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RESUMO

A computação visual é uma área do conhecimento que estuda o desenvol-
vimento de sistemas artificiais capazes de detectar e desenvolver a percepção
do meio ambiente através de informações de imagem ou dados multidimensi-
onais. A percepção visual e a manipulação são combinadas em sistemas ro-
bóticos através de duas etapas "olhar"e depois "movimentar-se", gerando um
laço de controle de feedback visual. Neste contexto, existe um interesse cres-
cimente no uso dessas técnicas em veículos aéreos não tripulados (VANTs),
também conhecidos como drones. Essas técnicas são aplicadas para posicio-
nar o drone em modo de vôo autônomo, ou para realizar a detecção de regiões
para vigilância aérea ou pontos de interesse. Os sistemas de computação vi-
sual geralmente tomam três passos em sua operação, que são: aquisição de
dados em forma numérica, processamento de dados e análise de dados. A
etapa de aquisição de dados é geralmente realizada por câmeras e sensores
de proximidade. Após a aquisição de dados, o computador embarcado realiza
o processamento de dados executando algoritmos com técnicas de medição
(variáveis, índice e coeficientes), detecção (padrões, objetos ou áreas) ou mo-
nitoramento (pessoas, veículos ou animais). Os dados processados são anali-
sados e convertidos em comandos de decisão para o controle para o sistema
robótico autônomo. Visando realizar a integração dos sistemas de computação
visual com as diferentes plataformas de VANTs, este trabalho propõe o desen-
volvimento de um framework para controle de missão e guiamento de VANTs
baseado em visão computacional. O framework é responsável por gerenciar,
codificar, decodificar e interpretar comandos trocados entre as controladoras
de voo e os algoritmos de computação visual. Como estudo de caso, foram
desenvolvidos dois algoritmos destinados à aplicação em agricultura de preci-
são. O primeiro algoritmo realiza o cálculo de um coeficiente de reflectância
visando a aplicação auto-regulada e eficiente de agroquímicos, e o segundo
realiza a identificação das linhas de plantas para realizar o guiamento dos
VANTs sobre a plantação. O desempenho do framework e dos algoritmos pro-
postos foi avaliado e comparado com o estado da arte, obtendo resultados
satisfatórios na implementação no hardware embarcado.

Palavras-chave: Computação Visual, Processamento de imagens, Hard-
ware Embarcado, Software Embarcado, Controle Autonomo de missão,
VANT, Agricultura de Precisão.





ABSTRACT

Cumputer Vision is an area of knowledge that studies the development
of artificial systems capable of detecting and developing the perception of the
environment through image information or multidimensional data. Nowadays,
vision systems are widely integrated into robotic systems. Visual perception
and manipulation are combined in two steps "look" and then "move", generat-
ing a visual feedback control loop. In this context, there is a growing interest
in using computer vision techniques in unmanned aerial vehicles (UAVs), also
known as drones. These techniques are applied to position the drone in au-
tonomous flight mode, or to perform the detection of regions for aerial surveil-
lance or points of interest. Computer vision systems generally take three steps
to the operation, which are: data acquisition in numerical form, data process-
ing and data analysis. The data acquisition step is usually performed by cam-
eras or proximity sensors. After data acquisition, the embedded computer
performs data processing by performing algorithms with measurement tech-
niques (variables, index and coefficients), detection (patterns, objects or area)
or monitoring (people, vehicles or animals). The resulting processed data is
analyzed and then converted into decision commands that serve as control
inputs for the autonomous robotic system. In order to integrate the visual
computing systems with the different UAVs platforms, this work proposes the
development of a framework for mission control and guidance of UAVs based
on computer vision. The framework is responsible for managing, encoding, de-
coding, and interpreting commands exchanged between flight controllers and
visual computing algorithms. As a case study, two algorithms were developed
to provide autonomy to UAVs intended for application in precision agricul-
ture. The first algorithm performs the calculation of a reflectance coefficient
used to perform the punctual, self-regulated and efficient application of agro-
chemicals. The second algorithm performs the identification of crop lines to
perform the guidance of the UAVs on the plantation. The performance of the
proposed framework and proposed algorithms was evaluated and compared
with the state of the art, obtaining satisfactory results in the implementation
of embedded hardware.

Keywords: Computer Vision, Image Processing, Embedded Hardware,
Embedded Software, Autonomous Mission Control, UAV, Precision Agri-
culture.
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1 RESUMO EXTENDIDO

Este capítulo apresenta de forma resumida, o presente trabalho, o qual é
intitulado "Um framework para controle de missão e guiamento autônomo de
veículos aéreos não tripulados, baseado em técnicas de visão computacional".

1.1 Introdução

Estudos recentes estão focados no desenvolvimento de sistemas baseados
em técnicas de visão computacional para dar autonomia a veículos aéreos não
tripulados (VANTs), sendo que, esses sistemas abrangem diversas áreas do
conhecimento. Devido a avanços recentes nessas pesquisas, foi possível es-
tender o escopo desses sistemas para a área de agricultura de precisão, pois
nesta área, diversas aplicações são desenvolvidas com o uso de tecnologias
utilizando VANTs, como mapeamento, monitoramento e mais recente, aplica-
ções envolvendo pulverização de agroquímicos sobre as plantações.

Neste contexto, este trabalho apresenta um estudo de caso em agricultura
de precisão, onde que foram desenvolvidos algoritmos utilizados para dar su-
porte e trazer autonomia a VANTs, que fazem a aplicação de agroquímicos.
Para tanto, dois algoritmos foram propostos: o primeiro algoritmo, realiza o
cálculo de um coeficiente de reflectância utilizado para realizar a aplicação
pontual, autorregulada e eficiente de agroquímicos; o segundo algoritmo, rea-
liza a identificação das linhas de plantas do cultivo, para realizar o guiamento
dos VANTs sobre a plantação.

Diante o exposto, o presente trabalho também propõe o desenvolvimento
de um framework com arquitetura generalista, projetada para suportar e aten-
der aos requisitos de diferentes aplicações, tais como, aplicações militares,
inspeções e monitoramento que exigem a integração de sistemas embarcados
em VANTs, com aplicações de visão computacional. O framework proposto foi
utilizado para integrar os algoritmos propostos nos estudos de caso em agri-
cultura de precisão, com o hardware integrado ao VANT usado nos testes de
campo.

O framework foi projetado para fornecer ferramentas para o controle autô-
nomo de missão e orientação de VANTs através da troca de mensagens entre
o hardware embarcado e os algoritmos de visão computacional e execução de
comandos. O framework é altamente escalável e permite a integração com
vários tipos de topologias de missão, além de que, sua arquitetura permite a
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integração entre um ou mais VANTs e um ou mais algoritmos de visão.

1.2 Experimentos e Resultados

Primeiramente, foram realizados experimentos para comprovar a viabili-
dade de utilização do framework proposto, sendo que, em laboratório, foram
propostos experimentos para averiguar o desempenho na troca de mensagens,
entre os algoritmos propostos e o hardware controlador de voo dos VANTs.
Nos testes realizados, o tempo médio para executar um comando foi de 237, 82

ms. Esta medida, compreende desde o momento em que a mensagem está
preparada para o envio do lado do algoritmo de visão, até o momento em que
é decodificado e executado no formato de comando pelo framework. Conside-
rando que esse tempo envolve dois processos de comunicação e a execução do
comando, pode-se constatar que o framework proposto atende as necessida-
des temporais da aplicação. Após isso, foram realizados testes com simulador,
nos quais, os algoritmos propostos foram capazes de executar missões atra-
vés da conexão entre o framework proposto e o simulador do hardware dos
VANTs.

Também, foram realizados testes de laboratório envolvendo os dois algo-
ritmos de visão propostos. O algoritmo, para automação do processo de apli-
cação de agroquímicos, alcançou desempenho de 1, 64 FPS, para imagens em
alta resolução e 45, 98 FPS, para a menor resolução avaliada. Já o algoritmo
proposto para a condução autônoma dos VANTs, sobre as linhas da plantação,
obteve resultado de 93, 62 FPS, para a resolução mais baixa e 1, 63 FPS, para
resolução de alta definição. Ambos os algoritmos, passaram por um longo pro-
cesso de ajustes, para que sua eficiência fosse mantida, mesmo nas resoluções
de imagem de tamanho inferior. Processo este que possibilitou aos algoritmos
atender os requisitos temporais dos estudos de caso propostos.

A eficácia do framework e dos algoritmos propostos também foi compro-
vada em testes de campo realizados. Nesses testes, o framework foi utilizado
para dar suporte ao funcionamento e testes com os algoritmos dos estudos de
caso em ambiente real de uso. Durante os testes com algoritmo de aplicação
de agroquímicos, para um conjunto de 120 amostras coletadas durante o expe-
rimento realizado, a diferença média entre as medidas do algoritmo proposto,
comparado com o equipamento comercial que realiza estas medidas, foi de
0, 0055416667, com um desvio padrão de ±0, 0033378296.

Nos testes de campo realizados com o algoritmo de condução autônoma,
o sistema foi capaz em realizar a condução do VANT sobre uma plantação
de milho em estágio inicial de crescimento. O algoritmo também foi capaz
de utilizar as linhas como objeto de referência para a condução e se mostrou
invariante às condições ambientais, como luminosidade e ruído de fundo da
imagem. Além disso, o framework se mostrou eficaz, destinando todos os
comandos ao hardware, obedecendo o tempo requerido pela aplicação.
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1.3 Contribuições

A principal contribuição deste trabalho é a concepção do framework, no
entanto, o trabalho também apresenta outras contribuições que são:

• Algoritmo para a aplicação autorregulada de agroquímicos;

• Algoritmo para detecção de linhas de cultura para o guiamento autônomo
dos VANTs sobre plantações de agricultura de precisão;

• O desenvolvimento de um filtro proposto para o pré-tratamento das ima-
gens e posterior identificação das linhas de plantações;

• O filtro para remover os resultados falsos positivos detectados pelo algo-
ritmo de detecção de linha;

• O algoritmo responsável por gerar os parâmetros de orientação com base
em linhas de colheita previamente detectadas;

1.4 Conclusões

Todos os objetivos planejados para o trabalho foram atingidos e os requi-
sitos definidos para aplicações alvo do estudo de caso foram cumpridos. O
framework proposto foi capaz de servir como plataforma para implementação
dos algoritmos propostos nos estudos de caso. O desempenho das diversas
partes do sistema proposto pôde ser comprovado através de testes realizados
em ambiente de laboratório e em testes de campo.
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2 INTRODUCTION

Computer vision is an area of knowledge that studies the development of
artificial systems capable of detecting and developing the perception of the
environment through image information or multidimensional data, obtained
by different types of sensors (HUANG, 1996). Computer vision is a useful
mode of robotic detection, since it imitates the human visual sense and allows
the extraction of non-contact measurements of the environment. Computati-
onal vision involves working with higher concepts and algorithms related to
artificial intelligence, which involves intense programming so that it fits with
the activities and requirements of the system. The scope of computer vision
encompasses several areas of knowledge as can be seen in Fig. 1 (PRASAD,
2012). The computational vision differs from image processing because in ad-
dition to the image processing, signals obtained from sensors and other means
the computer vision aim to analyze, to understand and to provide the interac-
tion of the system with the environment in which it is inserted.

Figura 1: Computer vision scope (PRASAD, 2012).

From the engineering point of view, the computer vision is a valuable tool
to build autonomous systems that can accomplish some of the tasks that the
human visual system can perform, and, in many cases, overcome the human
capabilities (HUANG, 1996). Currently, vision systems are widely integrated
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with robotic systems. Commonly, visual perception and manipulation are com-
bined in two steps "look"and then "move"(CONTICELLI; ALLOTTA, 2000). The
accuracy of the results depends directly on the accuracy of the visual sensor.
An alternative to increase the overall system accuracy is to use a visual feed-
back control loop, decreasing the obtained error.

In this context, there is an increasing interest in using computer vision te-
chniques in Unmanned Aerial Vehicles (UAV), also known as drones. In their
case, these techniques are applied to position the UAV in autonomous flight
mode, or to perform aerial surveillance and detection of regions of interest
or points of interest (ROIs or POIs) (CAMPOY et al., 2008). This trend is dri-
ven by different facts, such as the miniaturization of electronic components,
including sensors (driven by other technologies such as smartphones); the in-
crease of computational power for the on-board CPUs; and the cost reduction
of other components of this type of robotic platform. With today’s technology,
the variety and complexity of mission tasks modern UAVs are demanded to
achieve, they require higher levels of autonomy. The main part of a standa-
lone UAV is the navigation control system and its supporting subsystems. The
autonomous navigation system uses information from several subsystems to
perform three main tasks: estimating the location and orientation of the UAV
(location), identifying obstacles in the environment (obstacle detection), and
then making decisions (decision-making). These decisions are critical to main-
taining the control loop and to provide navigation in an unknown environment
(AL-KAFF et al., 2018). Computer vision is an indispensable tool to achieve
these goals.

Computer vision systems installed in and integrated to the architecture of
the UAVs generally have similar architecture and take three steps in its ope-
ration, which are: data acquisition in numerical form, data processing and
data analysis. Cameras, proximity sensors, and ultrasonic sensors typically
perform the data acquisition step. After the data acquisition, the embedded
computer performs data processing by performing algorithms with measure-
ment techniques (variables, index and coefficients), detection (patterns, ob-
jects or ROI/POI) or monitoring (people, vehicles or animals). The resulting
processed data is analyzed and then converted into decision commands that
serve as input to the autonomous robotic system (TOMIC et al., 2012).

With all this advancement in embedded hardware and the developed te-
chniques, the scope of use of the UAVs has been extended to a number of
application areas, such as precision agriculture (PURI; NAYYAR; RAJA, 2017).
This usage in precision agriculture is further subdivided into a number of other
study and application sub-areas such as wildlife and crop monitoring, mapping
of areas and plantations, and also for autonomous spraying of agrochemicals
on the lines of cultures (LUO et al., 2017; FAIçAL et al., 2014) as shown in Fig.
2.

The use of agrochemicals in precision agriculture is essential to maintain
production quality and scalability. The use of UAVs for spraying avoids soil
compaction and also reduces the waste of agrochemicals, compared to mas-
sive spraying using conventional manned aircrafts. However, unfavorable cli-
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Figura 2: A man controls a drone to spray pesticides (DAWEI, 2015).

matic conditions and error in the global positioning system (GPS) may hamper
the smooth functioning of these systems. These errors may cause the UAV
to deviate its trajectory and not to cover the entire desired area, or also to
invade surrounding crop fields where the application of these agrochemicals
is not recommended (FAIÇAL et al., 2014).

For these reasons, this work proposes as a case study the development of
two algorithms to provide autonomy to the UAVs intended for application in
precision agriculture. These algorithms run in parallel on embedded hard-
ware. The first algorithm performs the calculation of a reflectance coefficient
used to perform the punctual, self-regulated and efficient application of agro-
chemicals. The second algorithm performs the identification of the crop rows
to perform the autonomous guidance of the UAVs on the plantation.

However, these proposed algorithms have their performance affected by
two reasons. The first refers to the brightness, complexity and abrupt vari-
ation of the background of the images. The second refers to the temporal
requirements of the system. The model scenario of application of agrochemi-
cals with the use of UAVs can be observed in Fig. 3.

In the proposed spray scenario model the UAV moves at a constant speed
between two and three meters per second. The proposed computer vision al-
gorithms use as sersor a camera present in the vehicle. During the mission,
the image captured at the instant in which the vehicle is on the point p1 is re-
alized at the instant t = 1. At a later time, t = 2, the vehicle has moved to the
point p2. At this point, the vehicle must perform the actions following the com-
mands generated from the previously acquired image and data processing.
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Figura 3: Specification of the spray scenario using UAVs.

Considering the velocity of the vehicle, it is evident that the proposed system
has few milliseconds to perform all the application flow and yet to provide the
necessary response to the actuator.

In addition to the problems with timing requirements, another problem en-
countered in computer vision applications used in UAVs is that there is no tool
or standard to facilitate the integration of these systems with the hardware.
In this context, this work proposes the development of a framework with a ge-
neralist architecture that is designed to support and meet the requirements of
different applications, such as military applications, structure inspections and
monitoring that require the integration of embedded systems in UAVs with
vision applications.

The proposed framework is designed to provide tools for autonomous con-
trol of mission and guidance of UAVs through the exchange of messages and
execution of commands based on the computer vision algorithms. The fra-
mework is highly scalable and enables integration with several types of mis-
sion topologies. Its architecture enables the integration between one or more
UAVs and one or more computer vision algorithms.

In order to validade the proposed framework, it was used in this work
to integrate the algorithms proposed for the precision agriculture case study
with a COTS UAV hardware used in the field tests.

