal’s dynamic range, therefore, destroying the resulting waveform.

Lastly, communications between the CPU and the GPU have a considerable time de-
lay. This can be observed both when launching GPU programs or when moving memory
between video memory and main memory. When developing a complex audio processing
application, one will likely desire to do the entire audio processing either on the CPU or
the GPU in order to minimize the number of memory transfers between CPU and GPU.
Since the GPU is considerably faster for synthesis (TREBIEN; OLIVEIRA, 2008), one
is likely to desire to implement the remaining processes on the GPU also, which is chal-
lenging in some cases (TREBIEN; OLIVEIRA, 2009). Since issuing the GPU is a slow
process, one must also implement strategies to deal with delays in the system (TREBIEN;
OLIVEIRA, 2008) without stopping streaming to the audio device.

5.5 Summary

This chapter introduced the three main platforms in the consumer market with which
digital filters can be implemented: digital signal processors (DSPs), often found in sound
cards; the CPU, found in desktop computers and laptops; and the GPU, found in most
but not all of these computers as well. DSPs lack flexibility, since most cannot be pro-
grammed or do not adhere to widely accepted programming standards. CPUs are highly
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flexible and efficient but often lack computational power for real-time operation. GPUs
often provide more computational power but require audio processes to be easily imple-
mented in a parallel machine. GPUs also may cause more stability problems in recursive
processes due to lower precision in several floating-point operations.

It has been previously demonstrated that GPUs can perform audio processing in real-
time and that implementation of memoryless and non-recursive linear filters on GPUs is
straightforward. In the next chapter, an efficient implementation of recursive linear filters
for GPUs is developed and discussed in detail.
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6 EFFICIENT EVALUATION OF RECURSIVE LINEAR FIL-
TERS ON THE GPU

In the previous chapter, many different types of audio filters were introduced. In
particular, non-recursive linear and memoryless nonlinear filters have a trivial implemen-
tation in any platform due to the absence of data dependences that would prevent parallel
processing. For non-recursive filters, the implementation consists of simply evaluating
Equation 4.3a directly, with some additional programming for storing samples from pre-
vious blocks in memory and retrieving them when necessary. The mixing filter is also
implemented by directly evaluating Equation 4.2, and the implementation for all memo-
ryless processes is analogous.

This chapter presents a method for computing time-invariant recursive linear filters on
a GPU in real-time. The method is based on the FFT algorithm and is demonstrated in
an application by combining an audio process running the filter with a graphics process
implementing a virtual scene where collisions happen and trigger audio events.

With this implementation, it was found that maximum throughput was increased by
2× to 4× for several selected transform sizes. The implementation was based on the
Nvidia CUDA platform and the modest speedup, in comparison with previous studies (TRE-
BIEN, 2006), is probably due to a GPU memory bottleneck affecting the computation
of the FFT, not to a computational power limit of the GPU. This can be inferred from
two facts. First, global memory access (not cached) is used instead of texture memory
(cached) in the current implementation. Using texture memory would certainly add com-
plexity to the implementation, but it is likely to increase the speedup factor. And second,
the bus bandwidth connecting video memory to the GPU is similar to the one connect-
ing main memory and CPU. Thus, the bus bandwidth is likely to limit memory-intensive
algorithms such as the FFT.

6.1 Dependences in Linear Filtering

A non-recursive filter as in Equation 4.3a has no data dependences other than on the
input values. Thus, its GPU implementation consists of simply evaluating the filter equa-
tion. The resulting output involves only operations with B, which represents the impulse
response of the filter. Non-recursive filters are often used to simulate reverberation, and
in this case, the impulse response can be recorded in a real-world environment and then
applied as B in the filter to produce a version of the input that sounds as if originated in
the same reverberant space where the impulse response was captured. However, reverber-
ation impulse responses are often several seconds in length, ranging from thousands to
hundreds of thousands of filter coefficients, vastly affecting computational performance.



40

Many algorithms have been proposed to handle this problem (HAYKIN; VEEN, 1998;
BIERENS; DEPRETTERE, 1998; GARCíA, 2002), most of which see the filtering oper-
ation as a convolution and then perform its computation in the frequency domain using a
single FFT.

In a recursive filter, however, the value of an output sample yn depends on the values
of previous ones (e.g., yn−1, yn−2, . . . ). For implementation, one could think of directly
evaluating Equation 4.3. However, the values of immediately past output samples are
usually not available during parallel computation, as they are also being computed si-
multaneously. Forcing serialization (i.e., waiting for each output sample to be available
before computing the next) severely impacts GPU performance, making efficient GPU
implementations of recursive filters a non-trivial problem. To the best of my knowledge,
the technique described in this thesis is the first one to efficiently implement recursive
filtes on GPUs. The following sections describe the solution to this problem.

6.2 Unrolling the Filter Equation

Equation 4.3b establishes recursive dependences on yn with yn−1, yn−2, . . ., yn−Q. In
other words, these dependences are established on the output signal y over the range of
indices [n−Q,n−1]. In the following discussion, for simplicity, the sets of bi and a j
coefficients may be referred to as

a =
[

1 a1 . . . aQ
]T

b =
[

b0 b1 . . . bP
]T

To avoid the need for synchronization, the recursion can be propagated until all neces-
sary output samples are available from the computation of preceding blocks. This begins
with bringing the first term out of the summation

yn = wn−
Q

∑
j=1

a jyn− j = wn−a1yn−1−
Q

∑
j=2

a jyn− j

If n is replaced with n− 1 in Equation 4.3b, an expression for yn−1 is obtained and the
term can be substituted

yn = wn−a1

(
wn−1−

Q

∑
j=1

a jyn−1− j

)
−

Q

∑
j=2

a jyn− j

For clarity, in order to obtain the term yn− j in both summations, j can be replaced with
j−1 in the first summation

yn = wn−a1wn−1 +a1

Q+1

∑
j=2

a j−1yn− j−
Q

∑
j=2

a jyn− j

This an expression for yn in terms of wn, wn−1 and yn−2, yn−3, . . ., yn−Q−1. The recursive
dependences are now established on y over the range [n−Q−1,n−2]. Notice that now
there are also dependences, though not recursive, on w over the range [n−1,n].

If this unrolling process is repeated one step further, by isolating the first element of
every summation

yn = wn−a1wn−1 +a1a1yn−2 +a1

Q+1

∑
j=3

a j−1yn− j−a2yn−2−
Q

∑
j=3

a jyn− j



41

then replacing yn−2 with Equation 4.3b

yn = wn−a1wn−1 +
(
a2

1−a2
)(

wn−2−
Q

∑
j=1

a jyn−2− j

)
+a1

Q+1

∑
j=3

a j−1yn− j−
Q

∑
j=3

a jyn− j

then replacing j with j−2 in the new summation and rearranging the terms, the equation
becomes

yn = wn−a1wn−1 +
(
a2

1−a2
)

wn−2

−
(
a2

1−a2
)Q+2

∑
j=3

a j−2yn− j +a1

Q+1

∑
j=3

a j−1yn− j−
Q

∑
j=3

a jyn− j

which depends on y over the range [n−Q−2,n−3] and on w over the range [n−2,n].
This establishes a pattern that can be stated in matrix form. At the m-th step, a de-

pendence on yn−m is replaced by a non-recursive dependence on wn−m and a recursive
dependence on yn−m−Q+1. For instance, if Q = 4, at the first step, a dependence on yn−1
is traded by others in wn−1 and yn−5. At the next step, a dependence on yn−2 is then traded
by others in wn−2 and yn−6, and so on. At any point, one can say they have an expression
of the form

yn =
m−1

∑
k=0

ckwn−k +
Q−1

∑
j=0

d jyn−m− j (6.1)

where

C =
[

c0 c1 . . . cm−1
]T

D(m) =
[

d0 d1 . . . dQ−1
]T

The expression D(m) represents the vector D at the m-th step of unrolling. By defining

A′ =
[
−a1 −a2 . . . −aQ

]T
the vector D can obtained starting with

D(0) =
[

1 0 . . . 0
]T

and computing the next step iteratively as

D(k+1) = D(k) [0]A′+SD(k) (6.2)

where D(k) [i] is the i-th coefficient of vector D(k) and

S =



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
...

0 0 0 0 . . . 1
0 0 0 0 . . . 0


which represents a positional right shift on vector D(k) and, therefore, multiplication with
S can be easily optimized during implementation. The equations obtained during un-
rolling also establish that

C =
[

D(0) [0] D(1) [0] . . . D(m−1) [0]
]T

(6.3)
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Actually, Equations 6.2 and 6.3 are equivalent to the previous algebraic manipulation
where yn−m has been replaced by the definition of the filter and rearranged the terms and
summations subsequently.

Due to block processing, one can assume that there is in fact a value for m so that
all samples up to yn−m are available as a result of processing previous blocks. Therefore,
Equation 6.1 can be expressed in terms of convolutions using Equation 4.5. In other
words, the signal c can be defined such that cn = C [n] for all defined values of C [n] and
cn = 0 otherwise. The signal d can also be established as d = D(m) for defined values,
otherwise dn = 0. By defining the available part of the output signal as

yk =

{
yk−m if k ≤ n
0 if k > n

it follows that Equation 6.1 may be rewritten as

yn = (c∗w)n +(d ∗ y)n (6.4)

Similarly, Equation 4.3a can be expressed as wn = (b∗ x)n. Substituting this into the
previous equation finally yields

yn = (c∗b∗ x)n +(d ∗ y)n (6.5)

Note that since c and d only depend on the a j coefficients, c∗b and d can be precom-
puted. Note also that samples from x are obtained by accessing the current and previous
input blocks, and samples from y are obtained from previous output blocks. This means
that the filter can be implemented using Equation 6.5 and the previous definitions of c and
d along with the provided definitions of a and b.

6.3 Computing the Convolutions

As discussed in Section 4.4, the DFT can be used to compute a convolution between
two discrete signals. Moreover, an FFT algorithm can be used for efficiency. However,
special care must be taken when using FFTs for fast convolution since FFT algorithms as-
sume that the input is one period of a periodic signal. Without modifying the signals to be
convolved, the result will be the circular convolution of the two, i.e., assuming they both
are infinite and repeat themselves, which does not apply to the method being developed.
In this case, vectors b, c and d contain an aperiodic signal and the undefined regions are
assumed to contain null samples. Signals x and y are assumed to be aperiodic as well. A
convolution between aperiodic signals is called linear and it assumes that samples beyond
the defined ones are all null, which is the case in the method being proposed. Addition-
ally, note that the two convolutions in Equation 6.5 cannot be merged generally, so the
method we are developing will require 2 FFTs.

