Universidade Federal do Rio Grande do Sul Instituto de Matemática

Programa de Pós-Graduação em Matemática

Expansão de Puiseux e normalização de domínios noetherianos semi-locais de dimensão 1

Dissertação de Mestrado

Rafael Cavalheiro

Porto Alegre, Agosto de 2009

Dissertação submetida por Rafael Cavalheiro ¹, como requisito parcial para a

obtenção do grau de Mestre em Matemática pelo Programa de Pós-Graduação em

Matemática do Instituto de Matemática da Universidade Federal do Rio Grande do

Sul.

Professor Orientador:

Ivan Pan

Banca examinadora:

Ivan Pan (IM - UFRGS, ORIENTADOR)

Luisa Doering (IM - UFRGS)

Ada Maria Doering (IM - UFRGS)

Walter Ferrer (U. DE LA REP. - URUGUAI)

Data da defesa: 11 de agosto de 2009

¹Bolsista do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

RESUMO

Seja S um domínio noetheriano semi-local de dimensão 1. O objetivo principal deste trabalho é descrever a normalização \overline{S} de S no caso onde \overline{S} é finita sobre S. Demonstramos que \overline{S} pode ser obtido através de um número finito de blow-ups no radical de Jacobson. Além disso, se K é um corpo algebricamente fechado com char K(S)=0 e S é um domínio local da forma K(S)=0 e K(S)=0 e K(S)=0 demonstramos a existência de uma solução para a equação K(S)=0 utilizando séries de Puiseux; em particular obtemos \overline{S} exibindo uma parametrização explícita.

ABSTRACT

Let S be a noetherian semi-local domain of dimension 1. The aim of this work is to describe the normalization \overline{S} of S in the case where \overline{S} is finite over S. We show that \overline{S} may be obtained by a finite number of blow-ups in the Jacobson radical. Moreover, if K is an algebraically closed field with $\operatorname{char}(K) = 0$ and S is a local domain of the form K[[x,y]]/(F), where $F(x,y) \in K[[x,y]]$ is an irreducible formal power series with F(0,0)=0, we prove that there exist a solution for the equation F(x,y)=0 by using Puiseux series; in particular we obtain \overline{S} by exibing an explicit parametrization.

Sumário

1	$\mathbf{E}\mathbf{s}\mathbf{q}$	uemas	4
	1.1	Feixes	4
	1.2	Esquemas	10
		1.2.1 Caso afim	10
		1.2.2 Caso projetivo	25
2	Exp	ansão de Puiseux e normalização de curvas algebróides planas	39
	2.1	Lema de Hensel e Teorema de Preparação de Weierstrass	39
	2.2	Extensões de $K((t))$ e Expansão de Puiseux	47
3	Nor	malização de domínios noetherianos semi-locais de dimensão 1	55
	3.1	Blow-up	55
	3.2	Algoritmo de resolução	65

Introdução

Seja K um corpo algebricamente fechado de característica zero. Uma curva algébrica plana $C\subseteq K^2$ é o conjunto de zeros de algum polinômio não constante $F\in K[x,y]$, ou seja,

$$C := \{F = 0\} = \{(a,b) \in K^2 / F(a,b) = 0\}$$
.

A curva C é irredutível se F pode ser escolhido irredutível (observe-se que para todo $n \ge 1$, F^n define a mesma curva C). Um ponto $(a,b) \in C$ é singular se

$$\frac{\partial F}{\partial x}(a,b) = \frac{\partial F}{\partial y}(a,b) = 0$$
.

Se F é irredutível, o conjunto dos pontos singulares de $C := \{F = 0\}$ é finito. Com efeito, se não fosse assim teríamos $\frac{\partial F}{\partial x}|_C = \frac{\partial F}{\partial y}|_C = 0$ (ver, por exemplo, [Re, Chapter II, Exercise 3.12]). Por Nullstellensatz existiriam $n_1, n_2 \ge 1$ tais que

$$\left(\frac{\partial F}{\partial x}\right)^{n_1}, \left(\frac{\partial F}{\partial y}\right)^{n_2} \in (F).$$

Da irredutibilidade de F seguiria que $\frac{\partial F}{\partial x}=\frac{\partial F}{\partial y}=0$, uma contradição já que F não é constante.