As a summary of the activities developed in this work, the following items
stand out:

• The implementation of the proposed framework was performed;

• The algorithms proposed in the precision agriculture case study were
implemented;

• In order to carry out the laboratory tests, videos were acquired using the
proposed hardware. These videos were then used as input parameters
for these experiments performed in the laboratory;

• The final complete solution, composed of both the framework and the
proposed algorithms, was installed in an embedded hardware, however
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the proposed framework allows the decoupling of these parts of the sys-
tem to distribute the processing load between two or more embedded
hardware;

• Performance and functional tests were performed with the framework
and the developed algorithms in the laboratory;

• Field tests were carried out as a final validation of the proposed solution;

2.1 Objectives and Contribution

The main objective of this work is the development of a framework called
"Drone-Control"for mission control and guidance of autonomous UAVs. This
framework provides for the exchange of messages between the flight control-
ler and computer vision algorithms, providing multiplicity in the system archi-
tecture, both in the number of UAVs that can be controlled and in the number
of algorithms that control them.

The proposed framework can also be considered a facilitator in the inte-
gration of the algorithms with the hardware, since it has several previously
implemented commands that can meet the different needs of different compu-
ter vision applications.

Besides the main objective, this work has some secondary objectives that
are:

• Development of an algorithm for self-regulated application of agroche-
micals;

• Development of an algorithm for guiding autonomous of UAVs in preci-
sion agriculture plantations;

Some constraints and elementary requirements were imposed to achieve
the objectives:

• The framework must be generalizable, its application must be possible
in several areas of knowledge within the scope of UAVs and computer
vision;

• All the developed solutions should run on low cost embedded hardware
installed in the UAVs;

• All algorithms should run onboard and in flight time;

• The proposed algorithms and their implementations must meet the tem-
poral requirements of the applications they target for;

The main contribution of this work is the conception of the framework,
however, the work also presents other contributions that are:

• Algorithm of self-regulated application of agrochemicals;

• Algorithm for detection of crop rows;
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• The proposed filter for the pretreatment of the images and later identifi-
cation of the crop rows;

• The filter to remove the false positive results detected by the line detec-
tion algorithm;

• The algorithm responsible for generating the guiding parameters based
on previously detected crop rows;

2.2 Work Organization

This work is organized as follows. First is presented in Chapter 3 a study
on the different techniques of computation vision that are being used in UAVs.
Also in this chapter, the techniques of image processing from the literature
that are used in the development of this work are described. Then, in Chapter
4 a more directed study about the related works is presented, as well as the
comparison with the present work.

In Chapter 5 the methodology used in the construction of the proposed
framework is described. Afterwards, Chapter 6 describes the methodology
used in the implementation of the case study in precision agriculture.

Next, the implementation details for the hardware and software architec-
tures used in the development of this project are presented in Chapter 7. In
Chapter 8 the laboratory and field experiments are presented as well as the
analysis of the obtained results.

Chapter 9 presents the conclusions obtained with the development of the
framework and the implementations of the proposed case study. Finally, direc-
tions for future work are discussed.
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3 BACKGROUND CONCEPTS REVIEW

3.1 Computer Vision in UAVs

Autonomy is characterized as the ability to move and act in the environ-
ment in which it is inserted, to perceive the environment through sensors, to
adapt or to change the environment, to learn from past experiences, to cons-
truct representations of the environment, and to develop a process of interac-
ting with the environment. However, the performance of a computer vision
system has limiting and determinant factors. For example, in a visual compu-
ting system that uses image processing, there are factors that can affect the
image acquisition, such as occlusion, blur movement, rapid pose variation, di-
sordered background environments and onboard mechanical vibration, among
others (GONZALEZ; WINTZ, 1977).

In addition, the type of environment is a determining factor for the tech-
niques, algorithms and specific hardware to be used. Internal environments
can be controlled and most often rely on solutions based on beacons, proxi-
mity sensors and image processing for data acquisition. In this case, as the
environment is controlled, the scene illumination can be adjusted and the sen-
sors can be pre-positioned, which facilitates the development and execution
of these systems. On the other hand, these environments usually have more
obstacles and the space of navigation is much more restricted, which can lead
to spend much of the processing for these verification. However, these condi-
tions can be further hampered when the internal environments are unknown
by the stand-alone system, as in the case of rescue operations (TOMIC et al.,
2012).

In outdoor environments, often known to be variable, with uncontrolled
environmental factors, often require solutions based on image processing te-
chniques to provide data acquisition. In addition, in outdoor operations, most
navigation systems are based on the Global Positioning System (GPS) (WARD
et al., 2016). In this environment, the constant variation of the scene lumi-
nance and the large variation of the background in the acquired images are
important complicating factors for the operation of the image processing al-
gorithms. Environmental noise is also something that prevents the proper
functioning of the sensors that use this form for data acquisition.

On the other side, constructions and buildings block the signal from sen-
sors and global positioning systems making it even harder to handle the ex-
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ceptions caused by these factors. Each exception treated in a computer vision
system has a computational cost that can be high, depending on the time
requirements to which this system is constrained. Considering applications
using embedded hardware, some projects simply become unfeasible. For this
reason, the research in this area is focused in trying to optimize the software
for high performance and better use of hardware resources, so that less pro-
cessing power is required and positively impacting the energy consumption of
these systems, which are usually driven by batteries.

In order to understand the current state of research in the area of visual
computing used in UAVs, Sections 3.1.1 and 3.1.2 present a study about tech-
niques of computational vision used in drones, along with their relation to the
development of mission control software for use in internal and external envi-
ronments. The text highlights the importance of this research area to provide
support for autonomy in the navigation and the interaction for these airborne
robots with the environment in which they are inserted.

3.1.1 Indoor Environments

Differently of the UAVs that operate in the external environment, UAVs that
operate indoors usually have a reduced size, which impacts on the amount of
hardware they can carry and on their autonomy. These factors also impact on
a computational capacity, which is further reduced when compared to larger
vehicle platforms. The GPS signal is blocked against constructions or buil-
dings. Thus, the indoor UAV can not recognize its location in the environment
(SUWANSRIKHAM; SINGKHAMFU, 2017). This impacts on one of the most
common applications developed and studied for indoor environments, which
refers to how to provide localization to these systems. In addition, indoor
environments may have poor lighting and because of this, they require that
artificial lighting be installed in the hardware, which can significantly incre-
ase battery consumption.

In this context, alternative navigation techniques are required which al-
low the vehicle to operate successfully in these areas. In addition, it is often
desirable that these navigation techniques do not require external infrastruc-
ture. One of the most popular techniques for indoor navigation of air vehicles
is the use of a laser with track finder, which measures the distance to the
objects that are in its focus. With this equipment, it is possible to use the
technique known as simultaneous localization and mapping (SLAM) to create
a three-dimensional map of the environment and to locate the vehicle in the
environment. Inertial navigation with the aid of monocular vision is another
paradigm applicable to internal environments. The cameras provide a wealth
of information about the environment and they are low cost and lightweight
(MAGREE; JOHNSON, 2014).

Under these circumstances, in the work presented by (MAGREE; JOHN-
SON, 2014) two integrated navigation systems are developed that combine
the techniques of visual SLAM, using a camera and laser SLAM with an iner-
tial navigation system. The monocular SLAM visual system has fully correla-
ted characteristics and modelled the vehicle states. The SLAM laser system
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is based on a scan matching map and leverages the visual data to reduce am-
biguities in the vehicle pose estimation. The system is validated in simulation
with 6 degrees of freedom and in real flight test. According to the authors, one
of the main features of the work is that the system is validated with a control-
ler in the navigation loop. Fig. 4 shows the trajectory traversed by the UAV in
the simulation of an exploration mission using the proposed techniques.

Figura 4: Result of the SLAM map and trajectory of the UAV while exploring
a simulated indoor environment (MAGREE; JOHNSON, 2014).

Although, the laser scanner can provide accurate depth information, it is
very expensive and heavy. With the use of an RGB-D camera, which can pro-
vide RGB and depth images, a simultaneous location and mapping method
based on this type of camera is proposed in (LIU; GUO; MENG, 2016). An
RGB-D SLAM algorithm was used to locate the camera and construct the 3D
map of the used test environment. The developed system can achieve the pose
and the trajectory of the camera. In addition, chart optimization and loop clo-
sure are adopted to eliminate cumulative errors. However, in this solution,
when the camera moves too fast, loss of frames occurs and few points are
detected. According to the author the performance of the algorithm and its
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accuracy need to be improved.

In vision-based navigation systems, the UAV path must be known a priori.
Data from the surrounding environment of the UAV’s flight path is taken and
analyzed to identify the basic features of that path before the flight mission be-
gins. Then the real-time data taken from the on-board sensors during the flight
mission is compared to the vehicle’s visual memory to identify the known cha-
racteristics and estimate the UAV’s motion. In this context, the work proposed
by the authors in (MOHAMED; PATRA; LANZON, 2011) describes an indoor,
inexpensive and simple navigation system using three laser beams fixed to the
UAV and pointed to the ground.

A proposed algorithm uses the camera to capture the laser points on the
ground and to determine their coordinates. The positions of the laser points
are used to obtain complete information on the position and orientation of the
UAV. The proposed navigation system can be classified as a vision-based na-
vigation system. However, it does not depend much on the quality of videos
taken from the vision camera and does not require an image processing algo-
rithm with high computational cost employed. An illustrative simulation study
is conducted to demonstrate the validity of the proposed navigation system.
According to the author’s results, the proposed system is more efficient over a
range of angles between the laser beams because it is possible to obtain the la-
ser beam length without the need for extra sensors or estimation algorithms.
This work manages to provide location for navigation through a simple and
easy method, but it is not possible to predict collisions with obstacles along
the way.

Collision with obstacles are another well known problem in indoor envi-
ronments, so an indoor location assistance system is proposed by (WU et al.,
2017). This work demonstrates the development of an indoor navigation sys-
tem, specifically for industrial applications that require customized detection
technologies to aid navigation. A custom sensing array, with ultrasonic trans-
ceivers, was developed to locate the drone’s position in a known closed envi-
ronment and to provide feedback to the navigation system. Six people were
recruited to pilot the drone with and without the navigation system in an en-
closed room for a predefined target at a known location. Two approaches
were used, the first when the UAV was at line of sight of the pilot, and the
second with no line of sight. The duration of the flight, the number of colli-
sions and the distance from the target were recorded and used to measure
the performance of the proposed application. Using the proposed navigation
system, it was possible to reduce the flight duration by an average of 19.7 %
during an obstructed line of sight. In addition, the UAV preventative collision
detection and navigation has been improved. The navigation system provides
a detection radius of 7.65 m and a position accuracy of 1 cm.

A localization technique known as Air-SSLAM was presented in (ARAúJO
et al., 2017). This technique uses a stereo camera setup besides two or more
cameras that can be used. Fig. 5 demonstrates the operation of the proposed
system.

Stereo images are captured, and then the image features are extracted. A
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Figura 5: Outline of Air-SSLAM architecture (ARAúJO et al., 2017).

mapping between the features of the images is performed through a descrip-
tor, and an initial map is generated with the depth estimate of each pair of
features. This process is then repeated using the initial map as a reference.
The maintenance and updating of the long-term map is continuously carried
out by analyzing the quality of each correspondence, as well as inserting new
features in unexplored areas of the environment. According to the author the
work presents three main contributions that are the development of a new
method to combine the features in an efficient way, the development of three
quality indicators to accelerate the process of mapping and the maintenance
of the map with distribution that in its technique, is performed by zones in
the images. The results are promising according to the authors, because the
method works with constant update of the map of the environment and with
an approximate number of 200 features.

Another promising method of indoor navigation is proposed in (BILLS;
CHEN; SAXENA, 2011). This method does not require the construction of
a 3D model of the environment. On the other hand this technique classifies
the type of internal environment in which the UAV is inserted and then uses
vision algorithms based on perspective suggestions to estimate the desired
direction to fly. Fig. 6 demonstrates the system detecting the escape route
in indoor images (corridors). Images are processed with Canny edge detector
and the Hough transform is used to find the vanishing point using a proposed
grid-based approach.

During the tests with the proposed solution, it was identified that these
algorithms require a significantly lower computational power, allowing the
UAV to react quickly and navigate through several internal environments.

Until then, techniques have been described that are generally used in un-
controlled or unknown environments. The studies reported in (PHANG et al.,
2010) demonstrate the development of a UAV using visual computing techni-
ques to provide vehicle navigation in a controlled environment. The indoor
environment used in the tests had colored tracks fixed to the ground. These
tracks were detected by the visual computing system and decoded in the form
of instructions used to power the vehicle’s navigation system. Important data
such as attitude, speed and acceleration of the UAV along with real-time vi-
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Figura 6: Images of the navigation system running inside a corridor (BILLS;
CHEN; SAXENA, 2011).

deo are sent as feedback to the ground station through communication links
to give commands and also for monitoring purposes. The algorithms of pro-
cessing and control by computer vision were evaluated and obtained good
performance.

Using a scenario controlled with markers, the system is proposed in (PES-
TANA et al., 2016) is a completely autonomous solution used to participate
in the IMAV 2013 competition (IMAV 2013), which has won the first prize of
the competition to the authors. The proposed solution is a system composed
of multiple UAVs without centralized coordination, whose UAV agents share
their positional estimates. The ability to navigate and detect collisions is a
consequence of the behavior of each member participating in the group of
UAVs. Fig. 7 demonstrates the system execution scenario.

All processing takes place at a base station outside the vehicles. For each
vehicle there is running in the ground station an instance of the proposed
architecture that communicates through WiFi with the UAV. Visual markers
are used to detect and map obstacles and to improve pose estimation. In the
executed tests, each UAV presented the ability to navigate avoiding obstacles
and even collision with other members of the system.

In the case of indoor environments, what can be observed from the use of
visual computing techniques in UAVs, is that most of these works are designed
to develop systems with the ability to navigate and/or collision detection/avoi-
dance in objects or obstacles. Efforts are concentrated in the development of
aerial vehicles to carry out the exploration of the environment and interaction
with it, preventing missions and optimizing their flight time. Another relevant
point to notice is that the research focuses on developing solutions for indoor
environments that are generally uncontrolled and unknown, which has the
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Figura 7: The architecture and the scenario application presented in (BILLS;
CHEN; SAXENA, 2011).

ability to increase the level of autonomy but also the level of difficulty in im-
plementing and merging the architecture of these systems. Another important
direction of studies that must be highlighted is on platforms that consider the
interaction of several vehicles with the environment (and among themselves),
being collaborative or independent.

3.1.2 Outdoor Environments

Unlike techniques presented in indoor environments that are restricted to
basically navigational problem resolution and collision detection/avoidance,
the visual computing techniques employed for vehicles intended for outdoor
use have a much broader application scope due to the diversity of the envi-
ronment and the great number of possible applications to be developed. Be-
cause of all this diversity of outdoor environments, vision applications based
on position-attitude control, pose estimation, mapping, obstacle detection, tar-
get tracking are easily found in the current literature (KANELLAKIS; NIKO-
LAKOPOULOS, 2017).

However, these techniques tend to have a higher computational cost be-
cause they must deal with the sudden variations of the data acquired by the
sensors in an uncontrolled environment. These systems also usually have more
than one component in their execution loop in order to treat each of the parts
of the application to which the proposed technique covers. This point requires
a greater effort on the part of the researchers, who usually have to optimize
their techniques in an extreme way to be able to meet the temporal require-
ments of these systems.
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For the localization problem, these techniques of outdoor use most often
have the availability of reference of global positioning systems to assist in
the determination of the position of the UAV. The accuracy of these systems
also depends on the number of satellites to which the vehicle has visibility.
However, these GPS-based systems do not provide a reliable solution in envi-
ronments such as urban areas or forests that may reduce the visibility of the
vehicle to the available satellites (AL-KAFF et al., 2018).

Currently one of the main computational techniques used in UAVs is the
detection of patterns. This technique is so versatile that it allows the develop-
ment of a great number of applications. A good example of such applications
may be the detection of fire areas. These applications are characterized by
the architecture shown in Fig. 8.

Figura 8: Conceptual vision-based forest fire detection system (YUAN; LIU;
ZHANG, 2016).

As described in (YUAN et al., 2016) a method for monitoring and detection
of forest fire is presented. The proposed algorithm for fire detection uses color
and motion features to improve the performance of forest fire detection and
increase its reliability. The motion and color resources are extracted using
optical flow method and color-based decision rules, respectively. In this work,
experiments were performed using a low cost camera installed at the bottom
of the UAV to search for and detect a fire.

In the proposal reported in (YUAN; LIU; ZHANG, 2016), a new method of
detecting forest fire using color and motion features for forest fire-fighting ap-
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plications is presented. The first step of the software consists in the extraction
of fire color pixels as regions of fire candidates, making use of the chromatic
characteristic of the fire. The second step for this proposed system is the use
of an optical flow to calculate motion vectors of the candidate regions. The
motion is estimated from the results of the optical flow to distinguish fire from
other false positives. By applying a threshold and performing morphological
operations on the motion vectors, the binary images are obtained. Then the
fires are located in each binary image using the proposed method. The re-
sults obtained in the development of this work are promising, in addition the
technique presented good performance and reliability in the fire detection.