Interestingly, a circular convolution can be used to express part of the result of a lin-
ear convolution, allowing the use of an FFT to optimize the operation. This can be done
by padding, which consists of null samples added to the beginning or the end of a signal.
There are several known ways to implement fast convolution with this method (HAYKIN;
VEEN, 1998), and here I provide a solution using a method called overlap-save (OP-
PENHEIM; SCHAFER, 1975). Another common method with the same computational
requirements is overlap-add.
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Figure 6.1: Illustration of one step of a fast convolution algorithm. In a cyclic convolution
(efficiently computed with the FFT), each n-th output sample (vertical arrows) receives
the dot product of rev{B} (B in reverse order) and a periodically-shifted version of A. The
illustration shows that, by adding m null samples to the end of B, the last m samples of
the output will correspond to m samples of a linear convolution, since only null samples
of B multiply the wrapped-around part of A.

A circular convolution between two periodic signals f and g, such as that computed
through the Fourier domain property from Equation 4.11, is given by

( f ∗g)n =
R−1

∑
m=0

gm fn−m+kR

with k ∈ Z and R the period of both f and g. The resulting signal ( f ∗g) is a periodic
signal as well. Since both signals have the same period, the sample indices for g always
wrap around one period, aligning with all samples of f . This process is illustrated in
Figure 6.1.

However, if one of the input signals contains r null samples at its end, then r output
samples at the end of ( f ∗g) yield the exact same result of a linear convolution. In other
words, to obtain the desired linear convolution samples, let gn = 0 for (R− r−1) ≤ n ≤
(R−1) and then evaluate for n in the same range

( f ∗g)n =
R−r−1

∑
m=0

gm fn−m

This property is applied by padding one of the signals with a block of null samples to
efficiently perform linear convolution in the frequency domain. This strategy is used here
to independently evaluate the two convolution terms in Equation 6.5, after which their
results are added to obtain the output vector y. For simplicity, the process is described in
time domain initially.

For the first term of Equation 6.5, the convolution (c ∗ b ∗ x) needs to be computed.
Since c has m coefficients (from Equation 6.1) and b has P + 1 coefficients (from Equa-
tion 4.3a), the result of the convolution (c ∗ b) has m + P coefficients. Thus, let k be the
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Figure 6.2: Summary of operations for processing an input block of size r from the input
circular buffer X . The FFTs of padded versions of (c ∗ b) and d (with at least r null
samples each) are precomputed. The FFTs of X and Y are computed and multiplied
(element-wise) by the spectra of (c ∗ b) and d, respectively. After applying an inverse
Fourier transform to these results, the corresponding blocks of r samples are added and
update the circular buffer Y. For the next step, the samples in Y update a block in Y.

smallest integer such that kr ≥ (m + P + r). These m + P coefficients are stored on the
left part of a block CB with size R = kr and pad its remaining elements with zeros. This
guarantees that CB has at least r null samples at its end. Then r samples of (c ∗ b ∗ x)
are computed by storing R input samples on an input block X and convolving it with CB.
These partial results are combined with the r samples resulting from the convolution be-
tween d and y. These are stored in blocks D and Y, respectively, with length equal to the
smallest integer lr ≥ (Q + R). Similarly, the remainder of block D is padded with zeros.
The convolution d ∗ y produces the r samples from the second part of Equation 6.5. An
output block Y is filled in with the sum of these partial results. Figure 6.2 illustrates this
process.

Note that the indices for Y are the same as those for X where the r input samples are
stored. Since the FFT assumes that all signals are periodic, a circular shift of s samples
in the input vector yields the same output vector with an equivalent circular shift of s
samples. Therefore, instead of actually shifting X by r samples to accommodate new
input samples at the end, this process can be optimized by using circular buffers for both
X and Y and by writing new samples to consecutive positions of X, thus reducing the
memory overhead of accessing the vector.

To perform this computation in the frequency domain, the FFTs ℑ(CB) and ℑ(D) of
CB and D, respectively, are precomputed. During the actual processing, the FFTs ℑ(X)
and ℑ(Y ) of X and Y are computed. The block with r samples for Y is obtained as:

Yn = ( ℑ
−1(ℑ(CB)�ℑ(X)) + ℑ

−1(ℑ(D)�ℑ(Y )) )n (6.6)

where � is the element-wise multiplication and ℑ−1 is the IFFT.
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6.4 LPC Extraction and Re-Synthesis

One of the most useful methods for computing the required filter coefficients is re-
synthesis through linear predictive coding (LPC) (HARRINGTON; CASSIDY, 1999).
With LPC, a filter that predicts the output from part of the input is designed to minimize
the error ε in

xn =
Q

∑
j=1

a jxn− j + εn (6.7)

Note ε is a signal, and that this equation is actually a recursive linear filter where x is the
output and ε is the input. That means that the original signal can be exactly re-synthesized
given the filter coefficients a j and the error signal ε (also called residual signal). The
quantity to be minimized is the quadratic error

E =
1
N

N

∑
k=1

ε
2
k

where N is the number of samples in the recorded input signal. With a0 = 1, the optimal
solution for the set of coefficients a j, 1≥ j≤Q, is given by (RABINER; JUANG, 1993):[

a1 a2 . . . aQ
]T = T−1r (6.8)

where

r =
[

rx,x (1) rx,x (2) . . . rx,x (Q)
]T

T =


rx,x (0) rx,x (1) . . . rx,x (Q−1)
rx,x (1) rx,x (0) . . . rx,x (Q−2)

...
...

...
rx,x (Q−1) rx,x (Q−2) . . . rx,x (0)



rx,x (k) represents the correlation of the signal x with a shifted version of itself by k sam-
ples, defined as

rx,x (k) =
1
N

N−1

∑
n=0

xnxn−k

Since T is a Toeplitz matrix, its inverse can be computed with the split Levinson-Durbin
algorithm (DELSARTE; GENIN, 1986).

The residual signal ε is usually sufficiently simple to be replaced by some primitive
waveform that approximates it — usually a pulse, a pulse train or white noise with some
envelope (COOK, 2002, p. 48–49) —. In that case, perfect re-synthesis is not achieved,
but the resulting signal sounds similar to the original one because the filter models the
resonances of the sound source. This method not only saves memory but it also allows
the generation of several similar sounds by synthesizing slightly different residuals.

6.4.1 Stability Concerns

A filter designed with LPC is not guaranteed to be stable. Generally, increasing the
number of coefficients generates poles in the filter’s transfer function that are inside but
very close to the unit circle eıω on the z domain, causing some numeric error to be fed
back into the filter at some frequencies. This can usually be circumvented by performing
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the LPC extraction with a smaller number of coefficients. In the application, I have found
that 32 coefficients produced a stable response for the recorded sounds, while modeling
the sources’ resonances acceptably.

Implementations using the GPU of non-recursive linear filters are stable by definition.
On CUDA-based implementations (TREBIEN; OLIVEIRA, 2009), however, the recur-
sive filter is sensitive to arithmetic errors: in some cases, filters designed to have poles
near the unit circle on the z-plane often become unstable when realized on the GPU. This
is particularly due to the use of an FFT to compute the filter. The main source of er-
ror on an FFT is the implementation of floating point operations, which, as mentioned
previously, is not IEEE-754 compliant on current GPUs. Another source of error is the
type of operations involved, which correctly suggests that different FFT algorithms on
the same platform provide different error bounds (MEYER, 1989). In CUDA, FFTs are
implemented by the CUFFT (NVIDIA CORP, 2008c), which does not specify which al-
gorithms it uses or their error bounds. An equivalent CPU-based implementation using
the FFTW library (FRIGO; JOHNSON, 2005) appears to be less subject to this problem,
since I have found no instabilities in the test cases so far.

While research on stability for these filters is ongoing, a simple heuristic can be de-
vised to determine if an implementation is stable. The heuristic consists of running an
impulse signal through the filter, recording the output, and analyzing it using the STFT in
search of decaying and increasing modes. All frequencies are expected to be decaying,
though a direct frame-by-frame comparison may sometimes falsely indicate an increase
in energy for a decaying mode. This is a result of both numeric error and of interfer-
ence caused by “leakage” due to the FFT’s windowing process. Therefore, one should
preferably compare all FFT frames with the first output frame. If a number n of frames
(determined by the developer) contains less energy in all frequencies than the first frame,
the filter is highly likely to be stable. The number n can be increased as desired to provide
greater accuracy for the test.

For efficiency, it is recommended to disable the non-recursive section of the filter. This
does not affect a stability test, since the non-recursive section is stable by definition. The
non-recursive section also often is a long signal which, convolved with the input, produces
a large number of interacting modes on the output, causing constructive and destructive
interferences and, thus, requiring a much larger analysis window. With a small number of
recursive coefficients (as mentioned previously, almost never more than 32), the number
of decaying modes is small (not more than 31 in this case) and the amount of interference
between them is much less significant.

From my own experimentation, I have chosen a particular audio recording that yields
an unstable implementation when running with 256 samples per block, but yields a stable
implementation when running with 512 samples per block. Notice, however, that this is
not the typical situation. Figure 6.3(a) shows the pole-zero plot of the filter designed with
LPC. With all poles inside the unit circle, the filter is theoretically stable, with infinite
precision. Many of the poles are near the unit circle, however, making this a filter that
can easily become unstable when realized with finite precision. Figures 6.3(b) and 6.3(c)
show the impulse response of the filter, demonstrating that one of the implementations
is stable, while the other is not. Figure 6.3(d) shows a detailed point-by-point difference
in the output signal of the both filters for approximately the first 5 output blocks of 256
samples. This difference is the instability introduced and accumulated by the unstable
filter.

Then I proceeded to compare the frequency content of the output signal at many points
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(a) Pole-zero plot for the filter. Many of the
poles lie close to the circle of unity, suggesting
that an implementation of this filter is not likely
to be stable.
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(b) Impulse response to the filter implemented
using a block size of 256 samples. The accu-
mulation of error becomes evident around t =
0.06.
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(c) Impulse response to the filter implemented
using a block size of 512 samples. The signal
decays to zero.
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(d) Difference between the two signals, show-
ing the unstable component increasing over
time.

Figure 6.3: General observations of a particular filter designed with LPC that becomes
unstable when implemented on the GPU.

in time; for this, the output signal was divided in “frames” defined as blocks of 256 sam-
ples windowed by a Hanning window. Figures 6.4(a) and 6.4(b) show that the frequency
content of the output signal is essentially the same for the initial frame (frame 0). The
results continue similar until, on frame 5 (see Figures 6.4(c) and 6.4(d)), the unstable
increasing modes reach higher amplitude levels than the stable decreasing modes. This
remains the behavior of the system for all following frames, as can be observed on frame
20 (see Figures 6.4(e) and 6.4(f)).