Além disso, (a,b) é um ponto singular de $C:=\{F(x,y)=0\}$ se e somente se (0,0) é ponto singular de $C':=\{F(x-a,y-b)=0\}$. Isto significa que o conceito de singularidade é invariante por mudanças lineares de variáveis.

Suponhamos que $K=\mathbb{C}$ é o corpo dos números complexos e que (0,0) é um ponto não singular da curva $C:=\{F=0\}\subseteq\mathbb{C}^2$, digamos $\frac{\partial F}{\partial y}(0,0)\neq 0$.

Pelo Teorema da Função Implícita (para funções analíticas), existe uma solução da equação F(x,y)=0 da forma $y=\phi(x)$, $\phi(0)=0$, com ϕ analítica numa vizinhança da origem, ou seja,

$$y = \sum_{i=1}^{\infty} a_i x^i,$$

onde a série $\sum_{i=1}^{\infty} a_i x^i$ tem raio de convergência positivo. Em particular, obtemos uma parametrização local da curva C num vizinhança da origem:

$$x \mapsto (x, \sum_{i=1}^{\infty} a_i x^i)$$
.

Se (0,0) é um ponto singular, o Teorema da Função Implícita não pode ser aplicado. Não obstante, existe uma forma de generalizar a situação acima neste caso.

Mais precisamente, suponhamos que o polinômio F é irredutível quando considerado como série de potências (formal) em duas variáveis, $F(x,y) \in K[[x,y]]$. Fazendo uma mudança linear de variáveis podemos assumir que, para um certo $m \geq 1$, todas as derivadas parciais de ordem $\leq m-1$ se anulam em (0,0) e que $\frac{\partial^m F}{\partial y^m}(0,0) \neq 0$. Então temos uma solução da equação F(x,y)=0 da forma

$$y = \sum_{i=1}^{\infty} a_i x^{i/m} ,$$

onde $x^{1/m}$ indica uma raiz do polinômio $T^m - x \in K((x))[T]$ no seu fecho algébrico (K((x)) denota o corpo de frações de K[[x]]).

A escrita $y=\sum_{i=1}^\infty a_i\,x^{i/m}$ é conhecida como Expansão de Puiseux de F em (0,0), cuja existência demonstraremos em 2.2. Este é o primeiro resultado fundamental do trabalho. O corolário mais importante deste resultado é que K[[t]] é a normalização do anel K[[x,y]]/(F).

Por outro lado, A:=K[x,y]/(F) é um domínio noetheriano de dimensão 1. Se $p_1,\ldots,p_\ell\in C$ são os pontos singulares de C, consideramos os ideais

maximais de K[x, y]

$$\mathfrak{M}_i := \left\{ G \in K[x, y] \middle/ G(p_i) = 0 \right\} \supseteq (F)$$

e os correspondentes ideais maximais $\mathfrak{m}_i = \mathfrak{M}_i + (F)$ de A. Tomando o conjunto multiplicativo $S := A \setminus \bigcup_{i=1}^{\ell} \mathfrak{m}_i$, o anel de localização $S := S^{-1}A$ é um domínio noetheriano semi-local de dimensão 1, com ideais maximais $S^{-1}\mathfrak{m}_1, \ldots, S^{-1}\mathfrak{m}_{\ell}$. Além disso, a normalização \overline{S} de S é finita sobre S (ver argumento no Exemplo 3.2.4). O segundo resultado fundamental deste trabalho descreve um algoritmo para obter a normalização de S (Capítulo 3).

O objetivo da dissertação foi o de estudar em detalhes os resultados das Seções 1.11, 1.12 e 1.13 de [Ko], focando-se na parte algébrica das demonstrações. A maioria dos pré-requisitos para a leitura deste trabalho encontra-se em [AM] e na Seção 6 de [Ma]. Alguns poucos encontram-se nas outras referências.