Following the line of detection techniques, the work developed by (MO-
RANDUZZO; MELGANI, 2014) presents a solution for the detection and coun-
ting of cars to be used in UAVs. The proposed method does a step of screening
asphalted areas in order to restrict areas where cars can be detected and thus
reduce false positives. A resource extraction process based on a characteristic
transformation is used to detect the key-points identified in the image. Then,
it uses a classifier to determine what parts of the image are cars and what
parts are not. The last step of the method is the grouping of the key-points
belonging to the same car. Then the number of cars present in the scene is
calculated. The results presented demonstrate the efficiency of the algorithm
in the detection of cars, but it is suggested by the authors an improvement
in the methodology to reduce the number of duplicate key-points to make the
algorithm even faster and more efficient.

Inspections also use detection techniques based on computer vision. As
presented in (LI et al., 2017), an autonomous UAV-based inspection system
is implemented for asset evaluation and fault detection for large-scale photo-
voltaic systems. The detection of the defects is done through the first order
derivation of the Gaussian function and the correspondence of characteristics
in the images. Two typical visible defects of photovoltaic modules are cha-
racterized, namely, snail trails and dust shading. Field experiments demons-
trate that the system can perform inspection and condition monitoring tasks
on large scale photovoltaic systems in an autonomous and supervised man-
ner with significantly improved efficiency. The performance evaluation under
various conditions confirms that the proposed inspection system can adapt to
different slopes within a certain flight height.

There are also several detection-based computer vision techniques to as-
sist UAVs while landing. In the work presented in (JUNG; BANG; LEE, 2015), a
robust system with detection and marker tracking technique is proposed. The
algorithms are proposed to assist in the task of landing the UAVs. Robust trac-
king is done using the multiple ellipse connection with a concentric marker.
The simulation results show that the algorithm is robust and very accurate.

Another system to aid the landing of UAVs in a moving vehicle with real-
time image processing system based on marker detection is proposed in (LEE;
JUNG; SHIM, 2016). Marker detection is based on a color detection algorithm
with a morphological filter and the tracking orientation is based on the relative
distance between the UAV and the vehicle. The captured RGB image was
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transformed into HSV, so that a noise filter was applied using a threshold. The
target tracking algorithm is based on the relative distance between the UAV
and the target. The flight test was performed with the vehicle moving in the
open air environment, and the algorithm was validated for the autonomous
landing.

A standalone vision-based tracking system is presented in (CHENG et al.,
2017) and it is used to track a target from a UAV. In order to deal with the
losses due to occlusion or loss of the detected object, this work uses a robust
and computationally efficient visual tracking scheme in which a correlation
filter and the re-detection algorithm. Target status is estimated from visual in-
formation. Extensive real-time flight experiments were performed in outdoor
environments, where computing is fully implemented in the on-board compu-
ter. Experimental results illustrate that the proposed real-time vision-based
tracking system achieves the tracking performance required by the applica-
tion.

Another work that traces objects is proposed in (PESTANA et al., 2014),
where an architecture that allows the user to specify an object in the image
that the UAV must follow from an approximate constant distance is developed.
In the event of loss of tracking of the object in the image, the system begins
to hover and awaits the retrieval of tracking or a next detection, which re-
quires the use of odometry measurements for self-stabilization. The proposed
software uses the forward-facing camera images and some of the IMU data to
calculate the references to the control loops. The results obtained with the
work relativity show that the system was able to perform the visual detection
with targets of variable size, that the system was able to follow a person with
velocity of approximately 2.5 m/s for a time of approximately 45 seconds.

A new method for detecting, locating and recognizing trees with a UAV
equipped with a monocular camera is presented in (SHAH; KHAWAD; KRISHNA,
2017). Trees are detected on a frame basis using the latest generation convo-
lutional neuron networks, inspired by the recent rapid advances shown in the
literature. The trees are detected and their position is marked on the global
positioning system. Localized trees are segmented, characterized by resource
descriptors, and stored in a database that contains their GPS coordinates. The
trees detected on later flights are compared with the data in the database to
avoid duplication of information. The proposed method is also able to identify
if the trees are absent from the expected locations with GPS marked, allowing
to immediately alert the authorities concerned about possible illegal defores-
tation.

In addition to counting trees, other vision applications in UAVs such as
counting other types of commercial plants help to generate production statis-
tics in precision agriculture. In this context, the work presented in (MALEK
et al., 2014) demonstrates an economical and attractive technology for the au-
tomatic detection of palm trees to be used in UAVs. From the in-flight image,
it first extracts a set of key-points using the algorithm to detect features. Af-
terwards, these key-points are analyzed with a trained classifier in a training
data set. Finally, the palm trees are identified. Then, to capture the shape
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of each tree, it merges the key-points with an active contour method. Finally,
the texture of the obtained regions are analyzed with local binary patterns to
distinguish palms from other vegetation. The results of the experimental tests
were acquired in two different farms and confirm the promising capabilities
of the proposed structure in the palms detection.

The work presented in (FREITAS et al., 2016) demonstrates an rigorous
study on the use of embedded hardware coupled to a UAV to perform real-time
image processing. A POI detection algorithm has been proposed to perform
the tests on the hardware. In the article it is shown that it is possible and
feasible to use a low cost processing board in a mini UAV for image processing.
In this work, a practical application is demonstrated using image processing
in UAVs, it is shown the preliminary results of an application for the detection
of power lines in order to perform the autonomous guidance of the UAV on the
lines for cable inspection for example. Fig. 9 shows an image illustrating the
results in the detection of three electrical power lines. Notice that the system
successfully perform the detection, even considering a noise environment in
the background.

Figura 9: Electrical power line detection application (FREITAS et al., 2016).

Another emerging technique is the monitoring and tracking of ice for use in
marine ice management applications. This technique was reported in (LEIRA;
JOHANSEN; FOSSEN, 2017) and it is aimed to be used to detect and track
the movement of icebergs and other ice sheets in an arctic environment au-
tonomously. An occupancy grid map algorithm and a locations of interest ge-
nerator are used, coupled with a mission control system. According to the
developers of the project, one of the contributions of their work is the inter-
face of the algorithm with a vision-based object detection module to generate
an occupancy grid map of a real-time predefined search area using on-board
processing data. A generator of places of interest has also been developed,
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generating locations where the UAV should investigate based on the occupa-
tion grid map. The results were obtained based on test flights performed and
it was possible to verify that the system was able to successfully create an
occupation grid map based on the automatic segmentation of thermal images
on-board and in real-time, in ice regions and in regions without ice. However,
in the tests carried out it is possible to observe some delays in the communi-
cation and the fact that the mission controller was implemented in a ground
base station.

As can be observed, the visual computing applications used in outdoor en-
vironments have a great diversity due to the number of possible applications.
Advances in technology increasingly allow UAVs to be used in a variety of tasks
and they are thus changing the way some processes are conducted, such as in
the case of electric transmission line inspections or even in the inspection of
photovoltaic panels. However, this huge number of applications requires sys-
tems with increasingly complex and computationally costly architecture. This
is one of the biggest problems of computer vision outdoor applications. There
is a need to use several algorithms engaged in an application loop competing
for a processing time on a low cost processor. To distribute tasks and proces-
sing, studies from this moment on start and turn to applications available to
multiple execution agents.

3.1.3 Other Approaches Handling both Indoor and Outdoor Environ-
ments

In addition to the most common approaches, there are studies being de-
veloped to perform in indoor and outdoor environments, such as the work
demonstrated in (CHEN; GUO; LI, 2016), which presents a complete strategy
of tracking a terrestrial target in complex internal and external environments
with a UAV based on computer vision.

Navigation techniques have also gained focus on multi-environment stu-
dies, as demonstrated in (CHOWDHARY et al., 2013). The proposed archi-
tecture efficiently combines visual information from a monocular camera with
measurements of inertial sensors. The presented algorithms are validated on
multiple platforms in real conditions, through a 16 minute flight test, including
a stand-alone landing, of a 66 kg rotorcraft UAV operating in an uncontrolled
external environment without using GPS and through of a micro-UAV opera-
ting in a disorderly interior environment.

Another interesting proposal in this context is presented in the work re-
ported in (HUH; SHIM; KIM, 2013), in which an integrated navigation sensor
module, including a camera, a laser scanner, and an inertial sensor, for UAVs
to fly both indoors and outdoors environments. A real-time navigation algo-
rithm based on estimating algorithms is proposed. The algorithm merges the
image features with laser track data to estimate vehicle status and position.
The proposed on-board navigation system can provide real-time 3D naviga-
tion without any pre-assumptions. The experimental results demonstrate the
performance of the proposed system and prove their efficiency for multiple
environments.
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A proposal to identify people in natural accidents and to conduct scanning
missions to identify and trigger the rescue of endangered people is presented
in (APVRILLE; TANZI; DUGELAY, 2014). This work is in the initial phase of de-
velopment, presenting the contextualization of different applications and va-
rious scenarios in which the UAVs can act. The initial results demonstrate the
level of autonomy that could be reached by using computer vision techniques
aiming both indoor and outdoor environments, but more concrete evaluations
and results are still under the way.

As can be observed, these techniques tend to be more robust in terms of
accuracy, but also have a higher computational cost because they have to deal
with the disturbances and disparities in the data collected by the sensors due
to the great variation of the scene and the environmental conditions. However,
they can meet a larger number of requirements for a particular mission, both
indoors and outdoors.

3.2 Image Processing Techniques

This section presents the image processing methods available in the litera-
ture that were used to implement this work. The Section 3.2.1 demonstrates
the method used in the development of the case study concerning the self-
regulated application of agrochemicals. In Sections 3.2.2 and 3.2.3 are pre-
sented methods used in the development of the proposed guidance algorithm.

3.2.1 NDVI

The Normalized Difference Vegetation Index (NDVI) is a graphical indica-
tor that can be used to analyze remote sensing measurements (MYNENI et al.,
1995). According to (WANG et al., 2007), NDVI is an index composed of mathe-
matics of spectral bands, caught by sensors like satellites, RGB and infrared
cameras. From the NDVI it is possible to discriminate the health of vegetation,
according to the described in (BASSO et al., 2001). As shown in (WANG et al.,
2007) and (TORRES-SáNCHEZ; LóPEZ-GRANADOS; PEñA, 2015), the NDVI
reflectance coefficient can be calculated from (1).

NDV I =
NIR−R

NIR +R
(1)

where NIR is the infrared channel value and R is the value of the red visible
channel of the pixel being analyzed.

The result obtained in the application of this index is a value comprised
between the scale of [−1, 1]. The analysis of this measurement is performed
as shown in Fig. 10. The higher value represents the greater the amount
of green mass present in the area analyzed or the health of the plantation is
higher. The lower value represents the lower presence of green mass, which
indicates that there are no plants or that the health of the plantation is bad.

Considering the usage of automated UAVs to perform spraying of pesticides
and fertilizers, the usage of NDVI would be suitable to provide information to
deliver the chemicals according to the identified needs.
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Figura 10: Example of NDVI calculation (WU et al., 2014).

3.2.2 2G-R-B Transform

The 2G-R-B Transform is proposed by (WOEBBECKE et al., 1995) and re-
presented by (2). This transform consists of a mathematical of spectral bands
to calculate the green excess for all points in the image. The result obtained
with the use of the transform in (2) is a value between the scale [0, 255] and
represents the gray intensity in the gray scale image.

f(x, y) =


0 if 2G ≤ R +B

2G−R−B if Others

255 if 2G ≥ R +B + 255

(2)

As shown in (JIANG; ZHAO; SI, 2010), this transform was efficient in rela-
tion to the luminance variation, presenting good results when used in images
with high incidence of solar rays and also the images captured in days with
cloudy weather. The luminance variation is strongly present in the images
used in this work. An example of using it transform is presented in Fig. 11.

Although the transform is efficient in relation to luminosity, it emphasizes
in the grayscale image beyond the desired plants other objects and invasive
plants that have the predominance of green color. This problem needs to be
addressed with other solutions such as application of thresholds.

3.2.3 Hough Transform

The Hough Transform is proposed and patented initially by Paul Hough in
1962 for the identification of patterns (HOUGH, 1962). This transform had its
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(a) Original image. (b) Gray scale image.

Figura 11: 2G-R-B Transform example (JIANG; ZHAO; SI, 2010).

functionality extended by Richard Duda and Peter Hart in 1972 (DUDA; HART,
1972) to be widely used in the area of visual computing for the identification
of lines, circles and ellipses.

The operation of this transform consists of applying (3) to a grayscale
image and obtaining the new coordinates for the parameter space (ρ, θ), where
ρ is a distance from the origin to the nearest point on the line, and θ is the an-
gle between the x axis and the line connecting the origin to the point closest
to the line.

ρ = x · cos(θ) + y · sin(θ) (3)

As a result, each line in the original image is represented by a sine in the
parameter space. A voting scheme is defined in which each vote represents a
senoid crossing a point. These votes are stored in the accumulator space. The
points with the highest number of votes are possible candidates for straight
lines in the original image. Incrementally sorting these points by the number
of votes and then converting them back to the vector space (x, y), the lines of
the image are identified. The results of application of Hough Transform in an
image are present in Fig. 12.

Finally, the algorithm returns a list of sorted and ordered lines according
to the number of votes, however, depending on the application and the level
of details present in an image, this does not guarantee that the identified lines
are the desired lines. To eliminate these false positive results identified, some
strategies need to be applied, however this varies according to the application
being developed.
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Figura 12: The basis of the Hough transform for line detection: (A) (x, y) point
image space; (B) (m, c) parameter space; (C) accumulator space correspon-
ding to (B) (ILLINGWORTH; KITTLER, 1988).
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4 RELATED WORKS

A new technique for vision-based navigation is presented in (ZHANG; LIU;
WU, 2011). In this technique, the problem with position estimates is formu-
lated as a tracking problem and solved by a particle filter. The results of the
simulation indicate that the proposed technique provides good results of po-
sition estimation, with no apparent accumulation of errors and robust for the
variations of the path traveled.

A framework for the detection of trails based on support vector machine-
based is proposed in (LIU et al., 2017). The proposed system is based on vision
and scene comprehension by a UAV operated in unstructured external environ-
ments. A simple linear iterative grouping superpixel segmentation algorithm
is used in the proposed system structure to ensure the accuracy of the seg-
mentation of the scene. Visual detection of significant objects or persons was
performed using a multibox detector algorithm. Experimental results show
that the proposed framework is a practical solution for a UAV to conduct au-
tonomous trail detection and tracking in outdoor environments, and also able
to enhance the practicability of outdoor scene understanding.

A new vision tracking and tracking system is presented in (MINAEIAN;
LIU; SON, 2016) and plans to make use of different capabilities of a coope-
rative vehicle team.The scenario considered in this paper is a team of an un-
manned aerial vehicle (UAV) and multiple unmanned ground vehicles (UGVs)
tracking and controlling crowds on a border area. A custom motion detection
algorithm is applied to track the crowd of the mobile camera mounted on the
UAV. The proposed localization algorithm converts the locations of images of
the crowds into their real-world positions, using perspective transformation.
It is also estimated the geographical locations of the detected individuals. The
experimental results demonstrate the effectiveness of the motion detection al-
gorithm and the algorithm of human detection for UGV as well as the location
of detected points in the real world.

In (YIN et al., 2016) a robust visual detection-learning-tracking framework
is proposed for the autonomous refueling of UAVs. Two classifiers are built
in the proposed structure. The first classifier is trained offline to detect the
drogue object of aerial refueling. The second classifier is structured for online
operation tracking the drogue object. A strategy of combining the classifiers
is proposed. The results were obtained based on tests in several challenging
video sequences that did not show the effectiveness and robustness of the pro-



52

posed framework. However, the FPS rate is not satisfactory and the authors
propose as future work the implementation of this framework in hardware.

A method of navigation of UAVs based on vision and with prediction of fai-
lures in the use of GPS is proposed in (ZHANG et al., 2014). If GPS positioning
fails, scene matching techniques are used in the dynamic map for real-time la-
titude and longitude information. UAVs can perform a variety of intelligent
missions based on the proposed method. The system was developed in Visual
C ++ and is also used as an application simulation environment. In the si-
mulation tests performed the system achieved the performance and accuracy
required by the application. No practical tests were performed.

An approach to the problem of obstacle detection and vision tracking for
the navigation of UAVs is proposed by (WU; SUI; WANG, 2017). In the detec-
tion phase, the object of interest is automatically detected and located from a
calculated saliency map through the background connection of the image in
each frame. In the tracking process, a Kalman filter is employed to provide a
rough prediction of the state of the object (KALMAN, 1960), which is further
refined through a local detector incorporating the saliency map and time in-
formation between two consecutive frames. The proposed approach does not
require any manual initialization for tracing, and has achieved expected tra-
cing performance for the sequences of images tested. Although the proposed
tracker is very good at most of the tested image sequences, but it can not
detect partially occluded objects.