6.5 Summary

This chapter introduced an efficient technique for implementing recursive filters in
parallel platforms, with special interest in GPU-based implementation. The equation
defining time-invariant linear filters was unrolled in order to eliminate recursive depen-
dences that prevent a trivial GPU-based implementation. Due do block processing, the
number of times the equation needs to be unrolled is limited. When all necessary depen-
dences are eliminated, the resulting equation can be expressed as two linear convolutions,
which are then computed efficiently through multiplication on the Fourier domain.
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(a) DFT of frame 0 of the implementation us-
ing a block size of 256 samples.
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(b) DFT of frame 0 of the implementation
usign a block size of 512 samples. The output
of both implementations is essentially equal
across the spectrum.
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(c) DFT of frame 5 of the implementation us-
ing a block size of 256 samples. At this frame,
increasing unstable components begin to dom-
inate the spectrum of the signal.
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(d) DFT of frame 5 of the implementation us-
ing a block size of 512 samples. The strong
low-frequency mode is present in both imple-
mentations with the same energy.
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(e) DFT of frame 20 of the implementation us-
ing a block size of 256 samples. Notice the am-
plitude level; only high-energy unstable com-
ponents can be observed.
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(f) DFT of frame 20 of the implementation us-
ing a block size of 512 samples. Only a sub-
sonic decaying mode can be found.

Figure 6.4: Discrete Fourier analysis of certain output “frames”, where a frame is part
of the output signal multiplied by a window function. Each frame corresponds to 256
samples of the output signal.
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The technique of linear predictive coding (LPC) was also presented, which provides
coefficients for a recursive filter from recordings. By experimenting with the filter, it was
found that this implementation may face stability issues when the designed filter presents
poles near the unit circle. Also, the effect of unstability was analyzed for samples that,
after LPC extraction, produced unstable filters with the proposed method.

In the next chapter, we present an application that used the proposed filter implemen-
tation and LPC to generate sound for a virtual scene. The application effectively demon-
strates the usefulness of the technique for the graphics community. Additionally, technical
details of the system and a performance comparison with a CPU-based implementation
are provided.
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7 VALIDATION OF THE PROPOSED TECHNIQUE

In order to validate the technique, I have developed an application consisting of two
independent processes to demonstrate the approach. The two processes communicate
with each other to maintain synchronization of sound events. One of the processes, which
is presented in Section 7.1, is a graphics only program which renders a scene where
sounds are necessary. The other process, presented in Section 7.3, generates the sound
using the proposed approach. The two processes communicate with each other using
an inter-process communication API provided by the operating system and described in
Section 7.2. Finally, the performance of the method is evaluated in comparison with the
same method implemented using the CPU.

7.1 Interactive Graphics Interface Process

To demonstrate the relevance of the proposed approach to real-time graphics applica-
tions, a simple application (BARCELLOS, 2008) was created1 in C# that simulates the
collisions among a set of spheres and a piecewise planar surface. The concept is illus-
trated in Figure 7.1. The physical simulation is based on Newton’s laws, and the collision
detection, on single-point contacts. The application also simulates different materials by
assigning different restitution coefficients to the scene objects. The piecewise planar sur-
face was modeled as made of wood, and the spheres, as either glass, wood or plastic. In
the current implementation, all spheres have the same material, but one could modify the
sound generating process to accommodate a greater number of materials simultaneously.
Figure 7.2 shows two screenshots of the actual application.

7.2 Inter-Process Communication Protocol

As objects collide, the graphics process sends messages to the audio process that im-
plements the method, which then synthesizes the appropriate sound for each event. The
messages contain information such as the energy lost in each impact and the bodies in-
volved in the contact.

The sound generating process creates a shared memory block to hold a vector with
information about each sphere, and a message queue for collisions. When a sphere in the
physically-based simulation is rolling over a surface, the speed of the sphere is updated in
its corresponding entry in the shared memory vector. The sound generating process reads
this information once per input block and updates the pulse-train generation parameters.

1 A more reliable physics library such as PhysX could have been used instead, but this implementation was
readily available and it fulfilled the demonstration requirements well.
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Figure 7.1: A conceptual diagram of the 3D graphics application used to test the recursive
filters. A set of spheres of different materials collide among themselves and against a
piecewise planar wooden surface.

Figure 7.2: Two snapshots of the scene used in the real-time 3D graphics process. A set
of spheres collide against a piecewise planar surface, as well as against themselves. The
application performs physically-based simulation of collisions.

When a collision is detected on the simulation, the event is recorded in a queue with 1,024
positions and a shared semaphore is released, allowing the sound generating process to
read it and create the windowed sinc event on the polyphonic synthesizer list of events.

This method of communication represents a very small overhead, allowing both the
physically-based simulation and the sound generating processes to run in real time with
no perceptible delays between collision detection and collision sound output. A video
showing the execution of the application and recorded in real time can be downloaded
from http://www.inf.ufrgs.br/Audio_on_GPU/en/media/.

7.3 Audio Generation Process

In order to generate realistic sounds using filtering instead of sample playback, one
filter must be designed for each type of material. This can be obtained by computing the
filter coefficients from the actual sound of the material. Such a filtering-based approach
has advantages over sample playback since by changing a few parameters, one can re-
synthesize variations of the original sound. For instance, the sound of impacts between
objects at different speeds and contact angles can be simulated. Then, the computation of
filter coefficients from the actual material sounds is described.

For the audio process, coefficients were precomputed for a number of sounds repre-
senting the strike between two spheres and the strike with a wooden surface. I could have
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Figure 7.3: The setup environment for recording samples for the glass material. Two
glass surfaces (the small glass jars) were suspended with threads, which were connected
to a broomstick (at the top), which in turn was suspended on two small wooden stools. A
microphone was placed directly below the jars, and a blanked surrounded the whole setup
to help dampening some ambient noise. An additional thread was connected to one of the
jars’ thread (the right one) so that the jar could be swung from outside the recording area,
allowing the blanket (on the background) to entirely cover these elements. Nonetheless,
the sounds were recorded at a time of day where little noise was present, and several
samples were recorded and later the best sample was selected. The same procedure was
repeated for the sounds of plastic and wood materials, but then using plastic jars and
wooden spherical objects instead.

used as source some recordings from a sample library, but as I did not have any satisfac-
tory sound, I have recorded the source waveforms for each material in a loosely controlled
environment (without considerable noise dampening, for instance), which was found to
produce acceptable results. Pairs of hollow surfaces made of glass, wood and plastic were
suspended with threads and the sound of the impact between surfaces of the pair was
recorded, as shown in Figure 7.3. The sound for impact with the table was obtained in
the same environment by recording the sound of a finger striking a wooden table. This
process was repeated a number of times and I selected one representative sample for each
material.

Recording the input sounds in a controlled environment (such as in a recording studio)
would certainly improve the quality of the output, increasing the correspondence between
the designed filters and the pure, noise-free source sounds. As the recordings contained
ambient noise, the sound was then adaptively-filtered using the software Adobe Audi-
tion, which improved the perceived output sound quality. Without this, the results would
contain more noise and might even contain additional resonant modes belonging to other
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ambient sound sources. The impact of this procedure is that, since the source recordings
contain more environmental noise, the resulting filter allows more noise to pass to the
output. Nonetheless, the practical experimentation seems to show that most of this noise
is masked out by strong resonant modes that the filter models. Additionally, the goal is
not to achieve exact physical accuracy but only to generate convincing results, and in most
cases, careful modulation of the output signal is sufficient to provide that sensation.

By inspection, I noticed that the residuals I obtained from each recording seemed to
approximate a waveform with a short (somewhat low-pass filtered) pulse at the begin-
ning, followed by a long decaying filtered white noise tail. This suggests that a residual
composed of a filtered pulse with a filtered white noise tail should produce an output that
sounds like the input. Part of this noise tail is likely due to ambient noise at the time of
capture, but when I attempted to re-synthesize the sounds, this noise tail seemed impor-
tant to convey the same resonant qualities captured in the recording of the source. It is
possible that other types of synthesized residuals could create even more realistic output
sounds.

To obtain such a residual, a granule of a Hann-windowed sinc function was generated
for each sound event (i.e., collision). The expression that computes a granule of N samples
of amplitude α and a bandwidth parameter β is given by

xn =
α

2

(
cos
(

2π
n
N

)
+1
)

sinc(βn) ,−N
2
≤ n≤ N

2

The resulting signal was then convolved (by filtering) with another signal B consisting of
unfiltered exponentially-decaying white noise:

b(t) = κrandu (t)
(

1− e−bat
)(

e−bdt
)

(7.1)

where κ = 1
128 is defined as an energy compensation coefficient (to avoid saturated out-

put), the attack rate ba = 512 and the decay rate bd = 16. These values were defined
empirically. The convolution with a windowed sinc pulse is a form of low-pass filtering.
This simulates what is observed in most real sounds, where high frequencies are most
notably attenuated when the originating event takes place with less intensity.

The filters that the application executes to re-synthesize collision sounds are formed
by the non-recursive coefficients from B (Equation 7.1) and the recursive coefficients A
(Equation 6.8) obtained by the LPC method. Figure 7.4 summarizes the tasks involed both
in preprocessing and runtime of this implementation. The application uses two filters, one
(SS) for sphere-on-sphere collision sounds, and another (SP) for sphere-on-plane collision
sounds. A polyphonic synthesizer generates a sinc pulse for every collision. For sphere-
on-sphere collisions, the pulses are fed to SS only, while for a sphere-on-plane collision,
the pulse is fed to both filters. The amplitude parameter α and the bandwidth parameter
β are proportional to the energy dissipated in the impact.

For every sphere that is rolling over a surface, my implementation generates a quasiperi-
odic train of pulses with amplitude α and bandwidth β proportional to the sphere’s speed
v. The interval ∆t between each pulse is a sum of a periodic component, which is inversely
proportional to v, with a random Poisson variable with rate parameter λ proportional to v.

Finally, the LPC implementation for computing the filter coefficients from the sounds
of the materials (see Section 6.4) was written in MATLAB and the filters have been im-
plemented using C++ and CUDA with the CUFFT library. A class diagram of the filter’s
implementation can be found in Figure A.1. Source code for the implementation of the
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Figure 7.4: A summary of all tasks and data produced at each stage in the current demo.
Before runtime, every recording is passed to the LPC algorithm, which extracts corre-
sponding recursive coefficients a for the filter and residual signal. By inspection, I found
that the residual can be approximated during runtime as a convolution of a sinc pulse and
windowed white noite. Since a convolution is performed by the non-recursive part of
the filter, this part of the process can be implemented by simply setting the non-recursive
coefficients as the white noise signal. During runtime, sinc pulses are synthesized and
passed as the input signal to the filter, which then computes a re-synthesized version of
the original recording for each input pulse. Parameters of the sinc pulse are synthesized
for each sound event, producing variations of the sound as the output.
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filter is given in Listings A.1, A.2 and A.3, and for generation of the “sinc” events, in
Listing A.4.

It should be noted that, for complete realism, other auditory cues such as distance
attenuation and ambient reverberation should be added in a more serious application.
This was not included in this work because the implementation was only intended to
demonstrate the recursive filter in operation.