Observemos ainda que em [Ko] os resultados são um pouco mais gerais que os descritos neste trabalho. Mais precisamente, lá não se exige que o corpo K do Teorema 2.2.3 seja de característica zero nem que o anel S do Capítulo 3 seja um domínio (ver [Ko, Chapter 1, Theorems 1.96 and 1.101]).

Capítulo 1

Esquemas

Neste capítulo descrevemos algumas definições básicas e demonstramos algumas propriedades sobre esquema que serão utilizados no Capítulo 3.

1.1 Feixes

Definição 1.1.1. Seja X um espaço topológico. Um pré-feixe \mathscr{F} de anéis em X consiste de,

- (a) para cada subconjunto aberto U de X, um anel comutativo com unidade $\mathscr{F}(U) \ e,$
- (b) para cada inclusão $V\subseteq U$ de subconjuntos abertos de X, um homomorfismo $\rho_{UV}:\mathscr{F}(U)\to\mathscr{F}(V)$

tais que

- (i) $\mathscr{F}(\varnothing) = 0$,
- (ii) $\rho_{UU}: \mathscr{F}\left(U\right) \to \mathscr{F}\left(U\right)$ é a identidade para todo aberto U de X , e
- (iii) se $W \subseteq V \subseteq U$ são subconjuntos aberto de X , então $\rho_{UW} = \rho_{VW} \circ \rho_{UV}$.

Os elementos de $\mathscr{F}(U)$ são chamados $seç\~oes$ do pré-feixe \mathscr{F} no aberto U e os elementos de $\mathscr{F}(X)$ são chamados $seç\~oes$ globais. As funções ρ_{UV} são chamadas funções $restriç\~ao$ do pré-feixe \mathscr{F} e, se $s\in\mathscr{F}(U)$, denotaremos $s|_V$ em vez de $\rho_{UV}(s)$.

Se U é um subconjunto aberto de X, então um subconjunto de U é aberto em U (condiderando a topologia induzida de X) se e somente se é aberto em X. Assim, temos um pré-feixe natural $\mathscr{F}|_U$ no espaço topológico U, onde, para um aberto V de U, $\mathscr{F}|_U(V) := \mathscr{F}(V)$ e as restrições de $\mathscr{F}|_U$ são as respectivas restrições de \mathscr{F} .

Definição 1.1.2. Um pré-feixe \mathscr{F} em um espaço topológico X é um feixe se para todo subconjunto aberto U de X e toda cobertura $U = \bigcup U_i$ de U por meio de abertos U_i de X, tem-se o seguinte:

- (iv) se $s \in \mathscr{F}(U)$ é tal que $s|_{U_i} = 0$ para todo i, então s = 0;
- $\begin{array}{llll} \text{(v)} \ \textit{dados} \ \ s_i \in \mathscr{F}\left(U_i\right) \ \textit{para cada} \ \ i \ , \ \textit{se} \ \ s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} \ \ \textit{para todo} \ \ i \ \ e \ \textit{todo} \\ j \ , \ \textit{ent\~ao} \ \ \textit{existe} \ \ s \in \mathscr{F}\left(U\right) \ \ \textit{tal que} \ \ s|_{U_i} = s_i \ \ \textit{para todo} \ \ i \ . \end{array}$

É fácil verificar que se U é um subconjunto aberto de X e o pré-feixe \mathscr{F} é um feixe em X, então o pré-feixe $\mathscr{F}|_U$ é um feixe em U.

Definição 1.1.3. Seja X um espaço topológico, \mathscr{F} um pré-feixe em X e p um ponto de X. Definimos o stalk \mathscr{F}_p de \mathscr{F} em p como segue:

 $\mathscr{F}_p := \left\{ \begin{array}{ll} (U,s) \ \middle/ \ U \ \ \'e \ uma \ vizinhança \ de \ p \ e \ s \in \mathscr{F}(U) \right\} \ \middle/ \sim \\ onde \ (U,s) \sim (V,t) \ \ quando \ existe \ uma \ vizinhança \ W \ \ de \ p \ \ contida \ em \ \ U \cap V \\ tal \ que \ \ s|_W = t|_W \ \ em \ \ \mathscr{F}(W) \ . \ Denotaremos \ \langle U,s \rangle \ \ a \ classe \ de \ equivalência \ de \\ (U,s) \ . \end{array}$

Proposição 1.1.4. O stalk \mathscr{F}_p é um anel comutativo com unidade.

