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Abstract

The present work is dedicated to a study on some consequences and behaviors
of the two-line matrix representations for some sets of integer partitions and
mock theta functions. In the first part of the text, we classify the partitions
generated by six different mock theta functions, according to the sum of the
second line of their associated matrices, and present some closed formulas and
identities concerning those partitions. We also define the family of mock theta
functions {f7"(q)}m>1, inspired by what we have called the unsigned version
of function fi(¢q). We are able to give analogous matrix representations for
all of the functions fI"(q), which lead to interesting results concerning the
partitions generated by them. Part II of the text deals with a new approach
that generates a different set of integer partitions. Its definition is based on
a path through the Z? lattice, connecting the line x +y = n to the origin,
which is determined by the two-line matrix representation for different sets
of partitions of n. The new partitions have only distinct odd parts with
some particular restrictions. This process of getting new partitions, which
has been called the Path Procedure, is applied to unrestricted partitions, to
partitions counted by 1! and 2"¢ Rogers-Ramanujan Identities, and to those

generated by mock theta functions f2(q) and T1(—q).

Keywords: Integer Partitions, Mock Theta Functions, Partition

Identities, Matrix Representation
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Resumo

O presente trabalho dedica-se ao estudo de algumas consequéncias da rep-
resentacao matricial para conjuntos de particoes de inteiros e fungoes mock
theta. Na primeira parte do texto, classificamos as particoes geradas por seis
diferentes fungdes mock theta, de acordo com a soma das entradas da segunda
linha das matrizes associadas, e apresentamos algumas féormulas fechadas e
identidades para essas partigoes. Definimos também a familia {f"(q)}m>1
de fungoes mock theta, inspiradas pelo que chamamos de versao sem sinal
da fungao fi(g). Fornecemos uma representacao matricial andloga para as
fungdes f"(q), o que leva a resultados interessantes a respeito das partigoes
geradas por elas. A parte II do texto trata de uma nova abordagem que gera
um conjunto diferente de particoes de inteiros. A definicao desse conjunto
baseia-se na construcao de um caminho sobre o reticulado Z?, determinado
pela representacao matricial para diferentes conjuntos de partigoes de n, e
que liga a reta z +y = n a origem. As novas particoes possuem apenas
partes impares distintas, com algumas resticoes particulares. Esse processo
de construcao de novas particoes, chamado de Path Procedure, é aplicado a
particoes irrestritas, bem como para particoes contadas pelas 1¢ e 2 Identi-

dades de Rogers-Ramanujan e fungoes mock theta f2(q) e T1(—q).

Palavras-chave: Particao de inteiros, Funcoes Mock Theta, Identi-

dades de Particoes, Representacao Matricial
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Introduction

The Theory of Partitions is a many-sided field whose range and applicability
pass through many branches of mathematics. The first important discoveries
were made in the eighteenth century by L. Euler, who set the foundations of
the theory and proved important theorems, such as the famous Euler Identity,
which states that “the number of partitions of an integer n into distinct parts
equals the number of partitions of n into odd parts”.

Many other names can be mentioned as contributors to the initial de-
velopment of the theory, such as Gauss, Jacobi, Hardy, and Rademacher,
but surely the indian name Srinivasa Ramanujan is the one which got the
greatest popularity. Historical backgrounds concerning Ramanujan’s life and
work and its range along time can be found in [AB05], [AB09], [AB12], and
[AB13], to name a few classical references (a nice and easy reading is [Onol0)]
by K. Ono).

Integers Partitions are the object of study of the theory of partitions.
The most relevant information to understand the basis of the theory are
condensed in books like Integer Partitions, by George Andrews and Kimmo
Eriksson [AE04], and The Theory of Partitions, also by G. Andrews [And98],
the last one being a great reference which interrelates both combinatorial and
analytic aspects of the theory of partitions.

As an example of the analytic aspects of the theory we have the Mock
Theta Functions. They were introduced by Ramanujan shortly before his
early death in a letter sent to Hardy, in 1920. At that time, what Ramanujan
meant for a mock theta function was not very clear ([AH91]). However, nowa-

days these functions have been largely explored and many applications, as
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for example in modular forms, have appeared (see [Duk14], [Zag09], [Zwe01],
and [Zwe08]).

Besides modular forms, mock theta functions have an interesting interpre-
tation when seen as generating functions for integer partitions. For example,

the partition function p(n) has the well known generating function

> pmr =] =
n=0 n=1 q

However, the values of p(n) can also be seen as coefficients of Ramanujan’s
third order mock theta function

n2

RS q
flay =1+ ; (1+¢P?1+¢)? - (1+q")*

The coefficients of f(q) are related to Dyson’s rank of a partition, defined
in [Dys44], which motivated a conjecture by G. E. Andrews [And66] on the
values of these coefficients.

Proved in 2006 by K. Bringmann and K. Ono [BO06], Andrews’ conjec-
ture turned out to be true. Not only the coefficients of Mock Theta function
f(q) were determined, but also a new formula for p(n) became known. Lat-
terly the formula for p(n) was greatly improved by J. H. Bruinier and K.
Ono [BO13], showing it can be written as a finite sum of algebraic numbers.

In a work of 2013 [BSS13], E. Brietzke et al. presented a combinatorial
interpretation as two-line matrices for many Mock Theta functions, and con-
sequently for many different types of integer partitions. A few years before,
in [SMR11], three distinct matrix representations for unrestricted partitions
were given, one of them completely describing the conjugated partition. The
bijective proofs between the set of partitions and the set of two-line matrices
can be found in [SMR11] and [BSS10].

Motivated by these ideas, this thesis is dedicated to study some conse-
quences and behaviors of the two-line matrix representations of a variety of
integer partitions sets and mock theta functions. The text is separated into
two independent and self-contained parts. Standard notations and definitions
used in both parts compose Chapter 1, the Preliminaries chapter.

Part 1 is inspired by the matrix representations for what we have called

the unsigned version of some mock theta functions, in particular function
n2+n

filg) = 2 ——— that is,

"= (=¢; q)n
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[e o]

fil) =)

= (g q)n
Its matrix representation is described in [BSS13], in the table on page 240.

qn2+n

We enunciate it as the following theorem.

Theorem 0.0.1 ([BSS13], page 241). The coefficient of ¢" in the expansion

of fi(q) is equal to the number of elements in the set of matrices of the form

C c DY CS
dy dy - d
with non-negative integer entries satisfying cs = 2, ¢; = 24ciiq1+dpy1, YVt < s,

andn=> ¢+ Y dy.

When seen as generating function for integer partitions, f;(¢) counts the
partitions of n containing all parts from 1 to some s, with no gaps, and
multiplicity at least two. This means that the number of partitions of n
counted by fi(¢q) equals the number of matrices of type (1) described in
Theorem 0.0.1.

Partition identities and closed formulas concerning f;(q) and some other
mock theta functions can be found in Chapter 2, dedicated to a work done
by the author in partnership with A. Bagatini and A. Wagner [BMW17].

In Chapter 3 we define a collection of Mock Theta functions inspired by
the definition of f(¢). We call these functions f"(¢), with m > 1, and write

them as

m(n2 +n)

oo q 5
fa) =) ———— 2
) §;<mwn @)
For a fixed m > 1, the general term

qm(1+2+3+-~~+s)

1-q)1—=¢)--(1—-¢)

generates the partitions of n containing at least m parts equal to each one of

the numbers 1,2,3,...,s, with no gaps. By conjugation, this general term
also generates the partitions of n into exactly s parts, with smallest part

As > m and with difference between consecutive parts \; — \j11 > m.

Remark 0.0.2. f"(q) with m = 2 is the mock theta function f{(q). In the
present work we deal with general aspects of function f*(q), for any m > 1.
For more specific details about f?(q) = f;(q) see [BMW17].

UFRGS 3 March, 2018
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In Section 3.2 we present the matrix representation for integer partitions
counted by f"(q) and the next sections are dedicated to a collection of results
derived from this representation, concerning the integer partitions given by
the generating functions fI"(q). The particular case of fI"(q) with m =1 is
treated separately from the others in Section 3.7, since its behavior is a little
bit peculiar.

Part II of this text is composed of Chapter 4, in which we define a new
way of looking to the two-line matrix representation introduced in [SMR11].
Similar meaning has already been given by M. Alegri et al. [ABSS11] for
matrices representing plane partitions.

Since every matrix described in [SMR11] has its entries summing n, we
consider the entries of each matrix as a guidance for a lattice path in Z? from
de line x + y = n to the origin (0,0). In each matrix like (1), the entries ¢;
determine the moves along the y direction, and the entries d; determine the
moves along the x direction. Starting at the point P = (37, d;, > i, ),
the path consists of shifting ¢; units down followed by d; units to the left, for
every ¢ from s to 1.

Each path defined above is then associated to a partition of another in-
teger, and these partitions are the object of study of Part II. To describe in
details the construction of these new partitions, through what we have called
the Path Procedure, escapes the purpose of this introduction. The complete
description is given in Section 4.2.

This procedure of getting partitions from a two-line matrix can be applied
to any set of integer partitions or mock theta function whose two-line matrix
representation is known. In fact, Chapter 4 shows the consequences of this
procedure when applied not only to unrestricted integer partitions, but also
to the ones counted by the Rogers-Ramanujan Identities and the mock theta
functions fz(q), from Chapter 3, and T (—q).

Finally, the appendices gather some auxiliary information for this thesis.
Important tables for consultation during the reading of Chapter 3 can be
found in Appendix A, while some extra information concerning the Path
Procedure and its partitions into distinct odd parts can be found in Appendix
B, where an alternative and equivalent way of looking to these partitions is
defined.

UFRGS 4 March, 2018



CHAPTER 1

Preliminaries

1.1 Introduction

In this chapter we rapidly present some standard notations and definitions
from the Theory of Partitions, and a few more we adopt throughout this
text. When necessary, any change along the forthcoming chapters will be
informed before being used.

It is worth highlighting that the theory of partitions deals with non-
negative integers. Therefore, except for the ¢ in generating functions, the
variables that will appear in the following chapters are always integers, and
there is no meaning in supposing they could be any other real number. Thus
we choose to omit specifications like Z or N for them; we only specify the

range of the variables when they cannot be any non-negative integer.

1.2 General aspects of the Theory of Parti-

tions

A partition of an integer n is a non-ordered finite sequence of positive integers
whose sum is n. Formally speaking, the standard notation for a partition is

given in the following definition.

Definition 1.2.1. Givenn € Z, a partition of nisalist A = (A, Ao, ..., Ag),
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with A; > \;;q for all 1 <7 < s — 1, such that Zle A; = n. Also, each \; is
called a part of the partition.

Although A usually follows a nonincreasing order, there is no loss in chang-
ing the order of its parts. Along this work the order of the parts will not be
necessarily preserved for purposes of simplification, specially in proofs, and
we may write A = (A, g, ..., Ag) and n = A\ + Ay + - -+ + \; both with the

same meaning.

Definition 1.2.2. Let P(n) denote the set of partitions of an integer n. We
write p(n) to denote the number of elements of P(n), that is, the number of
partitions of n. Then |P(n)| = p(n).

Definition 1.2.3. p(n) is called the partition function.
Example 1.2.4. P(4) ={(4),(3,1),(2,2),(2,1,1),(1,1,1,1)} and p(4) = 5.

Remark 1.2.5. Clearly, P(0) = {0}. By convention, we adopt p(0) = 1,
and we may interpret the only partition of 0 as the empty partition, which is
not included in P(n) for n > 0.

We may also be interested in partitions of n which satisfy special condi-
tions, that is, a subset of P(n).

Definition 1.2.6. Let P (n,C) denote the set of partitions of n subject to
conditions A, B, and C. In particular, P;(n) denotes the set of partitions of
n into distinct parts. Also, |[P¥(n,C)| = p%(n,C), the number of partitions
of n subject to conditions A, B, and C.

Example 1.2.7. In Chapter 3 we define P[ZT[S] (n,k) as the set of partitions
of n into parts ranging from 1 to s, with no gaps and multiplicity m, and k

other parts from 1 to s (see Definition 3.2.2 for more details).

Remark 1.2.8. As there is no restriction in the parts of the partitions
counted by p(n), these partitions are also called unrestricted partitions of

n.

Partitions can be represented graphically by what is called the Ferrers
graph.

Definition 1.2.9. The Ferrers graph of a partition A = (A1, Aa, ..., As) of
n is a list of n dots disposed in s rows, with the i** row having \; dots, for
1< <s.

UFRGS 6 March, 2018
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Example 1.2.10. The Ferrers graph of the partition (7,4,2,1) of 14 is

An usual operation with partitions becomes clearer when explained using

its Ferrers graph.

Definition 1.2.11. Given the Ferrers graph of a partition A = (A, A, ..., \y)
of n, the conjugation of A\ consists of changing its rows by its columns. The

resulting partition is called the conjugated partition of A\ and is denoted by
A

Example 1.2.12. The conjugation of (7,4,2,1) gives the Ferrers graph

which corresponds to the partition \ = (4,3,2,2,1,1,1).

Definition 1.2.13. The Durfee square of a partition of n is the largest square
that fits inside the Ferrers graph of the partition. It is always located in the
upper left-hand corner of the graph.

A partition whose Durfee square has side k has its k' part greater than

or equal to k while the (k + 1) part is less than or equal to k.

Example 1.2.14. The Durfee square of the partition (7,4,2,1) has side of

size 2.
O (o] [ ] [ ] [ ] [ ] [ ]

An important and very useful tool of the theory of partitions are the so

called generating functions.

UFRGS 7 March, 2018
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Definition 1.2.15. Given a sequence (a,)5, = (ag, a1, as,as...), the gen-
erating function A(q) for (a,)5%, is the power series

(e 9]

Aq) = Z anq".
n=0
When considering (a, )52, as some sequence (p4(n,C))%, we may have
a power series whose coefficient of ¢" equals the number of partitions of n
subject to conditions A, B, and C. These generating functions become very

useful when they can be expressed as a product.

Example 1.2.16. The unrestricted integer partitions have the well-known

generating function

ip(n)q" = ﬁ % (1.1)
—0 -1 (1—-4q")

It is easy to be convinced of this fact if we note that each factor in the infinite

product may be rewritten as
1
(1—4q")

where the exponent of each term ¢*" gives the contribution of k parts equal

:1+qn+q2n+q3n+q4n+7

to n to some partition .

Example 1.2.17. Another noted generating function is the one for integer
partitions into distinct parts. FEach part can contribute at most once in any

partition. So,

> pan)g" =T +q". (1.2)

Infinite products like the ones that appear in (1.1) and (1.2) may be

written in a simpler way if the following definition is adopted.

Definition 1.2.18. Given a,q # 0, we define

(@:q)n = (1—a)(1 — ag)(1 —ag®) - (1 — ag™™") = [[(1 —ag)  (13)
k=0
and
(000 = lim (as)y = [[(1 - ag®), Jgl <1 (1.4)

n>0

UFRGS 8 March, 2018
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The generating functions (1.1) and (1.2) can be rewritten respectively as

> p(n)g" = (g:9))
and o:_
> pa(n)q" = (=6 @)oo

Remark 1.2.19. All of the infinite series and products above make sense
once their convergence can be proved. We do not exhibit the arguments here,

but a precise and concise explanation can be found in Appendixz A of [AE04].

1.3 Additional notations

Finally, the following definitions are not exclusive from the theory of parti-

tions, but are used in many moments along this text.

Definition 1.3.1. [n]| denotes the set of positive integers less then or equal
to n. That is, [n] = {1,2,3,...,n}.

Definition 1.3.2. Given % € Q, {%J denotes the integer part of %. That
is, for k € Z,

a a
E<—-<k+1 —| =k.
T

Definition 1.3.3. Given % e Q, {%} denotes the nearest integer to %.
That is, for k € Z,

a 1 a a
< - < — —_VN= || =
k_b_k+2———>{b} M

a

b

and

1
k+—<9§k+1:>{9}:{

l—k+1.
2% b J+ *

Example 1.3.4. In [AE04], Chapter 6, the symbols {% and {%} appear

when calculating the number of partitions of n with each part less than or

equal to 2 and 3, respectively. More precisely,
p(n, each part < 2) = {gJ +1 ([AE04], p.56) (1.5)

and
(n + 3)?

p(n, each part < 3) = { 15

} ([AE04], p.58). (1.6)
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CHAPTER 2

The mock theta function f;(q)

2.1 Introduction

This chapter is dedicated to an initial work done in partnership with Alessan-
dro Bagatini and Adriana Wagner, based on the matrix representations for
some mock theta functions, given by Brietzke et al. [BSS13]. These rep-
resentations originated a lot of partition identities, some of them registered
in the paper below, published in the Bulletin of the Brazilian Mathematical
Society, New Series (see [BMW17]).

The paper deals with six different mock theta functions, but it is impor-
tant to highlight Section 4, which discusses specifically the case of function
f1(q) that motivated the work done in Chapter 3 of this thesis.

2.2 Identities for Partitions Generated by the
Unsigned Versions of Some Mock Theta

Functions

11
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414 A. Bagatini et al.

the authors interpreted those matrices and observed that in one of them the elements of
the second row show the appearance of each part in the associated partition. In the other
one, the entries of the second row give a complete description of the conjugate partition.

Despite the fact it worked for unrestricted partitions, it is possible to adapt the entries
of the matrices to count other types of partitions, overpartitions and plane partitions,
as done in Alegri et al. (2011). A similar representation was also useful to describe
the coefficients of some mock theta functions, first considering their unsigned version
and setting a weight to the partitions generated by their general terms. For many mock
theta functions, in Brietzke et al. (2013) we find a characterization of those matrices,
which helps us to evaluate the coefficients of each function.

In this work we study especially the unsigned versions of six mock theta functions:
?(q), v (q), folq), Fo(g), f1(q) and F1(gq). Considering their matrix representation
and observing the second rows, it allows us to find great information about the parts of
the partitions the functions generate. Classifying these matrices according to the sum
of their second line and organizing these numbers in a table, we get some partitions
identities. Sometimes the table suggests closed formulas to count partitions or identities
that relate them to other kind of partitions.

Each section of this paper is related to one of the mock theta functions mentioned
before, and all proofs we present are given in a combinatorial way. First of all, we set
some notations and definitions to guide the reader throughout the paper.

As usual, we denote a partition of an integer n by A = (A1, A2, ..., A;), where
Ai > Ajprandn = A+ Ay +- - - 4+ Ax. However, in most of our proofs the order of the
parts does not matter, and we ignore it. Also, when denoting by p4 (N, B) the number
of partitions of N subject to certain conditions A and B, we denote by P4 (N, B) the
set of partitions counted by p4 (N, B). So, |P4(N, B)| = pa(N, B).

2 Mock Theta Function ¢ (q)

We start by considering the unsigned version of the mock theta function ¢ (g) of order
3,

o) n2

q
P =D ———. (1)
= (@ q%n

Its general term

g\ T3S

(1 =gH (1 =g (1 —g%)

generates the partitions of n containing each one of the odd numbers 1, 3, 5, ..., 2s—1
as part of multiplicity 1 and any number of even parts less than or equal to 2s. Also,
note that it generates the partitions of n into distinct odd parts, which can be seen by
considering the Ferrers graph of a partition as the merging of a triangular graph of
parts 2s — 1, ..., 3, 1 with pairs of columns of size s, at most. Moreover, by equation
(3.4) in Andrews and Eriksson (2004), Eq. (1) is also the generating function for
self-conjugate partitions.

@ Springer
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In Brietzke et al. (2013), the following combinatorial interpretation for this function
in terms of two-line matrices is given.

Theorem 2.1 The coefficient of q" in the expansion of (1) is equal to the number of
elements in the set of matrices of the form

Cl C2 o e CS
A= , 2
(dle"'ds) (2)
with non-negative integer entries whose sum is n, satisfying

cs=1;, d>0; d=0 (mod 2);
¢t =24 ci41 +diy1, Yt <.

Example 2.2 The matrix
151131 7531 0000 2000
A= (4 2 60) = (0000)+2(2000)+(0200)
2200
3 (0020)
represents the partition A containing a part equal to each one of the numbers 7, 5, 3,

and 1, plus two parts equal to 2, one part equal to 4, and three parts equal to 6, i.e.,
A=1(7,6,6,6,54,3,2,2,1).

The second row of each matrix in Theorem 2.1 describes the even parts of the
partition associated to it. In order to know how many even parts the partition has, we
have to sum all % =e¢j,fori=1,2,...,5s.

Definition 2.3 Let py(n, k) be the number of partitions of n into distinct odd parts,
ranging from 1 to 2s — 1, with no gaps, and k even parts less than or equal 2s.

For a fixed n, we classify its partitions of type described in Definition 2.3 according
to the sum of the elements of the second row of the matrix associated to them. By
counting the appearance of each number in these sums, we organize the data on a
table, which is presented next. The entry in line n and column n — j is the number of
times j appears as sum on the entries of the second row in type (2) matrices.

As we can see in the table, below certain cell the columns become constant and
equal to 0. Those specific cells are always equal to 1, which is proved next.

Proposition 2.4 Foralln > 1 andi > 0, we have
(i) ppCn—1,n—-1)=1;
(i) pp(2n+i,n+1i)=0.

Proof For item (i), observe that the partition (1, 2, 2, ..., 2) of 2n — 1 is the only one
—_———

n—1 times
that satisfies the conditions we need. To prove item (ii), suppose we have a partition
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(1,3,...,2s = 1,204, 2l, ..., 2l,4;) counted by py(2n +i,n +i). Forany s > 1,

14+34+--+2s —1+2L1+ 21+ - - + 24
>14+3+---4+2s—14+2-(n+1i) > 2n+1,

which is a contradiction. O

The next two theorems are also inspired by Table 1, by looking to its third and
fourth diagonals, respectively.

Theorem 2.5 Forall n > 1 we have:

(i) pp(4n® +4n,2) = pp(d4n® +4n +2,2) = ps(dn® +4n+4,2) = n;
(i) pp@n?+8n+1,2) = py(4n®+8n+3,2) = n;
(iii) py(4n® +1,2) =n.

Proof We prove item (i), being (ii) and (ii1) analogous. First of all, note that any
partition of 4n” + 4n, 4n* + 4n + 2 or 4n” + 4n + 4 with two even parts must have
4n — 1 as the largest odd part. So, let (1,3,5,...,4n — 1,2i,2j) be a partition of
4n®> 4+ 4n, with 1 <i < j < 2n. To get a partition of 4n> + 4n + 2 and a partition of
4n® + 4n + 4 we take, respectively,

(1,3,5,...,4n—-1,2i,2j +2) and (1,3,5,...,4n—1,2i +2,2j 4 2).

Conversely, given (1,3, ...,4n — 1, 2[, 2t) a partition of 4n? + 4n + 4, we have
l+t=2n+2withl <[ <t <2n.So, both [ and ¢ have to be greater than or equal
to 2 and the smallest even part of any partition of 4n”> + 4n + 4 has to be 4. Hence,
the map is invertible.

Finally, the number py (4n%+4n+4, 2) is the number of solutions of [ +¢ = 2n+2,
with [, > 2, whichis | 252 | — 1 = n. O

Theorem 2.6 Foralln > 1:

(i) pp(n?,3) = py(n*—1,3) = pn —1,3);

(i) pp(n® +2n+2,3) = py(n*+2n—1,3) = p(n + 1, 3);
(iii) pp(n® +2n+3,3) = pp(n> +2n —2,3) = p(n — 1, 3);
(iv) pp(n® +4n+8,3) = pp(n> +4n —1,3) = p(n — 1,3).

Proof We prove only the first item, the others being easily adaptable.

Note that the largest odd part of any partition of n and n> — 1 must be, respectively,
2n — 5 and 2n — 3. So, let (1,3,5,...,2n — 5,2i,2j,2k) be a partition of n%. To
get a partition of n> — 1, we map every odd part 2s — 1 into the part 2(n — s) — 1
and every even part 2s into 2(n — s — 1). After that, add one part of size 1. Indeed, as
2i +2j 42k =4n — 4, we get

2Qn—1) =1+ 4+2-2—142(n—i—1)
+2n—j—D+2m—k—-1)+1=n%>—1.
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For the second equality, from any partition of n> — 1 we remove the odd parts and
divide by 2 every even part. Observe that this is possible, once 2(n —i — 1) 4+ 2(n —
j—D+2m—k—1)=2n-2. 0

Example 2.7 Considering n = 10 in identity (i) of Theorem 2.6, we get the partitions
below:

Py (100, 3) Py(99,3) P(9,3)
(16,16, 15,13,11,9,7,5,4,3, 1) (17,15,14,13,11,9,7,5,3,2,2, 1) 7,1, 1)
(16, 15,14, 13,11,9,7,6,5,3, 1) (17,15,13,12,11,9,7,5,4,3,2, 1) 6,2, 1)
(16, 15,13,12,11,9,8,7,5,3, 1) (17,15,13,11,10,9,7,6,5,3,2, 1) 5,3, 1)
(16, 15,13, 11,10, 10,9, 7,5, 3, 1) (17,15,13,11,9,8,8,7,5,3,2, 1) 4,4,1)
(15,14,14,13,11,9,8,7,5,3, 1) (17,15,13,11,10,9,7,5,4,4,3, 1) (5,2,2)
(15,14, 13,12,11,10,9,7, 5,3, 1) (17,15,13,11,9,8,7,6,5,4,3, 1) 4,3,2)
(15,13,12,12,12,11,9,7, 5,3, 1) (17,15,13,11,9,7,6,6,6,5,3, 1) 3,3,3)

In order to prove an identity brought forth by the fifth diagonal of Table 1, we
present the next Lemma.

Lemma 2.8 Let p.(4n — 8,4, Ao = A3) be the number of partitions of 4n — 8 into
four even parts smaller than or equal to 2n — 4 and such that Ao = A3. We have

Proof We separate the proof according to the parity of n.
If n is even, we set a bijection that takes the equal parts A» and A3 from a partition
counted by p.(4n — 8,4, A» = A3) into the smallest part of a partition counted by

pn—1,3).
o If \o = A3 =n+ 2k — 2, fork > 0, take

A — 4k + 4k
(von+2k—2,n+2k—2,2) into ( ‘2 , ‘“zL ,2k+1).
o If Ay = A3 =n — 2k, for k > 2, take
, A —8k+10 iy
(o —2k.n =2k 24) into (Z————, 51 2% —2).

Note that conditions A4 <n—2k <Ay <2n—4and A; +Ag = 2n — 8 + 4k lead
us to %4 > 2k — 2.

For odd n, the bijection is similar to the previous one.

o If \p = A3 =n + 2k —3,fork > 1, take

A —4k+2 dg+4k—2
2 ’ 2

(v, n+2k —3,n+2k—3,4s) into ( ,2k+2).
e Ifhy =3 =n—2k—1,fork > 1, take

O,n—2k—1,n—2k—1,As) into (
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Note that conditions Ay <n—2k—1 <A <2n—4and A; + A4 =2n — 6+ 4k

lead us to % > 2k — 1. O
Example 2.9 We illustrate the bijection above for n = 12 and n = 13.
Pe(40,4, 3y = 23) P(11,3)
(18, 10, 10, 2) (‘8—240, 230 1) ©,1,1)
(16, 10, 10, 4) (16*240, 4440 1) 8.2, 1)
(14, 10, 10, 6) (l%—ﬁ 6440, 1) (7.3, 1)
(12, 10, 10, 8) (12—24'0, 8440, 1) 6.4, 1)
(10, 10, 10, 10) (10—24'0, 10440 1) (5.5.1)
(20,8,8,4) (2=82+10 4 ) (7,2,2)
(18,8, 8, 6) (w 6 2) 6.3,2)
(16,8, 8, 8) (16—83“0, 8 2) (5.4,2)
(14,12,12,2) (‘4—24 L 2441 3) (5.3,3)
(12,12, 12, 4) (12341, %,3) 4,4,3)
Po(44, 4,0y = 23) P(12,3)
(22,10, 10, 2) (22—821+6, 2, 1) (10, 1, 1)
(20, 10, 10, 4) (20—821+6, 3 1) 9,2, 1)
(18, 10, 10, 6) (18=51=6 8.1) 8,3, 1)
(16, 10, 10, 8) (le=51=6 8.1) (7.4.1)
(14, 10, 10, 10) (14*2”6, 10 1) 6,5, 1)
(18,12, 12,2) (18 4142 24412 2) (8,2,2)
(16,12, 12, 4) (16 4142 4+41 2,2) (7.3.2)
(14,12, 12, 6) (14 451+2 6+41 2’2) (6,4,2)
(12,12, 12. 8) (12 451+2 8+41 2 ) (5,4,2)
(22,8, 8,6) (22 822+6,g,3) 6.3,3)
(20,8, 8, 8) (20 20-8246 §,3) (5.4,3)
(14, 14, 14, 2) (‘4 4242 24422 4) (4,4, 4)
Theorem 2.10 Foralln > 1, we have
n
pen> —4.4)=>"p(i —1,3). 3)
i=1
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Proof By proving that

pe(n* —4,4) — pe((n — D* —4,4) = p(n — 1, 3),

equality (3) follows by induction.
So, given a partition counted by pg (n? — 4, 4), its largest odd part is 2n — 5. Then,
the four even parts must be less than or equal to 2n — 4 and satisfy

A+ A2+ A3+ Ag =4n — 8.