7.4 Performance Comparison

In order to compare the performance of the GPU approach against a CPU implemen-
tation, I devised a simple method that verifies when the process is running in real-time
under a specific configuration (defined by the choice of block size, filter length, sampling
rate, etc.). For this, a low overhead modification was added to the callback called by the
low-latency audio interface Steinberg ASIO (ASIO, 2006). This callback receives and
provides blocks to the audio device and with some modification additionally checks if a
block is available for playback. If this condition is sustained for a number of consecu-
tive calls (equivalent to at least 10 seconds of the audio stream in the chosen sampling
rate/block size configuration), the system signals that the real-time test has passed. This
method is then used to compare an implementation in C++ running on the CPU with the
CUDA implementation running most of its computation on the GPU. It should be noted
that only the graphics process was running during the benchmarks.

The tests were run on a PC with an Intel Core 2 Duo E6300 processor at 1.86 GHz
and 2 GB of DDR2 RAM at 333 MHz with a Gigabyte 945GM-S2 motherboard and an
Nvidia GeForce 9800 GTX graphics card with 768 MB of memory (x16 PCI-Express).
The implementation used version 2.0 of the Nvidia CUDA driver, toolkit and compiler
with the optimization settings provided in the CUDA template projects. The method also
relies heavily on the performance of the FFT algorithm. For this comparison, I used
the FFTW library for the CPU implementation and CUFFT, which is provided with the
CUDA SDK, for the GPU implementation. Both FFT libraries are considered highly
optimized for their particular platforms.

The experiment should have been run across a different set of platforms to better
validate the results rather than just one. Unfortunately, I did not have these resources
at the time this work was developed. However, since the method is strongly based on
FFTs, the actual performance may be inferred by already available benchmarks of the
FFT libraries in use.

For the non-recursive section of the filter, the implementation was tested with the fol-
lowing vector sizes for the convolution: 8,192, 16,384, 32,768, 65,536, 131,072, 262,144,
524,288, 1,048,576, 12,288, 24,576, 49,152, 98,304, 196,608, 393,216, 786,432 and
1,572,864. Note that only multiples of 211 were chosen, since this is the largest block
size available for this comparison. For the recursive section, only a few (i.e., less than
128) coefficients were used. This was done for two reasons: using more than 16 coeffi-
cients in the recursive section is rare in practice; also the cost of using more coefficients
is similar to the case of non-recursive filters.

For these experiments, the signal stream consisted of two channels of 32-bit floating-
point samples at a sampling rate of 44.1 kHz. The test was repeated for block sizes of
128, 256, 512, 1,024 and 2,048. Table 7.1 presents the maximum filter sizes that could
be processed in real-time in each configuration. The GPU was capable of handling filters
with 2 to 4 times more coefficients than the CPU. However, the main practical advantage
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Block Size CPU Filter CPU Filter GPU Filter GPU Filter
POT NPOT POT NPOT

128 32,768 24,576 - -
256 65,536 49,152 131,072 98,304
512 131,072 98,304 262,144 196,608

1,024 131,072 196,608 524,288 786,432
2,048 262,144 393,216 1,048,576 786,432

Table 7.1: Maximum number of coefficients achieved in real-time processing for the
CPU-based and the GPU-based implementations, for power-of-two (POT) and non-
power-of-two (NPOT) convolution sizes for the non-recursive section. For block size
of 128 elements, the GPU implementation did not achieve real-time performance due to
the overhead of CUDA kernel launch calls on the CPU side.

of using the proposed method is that a greater number of audio processes can be performed
using only the GPU, thus avoiding unnecessary transfers for processing on the CPU.

7.5 Summary

This chapter presented an interactive application consisting of a graphics rendering
process and an audio generation process. It was described how the graphics application
provides collision and state events to the audio process using inter-process communica-
tion. It was also described how the recursive and non-recursive coefficients of the filters
in use are obtained, and how the input signal is generated. Finally, a comparison of the
proposed technique with a CPU-based implementation was presented. It revealed that the
GPU implementation is capable of real-time execution of filters with 2 to 4 times as many
as the equivalent implementation on the CPU.
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8 CONCLUSION

It is clear that the GPU can perform real-time audio processing with no noticeable de-
lays by humans. It is also clear that all non-recursive audio processes can be implemented
on the GPU straightforwardly with performance benefits, whereas recursive processes re-
quire new approaches to achieve fast computation. For these reasons, in this thesis, I
have presented a new technique that allows efficient implementation of recursive filters
on GPUs. To the best of my knowledge, the proposed solution is the first presented in
the literature. Compared to the equivalent CPU-based technique using the same FFT op-
erations, this approach supports real-time processing of 2 to 4× more coefficients than it
was previously possible, allowing 1D signal processing applications that require real-time
filtering with a large number of non-recursive coefficients.

Since larger speedups were expected, I have concluded that FFT algorithms, which are
frequently used for signal processing, benefit little of the GPU computing power, being
restricted by memory bandwidth and access patterns. It still makes sense, however, to im-
plement FFT-based processes on the GPU if they are combined with other processes that
do explore the GPU computational power, such as mixing, synthesis and non-recursive
filtering. The only exception to this, however, should be the case of a recursive filter
placed at the end of a signal flow chain, in which case it could be implemented on the
CPU and operate on the audio before being sent to the audio device for playback.

Using the FFT makes the method scale optimally for large recursive filters. However,
this kind of filter is very uncommon (the order of the recursive section is almost never
larger than 32 in typical audio applications). At such sizes, performing this filter on a
GPU is often slower than on a CPU, given the complexity of the FFT algorithm and the
fact that it is a memory-intensive operation instead of a simple sequential memory access
(as recursive filtering running on the CPU is). However, the method still has advantages
when used as a part of a larger signal processing system consisting of interconnected
audio processes. This results from the fact that moving data from the GPU to the CPU
for efficient processing and then back to the GPU is extremely slow due to large delays
in memory transfers between the devices. Therefore, the technique has a major impact in
systems where the signal processing stream involves both highly GPU-friendly processes
(such as synthesis and non-recursive filtering) and recursive filtering.

The GPU hardware, in special its floating point implementation, is adequate for most
non-recursive processes, but more numeric error may accumulate on recursive processing
in comparison with CPU-based processing. Such errors may, in the case of linear recur-
sive filters, actually turn a stable filter (by design) into an unstable one. It should be noted
that recursive filters may suffer the same problems when implemented directly from the
filter equation using the CPU. We expect some of these problems to be, at least, reduced
if the filter is implemented using Larrabee, which will be IEEE-754 compliant. However,
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this remains to be tested since Larrabee is still under development.
Among the applications that can benefit from the proposed method, I have imple-

mented a demo using linear prediction coding (LPC) to produce audio for another process
that generates 3D graphics and physically-based motion and collision detection. Both au-
dio and graphics processes run in real-time and concurrently share both CPU and GPU
resources. When a collision event takes place in the graphics process, the audio appli-
cation re-synthesizes realistic sounds for the colliding objects based on their materials,
speed, and collision angles. The re-synthesis process uses a set of coefficients specifying
a recursive filter that describes the materials’ acoustic properties. I have also shown how
such coefficients can be automatically computed from recordings of the objects’ actual
sounds. Together, these techniques provide a more flexible way of using realistic sounds
in interactive applications, and constitute an interesting alternative to the traditional sam-
ple playback approach. With the appropriate parameters, the described techniques can
re-synthesize a variety of sounds from a reference one, greatly benefiting games and other
interactive applications that require immediate auditory feedback. Such a procedural ap-
proach is also in accordance with the observed intention in computer games of replacing
conventional 3D modeling with procedural one, in order to reduce the amount of data that
needs to be downloaded from remote servers.

Other audio applications that may benefit from the technique include parametric equal-
ization (which makes use of Q-filters, modeled as second order recursive filters), multi-
band compression (where recursive filtering may be used for splitting audio in individual
bands), vocoder (where a modified LPC-based method may be used to extract formants
and reapplied, with a different residual, to generate new sounds), modal synthesis (where
modes can be modeled by 2-pole filters) and subtractive synthesis (where IIR filters, spe-
cially low-pass, high-pass and band-pass, are applied directly to other synthesized signals
to modify their spectra).

8.1 Future Work

To deal with the problems of filter instability described in Section 6.4.1, one could
rewrite the GPU-based FFT algorithms to emulate double-precision floating points –
which would further reduce performance on the GPU – or write a diverse set of GPU-
based FFT algorithms and find one with sufficient precision. Though this should have
some impact in stabilizing the filter, it is generally agreed that increasing the number of
bits in the representation is not a good solution for problems of error accumulation.

A more general solution would be implementing the filter to run on the GPU (TRE-
BIEN; OLIVEIRA, 2009), then compute the impulse response of the filter running on the
GPU, compare the response with the provided filters specification, and then attempt to
compensate for the errors by decimating the filter, moving individual poles, and recom-
bining the individual filters. One could devise a method to do such using some type of
metaheuristic optimization algorithms (HASEYAMA; MATSUURA, 2006).

To obtain higher speedups, a new implementation of the FFT could be used. The algo-
rithm used by CUFFT has not been revealed by Nvidia, but I suppose it should be a typical
method, such as the Cooley-Tukey algorithm. Several radix-8 algorithms in current use
can, in theory, perform better for power-of-two vector sizes, but an implementation on
the GPU would be necessary to verify this. Ultimately, memory access is the major lim-
itation for good FFT performance. In fact, my findings highlight the fact that, while the
GPU is powerful for parallel computation, it may not be as powerful for memory-intensive
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parallel applications, even those designed with optimal memory access patterns in mind.
Most of the filter theory and of filter applications are based on time-invariant filters,

as defined by Equation 4.3. In some cases, however, filter coefficients may vary for each
instance of n, such as in

yn =
P

∑
i=0

bi (n)xn−i−
Q

∑
j=1

a j (n)yn− j (8.1)

In this case, the filter is said to be time-varying. The methods presented in Chapter 6
can not be easily extended to handle time-varying filters in general. Additionally, the
methods cannot, at this time, be generalized for nonlinear filters so as to obtain an efficient
implementation for parallel architectures. This is specially troublesome with nonlinear
recursive filters. One goal would be producing an efficient and stable implementation for
a second-order time-varying filter. Using existing techniques (see Section 4.6), such filter
could then be used to implement any filter.
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APPENDIX A SOURCE CODE LISTINGS

Listing A.1: Basic kernels in CUDA and corresponding calls.
1 / / ke rne l f o r s e t t i n g a l l elements o f an ar ray to a s p e c i f i c value
2 void __global__ kMemset ( f l o a t∗ bu f fe r , unsigned long NumSamples , f l o a t va l ) {
3 const unsigned i n t i = b lock Idx . x ∗ blockDim . x + th read Idx . x ;
4 b u f f e r [ i ] = va l ;
5 }
6
7 / / ke rne l f o r producing a l i n e a r combinat ion o f two ar rays
8 void __global__ kCombine ( f l o a t∗ a , f l o a t A, f l o a t∗ b , f l o a t B, f l o a t∗ out , unsigned long NumSamples ) {
9 const unsigned long i = b lock Idx . x ∗ blockDim . x + th read Idx . x ;