Demonstração: Definimos as operações de soma e multiplicação em \mathscr{F}_p como segue. Dados $\langle U, s \rangle, \langle V, t \rangle \in \mathscr{F}_p$, pela definição de \mathscr{F}_p temos

$$\langle U, s \rangle = \langle U \cap V, s|_{U \cap V} \rangle$$
 e $\langle V, t \rangle = \langle U \cap V, t|_{U \cap V} \rangle$.

Definimos então

$$\langle U, s \rangle + \langle V, t \rangle := \langle U \cap V, s|_{U \cap V} + t|_{U \cap V} \rangle$$

 $\langle U, s \rangle \cdot \langle V, t \rangle := \langle U \cap V, s|_{U \cap V} \cdot t|_{U \cap V} \rangle$

Estas operações são ambas comutativas e associativas, a multiplicação é distributiva em relação à soma e $\langle X, 0 \rangle$ e $\langle X, 1 \rangle$ são os respectivos elementos neutros da soma e multiplicação. Além disso, se $\langle U, s \rangle \in \mathscr{F}_p$ então o elemento $\langle U, -s \rangle$ é o simétrico de $\langle U, s \rangle$.

Definição 1.1.5. Seja X um espaço topológico e \mathscr{F} e \mathscr{G} pré-feixes em X. Um morfismo de pré-feixes $\psi:\mathscr{F}\to\mathscr{G}$ consiste de um homomorfismo $\psi_U:\mathscr{F}(U)\to\mathscr{G}(U)$ para cada aberto U de X de forma que, para toda inclusão $V\subseteq U$ de abertos de X, o diagrama

$$\mathcal{F}(U) \xrightarrow{\psi_{U}} \mathcal{G}(U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{F}(V) \xrightarrow{\psi_{V}} \mathcal{G}(V)$$

 $comuta \ (as \ flechas \ verticais \ representam \ as \ respectivas \ restrições \ de \ \mathscr{F} \ \ e \ \mathscr{G} \).$

Se \mathscr{F} e \mathscr{G} forem ambos feixes em X , então dizemos que ψ é um morfismo de feixes.

O morfismo ψ é um isomorfismo se cada ψ_U é um isomorfismo.

Notemos que um morfismo de pré-feixes $\psi: \mathscr{F} \to \mathscr{G}$ em X induz, para cada ponto p de X, um homomorfismo entre os respectivos stalks:

$$\psi_p: \mathscr{F}_p \to \mathscr{G}_p$$

$$\langle U, s \rangle \mapsto \langle U, \psi_U(s) \rangle$$

De fato, se $\langle U,s\rangle=\langle V,t\rangle$ em \mathscr{F}_p , então existe um aberto W de X contido em $U\cap V$, tal que $s|_W=t|_W$ em $\mathscr{F}(W)$. Pela definição de morfismo, temos

$$(\psi_U(s))|_W = \psi_W(s|_W) = \psi_W(t|_W) = (\psi_V(t))|_W$$

em $\mathscr{G}(W)$, donde $\langle U, \psi_U(s) \rangle = \langle V, \psi_V(t) \rangle$ em \mathscr{G}_p . Portanto ψ_p está bem definida. Além disso, como cada ψ_U é um homomorfismo, é fácil verificar que ψ_p é um homomorfismo.

Observação 1.1.6. É possível demonstrar que se $\psi: \mathscr{F} \to \mathscr{G}$ é um morfismo de feixes em X, então ψ é um isomorfismo se e somente se $\psi_p: \mathscr{F}_p \to \mathscr{G}_p$ é um isomorfismo para todo $p \in X$ (ver [Ha, Chapter 2, Proposition 1.1]).