There is a natural bijection between the partitions counted by py ((n — 1)? —4,4) and
those counted by pgy (n> — 4, 4) whose even parts satisfy A» > A3, that is, we add a
part 2n — 5 and increase by 2 the two largest even parts. The remaining partitions are
those in which the central parts are equal. By Lemma 2.8, there are p(n — 1, 3) of
them. O

Example 2.11 The bijection between partitions of (n — 1)> — 4 and n? — 4 described
above is illustrated in the next table for n = 8.

Py (60, 4) Py (45, 4)
(12,11,9,8,7,5,3,2,2, 1) 10,9,7,6,5,3,2,2,1)
(12,11,9,7,6,5,4,3,2, 1) 10,9,7,5,4,4,3,2, 1)
(11,10,10,9,7,5,3,2,2,1) 9,8,8,7,5,3,2,2,1)
(11,10,9,8,7,5,4,3,2, 1) (9.8,7,6,5,4,3,2, 1)
(11,10,9,7,6,5,4,4,3, 1) 9,8,7,5,4,4,4,3,1)
(1179787877?675’3727 1) (9777676’6’5’3’2’ 1)
(11797 87 87 7? 5’ 4? 47 37 1) (9’ 77 6’ 6’ 5’ 4’ 4’ 3’ 1)
(12,11,9,7,5,4,4,4,3,1)
(11,10,9,7,6,6,5,3,2, 1)
(11,9,8,7.6,6,5,4,3, 1)
(11,9,7,6,6,6,6,5,3, 1)
3 Mock Theta Function ¥ (q)
Consider the unsigned version of the mock theta function ¥ (q) of order 3,
o0 2
. q"
vi(q) = @ 4)
n=0 49" )n
Its general term
g H3+5+F2s=D)
I=—q)(1—=¢g3)---(1—=g>h
generates the partitions of n containing each one of the odd numbers 1, 3, 5, ..., 2s—1

as part of multiplicity at least 1, i.e., partitions of n into odd parts with no gaps.
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The following combinatorial interpretation for this function is presented in Brietzke
et al. (2013).

Theorem 3.1 The coefficient of q"* in the expansion of (4) is equal to the number of
elements in the set of matrices of the form (2) with non-negative integer entries whose
sum is n, satisfying

cs =1 d =0
¢t =24 ci41 +2diyy, YVt <.

Example 3.2 The matrix
A— 131151y (7531 n 2220 s 2200
~\1 0 21) \00O0OO 0001 0010
n 1000
0000
represents the partition A containing one part equal to each one of 1, 3, 5, and 7 plus one

additional copy of 7, two copies of 5, and one copy of 1,i.e., A = (7,7,5,5,5,3, 1, 1).

Given a partition as described above, the second row of the matrix associated to it
describes how many parts there are besides the minimum number of parts s. In order
to have this number, we just add all d;, fori =1,2,...,s.

Definition 3.3 Let the excess of a part X; related to a partition A be the number of
times the part A; appears more than once. Notation: x(1;). We call the excess of a
partition A the sum of the excesses of all parts. Notation: x (1) = X", x(&;).

Example 3.4 Consider
A=(15,13,11,9,9,7,5,3,1,1,1),

a partition of 75 into odd parts, with no gaps. We have x(1) =2, x(9) = 1, x(3) =
x(5) =x(7) =x(11) =x(13) = x(15) =0 and x(1) = 3.

Definition 3.5 Let py (n, k) be the number of partitions of n into odd parts, ranging
from 1 to 2s — 1, with no gaps, and excess k.

We build a table (Table 2) according to Theorem 3.1 in the same way we did for
¢*(q).

By observing the table, it is possible to see that from certain cells on the columns
become constant. This turns into a result described as follows.

Theorem 3.6 Foralli >2andn > 3 |_’§J — 2, we have

py(n,n—1i)=o041(),

where 04 1(i) is the number of partitions of i into distinct odd parts, having 1 as a
part.
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Proof Let us consider a partition counted by py (n,n — i). Then, a possible way to
write n 1s

n=14+1-x)+34+3-xB)+---+C2s—D+2s—1)-x2s = 1),
where x(1) + x(3) +--- 4+ x(2s — 1) = n — i. As this partition has s different parts,
we set a partition A = (A1, A2, ..., Ay) counted by 04.1(i), also into s parts, by the

following rule.

Ay =1
As—1=34+2-x2s—1)
A2 =542-x2s—1D+2-x2—-1)—1)

Mm=QR6—k+ 1) =D 4+2-x2s =D 4 +2-xQ2%k+1)— 1)

M=Q2s—D+2-x2s—1D+---+2-x3).

O
Example 3.7 Forn =22 andi = 17, we have
Py (22,5) 0q4,1(17)
5,5,5,3,1,1,1, 1) x(5)=2,x3)=0,x(1) =3 9,7, 1)
(5,5,3,3,3,1,1, 1) xB)=1Lx3)=2,x(1)=2 (11,5, 1)
(5,3,3,3,3,3,1, 1) x5)=0,x3)=4,x(1) =1 (13,3, 1)

The following theorem is related to partitions with 3 excesses. We prove the first
statement only, the others being similar.

Theorem 3.8 For all n > 3 we have:

(i) py(*—5,3) = py(n*—2,3) = p(n—3,<3);

(i) py(n*+2n—2,3) = py(n* +2n—3,3) = p(n — 3, < 3);
(iii) py(n® +4n+3,3) = py(n> +4n —2,3) = p(n — 3, < 3);
(iv) py(n>+6n+10,3) = py(n*>+6n+1,3) = pn —3,<3).

Proof Given a partition counted by py (n? — 5, 3), its largest part is 2n — 5. So,

2n—5 2n—5
n*—5=mn-20"+ > x@)-i=4n-9= > x(i)-i.
{odd { odd

Consider the sequence of all excesses of the partition

(x(1),x@3),...,xk),...,x(2n —=5)).
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We invert this sequence by changing k by 2n — k — 4. Now, consider the partition

Cn=3)+Cn =50 +x(1)+---+k-(14+x2n—k —4))
+--+1-(14+x2n-Y5)).
We need to prove that this sums n> — 2 and belongs to the set of partitions counted by

Py (n? — 2, 3). Once > x(i) = 3, the number of non-zero excess remains the same.
And indeed, by rearranging the terms, the sum of the parts of the new partition is

2n—>5
=@n—3)+ > (1+x() - Q2n—i—4)
Fodi
2n—5 2n—5
=(n—1"+Qu—4)- > x(@)— D> x(@)i = n*-2.
{ocld ocld
3 4n—9

In order to prove the second equality, as the largest part of a partition counted by
Py (n? — 2, 3) is 2n — 3, its three odd excesses 2i — 1, 2j — 1,2k — 1 have to sum
2n — 3. Writing (i — 1,j — 1,k — 1) we have a partition of n — 3 into up to 3
parts. O

Example 3.9 In order to illustrate the bijection described above, consider n = 8.

Py (59,3) Py (62,3) PG5, <3)
(11,11,11,9,7,5,3,1,1) (13,11,11,9,7,5,3,1,1) (5,0,0)
(11,11,9,9,7,5,3,3, 1) (13,11,9,9,7,5,3,3,1,1) 4,1,0)
(11,11,9,7,7,5,5,3, 1) (13,11,9,7,7,5,5,3,1,1) 3,2,0)
(11,9,9,9,7,5,5,3, 1) (13,11,9,7,7,5,3,3,3, 1) (3,1,1)
(11,9,9,7,7,7,5,3, 1) (13,11,9,7,5,5,5,3,3, 1) 2,2, 1)

The following theorem sets a relation between partitions generated by functions ¢* (g)

and ¥ *(q).
Theorem 3.10 For alln > 2, we have

(i) py(n* —3,3) = pg(n® —1,3);

(ii) py(n* —5,3) = py(n* —2,3) = p(n,3);
(i) py(n* —1,3) = pg(n* —3,3);
(iv) py(n®—8,3) = ps(n* —5,3) = p(n — 3, 3).

Proof We prove item (i) by a bijection, valid analogously to the other items.
Let (A1, A2, ..., Ar) be a partition counted by py, (n2 — 3, 3) and consider 2s — 1
its largest part. We map each excess 2i — 1 into 2(n —i — 1) and add one part 2s + 1.
O
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Example 3.11 Taking n = 10, we have:

Py (97,3) Pp(99,3)

(15,15,15,13,11,9,7,5,3,3, 1) (17, 15,14, 13, 1 1
(15,15,13,13,11,9,7,5,5,3, 1) (17,15,13,12, 1 1
(15,15,13,11,11,9,7,7,5,3, 1) (17,15,13,11,10,9,7,6,5,3,2, 1
(15,15,13,11,9,9,9.7,5,3, 1) (17,15,13,11,9,8,8,7,5,3,2, 1)
1 1 1

1 9 )

9 )

(15,13,13,13,11,9,7,7,5,3, 1) (17,15, 13, 11,
(15,13,13,11,11,9,9,7,5,3, 1) (17,15, 13, 11,9, 8,
1 1,9,7

9 9 9 5
(15,13,11,11,11,11,9,7,5,3, 1) (17,15,13,11,9,7,6,6,6, 5, 3,

4 Mock Theta Function fi(q)

Consider the unsigned version of the mock theta function fi(g) of order 5

S n4n
ﬁ@=zqf. (5)
= @ Dn

Its general term

q2(1+2+3+---+s)

A-¢d—=g>---1—g%

generates the partitions of n containing all parts from 1 to s, with no gaps and multi-
plicity at least two. By conjugation, this general term also generates the partitions of
n into exactly s parts such that the smallest part A; > 2 and the difference between
consecutive parts is A; — A;41 > 2.

The next theorem shows a combinatorial interpretation for function (5), given in
Brietzke et al. (2013).

Theorem 4.1 The coefficient of q" in the expansion of (5) is equal to the number of
elements in the set of matrices of the form (2) with non-negative integer entries whose
sum is n, satisfying

cs =2, dy =0;
Cr = 2+ Cr+1 +dt+1, vVt < s.
Given a partition as described above, the second row of the matrix associated to it

describes how many parts there are besides the two copies of each part from 1 to s
that necessarily appear in the partition.

Definition 4.2 Let py, (n, k) be the number of partitions of  into parts ranging from
1 to s, with no gaps and multiplicity 2, and k other parts from 1 to s.

As we have done before, we build a table (Table 3) for function f|(¢), which leads
us to some similar results.
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Theorem 4.3 For all n > 3 we have
ps,(n* =3,3) = p(n —3,3).

Proof The largest part of any partition counted by py, (n*>—3,3)hastoben — 1. So,
asn’—3=2-m—1+---+2-14+r+s+r,withl <t <s<r <n-—1,weget
r 4+ s 4+t = n — 3. The number of solutions of this equation is clearly p(n — 3, 3). O

Theorem 4.4 For all n > 1 we have

(i) pf,(4n*+n+i,3) =ps(4n*+n—i3) for0 <i <n+2;
(ii) ps(4n* +5n+2+1i,3) = ps,(4n* +5n+2—i,3),for0<i <n+2;

241
(i) pf1(4n2+n,3):v + J;

2
(iv) pf,(4n* +5n+i,3) =T,, fori =0,1,2,3.

Proof (1) The largest part of any partition counted by p , (4n*+n+i,3)is2n— 1.
Let A = (1,1,2,2,...,2n — 1,2n — 1,r,s,1) be a partition of 4n> + n + i
with 1l <r <s <t < 2n — 1, from which we get r +s +¢ = 3n + 1.
Setpu=(1,1,2,2,...,2n—1,2n — 1,2n — r,2n — s, 2n — t), a partition of
4n* + n — i and note that it belongs to the set counted by Py, (4n* +n—1i,3).

(ii) The same map from item (i) works in this case, with the only difference that the
largest part is 2n.

(i11) Similar to (1) we need to count the number of solutions of » + s + ¢t = 3n with
1 <r <s <t <2n— 1. With no restrictions, this number is p(3n, 3), which
by Andrews and Eriksson (2004) is

(3n +3)? 3n | — n’+1 n n?
12 2 N 2 4 |
Now we have to eliminate those solutions that do not satisfy 1 <r <s <t <
2n — 1. Clearly only ¢ can be greater than 2n — 1. In this case, if + = 2n + i with

0 < i < n + 2, the number of solutions of r + s = n — i is equal to L%J .
Hence, the number of solutions we do not have to consider is

3|7zl 15)

(iv) The same bijection built in the first item proves that P 1 (4n2 + 5n + 1, 3) has the
same cardinality if i = O andi = 3 and also if i = 1 and i = 2. By following
the argument in (iii), we can adapt the proof and get identity (iv). O

Theorem 4.5 Foralln > 2 and 0 <i < 3 we have

pr, QT +1i,4) = py, 2T, —i,4).
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Proof Any partition counted by py, (2T, £ i, 4) has largest part n — 1. By taking
k1, ko, k3, k4 the excesses of a partition counted by p £ (2T, +i,4), we map them into
n—ki,n—ky,n—ky,n—ky. O

5 Mock Theta Function Fy(q)

Consider the unsigned version of the mock theta function Fi(g) of order 5

o0 2n242n
Fi@) =) ——. (6)
: ; (43 qH)n+1

Its general term

q2(2+4+6+---+2s)

(1=q@)(1=g%) - (1 —g»th’

generates the partitions of n into even parts ranging from 2 to 2s with no gaps and
multiplicity 2, and any number of odd parts less than or equal to 2s + 1.

As for f*(g), in Brietzke et al. (2013) the following interpretation for function
F(q) is given.

Theorem 5.1 The coefficient of q" in the expansion of (6) is equal to the number of
elements in the set of matrices of the form

C C « e C
dy dy -+ dsyy
with non-negative integer entries whose sum is n, satisfying

cs+1=0; dy = 0;
¢t =44 c41+2di41, YVt <s+1.

Given a matrix from Theorem 5.1, its second row describes the odd parts from 1 to
2s + 1 of the partition associated do it. To know how many of these parts the partition
has, we have to sum the d;, fori =1,2,...,s5s + 1.

Definition 5.2 Let pr, (n, k) be the number of partitions of n into even parts ranging
from 2 to 2s with no gaps and multiplicity 2, and k other odd parts less than or equal
to 2s 4 1.

As we have done before, we build a table (Table 4) that classifies the partitions
generated by the unsigned version of the mock theta function Fi(gq), according to the
sum of the second line of its related matrix representation.

The next results follow from observations in Table 4.
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Theorem 5.3 Foralln > 1and 1 <i < 2n we have
(i) pr,(8n* £ (2i —1),2) =0;
(ii) pr,(8n* £2i,2) =n— BJ
(i) pr, (8n* —8n+14 (2i —1),2) =0;

41
(iv) pFl(8n2—8n+liZi,2):n—Ll; J

Proof We prove items (i) and (i1). Items (ii1) and (iv) have respectively analogous
proofs.

(1) If there was a partition counted by p F, 8n? + (2i — 1),2), its largest even part
of multiplicity 2 would be 4n — 2. Both odd parts r and s would satisfy r + s =
4n £+ (2i — 1) with 1 <r < s < 4n — 1, which is not possible.

(i1) The largest even part of multiplicity 2 of a partition counted by pr, (8n?42i,2)is
also4n—2.The odd parts r and s satisfy r+s = 4n+2i with1 <r <s <4n—1.
Writing r = 2k — 1 and ¢t = 2m — 1, it turns into k +m = 2n =i + 1, with
1 <k<m<2n.

i
Itis easy to see thatk +m =2n —i 4+ 1 hasn — \;QJ solutions.

For equation k +m = 2n +1i + 1, the number of solutions, without counting the
2n4i+1

2
we need to eliminate the solutions where m > 2n, whose amount is i. So we get

2n+1i+1 . i
— | —i=n—-|=| O
2 2

Similar to the previous theorem, we get the following one, whose proofis analogous.

order of parts, is J Considering the condition 1 < k < m < 2n,

Theorem 5.4 For alln > 1 we have
(i) pr,(8n* —6n+1+(2i —1),3)=0,if0<i <n;
(ii) pr,(8n* —6n +1+42i,3) = pr, (8n* —6n+1—2i,3),if 0 <i <n.

241
(i) pr, (8n% —6n+1,3) = V 2+ J;

(iv) pr,(8n* +2n —3+1i,3) =T, withi =0,2,4,6.

As it occurs for the previous table, we can observe in Table 4 that its columns
become constant below certain cells. Looking at the sequence of these fixed numbers,
it is the same as the sequence of the number os partitions into parts congruent to £2
(mod 5). This result is sattled in the next theorem.

Theorem 5.5 Foralln > 1 andi < 0 we have

PF, Bn+1+4+i,n—1+1i) = p(n+ 1|parts congruent to £2 (mod 5)).
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Proof We present the prove for i = 0. For i > 0, it is possible to set a bijection
between Pp1 Bn+14+i,n—1+41i)and PF, (3n+ 1, n — 1) by removing (conversely,
adding) i parts of sizel.

We denote by P*(n 4 1) the set of partitions of n + 1 in which every part from 1 to
s appears at least twice. So, we can build a bijection between sets Pr,(3n +1,n — 1)
and P*(n+ 1) by decreasing 1 from every odd part of a partition counted by pr, (3n +
I, n — 1) and then dividing all parts by 2. Clearly, the reverse map is possible.

Facing the 2nd Rogers—Ramanujan Identity, we are going to prove that p*(n + 1)
is equal to the number of partitions of n + 1 into 2-distinct parts, greater than or equal
to 2. Consider the following steps. O

e Given a partition in P*(n + 1), split it into two new ones, the first one made of
two copies of each part from 1 to s, and the other one with the remaining parts.

e In the first partition, merge equal parts 1,2, ..., s, getting (2,4, ..., 2s). From
the second one, take its conjugate. Once that its parts are smaller than or equal to
s, now it has at most s parts.

e Get both partitions together side-by-side.

Example 5.6 For n = 12, the partition (2,2,4,4,5,3,3,3,3,3,1,1,1,1,1) €
Pr,(37,11) leads to (10, 3), a partition of 13 into 2-distinct parts greater than or
equal to 2.

(2,2,4,4,5,3,3,3,3,3,1,1,1,1,1) — (2,2,4,4,4,2,2,2,2,2)

— (1,1,2,2,2,1,1,1,1,1) — |

— [ L[] — [T TT]

6 Mock Theta Function fy(q)

Consider the unsigned version of the mock theta function fy(g) of order 5,

[oe) an
fo (@) = : 3)
’ ,ZZ:(:) (43 @
Its general term
q1+3+5+--~+(2s—1)
(I—g)(1—¢*---(1—g%)’
generates the partitions of n containing each one of the odd numbers 1, 3, 5, ..., 2s—1

as part of multiplicity 1 and any number of parts less than or equal to s. It also generates
superdistinct partitions (partitions where A; — A; 41 > 2) of n into exactly s parts. This
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can be seen by adding an unrestricted partition into at most s parts to the right hand
side of the triangular partition 1 +3 + ... 4+ (25 — 1).

A combinatorial interpretation for this function in terms of two-line matrices is
again presented in Brietzke et al. (2013).

Theorem 6.1 The coefficient of q" in the expansion of (8) is equal to the number of
elements in the set of matrices of the form (2) with non-negative integer entries whose
sum is n, satisfying

=1 d =0;
¢t =24 ci41 +diyy, YVt <.
The second row of a matrix from Theorem 6.1 describes the parts from 1 to s,

besides the odd parts from 1 to 2s — 1, of the partition associated to it. To know how
many parts from 1 to s the partition has, we sum the d;, fori =1,2,...,s.

Definition 6.2 Let py (n, k) be the number of partitions of » into distinct odd parts,
ranging from 1 to 2s — 1 with no gaps, and k other parts less than or equal to s.

Again we build a table (Table 5) according to the matrix representation of partitions
generated by function f,(q).

Theorem 6.3 For all n > 1 we have
ps,(n%.3) = p(n —2, < 3).

Proof The largest part of any partition counted by py, (n?,3) must be 2n — 3. The
three parts r <s <t <n — 1 must satisfy r +s + ¢t =2n — 1.

Considering u = (n — 1 —t,n —1—s,n — 1 —r), we get a partition of n — 2.
This process can be easily inverted. O

Example 6.4 Considering n = 7 we get the partitions below:

Pfo (49, 3) (r,s,t) P(5,<3)
(11,9,7,6,6,5,3,1,1) ( ) 5)
(11,9,7,6,5,5,3,2, 1) 6,5,2) 4, 1)
(11,9,7,6,5,4,3,3,1) 6,4,3) (3,2)
(11,9,7,5,5,5,3,3, 1) 5,5,3) G, LD
(11,9,7,5,5,4,4,3,1) (5,4, 4) 2,2, 1)

In order to prove the next theorem, we need the following lemma.

Lemma 6.5 Foralln > 1 set
Anz{(r,s,t); r—|—s—|—t=3n—|—3,1§t§s§r§2nand(r:2n0rt=1)}.

We have |A,| = n.
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Proof First, consider n = 1 and note that the identity holds. To prove it forn > 1, we
separate the proof in two cases:

(i) Ifr = 2n,thens+¢ = n+3, which has | “+2 | solutions satisfying the conditions
we need.

(ii) Ift = 1, thenr +s = 3n + 2. Asr < 2n, then s > n + 2. This gives us
L%J different solutions, without counting the order, as usual. Now, note that the
solution where r = 2n and t = 1 at the same time has been counted in both
cases. So, the number of elements of the set A, is

ERH

Theorem 6.6 For alln > 1 we have

pr,(4n* +3n+3,3) =T,.
Proof The largest part of any partition counted by p r, (4n*+3n+3,3) mustbe 4n — 1.

The three parts less than or equal to 2n must satisfy r + s 4+ ¢ = 3n + 3. This means
that

pf0(4n2+3n+3,3): H(r,s,t); r+s+t=3n+3,1<t<s<r <2nj}|,
which is the same as

pf0(4n2+3n+3,3)=|{(r,s,t); r+s+t=3n+3,2<t<s<r <2n-—1}
+{(r,s,t); r+s+t=3n+3,1<t<s<r<2nand (r =2nort=1)}

By Lemma 6.5, this turns into

pf0(4n2+3n—|—3,3):|{(r,s,t); r+s+t=3n+3,2<t

<s<r<2n-—1} +n,
and what is left to prove is that
{(r, s, 1) ; r+s+t:3n+3,2§t§s§r§2n—1}|:p4f0(4n2—5n—|—4,3).

This can be done by building a bijection.

Given a partition counted by p s, (4n*>—5n+4, 3), consider the parts , s, ¢ satisfying
r+s4+t=3n,withl <t <s <r <2n—2.Note thatthe triple (r +1,s + 1,1+ 1)
satisfies2 <r+1<s+1<r+1<2n-1.

The result follows by induction. O

Example 6.7 1In the following table, we show the partitions of Py, (4n* +3n+3,3),
forn =1, 2, 3, according to Theorem 6.6.
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P, (10,3) Pf (25,3) P (48,3)

(3,2,2,2,1) (7,5,3,3,3,3, 1) (11,9,7,5,4,4,4, 3,1
(7,5,4,3,3,2,1) (11,9,7,5,5,4, 3, 3,1
(7,5,4,4,3,1,1) (11,9,7,

]

s Uy Iy Hy

s Uy Jy

As before, the columns in Table 5 become constant below certain entry. The sequence
of this fixed numbers is the same as the sequence of balanced partitions, which are
those whose smallest part equals the number of parts.

Theorem 6.8 Foralln > 2 andi > 0 we have
pr,C2n+in—2+1i)=pp(n+2),

where pp(n) is the number of balanced partitions of n, i.e., the number of partitions
of n where the smallest part equals the number of parts.

Proof Starting withi = 0, let L = (A1, A2, ..., At) be a partition counted by pp(n +
2). Note that Ay = k and the Ferrers graph of this partition has Durfee square of
size k. Considering the k2 points of the Durfee square, write them as the partition
2k —1,2k—3,...,3,1).

Observe that, as n > 2, we have k > 2, and as n + 2 > k? + A1 — k, then
A —k <n+2—k><n—2. Denoting by A1) the partition on the right hand side of
the Durfee square, consider A (1) the conjugated partition of A" and add to its left hand
side the partition (1, 1, ..., 1). As the number of parts of A1) is less than k (because

n—2
Ak = k), each part of this new partition we built is less than or equal to k.

By joining this partition to the partition (2k — 1,2k — 3,...,3,1), we get 2n
partitioned into k odd parts plus n — 2 other parts less than or equal to k. In other
words, it is a partition counted by p s, (2n, n — 2). The inverse map is easy to build.

Ifi > 1, a partition counted by p s (2n +i,n —2 + i) must have i parts 1. Clearly,
a bijection between Py, 2n+i,n —2+1i) and Py(n + 2) removes (conversely, adds)
i parts of size 1. O

7 Mock Theta Function Fy(q)

Consider the unsigned version of the mock theta function F(q) of order 5

S q2n2
F(;F (@) = ﬁ )
n=0 q>9"n
Its general term
g2(A3+5++(2s=1)

(1 =g)(1=g3) - (1 —g>=1)
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generates the partitions of n into odd parts, with no gaps, such that each part has
multiplicity at least two and the largest part is 2s — 1.
This function also has a combinatorial interpretation, find in Brietzke et al. (2013).

Theorem 7.1 The coefficient of q" in the expansion of (9) is equal to the number of
elements in the set of matrices of the form (2) with non-negative integer entries whose
sum is n, satisfying

s =2, dr > 0;
¢t =44 ciqp1 + 2div1, YVt <.
The entries on the second row of the matrices above describe how many parts from

1 to 2s — 1 appear more than twice in the partition associated to each matrix. To know
this quantity, we have to sum these entries.

Definition 7.2 Let pr, (n, k) be the number of partitions of n into odd parts from 1 to
2s — 1, with no gaps, each one with multiplicity at least two, where k indicates how
many parts appear more than twice.

A simple identity relates mock theta function Fy(¢) with f,(¢g), and summarizes a
lot of information.

Theorem 7.3 Foralln > 1and 0 <i < n, we have
pr,2n+1i,i) = pyr(n+1i,i). (10)

Proof Let A = (A1, A2, ..., k) be a partition of 2n + i counted by PF, 2n +1i,1),
with largest odd part 2s — 1. Note that the exceeding parts sum 2n +i — 2s2. As there
are at least two copies of each odd part in A, we remove one copy of each of them,

getting 2n + i — s2. Each exceeding part A j» which is odd, we replace by ; = k-"2+ ! ,
getting a part between 1 and s.
The reverse map is easy to get and we have identity (10). O

As consequence of Theorem 7.3, we get the following corollary.

Corollary 7.4 Forn > 1, we have the following identities:

() pr,2n%,0) = p, (n2,0) = I;
() pr, QU+ D> +2i+1, D) =ps(n+ 1> +i+1,1)=10<i <n;
(iii) pFO(2n2 +2n+2i,2) = pfo(n2 +n+1+41i,2);
(iv) pr,(2n* —3,3) = ps (n*,3) = p(n — 2, < 3);
(V) ppo(Sn2 +6n+3,3) = pf0(4n2 +3n+3,3) =T1,;
i) pr,Bn+5+in—1+i)=prCn+2+in—1+1i)=pp(n+3),i=0.
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CHAPTER 3

The mock theta function f"(¢)

3.1 Introduction

In this chapter we define a collection of mock theta functions inspired by
the definition of function f{(g) from Chapter 2. This collection of functions,
which we call f"(q) for m > 1, generates integer partitions that can also be
interpreted combinatorially as a set of matrices. The results of this chapter
have already been submitted for publication (see [Mat17]).