It is proposed by (RAJA, 2011) an automated landing system for a UAV
using image reference technique. The images are captured in the landing
phase, where the UAV slides through a specific angle to land. A feedback
control loop using the gyroscope signal response is used. The UAV captures
frames during its flight and compares them with the frames of reference. With
this you can calculate the speed, position and angle of inclination of the lan-
ding location. The results showed that the developed system was effective for
the test cases used.

A low cost, open source system where all image processing is performed
onboard the UAV using Raspberry Pi 2 connected to a camera is described in
the work reported by (CHOI et al., 2016). Raspberry Pi and flight controller
are physically connected via serial and communicate via MAVProxy. A propo-
sed algorithm detects a target. If the target is detected, the position of the
object in the frame is represented in Cartesian coordinates and converted into
estimated GPS coordinates passed to the flight controller. The results show
the accuracy of the algorithm is 99 % to detect objects of interest and the UAV
is able to navigate and make the decisions onboard.

As demonstrated in the related works above, a large number of visual com-
puting applications have been integrated to run omboard in UAVs. These stu-
dies aim to solve problems and enable the use of these vehicles in various
applications and areas of knowledge. However, there is no standardization or
tool that allows the integration of these algorithms, systems and frameworks
proposed in an easy and robust way with the flight controllers.

Therefore, this work solves this problem by proposing and developing a fra-
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mework that can standardize and enable the integration of several computer
vision systems with different kinds and models of flight controllers arranged in
heterogeneous UAVs. The proposed framework abstracts the various actions
performed in flight in commands with simple parameters.

In addition, its architecture enables the development of other commands
needed to meet different applications. The proposed framework architecture
also predicts multiplicity in the system, both in the number of UAVs and in the
number of connected computer vision algorithms.

In the Sections 4.1 and 4.2 are presented the related works to the develo-
ped case study in precision agriculture, where the framework was used as the
basis for the development of the proposed applications.

4.1 NDVI Related Works

A proposal of using UAVs to perform pesticides spraying on crop fields is
presented in (FAIÇAL et al., 2014). The proposed solution is based on a coope-
ration between UAVs and a wireless sensor network deployed on the field to
determine the exact locations where the pesticides should be sprayed, accor-
ding to the readings of the sensor nodes. It is possible to state that the sensor
nodes deployed on the ground drive the UAV to locations where the spraying is
demanded. Besides the same application goal, their approach is very different
to the one here presented once our proposal is entirely contained in the UAV
embedded system, without the need of information provided by an external
entity (in their case, the sensor nodes on the ground).

An algorithm aiming to automatically detect wildlife with UAVs is presen-
ted in (WARD et al., 2016). This algorithm, which is written in Python, uses
a pixel based object detection approach. It makes use of a thermal camera
and OpenCV, an open source computer vision library wrapped for Python. The
results show that the system is capable of autonomously locating animals from
a predetermined height and generates a map showing the location of the ani-
mals. Despite the challenging image processing task reported in this work, its
results are not used to drive actuation decisions as the one presented in this
current paper.

A real-time system capable of classifying plant diseases was proposed in
(AKRAM et al., 2017). The system developed in this work is based on an image
processing algorithm that transforms the image into three color spaces, which
are simultaneously processed. The algorithm constructs a vector of characte-
ristics used to identify diseases. In addition, an On-Chip communication archi-
tecture was proposed that allows efficient interconnection between the three
digital signal processing cores, each processing its own color space, which
provided a better performance to the system. According to the authors, this
work can be considered a basis for the development of an autonomous system
that will not only be able to classify the diseases in the leaves of plants, but
recommend the appropriate pesticide with the least human intervention.

The work reported in (ZHOU et al., 2015) presents an efficient road de-
tection and tracking framework for UAV captured videos. According to the
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authors, the GraphCut segmentation method of (BOYKOV; VEKSLER; ZABIH,
2001) was used to extract initial road areas, and then track the road areas
in the subsequent frames by combining a fast context-aware homography-
alignment road tracker and an online GraphCut approach for road detection.
The results indicate the effectiveness of the proposed framework, with the
precision of 98.4% and processing 34 frames per second for 1046 x 595 vi-
deos in average. The main difference of this solution in relation to the work
here proposed is due to the difference in the target application. While the
road detection can segment the image focusing areas of interest, the preci-
sion agriculture application addressed in this paper must analyze the whole
images.

A new technique for power lines detection from UAV remote sensed images
acquired by a GoPro camera is presented in (KN et al., 2015). The use of the pi-
xel intensity-based clustering method is performed followed by morphological
operations. K-means clustering (MACQUEEN, 1967) is applied for clustering
and the number of clusters is automatically generated using Davies-Bouldin
index (SENTHILNATH et al., 2016). The authors classify the results as good
quality both from a visual perspective and from the performance metrics, achi-
eving an efficiency level of 99%. Again, the difference in relation to the current
work is due to the particularities of the different target applications.

The work presented in (O. DEMERECI M. VARUL; ODABAS, 2015) reports
a remote sensing and image processing method for precision agriculture ap-
plications. This paper aimed to identify the number of plants on the field
based in images taken by UAVs using image processing methods. Performing
pre-processing of the images and using K-Means as clustering method, it was
obtained 86.3% accuracy rates, and using color-based segmentation method
it was obtained 89.2% accuracy rates. The real time requirements affecting
their problem are not as hard as those related to the chemical spraying sce-
nario addressed in this current paper.

Taking part of some of these works as a base, an integrated real-time image
processing system was developed, supported by the NDVI algorithm for use
in UAV-based precision farming applications. In this case study, a low-cost
hardware architecture based on (WARD et al., 2016) was abstracted. The abs-
traction techniques of (ZHOU et al., 2015) and (KN et al., 2015) allow the
mathematical optimization of the proposed NDVI algorithm. Abstracting tech-
niques from (ZHOU et al., 2015) and (KN et al., 2015) allows the mathematical
optimization of the proposed image processing algorithm. Following (WARD
et al., 2016) and (O. DEMERECI M. VARUL; ODABAS, 2015) it was possi-
ble to abstract techniques for the use of infrared camera, and from (O. DE-
MERECI M. VARUL; ODABAS, 2015) e (AKRAM et al., 2017), techniques for
image processing with illumination variations present in images used in pre-
cision agriculture applications. Thus, the proposed solution presented in this
case study advances the state of the art in the area by combining parts of diffe-
rent approaches into a new system proposal incorporated for the autonomous
control of a UAV sprayer actuators.
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4.2 Crop Row Detection Related Works

An efficient method for detection of crop rows that uses a dynamic pro-
gramming technique to combine evidence of image and prior knowledge about
the geometric structure that is searched in the image is proposed in (VIDO-
VIĆ; CUPEC; HOCENSKI, 2016). The method is able to accurately detect both
straight and curved crop lines. The proposed approach is experimentally eva-
luated in a set of 281 real-world camera images of corn, celery, potato, onion,
sunflower and soybean crops. The proposed algorithm achieves satisfactory
accuracy, but its performance on an Intel Core i5 processor desktop reaches
about 1749.1 ms for images at resolution of 320x240 and 4527 ms for resolution
of 640x480. The author proposes as future works the implementation of the
algorithm in GPU and implementation in a real application in an autonomous
machine.

The gradient-based Random Hough Transform (RHT) algorithm is propo-
sed in (JI; QI, 2011) to perform the detection of crop rows. This work proposes
to improve the calculation speed and reduce the computational cost of the
Crop Row Detection method. It was evident from the experiments that the
gradient-based RHT method reduced computation and effectively improved
the calculation speed. The performance of RHT applied to images with a re-
solution of 400 x 300 was 0.802 s while for Hough Transform it was 1, 715 s.
According to the author, RHT can effectively improve detection speed.

An automated specialized system for precise detection of crop rows in corn
fields based on images acquired from a vision system is proposed in (GUER-
RERO et al., 2013). The algorithm was developed based on two modules that
use image processing techniques. The first is the separating the green plants
of the rest of the image. The second is based on the geometry of the system
where the expected crop rows are mapped on the image, and then a correc-
tion is applied through an estimator and a linear regression. The experiments
were carried out using as hardware specific equipment for real-time proces-
sing, which has an Intel Core i7 processor and an FPGA. The total processing
time for images with resolution 1392x1038 was tested for different estimators,
resulting in averaged 9, 568 s for the worst case and 0.476 s in the best case.

A new robust crop row detection algorithm for an agricultural machine
guidance system is proposed in (JIANG; WANG; LIU, 2015). The algorithm
consists of five steps that are the gray level transformation, binarization, can-
didate center point estimation, confirmation of real central points and detec-
tion of crop rows. The algorithm is based on the creation of regions of multi-
ple interest during the procedure of evaluation of candidate points based on
a constraint of geometry that the inter-row space for algorithm optimization.
The tests were performed on an Intel Core 2 Duo computer and the algorithm
took an average of 61 ms to recognize all of the crop rows for images in the
size of 640x480 while the detection rate reaches 93 % of the real crop rows in
the images.

A new method for detecting curved and straight crop rows in images captu-
red in maize fields during the initial growth stages of the plants is proposed in
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(GARCíA-SANTILLáN et al., 2017). The proposed method was designed with
the necessary robustness to deal with adverse situations and consists of three
phases: image segmentation, identification of starting points to determine the
beginning of harvest lines and detection of crop rows. The experiments were
performed on an Intel Core i7 computer and the algorithm ranged from 86.3 %
to 92.8 % in the detection rate, taking about 0.65 s to process each image from
the test databese of the used images.

A method for detecting crop rows based on mathematical morphology is
proposed in (JINLIN; WEIPING, 2010). The crop rows are obtained with the
least squares method, according to the centroids of the individual target cul-
tures and/or the center points of several crop pixel lines with a continuous
region in the image. The results were obtained by running the algorithm on
a PC with AMD Turion 64 X2 TL-50 dual-core processor, showing that the al-
gorithm leads the robot to drive along the line with a high precision 29.5 mm
and with an expected processing speed between 0.7 s and 1.3 s per frame,
which, according to the author, meets the needs of image processing for the
application.

An approach for guiding agricultural robots to perform different types of
operations, such as weed removal, spraying and fertilizing is used in a machine
vision based crop rows detection system is proposed in (JIANG; ZHAO; SI,
2010). The image preprocessing was used to obtain the binarized image, then
the binarized image is divided into several line segments; third, a vertical
projection method was presented to estimate the position of the crop rows for
each frame. The lines were detected by the Hough transform. The algorithm
performs in 70 s to determine all crop rows. The tests were performed with
images at resolution of 400x300 on a PC with a processor of 1.8 GHz.

Comparing the here proposed solution with the related works found in the
literature, it is noticed that the proposed solution presented better perfor-
mance in the identification of the crop rows. Comparing the different metho-
dologies, it can be observed that the implementations that use the Hough
Transform to detect the lines are usually those that have high computational
cost. In this case study, this problem was solved due to the filter pretreatment
of the image and filter of lines applied after the Hough Transform. Once using
them, it is possible to adjust the parameters of the Hough Transform in order
to improve its performance. Another important observation is that this case
study was implemented in a low cost embedded hardware, suitable to small
scale UAVs, and even assuming this condition, it achieved a good performance
even compared to the implementations in which the tests were performed in
desktop PCs. The accuracy of the proposed solution for the test scenarios
used in the validation phase also reached the 100 % rate of the actual crop
rows identified in all test cases. The proposed system was tested in a real
application and obtained the expected (desired) results.
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5 PROPOSED FRAMEWORK DRONE-CONTROL

The proposed framework called "Drone-Control", is a fundamental tool to
provide the integration between computer vision algorithms with the UAVs,
and it can perform the control of mission and guidance of the UAVs by sending
commands to the omboard navigation system. A mission can be characterized
as a set of commands that have to be executed. This chapter describes in
detail the components of the proposed framework, which are the messages,
the commands, the server and the clients.

5.1 Messages

The messages are used to exchange information and parameters between
the architectural components that are linked to the framework. Through them
it is possible to send and receive commands and parameters that allow the
construction of the applications.

The format of these messages follows patterns determined by structures
called JavaScript Object Notation (JSON) (BRAY, 2014). JSON is an indepen-
dent open standard format for parsing data. The exchange of data can occur
between systems developed with the same computational language or with
different languages. In short, a JSON object is a textually presented array.
Fig. 13 demonstrates an example of JSON message that can be sent to the
framework by a computer vision client algorithm.

1 {
2 "command": "setPosition",
3 "args": {
4 "x": 10,
5 "y": 5,
6 "z": 2,
7 }
8 }

Figura 13: Message example.

The framework preset two elements for the array structure that makes up
a message. The elements are "command" (Fig. 13, line 2) and "args" (Fig.
13, line 3). The "command" element is a string that indicates the name of
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the command or function that should receive the parameters of the message.
The "args" element is a sub-array that holds any type of information and input
parameters required for the development of a command. It can be appended
to the element "args" 0 or n parameters.

The process of encoding a message consists of converting an array present
in a program implemented in a given language to the array in textual format.
This textual element is then called message. The decoding process consists of
converting the textual element to an array or code object of a given language.
In the implementation of the proposed framework, the native libraries of lan-
guages were used for the coding and decoding processes of the messages,
except for the C++ language that does not have this library natively.

5.2 Commands and Commands Library

A command library is linked to the framework in a class form. The class
that represents the command library is called DCCommands. An example of
this class of commands can be seen in Fig. 14. The commands in the fra-
mework constitute implementations of methods in the class DCCommands.
The name of the commands is equivalent to the name of the methods imple-
mented in the command library and should be indicated in the "command"
element described in the Section 5.1.

1 #! / user / bin /python
2 class DCCommands:
3 def setPosition ( self , args ) :
4 x = args[ "x" ]
5 y = args[ "y" ]
6 z = args[ "z" ]
7 . . .
8 return None
9 def getPosition ( self , args ) :

10 . . .
11 return """{
12 "x " : """+ pos . x +""" ,
13 "y " : """+ pos . y +""" ,
14 "z " : """+ pos . z +""" ,
15 }"""

Figura 14: Library of commands.

All methods implemented in this class should receive as input parameter
the array of arguments already described in Section 5.1. The access to the
value of the parameters of this array can be done within the methods as shown
in lines 4, 5 and 6 of Fig. 14. There are basically two types of methods, those
that return arguments and those that do not return. Even methods that do not
return arguments should use the return command to return None (Fig. 14,
line 8).

This indicates to the framework that there is no need to return a response
message to the client algorithm that requested execution of the command.
If there is a need to send a response, the return command must receive a
string representing the argument array (Fig. 14, lines 11-15). The response
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parameters do not have to be the same as the input parameters.
Each command is independent and can connect to different types of hard-

ware. There are be commands to attend and execute actions referring to
all hardware instaled in the UAVs, such as a subsystem responsible for the
spraying of agrochemicals. In addition, data and parameters can be shared
between commands using global variables in the command library.

Currently the integration with the flight controllers of the UAVs is imple-
mented in the command base through the use of the Micro Air Vehicle Com-
munication Protocol (MAVLink) protocol (MEIER et al., 2013) running on esta-
blished serial connection. For mission control and autonomous guidance, such
as the implementation of the case study proposed in this project, several com-
mands have been developed. The developed commands serve to control posi-
tioning, take-off, landing, return to home position, camera movement, among
others used for testing.

5.3 Server

The server is the basis for the operation of the framework. The server
is responsible for connecting to the hardware and initializing all processes
for connecting to the client-side computer vision algorithms. Within the fra-
mework there may be one or more instances of the server, each of which must
be responsible for connecting to a specific vehicle. The execution flow of the
server can be seen in Fig. 15.

System starts

Timeout error

Waiting for client
connections

No

Yes

Start

Stop

Can connect 
to the UAV?

Client 
connected?

No

Yes

Framework starts

Open socket
connection to n clients

Add a new client
in clients list

Creates a link between
the client and the

hardware connection

Figura 15: Framework server flow.

From the boot of the operating system on the embedded hardware, the fra-
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mework is automatically initialized. From the command constants described
in Section 5.2, the server verifies that it can connect to the hardware. If this
connection can not be executed, the process is interrupted by indicating the
error.

If the connection is successful, a socket server based on Transmission Con-
trol Protocol (TCP) (FOROUZAN, 2002) is initialized for connection to n dif-
ferent clients. From that moment the server goes into an infinite execution
loop until the vehicle and the embedded hardware are completely off. In this
execution loop, the server is waiting for new clients to connect. If any client
software makes the connection, a link between the client and the hardware
connection in the command base is created. The client is then added to a list
of clients for execution on an asynchronous process to the server, this process
is described in Section 5.4. After the server processes are fully initialized, if
there are clients registered for auto boot, a process on the server automati-
cally initiates these clients.