Sejam X e Y espaços topológicos e \mathscr{F}_X é um pré-feixe de anéis em X. Uma função contínua $\phi: X \to Y$ induz um pré-feixe de anéis $\phi_*\mathscr{F}_X$ em Y. De fato, se U é um aberto de Y, então $\phi^{-1}(U)$ é um aberto de X. Definimos daí $\phi_*\mathscr{F}_X(U):=\mathscr{F}_X(\phi^{-1}(U))$ e consideramos as respectivas restrições de \mathscr{F}_X . É facil verificar que $\phi_*\mathscr{F}_X$ assim definido satisfaz os axiomas da Definição 1.1.1, portanto é um pré-feixe de anéis em Y. Também é fácil verificar que se \mathscr{F}_X é um feixe de anéis em X, então $\phi_*\mathscr{F}_X$ é um feixe de anéis em Y. Para isso basta notar que, se $U=\bigcup U_i$ então $\phi^{-1}(U)=\bigcup \phi^{-1}(U_i)$ e $\phi^{-1}(U_i\cap U_j)=\phi^{-1}(U_i)\cap \phi^{-1}(U_j)$ para todo i e todo j, e que além disso, se $V\subseteq U$ é uma inclusão de abertos

de Y e $s \in \phi_* \mathscr{F}_X (U) = \mathscr{F}_X (\phi^{-1}(U))$, então por definição, o elemento $s|_V$ de $\phi_* \mathscr{F}_X (V)$ é o elemento $s|_{\phi^{-1}(V)}$ de $\mathscr{F}_X (\phi^{-1}(V))$.

Definição 1.1.7. Um espaço anelado é um par (X, \mathcal{F}) consistindo de um espaço topológico X e um feixe de anéis \mathcal{F} em X.

Um morfismo de espaços anelados $(\phi, \phi^{\#}): (X, \mathscr{F}_X) \to (Y, \mathscr{F}_Y)$ é um par $(\phi, \phi^{\#})$ consistindo de uma função contínua $\phi: X \to Y$ e um morfismo $\phi^{\#}: \mathscr{F}_Y \to \phi_* \mathscr{F}_X$ de feixes de anéis em Y.

O morfismo $(\phi, \phi^{\#})$ é um isomorfismo se ϕ é um homeomorfismo de espaços topológicos e $\phi^{\#}$ é um isomorfismo de feixes em Y.

Observemos que um morfismo $(\phi, \phi^{\#}): (X, \mathscr{F}_X) \to (Y, \mathscr{F}_Y)$ de espaços anelados (X, \mathscr{F}_X) e (Y, \mathscr{F}_Y) induz, para cada $p \in X$, um homomorfismo entre os stalks $(\mathscr{F}_Y)_{\phi(p)}$ e $(\mathscr{F}_X)_p$:

$$\phi_p^{\#}: \left(\mathscr{F}_Y\right)_{\phi(p)} \rightarrow \left(\mathscr{F}_X\right)_p$$

$$\left\langle U, s \right\rangle \mapsto \left\langle \phi^{-1}(U), \phi_U^{\#}(s) \right\rangle.$$

Antes de tudo, devemos nos convencer que esta aplicação está bem definida. Ora, dado $p \in X$, se U é uma vizinhança de $\phi(p)$ em Y, então $\phi^{-1}(U)$ é uma vizinhança de p em X. Também, pela definição de morfismo de feixes, temos um homomorfismo de anéis $\phi_U^\#: \mathscr{F}_Y(U) \to \phi_*\mathscr{F}_X(U) := \mathscr{F}_X(\phi^{-1}(U))$. Assim se $\langle U, s \rangle$ é um elemento do stalk $(\mathscr{F}_Y)_{\phi(p)}$ então $\langle \phi^{-1}(U), \phi_U^\#(s) \rangle$ é um elemento do stalk $(\mathscr{F}_X)_p$.