Given any m > 1, let us consider the mock theta function

OEDPE

— (¢ q)n

For a fixed m > 1, the general term

Trl(n2 +n)
2

qm(1+2+3+--~+s)

Q-1 —¢*)---(1—¢)
generates the partitions of n containing at least m parts equal to each one of

the numbers 1,2,3,...,s, with no gaps. By conjugation, this general term
also generates the partitions of n into exactly s parts, with smallest part

As > m and with difference between consecutive parts \; — \;y1 > m.

Remark 3.1.1. f"(q) with m = 2 is the mock theta function f{(q) from
Chapter 2. In the present chapter we deal with more general aspects of func-
tion f™(q), for any m > 1. For more specific details about f*(q) = fi(q) see
Chapter 2.
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In the following pages we present the matrix representation for integer
partitions counted by f(q) and a collection of results derived from this

representation.

3.2 The family {f"(q)}n>1

Let us consider a partition of n counted by the mock theta function

m(n2+n)

OB ‘-’(q—q) (3.2)

n=0

for some fixed m > 1. Remind that such a partition has each part from 1 to

s with no gaps and multiplicity at least m. So, n can be written as
n=(m+ds)-s+(m+ds_1) - (s=1)+---+(m+ds) -2+ (m+dy) -1,

withd, >0forall 1 <t <s.
By rearranging these numbers, we may have n as the sum of the entries
of the matrix

A— s m4do+ds+---+ds (s—1)-m+ds+---+ds -+ 2m+ds m
B dy ds e dey dy )

which allows us to state the following theorem.

Theorem 3.2.1. The coefficient of ¢" in the expansion of function (3.2)

equals the number of elements in the set of matrices of the form

C C RN Cs
A= " 7 : (3.3)
dy dy --- d,
with non-negative integer entries, satisfying cs =m, ¢, = m+ co1 + dyyq for

allt <s, andn=> ¢+ > d;.

Given any partition generated by function fI"(q), the second row of its
associated matrix informs us how many “extra” parts the partition has, be-
sides the m copies of each part from 1 to s. This then motivates the following

definition.

Definition 3.2.2. Let P{g[s] (n,k) be the set of partitions of n into parts
ranging from 1 to s, with no gaps and multiplicity m, and k other parts from

L to s. Also, [P (n, k)| = pi{* (n, k).
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Remark 3.2.3. Noting that function f;(q) is the same as f2(q), from now
on, instead of using py, (n,k) as in Chapter 2, we use p[ﬂ]s} (n, k).

Motivated by Definition 3.2.2, given a fixed m, for each n we classify
its partitions according to the sum of the entries in the second row of the
associated matrix. For different values of m, we count the appearance of
each number in these sums and organize the data in tables. Excerpts from
the tables obtained for m = 1,2,3,4,5 and 6 are presented in Appendix A
(Tables 28, 29, 30, 31, 32 and 33).

In any of those tables the entry in line n and column n — j is the number
of times j appears as sum of the entries of the second row in type (3.3)
matrices. That is, how many partitions of n have j extra parts, besides the
m copies of each integer from 1 to s.

Tables 29, 30, 31, 32 and 33 and other ones that can be easily obtained for
other values of m, which are omitted from this text, have interesting values
of pg”][s] (n, k), for different fixed values of k. In order to refer to these values

in a simpler way, we adopt the following definition.

Definition 3.2.4. Given m > 2 and k& > 0 we call the sequence of pE[S] (n, k)
for n > 0 the k" diagonal of function f™(q) table.

Remark 3.2.5. The particular case of fI*(q) with m =1 does not follow the
expected reqularity of fI"(q) for m > 2. Therefore, the case of m = 1 will be

treated separately in Section 3.7.

Remark 3.2.6.

(i) Note that the k' diagonal makes sense only for n > k. So, from
now on we omit p[TZ][S}(O, k) for any k > 1 and assume pg][s](n, k) = 0 for

1<n<k (pg]m(o, 0) = 1, by definition).

(ii) Moreover, the results for any k' diagonal are walid for functions
f™(q) whenever m > k.

Some facts about the zero and the first diagonals are easily observed and

set in the following proposition.

Proposition 3.2.7. Given m > 2, we have

(i) pﬁ[s](n 0) = L ifn=m-Tj, for somej >0

0, otherwise
and
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(i) pm[s}(n 1= 1, ifn=m-T;+1, for some j > 1 and every 1 <13
i 0, otherwise.

In fact, Proposition 3.2.7 gives us a complete characterization of the zero
and the first diagonals of the table of function f"(q), for any value of m.

Similar results were obtained in order to characterize other diagonals of
the tables. In the next sections we will show the sequence of values of those
diagonals for 1 < n < 200, clearly many more then those shown in Tables
29, 30, 31, 32 and 33, and present the results derived from the analysis of

these sequences.

3.3 The 2" diagonal

Table 1 below shows us the sequence of values contained in the 2" diagonal,
that is, the values of pg][s] (n,2), for 1 < n <200 counted by functions f2(q),
f2(q), and f(q).

Observe that each sequence contained in Table 1 has a lot of zeros in very
regular positions. Also, between two lists of zeros, greater integers appear
in such a way that each list of integers is symmetrical, always starting and
ending at 1, and increasing and decreasing by at most 1 unit.

Moreover, note that each list of integers grater than zero has odd size. In
some cases the central term is different from the others, while in other cases
the central term is the same as its adjacent terms.

In the following results we formalize all of the previous observations,
getting a complete characterization of the 2"¢ diagonal, for any n and any
m > 2.

Proposition 3.3.1. Given m > 2, foralln > 1 and 1 <i < (m—2)n+3

we have
mls] (m(n2 +n)

m(n*+n)

Proof. Let us suppose we could partition + 2 — 4 into m copies of

each part from 1 to some j and two more parts less than or equal to j. So,

UFRGS 40 March, 2018



Marilia L. Matte Matrix Representations for Integer Partitions: Some Consequences and a New Approach

() P, 2)

(0,0,0,1,0,0,0,1,1,1,0,0,0,1,1,2,1,1,0,0,0,1,1,2,2,2,1,1,0,0,0,1, 1,2,2,3,2,2,
1,1,0,0,0,1,1,2,2,3,3,3,2,2,1,1,0,0,0,1,1,2,2,3,3,4,3,3,2,2,1,1,0,0,0,1, 1,2,
2,3,3,4,4,4,3,3,2,2,1,1,0,0,0,1,1,2,2,3,3,4,4,5,4,4,3,3,2,2,1,1,0,0,0, 1,1, 2,
2,3,3,4,4,5,5,5,4,4,3,3,2,2,1,1,0,0,0,1,1,2,2,3,3,4,4,5,5,6,5,5,4,4,3,3,2, 2,
1,1,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,6,5,5,4,4,3,3,2,2,1,1,0,0,0,1,1,2,2,3, 3,4,
4,5,5,6,6,7,6,6,5,5,...)
(0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,2,1,1,0,0,0,0,0,0,0,1,1,2,2,2,1, 1,
0,0,0,0,0,0,0,0,1,1,2,2,3,2,2,1,1,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,3,2,2,1, 1,0,
0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,4,3,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2, 3,
3,4,4,4,3,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,4,4,5,4,4,3,3,2,2, 1,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,4,4,5,5,5,4,4,3,3,2,2,1,1,0,0,0,0, 0,
0,0,0,0,0,0,0,0,0,1,...)
(0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,2,1, 1,0,0,0,0,0,0,0,0,
0,0,0,1,1,2,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,2,2,1,1,0,0,0,0, 0,0,
0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,
1,2,2,3,3,4,3,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3, 3,4,
4,4,3,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,4,4, 5,
4,4,3,3,2,2,1,1,0,0,...)

2(q)

2(a)

2(q)

Table 1: Values contained in the 2"¢ diagonals of the tables of functions f2(q), f2(q),
and f(q).
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we would write

m(n?+n . . .
%4-2—2 = b 24241 LT ts
.2 .
_ m(]2+])+r+s

for some j > 1 and 1 < s <r < j. Note that 5 has to be less than n, and so

we can make the following estimations:

mtn) o m@ ) o =1 (1)

2 2 2

+2(n—1),

which is equivalent to
mn—+2—1<2n-—2.

On the other hand,

mn+2—i>mn+2—(m—2)n—3,

and so
mn+2—(m—2n—3<2n-—2
or
1<0,
which is an absurd. )
Asvvecannotwritem(n——'—n)—ﬂ—i:j+~-~+j+-~~+1+...+1+r+
2 —— —_———
m m
2
s, this means pg}[s] (M +2 —1, 2) = 0.

]

The symmetry of the list of integers between the zeros is described in the
next proposition. In order to prove it we need the following lemma, which

will also be useful in further sections.

Lemma 3.3.2. Givenm >k > 2, foralln>2 and1 <t <n—1 we have

m(2nt — 2 + )
2

> k(n —1). (3.4)
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Proof. First of all, as m > k > 2 let us write m = k + 7, with j > 0. We
prove inequality (3.4) by induction on n > 2. For n = 2 we have only ¢t = 1,

which implies

m(2nt — t2 +t)

5 =2m=2k+2j>2k—k=k-n—k=k(n—-1),

and so (3.4) is true.
By supposing (3.4) is true for some n =b>2and all 1 <t <b—1, let
us prove it also holds for b+ 1, with 1 <¢ <b.
m2(b+ 1)t —t2+t)  m(2bt —* + 1)

_ .
2 2 tm

For 1 <t < b —1, by induction hypothesis we have

m(2bt — 2 +t)

tmt>k(b—1)+mt > k(b—1)+k=k((b+1) — 1),

2
For t = b we have
2bt — 2+t b2+ b
m > D > PO kb = k(1) — 1),
Therefore, by induction we have (3.4) valid for alln > 2 and 1 <t <n — 1.

]

The particular case of Lemma 3.3.2 with £ = 2 is used in the following

proposition.

Proposition 3.3.3. Given m > 2, for alln>1 and 0 <1 <n —1 we have

2 2
e (m(”_; ) oy, 2) — prl (m<”_2+ ) 4 on—i, 2> .

Proof. We begin by claiming that the greatest part of any partition counted

mls m(n®+n
byp[s]”( (2 )

larger than n, let us say n +t with ¢ > 1, we would have

+ 241, 2) is exactly n. Indeed, if the greatest part were

m(n? +n)

m-(n+t)+m-n+t—1)+---4+m-14+r+s= 5

+241i,  (3.5)

with 1 < s <r <n+t. By doing some estimations and using Lemma 3.3.2

with k = 2 we get (3.5) equivalent to

m(2nt +t + t?) <0

r+s=241— ,
5 <
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contradicting the fact that 1 < s <.
Moreover, for n > 1 the greatest part cannot be smaller than n either.
Indeed, if it were n — t with £ > 1, we would have
m(n? +n)
2
with 1 < s < r < mn —1t. According to Lemma 3.3.2 with £ = 2, equation

m-(mn—t)+m-(n—t—1)+---4+m-1+r+s= +2+4+1, (3.6)

(3.6) is equivalent to

ont —t2 +t
r s = U2 5 D g is oo (3.7)

However, as s <r < n—t we have r+s < 2(n—t) < 2n—2, and so inequality
(3.7) is an absurd.

m(n® +n)
2

m[s]

Therefore, the greatest part of any partition counted by Py (

2 + 1, 2) has to be n. Analogous arguments allow us to conclude that the

2
greatest part of any partition counted by pg}[s] <M + 2n — 1, 2> is
also exactly n.

Then, given A\ a partition counted by Pis) — s +2+1,2), we
have
A=(n,...,n,...,2,...,2,1,..., 1,7 s),
——— ——— ——
with 1 < s <r <mn. So,
2
m(n
m-n+m-(n—1)+--~—|—m-2—|—m-1+r+s:%4—2—1—2’,
and therefore
r+s=241.
By writing p = (n,...,n,...,2,...,2,1,...,I,n+1—r,n+1—s) we get
— —— ——
2
a partition counted by pg][s] (M +2n — 1, 2) as

m-n+---+m-24+m-1+n+1—-r+n+1-s

2

= w—l—Zn—i—Q—(r%—s)
2

= —m(n2+n)+2n+2—(2+z’)
2

= Wb(nT—i_n)-l-Qn—i.
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Easily we can build the reverse map, getting

mls] [ T n2 +n . mls] [ T n2 +n .
pHH Q—i—?%—z,? :pHH ¥+2n—z,2 .
2 2 8 2

]
We illustrate Proposition 3.3.3 by making m =4, n =9, and ¢ = 7 in the

following example.

Example 3.3.4. The number of partitions counted by p?s[f] (189, 2) is the same
as p?[s](lﬁ)l, 2), as shown in Table 2.

5]

PY(189,2) P(191,2)

9,9,9,9,8,8,8,8,...,1,1,1,1,8,1
9,9,9,9,8,8,8,8,...,1,1,1,1,7,2
9,9,9,9,8,8,8,8,...,1,1,1,1,6,3
9,9,9,9,8,8,8,8,...,1,1,1,1,5,4

(9,9,9,9,8,8,8,8,...,1,1,1,1,9, 2)
(9,9,9,9,8,8,8,8,...,1,1,1,1,8,3)
(9,9,9,9,8,8,8,8,...,1,1,1,1,7,4)
(9,9,9,9,8,8,8,8,...,1,1,1,1,6,5)

( ) |
( ) |
( ) |
( ) |

Table 2: Table for Example 3.3.4

In order to have the 2"¢ diagonal completely described, what remains to
be shown is the exact value of each term in the 2"¢ diagonal of any function

f™(q). This result is given next and has a simple demonstration.

Proposition 3.3.5. Given m > 2, for alln>1 and 0 <1 <n — 1 we have

misl { M(n? +n ) n+1—1
p[s][]( (2 )+n+1_2’2>:{—2 J

Proof. By observing that 2 4+ ¢ and n + 1 — ¢ both range from 2 to n + 1

if 0 < i < n—1, Proposition 3.3.3 gives us that the greatest part of any

mis] (m(n2 +n)

partition counted by Py 5 +n+1—1, 2) is n. So we have

m(n*+n)

5 +n+l—t=m-n+---4+m-24+m-14+r+s,

for 1 < s <r < n, which can be rewritten as

r+s=n+1—i. (3.8)
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According to (1.5), the number of partitions of n + 1 — 7 into exactly two

parts, that is, the number of solutions of (3.8) satisfying 1 < s <r < n is
1—;
{%J (see [AEO04]).

O
2
Now we may observe that, as it happens with m(n——i—n) + 2+ 4 and
2 2 2
M—l—n—i—l—i, also m(n——kn)4—2n—z’and M—i—n—i—l—i—i

both range through the same values for 0 < i < n — 1. Therefore, by joining
Propositions 3.3.3 and 3.3.5 we get the following corollary.

Corollary 3.3.6. Given m > 2, for alln>1 and 0 <1 <n —1 we have

m[s](m(n2+n) n—l—l—z’J

Example 3.3.7. Form =4, n =6 and 0 < i < 5 we have the partitions

shown in Table 3.

Now we have the 2" diagonal of function f™(q), for any m > 2, com-

pletely described.

3.4 The 3" diagonal

The sequences of values of pg][s] (n,3) for 1 < n < 200, contained in the 3
diagonal of the tables of functions f2(q), f2(q), and f3(q), are shown in Table
4 below.

The zeros in any of the sequences contained in Table 4 are described in
the next result, whose proof is analogous to the one of Proposition 3.3.1 and,

therefore, omitted.

Proposition 3.4.1. Given m > 3, foralln>1and 1 <i<(m—3)n+5

we have
mis] (m(n2 +n)

Also, non-zero values constitute again finite symmetrical lists of integers,
which get longer as n increases. The proof of the next proposition follows
the same direction as the one for Proposition 3.3.3, by building an analogous

bijection and using the particular case of Lemma 3.3.2 with k£ = 3.
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91 +i plll

(01 £4,2) p

w1 +4,2)

S

86
87

(6,6,6,6,5,5,5,5,...,1,1,1,1,1,1)
(6,6,6,6,5,5,5,5,...,1,1,1,1,2,1)
(6,6,6,6,5,5,5,5,...,1,1,1,1,3,1)
(6,6,6,6,5,5,5,5,...,1,1,1,1,2,2)
(6,6,6,6,5,5,5,5,...,1,1,1,1,4,1)
(6,6,6,6,5,5,5,5,...,1,1,1,1,3,2)
(6,6,6,6,5,5,5,5,...,1,1,1,1,5,1)
(6,6,6,6,5,5,5,5,...,1,1,1,1,4,2)
(6,6,6,6,5,5,5,5,...,1,1,1,1,3,3)
(6,6,6,6,5,5,5,5,...,1,1,1,1,6,1)
91 (6,6,6,6,5,5,5,5,...,1,1,1,1,5,2) 3
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

88

89

90

6,6,6,6,5,5,5,5,...,1,1,1,1,4,3
6,6,6,6,5,5,5,5,...,1,1,1,1,6,2

92 6,6,6,6,5,5,5,5,...,1,1,1,1,5,3 3
6,6,6,6,5,5,5,5,...,1,1,1,1,4,4

03 6,6,6,6,5,5,5,5,...,1,1,1,1,6,3 )
6,6,6,6,5,5,5,5,...,1,1,1,1,5,4
6,6,6,6,5,5,5,5,...,1,1,1,1,6,4

94 b ) ) ) b b ) ) ) ) ) b 76’ 2
6,6,6,6,5,5,5,5,...,1,1,1,1,5,5

95 6,6,6,6,5,5,5,5,...,1,1,1,1,6,5

96 6,6,6,6,5,5,5,5,...,1,1,1,1,6,6

Table 3: Table for Example 3.3.7
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ms]

f(a) Py (1:3)

(0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,0,0,1,1,2,2,2,1,1,0,0,0,0,0, 1,1, 2,3, 3,3,
3,2,1,1,0,0,0,0,0,1,1,2,3,4,4,5,4,4,3,2,1,1,0,0,0,0,0,1,1,2,3,4,5,6,6, 6,6, 5,
') 4,3,2,1,1,0,0,0,0,0,1,1,2,3,4,5,7,7,8,8,8,7,7,5,4,3,2,1,1,0,0,0,0,0,1, 1,2, 3,
* 4,5,7,8,9,10,10,10,10,9,8,7,5,4,3,2,1,1,0,0,0,0,0,1,1,2,3,4,5,7,8, 10, 11, 12,
12,13,12,12,11,10,8,7,5,4,3,2,1,1,0,0,0,0,0, 1, 1,2, 3,4,5,7,8, 10, 12, 13, 14, 15,
15,15,15,14,13,12,10,8,7,5,4,3,2,1,1,0,0,0,0,0,. ..)

(0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,2,2,2,1,1,0,0,0,0,0,
0,0,0,0,1,1,2,3,3,3,3,2,1,1,0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,4,5,4,4,3,2,1, 1,0,
) 0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,5,6,6,6,6,5,4,3,2,1,1,0,0,0,0,0,0,0,0,0,0, 0,0,

1,1,2,3,4,5,7,7,8,8,8,7,7.5,4,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1,2, 3,4, 5,
7,8,9,10,10,10,10,9,8,7,5,4,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,4, 5,

7,8,10,11,12,12,13,12,12,11,10,8,...)

(0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2, 1,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,
500) 0,1,1,2,3,4,4,5,4,4,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1, 1,2, 3,4, 5,6,

6,6,6,5,4,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,5,7,7,8,8,
8,7.7,5,4,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,5,7,8,

9,10,10,10,10,9,8,7,5,4,...)

Table 4: Values contained in the 3"¢ diagonals of the tables of functions f2(q), f2(q),
and f2(q).
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3n —1
Proposition 3.4.2. Giwven m > 3, foralln >1 and 0 <1 < L n2 J —1

we have

mis] (m(n2 +n)

ms) { M(N? + n)
Pjs) B (—

+3+i,3>:p[s] 5 —|—3n—i,3).

misl [ m(n? +n
[]( (n*+n) o

Proof. The greatest part of any partition counted by Py 5

7,3 | is n. In fact, as done in Proposition 3.3.3, some estimations and Lemma

3.3.2 with k = 3 let us conclude that the greatest part cannot be larger nor

2
smaller than n, and the same for any partition counted by pa[s] (—m(n 2+ n) +

3n—i,3).

2
Then, given A\ a partition counted by pg][s] (w + 3+ i,3), we
have
A=(n,...,n,...,2,...,2,1,... 1,7 s1),
—— —— N——

with 1 <t < s <r <n. So,

m(n? +n)

34
7 + 5+,

m-n+m-(n—1)+---4+m-24+m-1+r+s+t=

and therefore
r+s+t=3+1.

By writing u = (n,...,n,...,2,...,2,1,..., I,n+1—r,n+1—s,n+1-t),
N — ——— N —

m m m

m[s] [ T Tl2 +n
we get a partition counted by p[s][ ] (%

m-n+---+m-24+m-1+n+1—-—r+n+l—-s+n+1-t

+ 3n — i, 3), since

2

= MﬂLBn—l—B—(r%—s—i—t)
2

= Mﬂt&z—l—?)—(?ﬂ—ﬂ
2

Easily we can build the reverse map, getting

m|s mn2+n . mls mn2+n .
p[s][](—( 5 )+3+z,3):p[s]”(—< 5 )+3n—@,3).
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Example 3.4.3. Form =3, n =15 and i = 4 we have the same number of

elements in P[‘z,}[s](52, 3) as in P[i%s](SG, 3), as shown in Table 5.

PPl(52,3) P(56,3)

(5,5,5,4,4,4,3,3,3,2,2,2,1,1,1,5,1,1) | (5,5,5,4,4,4,3,3,3,2,2,2,1,1,1,1,5,5
(5,5,5,4,4,4,3,3,3,2,2,2,1,1,1,4,2,1) | (5,5,5,4,4,4,3,3,3,2,2,2,1,1,1,2,4,5
(5,5,5,4,4,4,3,3,3,2,2,2,1,1,1,3,3,1) | (5,5,5,4,4,4,3,3,3,2,2,2,1,1,1,3,3,5
(5,5,5,4,4,4,3,3,3,2,2,2,1,1,1,3,2,2) | (5,5,5,4,4,4,3,3,3,2,2,2,1,1,1,3,4,4

)
)
)
)

Table 5: Table for Example 3.4.3

The values described in Proposition 3.4.2 compose a sequence which has
a combinatorial interpretation in terms of another type of partitions, easier

to count. This follows in the theorem below.
Theorem 3.4.4. Given m > 3, for alln > 1 and 7 > 1 we have

mls] m(n® +n)
Prs) (—2

.2 .
Furag) - gpo(mles o)

= p(n—1, at most 3 parts).

+n—|—2,3>

m(n* +n)
2

— 1, we already know from Proposition 3.4.2

2
that a partition counted by pg‘][s] (M

Proof. First of all, note that m
3n —1

+n+2=

(n22+n) 34 (n—1).

Since 0 < n—1<

+n+2, 3) has n as its greatest
part. So, by writing

m(n*+n)

m-n+---+m-24+m-14+r+s+t= 5

+n+ 2,
with 1 <t < s <r <n, we get
r+s+t=n+2.

By decreasing r, s and t in one unit we get ' = r —1, s = s —1
and ¢ = t — 1. Therefore ' + s+t =r+s+t—-3 = n—1, with
0 <t < <r <n-—1 So, (r,¢t) is a partition of n — 1 into at

most 3 parts. The reverse map is clear.
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Finally, the first equality of the theorem is easy to see since, by Proposi-

tion 3.4.2 again, any partition counted by pg}[S] m((n+ j) 2+ (n+7))

+n+

m((n+)* + (n + )
2

2, 3), or also by pa[s} (

its greatest part.

+3+(n—1),3>,hasn+jas

]

Example 3.4.5. Form =3, n =5 and j = 4, we have the partitions shown
in Table 6.

P (52,3) Pi(142,3) P(4, at most 3 parts)
(57575;"'7232727171a1357171) (979;97"'317171757]-;1) (4)
(5,55, ,2,2,2,1,1,1,4,2,1) | (9,9,9,---,1,1,1,4,2,1) (3,1)
(5,5,5,--,2,2,2,1,1,1,3,3,1) | (9,9,9,---,1,1,1,3,3,1) (2,2)
(5,5,5,---,2,2,2,1,1,1,3,2,2) | (9,9,9,---,1,1,1,3,2,2) (2,1,1)

Table 6: Table for Example 3.4.5

In order to have the 3" diagonal of any table of function f™(q) completely
described, for any m > 2, we need some simple identities which we enunciate

as a lemma. The demonstrations are simple but have extensive calculation.

Lemma 3.4.6.
(i) For all j > 1,

. . 1 .2
p(3j + 1, exactly 3 parts) = ](‘]T+) + V—J; (3.9)
(i) For all j > 2,

51 -2}

(1i) For all j > 1,

2 1 -2
p(37, exactly 3 parts) = V + J + V_J (3.11)
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Proof of Lemma 3.4.0, (i). According to [AE04], the number of partitions of
3 2

n into exactly 3 parts is {%} — LgJ — 1. By writing 37 + 1 in place

of n we get statement (3.9) by proving the following one:

{M}_ PHJ _1:j<j+1)+FJ. (3.12)

12 2 2 4

In order to prove (3.12) we write j in four different ways, according to its

congruence modulus 4. First of all, note that

(35 + 4)2 952 + 24j + 16 352 4 O[3 4
{ 12 12 RS G RV &

and we may write (3.12) as
, 352 4 3j+1 (J+1 2
2j+{i+—}—v J— _ U )+V—J. (3.13)

We analyse separately each side of equation (3.13), and for any value of

7 modulus 4 we conclude that the equality is true.
O

Proof of Lemma 3.J.6, (ii). We prove statement (3.10) by induction over j.
Note that for j = 2 we have
§{2+1—ZJ B FH_lJ . {21
B 2 L4
=1
By supposing for certain j = b > 2 that we have
— V)H—ZJ B m
4 )
=1
let us prove that

(b+1)—1

{(bqt 1)2+ 1 —z’J _ L(bzl)QJ

i=1

or, which is the same, that

ivﬁzﬁJ:V)%ﬁbJﬂJ' (3.14)

i=1
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b+2—1
First of all, note that if ¢ and b have the same parity, then {—_I_ 5 ZJ =

b+1—1i L2
{%J + 1. And if 7 and b have different parities, then {%J _
bt1-¢
5 :

If b is even, saying b = 2k, then half of the values of 7 in the sum on the
left hand side of (3.14) are even and the other half are odd. So we have

P b2 —i L b+ 1— iy T
e i RN e R

which by induction hypothesis equals

b _ 2k2+2k_4W+4k_ PP+2b| | BP+2b+1
4 2 \ 2 2 4 N 4 o 4 ’
as we wanted.

If b is odd, saying b = 2k + 1, then k£ + 1 of the values of ¢ in the sum

on the left hand side of (3.14) are odd and k of those values are even. So we

have

b

i{bjLQ_ZJ ivﬂrl_lJ*k“ ZVH_ZJ““FL

=1 =1 =1
which by induction hypothesis equals
b? 4k% + 4k + 1
{ZJJF;CJJ = {—+4 * J+k+1:k2+2k+1

B b—12+b_W+%+1_ b% + 2b + 1
B 2 B 4 B 4 ’

as we needed.

So, by induction statement (3.10) is proved.
O

Proof of Lemma 3.4.0, (iii). By using again the expression for the number
of partitions of n into exactly 3 parts ([AE04]), with 37 in place of n we get

what we need by proving the following statement:

e R RS CE N
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In order to prove (3.15) we write j in four different ways, according to its

congruence modulus 4. First of all, note that

(37 +3)2 _ [9°+18/+9 3j2+3+y
12 N 12 N 4 2

and we rewrite (3.15) as

RS T L

As done in the proof of item (7), we analyse separately each side of equa-

tion (3.16), and for any value of j modulus 4 we conclude that the equality

1s true.
O

From Lemma 3.4.6 we finalize the characterization of the sequence of
values pg}[s} (n,3) by setting the three final theorems of this section.

By considering only the non-zero integers of the 3" diagonal, the following
theorem deals with the central terms of the lists of non-zero integers in even
positions, that is, the central terms of the 25 lists of non-zero integers, for

any j > 1.

G+1)

Definition 3.4.7. We define 7} := J , the j*" triangular number.