10 i f ( i < NumSamples )
11 out [ i ] = A ∗ a [ i ] + B ∗ b [ i ] ;
12 }
13
14 / / ke rne l f o r producing a l i n e a r combinat ion o f two ar rays
15 void __global__ k L i m i t e r ( f l o a t∗ bu f fe r , unsigned long NumSamples ) {
16 const unsigned i n t i = b lock Idx . x ∗ blockDim . x + th read Idx . x ;
17 f l o a t x = expf (− b u f f e r [ i ] ) ;
18 b u f f e r [ i ] = (1 .0 f − x ) / ( 1 .0 f + x ) ;
19 }
20
21 / / ke rne l f o r m u l t i p l y i n g corresponding elements o f two ar rays o f complex numbers
22 void __global__ kComplexMul ( cuFloatComplex∗ x , cuFloatComplex∗ y , cuFloatComplex∗ out , unsigned long NumPoints ) {
23 const unsigned long i = b lock Idx . x ∗ blockDim . x + th read Idx . x ;
24 i f ( i < NumPoints )
25 out [ i ] = cuCmulf ( x [ i ] , y [ i ] ) ;
26 }
27
28 / / f u n c t i o n f o r computing the s inc f u n c t i o n on the GPU
29 f l o a t __device__ s inc ( f l o a t x ) {
30 f l o a t t = 3.1415926535897932384626433832795 f ∗ x ;
31 i f ( x == 0 .0 )
32 return 1.0 f ;
33 else
34 return s in ( t ) / t ;
35 }
36
37 / / ke rne l f o r producing and mixing a windowed s inc i n one or two output vec to rs
38 void __global__ kSinc ( f l o a t∗ BufferA , f l o a t∗ BufferB , unsigned long NumSamples , long StartSample , long EndSample ,
39 f l o a t SamplingPeriod , f l o a t Amplitude , f l o a t Bandwidth ) {
40 const unsigned long i = b lock Idx . x ∗ blockDim . x + th read Idx . x ;
41 f l o a t n = ( i − 0.5 f ∗ ( StartSample + EndSample − 1 ) ) ;
42 f l o a t w = 0.5 f + 0.5 f ∗ cos(6.28318530717958647692 f ∗ n / ( f l o a t ) ( EndSample − StartSample ) ) ;
43 f l o a t y = Ampli tude ∗ s inc ( Bandwidth ∗ n ) ∗ w;
44 i f ( i < NumSamples ) {
45 Buf ferA [ i ] += y ;
46 i f ( Buf ferB != 0)
47 Buf ferB [ i ] += y ;
48 }
49 }
50
51 / / exported C f u n c t i o n s f o r c a l l i n g the kerne ls
52 extern "C" void cudaSetValue ( f l o a t∗ bu f fe r , f l o a t val , unsigned long NumSamples ) {
53 kMemset<<<(NumSamples+255)/256 , 256>>>( bu f fe r , NumSamples , va l ) ;
54 }
55
56 extern "C" void cudaCombine ( f l o a t∗ a , f l o a t A, f l o a t∗ b , f l o a t B, f l o a t∗ out , unsigned long NumSamples ) {
57 kCombine<<<(NumSamples+255)/256 , 256>>>(a , A, b , B, out , NumSamples ) ;
58 }
59
60 extern "C" void cudaL imi te r ( f l o a t∗ Buf fer , unsigned long NumSamples ) {
61 kL im i te r <<<(NumSamples+255)/256 , 256>>>( Buf fer , NumSamples ) ;
62 }
63
64 extern "C" void cudaComplexMul ( cuFloatComplex∗ x , cuFloatComplex∗ y , cuFloatComplex∗ out , unsigned long NumPoints ) {
65 kComplexMul<<<(NumPoints +255)/256 , 256>>>(x , y , out , NumPoints ) ;
66 }
67
68 extern "C" void cudaSinc ( f l o a t∗ BufferA , f l o a t∗ BufferB , unsigned long NumSamples , long StartSample , long EndSample ,
69 f l o a t SamplingPeriod , f l o a t Amplitude , f l o a t Bandwidth ) {
70 kSinc <<<(NumSamples+255)/256 , 256>>>(BufferA , BufferB , NumSamples , StartSample , EndSample , SamplingPeriod ,
71 Amplitude , Bandwidth ) ;
72 }
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Listing A.2: Generating blocks of audio using CUDA.
1 f l o a t NextGranule [ 1 6 ] ;
2
3 MyEventMap Events ;
4 wxMutex MapGuard ;
5
6 void OnCol l i s ion ( bool WithSurface , f l o a t I n t e n s i t y , f l o a t Time ) {
7 MapGuard . Lock ( ) ;
8 Events [ IDCounter ] = new MyEventCUDA( WithSurface , I n t e n s i t y , 0 ) ;
9 IDCounter ++;

10 MapGuard . Unlock ( ) ;
11 }
12
13 f l o a t Po isson In te rva l ( f l o a t Speed ) {
14 f l o a t lambda = 2.0 f ∗ Speed / 44100.0 f ;
15 f l o a t uniform = ( rand ( ) + 1) / 32768.0 f ;
16 f l o a t exp = (−1.0 f / lambda ) ∗ log ( uniform ) ;
17 return exp ;
18 }
19
20 f l o a t MyIn te rva l ( f l o a t Speed ) {
21 return 44100.0 f / Speed + 0.2 f ∗ Po isson In te rva l ( Speed ) ;
22 }
23
24 void GenerateWhiteNoiseTai l ( f l o a t ∗b , unsigned long P) {
25 for ( unsigned long i = 0 ; i < P ; i ++) {
26 f l o a t t = ( f l o a t ) i / SamplingRate ;
27 b [ i ] = (2 .0 f ∗ ( ( f l o a t ) rand ( ) / 32768.0 f − 0.5 f ) )
28 ∗ ( 1 .0 f − expf (−512.0 f ∗ t ) )
29 ∗ ( expf (−16.0 f ∗ t ) )
30 ∗ ( 1 .0 f − i /P) / 128.0 f ;
31 }
32 }
33
34 void MyProducerCUDA : : ComputeOutput ( void ) {
35 f l o a t ∗pChannel = &mApp l i ca t ionBu f fe r [ mNumInputs
36 ∗ mBufferLayout . SamplesPerChannel ] ;
37
38 cudaSetValue ( mpBufferA , 0 , mBufferLayout . SamplesPerChannel ) ;
39 cudaSetValue ( mpBufferB , 0 , mBufferLayout . SamplesPerChannel ) ;
40
41 MapGuard . Lock ( ) ;
42 for ( i n t i = 0 ; i < 16; i ++) {
43 bool I s S l i d i n g ;
44 f l o a t Speed ;
45 AsyncReadSphereState ( i , I s S l i d i n g , Speed ) ;
46 i f ( I s S l i d i n g ) {
47 i f ( NextGranule [ i ] == −1)
48 NextGranule [ i ] = MyIn te rva l ( Speed ) ;
49 while ( NextGranule [ i ] < mBufferLayout . SamplesPerChannel ) {
50 Events [ IDCounter ] = new MyEventCUDA( true , Speed ∗ 0.00005 f , NextGranule [ i ] ) ;
51 IDCounter ++;
52 i f ( Speed != 0.0 f )
53 NextGranule [ i ] += MyIn te rva l ( Speed ) ;
54 }
55 NextGranule [ i ] −= mBufferLayout . SamplesPerChannel ;
56 }
57 else
58 NextGranule [ i ] = −1;
59 }
60
61 MyEventMap : : i t e r a t o r Item = Events . begin ( ) , DeleteI tem ;
62 while ( I tem != Events . end ( ) ) {
63 bool F in i sh = Item−>second−>ComputeSignal ( mpBufferA , mpBufferB , mBufferLayout . SamplesPerChannel ) ;
64 i f ( F in i sh ) {
65 DeleteI tem = Item ;
66 ++Item ;
67 Events . erase ( DeleteI tem ) ;
68 }
69 else
70 ++Item ;
71 }
72 MapGuard . Unlock ( ) ;
73
74 / / i f not loaded , load the f i l t e r s
75 i f ( mpFi l terA == NULL) {
76 / / y i e l d s 1024∗64 samples a f t e r padding when load ing the f i l t e r
77 unsigned long NumNonRecCoeffs = 1024∗64 − 2∗mBufferLayout . SamplesPerChannel ;
78 f l o a t ∗b = mal loc ( NumNonRecCoeffs ∗ sizeof ( f l o a t ) ) ;
79 GenerateWhiteNoiseTai l ( b ) ;
80 mpFi l terA = new FilterCUDA ( mBufferLayout . SamplesPerChannel , b , NumNonRecCoeffs , a1 , NumRecCoeffs ) ;
81 }
82 i f ( mpFi l terB == NULL) {
83 unsigned long NumNonRecCoeffs = 1024∗64 − 2∗mBufferLayout . SamplesPerChannel ;
84 f l o a t ∗b = mal loc ( NumNonRecCoeffs ∗ sizeof ( f l o a t ) ) ;
85 GenerateWhiteNoiseTai l ( b ) ;
86 mpFi l terB = new FilterCUDA ( mBufferLayout . SamplesPerChannel , b , NumNonRecCoeffs , a2 , NumRecCoeffs ) ;
87 }
88 mpFi l terA−>GenerateNextBuffer ( mpBufferA , mpBufferA ) ;
89 mpFi l terB−>GenerateNextBuffer ( mpBufferB , mpBufferB ) ;
90 cudaCombine ( mpBufferA , 1.0 f , mpBufferB , 0.10 f , pChannel , mBufferLayout . SamplesPerChannel ) ;
91 cudaL imi te r ( pChannel , mBufferLayout . SamplesPerChannel ) ;
92
93 / / copy computed s i g n a l on l e f t channel to the r i g h t channel
94 cudaMemcpy ( pChannel + mBufferLayout . SamplesPerChannel , pChannel ,
95 mBufferLayout . SamplesPerChannel ∗ sizeof ( f l o a t ) , cudaMemcpyDeviceToDevice ) ;
96 }
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Listing A.3: Kernel calls for loading and computing the filter using CUDA.
1 #define GREATERMULTIPLE( x , per ) ( ( ( ( x ) + ( per ) −1) / ( per ) ) ∗ ( per ) )
2
3 FilterCUDA : : FilterCUDA ( unsigned long SamplesPerBuffer ,
4 f l o a t ∗b , unsigned long P, f l o a t ∗a , unsigned long Q) {
5 mSamplesPerBuffer = SamplesPerBuffer ;
6 mInputPos i t ion = 0;
7 mOutputPosi t ion = 0;
8
9 / / a l l o c a t e f i l t e r s t r u c t u r e s