5.4 Clients

Clients are computer vision algorithms responsible for sending messages
to the mission control and guidance of the UAVs. The basic composition of a
framework client can be seen in Fig. 16.

Software Libraries and Drivers

Proposed Algorithm 1

Generic Client

Connection

Socket Client

Application Algorithms

Json Command
Encoder/Decoder

... Proposed Algorithm n

Proposed Algorithm 2

Figura 16: Generic framework client architecture.

The generic framework client architecture is divided into three main modu-
les. The first module, at the bottom, on the left, is composed by the software of
connection with the proposed framework. This connection software consists
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of a Socket client library along with an encoder and decoder of messages in
the JSON format. From this connection module it is possible to exchange infor-
mation with the proposed framework through lists of data encoded in textual
format.

The second module consists of the software libraries and drivers used in
the application. The last module is composed of one or more algorithms pro-
posed for the development of the proposed client.

Each client connected to the server as described in Section 5.3. The client
has its execution stream independent of the server execution. When a client
connects to the server it creates a new instance of this client on the server
and this instance receives the information for the connection to the hardware,
after which its main execution stream initializes two other asynchronous pro-
cesses that serve to receive commands and execute them, respectively. After
the initialization of the asynchronous processes, the main execution flow of a
client instance on server gets stuck in a connection verification loop. If the
connection is lost or closed the client, all its processes are terminated without
causing problems in the execution of the server. The complete flow of execu-
tion of a client instance on the server can be seen in Fig. 17.

Start receive
messages thread (1)

Yes

No

Start

Stop

Main Execution Flow

Start run commands 
thread (2)

Client 1 Client 2 Client 3 Client 4 Client n...

Connection?

Waiting
for messages

No

Yes

Start

Thread 1

Message 
received?

Get command
from command list

No

Yes

Start

Thread 2

Remove command

Response?No
Yes

Valid 
message?

Message decode 
and store command

on command list

Run command

Send response

Figura 17: Framework client flow on server-side.

Parallel to this above explained execution, the thread responsible for re-
ceiving messages is waiting to receive new messages. When a message is
received, its integrity is checked. If the message is valid, the JSON object is
decoded as shown in Section 5.1. If the message is not valid, the process re-
mains waiting for new commands. The command object is then stored in a list
of commands and then returned to the process of receiving new messages.
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Each client instance on server has its own list of commands. The list of
commands works as a queue, the commands are executed on a first-come-
first-served order, but in an asynchronous process separated from the thread
that received the message. The execution thread gets and removes the first
command from the list. The command is interpreted and the server searches
for the method corresponding to the command in the command base, and
then executes it. If it requires a response, the response is sent to the client.
Otherwise the execution flow passes to the next command in the queue. A
client’s instance total execution flow ends when the connection is closed and
all commands in the list are executed.
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6 CASE STUDY IN PRECISION AGRICULTURE

This chapter describes the methodology used in the case study conducted
in the domain of precision agriculture. The objective is to develop algorithms
responsible for providing autonomy to a UAV used in applications involving
spraying of agrochemicals. These algorithms must meet the temporal require-
ments that involve the proposed application, in order to integrate the mission
control loop and guiding through the connection provided by the proposed
framework. The application scenario presented in Fig. 18 is is described in
detail in the following.
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(b) Moment t = 2.

Figura 18: Detailed specification of the spray scenario using UAVs.

In this scenario, the UAV flies at a height represented by dz meters above
the ground, with the camera focused on an area ahead of the current UAV po-
sition. One of the dimensions of the area covered by the camera’s field of view
is represented by dy. The objective is to perform the image acquisition when
the UAV is located at the point p1 (Fig. 18 a), perform the data processing
and then execute the actuation processes when flying over the area associa-
ted to the previously captured image frame, that is, when its current position
becomes at the point p2 (Fig. 18 b).

For this process, the UAV needs to cover the distance between the two
points represented by dp. The average speed of the UAV is represented by v,
given in meters per second. Considering for example the adjustment of the ca-
mera to a β angle such that the distance dp = 3 meters and the average speed
of the UAV in the proposed applications is v = 3, it is possible to conclude that
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the minimum desired speed (in terms of image acquisition) for each proposed
algorithm is 1 FPS. This minimum processing rate is enough for the operation
of the algorithm, but the higher the FPS rate reached by the proposed algo-
rithms, the greater the gain in response time, which can leave the application
with a flow of execution more fluid and still attending to the temporal requi-
rements more efficiently. Moreover, a higher frame rate per second means a
greater scalability the system can reach.

The first proposed algorithm is presented in Section 6.1 and is used to
provide a method for performing punctual and self-regulated application of
agrochemicals, which is the actuation illustrated in Fig. 18 b. The second
algorithm is presented in Section 6.2 and it is used to perform the autonomous
guidance of UAVs on precision agriculture plantations to follow the rows of
plants, as in the example presented in Fig. 18 in which the UAV flies from
point p1 to point p2 in a straight line. The algorithms must be efficient to meet
the time requirements described above.

6.1 Proposed Embedded NDVI Client

The video captured by the infrared Raspberry Pi NoIR camera is compo-
sed of sequential frames or images which provide the sensation of movement.
Each captured frame is composed of the channels corresponding to the blue
and green visible light spectrum and near-infrared (NIR). The sensor captures
the image obtaining the intensity of light for the respective spectrum chan-
nels in the same time t. The mathematical representation of the captured
frame can be seen in (4).

f =


f0,0 f1,0 · · · fw−1,0

f0,1 f1,1 · · · fw−1,1
...

...
. . .

...
f0,h−1 f1,h−1 · · · fw−1,h−1

 (4)

The captured frame is represented by a matrix from maximum dimension
W to the width and H to the height. Its origin falls in the upper left corner
of the Cartesian plane. f(x, y) is the function that retrieves the pixel in the x
and y coordinate, and f is the amplitude that determines the amount of light
present at that point of the digital image (GONZALEZ; WINTZ, 1977).

The pixel represented by (5), is the minimum entity that composes up an
image. In the case of the infrared Raspberry Pi camera system, a pixel is
represented by a vector R3 where each position corresponds to the value of
light intensity to the NIR channel, green channel and blue channel respecti-
vely. Each channel is represented by 8 bits, where the value ranges from 0 to
the low intensity and 255 for higher light intensity for that point.

f(x, y) =

NIRG
B

 (5)

The NDVI algorithm, described in Section 3.2.1, operates on the image in



65

the spatial domain, and has direct access to f . The Raspberry Pi infrared
camera does not capture the channel of visible red, so, it is not possible to
calculate (1). However, (WANG et al., 2007) demonstrated by the validation
from two different data sets that GNDVI (Green NDVI) is a viable alternative
to calculate the NDVI. The GNDVI is obtained by a mathematic operation of
channels similar to the NDVI, with the difference of using the visible green
channel instead of visible red channel, as shown in (6).

GNDV I =
NIR−G

NIR +G
(6)

By applying (6) in each pixel of the digital image, it is possible to obtain
the GNDVI value for each pixel. The average GNDVI for each processed frame
can be obtained by (7).

GNDV Iavg =

∑W
x=0

∑H
y=0GNDV I(x, y)

W ·H
(7)

From the average GNDVI in (7) it is possible to estimate the application of
pesticides and fertilizers. Although this calculation seems simple, the mathe-
matical operations and algorithms need to be well organized and simplified to
meet the time requirement that is the relationship between FPS rate and the
speed of the UAV movement.

6.2 Proposed Crop Row Detection Client

This section describes the steps and operation of the proposed crop row
detection algorithm. The steps that constitute the algorithm are: image ac-
quisition; pretreatment; line detection; filtering the lines and line follower
algorithm.

6.2.1 Image Acquisition

The video captured by the Raspberry Pi camera is composed of sequential
frames or images which provide the sensation of movement. Each captured
frame is composed of the channels corresponding to the red, green and blue
visible light spectrum. The sensor captures the image obtaining the intensity
of the light for the respective spectrum channels in the same time t. The
mathematical representation of the captured frame can be seen in (8).

f =


f0,0 f1,0 · · · fw−1,0

f0,1 f1,1 · · · fw−1,1
...

...
. . .

...
f0,h−1 f1,h−1 · · · fw−1,h−1

 (8)

The captured frame is represented by a matrix from maximum dimension
w to the width and h to the height. Its origin falls in the upper left corner of
the Cartesian plane. f(x, y) is the function that retrieves the pixel in the (x, y)

coordinate, and f is the amplitude that determines the amount of light present
at that point of the digital image (GONZALEZ; WINTZ, 1977).



66

The pixel represented by (9), is the minimum entity that composes up an
image. In the case of the system of multispectral image, a pixel is represented
by a vector R3 where each position corresponds to the value of light intensity
to the red, green and blue channels respectively. Each channel is represented
by 8 bits, where the value ranges from 0, for the lowest intensity, and 255, for
highest light intensity for that point.

f(x, y) =

RG
B

 (9)

The proposed algorithm operates on the image in the spatial domain and
has direct access to f . Fig. 19 represents a frame acquired by the Raspberry
Pi Camera which will be used as an example to describe all the steps of the
proposed algorithm.

Figura 19: Frame acquired by the Raspberry Pi Camera.

6.2.2 Pretreatment of the Image

The pretreatment performed by the proposed algorithm consists of four
steps necessary to remove the noise and prepare the image for the step of
identifying the lines. First, the color image represented by Fig. 19 is transfor-
med to gray scale, using the 2G−R−B transform described in Section 3.2.2.
The Fig. 20 shows result image obtained with the application of (2) on Fig.
19.
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Figura 20: Gray scale image.

However, the result is unsatisfactory because much of the noise still re-
mains in the image. Then, to solve this problem applies the second stage of
the pretreatment. This step consists in the application of a threshold filter
represented by (10).

f(x, y) =

{
255 if Tmin ≤ G(x, y) ≤ Tmax

0 if Others
(10)

In this step, the image is binarized respecting the following rule: when
the gray value is between the range defined for Tmin = 60 and Tmax = 255 th-
resholds the pixel receives the value 255 and when it is out of the thresholds it
receives 0. The threshold levels should be calibrated according to the cultures
and settings of the camera used. The binarized image is demonstrated by Fig.
21.

Figura 21: The binarized image.
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As the binarized image has a lot of information irrelevant to the processing
step, a good practice would be to apply a edge detection filter, as for example
Sobel (SOBEL; FELDMAN, 1968). The big problem is that in these types of
filters there may be loss of information because sometimes the edges are not
preserved or even edges are represented by more than one pixel in thickness
and can cause problems in the stage of the lines detection.

The Fig. 22 demonstrates the proposed horizontal filter. This filter has the
purpose of traversing the image horizontally highlighting only vertical lines.
The first step of the filter is to traverse the binarized image horizontally by
identifying and marking the edge transitions of the objects that can be obser-
ved in Fig. 22a. Each object is composed of a cluster of pixels connected to its
horizontal neighbors.

Figura 22: Proposed filter for edge detection. a) A cluster of pixels represen-
ting an object; b) Identification of edge transitions; c) Average between the
right and left edges of each object.

For the identification of the objects in the step of Fig. 22b, the algorithm
cross the image represented by Fig. 22, line by line, from left to right. When
a transition point between 0 to 255 is identified the x1 position is stored to that
point. When the 255 to 0 transition occurs, the object is terminated, and the
x2 position is stored for that point. This process is repeated for all y. The
positions x1 and x2 represent the edges of an object. The result of this step
can be seen in Fig. 23.
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Figura 23: Result of application of the proposed edge detection filter on Fig.
21.

In this image all the transition pixels are represented by 255 and those that
are not part of the transition are represented by 0. This step is efficient for
the extraction of the edges of the objects of the image, because it ensures
that the edges are represented exactly by one pixel of thickness and avoid the
occurrence of loss of information relevant to the processing step.

The last step that composes the pretreatment of the image is represented
in Fig. 22c. In this step xc is calculated for all edges identified in the previous
step using (11).

xc =
x1 + x2

2
(11)

For all pixels placed in the new calculated coordinates f(xc, y) is assigned
the value 255. These pixels represent the centroids of each object, which in
turn composes the crop lines. Fig. 24 represents the final result of the appli-
cation of the proposed filter.
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Figura 24: The result of pretreatment process.

As can be seen in Fig. 24 only relevant information for the crop row de-
tection is present in the image to be processed. The next step consists of the
processing step and consequently identification of the crop rows.

6.2.3 Line Detection

The identification of crop rows is done using the Hough Transform descri-
bed in the Section 3.2.3. The generalized Hough transform is currently used
as the main alternative for the crop row detection algorithms (JI; QI, 2011;
JIANG; ZHAO; SI, 2010). Applying the it transform in Fig. 24 resulting from
the pretreatment process, the identified planting lines are obtained. Fig. 25
represents the identified lines plotted in the original image (Fig. 19) for com-
parative purposes.

Figura 25: Result of Hough Transform.

In this step of the algorithm, it is observed that the number of lines identi-
fied by the transform is relatively large, presenting a number of false positives.
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To filter these results, analytic geometry techniques described in the Section
6.2.4 are used.

6.2.4 Filtering the Lines

The Hough Transform returns several false positive lines that make it dif-
ficult to identify the actual lines corresponding to the crop rows. Thus, it be-
comes necessary a process of filtering and selection of results for extraction
of relevant data. The first problem to be solved is that the Hough Transform
returns points in the spatial domain that are allocated in coordinates outside
the plane of the image. To solve this problem an array of generic straight-
line points represented by (12) is defined. In this array, the points (x1, y1) and
(x2, y2) are any two points of the line, points returned by the transform. The
coordinates (xq, yq) represent a general point of the line to be discovered.

A =

xq yq 1

x1 y1 1

x2 y2 1

 (12)

Calculating det(A) = 0 and isolating xq gives the generic equation (13)
which can be used to calculate points belonging to a line.

xq =
x2yq + x1y2 − x2y1 − x1yq

y2 − y1
(13)

Applying (13) to the coordinates yq = 1 and yq = h−1 it is possible to obtain
the new straight points composed of the coordinates (xq, yq), points that are
allocated within the image plane.

Observing Fig. 25, it is possible to see that the identified lines are arranged
in the image to form an angle of 35◦ to 65◦ with the left and right sides of the
image. In order to separate and filter these lines of the identified ones, the
average of all the groups of lines that intersect within the plane of the image
is calculated. For this operation, the equation of the generic line defined in
(14) is used.

ax+ by + c = 0 (14)

Then, for each identified line, the coefficients a, b and c are calculated using
(15) and the points composed of the coordinates (x1, y1) and (x2, y2), obtaining
the generic equation of each line.

a = y1 − y2

b = x2 − x1

c = x1y2 − x2y1

(15)

The next step is to equalize all equations for all possible line combinations.
Solving the system in (16) it is possible to find the coordinates of the point of
intersection p.
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p =

{
a1x+ b1y + c1 = 0

a2x+ b2y + c2 = 0
(16)

When p(x, y) belongs to the plane of the image, the average of the two
straight lines is discarded, saving the new coordinates calculated for the new
line. The new calculated lines are compared again until there is no p allocated
within f .

This process ensures the identification of the lines that constitute the crop
rows. However, in some cases it may occur that one crop line is represented by
two parallel lines. This problem is solved by calculating the angular coefficient
for each line, following (17).

m =
y2 − y1
x2 − x1

(17)

Then dmax is defined as the smallest distance between parallel lines. In
the case of this work it used dmax = 20px. The r1 and r2 are parallel lines, r1
is represented by the points (x1, y1) and (x2, y2), and r2 is represented by the
points (x3, y3) and (x4, y4) and their distance is calculated by (18).

d =

{
x3 − x1 se x1 < x3

x1 − x3 se x1 >= x3
(18)

Then, m for all combinations of possible straight lines are compared, as
well as the average of all straight lines having the same m and having d less
or equal than dmax. The final result of this step of the lines identification be
seen in Fig. 26.

Figura 26: Final step of identifying crop lines.

6.2.5 Line Follower Algorithm

The line follower algorithm selects one of the lines identified by the detec-
tion algorithm to conduct the UAV. The operation of the algorithm consists of
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calculating the pixel distance from the base line to the nearest identified line
and then performing the conversion to the distance in meters that must be
compensated at the UAV position during the flight, in order to keep it in its
trajectory. The base line to be used in this work is represented by the line R
in Fig. 27 composed of the points A(w

2
, 0) and B(w

2
, h− 1) which represents the

horizontal center of the image.

RR

AA

BB

TTd y

d
x

CC

DD

Figura 27: Lines of reference on the image.

The first step in the execution of the algorithm is the selection of one of
the lines identified to be used as reference in conducting the UAV. The lowest
distance in pixels in relation to the base line R was assumed as the criterion
for the selection of the reference line T (Fig. 27). Where T is composed of the
points C and D. This criterion is applied for the initialization of the algorithm
and also for when R does not belong to the focal plane of the camera. The
next step of the algorithm is to determine the distances dx and dy on a metric
scale, corresponding to the measures w and h which represent the vertical
and horizontal axis of the image respectively in pixels. Fig. 28 demonstra-
tes the disposition of the distances dx and dy in the three-dimensional space,
through the representation of the execution scenario of the algorithm at the
exact moment of the image is captured by the camera.
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Figura 28: Camera focal plane.