Theorem 3.4.8. Given m > 3, for all even n > 2, let us say n = 2j with
7 >1, we have

i) (1((29)2 + 2 3.2 1
P[s]”(m((j)2+ J)+3+{ J J—LS)—T]-

ZPQ[S}(M+3+ {+J —2,3). (3.17)

Before the proof, observe that, according to Proposition 3.4.2, for all

7 > 1 we have
25)% + 2j 25 —1 25)% + 2j 25 —1
pa[s](m(( QP42 g {3 ; J1’3> :pam(m(( D2H20) g {3 J J3>

2 2 2
and
mls 22+2 3:27—1 m|s 22+2 3-2j—-1
g (B2 BB g < (MO gy (S U L),

UFRGS 54 March, 2018



Marilia L. Matte Matrix Representations for Integer Partitions: Some Consequences and a New Approach

So, Theorem 3.4.8 says that these four numbers are actually all the same
and equal to the j triangular number Tj. That is, the 3" diagonal of the

table of any function fI"(¢) has constant subsequences of size four located in

lines

2j)% + 2j 25— 1 2)% + 2j 25— 1
oo T2 H2)) g 302 (G ) NP A 1

2 2] 2 2

2j)% + 2j 25— 1 2j)% + 2j 25— 1
n:m((3)2+ D g3 ; 7andn:m((J)2+ J)+3+{3 ; JJFL

each of these four terms equal to 7}.

3-27—1
Proof of Theorem 3./.8. Noting that {+J = 37 — 1, we can rewrite
statement (3.17) as

m[s| (m((2j)2 +2j) m((24)* + 2j)
2

Py +3j+1,3> =T =pi (f—i—iﬁj,?)).
According to Proposition 3.4.2, with n = 25 and respectively ¢ = 35 — 2
and ¢ = 37 — 3, the greatest part of any partition counted by

m((25)* + 2j)
Pps) 9

+35+ 1,3) and p{|” (f + 35, 3>
27)2 + 2j 27)2 + 25
m((25)° + J)+3J-+1and m((27)% 4 27)

to our rules is the same as partitioning 35 + 1 and 35 into three parts less

is 2j. So, partitioning +37 according

than or equal to 2j. That is,
r+s+t=37+1 (3.18)
and
r+s+1t=37, (3.19)

with 1 <t < s <r <2j.

Clearly, the number of solutions of (3.18) with no restriction on parts is

. . 1 .2
p(3j+1, exactly 3 parts), which by item (i) of Lemma 3.4.6 is ‘@4— ‘%

Now, we eliminate the solutions of  + s 4+t = 35 + 1 that do not satisfy
1 <t < s < r <2, which are those where » > 24, or r = 25 4+ ¢ with
1<i1 <5 -1,
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For each value of i, we have to eliminate the solutions of s +¢ = 5 +
SR
1 — 4, which we already know are in number of L‘%J From item

(17) of Lemma 3.4.6, the total amount of solutions we have to eliminate is

sy [ 2L ] Gpserve that item (if) of L 3.4.6 is valid
i=1 5 = 1 . Serve at 1rem (22) o emima o.4.0 1S vall

only for 5 > 2. However, the case with 7 = 1 has no solution to be eliminated,

because r > 2 never occurs in equation 3.18, since r,s,t > 1.
Then, the number of solutions of » + s + ¢ = 35 + 1 with the restriction
1<t<s<r<2jis
. . 1 .2 .2 . . 1
ZAC Rty S i O i R LC e Y
2 4 4 2
The same proof is adaptable for equation (3.19) by using item (iii) of

Lemma 3.4.6, and rearranging the indexes of the sum in item (7). Therefore,

equality (3.17) is proved and Theorem 3.4.8 is valid.

O

In an analogous way as done in Theorem 3.4.8, the next two theorems
characterize the central terms of the lists of non-zero integers in odd positions.
The proofs of both theorems use items (i) and (iii) of Lemma 3.4.6 with
some replacements of j, and the formula for unrestricted partitions with
exactly 3 parts, available in [AE04], also necessary for proving items (¢) and
(44i) of Lemma 3.4.6.

Theorem 3.4.9. Given m > 3, for alln =1 (mod 4), let us sayn =45+ 1

with j > 0, we have

p{;l][s] (m((4j + 1)22+ (4] + 1)) 4+ 34+ \‘3(4‘7;—1)_1J _ 173) — j2 4 (j + 1)2

_ (m((4j + 1)22+ (4j+1) o {3(43‘2”)—1 _o, 3) ey

(3.20)

3-(4j+1)—1
2

Proof. Note that L
(3.20) as

J =67 + 1, and we can rewrite statement

e <m((4j + 1)22+ (4j +1))

+6j+3,3) =+ (j+1)?
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mist (m((47 +1)% + (45 + 1
:p[s][]( ((44 )2 (45 + 1))

According to Proposition 3.4.2 the greatest part of any partition counted
by

+6j+2,3>+1.

oy (m((4j + 1)22+ (45 +1))

+6j+3,3)

and

mls 45+ 1)+ (45 +1 .
is 45 4+ 1. So, partitioning

m((47 +1)*+ (45 + 1)) m((47 +1)*+ (45 + 1))
2 2

according to our rules is the same as partitioning 65 + 3 and 65 + 2 into three

+6j + 3 and +6j+2

parts less than or equal to 45 4+ 1. That is,

r+s+t=65+3 (3.21)
and

r+s+t=06j5+2, (3.22)

with 1 <t <s<r <45+ 1.

Clearly, the number of solutions of (3.21) with no restriction is p(65 +
3, exactly 3 parts) which, by item (ii) of Lemma 3.4.6 with 25 + 1 in place
of j, is

(27 +1)*+1 N (25 +1)2 :(2j+1)2+1 (2]'—1—1)2‘
R R [

2 4 2 4

Now we eliminate the solutions of r + s+t = 67 + 3 that do not satisfy
1<t <s<r <45+ 1, which are those with r > 45+ 1, orr =45+ 141
with 1 < ¢ < 25. For each value of 7, we have to eliminate the solutions

2 +2—i

of s+t = 2j + 2 — i, which are solutions. From item (ii) of

Lemma 3.4.6 with 25 + 1 in place of j, the total amount of solutions we have

Bl )

=1

to eliminate is

Observe that the case with 7 = 0 has no solution to be eliminated.
So, the number of solutions of (3.21) with 1 <t <s<r <4j+1is

(27 +1)2+1 N VQjJFl)QJ B {(2j+1)2J _(2j+1)2+1

— 2 i1 1)2
5 1 1 5 J (G +1)7,
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and we have

ms] (m((4j +1)% + (45 + 1))+3+ {3 (4j+1) -1

—1,3 |+1 = 72+ (j+1)2
Dy 5 5 J 7)"" JH(+1)

Moreover, the number of solutions of (3.22) with no restriction is p(6j +

65 +5)> 67 12
2, exactly 3 parts), which according to [AE04] is {< j;; ) }_ { ]; J -1,

or also, with simple calculation, 352 + 2j.
Now we eliminate the solutions of r + s +t = 65 + 2 that do not satisfy
1<t <s<r <45+ 1, which are those with r > 45+ 1, orr =45+ 141

with 1 <7 <275 —1. For each value of ¢, we have to eliminate the solutions of

27+1—14
2

3.4.6, item (iz), with 27 in place of j, the total amount of solutions we have

=1

s+t =27+ 1—1, which are in number of{ J . Again from Lemma

to eliminate is

And again in this case if ¢ = 0 there is nothing to be eliminated.
Then, the number of solutions of (3.22) with 1 <t <s<r <4j+11is

37 +2i— =22 +2j =2+ (j+1)> - L

Hence, we have

mls] (m((4j +1)% + (45 + 1>)+3+ {3 (45+1)—1

—2.3+1 = 2+(j+1)%

]

Theorem 3.4.10. Given m > 3, for alln =3 (mod 4), let us sayn = 4j+3
with j > 0, we have

i (m((4j SR CURE) B {3 (45 +3) - 1J _ 173) (4 1)

[s] 2 2

_ PEZ}[S] <m((4j + 3)22+ (47 + 3)) Lay P - (45 ;L 3) — 1J B 2’3)'

O

There is no need to show the proof of this last theorem. The ideas are

analogous to those from Theorem 3.4.9.
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3.5 The 4" diagonal

Most of the results from this section are similar to those presented in previous
sections, as well as their proofs. Therefore we choose to exhibit only the
proofs that are essentially different.

First of all, let us highlight in Table 7 some values of pg][s](n, 4) for 1 <
n < 200, contained in the 4" diagonal of the tables of functions f(q), f2(q),

and f(q).

f(q) Pl (n, 4)

(0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1,1,2,2,3,2,2,1,1,0,0,
0,0,0,0,0,1,1,2,3,4,4,5,4,4,3,2,1,1,0,0,0,0,0,0,0,1,1,2,3,5,5,7,7,8,7,7,5, 5,
3,2,1,1,0,0,0,0,0,0,0,1,1,2,3,5,6,8,9,11,11,12,11,11,9,8,6,5,3,2,1,1,0, 0,0,
4(q) | 0,0,0,0,1,1,2,3,5,6,9,10,13, 14, 16, 16, 18, 16, 16, 14, 13, 10,9, 6,5, 3,2, 1, 1,0,0, 0,
0,0,0,0,1,1,2,3,5,6,9,11, 14, 16, 19, 20, 23, 23, 24, 23, 23, 20, 19, 16, 14,11, 9,6, 5, 3,
2,1,1,0,0,0,0,0,0,0,1,1,2,3,5,6,9,11, 15, 17,21, 23, 27, 28, 31, 31, 33, 31, 31, 28,
27,23,21,17,15,11,9,6,5,3,2,1,1,0,0,0,0,...)
(0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,2,2, 3,
2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,4,5,4,4,3,2,1,1,0,0,0,0,0,0,0,0,0,0,
0,0,1,1,2,3,5,5,7,7,8,7,7,5,5,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,1, 2,3, 5, 6,
f5(q) | 8,9,11,11,12,11,11,9,8,6,5,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,1, 2, 3,5, 6,
9,10, 13,14, 16, 16,18, 16, 16, 14, 13,10,9,6,5,3,2,1,1,0,0,0,0,0,0,0,0,0, 0, 0,0, 0,
0,0,1,1,2,3,5,6,9,11, 14, 16, 19, 20, 23, 23, 24, 23, 23,20, 19, 16, 14, 11,9, 6, 5,3, 2, 1
1,0,0,0,0,0,0,0,0,...)
(0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0, 0,0,
0,1,1,2,2,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,4,5,4,4,3,2,1,1
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,5,5,7,7,8,7,7,5,5,3,2,1,1,0,0, 0,0,
5(q) | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,5,6,8,9,11,11,12,11,11,9,8,6,5,3,2, 1
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,5,6,9, 10, 13, 14, 16, 16, 18,
16,16, 14,13,10,9,6,5,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,
0,1,...)

Table 7: Values contained in the 4" diagonals of the tables of functions f2(q), f2(q),
and f%(q).

The following results and examples characterize the position of zeros and
non-zero integers contained in the 4** diagonals, and also provide the exact
values contained in those list of non-zero integers, based on a set of integer

partitions easier to be counted.

Proposition 3.5.1. Given m >4, foralln>1and 1 <i< (m—4)n+7
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we have

Non-zero lists of values in the 4" diagonal also obey a symmetry.

Proposition 3.5.2. Given m >4, for alln > 1 and 0 < i < 2n—2 we have

mls mn2+n . mls mn2+n .
p[s][](¥+4+z,4) :p[s][](¥+4n—z,4).

Example 3.5.3. For m =5, n =4 and t = 5, we have the same number of

elements in 13[;[81(59, 4) as in Pé][s](61,4), as shown in Table 8.

(59, 4) plsl

4[s]
B s

[s] (61, 4)

(4,4,4,4,4,3,...,1,1,1,1,1,4,2,2,1)
(4,4,4,4,4,3,...,1,1,1,1,1,4,3,1,1)
(4,4,4,4,4,3,...,1,1,1,1,1,3,3,2,1
(4,4,4,4,4,3,...,1,1,1,1,1,3,2,2, 2

(4,4,4,4,4,3,...,1,1,1,1,1,4,3,3,1)
| (4,4,4,4,4,3,...,1,1,1,1,1,4,4,2,1)
| (4,4,4,4,4,3,...,1,1,1,1,1,4,3,2,2)
K )

)
) | (4,4,4,4,4,3,...,1,1,1,1,1,3,3,3,2

Table 8: Table for Example 3.5.3

The following theorem describes the identity in Proposition 3.5.2 in terms
of a simpler type of partitions whose exact value is easier to find. Again its
demonstration follows the lines of those analogous results from Sections 3.3
and 3.4.

Theorem 3.5.4. Given m >4, for alln > 1 and 5 > 1 we have

2 -\ 2 :
pgz]{s]<m(n2+ n) +n+3,4> :pg}[s}<m((n+9)2+ (n+7)) +n+3’4>

= p(n — 1, at most 4 parts).

Example 3.5.5. Form =5, n =6 and j = 4, we have the partitions shown
in Table 9.
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P14, 4) P(284,4) P(5,at most 4 parts)
) (5)
10,10,10,10,10,---,1,1,1,1,1,5,2,1,1) | (4,1)
10,10,10,10,10,--- ,1,1,1,1,1,4,3,1,1) | (3,2)
10,10,10,10,10,--- ,1,1,1,1,1,4,2,2,1) | (3,1,1)
) |
) |

6,6,6,6,6, - 10,10,10,10,10,--- ,1,1,1,1,1,6,1,1,1

,,,,,,

6,6,6,6,6,---,1,1,1,1,1,5,2,1,1

6,6,6,6,6,---,1,1,1,1,1,4,3,1,1

( )

( ) |
( ) |
(6,6,6,6,6,-,1,1,1,1,1,4,2,2,1) |
( ) |
( ) |

6,6,6,6,6,---,1,1,1,1,1,3,3,2,1

10,10,10,10,10,--- ,1,1,1,1,1,3,3,2,1 (2,2,1)
10,10,10,10,10,--- ,1,1,1,1,1,3,2,2, 2 (2,1,1,1)

—~ o~ o~~~

6,6,6,6,6,---,1,1,1,1,1,3,2,2,2

Table 9: Table for Example 3.5.5

Recalling Definition 1.3.1, the notation [n] := {1,2,3,...,n — 1,n} ap-
pears in the next theorem. It deals with the particular case of Proposition
3.5.2, with ¢ = 2n — 2, characterizing the central term of any list of non-zero

integers in the sequence of values of p[rg][s](n, 4).
Theorem 3.5.6. Given m > 4, for alln > 1 we have

mis] (m(n2 +n)

Dl 5 +2n+2, 4) = p(2n+38, exactly 4 distinct parts in [n + 3]).

m(n? +n) m(n?+n)

Proof. First observe that +2n+2= +4n — (2n —2).

Now, according to Proposition 3.5.2; the greatest part of any partition

2
counted by pgb][s] (M +4n — (2n — 2), 4> is n. So we may write

r+s+t+u=2n+2,
withl <u<t<s<r<n.

By making
r'=r+3,

s =5+2,
t'=t+1 and
u = u,
note that 1 < v <t < § < 1" < n+ 3. Therefore, ', s, t' and v’ are

distinct, they belong to [n + 3], and

r+s+t+4 = r+3+s+2+t+14u
= 2n+2+6
= 2n+8.
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So we have p = (1, ', ', u’) € P(2n+8, exactly 4 distinct parts in [n + 3]).
The reverse map is simple to build.
[

Example 3.5.7. Form =4 andn = 1,2,3, we have the partitions shown in
Table 10.

n=1 Pé][s] (8,4) P(10, exactly 4 distinct parts in [4])
(1,1,1,1,1,1,1,1) (4,3,2,1)

n=2 Pil(18,4) P(12, exactly 4 distinct parts in [5))
(2,2,2,2,1,1,1,1,2,2,1,1) (5,4,2,1)

n=23 Pél[s](32, 4) P(14,exactly 4 distinct parts in [6])
(3,3,3,3,2,2,2,2,1,1,1,1,3,3,1,1) (6,5,2,1)
| (3,3,3,3,2,2,2,2,1,1,1,1,3,2,2,1) | (6,4,3,1)
| (3,3,3,3,2,2,2,2,1,1,1,1,2,2,2,2) | (5,4,3,2)

Table 10: Table for Example 3.5.7

3.6 Some considerations about the k" diago-
nals for £ > 5

Some results of the previous sections involving partitions counted by pﬁf}[s] (n, k)

were very similar for £ = 2,3, and 4. At this point of the text, we may al-
ready believe that those facts might be extensible for other values of k, or
maybe even any value of k > 2.

Indeed, a very simple fact that can be observed anywhere, in every table
of functions f™(q), is that every k'-diagonal seems to be formed by non-
constant symmetrical list of integers, besides a few zeros between these lists.
Both these results were presented in the previous sections of this chapter
and can be generalized for any value of k, as it is set below. The proofs are
similar to those from the previous sections and completely adaptable, thus

we chose to omit them.

Theorem 3.6.1. Given k > 2 and m >k, for alln > 1 and 1 < i <
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(m — k)n+ 2k — 1 we have

2
o (m(”_2+ L) k;) — 0.

Theorem 3.6.2. Given k > 2 and m > k, for alln > 1 and 0 < i <

2 2
i (—m(n 2+ W ki, k:) = (—m(n 2+ ") i, k:)

3.7 The particular case of m =1

By making m =1 in (3.1) we get the function

fi(a) :Z(q

“— (¢ q)n

n2+n
2

Remark 3.7.1. Do not miz up functions f1(q) and f;(q). The first one is
f™(q) with m =1 and the second is fI"(q) with m =2 from Chapter 2.

Function f!(q) table (see Table 28, page 133) has some peculiar sequences
in its diagonals. That is, its diagonals seem not to behave in the same way
as the ones from the tables of other functions f"(q). Therefore, instead of
looking to its diagonals, an easy fact to observe in Table 28 is that the values
of its columns become fixed below certain cells. This sequence of fixed values
can be interpreted in terms of partitions into distinct parts, as described by

the following theorem.

Theorem 3.7.2. For alln > 0 and i > 0 we have

p[ls[]s]@n +3+i,n+1) = pa(n+3,with 1 as a part). (3.23)

Proof. We begin by establishing a bijection between sets P[i%s] (2n+3+1i,n+1)
and Py(n 4 3, with 1 as a part) for ¢ = 0.

Let us consider the Ferrers graph of a partition counted by p[ls[]s ] (2n+3,n).
Since it has all the parts from 1 to s with no gaps, we can separate, from the

top to the bottom, a triangle of size s. Let us call it T5.
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We rearrange the remaining dots of the graph by aligning them horizon-
tally to the top. Note that there are exactly n remaining parts less than or
equal to s. We subtract one unit from each one of these n parts and con-
jugate what is left, getting a partition into at most s — 1 parts less than or
equal to n.

By joining this new partition aside to the triangle T, we get a partition
of n + 3 into distinct parts having 1 as a part.

Conversely, given a partition counted by py(n + 3, with 1 as a part), we
separate the greatest possible triangle of its Ferrers graph, saying, 7;. Then
we rearrange the remaining dots vertically on the left, having a partition V.
We conjugate V', and add n dots to it as it follows: create enough parts of
size 1 in such a way as to have a total amount of n parts; distribute the
remaining dots one by one through the parts, starting by the greatest one
and noting that this one has to be at most of size j.

Looking to V' by columns, we slide its first column j units down; its
second column j — 1 units down; and so on. In general, we slide the k'
column j — k + 1 units down so that the triangle 7} fits on the left hand
side of V. By joining Tj and V aside, we get a partition of 2n + 3 into parts
ranging from 1 to s with no gaps and multiplicity 1, and n other parts from
1 to s.

In order to have the result for every i > 0, note that an easy bijection
between Pégs](Zn—i—B, n) and P[ls%s](2n+3+i, n+1) adds (conversely, subtracts)
1 parts of size 1.

O

Example 3.7.3. Forn =8, 1 =4 and i = 0, we have the partitions shown
wn Table 11.

P[lsgs](23, 12) P[lsgs](w, 8) P,(11, with 1 as a part)
(4,3,2,1,2,1,1,1,1,1,1,1,1,1,1,1) | (4,3,2,1,2,1,1,1,1,1,1,1) (5,3,2,1)
(3,2,1,3,3,2,1,1,1,1,1,1,1,1,1) (3,2,1,3,3,2,1,1,1,1,1) (6,4, 1)
(3,2,1,3,2,2,2,1,1,1,1,1,1,1,1) (3,2,1,3,2,2,2,1,1,1,1) (7,3,1)
(3,2,1,2,2,2,2,2,1,1,1,1,1,1,1) (3,2,1,2,2,2,2,2,1,1,1) (8,2,1)
(2,1,2,2,2,2,2,2.2.2.1,1,1,1) (2,1,2,2,2,2,2,2,2,2) (10,1)

Table 11: Table for Example 3.7.3

In order to illustrate the bijection described in the proof of Theorem 3.7.2

we take the partition (3,2,1,3,3,2,1,1,1,1,1) € P[i][s}(19,8) and describe

the map step by step until we get the partition (6,4,1) € Py(11, with 1 as a part).
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Remark 3.7.4. Observe that statement (3.23) in Theorem 3.7.2 can also be

written as:

p[ls[js](Q” +3+i,n+1) = pg(n + 2, with no part of size 1).

3.8 Final words

According to the information contained in this chapter, in every table, for
any value of m > 2, the results we proved tell us exactly the number of

mls]

partitions of n counted by Py (n, k), for k = 2,3,4.

m(n2 +n)
2

The k" diagonal of any table generated by function f(q) = >_°°

n=0 (.
alternates a sequence of zeros with a symmetrically increasing and decré;]’siqrzg;
list of non-vanishing numbers. For the special cases of k = 2,3, and 4, these
lists may be counted in an easier way when seen as other type of partitions.
The influence of m in such a list is restricted to the size of the sequence of
zeros, while, given a fixed k, the non-vanishing sequences are the same in all
tables.

Every value of n can be written in some way given by the propositions

and theorems of this thesis. The actual number of partitions of such n into
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parts ranging from 1 to s, with no gaps and multiplicity m, and k other parts

from 1 to s, may depend on the combination of few results.
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CHAPTER 4

A new approach for two-line matrix representations

4.1 Introduction

In this part of the work we deal with the matrix representation for integer
partitions in a different way. As it has been pointed out in [SMR11], each
two-line matrix representation for the partitions of n can be associated to a
lattice path through the Cartesian plane, connecting the origin (0,0) to the
line  + y = n. Although a description of a possible path is rapidly done in
[SMR11], in this thesis we explore this approach more deeply.

In the following pages we describe the lattice paths induced by the two-
line matrix representation and associate different sets of integer partitions to
them. In particular, we deal with unrestricted partitions, partitions counted

by the 1** and 2"¢ Rogers-Ramanujan Identities, and those generated by the
5(n2+n)

o G
=0 (g q)n

. The main results contained in this chapter

Mock Theta Functions f2(q) = .
nn+l)(_ 2 2
o 4 (=4, ¢)n
T (q) =),
1) = 2 (¢, ¢*)nt1
have already been accepted for publication at the Bulletin of the Brazilian
Mathematical Society, New Series (see [SM18]).

studied in Chapter 3, and

68



Marilia L. Matte Matrix Representations for Integer Partitions: Some Consequences and a New Approach

4.2 The Path Procedure

Let us consider the unrestricted integer partitions, which have at least three

different two-line matrix representation. We choose the following one.

Theorem 4.2.1 (Theorem 4.1, [SMR11]). The number of unrestricted par-

titions of n is equal to the number of two-line matrices of the form

i C €3 -+ Cg (41)
di dy ds -+ dy ]’ '

where cs = 0, ¢; = ¢i11 + dr1, and the sum of all entries is equal to n.

Observe that for every matrix the sum of the entries of each column gives
the respective part of the original partition. That is, the k' part of the

associated partition of n is equal to ¢i + di. For n = 6 we have the following.

Example 4.2.2. For n = 6 we have p(6) = 11, and so there are 11 matrices

satisfying Theorem 4.2.1, as it can be seen in Table 12.

P(6) Matrix of type (4.1) P(6)  Matrix of type (4.1)

(1,1,1,1,1,1) ((1) (1) (1) (1) (1) ?) (3,3) (3 g)
(2,1,1,1,1) (1 é (1) (1) ?) (4,1,1) <z1), (1) (1))
(2,2,1,1) <(2) 1 (1) ?) (4,2) (; 2)
(2,2,2) (3 (2) 2) (5,1) (zll (1)>
(3,1,1,1) (; (1) (1) 2) (6) (2)
sy (210)

Table 12: Table for Example 4.2.2

We associate each matrix of Theorem 4.2.1 (and thus each partition of
n) to a path built through the Cartesian plane, connecting the point P =
(-7 ,di, >0, ¢) in the line z 4+ y = n to the origin (0,0). We choose the
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second line of the matrix to be associated to the z-axis, and the first line to
be associated to the y-axis.

The path consists of shifting ¢, units down, dg units to the left, then ¢,
units down, ds_; units to the left, and so on, ending with d; units to the left.

So we create a path which connects the following points:

S S— S—
K3

p_ (iildi’ZQ) N (iildi,iq) — (jiidi,iq) —

i=1 i=1 i=1

s—1 s—2 5—2 s—2
i=1 )

=1 =1 =1
— (dl + dQ,Cl + Cg) — (dl + dQ,Cl) — (dl,Cl) — (dl,O) — (O, O)

Example 4.2.3. For n = 6 we take the matriz

M:2110
0101

associated to the partition (2,2,1,1). The path associated to M connects the
points (2,4), (1,4), (1,3), (1,2), (0,2), and (0,0), as shown in Figure 4.1
below.

Figure 4.1: Tlustration for Example 4.2.3

Remark 4.2.4. Note that (Zle d;, Zf;ll ci) = P, since ¢, = 0.

Remark 4.2.5. According to the conditions satisfied by the entries of each
matriz of type (4.1), note that every down move is necessarily at least as

large as the previous left move.
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Now we reflect the path through the line x 4+ y = n and create the parts

of a new partition by taking hooks of the following sizes.
2(n —dy) — 1;
2(n—dy — 1) -1,
2(77,— dl — (Cl — 1)) — 1,
2(n—d1—d2—01)—1;

2(n—d1—d2—01—1)—1;

2(”—d1—d2—01—(02—1))—1;

2n—dy — - —dy —c1 — ... — 1) — 1
2(n—dy — - —dy—c1—...—cp1— 1) —1;
2(n—dy— - —dy—c1— ... — g1 — (e — 1)) — 1;
2(n—d1—-~~—ds—cl—...—cs,1—|—l)—1.

Based on the construction above, we get a partition of some integer m
into distinct odd parts greater than 1 and less than or equal to 2n — 1, since
the matrix representation of an original unrestricted partition of n has entry
d; > 0. Therefore, m < n? — 1.

Example 4.2.6. For the matrix

2 11
M = X
0101

associated to the partition (2,2,1,1) of n = 6, the hooks given by the reflection
of the path through the line x +vy = 6 provide the parts 11,9,5, and 3, that s,
the partition p = (11,9,5,3) of m = 28. Figure 4.2 below helps to understand
the process.
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Figure 4.2: Tlustration for Example 4.2.6

Partition into Partition into
Matrix for n = 6 Matrix for n = 6
distinct odd parts distinct odd parts
111110 3 0
(11,9,7,5,3) (11,9,7)
0 00 0O01 0 3
1 1110 1 10
(9,7,5,3) (5,3)
1 0 001 301
2110 2 0
(11,9,5,3) (7,5)
0101 2 2
2 20 10
11,9,7,5 3
( 0 0 2 ) ( ) ( 4 1 ) ®)
1110 0
(7,5,3) 0
2 0 01 6
2 10
9,7,3
( 1 11 ) ( )

Table 13: Table for Example 4.2.7

Example 4.2.7. By considering all the matrices in Example /.9.3 we get

the partitions into distinct odd parts contained in Table 15.

It is clear that each matrix associated to a different partition of n gener-
ates a different path from the line 24y = n to the origin (0, 0), and therefore
a different partition into distinct odd parts. However, there are matrices as-
sociated to partitions of different integers n that induce different paths but

same hooks, generating the same partition into distinct odd parts. This fact
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is illustrated in the next example.