10 mInputSize = mSamplesPerBuffer + GREATERMULTIPLE( mSamplesPerBuffer+P−1, mSamplesPerBuffer ) ;
11 mOutputSize = mSamplesPerBuffer + GREATERMULTIPLE(Q−1, mSamplesPerBuffer ) ;
12
13 A = ( f l o a t ∗) mal loc (Q ∗ sizeof ( f l o a t ) ) ;
14 Bpad = ( f l o a t ∗) mal loc ( mInputSize ∗ sizeof ( f l o a t ) ) ;
15 Cpad = ( f l o a t ∗) mal loc ( mInputSize ∗ sizeof ( f l o a t ) ) ;
16 Dpad = ( f l o a t ∗) mal loc ( mOutputSize ∗ sizeof ( f l o a t ) ) ;
17
18 cudaMalloc ( ( void∗∗)& Xsh i f t , mInputSize ∗ sizeof ( f l o a t ) ) ;
19 cudaMalloc ( ( void∗∗)& Ysh i f t , mOutputSize ∗ sizeof ( f l o a t ) ) ;
20 cudaMalloc ( ( void∗∗)&Xconv , mInputSize ∗ sizeof ( f l o a t ) ) ;
21 cudaMalloc ( ( void∗∗)&Yconv , mOutputSize ∗ sizeof ( f l o a t ) ) ;
22
23 cudaMalloc ( ( void∗∗)&Bdft , ( mInputSize /2+1) ∗ sizeof ( cuFloatComplex ) ) ;
24 cudaMalloc ( ( void∗∗)&Cdft , ( mInputSize /2+1) ∗ sizeof ( cuFloatComplex ) ) ;
25 cudaMalloc ( ( void∗∗)&Ddft , ( mOutputSize /2+1) ∗ sizeof ( cuFloatComplex ) ) ;
26 cudaMalloc ( ( void∗∗)&BCdft , ( mInputSize /2+1) ∗ sizeof ( cuFloatComplex ) ) ;
27 cudaMalloc ( ( void∗∗)&Xdft , ( mInputSize /2+1) ∗ sizeof ( cuFloatComplex ) ) ;
28 cudaMalloc ( ( void∗∗)&Ydft , ( mOutputSize /2+1) ∗ sizeof ( cuFloatComplex ) ) ;
29
30 / / p lan the FFTs (may dest roy the contents o f the vec to rs )
31 cu f f tP lan1d (&PlanB , mInputSize , CUFFT_R2C, 1 ) ;
32 cu f f tP lan1d (&PlanC , mInputSize , CUFFT_R2C, 1 ) ;
33 cu f f tP lan1d (&PlanD , mOutputSize , CUFFT_R2C, 1 ) ;
34 cu f f tP lan1d (&PlanX , mInputSize , CUFFT_R2C, 1 ) ;
35 cu f f tP lan1d (&PlanY , mOutputSize , CUFFT_R2C, 1 ) ;
36 cu f f tP lan1d (& PlanXf , mInputSize , CUFFT_C2R, 1 ) ;
37 cu f f tP lan1d (& PlanYf , mOutputSize , CUFFT_C2R, 1 ) ;
38
39 / / acqu i re c o e f f i c i e n t s
40 for ( i n t i = 0 ; i < Q; i ++)
41 A[ i ] = a [ i ] ;
42 for ( i n t i = 0 ; i < P ; i ++)
43 Bpad [ i ] = b [ i ] ;
44
45 / / normal ize A
46 for ( unsigned i = 1 ; i < Q; i ++)
47 A[ i ] /= A [ 0 ] ;
48
49 / / add padding to B
50 memset(&Bpad [P ] , 0 , ( mInputSize − P) ∗ sizeof ( f l o a t ) ) ;
51
52 / / precompute C and D and add padding
53 Dpad [ 0 ] = 1.0 f ;
54 memset(&Dpad [ 1 ] , 0 , ( mOutputSize−1) ∗ sizeof ( f l o a t ) ) ;
55 for ( unsigned long i = 0 ; i < mSamplesPerBuffer ; i ++) {
56 Cpad [ i ] = Dpad [ 0 ] ;
57 for ( unsigned long j = 1 ; j < Q; j ++)
58 Dpad [ j −1] = Dpad [ j ] − Cpad [ i ] ∗ A[ j ] ;
59 }
60 memset(&Cpad [ mSamplesPerBuffer ] , 0 , ( mInputSize − mSamplesPerBuffer ) ∗ sizeof ( f l o a t ) ) ;
61
62 / / compute the FFT of B and C
63 cudaMemcpy ( Bdft , Bpad , mInputSize ∗ sizeof ( f l o a t ) , cudaMemcpyHostToDevice ) ;
64 cudaMemcpy ( Cdft , Cpad , mInputSize ∗ sizeof ( f l o a t ) , cudaMemcpyHostToDevice ) ;
65 cudaMemcpy ( Ddft , Dpad , mOutputSize ∗ sizeof ( f l o a t ) , cudaMemcpyHostToDevice ) ;
66
67 cufftExecR2C ( PlanB , ( c u f f t R e a l ∗) Bdf t , Bd f t ) ;
68 cufftExecR2C ( PlanC , ( c u f f t R e a l ∗) Cdft , Cdf t ) ;
69 cufftExecR2C ( PlanD , ( c u f f t R e a l ∗) Ddft , Ddf t ) ;
70
71 / / convolve B and C
72 cudaComplexMul ( Bdf t , Cdft , BCdft , ( mInputSize / 2 + 1 ) ) ;
73
74 / / c l ea r X and Y to begin processing
75 cudaSetValue ( Xsh i f t , 0 , mInputSize ) ;
76 cudaSetValue ( Ysh i f t , 0 , mOutputSize ) ;
77 }
78
79 void FilterCUDA : : GenerateNextBuffer ( f l o a t ∗ Input , f l o a t ∗Output ) {
80 / / s to re i npu t
81 cudaMemcpy ( X s h i f t + mInputPos i t ion , Input , mSamplesPerBuffer ∗ sizeof ( f l o a t ) , cudaMemcpyDeviceToDevice ) ;
82
83 / / perform convo lu t ions
84 cufftExecR2C ( PlanX , Xsh i f t , Xd f t ) ;
85 cufftExecR2C ( PlanY , Ysh i f t , Yd f t ) ;
86
87 cudaComplexMul ( BCdft , Xdf t , Xdf t , ( mInputSize / 2 + 1 ) ) ;
88 cudaComplexMul ( Ddft , Ydf t , Ydf t , ( mOutputSize / 2 + 1 ) ) ;
89
90 cufftExecC2R ( PlanXf , Xdf t , Xconv ) ;
91 cufftExecC2R ( PlanYf , Ydf t , Yconv ) ;
92
93 / / e x t r a c t r e s u l t
94 cudaCombine(&Xconv [ mInputPos i t ion ] , 1.0 f / ( f l o a t ) mInputSize ,
95 &Yconv [ mOutputPosi t ion ] , 1.0 f / ( f l o a t ) mOutputSize , Output , mSamplesPerBuffer ) ;
96
97 / / increment po in te r s



68

98 mInputPos i t ion += mSamplesPerBuffer ;
99 i f ( mInputPos i t ion == mInputSize )

100 mInputPos i t ion = 0;
101 mOutputPosi t ion += mSamplesPerBuffer ;
102 i f ( mOutputPosi t ion == mOutputSize )
103 mOutputPosi t ion = 0;
104
105 / / s to re output i n the b u f f e r f o r next step
106 cudaMemcpy ( Y s h i f t + mOutputPosit ion , Output , mSamplesPerBuffer ∗ sizeof ( f l o a t ) , cudaMemcpyDeviceToDevice ) ;
107 }
108
109 FilterCUDA : : ~ FilterCUDA ( void ) {
110 / / dest roy plans
111 c u f f t D e s t r o y ( PlanYf ) ; c u f f t D e s t r o y ( PlanXf ) ; c u f f t D e s t r o y ( PlanY ) ; c u f f t D e s t r o y ( PlanX ) ;
112 c u f f t D e s t r o y ( PlanD ) ; c u f f t D e s t r o y ( PlanC ) ; c u f f t D e s t r o y ( PlanB ) ;
113
114 / / dest roy vec to rs
115 cudaFree ( Ydf t ) ; cudaFree ( Xdf t ) ; cudaFree ( BCdft ) ; cudaFree ( Ddf t ) ; cudaFree ( Cdf t ) ; cudaFree ( Bdf t ) ;
116 cudaFree ( Yconv ) ; cudaFree ( Xconv ) ; cudaFree ( Y s h i f t ) ; cudaFree ( X s h i f t ) ;
117 f ree (Dpad ) ; f r ee (Cpad ) ; f r ee ( Bpad ) ; f r ee (A ) ;
118 }

Listing A.4: Kernel calls for generating sinc pulses using CUDA.
1 class MyEventCUDA {
2 protected :
3 long mStartSample , mEventEnd ;
4 f l o a t mAmplitude , mBandwidth , mSamplingPeriod ;
5 unsigned long mTaps ;
6 unsigned long mStage ;
7 bool mWithSurface ;
8
9 public :

10 MyEventCUDA( bool WithSurface , f l o a t I n t e n s i t y , unsigned long StartSample , unsigned long Taps = 31) {
11 mSamplingPeriod = 1.0 f / 44100.0 f ;
12 mWithSurface = WithSurface ;
13 mAmplitude = I n t e n s i t y ;
14 mBandwidth = I n t e n s i t y ∗ 20 .0 ;
15 mStartSample = StartSample ;
16 mTaps = Taps ;
17
18 mStage = 0;
19 mEventEnd = mStartSample + mTaps ;
20 }
21
22 bool ComputeSignal ( f l o a t ∗BufferA , f l o a t ∗BufferB , unsigned long NumSamples ) {
23 unsigned long NumSamplesToGenerate ;
24 switch ( mStage ) {
25 case 0: / / sk ip samples a t s t a r t
26 i f ( mStartSample >= NumSamples )
27 break ;
28 else {
29 Buf ferA += mStartSample ;
30 Buf ferB += mStartSample ;
31 NumSamples −= mStartSample ;
32 mEventEnd −= mStartSample ;
33 mStartSample = 0;
34 mStage = 1;
35 }
36
37 case 1: / / pulse body
38 i f ( mEventEnd >= NumSamples )
39 NumSamplesToGenerate = NumSamples ;
40 else
41 NumSamplesToGenerate = mEventEnd ;
42 i f ( NumSamplesToGenerate != 0) {
43 / / c a l l the kerne l
44 i f ( mWithSurface )
45 cudaSinc ( BufferA , BufferB , NumSamplesToGenerate , mStartSample , mEventEnd , mSamplingPeriod ,
46 mAmplitude ∗ 0.5 f , mBandwidth ) ;
47 else
48 cudaSinc ( BufferA , 0 , NumSamplesToGenerate , mStartSample , mEventEnd , mSamplingPeriod , mAmplitude ,
49 mBandwidth ) ;
50 }
51
52 i f ( mEventEnd >= NumSamples )
53 break ;
54 else
55 return true ;
56 }
57
58 mStartSample −= NumSamples ;
59 mEventEnd −= NumSamples ;
60 return fa lse ;
61 }
62 } ;
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MyProducerCUDA
mpBufferA: float*
mpBufferB: float*
mpFilterA: FilterCUDA*
mpFilterB: FilterCUDA*
MyProducerCUDA(): void
~MyProducerCUDA(): void
ComputeOutput(void): void