The field of view of the camera in relation to the ground consists of a tri-
angle with an obtuse angle allocated in the range of 90◦ to 180◦, which can
be seen in Fig. 29. In this generalizable scenario, it has as parameters the
focal aperture angle of the camera, represented by α, the angle of inclination
of the camera in relation to the ground, represented by β, and the altitude of
the UAV in relation to the ground, represented by dz. These parameters are
configured beforehand or detected during the execution time of the algorithm.
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Figura 29: Side view of the focal plane of camera.



75

To calculate the value of dy which is the opposite side the camera aperture
angle, first the dt is calculated, using (19), which is represented in Fig. 29, i.e.
the total distance from the corresponding point on the ground to the location
of the UAV and the end point where the line corresponding to the camera’s
viewing angle intersects the ground.

dt = tan(β +
α

2
) · dz (19)

With the total distance calculated, da is calculated using (20), which re-
presents the distance between the corresponding point on the ground to the
location of the UAV and the starting point, corresponding to the point of the
image captured closer to the UAV.

da = tan(β − α

2
) · dz (20)

Then, knowing the measures of the two adjacent sides to the right angle
formed by the axis that defines the position of the UAV relative to the ground,
(21) is used to calculate the value of dy in meters.

dy = dt − da (21)

Knowing the measure dy, (22) is used to calculate px which quantitatively
represents in meters the equivalence of one pixel in the captured image.

px =
dy
h

(22)

The next step is to calculate dx that corresponds in meters the distance to
the horizontal axis of the image using (23).

dx = px · w (23)

With the distances proportional to the area of the image calculated in me-
ters, the gain vector G3 is calculated using (24).

G =

(Ax+Bx

2
− Cx+Dx

2
) · px

dy
2

dz

 (24)

Where G is the final result of the algorithm, consisting of the gains to be
added to the three-dimensional position in which the UAV is in the previous
instant, adjusting the position of the UAV over the T line. The angular coeffi-
cient of the line T can be used to control the rotation of the UAV around the
z axis of the three-dimensional coordinate system, but this step is performed
automatically by the flight controller used in this work.
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7 IMPLEMENTATION DETAILS

7.1 Hardware Architecture

The hardware architecture is comprised of an embedded hardware integra-
ted to the UAV. The UAV used in this project is a 3DR Iris+ quadrotor (CANO
et al., 2017). For the protection of embedded hardware during the experi-
ments flights, a protective enclosure was built. Fig. 30 shows a picture of the
hardware mounted on the 3DR Iris+ quadrotor.

11

33
22

1- Raspberry Pi Camera

2- Camera cable

3- Gimbal

4- Embedded hardware protection enclosure

44

Figura 30: Final assembled hardware.

In this project two different hardwares were used to acquire images. In
the case study presented in Section 6.1 which proposes the punctual and self-
regulated application of agrochemicals, the Raspberry Pi NOIR V1 Rev 1.3 ca-
mera (Fig. 31) was used, that has the same features of a common RGB camera,
but does not have the infrared filter that allows capturing this light spectrum
channel. For correct acquisition of the infrared images using the Raspberry
Pi NoIR camera, the blue gel filter (UPTON, 2013) (which official name is Ros-
colux #2007 Storaro Blue) was fixed in front of the infrared camera (Fig. 31).
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The blue gel filter in conjunction with Pi Noir allows monitoring the health of
green plants (UPTON, 2013), using indexes such as NDVI, which is used in
this work. The case study presented in Section 6.2 where it is proposed to
autonomously guidance the UAV on the plantation use the Raspberry Pi V1
Rev 1.3 RGB camera (Fig. 31) for the video acquisition. To control the camera
position, it was attached to the gimbal Tarot T-2D V2. The camera cable was
replaced with a long cable that allows the correct operation of the system with
the gimbal (Fig. 31).

Raspberry Pi RGB Camera V1 Rev 1.3

Roscolux #2007 Storaro Blue GelRaspberry Pi Camera Cable 30 cm

Raspberry Pi NoIR Camera V1 Rev 1.3

Figura 31: Camera hardware components.

The Raspberry Pi 3 model B was used as embedded computer, that has a
1.2GHz 64-bit quad-core ARMv8 processor, 1GB of RAM and GPU VideoCore
IV 3D graphics core (RICHARDSON; WALLACE, 2012). A SD card class 10
with 32GB is used to store the operating system and the software that im-
plements the developed algorithms. For the integration of all hardware and
energy source to the gimbal and the Raspberry Pi, a DC-DC converter circuit
was used (MHATRE et al., 2015). A real-time clock (RTC clock) module was
coupled to Raspberry Pi to prevent overwriting of recorded log files. The Fig.
32 presents the embedded hardware connections.



79

5- USB/Serial connection with Pixhawk

6- Raspberry Pi 3

7- DC-DC converter

8- Battery cable

9- RTC Clock 
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Pixhawk Flight Controller  

55

USB Cable

Figura 32: Embedded hardware connections.

The flight controller hardware is responsible for receiving the commands
from the proposed framework and then trying to execute them. In this work
the flight controller used was the Pixhawk Autopilot (MEIER, 2011). A serial
connection with the Pixhawk was configured using the USB cable installed to
the Raspberry Pi. The integrated hardware has been tested and configured
prior to software installation and testing.

7.2 Software Architecture

The proposed software architecture is divided into four layers, as shown in
Fig. 33. The first module, at the bottom of the figure, is the operating system,
Raspbian Stretch with GUI interface disabled for better performance. This
operating system has been chosen due to the compatibility with the software
libraries required for the developed system.

The second layer of software architecture is comprised of software libra-
ries and drivers. The main software libraries used are: the library Socket,
used for the connection between the framework and the clients of computer
vision; the pySerial library used to perform the serial connection to the vehicle
hardware; and the MAVLink, which allows the exchange of messages to the
flight controller of the UAVs over an established serial connection.
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Figura 33: General Software Architecture.

The third layer of software is composed of the proposed Framework, whose
structure and functioning are described in Chapter 5. In short, the framework
is composed of a server connected to the hardware of a UAV and a library of
commands, which the hardware can execute, these commands are previously
implemented. The framework is configured for startup along with the startup
of the operating system, which in turn is initialized at the time the vehicle is
powered on.

Finally, in the last layer are computer vision algorithms, these are called
clients and can connect and exchange messages with the hardware through
a connection with the framework. These algorithms may be located on the
same embedded hardware that the framework is installed, or on a different
hardware. The framework has a feature to auto boot these algorithms, if they
are installed in the same hardware of the framework. The architecture of the
client algorithms developed in the proposed case studies can be observed in
the Sections 7.2.1 and 7.2.2.

7.2.1 NDVI Client

The NDVI client software architecture is divided into three main modules
as shown in Fig. 34. The first module, at the bottom, on the left, is composed
by the software of connection with the proposed framework. This connection
software consists of a Socket client library along with an encoder and decoder
of messages in the JSON format. From this connection module it is possible
to exchange information with the proposed framework through lists of data
encoded in textual format.

The second module consists of the software libraries and drivers used in
the application. The first library is the Raspicam, which allows the interface
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between the camera hardware and the developed algorithms. The second
library is the Open Source Computer Vision Library (OpenCV) (KAEHLER;
BRADSKI, 2016), used in the manipulation of images. The last module is com-
posed of the proposed NDVI algorithm.

OpenCV

NDVI

Raspicam

NDVI Client

Software Libraries and DriversConnection

Socket Client

Application Algorithms

Json Command
Encoder/Decoder

Figura 34: Proposed NDVI software architecture.

For obtaining an algorithm with efficient performance, two different im-
plementations were developed to test the proposed algorithm efficiency in
two different programming languages. The first implementation was done in
Python and the second implementation was developed in C++ language. To
carry out the implementation in both languages it was considered good coding
practices for the performances purposes, avoiding "for"structures and avoi-
ding excessive parameters’ passing. The use of OpenCV library functions for
mathematical operations on matrices was chosen to avoid the "for"structures.
Also, OpenCV library was configured to use the GPU hardware via components
of Open Computing Language (OpenCL) (MUNSHI, 2009).

The activity flow executed by the algorithm implemented in both languages
is shown in Fig. 35. The execution of the algorithm is automatically initialized
by the proposed framework, when it is initialized.
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Figura 35: Proposed NDVI Algorithm flow.

Once initialized, the algorithm defines the appropriate settings in the Rasp-
berry hardware and checks if it is functional, otherwise the algorithm termina-
tes, indicating an error. If everything is functional, the video frames begin to
be captured following the predefined parameters. NDVI is calculated for each
frame using (7). Then the results are sent to the framework where a command
receives the data and writes it to a log file for further analysis of the results.
After this procedure, the algorithm verifies if the stop command was sent by
the framework, otherwise, it stay in the execution loop. If the stop command is
received, the algorithm terminates. The stop command is sent at the moment
the UAV back to land.

7.2.2 Crop Row Detection Client

The crop row detection software client architecture is divided into three
main modules as shown in Fig. 36. The first module, at the bottom, on the left,
is composed by the software of connection with the proposed framework. This
connection software consists of a Socket client library along with an encoder
and decoder of messages in the JSON format. From this connection module
it is possible to exchange information with the proposed framework through
lists of data encoded in textual format.

The second module consists of the software libraries and drivers used in
the application. The first library is the Raspicam, which allows the interface
between the camera hardware and the developed algorithms. The second
library is OpenCV, that proves the necessary functions for the implementation
of the algorithms. The third and last module is composed by the proposed
algorithms, implemented in C++ language for better performance.
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Figura 36: Proposed crop row detection software architecture.

The flow of activities performed by the implemented system is shown acti-
vity diagram depicted in Fig. 37. The execution of the algorithm is automati-
cally initialized by the proposed framework, when it is initialized.
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Figura 37: Proposed Crop Row Detection operation flow.

After starting, the software sets the appropriate settings on the Raspberry
Pi camera hardware and it verifies that the camera is functional, otherwise
the software terminates, indicating an error. If the hardware is properly con-
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figured, commands are sent to the framework for the takeoff of the UAV. After
taking off the vehicle, its height is adjusted to 2 m from the ground. The Crop
Row Detection Algorithm is then initialized by following all the steps descri-
bed in Section 6.2. The UAV mission path is shown in the Fig. 38. If the lines
are not detected, the system starts to send position messages to framework,
to moving the UAV forward until the first lines are detected (Fig. 38 dashed
line f). When lines have been detected for the first time, this information is
passed to the line follower algorithm described in Section 6.2.5 which will in
its turn determine the parameters for driving the UAV on the identified lines
(Fig. 38 lines indicated by L).

Home Location

End Point

RTL

c c

cc

c

L L LLL

f

Figura 38: Mission path covered in the execution of the Crop Row Detection
algorithm.

When the UAV reaches the end of a planting line, no lines will be detected,
this will indicate that the UAV should return to the plantation area in the sub-
sequent lines. To perform this operation, it moves along the path indicated by
line c in Fig. 38 and turning its heading to the plantation area. After retur-
ning to the plantation area, the UAV will identify the next line and repeat the
process until the end of the extension of the plantation area. Whenever the
motion indicated by the line c in Fig. 38 is executed, a counter is incremen-
ted and if new lines are identified, this counter is decremented. If new lines
are not identified this movement is repeated and the counter is incremented
again. If the counter value is greater than 1 this will indicate the end of the
plantation area, in this case a message indicating to the UAV to go back to
the starting point is sent. The return of the UAV to the starting point is de-
monstrated in line RTL on Fig. 38. The entire process of conducting the UAV
is done by proposed framework, that sent the mission control parameters to
the UAV’s control flight unit. The proposed crop row detection software is
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responsible for generating the flight runtime orientation parameters that are
sent via framework. This mission setup illustrated in 38 was used to perform
the tests with the algorithms that are described in Section 8.2.
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8 EXPERIMENTS AND RESULTS

The experiments performed with the proposed framework occurred in two
different stages. In the first stage, the laboratory tests were performed in
order to verify and prove the feasibility of using the framework in the au-
tonomous applications proposed in the case studies. For this, a test client
was developed that connects to the framework and sends a series of random
commands that compose a test mission. The entire test client simulates the
execution of multiple clients through the use of multiple threads. The number
of messages generated by each test client of the framework was fixed in 33
messages. All threads were simultaneously created and initialized in order to
simulate the execution of the system in an actual application. The number of
threads was specified in a range of 1 to 12, each thread being the representa-
tion of a client connected directly to the framework.

In each simulated client, before sending the command to the framework,
the current time with high precision was recorded inside the message and
then it was encoded and sent to the framework. Upon receiving the message
the framework interpreted the message generating a command, which when
executed, retrieved the time recorded in the message and collected the time
interval again. Both temporal measures such as other message identification
data were recorded in logs as test results. A total of 12 sets of tests were
performed.

The results with the log data obtained in the tests is shown in Fig. 39. In
the performed tests, the average time for executing a command is 237.82 ms.
This measure comprises from the time the message is prepared for sending on
the client side until the time it is decoded and executed in command format
by the framework side. Analyzing the results, it can be considered that the
framework achieved the desired performance to manage the application com-
mands, this is justified by the fact that the processes executed in its internal
flow synchronously but simultaneously, that is, at the same time that a com-
mand is being decoded, commands are being received and executed all at the
same time.

Another important point to be analyzed is that the average time for pro-
cessing and executing a command by the proposed framework varies for each
mission configuration and number of client algorithms required to execute it.
This also depends on how the processes are allocated to run on embedded
hardware, having direct connection to the behavior of the process scheduler
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Figura 39: Average time spent executing a command with different numbers
of competing clients in the framework.

of the operating system used. During the tests it was possible to verify that
in an application running with eight clients the performance is superior to
applications running with fewer connected clients.

With the performance of the framework proven on embedded hardware,
tests were performed to ascertain the behavior of the framework by treating
possible errors that may occur in the execution process. For this, a notebook
and software simulator called Dronekit Sitl were used (3DROBOTICS, 2015).
The software used is provided by the manufacturer of the flight controller
and simulates a vehicle by running the same firmware on the flight controller
hardware. In addition to the simulator, the software QGroundControl (MEIER
et al., 2010) was used to visualize and monitor the movement of the simula-
ted vehicle. QGroundControl is a flight controller software to be used in base
control stations. Fig. 40 demonstrates the log execution of a mission in which
the purpose was to perform a flight in circular format. In all simulated tests
performed the vehicle behaved in an expected manner by responding to the
commands sent and completing the missions successfully. In Fig. 40a the pro-
posed framework log, the simulator log, and the test mission client execution
terminal are demonstrated. In the screen represented by Fig. 40b the path of
the test mission performed is demonstrated.

In this step, it was also evaluated the operation of the handling of excep-
tions to the possible problems that can cause in the stop of operation of the
proposed framework. Among these problems were tests such as loss of con-
nection of clients, messages with corrupted content, missing commands and
loss of connection with the vehicle. In none of the tests performed, the fra-
mework had its flow of execution interrupted, dealing with errors efficiently.
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(a) On the left, the framework log. On the right at the top, the log presented
by the simulator. On the right at the bottom, it is the command used to
initialize the client responsible for generating the mission commands.

(b) QGroundControl mission log.

Figura 40: Framework experimental tests on simulator.
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The second set of tests with the framework was performed in the field and
served as a test base for the clients of the proposed framework for the im-
plementation of the case study in precision agriculture. In these experiments
the client algorithms were run on embedded hardware and its activities were
supported by the integration with the proposed framework. During the case
study presented in Section 8.1 on self-regulated application of agrochemicals
the client NDVI performed the acquisition of the indexes that were stored in
a log by decoding the messages sent to the framework. Already in the case
study experiments presented in Section 8.2, the proposed algorithms genera-
ted the matrices of gains responsible for adjusting the position of the UAV on
the plantation lines. In this case, the framework received these parameters
in the form of messages and decoded them by sending commands directly to
the flight controller, thus doing the autonomous guidance of the UAV on the
plantation.

8.1 NDVI Part of the Case Study

Two types of experiments were carried out in this part of the case study.
First, the performance of the developed algorithm was evaluated in the labo-
ratory with the hardware up and running. Similar tests were conducted for
both implementations in Python and C++. The tests were conducted for nine
different resolutions of images acquired in real time by the Raspberry Pi NoIR
camera. The highest resolution was 1920 pixels width by 1080 pixels height,
and the lowest resolution was 133 pixels width by 100 height. The measured
variables for the performance tests were: time to process a frame (TPF), in
seconds; FPS; percentage of CPU utilization; RAM memory usage, in MB; and
virtual memory usage (SWAP).