Example 4.2.8. Let us take the partition (4,1,1) of 6 and the partition

(2,1,1) of 4. The matrices associated to them are, respectively,

110 110
and .
(301) (101)

The paths that these matrices origin are different, although both paths
induce the same hooks and, therefore, the same partition into distinct odd

parts. Figure 4.3 helps to understand this example.

n==6 n=4

Figure 4.3: Tlustration for Example 4.2.8

The fact in Example 4.2.8 occurs precisely because of the entry d; in
both matrices. Since a step of size d; lies over the z-axis, it doesn’t produce
any hook and, therefore, doesn’t contribute with any odd part to our new
partition. In fact, once a partition of some m into distinct odd parts gener-
ated by the matrix representation of some partition of n appears for the first
time, it will continue to appear for any larger value of n, since n always has
a partition whose matrix representation only changes the entry d; from the
matrix associated to a partition of n — 1.

In order to simplify our writing, we give a name to this process of building
new partitions into distinct odd parts from the usual partitions of n. This is

set in the following definition.

Definition 4.2.9. We call the process described above the Path Procedure.

More precisely, from now on, we use the denomination Path Procedure when
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referring to the process of building partitions into distinct odd parts from
the two-line matrix representation of a specific set of integer partitions. The
construction consists of connecting the point P = (37, d;,> ., ¢;) in the
line z + y = n to the origin (0,0) by shifting successively ¢; units down and
d; units to the left, for ¢ from s to 1, reflecting the path through the line
x + 1y = n, and taking hooks of odd sizes which will constitute the parts of
the new partition.

The previous considerations motivate questions like:

Question 1. Which integers are being partitioned into distinct odd parts by
the Path Procedure?

Question 2. Given a partition into distinct odd parts, is it generated by an

unrestricted partition, according to our construction?

Question 3. In case of an affirmative answer to Question 2, how to recover

the matrix which induced the given partition into distinct odd parts?

Remark 4.2.10. Question 3 might be inaccurate, since we have seen that
the matrixz which induced a given partition into distinct odd parts isn’t in fact
unique. However, except for the entry dy, the matriz we are looking for is

well determined.

We intend to answer the questions above in the following sections.

4.3 Recovering a matrix

We start with some general observations which will lead us to a map from
some specific partitions into distinct odd parts to the matrix representation
from Theorem 4.2.1.

Remark 4.3.1. The j* odd integer is 25 — 1.

Remark 4.3.2. Given a partition into distinct odd parts A = (2X\;+1,2X\;_1+
L., 20+ 1,20 + 1), with A\; > A\j_1, observe that there are A\j — X\j_1 — 1
distinct odd integers between 2X; + 1 and 2X\;_1 + 1.

Let A be a partition obtained from the matrix representation of an unre-
stricted partition of n, and call its smallest part 2A\; + 1. According to the
Path Procedure, the hook generated by the path from the line x+y = n to the
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origin (0, 0) which gave origin to the smallest part 2A; + 1 was obtained from

a left move of \; units. So, ¢, = 0 and dy; = A\;. Necessarily, ¢,_1 = A1, which

means that a down move of \; units generates a sequence of \; consecutive

odd parts, which are 2A\; +1,2(A; + 1)+ 1,2(A; +2) +1,...,2(2\ — 1) + 1.
Now there are two possibilities:

(a) If 2(2A1)+1 is a part of the partition A, it means that it was generated
by a down move, with no left move before it. In this case, d,_; = 0 and
¢s_2 = A1, which means that again there is a sequence of \; consecutive
odd parts 2(2A1) + 1,220 + 1) +1,...,2(3\ — 1) — 1.

(b) If 2(2A;) +1 is not a part of the partition A, then a left move is allowed.
In this case, let us call 2X\s + 1 the first part that appears in A after
2(2)\1—1)+1 So ds—l = )\2—(2/\1—1)—1 = /\2—2)\1 and Cs_9 = )\2—/\1.

By repeating an analogous argument until the last part of the partition A,
we obtain the values of ¢; for all j > 1, and d; for all j > 2. The value of d;
is the size of the last left move of the path. Observe that it does not generate
any odd part, and so it can be as large as we want. In other words, the entry
d; of the matrix does not affect the size of the partition into distinct odd
parts; it only affects the size of n in the original unrestricted partition.

Now, having a matrix representation which originated the partition into
distinct odd parts (which turns out to be precisely the representation given
by Theorem 4.2.1), by summing its columns we get the original unrestricted

partition of n that induced the partition into distinct odd parts.

Example 4.3.3. Let us take the partition (11,9,5,3). By considering all
the positive odd integers we see that, before the part 3, the odd integer 1 is
omitted. This means that the path between x +y = n and (0,0) starts with
a left move of size 1, which implies dy = 1. Consequently, cs_1 = 1. This
implies a down move of size 1, which generates the part 3.

As the next part is the consecutive odd number 5, we have one more down
move of size 1, with no left move in between. This means that ds_1 = 0 and
Cs_o = 1.

After that, the part 7 is omitted because of a left move of size 1, which
means that ds_o = 1. Necessarily c,_3 = 2, and so we have a down move of
size 2, which generates the last two parts, 11 and 9.

By this construction, s —3 =1 and so s = 4. The entry d, has the size

of the last left move necessary to reach the origin (0,0).
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As it is illustrated in Example 4.3.3, the first line of the matrix associated
to some partition of n expresses the size of the sequences of consecutive odd
parts less than or equal to 2n — 1 that appear in the partition. The second
line expresses the size of the sequence of consecutive odd numbers that are

not parts of the partition.

j=i+1
clude that, given an increasing finite sequence of distinct odd integers, it is

By recursion it is easy to note that ¢; = ) d;, and so we can con-
a partition generated by a matrix, according to Theorem 4.2.1, if the size
of any subsequence of consecutive odd numbers is either exactly the number
of smaller odd integers that were omitted before the subsequence started or,
in case there is some entry d; = 0, a greater multiple of it. Also, note that
the part 1 does never appear but the smallest part may be any odd integer

greater than or equal to 3.

4.4 The Path Procedure applied to unrestric-

ted partitions

In this section we set some results obtained from the Path Procedure applied
to unrestricted partitions of n.

Just to keep how we got here in mind, let us recall what we understand as
the Path Procedure: given any value of n, we consider the matrix representa-
tion of its unrestricted partitions, according to Theroem 4.2.1, and associate
each one of them to a path through the Cartesian plane, connecting the line
x +y = n to the origin (0,0). Then, by reflecting this path through the line
x 4+ y = n, we build hooks of odd sizes which constitute distinct odd parts.
By adding up these new parts we get a partition of some integer m < n? into
distinct odd parts, whose size of any subsequence of consecutive odd num-
bers that are parts of the partition is either exactly the number of smaller
odd integers that were omitted before the subsequence started or a greater
multiple of it.

For each value of n we count how many times each integer m appears
in the construction described above. This data is organized in squares of
size n X n (or tables with n? cells), as illustrated in Figures 4.4, 4.5, and 4.6
below.

The figures illustrate the distribution of frequencies of partitions of m in

squares of size n x n, induced by the partitions of n. Each cell contains how
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0 1 0
7 8 3

1 0 1 0 0
3 a 3 4 5

0 0 0 0 0
1 2 1 2 B

Figure 4.4: n x n squares for n = 2 and 3

0 0 0 1 0
21 22 23 24 25

0 0 1 0 0 0 1 0 0
13 14 15 16 13 14 15 16 17

0 1 0 0 0 1 0 0 0
7 8 9 10 ¥ 8 9 10 13

1 0 0 0 1 0 0 0 1
S 4 5 11 2 4 5 11 19

0 0 0 1 0 0 0 1 0
1 2 B 12 1 2 B 12 20

Figure 4.5: n x n squares for n =4 and 5

many partitions of m (m is indicated in the right down side of the cell) are
generated by the Path Procedure applied to partitions of n.

Another representation for the distribution of frequencies is presented in
Figure 4.7. We organize in columns the same frequencies contained in the

cells of the figures above. We show the case for n = 8.

Remark 4.4.1. Observe that the column for m = 48 has height 2. This
happens because the number 48 is generated by two different partitions into
distinct odd parts greater than 1 and less than or equal to 2 -8 — 1 = 15.
That is, the partitions (13,11,9,7,5,3) and (15,13,11,9), coming from the
original partitions of 8, (2,1,1,1,1,1,1) and (4,4), respectively.

Observe that, as n gets larger, the number of partitions of m < n? in-
creases quickly. That is, the number of partitions of m < n? grows faster
than n. So, the frequency columns can get very high. However, these fre-
quencies clearly cannot grow indefinitely; as n gets larger, new distinct odd
parts are allowed but they will not be used in every partition. At some point,
every column reaches a limited height.

By considering all the remarks and restrictions in the process of getting

new partitions, the Path Procedure motivates the following definition.

Definition 4.4.2. Let P,;(m) be the set of partitions of m into distinct odd

parts greater than 1 whose size of any subsequence of consecutive odd integers
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12 20 30 42 56 72 20 110 132 156

0 1
434 435
0 4
394 395
4 0
356 357
7 0
320 321
0 6
286 287
0 6
254 255
3| 0
224 225
3 0
196 197
0 0
170 198
2
171 199
3 3
172 200
0
173 201
0 0
178 202
2 3
175 203
2 6
176 1204
0 0
177, 205
0 0
178 206
3 5
179 207
3 5
180 208
0 0
181 209
0 0
182 210

227

238

239

240

437 438 439 440 441

337 398 399 400 401

359 360 361 362 402

323 324 325 363 403

283 230 326 364 404

257 231 327 365 405

258 232 328 366 406

269 302 338

270 304 340

271 305 341

272 306 342 380 420

Figure 4.6: n x n square for n = 21

13 14| 15 158 17 27
0 1 ] 0 0 1

T 8 3 10 18 28
1 0 0 0 1 0

3 4 5 11 19 29
0 0 0 1 0 0

1 2 6 12 20 30

0
&2 64
0
43 50
1
37 51
1
El:} 52
0
EL] 53
0
40 54
0
41 55
1
22 56

is either exactly the number of smaller odd integers that were omitted before

the subsequence started or a greater multiple of it. Also,

Pod(m)‘ = pod(m)-

Remark 4.4.3. The index “od” stands for odd and distinct.
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Figure 4.7: n x n square for n = 8 and its representation by columns

Remark 4.4.4. If no odd integer is omitted after some subsequence of parts,
we assume the number of omitted parts is zero, and the size of the following
subsequence of parts will have the same size of the previous one. Note that
the integer 1 is never a part, so the first subsequence of omitted parts has at
least size 1.

As an example, we take the cell of m = 232 in Figure 4.6, and so the
greatest part allowed in any of its partitions is 2:21—1 = 41 (this is important
for determining the value of the entry d; of the associated matrices). As this

cell has the number 5 in it, this means p,q(m) = 5.

Example 4.4.5. For n =21 and m = 232 we have p,s(m) =5, as it can be

seen in Table 1}.

P(21) Matrix representation P,4(232)

2211111111110

(7.2.2,1,1,1,1,1,1,1,1,1,1)
5010000O0O0O0O0O0T1

> (31,29,27,25,21,19,17,15,13,11,9,7,5,3)

53310
(9,5,3,3,1) (4 D 1) (33,31,29,27,25,19,17,15,13, 11,9, 3)
541110
(9,5,4,1,1,1) (4 s 00 1) (33,31,29,27,25,21,19,17,15,7,5,3)
6211110
9,6,2,1,1,1,1 35,33,31,29,27,25,15,13,9,7, 5,3
3410001
8§ 110
(11,8,1,1) (3 -0 1) (35,33,31,29,27,25,23,21,5,3)

Table 14: Table for Example 4.4.5
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With all the considerations made until now, we can assure that both sets
of unrestricted partitions of n and of partitions defined by Definition 4.4.2
have the same cardinality.

In the following pages we set some results that characterize the numbers
contained in squares like the ones in Figures 4.4, 4.5, 4.7, and 4.6. We begin
with a characterization of the numbers m that appear with frequency zero

in our squares.

Proposition 4.4.6. For all n > 0 we have
Doa(4n + 1) = 0 = poa(4n + 2).

Proof. We prove that poq(4n + 1) = 0. The other equality has an analogous
proof.

Let us suppose, by absurd, that p,q(4n + 1) # 0. So, we would like to
partition 4n + 1 into distinct odd parts greater than or equal to 3. For these

parts to sum 4n + 1, there are the following possibilities:

(1) anumber =1 (mod 4) of parts, all of them =1 (mod 4);

(#7) a number =3 (mod 4) of parts, all of them =3 (mod 4);

(13i) j parts = 1 (mod 4) and a number = j — 1 (mod 4) of parts = 3
(mod 4);
(tv) j parts = 3 (mod 4) and a number = j — 3 (mod 4) of parts = 1

(mod 4).
Let us begin with case (i), supposing we could partition 4n + 1 as
A= (2(2k;+1) = 1,2(2kj_1 +1) = 1,...,2(2ko + 1) — 1,2(2k; + 1) — 1),

with 7 =1 (mod 4) and k; > k;_;.

In this case, observe that, as 1 cannot be a part of A\, the smallest odd
part that can appear is 5. So, d, > 2 and then ¢,_1 = ¢, +ds = dg > 2.
However, every c¢; should be 1, since there are no consecutive odd parts in .
As this is a contradiction, case (i) can never occur.

With an analogous argument, case (i) is also not possible: if we could

partition 4n + 1 as

A= (2(2k; +2) — 1,2(2kj_0 +2) — 1,...,2(2ks + 2) — 1,2(2ks + 2) — 1),
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with j = 3 (mod 4) and k; > k;_1, observe that again there would not be
consecutive odd parts in A, which means d; # 0 Vi and ¢; = 1 Vi # s. But
then we get c,_1 > 2, and so this case cannot occur either.

In case (i7i) observe that in a partition with j parts = 1 (mod 4) and a
number = j—1 (mod 4) of parts = 3 (mod 4), essentially two configurations
are possible: either all the parts are non-consecutive odd integers or there is
at least a subsequence of two consecutive odd parts.

In the first configuration, with no consecutive odd parts, the same argu-
ment used in cases (i) and (i7) is valid: every ¢; Vi # s should be 1 when
they are actually not. So this configuration is not possible.

If there is a subsequence of consecutive odd parts, let us say it has size
r and suppose it is the first subsequence of consecutive odd parts of the
partition, when reading from the smallest to the largest part.

If this subsequence does not contain the smallest parts of the partition,
again we have the problem of existing a ¢ such that ¢; must be 1 when it is
actually not. So, let us suppose the r consecutive odd parts are the smallest
parts of the partition, saying 2k, — 1,2(k, — 1) —1,...,2(k, —r+1)—1. In
this situation, ¢, =0, ds =k, —r, and ¢,_1 =k, —r.

If K, —r > r we have a contradiction. If k. — r < r, then d,_; = 0 and
cs—o = k. —r. By repeating this argument (which has an end, since the
sequence 2k, — 1,2(k, — 1) —1,...,2(k, —r+ 1) — 1 is finite), we will find a
t such that ¢; must be 1 when it is actually not. If k, —r = r, then ds_; > 0
and c,_o > r, and we may start a new subsequence of consecutive odd parts.
By analysing the parity of k. — r, r, and the others ¢; and d;, we conclude
that no configuration allows j parts = 1 (mod 4) and a number = j — 1
(mod 4) of parts = 3 (mod 4). So, case (iii) does not happen either.

By noting that in case (iv) we may use the same argument as in case
(i17), we conclude that pyg(4n + 1) = 0.

In order to show that p,q(4n + 2) = 0, we just observe that for distinct
odd parts greater than or equal to 3 to sum 4n + 2, there are the following

possibilities:
(i) anumber =2 (mod 4) of parts, all of them =1 (mod 4);

(77) a number =2 (mod 4) of parts, all of them =3 (mod 4);

(13i) j parts = 1 (mod 4) and a number = j — 2 (mod 4) of parts = 3
(mod 4);
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(tv) j parts = 3 (mod 4) and a number = j — 2 (mod 4) of parts = 1
(mod 4).

The arguments in each case are the same we have already used and we
omit them. So, pog(4n + 1) = 0 = poa(4n + 2).
O

In order to proof the next results we have to set some definitions. First,
recall that the smallest odd part of any partition generated by the Path
Procedure has to be greater than 1, since the matrix representation for un-
restricted partitions of n has entry ¢, = 0, which means that the path from
the line x + y = n to the origin always starts with a left move of size d;.

The size of the smallest part of our new partitions is determined by the
size of d,, which we call the first missing subsequence of the partition. We
understand the first missing subsequence as the first sequence of consecutive
odd integers that do not appear as parts of the partition, which are 2k; —
1,...,3,1. Let us call dy, = k.

After the first missing subsequence of k; consecutive odd integers we have
the first subsequence of consecutive odd parts that compose the partition. Its
size is determined by the entry c,_; of the matrix. As ¢, 1 = ¢s + ds =
0 + k; = ki, this means that the parts of the first sequence are 2(2k;) —
1,...,2(k1+2)—1,2(k; + 1) — 1.

Some examples of partitions that have only the first missing subsequence

and after it exactly one subsequence of consecutive odd parts are
(3),(7,5),(11,9,7), (15,13,11,9),

which are, respectively, partitions of 3, 12, 27, and 48 generated by the Path
Procedure applied to unrestricted partitions of n = 8. In the general case,
those partitions into odd parts have to be generated by a partition of n into
two parts, since its matrix representation has two columns, which means a
path with only one down move of size ¢; = k;. The following result gives a

general characterization of partitions like those.

Proposition 4.4.7. The Path Procedure applied to the unrestricted parti-

tions of m into exactly two parts generates partitions of m = 3k%, with
n
1 <k < {EJ, those being precisely all of the numbers whose partition

has only the first missing subsequence and after it exactly one subsequence of

consecutive odd parts.

UFRGS 82 March, 2018



Marilia L. Matte Matrix Representations for Integer Partitions: Some Consequences and a New Approach

Proof. The parts of the first subsequence are 2(2k;) — 1,...,2(k; + 2) —

1,2(k; + 1) — 1. As our partition has no other part, we may write

m = 2(2]{31)—1+"'—|—2(k31+2)—1—|—2(k}1+1)—1
(2(2ky) — 1+ 2(k; +1) — 1)(ky)
2

= 3k

Clearly %y has to be at most LgJ , otherwise the greatest part 2(2k;) — 1

would exceed 2n — 1.
O

Unrestricted partitions of n with more than two parts have a matrix
representation into more than two columns, which means that each one of
its entries ¢; generates a different sequence of consecutive odd parts.

We call the second missing subsequence the second sequence of d,_; =
ko > 0 consecutive odd integers that do not appear as parts of the partition.
They are 2(2ky + ko) — 1,...,2(2k1 +2) — 1,2(2k; + 1) — 1. Observe that
ko can actually be equal to 0: its size is determined by A\s_1 = cs_1 + ds_1,
where A\,_; is part of an unrestricted partition of n, and if \,_; = A, this
means d,_, = 0.

After the second missing subsequence of ks consecutive odd integers we
have the second subsequence of consecutive odd parts that compose the par-
tition, determined by the size of the entry c,_s of the matrix. As ¢, o =
Cs—1+ds_1 = k1 + ko, the parts of the second subsequence are 2(3k; + 2ky) —
1,...,2(2ky + ko +2) — 1,2(2k; + ko + 1) — 1. For example, n = 8 generates
the partitions

(5,3),(9,7,3),(11,9,7,5),(13,11,9,3), (15,13,11,7,5),

which are, respectively, partitions of 8, 19, 32, 36, and 51. A general charac-

terization of partitions like those is given next.

Proposition 4.4.8. The Path Procedure applied to the unrestricted parti-

tions of n into exactly three parts generates partitions of m = 8k? + ko(8k; +

~ 3k
3kz), with 1 < ki < LgJ and 0 < ky < V 23 1J.

Proof. A partition having the first and the second subsequences of parts can

UFRGS 83 March, 2018



Marilia L. Matte Matrix Representations for Integer Partitions: Some Consequences and a New Approach

be written as

m = 2(3k1+2/€2)—1++2(2/{71+k2+1)—1

+2(2k;) — 14 +2(ky + 1) — 1
(2(3ky + 2ko) — 1 +2(2ky + ko + 1) — 1)(ky + k2)
2
(2(2k1) — 1+ 2(ky + 1) — 1)(ky)
- 2
= (5ky + 3ky) (k1 + ko) + 3K2

= 8k3 + ko(8ky + 3ky).

The limitation for ko is obtained by observing that the greatest part
2(3ky + 2k2) — 1 cannot exceed 2n — 1. So,

n — 3k
2(3ky 4 2ks) — 1 < 2n — 1 = 3ky + 2k <n 22y < { 5 1J.
When £y = 0 the second missing subsequence does not exist, and so the two
subsequences of consecutive parts are actually seen as only one subsequence.

]

Now let us consider a partition into distinct odd parts having any number
of missing subsequences and subsequences of consecutive odd parts, saying t
and t + 1, respectively. We call kq, ko, ..., k; the sizes of the missing subse-
quences and, consequently, the subsequence after a missing subsequence of
size k; has size k1 + ko + - - - + k;.

Definition 4.4.9. (i) The sequence of ds_;1 consecutive odd integers is

called the i*" missing subsequence of the partition. We call dy_; 1, = k;.

(ii) The sequence of c,_; consecutive odd integers is called the i* subse-

quence of parts of the partition, and has size k1 + ko + - - - + k;.
The following lemma establishes the limits for each k;.

Lemma 4.4.10. The i"" missing subsequence of a partition into distinct odd
parts, whose parts derive from the Path Procedure applied to unrestricted

partitions of n, is at most

n — ((Z + 1)]{31 + kg + - - +4k; o + 3]{51'_1)
5 .
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Proof. The sequence of all odd integers, those from the missing subsequences
and from the subsequences of parts, cannot exceed 2n — 1. So, for example,
when there are 3 missing subsequences and 3 subsequences of parts, it is

necessary that
ki + ko + ks + (k1) + (k1 + k2) + (k1 + k2 + k3) < n,

which implies
n — 4]{71 - 3]{32
5 .
If there are ¢ missing subsequences and i subsequences of parts, it is

ks <

necessary that the sum of the sizes of the ¢ missing subsequences and of the

sizes of the ¢ subsequences does not exceed n. This means
kit ko4 k4 (k) + (b + ko) +- o+ (b + ke + -+ K) <,
which implies
(0 + D)ky +ikg + - -+ 4k;—o + 3ki—1 + 2k; < n.
So,
n—((i+1)ky +iko+ -+ 4ki—o + 3k;_q)

ki < .
- 2

]

Remark 4.4.11. The number of missing subsequences depends on the size of

each missing subsequence. We can have from just one to even n — 1 missing
n

subsequences. The first case is the one with ki = 5 ; the second one is the

case with ky =1 and k; =0 for2 <:<n—1.

Now we can extend our construction to a more general characterization
of the numbers partitioned into distinct odd parts, whose parts derive from

the Path Procedure applied to unrestricted partitions of n.

Theorem 4.4.12. The partitions into distinct odd parts induced by the Path

Procedure applied to unrestricted partitions of n are all of the form
t

> [(t+2—1i)% — 1]k

1=
n
1<k <2

i>1,0<k;< n—((i+1)k1+ik2+2‘“+4ki—2+3kz‘_1)
t—1 t—1
+ > koY 320t =i+ 3)kij1,(4.2)
i=1 =1
1<k:1<%

. n—((i+1) k] +iko+-+4k; _o+3k;_1)
i>1,0<k; < B i

where 1 <t <n-—1.
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Proof. First of all, let us rewrite the expression (4.2) by expanding the sums.

t

> [(t 42 —i)% — 1)k
1<

i>1, ngign*((i+1)’€1+i’€2+2-“+4’%72+3ki71)
t—1 t—1

+ ki > G20t —i+3)ki
i=1 j=1

1<k <2
n—((i+l)k1+ik2+~~~+4ki_2+3ki_1)
2

= (t+1)* =Dk + (#* — 1)k3 +--- +8k? | + 3k?
R (20t 4 2)ky + 2(2(t 4+ 2)) ko + -+ (E—2)(2(t + 2)) ks
+ (t—1)(2(t + 2))k2)
+ ko (20t + D)kt +2(2(6 4+ 1)) kq + - - + (6 — 2)(2(¢ + 1)) ks3)
4o
+ ky_3(12k; + 24k;_y + 36k;_3)
+ ky_o(10k; + 20k; 1)
+ ki—1(8ky) (4.3)

1>1,0<k; <

By considering a partition generated by the Path Procedure induced by
the unrestricted partitions of n, suppose it has t subsequences of consecutive
odd parts. Let us call ky, ko, ..., k; the sizes of the missing subsequences.
So, the sizes of the subsequences of consecutive odd parts are ki, ki + ko,
ki+ko+ks, ..., ki +ko+---+k; and the actual partition we are considering
has the following subsequences of consecutive odd parts:

204+ Dky 4+ -+ 3ki1 +2k) — 1, ., 2(tky + -+ 2k 1 + ke +2) — 1,
Athy + -+ 2k + ky +1) = 1;
2thy 4+ 3ko+ 2k 1) — 1., 2((t =Dk 4 42k + kg +2) — 1,
20t =Dk + -+ 2kt o+ ki1 +1) — 1

2(4ky + 3ko + 2ks) — 1,...2(3ky +2ko + k3 +2) — 1,2(3ky + 2ko + k3 + 1) — 1;
2(3ky + 2ka) — 1,...,2(2ky + ko +2) — 1,2(2ky + ko + 1) — 1;

and
2(2k1) —1,...,2(k1 +2) — 1,2(k1 +1) — L.
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The sum of those parts equals

2

N 2tk + - 4+ 2k + ke +1) = 1) (k1 + ko + -+ k)
2

n (2(thky + -+ -+ 3kp—o + 2kiq) — 1

2

20t —Dky+ -+ 2k o+ ki1 +1) = 1)(ky + ko + -+ k1)
2
N (2(4ky + 3ko + 2k3) — 1 + 2(3ky + 2ko + k3 + 1) — 1)(ky + ko + k3)
2
N (2(3ky + 2kg) — 1+ 2(2ky + ko + 1) — 1)(ky + k2)
2

N (2(2k)) — 1+ 2(ky + 1) — 1)(ky)

2

+ (2t = 1)k 4+ + Bk + 3ki1) (k1 + ko 4+ - + k1)
b

+ (Tky + Bko + 3ks3) (k1 + ko + k3)

+ (5ky + 3k2) (k1 + k2)

+ (3k1) (k1)

By rearranging the terms in the sum above we get expression (4.3), which

proves the theorem.
O

4.5 The Path Procedure applied to partitions
counted by the 1¥ Rogers-Ramanujan
Identity

Motivated by what we did in the previous sections, let us consider now the
matrix representation for the partitions of n into 2-distinct parts, that is,
partitions of n where the difference between parts is at least two. These
partitions are counted by the right-hand side of the 1%% Rogers-Ramanujan
Identity,

p(n|parts =1 or 4 (mod 5)) = p(n|2-distinct parts).
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Theorem 4.5.1 (Corollary 3.2, [SMR11]). The number of partitions of n
where the difference between parts is at least two is equal to the number of

two-line matrices of the form

Ci Cp C3 -+ Cg (44)
di dy dy -+ dg )’ '

where cs =1, ¢; =2+ ¢441 + diy1, and the sum of all entries is equal to n.

For every matrix the sum of the entries of each column gives the respective
part of the original partition. That is, the k' part is equal to ¢, + dj. As
an example, we take n = 6 and show its partitions into 2-distinct parts with

their associated matrices.

Example 4.5.2. For n = 6 there are 3 partitions into 2-distinct parts, and

so there are 3 matrices satisfying Theorem /.5.1, as we can see in Table 15.

P(6] 2-distinct parts) Matrix of type (4.4)

4 1
(4,2) (0 1)

31
(5:1) (2 0)

1
©) (5)

Table 15: Table for Example 4.5.2

As we have done in the previous sections, now we apply the Path Proce-
dure to the matrices from Theorem 4.5.1, producing partitions into distinct

odd parts.

Example 4.5.3. The Path Procedure applied to the partitions of 6 from

Example /.5.2 generates the partitions into distinct odd parts contained in
Table 16.

Remark 4.5.4. Note that now every integer partition generated by the Path
Procedure has a part of size 1. This is easy to see since ¢, = 1, which means
that the first move in the path from P = (3 ;_, d;,> i, ¢i) to (0,0) is an
exact down shift of size one.
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P(6] 2-distinct parts)  Matrix of type (4.4) Partition into distinct odd parts

(4,2) (11,9,7,5,1)

(5,1) (7,5,3,1)

N W O
[en RN —_ =

(6) (1)

[ S

Table 16: Table for Example 4.5.3

Figure 4.8 below illustrates the distribution of frequencies of partitions of
m in a square of size 20 x 20, induced by the partitions of 20, according to
Theorem 4.5.1. Each cell contains how many partitions of m (indicated in
the right down side of the cell) are generated by the matrix representation
of the partitions of 20.