Além disso, se $\langle U, s \rangle = \langle V, t \rangle$ em $(\mathscr{F}_Y)_{\phi(p)}$, então existe uma vizinhança W de $\phi(p)$ contida em $U \cap V$ tal que $s|_W = t|_W$ em $\mathscr{F}_Y(W)$. Isso implica que $\phi^{-1}(W)$ é uma vizinhança de p contida em $\phi^{-1}(U) \cap \phi^{-1}(V)$ e, pela definição de morfismo,

$$(\phi_U^{\#}(s))|_W = \phi_W^{\#}(s|_W) = \phi_W^{\#}(t|_W) = (\phi_V^{\#}(t))|_W \quad \text{em} \quad \phi_* \mathscr{F}_X(W)$$

ou seja,

$$\left(\phi_{U}^{\#}\left(s\right)\right)|_{\phi^{-1}\left(W\right)} = \left(\phi_{V}^{\#}\left(t\right)\right)|_{\phi^{-1}\left(W\right)} \qquad \text{em} \quad \mathscr{F}_{X}\left(\phi^{-1}\left(W\right)\right) \ .$$

Portanto $\left\langle \phi^{-1}\left(U\right),\phi_{U}^{\#}\left(s\right)\right\rangle =\left\langle \phi^{-1}\left(V\right),\phi_{V}^{\#}\left(t\right)\right\rangle$ em $\left(\mathscr{F}_{X}\right)_{p}$ e $\phi_{p}^{\#}$ está bem definida.

Por outro lado, como cada $\phi_U^\#$ é um homomorfismo, é fácil verificar que cada $\phi_p^\#$ é também um homomorfismo.

Definição 1.1.8. Um espaço anelado (X, \mathscr{F}_X) é um espaço anelado local se, para cada $p \in X$, o stalk \mathscr{F}_p é um anel local.

Um morfismo de espaços anelados locais \acute{e} um morfismo de $espaços anelados <math>(\phi,\phi^{\#}):(X,\mathscr{F}_X)\to (Y,\mathscr{F}_Y)$, tal que, para cada $p\in X$, o homomorfismo induzido $\phi_p^{\#}:(\mathscr{F}_Y)_{\phi(p)}\to (\mathscr{F}_X)_p$ \acute{e} um homomorfismo local.

O morfismo $(\phi, \phi^{\#})$ é um isomorfismo se ϕ é um homeomorfismo de espaços topológicos e $\phi^{\#}$ é um isomorfismo de feixes em Y.

Observação 1.1.9. Se A e B são anéis (comutativos com unidade) locais com ideais maximais \mathfrak{m}_A e \mathfrak{m}_B respectivamente, um homomorfismo $\varphi:A\to B$ é um homomorfismo local quando $\varphi^{-1}(\mathfrak{m}_B)=\mathfrak{m}_A$.

Seja (X, \mathscr{F}) um espaço anelado. É fácil verificar, usando a definição de stalk, que se U é um aberto de X e p é um ponto de U, então $(\mathscr{F}|_U)_p \cong \mathscr{F}_p$. Em particular, se (X, \mathscr{F}) é um espaço anelado local então $(U, \mathscr{F}|_U)$ também é.

1.2 Esquemas

1.2.1 Caso afim

Seja A um anel comutativo com unidade. Denotaremos Spec(A) o conjunto dos ideais primos de A.

Exemplo 1.2.1.

 $Spec(K) = \{(0)\} para qualquer corpo K$.

$$\mathit{Spec}\left(\mathbb{Z}\right) \; = \; \big\{(0)\big\} \; \cup \; \big\{\; (p) \; \big/ \; p \in \mathbb{Z} \; \; \mathit{tal que} \; \; p \; \; \acute{e} \; \mathit{primo} \; \big\}.$$

Exemplo 1.2.2. Seja K um corpo e seja K[x] o anel de polinômios em uma variável sobre K. O anel K[x] é um Domínio de Ideais Principais (DIP) e portanto um Domínio de Fatoração Única (DFU). Assim

$$Spec(K[x]) = \{(0)\} \cup \{(p(x)) / p(x) \text{ \'e mônico e irredut\'ivel em } K[x] \}.$$