FilterCUDA
mInputSize: unsigned long
mOutputSize: unsigned long
mInputPosition: unsigned long
mOutputPosition: unsigned long
mSamplesPerBuffer: unsigned long
A: float*
Bpad: float*
Cpad: float*
Dpad: float*
Xshift: float*
Yshift: float*
Xconv: float*
Yconv: float*
Bdft: cuFloatComplex*
Cdft: cuFloatComplex*
Ddft: cuFloatComplex*
BCdft: cuFloatComplex*
Xdft: cuFloatComplex*
Ydft: cuFloatComplex*
PlanB: cufftHandle
PlanC: cufftHandle
PlanD: cufftHandle
PlanX: cufftHandle
PlanY: cufftHandle
PlanXf: cufftHandle
PlanYf: cufftHandle
FilterCUDA(SamplesPerBuffer: unsigned long, a: float*, Q: unsigned long): void
~FilterCUDA(): void
GenerateNextBuffer(Input: float*, Output: float*): void

Figure A.1: Class diagram for the implementation of the proposed method.
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APPENDIX B UMA IMPLEMENTAÇÃO EFICIENTE BASEADA
EM GPUS DE FILTROS LINEARES RECURSIVOS E SUA
APLICAÇÃO A RE-SÍNTESE REALÍSTICA EM TEMPO-REAL
PARA MUNDOS VIRTUAIS INTERATIVOS

Resumo da Dissertação em Português

Som é parte indispensável da experiência multimídia, transmitindo tanto informação
quanto emoção. Avanços tecnológicos nas últimas décadas permitem hoje que um músico
efetue todas as etapas de gravações de qualidade industrial usando apenas um computador
portátil e poucos equipamentos adicionais. Porém, com uma configuração tão simples,
é comum esbarrar em certos limites, especialmente a inflexível não-programabilidade
da maioria dos processadores digitais de sinal (DSPs) e o poder computacional limitado
das CPUs atuais, que em muitos casos impede o processamento do som em tempo-real
(e.g., para efeitos sonoros em jogos, na execução musical de um tecladista). Tais li-
mitações são especialmente significativas em muitas aplicações profissionais de áudio,
que procuram produzir sons ricos e complexos, tais como reverberação por convolu-
ção (GARCíA, 2002), reamostragem (RUSS, 1996), ou, mais frequentemente, uma com-
binação das duas em um sistema modular de processamento de sinais.

Por outro lado, processadores gráficos (GPUs) apresentam capacidades computacio-
nais teóricas muito superiores às das CPUs (NICKOLLS et al., 2008; NVIDIA CORP,
2008a), o que levou ao desenvolvimento de tecnologias orientadas ao processamento de
propósitos gerais na GPU (GPGPU), tais como CUDA e CTM (HOUSTON; GOVIN-
DARAJU, 2007). Usando tais tecnologias, e se explorada corretamente, as GPUs devem
poder computar um volume de dados de áudio maior do que muitas CPUs. Apesar de
bem explorada para processamento de sinais 2D e 3D (ANSARI, 2003; JARGSTORFF,
2004; MORELAND; ANGEL, 2003; SPITZER, 2003; SUMANAWEERA; LIU, 2005), e
de haverem bibliotecas matemáticas disponíveis tais como CUBLAS e CUFFT (NVIDIA
CORP, 2008b,c), pouco foi explorado quanto ao processamento de sinais 1D na GPU.
Por exemplo, exceto pela técnica apresentada neste trabalho, não há uma solução geral
para filtros lineares recursivos na GPU, exceto pela avaliação em paralelo de um número
massivo de instâncias (ZHANG; YE; PAN, 2005), o que é trivial. Este fato tem limitado o
uso da GPU para áudio profissional, apesar das evidências de que a GPU possa ser usada
para processamento de áudio em tempo-real (TREBIEN; OLIVEIRA, 2008), podendo
alcançar um desempenho até 20× maior que o da CPU (TREBIEN, 2006).

Assim, para preencher esta lacuna, apresento uma técnica (TREBIEN; OLIVEIRA,
2009) que permite a implementação eficiente de filtros 1D lineares e invariantes no tempo
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em GPUs. O método consiste em desdobrar a equação do filtro até que todas as de-
pendências de dados se refiram a amostras disponíveis. A equação resultante pode ser
expressa por duas convoluções, que podem ser computadas eficientemente usando a FFT.
Comparada ao estado-da-arte, esta abordagem permite processar filtros com 2 a 4× mais
coeficientes em tempo-real. O método é demonstrado em uma aplicação onde sons rea-
lísticos são gerados para objetos de diferentes materiais sofrendo colisões.

B.1 Trabalhos Relacionados

Na primeira categoria de trabalhos relacionados, encontram-se artigos da área de pro-
cessamento de sinais que definem importantes critérios para avaliar a qualidade do método
apresentado. Entre eles, Liu (1971) discutiu os problemas de precisão em implementa-
ções de filtros lineares digitais usando representações de ponto-fixo e ponto-flutuante.
Rader e Gold (1967) discutiram uma implementação alternativa de filtros recursivos de
primeira e segunda ordem com erros significativamente reduzidos na posição dos pó-
los e zeros. Weinstein e Oppenheim (1969) verificaram experimentalmente um modelo
para o ruído introduzido em um sinal filtrado como resultado da quantização aritmética.
Welch (1969) estabeleceu limites superiores e inferiores ao erro espectral do algoritmo
da FFT usando aritmética de ponto-fixo, enquanto Weinstein (1969) estudou a precisão
da FFT mas usando aritmética de ponto-flutuante. Por fim, Parhi e Messerschmitt (1989)
desenvolveram uma estrutura em bloco para implementação em hardware de filtros recur-
sivos, mas a técnica é dada em forma de pipeline, que contém dependências recursivas e
portanto não pode ser implementada eficientemente em máquinas SIMD como a GPU.

A segunda categoria de trabalhos relacionados consiste de aplicações de áudio e pro-
cessamento de sinais na GPU. Primeiramente, há adaptações do algoritmo da FFT para
GPUs (ANSARI, 2003; MORELAND; ANGEL, 2003; SPITZER, 2003; SUMANAWE-
ERA; LIU, 2005), algumas das quais já estão disponíveis em bibliotecas (GOVINDA-
RAJU; MANOCHA, 2007). Gallo e Drettakis (2003) apresentaram um método para es-
pacialização baseada em agrupamento de fontes sonoras no espaço 3D e subsequente
reamostragem e mixagem na GPU. Gallo e Tsingos (2004) apresentaram uma aplicação
similar includo simulação de efeito Doppler e filtragem por funções de transferência re-
lativas à cabeça (HRTFs), mas os autores relatam que obtiveram um desempenho 20%
menor na GPU em relaçâo à CPU. Robelly et al. (2004) apresentaram uma formulação
teórica para computação de filtros recursivos invariantes no tempo em arquiteturas pa-
ralelas, mas não validam o método com uma implementação. Whalen (2005) avaliou a
GPU comparando o desempenho das implementações de um conjunto de processos de
áudio simples não-recursivos e sem operação em tempo real, encontrando depenhos até
4× maiores para alguns dos algoritmos avaliados. Zhang et al. (2005) usaram GPUs para
sonificação de colisões usando síntese modal na GPU, computando os modos individual-
mente, mas não chegaram a aplicar o método a um mundo virtual interativo. Trebien e
Oliveira (2008) propuseram um sistema de tempo-real capaz de realizar operações básicas
com áudio e processar ondas primitivas e reamostradas. Por fim, Bonneel et al. (2008) de-
senvolveram uma técnica para produzir sons de colisões eficientemente através de síntese
modal no domínio frequência, mas, apesar da aplicação à realidade virtual e do desem-
penho de 5 a 8× maior comparado a técnicas similares, o som foi produzido usando a
CPU.
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B.2 Avaliação Eficiente de Filtros Lineares Recursivos na GPU

Filtros não-recursivos (caso linear na Equação 4.3a) e processos sem memória, tais
como mixagem (Equação 4.2), possuem implementação trivial na GPU que consiste em
simplesmente avaliar a equação diretamente. Porém, em um filtro recursivo (caso linear
na Equação 4.3), a amostra de saída yn depende do valor de amostras anteriores (e.g.,
yn−1, yn−2, . . . ). A implementação trivial desse filtro em uma GPU consistiria em forçar a
serialização usando sincronização, mas isto não utilizaria todos os processadores paralelos
da GPU e certamente teria desempenho inferior à CPU.

Para filtros lineares recursivos e invariantes no tempo, uma possível solução é ob-
tida desdobrando-se a equação do filtro. Se n for substituído por n−1 na Equação 4.3b,
obtém-se uma expressão para yn−1 e o termo pode ser substituído na equação original.
Com a substitução, a dependência do valor de saída em yn−1 é eliminada, e outra é acres-
centada em yn−Q−1. Repetindo-se este processo para yn−2, depois yn−3 e assim por diante,
e rearranjando os termos em cada uma delas, observa-se que todas formam o padrão ex-
presso na Equação 6.1, onde os coeficientes ck e d j podem ser calculados iterativamente
a partir dos coeficientes que definem o filtro, bi e a j, usando-se as Equações 6.2 e 6.3.
Como o processamento de áudio em tempo real é feito em blocos de m amostras, basta
então iterar esse processo até que o termo yn−m tenha sido substituído, de modo que todas
as dependências se estabeleçam com amostras de blocos anteriores, as quais podem ser
guardadas em memória.

Para uma implementação eficiente, a equação desdobrada pode ser expressa por meio
de convoluções de acordo com a definição na Equação 4.5, resultando na Equação 6.5.
As convoluções podem ser então calculadas em domínio-frequência de acordo com a
propriedade na Equação 4.11, resultando na Equação 6.6. O cálculo de convoluções no
domínio-frequência é chamado de convolução rápida, com um passo ilustrado na Fi-
gura 6.1 e existem métodos conhecidos para implementá-lo (HAYKIN; VEEN, 1998).
Neste trabalho, foi usado para convolução rápida o algoritmo de overlap-save (OPPE-
NHEIM; SCHAFER, 1975).