281| 32| 333| 384 385| 3ms| 327 338| 388 390| 31| 392 393| 394 395 39| 397 398 399 a0
1 1
243) 344| 345 346 347| 34| 349 350| 351 352| 353) 354 355 356 357) 38| 359 3e0 361 262
1 1 1
207) 308| 308| 310 311| 312| 313 314| 315| 316| 37| 318 319| 320| 321| 333] 323 324 325| 3263
1 1
273 274| 275| a7e| 2 278| 279| 280 281| 282) 283 284| 285 286 287| 288| 289 290| 326| 364
1 1
241) 242| 243 244 245| 248| 24 24| 249| 250 251 252| 253) 254 255 256 25 291) 32 365
1 1
211] 212 213| 218 215] 218] 21 218) 219 220 221 222| 223] 224 25| 236| 3258] 292| 328 366
1
183| 134 135| 1ss| 187| 1es| 13| 190| 191 182| 1s3| 194 19s| 198| 1 22 253) 293 308|  36
1
15 158] 15| 1eo| 161 162| 163] 184| 165 166 18 168| 169 170| 188| 3228) 260| 294 330| 363
1 1
133) 134 135| 138] 13 138] 139| 140 141| 143| 143 144| 14s| 171 199| 229) 2e1| 295| 331 369
1 1 1
111 132) 113] a1e) 15| 116| an 118) 119 120 121] 122| 14s| 172| 200| 230] 262| 29| 332 370
1
91 92 93 54 95 96| g 58| o9| 100| 01| 123 147| 73| 201) 231 263] 29 333)
1 1
El 4| 5 5 g s 80| 81 82| 102 124| 148] 174| 202| 233 3264| 298| 334| 372
1
5 58| 55 &) 51 52 83 64| 5 23| 103( 125| 14s| 175| 203| 233 265| 299| 335| 373
43 44| 45 28| 47 ag| a3 50| 33 24| 104[ 126| 150| 178| 204 234 2es| 300| 336 374
1 1
21 2 33 34 35 26 E} 51 [ 25| 10s) 12 151) 1 05| 235) 28 01| 33 275
21 22 23 24| 25 38| 52 68 86| 10s| 128] 152] 178| 206| 236)| 268] 302| 338 376
1
13 14| 15 18| 17 27 L) 53 =) 87| 107| 129| 153 79| 207| 237| 23] 303 338 377
1|1
3| E 10| 18| 28| 40| 54| 0| ss| 108[ 130| 154] 130 08| 233 370| 304| 340 378
1
El 4| 5 11 19 29 a1 55 1 23| 10s[ 131| 155| 131 208 238| 3271| 305 341 378
1 1
1 2 3 12 20| 20) 12 56| 2 50| 110] 132| 15| 182 210] 240 272| 308| 342) 330

Figure 4.8: n x n square for n = 20

Similar to Definition 4.4.2, the Path Procedure applied to the matrices of

Theorem 4.5.1 motivates the following one.
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Definition 4.5.5. We call Pgq)(m) the set of partitions of m into dis-
tinct odd parts, always having 1 as their smallest part, and whose size of
any subsequence of consecutive odd integers equals the size of the previous
subsequence of consecutive odd integers that were omitted before the subse-

quence started plus the size of the previous subsequence of consecutive odd
parts plus 2. Also, }PR(Od) (m)| = DR(od)(M).

Remark 4.5.6. The letter R in the indez refers to the 15 Rogers-Ramanugjan
Identity.

Remark 4.5.7. If the part 3 appears after the part 1, this means that no
odd integer was omitted. In this case, the next subsequence of odd parts will
have size 1 + 2 = 3. If again after the first four odd parts the next one is
exactly the fifth odd integer, then the next subsequence of odd parts will have
size 3+2 = 5. In general, if no odd integer is omitted after some subsequence
of parts, we assume the number of omitted parts is zero, and the size of the
following subsequence of odd parts will be the size of the previous subsequence

of consecutive odd parts plus 2.

Proposition 4.5.8. The hooks induced by the order 2 x 2 matrices of The-

orem 4.5.1 associated to the partitions of some n constitute partitions of

3k2 + 14k + 16, with 0 < k < EJ _9.

Proof. Let \s be the smallest part of some partition of n into 2-distinct parts

whose associated matrix, according to Theorem 4.5.1, has order 2 x 2. Note

that this means that n = A + Ao, with Ay > Ay +2. So, 1 <\ < LgJ _1

By making k = Ay — 1, we have 0 < k£ < {gJ — 2.

The path induced by the matrix begins with a down move of size 1, then
a left move of size k, followed by a down move of size 2+ 1+ k =k + 3, and
ending with a left move of size n — 1 —k — (k+3) =n — 2k — 4.

When reflected through the line x + y = n the path generates hooks of
sizes 1,2(k+2)—1,2(k+3)—1,...,2(k+2+k+1)—1,2(k+2+k+2)— 1.
As the path ends with a left move of size n — 2k — 4, it lies on the x-axis and
does not generate a hook.

So the new partition into odd parts is
(2(2k+4) —1,2(2k+3) —1,...,2(k+3) - 1,2(k+2) — 1,1),

a partition of 3k? + 14k + 16.
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Example 4.5.9. Forn = 11 there are 4 partitions into 2-distinct parts whose

assoctated matrix has order 2 X 2, as shown in Table 17.

P(11] 2-distinct parts) Matrix of type (4.4) k  Pp(oq)((3k + 8)(k + 2))

(7,4) < (j ; > 3 (19,17,15,13,11,9,1)
(8,3) ( 2 ; > 2 (15,13,11,9,7, 1)
9,2) < : 1 > 1 (11,9,7,5,1)
(10,1) < ?7’ (1) ) 0 (7,5,3,1)

Table 17: Table for Example 4.5.9

Proposition 4.5.10. The hooks induced by the order 2 x 3 matrices of Theo-

rem 4.5.1 with dy = 0 or 1, associated to the partitions of some n, constitute

4k? + 44 11 —1)k 2
B+ k+2 7+ 3( ),withlngLEnJ—& More-

partitions of m =

3k
over, these partitions appear for the first time when n = {?J + 8.

Proof. Let us separate the proof in two cases: (i) odd k; and (i) even k. In

fact, odd values of k are related to ds = 0 and even values of k to dy = 1.
. . . o . k41
(1) If kis odd, let us call k =25 — 1 with j > 1, and so j = ——.

2
4k? + 44k + 117 4 3(—1)%
TARFNTESCDT  gpo | gop 457 — 82 +

For odd k£, m = 5
367 + 37, which can be partitioned as

A= (28j4+6)—1,2(3j+5) —1,...,2(j + 1) — 1,1).

3(27 -1 3k
Observe that 35 4+ 6 = %J +8 = {7J + 8, and so the greatest

3
part of A\ equals 2 ?J +8 ) — 1. Clearly, this partition is only possible for

3k 3k
n > {7J + 8. Also, for each n > {?J + 8, partitions like A are possible
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only for certain values of k:

s |B]vs = |20 s

—
—
—

andas k €Z, k < 2n;15 :{%{l

It is not difficult to verify that the matrix associated to the partition

above is
j+4 542 1
My = . :
d1 0 ] — 1

k
Recalling that {iJ =j — 1, we have

(Ll 2
(e )
o= (2] ) -o- (2] ) 0

k
(73) If k is even, let us call k =25 with j > 1, and so j = —.

2
4k? + 44k + 117 + 3(—1)*
RT3 o ook 460 = 872 +

N ™

For even k£, m = 5
4445 4 60, which can be partitioned as

A= (2(3j48)—1,2(3j4+7)—1,...,2(2j+4)—1,2(2j+2)—1+.. . +2(j+1)—1+1).

3(27 3k
Observe that 35 4+ 8 = \‘%J +8 = {TJ + 8, and so the greatest part

3k
of A equals 2({7 + 8) — 1. Clearly, this partition is possible only for

3k 3k
n > {7J + 8. Also, for each n > {?J + 8, partitions like A are possible
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only for certain values of k:

n > {%JJrS == LMJ <n-—28

2
— 35<n-8
N ,<n—8
=73
N k:<n—6
2 =73
. k§2(n—8)’
3
m—1 p
and as k € Z, k < |2~ GJ: 3” _5.

The matrix associated to the partition above is

k k
Recalling {EJ =3 = 7, we have

k k
\‘EJ +5 L§J + 2 1
My =

d; 1 EJ 1

= (8] 9) -0 (2] )

Example 4.5.11. For n = 14 there are 4 partitions into 2-distinct parts

]

whose associated matrix has order 2 X 3 and entry do = 0 or 1, as we can see
wn Table 18.

Proposition 4.5.10 can be generalized in such a way that an unique result
characterizes all the matrices of order 2 x 3, not only those with entry ds = 0

or 1. This is what the following theorem describes.

Theorem 4.5.12. The matrices of order 2 x 3 from Theorem 4.5.1, associ-

ated to the partitions of some n, have the form

k+t+5  t+3 1
+t+ + | (45)
n-9-2k-3t k t
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AR+ 44k + 117 + 3(—1)*

P(14] 2-distinct parts) Matrix of type (4.4) k& m 5 Proay(m)

531

(10,3, 1) 1 81 (17.15,13,11,9,7,5,3,1)
500
6 3 1

(9,4,1) 2 112 (21,19,17,15,13,11,7,5,3,1)
310
6 4 1 .

(8,4,2) ( . ) 3 141 (23,21,19,17,15,13,11,9,7,5,1)
7T 41 .

(7,5,2) - 4 180 (27,25,23,21,19,17,15,11,9,7,5,1)

Table 18: Table for Example 4.5.11

9 —9 -3t
with 0 <t < {nTJ and 0 < k < Ln—

2
Moreover, these matrices induce partitions into distinct odd parts of type

po= (2Bt+2k+9)—1,...,22t+k+6)— 1,22t +k+5) — 1,
22 4+4) —1,...,2(t+3) —1,2(t+2) —1,1). (4.6)

Proof. Let A = (A1, A2, A3) be a partition of n into 2-distinct parts. So,
AM>X+2and Ay > A3+ 2. Letuscall Ao = A3+2+kand \3 =1+t
with k,¢ > 0. Then

Mo=XM+2+k=k+t+3

and
M=n—Xdo—X3=n—(k+t+3)—(1+¢t)=n—Fk—2t—4.

[t is easy to see that A can be written as a matrix of type (4.5). And from
the Path Procedure we clearly get the partition p (4.6). The limitations for
t and k easily follow from dy = n — 9 — 2k — 3t being greater than or equal
to 0.

O

In a similar way as done in the previous section, now we characterize a
more general type of partitions into distinct odd parts generated by the Path
Procedure applied to the partitions of n into 2-distinct parts.

Recall that the smallest odd part of any of these partitions is always 1,
since the matrix representation of every partition of n into 2-distinct parts
has entry ¢s = 1. This means that the path from the line z + y = n to the

origin starts with a down move of size 1.
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In this case, the first subsequence of consecutive odd parts is composed
exactly of one part of size 1. After it, we have the first missing subsequence
of the partition, determined by the size of ds, which we call k; — 1, with

k1 > 1. The first missing subsequence of odd integers is
2%k —1,...,5,3.

After the first missing subsequence of ki — 1 consecutive odd integers
we have the second subsequence of consecutive odd parts that compose the
partition. Its size is determined by the entry c,_; of the matrix. As ¢, =
24+ cs+ds =2+1+k; —1 =k + 2, this means that the parts of the second

subsequence are
22k +2) —1,..., 20k +2) — 1,2(k; + 1) — 1.

Some examples of partitions that have a part 1 followed by the first miss-
ing subsequence and after it exactly one subsequence of consecutive odd parts

are
(7,5,3,1), (11,9,7,5,1), (15,13,11,9,7,1), (19,17, 15,13, 11,9, 1),

and
(23,21,19,17,15,13,11,1),

which are, respectively, partitions of 16, 33, 56, 85, and 120 generated by the
Path Procedure applied to partitions of n = 13 into 2-distinct parts.

The following result gives a general characterization of which numbers
are partitioned into distinct odd parts, its partition having one part of size 1
followed by the first missing subsequence and after it exactly one subsequence
of consecutive odd parts.

Proposition 4.5.13. The Path Procedure applied to the partitions of n into
2-distinct parts generates partitions of m = 3k} + 8k; + 5, with 1 < k; <

-2
{n 5 J, those being precisely all of the numbers whose partition has two

subsequences of consecutive odd parts.

Proof. As mentioned before, the first subsequence of consecutive parts is
always composed by a unique part of size 1. After it, the first missing sub-

sequence, which might exist or not, has size d;, = k1 — 1. And the parts of
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the second subsequence are 2(2k; +2) — 1,...,2(ky +2) — 1,2(k; + 1) — 1.

So we may write m as

m = 2(2k1+2) -1+ +2(k +2)—1+2(ks+1)—1+1

_ @Rk -1k ) -k t2)

2
= (Bk1+2)(k1 +2)+1
= 3k} +8k; + 5.

So we get = (2(2k;+2)—1,...,2(k1+2)—1,2(k; +1)—1, 1) a partition
of m = 3k? + 8k, + 5. Clearly k; has to be at most n-
greatest part 2(2k; + 2) — 1 would exceed 2n — 1. And k; has to be greater

than or equal to 1 so we can have dy = k; — 1 = 0.

, otherwise the

]

As it happens with unrestricted partitions, partitions of n into 2-distinct
parts with more than two parts have a matrix representation into more than
two columns, which means that each one of its ¢; generates a different sub-
sequence of consecutive odd parts.

We call the second missing subsequence the sequence of dy_1 = ko > 0
consecutive odd integers that do not appear as parts of the partition, which
are

2(2k1 + ko +2)—1,...,2(2k; +4) — 1,2(2k; + 3) — 1.

Again, ko can actually be equal to 0. Its size is determined by A, ; =
cs_1 + ds_1, where \;_; is part of a partition of n into 2-distinct parts, and
if As_1 = A; + 2 this means d,_; = 0.

After the second missing subsequence of ks consecutive odd integers we
have the third subsequence of consecutive odd parts that compose the parti-
tion, determined by the size of entry c¢,_o of the matrix. Asc, o =24c, 1+
ds_1 =242+ ki + ko = k1 + ko + 4, the parts of the second subsequence are

2(3k1 +2ko +6) — 1,...,2(2k1 + ko +24+2) — 1,2(2k; + k2o +2+1) — 1.
For example, n = 13 generates the partitions
(17,15,13,11,9,7,5,3,1),(21,19,17,15,13,11,7,5,3, 1),

(23,21,19,17,15,13,11,9,7,5,1), and (25,23,21,19,17,15,13,7,5,3,1),

which are, respectively, partitions of 81, 112, 141, and 149.
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A general characterization of which numbers are partitioned into distinct
odd parts, its partition having one part of size 1, the first and second missing
subsequences and after each one of them a subsequence of consecutive odd

parts, is given next.

Proposition 4.5.14. The Path Procedure applied to partitions of n into 2-

distinct parts, having exactly three parts generates partitions of m = 8k? +

2
3k2 + 8kyks + 36k1 + 20ks + 37, with 1 < k; < VTJ and 0 < ky <

n—3k1—6
—2 .

Proof. We may write

m o= 23k +2%ky+6) =1+ 22k +hy+2+1)—1+2(2k +2)— 1
o2k + 1) - 141
2(3ky + 2ky +6) — 1+ 2(2ky + kg + 2+ 1) — 1) (ky + ko + 4)

2
2(2k 2) — 14+ 2(k 1) —1)(k 2
NECERRE TSR TN

= 8kI + 3k3 + 8kiky + 36k, + 20k, + 37.

Then we get = (2(3k1 +2ka+6) —1,...,2(2k; + ko +2+1) — 1,2(2k; +

2) —1,...,2(ky + 1) — 1,1) a partition of m = 8k? + 3k3 + Skyko + 36k; +

20ko + 37. The limitation for ky is obtained by observing that the greatest
part 2(3ky + 2ks + 6) — 1 cannot exceed 2n — 1. So,

n—3k —6

2(3k1 +2ky +6) —1<2n—1=3k; +2ko + 6 <n = ky < —

]

Now let us consider a partition into distinct odd parts having a number ¢
of missing subsequences and t + 1 subsequences of consecutive odd parts. We
call ky — 1, ks, ..., k; the sizes of the missing subsequences and, consequently,
the subsequence after a missing subsequence of size k; has size ky + ko +-- -+

k; + 21. The following lemma establishes the limits for each k;.

Lemma 4.5.15. The i'" missing subsequence of a partition into distinct odd
parts, whose parts derive from the Path Procedure applied to partitions of n
into 2-distinct parts, is at most
n—((i+ 1)k +iky+ - +4kio + 3k +i(i + 1))
2
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Proof. The sequence of all odd integers, those from the missing subsequences
and from the subsequences of parts, cannot exceed 2n — 1. So, for example,
when there are 3 missing subsequences and 4 subsequences of parts, it is

necessary that
(k1 — 1)+ ko +hks+1+ (ki +2)+ (ki1 +hko+4)+ (ki + k2 + ks +6) <n,

which implies
5 )
If there are ¢ missing subsequences and i + 1 subsequences of parts, it is

ks

IN

necessary that the sum of the sizes of the missing subsequences and of the

sizes of the subsequences does not exceed n. This means
(F1—=1)+ko+ kit 14 (kb +2)+ (ki Hho+4) +- -+ (ki oo+ - +ki+2i) <n,
which implies
(i + V)ky + kg + - + 4k o + 3kiy + 2k; +i(i + 1) < n.
So,
n—((i+ 1)k +iko+---+4kig + 3k +i(i + 1))

ki < .
- 2

O

Now we can extend our construction to a more general characterization
of the numbers partitioned into distinct odd parts, whose parts derive from

the Path Procedure applied to partitions of n into 2-distinct parts.

Theorem 4.5.16. The partitions into distinct odd parts induced by the Path

Procedure applied to partitions of n into 2-distinct parts are all of the form

t

> [(t 42 —1)% — 1]k2
1§ki1:§1’%2

. n—((i+1)k1+ikg+--+4k; _o+3k; 1 +i(i+1))
i>1,0<k; < R

t—

+ ki E J20 =i+ 3))ki—ji
i=1 =1
1<k <232
n—((i+1)k+ikg+--+4k; _o+3k; 1+i(i+1))
2

,_.
-+
|
&

1>1,0<k; <

+ Y k(208 — i+ D) 4 6(t — i+ 1)t — 2(t —i)(t — i+ 1))

+ [+ D)+ 1, (4.7)

where 1 <t <n-—1.
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Proof. First of all, let us rewrite the expression (4.7) by expanding the sums.

> [(t+2— )2 — 1]k

_n-—2
1<k <252

i1, ngign*((i+1)k1+ik2+“-+;1ki72+3’%71+i(i+1))
t—1 t—i

+ ki E J20 =i+ 3))ki—ji
i=1 j=1

1<k <252
n—((i+1)kq +ikg+--+4k; _o+3k; _1+i(i+1))
2

i>1,0<k; <
t

+ ) k(208 — i+ D) 6(t — i+ 1)t — 2(t —i)(t — i+ 1))
=1

+ [t + D)+ 1
= (t+1)? = DE + (> = D)k24 -+ 8k2 | + 3k?

+ k(206 +2)ke + 2(2(t + 2))kemr + - -+ (= 2)(2(t + 2) ) k3

+ (t = 1)(2(t + 2)) ko)

+ ko (2(t + 1)ky +2(2(E 4+ 1)) kg + -+ (£ — 2)(2(¢ + 1)) k3)

4 ...

+ ky_3(12k; + 24k 1 + 36k;_2)

+ ky—o(10k; + 20k;—1)

+ ky1(8ky)

+ k1 ((26)8% + (6t)t — 2(t — 1)t)

+ k20t — D2 +6(t — 1)t —2(t —2)(t — 1))

4o

+ ke (487 + 12t — 4)

+ k(2% 4 6t)

+Ht+ 1D+ 1 (4.8)

Let us consider a partition generated by the Path Procedure and induced

by the partitions of n into 2-distinct parts, and suppose it has ¢t subsequences
of missing parts. Let us call their sizes ky — 1, ko, ..., k;. So, the sizes of the
subsequences of consecutive odd parts are 1, k1 +2, k1 +ko+4, ki +ko+k3+6,
oo, k1 + ko4 -+ ki 4+ 2t and the actual partition we are considering has the

following subsequences of consecutive odd parts:

2((t+ D)k +- - - +3ker 2k +(t+1)t) =1, ..., 2(tky 4+ -+ ke +t(E—1)+2) — 1,
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2(t/€1+“’+2k’t71+kt+t(t—1)+1)—1;
2(thkr + -+ 3ki—2 +2ki—1 +t(t—1)) —1,...,2(¢t—Dk1 + -+ 2kt—o+ ki1 + t—1)(t —2) +2) — 1,

20t —Dki+ -+ 2k o+ ke + (-1t —2)+1) = 1;

2(4ky 4+ 3ky+2ks+12) — 1, ..., 2(3ky +2ko+ ks +8) — 1, 2(3ky +2ky + ks +7) —
2(3k1+2]€2+6)—1,,2(2k1+k’2+2+2)—1,2(2k1+k’2+2+1)—1,
2(2]€1+2)—1,...,2(k1+2)—1,2(k1+1)—1;

and

The sum of those parts equals

20+ Dkr 4+ +2ke+ ¢+ 1)t) =1+ 2(thk1 + -+ ke +t(t—-1)+1) =1
k4R 2

2
+2(tky + -+ 2k +tt—1)—14+2(t—Dk1+ -+ k1 +E—-1D(E—-2)+1) —
kit k20— 1)

2

N (2(4ky + 3k + 2ks +12) — 14+ 2(3ky + 2ko + k3 + 6+ 1) — 1) (k1 + ko + k3 + 6)

2
" (2(3k1+2k’2+6)—1+2(2k‘1+k‘2+2+1)—1)(k1+k‘2+4)

2
+ (2(2k1 +2) —14+2(k1 +1) — 1)(k1 +2)
2

+1

= ((2t+1)ky + -+ 5ks_y + 3k + 26%) (kg + ko + -+ - + kg + 2t)
+((2t = V)ky + -+ + 5k—o + 3ke—1 +2(t — 1)%) (kb1 + ko + - + k1 + 2(t — 1))
4+
+ (Thy + 5ko + 3ks + 18)(ky + ko + k3 + 6)
+ (5ky + 3k + 8) (k1 + ko + 4)
+ (3k1 +2) (k1 + 2)
+ 1.

By rearranging the terms in the sum above we get the expression (4.8),
which proves the theorem.
[
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4.6 The Path Procedure applied to partitions
counted by the 2"/ Rogers-Ramanujan
Identity

In a similar way as done in Section 4.5, also in [SMR11] there is a result
which characterizes a matrix representation for partitions into 2-distinct
parts, greater than 1. These partitions are counted by the right-hand side of
the 2"? Rogers-Ramanujan Identity,

p(n|parts =2 or 3 (mod 5)) = p(n|2-distinct parts > 1).

Theorem 4.6.1 (Corollary 3.4, [SMR11]). The number of partitions of n
where the difference between parts is at least two and each part is greater

than one is equal to the number of two-line matrices of the form

Ci C C3 -+ Cg ’ (4‘9)
di dy ds --- dg
where cs = 2, ¢; = 2+ ¢411 + di1, and the sum of all entries is equal to n.

Again the sum of the entries of each column gives the respective part
of the original partition. That is, the k™ part is equal to ¢, + di. As an
example, we take n = 8 and show its partitions into 2-distinct parts greater

than 1 with their associated matrices.

Example 4.6.2. Forn = 8 there are 3 partitions into 2-distinct parts greater
than 1, and so there are 3 matrices satisfying Theorem 4.0.1, as shown in
Table 19.

P(8] 2-distinct parts > 1)  Matrix of type (4.9)

5 2
(5,3) (0 1)

4 2
(6:2) <2 0)

2
®) ()

Table 19: Table for Example 4.6.2
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The same Path Procedure is now applied to the matrices from Theorem

4.6.1, generating new integer partitions into distinct odd parts.

Example 4.6.3. The partitions of 8 from FExample J.6.2 generate the parti-

tions into distinct odd parts contained in Table 20.

P(8| 2-distinct parts > 1)  Matrix of type (4.9) Partition into distinct odd parts

5 2

(5,3) ( - ) (15,13,11,9,7,3,1)
4 2

(6,2) < - ) (11,9,7,5,3,1)

(®) ( i ) (3.1)

Table 20: Table for Example 4.6.3

Remark 4.6.4. Note that in the present case every integer partition gener-
ated by the Path Procedure has a part of size 1 and a part of size 3. This is
easy to see since cs = 2, which means that the first move in the path from
P=(>20_1di,> ¢) to(0,0) is an exact down shift of size two, generating

the first two odd integers as parts of the new partition.

Figure 4.9 below illustrates the distribution of frequencies of partitions of
m in a square of size 20 x 20, induced by the partitions of 20, according to
Theorem 4.6.1. Each cell contains how many partitions of m (indicated in
the right down side of the cell) are generated by the matrix representation
of the partitions of 20.

Again motivated by the Path Procedure applied to the matrices of The-

orem 4.6.1 we have the following definition.

Definition 4.6.5. We call Pg,(,q) (m) the set of partitions of m into distinct
odd parts, always having 1 and 3 as their smallest parts, and whose size of
any subsequence of consecutive odd integers equals the size of the previous
subsequence of consecutive odd integers that were omitted before the subse-

quence started plus the size of the previous subsequence of consecutive odd

parts plus 2. Also, }PRQ(Od) (m)| = DRo(od) (M)-

Remark 4.6.6. The index Ry refers to the 2" Rogers-Ramanugjan Identity.
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343]  344] 35| 388 34 343 345 30| 351 352| 353) 354| 355) 35| 35 353| 353 3e0| 3E1 32
1 1 1
20 08| 308| 3210| 311| 312 313] 314| 315) 318) 31 318| 319 3220| 321 322| 323] 334] 325| 363
1
273 274 275| 276 2 278| 279 280 281 282| 283] 284| 285| 286 28 288 239| 290 326 364

1 1
211| 212| 213 214 15| 218] 21 218 218| 220 221 222 223| 224 235| 226| 258 293 328 366
1 1
183| 14| 185| 186 18 188| 189| 190 191 192| 193] 194 195| 196| 19 227| 259 293 329 36
1 1
15 158| 153| 1s0| 161 162 163| 164| 165| 166) 16 168| 169| 170| 198 228]| 260| 2934| 330 368
1
133) 13| 13s| 138| 13 138| 139 140 141 142| 143] 144] 45| 171 198 228| 261 295| 331| 369
111] 132] 113] 118 135] 118) 11 118| 119) 120] 121| 122 14| 172| 200 230| 262] 29| 332 370]
1
a1 92 23 34, 95 96| g 58 59| 100| 101| 123] 147] 173 200] 231] 263| 29 333] M1
1
£ 4| 75 4 g 5 20 21 82| 102 124 148] 174| 02| 232| 264 298| 334 32
i
5 58| &9 80| 61 52 63 B4 &5 83| 103| 125| 149] 175| 203 233] 265| 29| 335 373
1
43 24| 45| 45 4] 23| 48 50 &6 84| 104| 126] 150| 176] 204| 234 266 300 336 374
1 1
a1 32 EE} 34 35 36| El 51 &3 85| 105| 12 151 1 05| 235] 26 01| 33 a7s

13 14| 15 16| 1 2 EE) 53 =) 8 10: 129| 153] 178 20 23 269) 303] 339| 3
1
3| s 10| 18 28| 40| 54 0 s2| 108| 130 154] 1m0| 08| 23| o270 304 340| 273
1
El 4 s 11 15 29 a1 55 1 29| 108 131 1s5| 181| 208| 238| 271 305 341 379
1 2 5 12 20 | = 56 2 90| 110| 132 1s6| 182| 210] 240 272| 308[ 342 380

Figure 4.9: n x n square for n = 20

Remark 4.6.7. If no odd integer is omitted after some subsequence of parts,
we assume the number of omitted parts is zero, and the size of the follow-
ing subsequence of odd parts will be the size of the previous subsequence of

consecutive odd parts plus 2.