Se além disso K for algebricamente fechado, então os únicos polinômios mônicos irredutíveis em K[x] são os da forma x-a para algum $a\in K$. Nesse caso temos

$$Spec(K[x]) = \{(0)\} \cup \{(x-a) / a \in K\}.$$

Em particular

$$\begin{aligned} \mathit{Spec}\left(\mathbb{R}[x]\right) &= \left\{(0)\right\} \ \cup \ \left\{ \ \left(x-r\right) \ \middle/ \ r \in \mathbb{R} \ \right\} \\ & \ \, \cup \ \left\{ \ \left(x^2+ax+b\right) \ \middle/ \ a,b \in \mathbb{R} \ e \ x^2+ax+b \ n\~{a}o \ possui \ raiz \ real \ \right\}. \\ \mathit{Spec}\left(\mathbb{C}[x]\right) &= \left\{(0)\right\} \ \cup \ \left\{ \ \left(x-a\right) \ \middle/ \ a \in \mathbb{C} \ \right\}. \end{aligned}$$

Dado um ideal \mathfrak{a} de A, denotaremos

$$V_{A}\left(\mathfrak{a}
ight) \,:=\, \left\{\,\, \mathfrak{p} \in \mathit{Spec}\left(A
ight) \,\middle/\, \mathfrak{p} \supseteq \mathfrak{a}\,\,
ight\}\,\,,$$

ou simplesmente $V(\mathfrak{a})$ quando ficar subentendido a que anel estamos nos referindo. Se f é um elemento de A, escreveremos simplesmente V(f) em vez de V((f)).

Como mostra a proposição a seguir, os subconjuntos de Spec(A) da forma $V(\mathfrak{a})$, com \mathfrak{a} ideal de A, satisfazem os axiomas de subconjuntos fechados de um espaço topológico. Esta topologia é chamada topologia de Zariski de Spec(A).

Proposição 1.2.3. Sejam $f \in A$ e $(\mathfrak{a}_i)_{i \in I}$ uma família de ideais de A.

- (i) $V(A) = \varnothing \ e \ V(0) = Spec(A)$.
- (ii) $\bigcap_{i \in I} V(\mathfrak{a}_i) = V(\bigcup_{i \in I} \mathfrak{a}_i) = V(\sum_{i \in I} \mathfrak{a}_i)$.
- (iii) $V(\mathfrak{a}_i) \cup V(\mathfrak{a}_j) = V(\mathfrak{a}_i \cap \mathfrak{a}_j) = V(\mathfrak{a}_i \mathfrak{a}_j)$.
- (iv) $V(\mathfrak{a}_i) = V(\sqrt{\mathfrak{a}_i})$, onde $\sqrt{\mathfrak{a}_i} = \{ a \in A \mid a^n \in \mathfrak{a}_i, \text{ para algum } n \geq 1 \}$ é o ideal radical de \mathfrak{a}_i . Em particular $V(f) = V(f^n)$ para todo $n \geq 1$.
- (v) $V(\mathfrak{a}_i) \subseteq V(\mathfrak{a}_j) \iff \sqrt{\mathfrak{a}_i} \supseteq \sqrt{\mathfrak{a}_j}$.
- (vi) $V(f) = Spec(A) \iff f \notin nilpotente;$
- (vii) $V(f) = \varnothing \iff f \text{ \'e invert\'ivel;}$

Demonstração: (i) Trivial

- (ii) Um ideal primo \mathfrak{p} de A pertence a $\bigcap_{i\in I}V(\mathfrak{a}_i)$ se e somente se \mathfrak{p} contém cada \mathfrak{a}_i , o que acontece se e somente se $\mathfrak{p}\supseteq\bigcup_{i\in I}\mathfrak{a}_i$, portanto, se e somente se $\mathfrak{p}\in V\left(\left(\bigcup_{i\in I}\mathfrak{a}_i\right)\right)$. Além disso, é fácil verificar que $\sum_{i\in I}\mathfrak{a}_i$ é o ideal gerado por $\bigcup_{i\in I}\mathfrak{a}_i$.
- (iii) Se um ideal primo \mathfrak{p} de A contém \mathfrak{a}_i ou \mathfrak{a}_j então \mathfrak{p} também contém a interseção $\mathfrak{a}_i \cap \mathfrak{a}_j$, a qual por sua vez contém o produto $\mathfrak{a}_i \mathfrak{a}_j$. Portanto $V(\mathfrak{a}_i) \cup V(\mathfrak{a}_j) \subseteq V(\mathfrak{a}_i \cap \mathfrak{a}_j) \subseteq V(\mathfrak{a}_i \mathfrak{a}_j)$.