The second stage of tests carried out on the project took place at the expe-
rimental agronomic farm belonging to UFRGS, in the city of Eldorado do Sul,
state of Rio Grande do Sul, Brazil. As an example of the collected images, Fig.
41 shows an infrared image captured by the Raspberry Pi NoIR camera during
the UAV flight over the crops, following the scenario specifications contained
in the Chapter 6.

There, test flights were carried out in an experimental corn field, with the
algorithms running and their results are sending to the developed framework
which generated the results logs. In this part of the experiment the NDVI
levels were obtained for each image resolution at one point of the field, fol-
lowing the same procedures for both implementations of the algorithm. At the
same moment of obtaining the results of the NDVI algorithm, readings were
performed using the Trimble GreenSeeker handheld crop sensor (GOVAERTS;
VERHULST, 2010), a widely used equipment in precision agriculture for ac-
quiring NDVI readings.

To facilitate understanding, the obtained results in both experiments were
separated by implementation. The results of the implementation in Python can
be seen in Table 1, while the results for implementation in C++ can be seen
in Table 2.
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Figura 41: Infrared image captured by Raspberry Pi NoIR camera in the test
scenario.

Tabela 1: Python results
Resolution TPF (s) FPS CPU (%) RAM (MB) SWAP (MB) NDVIavg
1920 x 1080 0.6 1.64 20 122 240.5 0.59

1336 x 768 0.29 3.4 18 65.7 179.5 0.61
1280 x 720 0.25 3.91 16 55.5 173.6 0.6
1024 x 768 0.24 4.1 15 49.5 127.8 0.59

800 x 600 0.16 5.99 12 46.9 168.1 0.57
640 x 480 0.12 7.82 11 41.9 164.8 0.56
320 x 240 0.083 12.03 7 39.1 160.1 0.55
160 x 120 0.075 13.29 5 37.1 159.6 0.54
133 x 100 0.021 45.98 4 36.8 159.4 0.59

Analyzing the performance of both implementations of the proposed algo-
rithm, it was assessed that both presented low CPU utilization, around 20 %
for image resolutions in high definition (HD) and low memory consumption, in
average 70 MB. It is also possible to observe that the performance achieved
with the implementation in C++ is significantly higher than the one in Python,
up to 100 % more efficient.

Considering the relationship between the speed of UAV movement and FPS
detailed in Chapter 2, it is possible to state that both implementations met the
real time requirements of the project, and leaving available resources for the
execution of the other algorithms of image processing that may be deployed
in the system.

Another important observation is that the resolution of the processed image
does not interfere in the average level of NDVI for the same region of the
plantation field. The small variation of NDVI in the different tested resoluti-
ons contained in the results refers to luminance variation in the image of the
scene during the period of testing. The main luminance the scene was pro-
vided by the sun light. From this experiment it was shown that it is possible
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Tabela 2: C++ results
Resolution TPF (s) FPS CPU (%) RAM (MB) SWAP (MB) NDVIavg
1920 x 1080 0.3 3.28 23 65.7 132.3 0.61

1336 x 768 0.15 6.59 22 39.6 111.3 0.6
1280 x 720 0.14 6.8 20 30.3 101.2 0.58
1024 x 768 0.12 8.29 21 30.5 99.7 0.578

800 x 600 0.083 12.021 17 28.7 97.6 0.58
640 x 480 0.059 16.92 17 24.6 94.5 0.58
320 x 240 0.024 41.51 9 21.7 91.5 0.59
160 x 120 0.023 43.028 5 20.2 90.9 0.6
133 x 100 0.022 44.21 4 20.3 91.1 0.59

to use lower resolution to capture the average NDVI, increasing the perfor-
mance and consequently the availability of resources for the implementation
of other algorithms to make the system more "intelligent"or being able to per-
form other applications concurrently.

To validate the developed algorithm, the NDVI levels readings acquired
with its usage were compared to the NDVI levels acquired by the GreenSee-
ker. The readings were taken at the same time and location; otherwise, pos-
sible luminance differences could result in great variations. A set of 120 of
samples were measured for the same points to perform this comparison, and
the obtained results can be observed in the chart presented in Fig. 42.
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Figura 42: Comparison between NDVI acquired by the proposed embedded
GNDVI algorithm and the COTS GreenSeeker device.

Whereas the GreenSeeker uses the red visible channel to calculate the
NDVI, as shown in (1), the developed algorithm uses the visible green chan-
nel as shown in (6), due to the unavailability of the hardware resource of the
Raspberry Pi NoIR camera. In this context, a small variation may occur in
achieved steady levels regarding the diversity of the used bands, which was
noticed in the performed tests and shown in the Fig. 42. However, this fact
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does not present any problem in using the indexes to estimate the health of the
crop (WANG et al., 2007). What is important to remark is that the difference
between the GreenSeeker and the GNDVI results are very small, as can be
observed in Fig. 42, as the two graphs almost overlap each other. For the set
of 120 samples collected during the performed experiment, the average diffe-
rent between the GNDVI and GreenSeeker was 0, 0055416667 with an standard
deviation of ±0, 0033378296.

8.2 Crop Row Detection Part of the Case Study

In this part of the case study, two types of experiments were performed in
order to prove the feasibility and correct operation of the proposed system.
The first type of experiment was carried out in the laboratory and consists of
analyzing the performance and functioning of the developed software through
different input parameters. It is considered as input parameters different spa-
tial resolutions of the image captured by the camera, being 160x120 the lowest
resolution and 1920x1080 the highest resolution used in the tests. The inter-
nal parameters of the algorithm such as thresholds have been adjusted once
since the general proposal of the system is to work for different resolutions of
images and variations of luminance and noise in the background of the images
without the need to change them.

A scenario of test was set up to simulate the flight in the plantation and to
perform the results acquisition in the laboratory. The first step is pre-loading
the test images acquired with the proposed hardware in the flight conditi-
ons for spraying. Test images were available in all spatial resolutions used
in laboratory tests. After the Raspberry Pi camera image acquisition step,
the previously loaded test images are used in the pretreatment step then the
frame captured by the Raspberry Pi camera is discarded. Only this alteration
in the algorithm was necessary for the achievement of the laboratory experi-
ments. The benchmarks were made using the chrono library available in C++
(VAN WEERT; GREGOIRE, 2016). The start and end times of the execution
of each step of the developed algorithms were stored in CSV files for later
analysis.

In this experiment, 1000 tests were performed in the laboratory using some
test videos, for each of the eight spatial resolutions evaluated. The average
time for the algorithm to perform all proposed steps on an image captured
by the camera and generate the gain matrix (24) can be seen in Fig. 43.
The algorithm averaged processing time was of 15.13 ms for the lowest image
resolution and 620.09 ms for the highest resolution images. As expected, the
processing time increases considerably when the spatial resolution increases
and consequently it increases the amount of pixels to be processed.

The FPS rate obtained in the experiments can be seen in Fig. 44. Reaching
93.62 FPS for the lowest resolution and 1.63 FPS for the highest resolution and
considering the use of embedded commercial hardware of low performance
it is considered that the algorithm presented sufficient performance to con-
duct the UAV respecting its relation between speed and detachment on the
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Figura 43: Average time spent to processing a frame at different resolutions.

identified lines on the spraying scenario.
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Figura 44: Average FPS at different resolutions.

In addition, the average time spent by each step of the algorithm is obser-
ved in Fig. 45. Considering that the image acquisition stage is responsible



95

for about 21.25% of the time spent in processing a frame, it is concluded that
making the change of the image acquisition hardware would improve the per-
formance. The performance of the algorithm is limited by the acquisition rate
of the used camera. The high cost of the pre-treatment and filtering stages
of the lines were expected and compensated by the optimization of the time
consumed by the Hough Transform, which in turn has high processing time
exponentially increasing with the increase of noise in the image input.
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Figura 45: Distribuiton of time to processing of each of the modules of propo-
sed system.

However, in addition to evaluating performance, it is necessary to evaluate
the precision of the algorithm in detecting all crop rows. For this, the average
number of lines detected for each resolution used in the experiments can be
seen in Fig. 46. These results show only the detection step not covering the
filtering lines step. The images used in these tests had between eight and
twelve lines to be identified.

It is possible to notice that for the resolution 160x120 the loss of informa-
tion was considerably large making the algorithm incapable of performing the
detection of all crop rows. This can be observed since the input images had
on average 8 detectable lines. Already for resolutions above 320x240 all lines
were detected. Analyzing these results it is also noticed that for resolutions
above 320x240 the level of detail of the images increased and consequently the
background noise level that went through the pretreatment was greater, thus
causing the identification of false positives.
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In almost 100% of the cases, the false positives were caused by weeds pre-
sent between the crop rows. The presence of these false positives did not
influence the result of the calculation of the gain matrix in any of the perfor-
med tests, because the line filter algorithm was also efficient in eliminating
these false positives. However, for the resolution 160x120 that presented a
loss of information, then this resolution should not be used.
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Figura 46: Accuracy of the algorithm in detecting lines at different resolutions.

Analyzing all the conclusions obtained in the laboratory experiments, the
best image acquisition resolution to be used in the proposed system is 320x240.
This resolution got the best performance and precision in detection of all lines.
In addition, this resolution was the one that presented less noise caused by
the level of detail of the images. As a consequence, the resolution 320x240 was
selected for the realization of the second stage of the experiments.

The second stage of the experiment was performed at the Experimental
Agronomic Farm of the Federal University of Rio Grande do Sul. For this ex-
periment, it was chosen a maize crop, because in precision agriculture this
type of crop is grown by creating the lines characteristics identified by the
proposed algorithm. The first experiment performed in the field was the ac-
quisition of images to assemble the image database used in the development
of this work. The flights to mount the database took place on November 18th,
2016, where the acquisition of videos in two schedules, with different speed
configurations and with a fixed height of 2 m of the ground were realized.

The first flight was performed at a speed of 2 m/s, which presented good
image quality. For the 5 m/s flight, the images presented a blurry effect caused
by the high speed compared to the low rate of acquisition of the Raspberry Pi
camera. From this database it was developed the algorithms and the whole
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proposed system. Experiments performed in the field can be seen in the Table
3.

Tabela 3: Accuracy of the system in identifying crop rows in different scenario
settings.

Date 11-18-2016 11-09-2017
Hour 02:19 p.m. 03:24 p.m. 01:32 p.m. 03:36 p.m.

UAV Speed 2 m/s 5 m/s 2 m/s 5 m/s
UAV Altitude 2 m 2 m 2 m 2 m

Captured Image

2G-R-B Transform

Threshold Filter

Edge Detection

Average Edges

Hough Transform

Line Filter

Line Follower

In November 9th, 2017, new tests were performed, but this time with the
embedded system running in the developed UAV hardware platform with the
proposed algorithms. This stage of testing was carried out in the field. The
precision agriculture plantation of the corn crop had a characteristic shape as
shown in Fig. 38. In this day, two flights with the same mission settings were
performed with the UAV speed configured to 2 m/s and then to 5 m/s.

The video with the image captured by the UAV was recorded at the same
time that the algorithm used these images to conduct the UAV on the planta-
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tion. The flights took place perfectly considering the rectangular shape of the
plantation. A more specific treatment to make the curves at the end of each
crop row is necessary, but this is not the focus of the present work. Another
relevant point is that the algorithm reached the expected results, with higher
performance than the related works, thus making it possible to identify the
crop rows in the initial phase of growth and to conduct the UAV even when
the captured images had abrupt changes in luminosity.

This phenomenon can be clearly seen in the Table 3. Another problem that
the algorithm could undergo would be background noise caused by weeds and
vegetation at the edges of the plantation. Because it is an experimental plan-
tation of precision agriculture, these last two problems were not identified.
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9 CONCLUSIONS

This work presented the development of a framework that allows the ex-
change of messages/commands of guidance and control of mission between
UAVs and embedded computer vision algorithms, providing autonomy to these
equipments.

All the proposed software was implemented in low cost embedded hard-
ware architecture. In the performed experiments, the framework presented
satisfactory performance in the exchange and in the decoding of messages,
and also in the execution of the abstracted messages commands. With the
proposed framework, new ways were opened for the easy integration of visual
computing algorithms into the flight controllers of the UAVs, creating tools for
the integration of several algorithms and/or several vehicles into a single au-
tonomous system. The proposed solution is scalable, allowing the multiplicity
of the system both in the number of UAVs and in the number of algorithms
that control them.

The next step of this work would be the development of a management
interface that allows control of all the resources made available to the inde-
pendent system created by the proposed framework. With this interface, it
would be easy to make changes in the course of the missions at run time. As
another future work stands the installation and testing of the proposed sys-
tem in a UAV that has the spraying hardware, thus testing the feasibility of
the system working with all parts together.

In Section 9.1 the conclusions obtained specifically with the development
of the part of case study related to the punctual and autoregulated application
of agrochemicals are presented. In the section 9.2 the specific conclusions
obtained with the development of the part of case study related to the autono-
mous guidance of UAVs on precision agriculture plantations are presented.

9.1 NDVI Part of the Case Study

This part of the case study reports the design and development of an em-
bedded algorithm to support automatic agrochemical spraying. The complete
solution comprises of a software system running in an embedded computing
hardware integrated into a COTS UAV platform.

The performed tests showed that the implemented algorithms are compu-
tationally efficient, taking into account the time requirements of the applicati-
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ons, and effective because similar levels of NDVI measurements with constant
variation were obtained compared to those calculated by a GreenSeeker COTS
sensor. The tests showed that the resolution of the processed image does not
interfere in the average NDVI obtained for each frame, due to the fact that
the index be more related to the proportionality of the elements that compose
the image than to its resolution. The use of lower resolutions can increase
performance and consequently the availability of resources, allowing the si-
multaneous execution of other applications.

The next steps of this project are the implementation of a classifier algo-
rithm that makes the adjustment of the actuators for the regulated application
of fertilizers and pesticides through the developed algorithm.

9.2 Crop Row Detection Part of the Case Study

This part of the case study presented the proposal of an embedded guiding
system for UAVs on precision agriculture plantations in an initial state of plant
growth. A crop row detection algorithm and an algorithm that is responsible
for generating the necessary parameters to control the UAV through a con-
nection between the embedded hardware and the flight controller have been
proposed.

From the obtained results it can be observed that the proposed system
achieved satisfactory performance compared to the related works found in
the literature. In addition, the proposed pre and post processing algorithms
were fundamental to achieve enhanced performance in the Hough Transform
that composes the crop row detection algorithm. Another important point
that can be verified with the results of the performed tests is that the propo-
sed system was able to correctly conduct the UAV even when the crop rows
appeared in a curve in the image captured by the camera. This is due to the
fact that the proposed algorithm divides the curves into segments of a line.
In the performed field experiments using the proposed hardware, the detec-
tion algorithm achieved a detection rate of 100 % of the crop rows for images
with resolutions above 320x240. The system performance was also measured
in laboratory experiments and reached 31.22 FPS for images with smaller reso-
lution, 320x240, and 1.63 FPS for the higher resolution images, 1920x1080. The
experiments carried out proven the feasibility of using the proposed system
for the autonomous guidance of UAVs for precision agriculture applications.

As future work for this part of the work, the plan is to further develop the
system including an artificial intelligence module capable of conducting the
UAV more accurately into the area of the planting after the end of each line,
thus enabling the flight in plantations with irregular scenarios, or important
discontinuations. Using these algorithms, it is possible to train it to recognize
certain patterns of the path and to increase the abilities of the autonomous
navigation algorithm, so that the system is able to handle these irregularities
of the plantation.



101

REFERÊNCIAS

3DROBOTICS. Setting up a Simulated Vehicle (SITL). Available at:
<http://python.dronekit.io/develop/sitl_setup.html>, Accessed in:
23/10/2018.

AKRAM, T. et al. Towards real-time crops surveillance for disease
classification: exploiting parallelism in computer vision. Computers &
Electrical Engineering, Amsterdam, v.59, p.15 – 26, 2017.

AL-KAFF, A. et al. Survey of computer vision algorithms and applications for
unmanned aerial vehicles. Expert Systems with Applications, Amsterdam,
v.92, p.447 – 463, 2018.

APVRILLE, L.; TANZI, T.; DUGELAY, J. L. Autonomous drones for assisting
rescue services within the context of natural disasters. In: URSI GENERAL
ASSEMBLY AND SCIENTIFIC SYMPOSIUM (URSI GASS), 31., 2014, Beijing,
China. Proceedings. . . New Jersey:IEEE, 2014. n.31, p.1–4.

ARAúJO, P. et al. Air-SSLAM: a visual stereo indoor slam for aerial
quadrotors. IEEE Geoscience and Remote Sensing Letters, New Jersey,
USA, v.14, n.9, p.1643–1647, Sept 2017.

BASSO, B. et al. Spatial validation of crop models for precision agriculture.
Agricultural Systems, Amsterdam, v.68, n.2, p.97 – 112, 2001.