Proposition 4.6.8. The hooks induced by the order 2 x 2 matrices of The-

orem 4.0.1 associated to the partitions of some n constitute partitions of

3k2 + 20k + 36, with 0 < k < g _ 3.

Proof. Let Ay be the smallest part of some partition of n into 2-distinct
parts greater than 1 whose associated matrix, according to Theorem 4.6.1,
has order 2 x 2. Note that this means that n = Ay + Ay, with Ay > 2 and

M > A 42 So, 2 < A< g — 1. By making k = Ay — 2, we have

n
0<k<|=|—-3.
- T2

The path induced by the matrix begins with a down move of size 2, then
a left move of size k, followed by a down move of size 2+ 2+ k =k + 4, and
ending with a left move of size n —2 — k — (k+4) = n — 2k — 6. Indeed, any
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matrix of order 2 x 2 has the form

k
M- +4 2
n—(2k+6) k
When reflected through the line x + y = n the path generates hooks of
sizes 1,3,2(k+3) —1,2(k+4)—1,...,2(2k+6) — 1. As the path ends with

a left move of size n — 2k — 6, it lies on the x-axis and does not generate a

hook. So the new partition into odd parts is
(22k+6)—1,...,2(k+3)—1,3,1),

a partition of 3k? + 20k + 36.
]

Example 4.6.9. For n = 13 there are 4 partitions into 2-distinct parts

greater than 1 whose associated matriz has order 2, as shown in Table 21.

P(13| 2-distinct parts > 1) Matrix of type (4.9) k& Pry(oa) (3k* + 20k + 36)

72

(8,5) (1 3) 3 (23,21,19,17,15,13,11,3,1)
6 2

(9,4) <3 2) 2 (19,17,15,13,11,9,3,1)
5 2

(10,3) <5 1) 1 (15,13,11,9,7,3,1)
4 2

(11,2) <7 0) 0 (11,9,7,5,3,1)

Table 21: Table for Example 4.6.9

Proposition 4.6.10. The Path Procedure applied to the order 2 x 3 matrices

of Theorem /.6.1 with dy = 0, associated to the partitions of some n, gener-
n

ates partitions of m = 8k* + 68k + 144, with 0 < k < {gJ — 4. Moreover,

these partitions appear for the first time when n = 3k + 12.

Proof. Easily we can see that m = 8k? 4+ 68k + 144 can be partitioned as

A= (2Bk+12)— 1,23k +11) = 1,...,2(k +3) — 1,3, 1).
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As the greatest part of A is 2(3k+12) — 1, clearly this partition is possible
only for n > 3k+12. Also, for each n > 3k+ 12, partitions like \ are possible

for certain values of k:

— 12
n>3k4+12 — kg"g ,
and as k€ Z, k < n—312 = g — 4.

The matrix associated to the partition A is
k k
M= +6 k+4 2 |
dy 0 k

where di =n — (3k + 12).
0

Example 4.6.11. For n = 25 there are 5 partitions into 2-distinct parts
greater than 1 whose associated matrix has order 2 x 3 and entry dy = 0, as
shown in Table 22.

P(25| 2-distinct parts > 1) Matrix of type (4.9) &k m = 8k? + 68k + 144 Pry(oa)(m)

6 4 2 - -

(19,4,2) 144 (23,21,19,17,15,13,11,9,7,5,3,1)
13 0 0
7 5 2

(17,5,3) 220 (29,27,25,23,21,19,17,15,13,11,9,7,3,1)
10 0 1

_ 8 6 2 .

(15,6,4) (7 0 2) 2 312 (35,33,31,29,27,25,23,21,19,17,15,13,11,9,3,1)
9 7 2 . .

(13,7,5) Lo s 3 420 (41,39, 37, 35,33, 31,29, 27,25, 23,21, 19,17, 15, 13,11, 3, 1)
10 8 2 - -

(11,8,6) < 104 ) 4 544 (47,45,43,41,39,37,35,33,31,29,27,25,23,21,19,17,15,13,3,1)

Table 22: Table for Example 4.6.11

A similar result describes the order 2 x 3 matrices with dy = 1.

Proposition 4.6.12. The Path Procedure applied to the order 2 x 3 matrices

of Theorem /.6.1 with dy = 1, associated to the partitions of some n, gener-

-2
ates partitions of m = 8k*+76k+183, with 0 < k < r

—4. Moreover,

these partitions appear for the first time when n = 3k + 14.

Proof. m = 8k* 4 76k + 183 can be partitioned as

A= (203k+14)—1,...,2(2k+8) — 1,22k +6) — 1,...,2(k +3) — 1,3, 1).
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As the greatest part of A is 2(3k+14) — 1, clearly this partition is possible
only for n > 3k+14. Also, for each n > 3k+ 14, partitions like A are possible

for k<"~ M Askez k< V;MJ.

The matrix associated to \ is

k
M= +7 k+4 2 |
dy 1k
where d; =n — (3k + 14).
m
Example 4.6.13. For n = 25 there are 4 partitions into 2-distinct parts

greater than 1 whose associated matriz has order 2 x 3 and entry dy = 1, as
shown in Table 25.

P(25] 2-distinct parts > 1) Matrix of type (4.9) k m = 8k*+ 76k + 183 Pry(oay(m)
2

(18,5,2) < o ) 0 183 (27,25,23,21,19,17,15,11,9,7,5,3, 1)

8 5 2 -
(16,6,3) s 1 1 267 (33,31,29,27,25,23,21,19,15,13,11,9,7,3, 1)

9 6 2 . o . . . .
(14,7,4) 51 9 2 367 (39,37,35,33,31,29,27,25,23,19,17,15,13,11,9,3,1)

10 7 2
(12,8,5) 9 13 3 483 (45,43,41,39,37,35,33,31,29,27,23,21,19,17,15,13,11,3,1)

Table 23: Table for Example 4.6.13

The Path Procedure applied to the partitions of n into 2-distinct parts
greater than 1 differs a little bit from the one applied to partitions of n into
2-distinct parts of any size, studied in Section 4.5.

Recall that in the present case the smallest odd parts of any of these par-
titions are always 1 and 3, since the matrix representation of every partition
of n into 2-distinct parts greater than 1 has entry ¢, = 2. This means that
the path from the line x + y = n to the origin starts with a down move of
size 2.

In this case, the first subsequence of consecutive odd parts is composed of
one part of size 1 and one part of size 3. After it, we have the first missing
subsequence of the partition, determined by the size of d,, which we call

ki1 — 2, with k1 > 2. The first missing subsequence of parts is
2k —1,...,7,5.

After the first missing subsequence of ki — 2 consecutive odd integers

we have the second subsequence of consecutive odd parts that compose the

UFRGS 106 March, 2018



Marilia L. Matte Matrix Representations for Integer Partitions: Some Consequences and a New Approach

partition. Its size is determined by the entry ¢,_; of the matrix. As ¢, 1 =
24 cs+ds =2+2+ ki —2 = ki + 2, this means that the parts of the second

subsequence are
22k +2) —1,..., 20k +2) — 1,2(k; + 1) — 1.

Some examples of partitions that have a part 1 and a part 3 followed
by the first missing subsequence and after it exactly one subsequence of

consecutive odd parts are
(11,9,7,5,3,1),(15,13,11,9,7,3,1),(19,17,15,13,11,9, 3, 1),

and (23,21,19,17,15,13,11,3,1),

partitions of 36, 59, 88, and 123, respectively, generated by the Path Proce-
dure applied to partitions of n = 13 into 2-distinct parts greater than 1.
The following result gives a general characterization of which numbers
are partitioned into distinct odd parts, its partition having one part of size
1 and one part of size 3, followed by the first missing subsequence and after

it exactly one subsequence of consecutive odd parts.

Proposition 4.6.14. The Path Procedure applied to the partitions of n

having exactly three 2-distinct parts greater than 1 generates partitions of

m = 3k? + 8k + 8, with 2 < k; < nTJ, those being precisely all of the

numbers whose partition has two subsequences of consecutive odd parts.

Proof. As m has two subsequences of consecutive parts, we may write

m = 22k +2)—14---4+2(k+2)—14+2(k+1)—14+3+1
(2(2k1 +2) =1+ 2(k1+ 1) — 1)(k1 +2)

_ 3+1
: +3+

(Bk1+2)(k1 +2)+3+1
= 3ki+8k; +8.

So we get = (22k; +2) —1,...,2(k; +2) — 1,2(k; + 1) — 1,3,1) a

-2
partition of m = 3k? + 8k; + 8. Clearly k; has to be at most HTJ,

otherwise the greatest part 2(2k; + 2) — 1 would exceed 2n — 1.
[

As it happens in the cases explored in previous sections, partitions of n

into 2-distinct parts greater than 1 with more than two parts have a matrix
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representation into more than two columns, which means that each one of
its ¢; generates a different sequence of consecutive odd parts.

We call the second missing subsequence the sequence of ds_1 = ky > 0
consecutive odd integers that do not appear as parts of the partition, which
are

221 + ko +2) —1,...,2(2k; +4) — 1,2(2k; +3) — 1.

Again, ko can actually be equal to 0. Its size is determined by A\,_; =
cs—1+ds_1, where \;_1 is part of a partition of n into 2-distinct parts greater
than 1, and if \;_; = Ay + 2 this means d,_; = 0.

After the second missing subsequence of ks consecutive odd integers we
have the third subsequence of consecutive odd parts that compose the parti-
tion, determined by the size of entry ¢, 5 of the matrix. Asc, o =24cs 1+
ds_1 =2+ k1 + 2+ ko = ki + ko + 4, the parts of the second subsequence are

2(3k; +2ko +6) — 1,...,2(2k; + ko +24+2) — 1,2(2k; + ko +2+ 1) — 1.
For example, n = 14 generates the partitions
(23,21,19,17,15,13,11,9,7,5,3,1) and (27,25,23,21,19,17,15,11,9,7,5,3, 1),

which are, respectively, partitions of 144 and 183.

A general characterization of which numbers are partitioned into distinct
odd parts, its partition having one part of size 1, one part of size 3, the first
and second missing subsequences and after each one of them a subsequence

of consecutive odd parts, is given next.

Proposition 4.6.15. The Path Procedure applied to the partitions of n into
2-distinct parts, greater than 1, having exactly three parts generates partitions
-2
of m = 8k? + 3k2 + Skyky + 36k, + 20k, + 40, with 2 < ky < V > J and
n — 3k’1 —6
5 .

Proof. m can be written as

0§k2§{

m = 203k1+2ka+6)—1+4+---+22k; +ka+2+1)—14+22k +2)—1+

+ - F+2(k+1)—14+3+1
2(3k1+2]€2+6)*1+2(2k‘1+k2+2+1)*1)(k51+k2+4>
2
2(2k 2)—1+4+2(k 1) —1)(k 2
+((1+) +(21+) )(1+)+3+1
= (5]4?1+3]€2+8)(l€1+k2+4)+(3]€1+2)(]{:1+2)+4

= 8k? 4 3k3 + 8kyky + 36k1 + 20k + 40.
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So, p = (2(3k1 +2ky +6) — 1,....2(2ky + ko +2+ 1) — 1,2(2k; + 2) —
1,...,2(k1+1)—1,3,1) is a partition of m. The limitation for k, is obtained
by observing that the greatest part 2(3k; 4+ 2ky+6) — 1 cannot exceed 2n — 1.

[

Now let us consider a partition into distinct odd parts having t miss-
ing subsequences and t + 1 subsequences of consecutive odd parts. We call
ki1—2,ko, ...,k the sizes of the missing subsequences and, consequently, the
subsequence after a missing subsequence of size k; has size ki +ko+- - -+k;+2i.

The following lemma establishes the limits for each k;.

Lemma 4.6.16. The i'" missing subsequence of a partition into distinct odd
parts, whose parts derive from the Path Procedure applied to partitions of n

into 2-distinct parts greater than 1, is at most

5 .

Proof. The sequence of all odd integers, those from the missing subsequences
and from the subsequences of odd parts, cannot exceed 2n — 1. So, for
example, when there are 3 missing subsequences and 4 subsequences of parts,

it is necessary that
(/{51—2)+k’2+k’3+2+(k’l+2)+(l{1+k2+4)+(k’1+k’2+k3+6) Sn,

which implies

2
If there are ¢ missing subsequences and i + 1 subsequences of parts, it is

ks <

necessary that the sum of the sizes of these subsequences does not exceed n.

This means
(k1 —=2)+ko+- - -+hi+ 2+ (k1 +2)+ (ki +ho+4)+- - -+ (ki Hho+- - +Fi420) <n,
which implies

(i + V)ky +iko + -+ 4kio + 3ki—1 + 2k +i(i + 1) < n.

So,
o< T ((i 4+ Dky +iko+ - +4kio + 3k +i(i + 1))
J— 2 .
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Now we can extend our construction to a more general characterization
of the numbers partitioned into distinct odd parts, whose parts derive from
the Path Procedure applied to partitions of n into 2-distinct parts greater
than 1.

Theorem 4.6.17. The partitions into distinct odd parts induced by the Path
Procedure applied to partitions of n into 2-distinct parts greater than 1, are
all of the form

t

> [(t+2—1i)2 — 1)k

i=1
2<k <2
. —((i4+1)k1 +iko+---+4k; _o+3k; _1+i(i+1
l>1,0§k1§n ((i+1)kq +iko > i—2 i—1+i(i+1))
t t—1
+ E ki E J20 =i+ 3))ki—ji
i=1 j=1
2<k <52

. n—((i+1)ky +ikg+--+4k; _o+3k;_1+i(i+1))
z>1,0Sle 1 2 B i—2 i—1

+ Y k(208 — i+ D 6(t — i+ 1)t — 2(t —i)(t — i+ 1))
+ [;L‘ + 1)) +4, (4.10)
where 1 <t <n-—1.

Proof. First of all, let us rewrite the expression (4.10) by expanding the sums.

t

> [(t 42 —i)% — 1)k

i=1
2<h <152

: —((i4+1)kq +iko+---+4k; _o+3k; 1 +i(i+1
i>1,0<k; < n Dk Fiky 4 dky_g 5k g +ilit1)

i1 t—i
" kiE:j(Q(t_i"‘?’))ktfjH

i=1 =

2<k; <152

. n—((i+1)ky+ikg+---+4k; _o+3k; _1+i(i+1))
Z>170Sk51§ 1 2 5 1—2 i—1

+ ) k(20— i+ D 6(t — i+ 1)t —2(t —i)(t —i+ 1))

+ [tzt + 1] +4
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= ((t+1)2 =D+ (2 — 1)k2 4 - -+ 8k? | + 3k?
+ k2t +2)ke +22(t + 2))keor + -+ (= 1)(2(t + 2) ) ko)
+ ko (20t + D)kt +2(2(6 4+ 1)) keq + - -+ (t — 2)(2(¢ + 1)) ks3)
4o
+ k(12 + 24Ky + 36k;—2)
+ ki—o(10k; + 20k; 1)
+ k1 (8ky)
+ k1 ((2t)2 + (6)t — 2(t — 1)1)
+ ko (20t — D)2 +6(t — 1)t —2(t — 2)(t — 1))
4o
+ Ky (487 + 12t — 4)
+ k(2% + 6t)
+tt+ 1)) +4 (4.11)

Let us consider a partition generated by the Path Procedure induced by
the partitions of n into 2-distinct parts greater than 1, and suppose it has t
subsequences of missing parts. Let us call their sizes k; — 2, ko, ..., k;. So,
the sizes of the subsequences of consecutive odd parts are 2, ki +2, k1 +ks+4,
ki4+ko+ks+6, ..., ki +ko+---+ k; + 2t and the actual partition we are

considering has the following subsequences of consecutive odd parts:

2((t+ Dk +- - 43k +2k+(t+1)t) =1, ..., 2(tky 4+ -+ ke +t(t—1)+2) — 1,

2(tk‘1—|—"'—|-2k‘t_1+k’t—|—t(t—1)+1)—1;
2tk + - +3kt_2+2ki 1 +t(t—1))—1,..., 20—k +- - +2kt o+ ki1 +(t—-1)(t—2)+2) -1,

20t —Dk1+- 4+ 2k o+ ki + (-1t —2)+1) = 1;

2(4k1+3l€2+2]€3+12)—1, ey 2(3k51+2k’2+k’3+6+2)—1, 2(31{31+2]{32+k’3+6+1)—1,
2(3ky +2ky +6) —1,...,2(2k; +hy +24+2) —1,2(2k; + ks +2+1) — 1;
2(2k; +2) — 1,..., 2(k; +2) — 1,2(ky + 1) — 1;

and
3,1.
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The sum of those parts equals

2+ 1)k + - +3k + 2k + (t+1)t) — 1

2
2tk 2k k10— 1) 1) = Dk by hy£20)
2
2tk 4 3Ry + 2k - t(E— 1)) — 1
2

+Qt =Dk 4+ 2k s+ b+ (-1t —-2)+1)—1)
ki +ke+- -+ k1 +2(t—1)
2

+ (2(4ky + 3ko +2ks +12) — 1 4+ 2(3k; +2ks + ks +6+ 1) — 1)
(k‘1+l€2+k‘3+6)

2
n (2(3k1 +2ka +6) — 14+ 2(2ky + ko +2+1) = 1)(ky + ko + 4)
2
n (2(2k1 +2) =14+ 2(k1+ 1) — 1)(k1 + 2)

2
+4

= ((2t+ 1)ky + -+ Dky_y + 3k + 2t*) (ky + ko + -+ + ky + 2t)
+ (2t —=Dky+ -+ 3k +2(t = D) (ky + ko + -+ ke +2(t— 1))
4o
+ (Tky + ko + 3ks + 18) (k1 + ko + k3 + 6)

5ki + 3ky + 8) (k1 + ko +4)

k1 + 2) (ks + 2)

+ 4.

+
+

By rearranging the terms in the sum above we get the expression (4.11),

which proves the theorem.
m

Remark 4.6.18. Observe that the matrixz representation for partitions of n
into 2-distinct parts greater than 1 is exactly the same as the one for partitions

generated by mock theta function

filgg =>4

(¢ @)n

n24+n

UFRGS 112 March, 2018



Marilia L. Matte Matrix Representations for Integer Partitions: Some Consequences and a New Approach

The general term

q2(1+2+---+s)

1-q)(1—¢?)---(1-¢)

counts the partitions of n containing at least 2 copies of each part from 1

to s. By conjugation, this is the same as counting the partitions of n into

2-distinct parts greater than 1.

4.7 The Path Procedure applied to partitions
counted by the mock theta function f2(q)

With simple modifications, it is not difficult to enunciate analogous results
for the mock theta functions f"(q) from Chapter 3. In this section we take
m = 5 as an example.

Let us recall
5(n2 +n)

Pl=Y 14—,
n=0

(¢ Dn

whose general term
P2 +)
1-91-=¢)--(1-¢)

generates the partitions of n into 5-distinct parts greater than 4. According

to Theorem 3.2.1, its matrix representation has the form

(Cl @ oo CS), (4.12)
dy dy d3 -+ dg
where ¢s = 5, ¢; = 5 + ¢;41 + dyy 1, and the sum of all entries is equal to n.
The Path Procedure applied to the partitions of n into 5-distinct parts
greater than 4 induces partitions into distinct odd parts always having 9, 7,
5, 3, and 1 as the smallest parts. This is due to the matrix representation
(4.12) above which has entry ¢s = 5. This means that the path from the line
x 4+ y = n to the origin starts with a down move of size 5.
In this case, the first subsequence of consecutive odd parts is composed
exactly of parts 9,7, 5,3, and 1. After it, we have the first missing subsequence
of the partition, determined by the size of d,, which we call k;—5, with k; > 5.

The first missing subsequence of parts is

2%k —1,...,13,11.
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After the first missing subsequence of ki — 5 consecutive odd integers
we have the second subsequence of consecutive odd parts that compose the
partition. Its size is determined by the entry c,_; of the matrix. As ¢,_1 =
54+cs+ds =5+5+k; —5 = ki +5, this means that the parts of the second
subsequence are

22k +5) —1,..., 20k +2) = 1,2(ky + 1) — 1.

Some examples of partitions that have parts 9,7,5,3, and 1, followed
by the first missing subsequence, and after it exactly one subsequence of

consecutive odd parts are
(29,27,25,23,21,19,17,15,13,11,9,7,5,3,1),

(33,31, 29,27,25,23,21,19,17,15,13,9,7,5, 3, 1),
and (37,35,33,31,29,27,25,23,21,19,17,15,9,7,5, 3, 1),

which are, respectively, partitions of 225, 278, and 337 generated by the
partitions of n = 19.

The following result gives a general characterization of which numbers are
partitioned into distinct odd parts, its partition having the parts 9,7,5, 3,
and 1, followed by the first missing subsequence, and after it exactly one

subsequence of consecutive odd parts.

Proposition 4.7.1. The Path Procedure applied to the partitions of n having

exactly two 5-distinct parts greater than 4 generates partitions of m = 3k? +

20ky 4+ 50, with 5 < k < nT , those being precisely all of the numbers

whose partition has parts 9,7,5,3, and 1, one subsequence of missing parts,

and after it exactly one subsequence of consecutive odd parts.

Proof. A partition having only the two first subsequences of consecutive odd
parts has the parts 2(2k; +5) —1,...,2(k1 +2) — 1,2(k; +1) —1,9,7,5,3, 1.
Noting that m = 3k} + 20k, + 50 can be written as

m = 2(2k1+5) -1+ +2(k+1)—-14+9+7+5+3+1
(2(2ky +5) =14 2(k; +1) — 1) (k1 + 5)

= 5 +9+7+5+3+1

= (3k1+5)(k1 +5)+25
= 3k? 4 20k; + 50,
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then p = (2(2k; +5) — 1,...,2(ky +2) — 1,2(k; +1) — 1,9,7,5,3,1) is a
partition of m having exactly two subsequences of consecutive odd parts.

-5
Clearly k; has to be at most VLTJ , otherwise the greatest part 2(2k; +

5) — 1 would exceed 2n — 1.
[

The second missing subsequence of d,_1 = ko > 0 consecutive odd integers

that do not appear as parts of the partition is
2(2k1 + ko +5)—1,...,2(2k; +7) — 1,2(2k; + 6) — 1.

ko can actually be equal to 0. Its size is determined by A\s_1 = ¢s_1 + ds_1,
where A;_; is part of a partition of n into 5-distinct parts greater than 4, and
if A;_1 = A; + 5 this means d,_; = 0.

After the second missing subsequence of ks consecutive odd integers we
have the third subsequence of consecutive odd parts that compose the parti-
tion, determined by the size of entry c¢,_o of the matrix. Asc,_ o =5+4cs 1+
ds 1 =54+ ki +5+ ke = ki + ko + 10, the parts of the second subsequence

are

2(3ky +2ko+15) — 1,...,2(2ky + k2o +5+2) — 1,2(2k1 + ko +5+1) — L.
For example, n = 30 generates the partition

(59,57,55,53,51,49,47, 45, 43,41, 39, 37, 35, 33, 31, 29, 27, 25, 23,21, 19, 17, 15,13, 11,9, 7, 5,3, 1)

of 900.

A general characterization of which numbers are partitioned into distinct
odd parts, its partition having the parts 9,7,5, 3, and 1, the first and second
missing subsequences and after each one of them a subsequence of consecutive

odd parts, is given next.

Proposition 4.7.2. The Path Procedure applied to the partitions of n into

5-distinct parts greater than 4, having exactly three parts, generates partitions

-5
of m = 8k? + 3k3 + 8kiky + 90k + 50ky + 250, with 1 < ky < VLTJ and
0< ky < \‘%J
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Proof. A partition having the first, second, and third subsequences of parts

can be written as

m = 23k +2ky+15) =1+ +2(2k; +ka+5+1) —14+2(2k; +5) — 1

+ o2k +1) = 1494+7+5+3+1
2(3k1 +2ko +15) — 14+ 2(2k1 + ko + 5+ 1) — 1) (k1 + k2 + 10)
2
2(2ky +5) = 1+2(k; +1) — 1)(ky + 5
L 2@ E5) 1 <21+ )= Dkt5) g 75841
= (5ky + 3ky +20)(ky + k2 4+ 10) + (3ky +5) (k1 +5) +25

= 8k} + 3k3 + 8kiko + 90k, + 50ky + 250,

getting p = (2(3k1 +2k2 +15) — 1,...,2(2k1 + ko + 5+ 1) — 1,2(2k1 + 5) —
1,...,2(k1+1)—1,9,7,5,3,1) a partition of 8k? + 3k2 + 8k ks + 90k, + 50k, +
250. The limitation for ko is obtained by observing that the sequence of all
odd integers, those from the missing subsequences and from the subsequences

of parts, cannot exceed 2n — 1. So,

— 3k — 1
kv 4 ko + (k1 +5) + (ky + ko +10) < n 258k, < LMJ

2
[l

Now let us consider a partition into distinct odd parts having ¢ missing
subsequences and t + 1 subsequences of consecutive odd parts. As before, we
call kq, ko, . .., k; the sizes of the missing subsequences and, consequently, the
subsequence after a missing subsequence of size k; has size k1 +ko+- - -+k;+5i.

The following lemma establishes the limits for each ;.

Lemma 4.7.3. The i'" missing subsequence of a partition into distinct odd
parts, whose parts derive from the Path Procedure applied to partitions of n
into b-distinct parts greater than 4, is at most

n— ((Z -+ 1)k1 + sz 4+ -+ 41%;2 + 3]{1'71 i 5i(i2+1))

2

Proof. The sequence of all odd integers, those from the missing subsequences
and from the subsequences of parts, cannot exceed 2n — 1. So, for example,
when there are 3 missing subsequences and 4 subsequences of parts, it is

necessary that

(k1 —5)+ ko + ks +5+ (k1 +5) + (k1 + ko + 10) + (k1 + ko + k3 + 15) < n,
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which implies
n — 4k; — 3ky + 30

2
If there are ¢ missing subsequences and 7 4+ 1 subsequences of parts, it is

ks <

necessary that the sum of the sizes of the missing subsequences and of the

sizes of the subsequences does not exceed n. This means
(k1—=5)+ko+- - -+ki+54+(k1+5)+ (k1 +ko+10)+- - -+ (k1 +ko+- - -+k;i+5i) < n,

which implies

5ili 41
(i+1)/€1+ik2+'-'+4ki2+3ki1+2ki+% =
and so,
n— ((i+ 1)k +iky + - + 4kig + 3ki 1 + 25)

ki <
= 2

]

Lemma 4.7.3 allows us to extend our construction to a more general
characterization of the numbers partitioned into distinct odd parts, whose
parts derive from the Path Procedure applied to partitions of n into 5-distinct

parts greater than 4.

Theorem 4.7.4. The partitions into distinct odd parts induced by the Path
Procedure applied to partitions of n into 5-distinct parts greater than 4, are

all of the form

~+

> [(t+2— )% — 1]k2

=1
5<k <252
. . 5i(i+1)
. —((i+1)ky +iko+---+4k; _o+3k;_1+ )
i>1,0< k< PR Rt
t—1 t—1
+ > ki > G20t —i+3)ki
i=1 j=1
5<ki <50
. . 5¢(i41
i>1,ogkig"_((’“)kl“k?+m+42ki_2+3k“1+%)

+ > ki(5(t— i+ 1)+ 15(t — i + 1)t — 5(t — i)(t — i + 1))

25[t(t + 1))?

L 250t + 1)
4

where 1 <t <n-—1.

+ 25, (4.13)
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Proof. First of all, let us rewrite the expression (4.13) by expanding the sums.

[(t+2—i)% - 1)k?

.
Il MW
—_

5<ki <152
. . 5i(i+1)
. —((i4+1) kg +iko+---+4k; _o+3k;_1+
i>1,0<k;< e ottt g )
t—1 t—i
+ g ki E JR(t =i+ 3))ki—ji1
i=1 j=1

5<k <150

n—((i+1)ky +ikg+---+4k; _o+3k;_1+
2

Bilit1) )
i>1,0<k; < 2

+Zk (5(t —i+ 1)t +15(t — i + 1)t — 5(t — i) (t — i + 1))

25 t+1

n [( + 1P
4

= (t+D2 =D+ (> —1)k3+ - +8k2 | + 3k?