Para uma implementação ótima, pode-se armazenar os blocos anteriores necessários
em um buffer circular e aproveitar a circularidade da FFT para minimizar o número de
transferências de memória. A organização e operação dos buffers para esta implementa-
ção no processamento de 1 bloco é ilustrada na Figura 6.2. Ainda, as FFTs de CB e D são
pré-computadas, e as FFTs de X e Y são computadas na execução em tempo-real.

B.2.1 Extração LPC e Re-Síntese

Para demonstrar o filtro em operação, é necessário obter coeficientes para ele. Um dos
métoods mais úteis para isto é a codificação por predição linear (LPC) (HARRINGTON;
CASSIDY, 1999), o qual obtém um conjunto de coeficientes recursivos (i.e., a1, a2, etc.) a
partir de uma gravação. A extração dos coeficientes também obtém um sinal denominado
resíduo, o qual, se alimentado no filtro com os coeficientes obtidos por este método,
recupera exatamente a gravação original. Na prática, o filtro com os coeficientes extraídos
modela as ressonâncias da gravação. O resíduo tende a ser uma onda simples, que pode
ser substituída por um sinal similar (geralmente uma onda primitiva como um pulso, um
trem de pulsos ou ruído branco com algum envelope (COOK, 2002, p. 48–49)). Tal
sinal, quando sintetizado e alimentado no filtro, produz na saída um sinal que soa como a
gravação original.

Filtros LPC não são garantidamente estáveis. É comum a produção de pólos na fun-
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ção de transferência do filtro próximos ao círculo unitário eıω no domínio z. Tais pólos,
quando implementados em uma máquina com aritmética finita, podem ocasionar reali-
mentação do erro aritmético em certas frequênicas, tornando o filtro instável. Uma forma
de contornar esse problema é reduzir o número de pólos (e, por consequência, coefici-
entes) do filtro. O mesmo vale para a implementação baseada em FFT aqui apresentada.
Diferentes algoritmos de FFT apresentam erros numéricos diferentes (MEYER, 1989),
e as bibliotecas de FFT usadas não permitem mudar o algoritmo selecionado pela bi-
blioteca para uma configuração particular (NVIDIA CORP, 2008c). Aparentemente, a
biblioteca FFTW3, usada na implementação em CPU, parece sofrer de um erro numérico
menor (FRIGO; JOHNSON, 2005).

Neste trabalho, eu escolhi uma gravação particular que produzia um filtro instável na
execução com tamanho de bloco 256, porém estável com tamanho de bloco 512. Note
que a instabilidade não é o caso mais comum. A Figura 6.3(a) mostra o diagrama de pólos
e zeros do filtro obtido por LPC, o qual é, em teoria, estável com precisão infinita. As
Figuras 6.3(b) e 6.3(c) mostram a resposta ao impulso do filtro com 256 e 512 amostras
por bloco, respectivamente, demonstrando que uma implementação é estável, enquanto
que a outra não é. A Figura 6.3(d) mostra a diferença ponto-a-ponto do sinal de saída
dos dois casos. Para comparar o conteúdo em frequência dessas duas saídas, eu dividi
o sinal de saída em quadros de 256 amostras cada um e apliquei a cada um uma janela
de Hanning. As Figuras 6.4(a) e 6.4(b) mostram o resultado da análise do quadro 0,
respectivamente, mostrando que a saída é essencialmente a mesma, o que permanece
válido até o quadro 5 (Figuras 6.4(c) e 6.4(d)), onde os modos instáveis passam a dominar
o sinal. As Figuras 6.4(e) e 6.4(f) mostram o conteúdo do quadro 20.

B.3 Validação da Técnica Proposta

Para demonstrar a implementação do filtro, foi construída uma aplicação consistindo
de dois processos separados e concorrentes. Primeiramente, um processo gráfico sim-
ples (BARCELLOS, 2008) em C# produz simulação física e colisões entre um conjunto
de esferas e uma superfície plana (Figura 7.1), podendo-se aplicar diferentes materiais às
esferas (Figura 7.2).

A cada colisão, o processo gráfico envia mensagens a um processo de áudio que im-
plementa o método descrito, que sintetiza o som para o evento. As mensagens contêm
informações como a energia liberada em cada impacto e os corpos envolvidos na coli-
são. Uma área de memória compartilhada é usada para informar, com pouca sobrecarga,
quando uma das esferas está rolando sobre a superfície plana. Nesse caso, a velocidade
do rolamento é atualizada pelo processo gráfico e lida assincronamente pelo processo de
áudio. Um vídeo mostrando a execução da aplicação gravado em tempo-real encontra-se
em http://www.inf.ufrgs.br/Audio_on_GPU/en/media/.

Para geração do áudio, um filtro deve ser extraído para cada tipo de som (colisão
entre duas esferas de mesmo material e colisão entre esfera e superfície, implicando a
utilização de dois filtros), e uma aproximação do resíduo computada para cada evento.
Para as esferas, foram feitas gravações em um ambiente pouco controlado, usando objetos
de vidro, plástico e madeira, suspensos por barbantes. Um cobertor foi usado para reduzir
(sem eliminar) o ruído ambiente. A configuração pode ser vista na Figura 7.3. O som
da superfície foi obtido atingindo uma mesa de madeira com um dedo. Uma gravação
em um ambiente mais controlado deve melhorar a qualidade dos sons obtidos, mas para
garantir uma qualidade mínima, as gravações foram repetidas algumas vezes e a melhor
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amostra foi selecionada. Os coeficientes recursivos são extraídos pelo método de LPC.
Por inspeção, observei que o resíduo poderia ser aproximado pela convolução entre o
pulso sinc na Equação 7.3, que passa a ser o sinal de entrada, e o ruído branco amortecido
na Equação 7.1, que define os coeficientes não-recursivos do filtro. Um resumo das tarefas
envolvidas no pré-processamento e na execução do filtro encontra-se na Figura 7.4. Os
parâmetros do pulso são modulados de acordo com a intensidade da colisão (i.e., energia
liberada, fornecida via mensagens inter-processo). Quando uma esfera está rolando sobre
uma superfície, um trem de pulsos quase periódico é gerado de acordo com uma variável
de Poisson. Deve-se notar que, para um realismo completo, outros indicadores sonoros
deveriam ser incorporados ao método, tais como atenuação por distância e reverberação
ambiente.

Finalmente, a implementação de LPC foi feita em MATLAB e os filtros foram im-
plementados em C++ e CUDA com a biblioteca CUFFT, que acompanha o SDK de
CUDA e considerada otimizada para a plataforma. Um diagrama de classes da aplica-
ção encontra-se na Figura A.1. O código-fonte da implementação encontra-se nas Lista-
gens A.1, A.2 e A.3, e da geração de eventos sinc, na Listagem A.4.

Para comparar o desempenho da GPU em relação à CPU na implementação do fil-
tro, foi utilizada a biblioteca de baixa latência Steinberg ASIO (ASIO, 2006) com uma
modificação para detectar a extrapolação do limite de tempo de cômputo de um bloco
(i.e., execução não-tempo-real). Em ambas as aplicações, o código executando na CPU
foi escrito em C++. Os testes foram rodados sem o processo gráfico em um processador
Intel Core 2 Duo E6300 a 1.86 GHz e com 2 GB de RAM DDR2 a 333 MHz com uma
placa-mãe Gigabyte 945GM-S2 e em uma placa gráfica Nvidia GeForce 9800 GTX com
768 MB de memória em um barramento x16 PCI-Express. A versão 2.0 do driver, toolkit
e compilador de CUDA com configurações padrões foi empregada. Como o desempe-
nho depende fortemente do algoritmo de FFT, foi escolhida a biblioteca estado-da-arte
FFTW3 para a implementação em CPU. A seção não-recursiva do filtro assumiu, durante
o experimento, os seguintes tamanhos para convolução, todos múltiplos de 211: 8.192,
16.384, 32.768, 65.536, 131.072, 262.144, 524.288, 1.048.576, 12.288, 24.576, 49.152,
98.304, 196.608, 393.216, 786.432 e 1.572.864. O sinal consistiu de dois canais de amos-
tras em ponto-flutuante de 32-bits a uma taxa de amostragem de 44,1 kHz. O teste foi
repetido para tamanhos de bloco de 128, 256, 512, 1,024 e 2,048, e a Tabela 7.1 mostra
os tamanhos máximos de filtro processados em tempo-real para cada configuração.

A GPU conseguiu operar com filtros de 2 a 4× coeficientes do que a CPU. Deve-se
notar que as vantagens do método são significativas somente em combinação com outros
processos de áudio, evitando transferências de memória desnecessárias entre CPU e GPU.

B.4 Conclusões

É fato que a GPU pode realizar processamento de áudio em tempo real com benefícios
de desempenho. Segundo meu conhecimento, a técnica proposta neste trabalho é a pri-
meira na literatura, permitindo a execução de filtros recursivos com tamanhos de 2 a 4×
maiores que na CPU. O ganho de desempenho é pequeno se comparado com o esperado
devido aos trabalhos anteriores, e a razão mais provável é a eficiência da implementação
da FFT, que é limitada fortemente pela velocidade de acesso à memória. Outra limitação é
que raramente filtros recursivos têm um grande volume de coeficientes, e filtros pequenos
têm implementação sequencial mais rápida na CPU. Porém, o tempo de transferência de
memória entre CPU e GPU é grande o bastante para justificar o uso de filtros recursivos
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na GPU em combinação com outros processos de áudio mais eficientes. A implemen-
tação também não garante a estabilidade do filtro, assim como muitas implementações
em CPU. O filtro se comportou de forma menos estável que na CPU, provavelmente pela
falta de adesão dos fabricantes ao padrão de ponto-flutuante IEEE-754, com menos erro
numérico. Apesar disso, o filtro pode ser usado em grande parte dos casos e em contextos
diferentes do apresentado, tais como equalização paramétrica, compressão multi-banda,
vocoders, síntese modal e síntese subtrativa.

Como trabalho futuro, o problema da estabilidade pode ser resolvido aumentando-se
a precisão ou experimentando-se com diferentes algoritmos da FFT. Outra possibilidade
seria alterar a resposta ao impulso para que a implementação final tivesse o resultado
pretendido, talvez por otimização heurística (HASEYAMA; MATSUURA, 2006). O de-
sempenho poderia ser melhorado mudando-se a arquitetura (i.e., melhorando a velocidade
de acesso à memória) ou aplicando-se algoritmos de FFT mais eficientes, tais como os de
raiz-8. Ainda resta encontrar uma solução similar à proposta para filtros não-lineares e
para filtros variáveis no tempo, tais como o da Equação 8.1.
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