BILLS, C.; CHEN, J.; SAXENA, A. Autonomous MAV flight in indoor
environments using single image perspective cues. In: IEEE
INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, 2011,
Shanghai, China. Proceedings. . . New Jersey:IEEE, 2011. p.5776–5783.

BOYKOV, Y.; VEKSLER, O.; ZABIH, R. Fast approximate energy minimization
via graph cuts. IEEE Transactions on pattern analysis and machine
intelligence, New Jersey, USA, v.23, n.11, p.1222–1239, 2001.

BRAY, T. The javascript object notation (json) data interchange format.
Available at: <http://www.rfc-editor.org/info/rfc7159>, Accessed in:
01-04-2017.

http://python.dronekit.io/develop/sitl_setup.html
http://www.rfc-editor.org/info/rfc7159


102

CAMPOY, P. et al. Computer Vision Onboard UAVs for Civilian Tasks. Journal
of Intelligent and Robotic Systems, Amsterdam, v.54, n.1, p.105–135,
Aug 2008.

CANO, E. et al. Comparison of Small Unmanned Aerial Vehicles Performance
Using Image Processing. Journal of Imaging, Basel, Switzerland, v.3, n.1,
p.4, 2017.

CHEN, S.; GUO, S.; LI, Y. Real-time tracking a ground moving target in
complex indoor and outdoor environments with UAV. In: IEEE
INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION
(ICIA)., 2016, Ningbo, China. Proceedings. . . New Jersey:IEEE, 2016.
p.362–367.

CHENG, H. et al. An autonomous vision-based target tracking system for
rotorcraft unmanned aerial vehicles. In: IEEE/RSJ INTERNATIONAL
CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017,
Vancouver, BC, Canada. Proceedings. . . New Jersey:IEEE, 2017.
p.1732–1738.

CHOI, H. et al. Open source computer-vision based guidance system for UAVs
on-board decision making. In: IEEE AEROSPACE CONFERENCE, 2016, Big
Sky, MT, USA. Proceedings. . . New Jersey:IEEE, 2016. p.1–5.

CHOWDHARY, G. et al. GPS-denied Indoor and Outdoor Monocular Vision
Aided Navigation and Control of Unmanned Aircraft. Journal of Field
Robotics, Hoboken, EUA, v.30, n.3, p.415–438, 2013.

CONTICELLI, F.; ALLOTTA, B. Two-level visual control of dynamic
look-and-move systems. In: MILLENNIUM CONFERENCE. IEEE
INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION.
SYMPOSIA PROCEEDINGS (CAT. NO.00CH37065), 2000, San Francisco, CA,
USA. Proceedings. . . New Jersey:IEEE, 2000. v.4, p.3784–3789 vol.4.

DAWEI, Y. The Rise of China’s Drones. Available at:
<http://www.slate.com/articles/technology/caixin/2015/07/drones_

in_china_can_the_country_s_industry_for_uavs_bloom.html>, Accessed
in: 19/01/2018.

DUDA, R. O.; HART, P. E. Use of the Hough Transformation to Detect Lines
and Curves in Pictures. Commun. ACM, New York, NY, USA, v.15, n.1,
p.11–15, Jan. 1972.

FAIÇAL, B. S. et al. The use of unmanned aerial vehicles and wireless sensor
networks for spraying pesticides. Journal of Systems Architecture,
Amsterdam, v.60, n.4, p.393–404, 2014.

FAIçAL, B. S. et al. Fine-Tuning of UAV Control Rules for Spraying Pesticides
on Crop Fields. In: IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH

http://www.slate.com/articles/technology/caixin/2015/07/drones_in_china_can_the_country_s_industry_for_uavs_bloom.html
http://www.slate.com/articles/technology/caixin/2015/07/drones_in_china_can_the_country_s_industry_for_uavs_bloom.html


103

ARTIFICIAL INTELLIGENCE, 26., 2014, Limassol, Cyprus. Proceedings. . .
New Jersey:IEEE, 2014. p.527–533.

FOROUZAN, B. A. TCP/IP Protocol Suite. 2.ed. New York, NY, USA:
McGraw-Hill, Inc., 2002.

FREITAS, E. P. et al. Real Time Embedded Image Processing System for
Points of Interest Detection for Autonomous Unmanned Aerial Vehicles. In:
AEROSPACE TECHNOLOGY CONGRESS, 2016, Solna, Stockholm, Sweden.
Proceedings. . . Sweden: FTF, 2016. p.1–13.

GARCíA-SANTILLáN, I. D. et al. Automatic detection of curved and straight
crop rows from images in maize fields. Biosystems Engineering,
Amsterdam, v.156, n.Supplement C, p.61 – 79, 2017.

GONZALEZ, R.; WINTZ, P. Digital image processing. Massachusetts, EUA:
Addison-Wesley, 1977.

GOVAERTS, B.; VERHULST, N. The normalized difference vegetation
index (NDVI) Greenseeker(TM) handheld sensor: toward the integrated
evaluation of crop management. part a - concepts and case studies. Mexico:
CIMMYT, 2010.

GUERRERO, J. et al. Automatic expert system based on images for accuracy
crop row detection in maize fields. Expert Systems with Applications,
Amsterdam, v.40, n.2, p.656 – 664, 2013.

HOUGH, P. Method and means for recognizing complex patterns.
Patent Number US 3069654 A.

HUANG, T. Computer Vision: evolution and promise. 19th CERN School of
Computing, Egmond aan Zee, The Netherlands, p.21–25, 1996.

HUH, S.; SHIM, D. H.; KIM, J. Integrated navigation system using camera
and gimbaled laser scanner for indoor and outdoor autonomous flight of
UAVs. In: IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT
ROBOTS AND SYSTEMS, 2013, Tokyo, Japan. Proceedings. . . New
Jersey:IEEE, 2013. p.3158–3163.

ILLINGWORTH, J.; KITTLER, J. A survey of the hough transform. Computer
Vision, Graphics, and Image Processing, Amsterdam, v.44, n.1, p.87 –
116, 1988.

JI, R.; QI, L. Crop-row detection algorithm based on Random Hough
Transformation. Mathematical and Computer Modelling, Amsterdam,
v.54, n.3, p.1016–1020, 2011.

JIANG, G. Q.; ZHAO, C. J.; SI, Y. S. A machine vision based crop rows
detection for agricultural robots. In: INTERNATIONAL CONFERENCE ON
WAVELET ANALYSIS AND PATTERN RECOGNITION, 2010, Qingdao, China.
Proceedings. . . New Jersey:IEEE, 2010. p.114–118.



104

JIANG, G.; WANG, Z.; LIU, H. Automatic detection of crop rows based on
multi-ROIs. Expert Systems with Applications, Amsterdam, v.42, n.5,
p.2429 – 2441, 2015.

JINLIN, X.; WEIPING, J. Vision-based guidance line detection in row crop
fields. In: INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION
(ICICTA), 2010, Qingdao, China. Proceedings. . . New Jersey:IEEE, 2010.
v.3, p.1140–1143.

JUNG, Y.; BANG, H.; LEE, D. Robust marker tracking algorithm for precise
UAV vision-based autonomous landing. In: INTERNATIONAL CONFERENCE
ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 15., 2015, Beijing,
China. Proceedings. . . New Jersey:IEEE, 2015. p.443–446.

KAEHLER, A.; BRADSKI, G. Learning OpenCV 3: computer vision in c++
with the opencv library. Massachusetts, USA: O’Reilly Media, Inc., 2016.

KALMAN, R. E. A New Approach to Linear Filtering and Prediction Problems.
Transactions of the ASME–Journal of Basic Engineering, USA, v.82,
n.Series D, p.35–45, 1960.

KANELLAKIS, C.; NIKOLAKOPOULOS, G. Survey on Computer Vision for
UAVs: current developments and trends. Journal of Intelligent & Robotic
Systems, Amsterdam, v.87, n.1, p.141–168, July 2017.

KN, R. et al. Automatic detection of powerlines in UAV remote sensed
images. In: INTERNATIONAL CONFERENCE ON CONDITION
ASSESSMENT TECHNIQUES IN ELECTRICAL SYSTEMS (CATCON), 2015,
Bangalore, India. Proceedings. . . New Jersey:IEEE, 2015. p.17–21.

LEE, H.; JUNG, S.; SHIM, D. H. Vision-based UAV landing on the moving
vehicle. In: INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT
SYSTEMS (ICUAS), 2016, Arlington, VA, USA. Proceedings. . . New
Jersey:IEEE, 2016. p.1–7.

LEIRA, F. S.; JOHANSEN, T. A.; FOSSEN, T. I. A UAV ice tracking framework
for autonomous sea ice management. In: INTERNATIONAL CONFERENCE
ON UNMANNED AIRCRAFT SYSTEMS (ICUAS), 2017, Miami, FL, USA.
Proceedings. . . New Jersey:IEEE, 2017. p.581–590.

LI, X. et al. Visible defects detection based on UAV-based inspection in
large-scale photovoltaic systems. IET Renewable Power Generation,
United Kingdom, v.11, n.10, p.1234–1244, 2017.

LIU, X.; GUO, B.; MENG, C. A method of simultaneous location and mapping
based on RGB-D cameras. In: INTERNATIONAL CONFERENCE ON
CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 14., 2016,
Phuket, Thailand. Proceedings. . . New Jersey:IEEE, 2016. p.1–5.



105

LIU, Y. et al. A Novel Trail Detection and Scene Understanding Framework
for a Quadrotor UAV With Monocular Vision. IEEE Sensors Journal, New
Jersey, EUA, v.17, n.20, p.6778–6787, Oct 2017.

LUO, H. et al. Optimization of Pesticide Spraying Tasks via Multi-UAVs Using
Genetic Algorithm. Mathematical Problems in Engineering, Cairo, Egypt,
v.2017, 2017.

MACQUEEN, J. Some methods for classification and analysis of multivariate
observations. In: FIFTH BERKELEY SYMPOSIUM ON MATHEMATICAL
STATISTICS AND PROBABILITY, VOLUME 1: STATISTICS, 1967, Berkeley,
Calif. Proceedings. . . Berkeley:University of California Press, 1967.
p.281–297.

MAGREE, D.; JOHNSON, E. N. Combined laser and vision-aided inertial
navigation for an indoor unmanned aerial vehicle. In: AMERICAN CONTROL
CONFERENCE, 2014, Portland, OR, USA. Proceedings. . . New Jersey:IEEE,
2014. p.1900–1905.

MALEK, S. et al. Efficient Framework for Palm Tree Detection in UAV
Images. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, New Jersey, EUA, v.7, n.12, p.4692–4703, Dec 2014.

MEIER, L. Pixhawk Flight Controller Hardware Project. Available at:
<https://pixhawk.org/>, Accessed in: 04/01/2018.

MEIER, L. et al. QGroundControl: ground control station for small
air-land-water autonomous unmanned systems. Available at:
<http://qgroundcontrol.com/>, Accessed in: 04/01/2018.

MEIER, L. et al. Mavlink: micro air vehicle communication protocol.
Available at: <http://qgroundcontrol.org/mavlink/start>, Accessed in:
04/01/2018.

MHATRE, V. et al. Embedded video processing and data acquisition for
unmanned aerial vehicle. In: INTERNATIONAL CONFERENCE ON
COMPUTERS, COMMUNICATIONS, AND SYSTEMS (ICCCS), 2015,
Kanyakumari, India. Proceedings. . . New Jersey:IEEE, 2015. p.141–145.

MINAEIAN, S.; LIU, J.; SON, Y. J. Vision-Based Target Detection and
Localization via a Team of Cooperative UAV and UGVs. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, New Jersey, EUA, v.46, n.7,
p.1005–1016, July 2016.

MOHAMED, M. K.; PATRA, S.; LANZON, A. Designing simple indoor
navigation system for UAVs. In: MEDITERRANEAN CONFERENCE ON
CONTROL AUTOMATION (MED), 19., 2011, Corfu, Greece. Proceedings. . .
New Jersey:IEEE, 2011. p.1223–1228.

https://pixhawk.org/
http://qgroundcontrol.com/
http://qgroundcontrol. org/mavlink/start


106

MORANDUZZO, T.; MELGANI, F. Automatic Car Counting Method for
Unmanned Aerial Vehicle Images. IEEE Transactions on Geoscience and
Remote Sensing, New Jersey, EUA, v.52, n.3, p.1635–1647, Mar. 2014.

MUNSHI, A. The opencl specification. In: IEEE HOT CHIPS SYMPOSIUM
(HCS), 21., 2009, Stanford, CA, USA. Proceedings. . . New Jersey:IEEE,
2009. p.1–314.

MYNENI, R. B. et al. The interpretation of spectral vegetation indexes. IEEE
Transactions on Geoscience and Remote Sensing, New Jersey, USA, v.33,
n.2, p.481–486, 1995.

O. DEMERECI M. VARUL, N. S.; ODABAS, M. S. Plant counting with low
altitude image processing. In: SIGNAL PROCESSING AND
COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 23., 2015,
Malatya, Turkey. Proceedings. . . New Jersey:IEEE, 2015. p.2266–2269.

PESTANA, J. et al. Computer vision based general object following for
GPS-denied multirotor unmanned vehicles. In: AMERICAN CONTROL
CONFERENCE, 2014, Portland, OR, USA. Proceedings. . . New Jersey:IEEE,
2014. p.1886–1891.

PESTANA, J. et al. A Vision-based Quadrotor Multi-robot Solution for the
Indoor Autonomy Challenge of the 2013 International Micro Air Vehicle
Competition. Journal of Intelligent & Robotic Systems, Amsterdam, v.84,
n.1, p.601–620, Dec 2016.

PHANG, S. K. et al. Autonomous Mini-UAV for indoor flight with embedded
on-board vision processing as navigation system. In: IEEE INTERNATIONAL
CONFERENCE ON COMPUTATIONAL TECHNOLOGIES IN ELECTRICAL
AND ELECTRONICS ENGINEERING (SIBIRCON), 8., 2010, Listvyanka,
Russia. Proceedings. . . New Jersey:IEEE, 2010. p.722–727.

PRASAD, M. Basic Concepts of Computer Vision. Available at: <http:
//maxembedded.com/2012/12/basic-concepts-of-computer-vision/>,
Accessed in: 10/01/2018.

PURI, V.; NAYYAR, A.; RAJA, L. Agriculture drones: a modern breakthrough in
precision agriculture. Journal of Statistics and Management Systems,
London, United Kingdom, v.20, n.4, p.507–518, 2017.

RAJA, V. m. Vision based landing for unmanned aerial vehicle. In:
AEROSPACE CONFERENCE, 2011, Big Sky, MT, USA. Proceedings. . . New
Jersey:IEEE, 2011. p.1–8.

RICHARDSON, M.; WALLACE, S. Getting started with raspberry PI.
California, EUA: O’Reilly Media, Inc., 2012.

SENTHILNATH, J. et al. A novel hierarchical clustering technique based on
splitting and merging. International Journal of Image and Data Fusion,
London, United Kingdom, v.7, n.1, p.19–41, 2016.

http://maxembedded.com/2012/12/basic-concepts-of-computer-vision/
http://maxembedded.com/2012/12/basic-concepts-of-computer-vision/


107

SHAH, U.; KHAWAD, R.; KRISHNA, K. M. Detecting, localizing, and
recognizing trees with a monocular MAV: towards preventing deforestation.
In: IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND
AUTOMATION (ICRA), 2017, Singapore. Proceedings. . . New Jersey:IEEE,
2017. p.1982–1987.

SOBEL, I.; FELDMAN, G. A 3x3 isotropic gradient operator for image
processing. Pattern classification and scene analysis, New York,
p.271–272, 1968. Presented talk at the Stanford Artificial Project.

SUWANSRIKHAM, P.; SINGKHAMFU, P. Indoor vision based guidance
system for autonomous drone and control application. In: INTERNATIONAL
CONFERENCE ON DIGITAL ARTS, MEDIA AND TECHNOLOGY (ICDAMT),
2017, Chiang Mai, Thailand. Proceedings. . . New Jersey:IEEE, 2017.
p.110–114.

TOMIC, T. et al. Toward a Fully Autonomous UAV: research platform for
indoor and outdoor urban search and rescue. IEEE Robotics Automation
Magazine, Nova Jersey, EUA, v.19, n.3, p.46–56, Sept 2012.

TORRES-SáNCHEZ, J.; LóPEZ-GRANADOS, F.; PEñA, J. An automatic
object-based method for optimal thresholding in UAV images: application for
vegetation detection in herbaceous crops. Computers and Electronics in
Agriculture, Amsterdam, v.114, p.43 – 52, 2015.

UPTON, L. What’s that blue thing doing here? Available at: <https:
//www.raspberrypi.org/blog/whats-that-blue-thing-doing-here/>,
Accessed in: 24/01/2018.

VAN WEERT, P.; GREGOIRE, M. C++ Standard Library Quick Reference.
New York, EUA: Apress, 2016.
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