+ k120t + 2)ke +2(2(t +2)) ki1 + -+ (t — 2)(2(t + 2) ) ks
+ (t = 1)(2(t +2))k2)

+ ko(2(t + 1)k +2(2(t + 1)) k1 + - + (t — 2)(2(t + 1))k3)
4+

+ ky_3(12k; + 24k, 1 + 36k _2)

+ kt—o(10k; + 20k;—1)

+ ke—1(8ky)

+ k1 ((28)t2 + (6t)t — 2(t — 1)t)

+ ko (20t — D)2+ 6(t — 1)t —2(t — 2)(t — 1))

4+

+ ko1 (482 + 12t — 4)

+ k¢ (2t + 6t)
25[t(t + 1))
L2+ 1)
4
Let us consider a partition generated by the Path Procedure induced by

+ 25

+25 (4.14)

the partitions of n into 5-distinct parts greater than 4, and suppose it has ¢
subsequences of missing parts. Let us call their sizes k1 —5, ko, ..., k;. So, the
sizes of the subsequences of consecutive odd parts are 5, k1 + 5, k1 + ko + 10,
ki+ko+ks+15, ..., ki + ko +---+ k; + 5t, and the actual partition we are

considering has the following subsequences of consecutive odd parts:
2((t+1) k- - 43K+ 2k +2ED 19ty A2k e+ 2 0y 1

2thy + -+ 2y + ke + 2D 1) 1
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2(thy + -+ 3ke—o + 2ke—1 + DY) 1 2((E— ks o 2kmn + kg + 20022 gy g

2((t — 1)ky + -+ 2kyg + kyy + 2O 4 gy,

2(4k1+3ko+2k3+30)—1,. .., 2(3k1+2ka+k3+15+2)—1, 2(3k1+2ko+ks+15+1)—1;
2(3k1+2k2+15)—1,,2(2]€1+k2+5+2)—1,2(2]€1+/€2+5+1)—1,
2(2]{?1 +5) - 1,...,2(1{31 +2) - 1,2(1{31 + 1) - 1;

and
9,7,5,3, 1.

The sum of those parts equals

5(t+ 1)t 5t(t — 1)

2+ Dk + -+ 2k + )—1+2(tky 4+ -+ ke + 5 +1)-1)
(ke + -+ ke +52)

2
+(2(tk1+'~~+2kt71+5t(t_1))—1+2((t—1)k1+~~'+kt71+w+l)—l)

2
(ki + -+ ko1 +5(t — 1))
2

+ (2(4ky + 3ko + 2k3 +30) — 1 + 2(3ky + 2ko + ks + 15+ 1) — 1)
(k1 + ko + k3 + 15)

2
N (2(3k1 + 2k +15) — 14+ 2(2ky + ko + 5+ 1) — 1)(ky + k2 + 10)
2
N (2(2/€1 + 5) -1+ 2(k1 + 1) — 1)(]61 + 5)

2
+25

= ((2t+ V)ky + -+ 5ky_y + 3k + 5*) (ky + ko + - - - + Ky + 5t)
+((2t—Vky+ - +3k 1+ 5t — 1)) (ky + ko + -+ kg +5(t— 1))
o
+ (Tky + ko + 3ks + 45)(ky + ko + k3 + 15)
+ (5ky + 3ky + 20) (k1 + ko + 10)
+ (3k1 +5) (k1 +5)
+ 25.
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By rearranging the terms in the sum above we get the expression (4.14),
which proves the theorem.
O

4.8 The Path Procedure applied to partitions
counted by the mock theta function 71(—q)

In this section we describe which partitions into distinct odd parts are ob-
tained from the Path Procedure applied to the partitions generated by mock
theta function 77(—q), that is, the unsigned version of 71(q) (see [BSS13)).

So, let us consider the mock theta function

i 7" (=2, ),
n=0 n+1
Its unsigned version
n( n+1 2 2)

Tig) =T i “

n=0 q,q n+1

has general term

q2+4+...+23(1 + q2)(1 + q4> . (1 + q28)
L=q)L=¢*)---(L—g>)

which counts the partitions of n containing one or two parts equal to each

one of the even numbers from 2 to 2s, and any number of odd parts less than
or equal to 2s + 1.

Example 4.8.1. The partitions of 10 counted by Ty (q) are
(1,1,1,1,1,1,1,1,1,1),(2,1,1,1,1,1,1,1,1),(2,2,1,1,1,1, 1, 1),

(3,2,1,1,1,1,1),(3,2,2,1,1,1)(3,3,2,1,1),(3,3,2,2),
(4,2,1,1,1,1),(4,2,2,1,1), (4,3,2,1), and (4,4,2).

According to [BSS13], the partitions generated by 77 (¢q) can also be ex-
pressed in terms of two-line matrices. We describe this matrix representation

in the following theorem.
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Theorem 4.8.2 (Table p. 243, [BSS13]). The number of partitions of n

generated by T (q) is equal to the number of two-line matrices of the form

Ci C -+ Cs Csyq1 (415)
dl d2 ds ds+1 ’ .

where g1 =0, dp >0, ¢y = Jy + co1 + 2dys 1, with j; € {2,4}, and the sum

of all entries is equal to n.

Proof. If we write
n=2-(14j1)+4-(1+jo)+---+2s-(1+js)+1-di +3-do+- - -+ (25+1) - des1,

with j; € {0,1} and d; > 0, we can easily organize this sum in a two-line

matrix like

S 204G+ 30 2d - 20+ j) +2dey O
dl ds ds—i—l ’

whose entries satisfy exactly the conditions we needed.

Remark 4.8.3. Note that the number of columns in the matrixz representa-
tion (4.15) equals the number of different even parts plus one. Differently
from the representations in previous sections, where the number of columns
was the same as the number of parts of the partitions, in the present case we
can say that the first line of the matriz counts the even parts and the second
line counts the odd parts. Since this matrix representation is a bit different

from the others, most of the analogous results couldn’t be proved.

Example 4.8.4. Table 2/ gives the matrixz representations of the partitions

of 10, given in Example 4.8.1.

Now we apply the Path Procedure to the set of matrices from Theorem

4.8.2 and create partitions of integers m into distinct odd parts.

Example 4.8.5. The partitions of 10 from Example 4.5./ generate the par-

titions into distinct odd parts given in Table 25.

Remark 4.8.6. In every matriz like (4.15) we have csy1 = 0, which means
that the entry which determines the first move in the path from x4+ vy =n to
(0,0) is dsyq. Although, as dsy1 may be zero, in this case the first move is
determined by the entry cs. So, if dsy1 > 0, the partition has 2ds 1+ 1 as its
smallest part, and if ds.q1 = 0, the smallest part of the partition is 1.

UFRGS 121 March, 2018



Marilia L. Matte Matrix Representations for Integer Partitions: Some Consequences and a New Approach

Partition of 10 . Partition of 10 .
Matrix of type (4.15) Matrix of type (4.15)
generated by 77 (q) generated by T7(q)
(1,1,1,1,1,1,1,1,1,1) 0 (3,3,2,2) 80
10 0 2
20 4 20
(2.1,1,1,1,1,1,1,1) (4,2,1,1,1,1)

8 0 4 00
4 2

(2,2,1,1,1,1,1,1) 0 (4,2,2,1,1) 620
6 0 200
40 6 2 0

(3727171717171) (473727 1)
5 1 110

4
(3,2,2,1,1,1) 60 (4,4,2) 6 40
31 0 00
6 0
(3,3,2,1,1) < >

2 2

Table 24: Table for Example 4.8.4

Figure 4.10 below illustrates the distribution of frequencies of partitions
of m into distinct parts in a square of size 20 x 20, induced by the partitions
of 20, according to Theorem 4.8.2. Each cell contains how many partitions of
m (indicated in the right down side of the cell) are generated by the matrix
representation of the partitions of 20.

When applied to the matrices of Theorem 4.8.2, the Path Procedure mo-

tivates the next definition.

Definition 4.8.7. We call Pp(,q)(m) the set of partitions of m into distinct
odd parts greater than or equal to 1 whose size of any subsequence of con-
secutive odd integers equals two times the size of the previous subsequence
of consecutive odd integers that were omitted before the subsequence started

plus the size of the previous subsequence of consecutive odd parts plus 2 or
4. Also, ‘PT(od)(m)‘ = D7(od) (M).

Remark 4.8.8. If no odd integer is omitted after some subsequence of parts,
we assume the number of omitted parts is zero, and the size of the follow-
ing subsequence of odd parts will be the size of the previous subsequence of

consecutive odd parts plus 2 or 4.

Now we describe what kind of partitions into distinct odd parts may be
obtained from the partitions generated by 77 (q).
First we recall Remark 4.8.6, which says that if a partition of n gener-

ated by the function 77(g) has an even part as its greatest one, then the
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Partition of 10 generated by 77 (¢) Matrix of type (4.15) Partition into distinct odd parts

(1,1,1,1,1,1,1,1,1,1)

VR
=5 o
~_—
=

2 0
(2,1,1,1,1,1,1,1,1) (8 0) (3,1)
40
(2,2,1,1,1,1,1,1) (6 0) (7,5,3,1)
40
(3,2,1,1,1,1,1) ( - ) (9,7,5,3)
9]
6 0
(3,2,2,1,1,1) (3 1) (13,11,9,7,5,3)
6 0
(3,3,2,1,1) (2 2) (15,13,11,9,7,5)
8 0
(3,3,2,2) <o 2) (19,17,15,13,11,9,7,5)
4 2
(4,2,1,1,1,1) 0 (11,9,7,5,3,1)
400
2
(4,2,2,1,1) (g . 8) (15,13,11,9,7,5,3,1)
6 20
(4,3,2,1) (1 | 0) (17,15,13,11,9,7,3,1)
6 40
(4,4,2) (0 . 0) (19,17,15,13,11,9,7,5,3,1)

Table 25: Table for Example 4.8.5
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1 1 J 2
381 382 383 384 385 386 387 338 388 390 391 332 393 394 395 396 397 398 339 400
1 1 2
343 344 345 346 347 348 348 350/ 351 352 353 354 355 356 357 358 359 360 361 362
1 1 2
307 308 309 310 311 312 ilﬂ 314 ilﬂ 316 31 318 319 320 321 322 323 324 325 353
1 1 1 1
273 274 275 276 2 278 279 280 281 282 283 284 285 286 28 288 289 290 326 364
1 1 1
241 242 EQﬂ 244 243 246 247 248 249 250 251 252 253 254 255 256 257 291 327 SEH
1 1 1 11
211 212 213 214 215 216 217 218 218 220 221 222 223 224 225 226 258 252 328 366
2 1
183 184 JE 186 187 188 189 190/ 191 132 193 134 195 196 197 227 259 293 329 367
2 1 1
15 158 159 160 161 162 163 164 165 166 16 168 169 170 198 228 260 254 330 368
2
133 134 135 136 137 138 138 140 141 142 143 144 145 171 199 229 261 295 331 368
1 1 1 1
111 112 113 114 115 116 117 118 119 120 121 122 146 172 200 230 262 296 332 370
1 1
91 92 53 94 95 96 97 98 9% 100 101 123 147 173 201 231 263 297 333 371
1 2 1
73 74 75 76| 77 78] 79 80 81 a2 102 124 148 174 202 232 264 298| 334 372
1 1
57 58 59 60 (3% 62 =] 64 65 83 103 125 149 175 203 233 265 299 335 373
1 1 2
43 44| 43 46| 47 43| 43 50 66| 24 104 12ﬂ 150 176 204 234 266 300 336 374
1
31 32 33 34 35 36 37 51 &7 85 105 127 151 177 205 235 267 301 337 375
1 11 1
21 22 E 24 Eﬂ 26 E 52 &8 86 106 lzﬂ 152 178 206 | 236 268 302 338 376
1
13 14 15 16 17 27 35 53 (] 87 107 129 153 179 207 237 269 303 338 377
1 11
8 El 10 lﬂ 28 ﬂ 54 70 88 108 130 154 180 208 238 270/ 304 340/ 378
1
3 4 5 1 15 29 41 55 71 a5 108 131 155 181 209 238 271 305 341 379
1 1
1 2 [ 12 Eﬂ 30 43 56 72 90 110 1342 156 lﬂ 210 24ﬂ 272 306 342 ﬂ

Figure 4.10: n x n square for n = 20

corresponding partition into distinct odd parts via Path Procedure has 1 as
its smallest part. On the other hand, if the greatest part of a partition of n
generated by the function 77 (q) is odd, then the smallest part of the corre-
sponding partition into distinct odd parts via Path Procedure is 2ds.; + 1
(see for example partitions (2,2,1,1,1,1,1,1) and (3, 3, 2,2) of 10 in Example
4.8.5).

Therefore, as the smallest part of a generated partition into distinct odd
parts may be any integer greater than or equal to 1, we have the first missing
subsequence of k1 > 0 consecutive odd integers. After it, the first subsequence
of parts of the partition has size j; + 2k;, with j; € {2,4}. That is, the
sequence of parts 2(k; + 1) — 1,2(ky +2) — 1,---2(3ky) — 1,2(3k; + 1) —
1,2(3k1 +2) — 1 and maybe 2(3k; +3) — 1 and 2(3k; +4) — 1.

It is not difficult to choose between j; = 2 or j; = 4 when, after the
first subsequence of parts, the second missing subsequence has size ko > 0. If
ko = 0, we need to verify the size of the second subsequence of parts, which
is jo + (J1 + 2k1) + 2ko, with jo € {2,4}.

This process goes on until the end of the sequence of different odd parts
of the partition, paying attention to the fact that the last entry d; depends
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on the number n, whose original partition induced the partition into distinct
odd parts.

Some numbers that appear as partitions into distinct odd parts, induced
by the Path Procedure applied to the function 7} (q), are described in the

following result.

Proposition 4.8.9. The Path Procedure applied to partitions generated by
the mock theta function Ty (q) induces partitions of (2k)* into distinct odd
parts.

Proof. We may partition (2k)? as
(2(2k) — 1,2(2k — 1) — 1,...,3,1),

that is, in 2k consecutive odd parts. This means that all the missing subse-
quences have size zero, and the second line of the matrix which originated
the partition of (2k)? has all its entries equal to zero (except possibly for dj,
which does not generate any part). So, the partition of (2k)? is determined
by the first line of the matrix, which has even decreasing entries from ¢; to
cs11 whose difference between consecutive entries equals 2 or 4.

If 2k = t(t + 1) for some ¢ € N, we can write

2k =tt+1)=2t+ (2t —2)+---+4+2

and we get 2t, 2t — 2, ..., 4, 2, and 0 as the entries ¢y, co, ..., ¢s, and cgyq.
If 2k =t(t+ 1)+ 2l for 1 <[ <t, we take the values of ¢y, cs, ..., ¢, and
cs11 from the previous case and add 2 to the first [ entries ¢;.

So we may write

2k = tt+)+20=2t+1)+20t+1)—2)+---+(2(t+1)—2(1—-1))
+@E+1) =2(0+1))+---+4+2,

and we get 2(¢ + 1), 2(t+1)—2, .., 2(t+1)—2(l—1)2(t +1) — 2(I + 1),
.., 4,2 and 0 as the entries ¢y, ca, ..., cs, and cgy1.
m

Example 4.8.10. Tuke the partitions (2,1,1,1,1,1,1,1,1), (2,2,1,1,1,1,1,1

(4,2,1,1,1,1), (4,2,2,1,1), and (4,4,2) of 10 from Ezxample /.8.5. They

generate partitions of 22, 4%, 62, 82, and 10%, respectively.
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4.9 The Path Procedure applied to different
matrix representations for unrestricted

partitions

Besides the representation given by Theorem 4.2.1 in Section 4.4, unrestricted
integer partitions have at least two more matrix representations, also given
in [SMR11].

Theorem 4.9.1 (Theorem 4.3, [SMR11]). The number of unrestricted par-

titions of n is equal to the number of two-line matrices of the form

Ci C C3 -+ Cg (416)
di dy dy -+ ds )’ '

where dy # 0, ¢; > 1+ ¢i11 + diyq, and the sum of all entries is equal to n.

Theorem 4.9.2 (Corollary 4.5, [SMR11]). The number of unrestricted par-

titions of n is equal to the number of two-line matrices of the form

Ci Cp C3 -+ Cg (417)
di dy dy - dg )’ '

where ¢y #£ 0, ¢, > 2+ ¢y11 + diy1, and the sum of all entries is equal to n.

The bijective proofs of both theorems can be found in [BSS10]. Differently
from the first matrix representation, studied in Section 4.4, the number s of
columns in matrices (4.16) and (4.17) equals the size of the side of the Durfee
square of the associated partition. As an example, we take n = 5 and show

all of its partitions with their associated matrices of types (4.16) and (4.17).

Example 4.9.3. For n =5 we have p(5) = 7, and so there are 7 matrices
satisfying Theorems /.9.1 and /.9.2, as shown in Table 26.

We now apply the Path Procedure to the matrices associated to the par-

titions of n, then generating partitions of m < n? into distinct odd parts.

Example 4.9.4. The matrices associated to the partitions of n = 6 from
Example 4.9.5 generate the partitions into distinct odd parts contained in
Table 27.
Theorem 4.9.5. The Path Procedure applied to the matrices of Theorem
4.9.1 generates partitions of m = j2 — k2, for 0 < k < {SJ —1land2k+1<
71<n—1.
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Matrix of type (4.16)

Matrix of type (4.17)

(1,1,1,1,1)

(2,1,1,1)

(2,2,1)

(3,1,1)

9
()
(2]
()
(1)
()
()

()
()

()

(1)
(+)

(70)
00)

Table 26: Table for Example 4.9.3

Partition into

Partition into

P(5) Matrix of type (416) = © parts | MO of type (117) . o parts
(1,1,1,1,1) (g) ) (i) (1)
(2,1,1,1) ( i ) (1) ( ; ) (3,1)
e2n | (37) 59 () 5.5,
(3,1,1) ( ; ) (3,1) ( z ) (5,3,1)
5.2) (29 75,9 (s o) 0.7.53.1)
(4,1) ( 2 ) (5,3,1) ( le ) (7,5,3,1)
(5) ( 411 ) (7,5,3,1) ( (5) ) (9,7,5,3,1)
Table 27: Table for Example 4.9.4
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Proof. Note that

PPk = (k)G -k
2k+1)—1+2—-1)(—(k+1)+1)
2
= 2k+)-1D+Q2k+2)—-1)+---+2UH-1D -1+ (25— 1).

If seen as a partition, the sequence ((2j—1),(2(j—1)—1),...,(2(k+2)—
1), (2(k+1) — 1)) is generated by the Path Procedure applied to a matrix of
order 2 x 2, having entries co =0, dy =k, c; =j— (k+1)+1=j=Fk, and

di =n —cy —dy — ¢y =n — j. Observe that
a>l4+c+d=—=7j—-k>21+k=j>2k+1
and
i #0=n—-j>1=n-12>j

So we get the limitation 2k +1 < j <n —1.
We get the limitations for £ by observing that, if we had k& > {EJ -1,

2
then

k:>LgJ—l:kELgJ:jZ2LEJ+12n,

which is a contradiction.

O
Theorem 4.9.6. The Path Procedure applied to the matrices of Theorem
4.9.2 generates partitions of m = 1+ j2 — k?, for 1 < k < {SJ — 1 and
2k+2<j<n.
Proof. Note that

1+52 -k = 14+0G+k)(G—-k)

_ 1+(2(k+1)—1+2j—21)(j—(k;+1)+1)

= 1+Q2k+1) -1+ Q2k+2)—1)+---+20G—-1)—1)+ (25 —1).

If seen as a partition, the sequence ((2j —1),(2(j — 1) —1)...,(2(k+2) —
1), (2(k+1) —1),1) is generated by the Path Procedure applied to a matrix
of order 2 x 2, having entries co =1, do =k—1,¢1 =j— (k+1)+1=j—k,

and dy =n — ¢y —dy — ¢y =n — j. Observe that

c1>24+c+d—=)—-k>2414+k—1=7>2k+2
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and
di>0=n—3j3>20=n2>7.

So we get the limitation 2k 4+ 2 < j < n.

Moreover,

dy>0=k—-1>0=%FkK>1

and if we had k > EJ — 1, then
k> LgJ—1:>kz {ngjEQLgJ—klZn,

which is a contradiction. So, 1 < k < {gJ —1.
O

With analogous arguments, we can set a more general result, as it follows.

Theorem 4.9.7. The Path Procedure applied to the order 2 x 2 matrices
of Theorem 4.9.1 generates precisely partitions of m = t* 4+ j2 — k%, for

0<t< EJ 2 t+1<k< EJ land2k+1<j<n—1.
Proof. Note that

22—k = P+ +EG—k)

=142/ —1)(j —
_ 1+3+““+%_1+(ﬂk+) +QJ2)U (k+1)+1)
= 143+ +20—1+2Kk~+1) -1+ (2k+2)—1)

+ (25— 1).

If seen as a partition, the sequence ((2j —1),...,(2(k+2)—1),(2(k+1) —
1),2t—1...,3,1) is generated by the Path Procedure applied to a matrix of
order 2 x 2, having entries ¢co =t,dy =k —t, ¢c; =j—k, and dy =n — j.
Clearly the limits set for ¢, k, and j satisfy the conditions we need, but it
has to be explained why are these limitations precisely the exact ranges for
t, k, and j.

Let us suppose t > LgJ — 2, saying t = {gJ — 1+ r, withr > 0. As

k>t+1, then k > {SJ + r, which implies 7 > Q{gJ +2r+1>n. But
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then the entry d; can only be 0, which contradicts the conditions of Theroem
4.9.1.

Moreover, as we are dealing with matrices of order 2 x 2, the original
partition of n associated to each matrix has Durfee square of side 2. So, the

generating function for these partitions of n is

[e’e) _ q4
2" = =y
B 1 1 1 11 3
T T8(ltq 16(1+q7 8(1—q)  16(1—qF i1—qp
1
+ 1—q
- 1 . 111 3(n+2
= nz%[ + 251 (n+1)—§+16(n+1)—1< ) >
1
(' )]
= Z%n—l)(S(—l)"—3—4n+2n2)q". (4.18)

n=0

It turns out that the coefficient a(n) of ¢" in expression (4.18) is exactly

[5)-2 (5]

o3
I_

|3

3P opl

t

I
<)
II
+

(n+D{n—1)n—3) for odd n, and n(n—1)n-2) for even n.

An analogous result is valid for the 2 x 2 matrices of Theorem 4.9.2.

Theorem 4.9.8. The Path Procedure applied to the order 2 x 2 matrices
of Theorem 4.9.2 generates precisely partitions of m = t* + j2 — k%, for
1<t< EJ L t<k< {SJ —land 2k +2<j<n.

Proof. The result is true once we note that a bijection between the matrices
of Theorems 4.9.1 and 4.9.2 makes

j—k t j—k+1 t+1
—
n—j k—t n—j7—1 k—t—1
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4.10 Final words

Once we have a bijection between some set of partitions and some set of
matrices, it may be possible to apply the Path Procedure to any type of
integer partitions. Therefore, the Path Procedure turns out being a promising
road in the study of integer partitions and partition identities, as already the
two-line matrix representation for different sets of partitions is.

Clearly the results registered in the previous sections of this chapter do
not cover all of the possibilities. Many more results may be conjectured
by observing the partitions into distinct odd parts generated by the Path

Procedure applied to each one of the different sets of partitions.
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APPENDIX B

An alternative interpretation for integer partitions

B.1 Introduction

By considering the unrestricted integer partitions, recall that the Path Pro-
cedure induces partitions into distinct odd parts, where the size of every
sequence of consecutive odd parts is equal to the number of odd integers
that were omitted before this sequence started, or a greater multiple of it.
Our objective is to associate each partition into distinct odd parts generated

by the Path Procedure to a sequence of positive integers.

B.2 Plane Partitions

Definition B.2.1. A plane partition 7 of n is a left-justified array of positive
integers (m; ;)i j>1 such that m,; > m ;1 and m; > w41, Vi,7 > 1, and
Zi,j21 Tij = M.

Observe that every partition into distinct odd parts A = (A1, A, ..., A))
generated by the Path Procedure can be seen as a plane partition if we pile
up its parts, from the largest to the smallest one, as symmetric hooks, with
the largest part on the bottom of the pile and the smallest one at the top of

the pile, having a common central axis.

Example B.2.2. The partition A = (11,9,5,3) can be represented as a plane

partition like in Figure B.1. Its associated plane partition is
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Figure B.1: Tlustration for Example B.2.2

As the hooks are symmetric and have a common central axis, we can elim-
inate one branch of each hook and the central axis, and work only with the
remaining branches, which constitute a pile of distinct parts, not necessarily
odd anymore.

B.3 Converting partitions into sequences

Let us look to the heights of the columns of the remaining partition and
list these heights as a finite sequence (9)*_; = (ny,n9, 3, ..., ny) of positive
integers. Observe that, according to our construction, consecutive columns
may differ from at most one unit and there is necessarily one column of height
1. Therefore, the sequence of consecutive terms associated to the heights of

the columns may have repetitions and ends with n; = 1.

Example B.3.1. When taking the columns from partition A = (11,9,5,3)
we get Figure B.2, which can be associated to the sequence of heights (n)>_, =

(4,3,2,2,1).

Now, let us consider a finite nonincreasing sequence (n)*_, = (ny,n,,...,1)
of positive integers such that n;,,1 € {n;,n; — 1}. If there are repetitions in

this sequence, we mark every repeated term, except its last appearance. Note
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Figure B.2: Tlustration for Example B.3.1

that each repeated term means that an odd integer was omitted in the orig-
inal partition obtained from the Path Procedure. For example, the sequence
from Example B.3.1 turns to (n)2_, = (4,3,2,2,1).

In order to identify which partition A into distinct odd parts is associated

to the sequence (n)k_;, some observations have to be made:

e As X never has 1 as a part, the number of omitted parts of A\ equals

the number of marked terms of (n)¥_, plus 1.

e As the sequences of unmarked consecutive terms of (n)¥_, indicate the
sequences of consecutive odd parts of A, we need to verify the size
of these sequences of unmarked consecutive terms. According to the
rule obeyed by the partitions into distinct odd parts generated by the
Path Procedure, (n)¥_, has to satisfy the following: each sequence of
decreasing unmarked consecutive terms after a sequence of repeated
terms (marked terms) has to have the same size as the number of

previous repetitions plus 1, or a greater multiple of it.

e The largest term of (n)%_,, that is, the highest column of the diagram,
indicates how many parts the original partition A has. So, if the se-
quence (n)¥_, has n; = j as its largest term (which also means that the

sequence has j different terms), then A has j distinct odd parts;

e The number of terms of (n)¥_;, that is, the number of columns of the
diagram, determines the size of the largest part of the partition A. So,
if the sequence has k terms, counting repetitions, the original partition
has largest part \y =2 -k + 1;

Example B.3.2. By looking to the sequence (n);_; = (4,3,2,2,1), we ob-
serve that the sequence 4,3 has size 2, a multiple of 1, which is the number of
marked terms until then (none) plus 1; the sequence 2,1 has size 2, exactly the
number of marked terms until then plus 1. Therefore, (n)2_, = (4,3,2,2,1)
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generates a partition X\, according to the Path Procedure. Moreover, as
ny = 4, then X\ has 4 distinct odd parts; and as k = 5, the largest part
of Ais2-5+1=11. So,

ns =1= A\ =11;

ng=2=— X =09;

ng = 2= 17 is omitted,
Ng = 3 = A3 = 5;
n=4— M\ =3.
As it was supposed to be, according to Example B.3.1, A = (11,9,5,3).

There are some finite sequence ()%, = (ny,n2,n3,...,1) of decreasing
positive integers such that n;;; € {n;, n;—1} that do not generate a partition
into distinct odd parts as the ones induced by the Path Procedure. The
following example shows some possible and impossible sequences (n)%_, and,

in the first case, the associated partitions into distinct odd parts.

Example B.3.3.

Possible (n)k_, Impossible (n)k_,

()13, = (11,10,9,8,7,7,6,5,4,3,3,2,1)
associated to the partition (mE, =(11,10,9,8,7,6,6,5,4,3,2,2,1)
A =(27,25,23,19,17,15,13,9,7,5,3)

(M, = (7,7,7,6,5,4,4,3,2,1)
associated to the partition (m)i, =(7,6,6,6,5,4,3,3,2,1)
A= (21,19,17,15,11,9,7)

(77)?:1 = (Sa 27 27 1)
associated to the partition (i, =(3,3,2,1)
A=(9,7,3)

Table 34: Examples of possible and impossible sequences (n)%_;

Clearly we can find nonincreasing finite sequences of positive integers
to be associated to other types of partitions into distinct odd parts. As
long as we can apply the Path Procedure to a set of two-line matrices, the
induced distinct odd parts can be arranged as a symmetric plane partition

and, therefore, be associated to a sequence of positive integers.
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