Por outro lado, se \mathfrak{p} não contém nem \mathfrak{a}_i nem \mathfrak{a}_j , então existem $a \in \mathfrak{a}_i$ e $b \in \mathfrak{a}_j$ tais que $a, b \notin \mathfrak{p}$. Daí $ab \in \mathfrak{a}_i \mathfrak{a}_j$, mas $ab \notin \mathfrak{p}$ (pois \mathfrak{p} é primo), portanto \mathfrak{p} não contém o produto $\mathfrak{a}_i \mathfrak{a}_j$. Assim, vale também a inclusão $V(\mathfrak{a}_i \mathfrak{a}_j) \subseteq V(\mathfrak{a}_i) \cup V(\mathfrak{a}_j)$.

(iv) Seja $\mathfrak{p} \in V(\mathfrak{a}_i)$. Dado $a \in \sqrt{\mathfrak{a}_i}$, existe $n \in \mathbb{N}$ tal que $a^n \in \mathfrak{a}_i \subseteq \mathfrak{p}$. Sendo \mathfrak{p} um ideal primo, segue que $a \in \mathfrak{p}$. Isso mostra que $V(\mathfrak{a}_i) \subseteq V(\sqrt{\mathfrak{a}_i})$. Por outro lado, como $\mathfrak{a}_i \subseteq \sqrt{\mathfrak{a}_i}$, é evidente que $V(\mathfrak{a}_i) \supseteq V(\sqrt{\mathfrak{a}_i})$.

(v) $V(\mathfrak{a}_i) \subseteq V(\mathfrak{a}_j)$ significa que todo ideal primo de A que contém \mathfrak{a}_i também contém \mathfrak{a}_j . Assim, se $V(\mathfrak{a}_i) \subseteq V(\mathfrak{a}_j)$, então

$$\sqrt{\mathfrak{a}_i} = \bigcap_{\substack{\mathfrak{p} \in \mathit{Spec}(A) \\ \mathfrak{p} \supseteq \mathfrak{a}_i}} \mathfrak{p} \supseteq \bigcap_{\substack{\mathfrak{p} \in \mathit{Spec}(A) \\ \mathfrak{p} \supseteq \mathfrak{a}_j}} \mathfrak{p} = \sqrt{\mathfrak{a}_j}.$$

(ver [AM, Chapter 1, Proposition 1.14]). Por outro lado, se $\sqrt{\mathfrak{a}_i} \supseteq \sqrt{\mathfrak{a}_j}$, então, pelo item (iv), temos

$$V(\mathfrak{a}_i) = V(\sqrt{\mathfrak{a}_i}) \subseteq V(\sqrt{\mathfrak{a}_j}) = V(\mathfrak{a}_j).$$

(vi) Seja $\mathcal{N}(A)$ o conjunto de elementos nilpotentes de A . Temos

$$\mathcal{N}\left(A
ight) \;\; = \bigcap_{\mathfrak{p} \in \mathcal{S}\mathit{pec}(A)} \mathfrak{p}.$$

(ver [AM, Chapter 1, Proposition 1.8]). Assim, f é nilpotente se e somente se f pertence a todo ideal primo de A, ou seja, se e somente se V(f) = Spec(A).

(vii) Se f é invertível então (f) = A, donde $V(f) = V(A) = \emptyset$. Por outro lado, se f não é invertível existe em A um ideal maximal, portanto primo,

que contém f (ver [AM, Chapter 1, Corollary 1.5]). O que implica $V(f) \neq \emptyset$. \square

Exemplo 1.2.4. Seja A um anel comutativo com unidade. Os únicos pontos fechados de Spec(A) são os ideais maximais de A. Com efeito, se \mathfrak{m} é um ideal maximal de A então

$$\{\mathfrak{m}\} = V(\mathfrak{m}).$$

Por outro lado se $\mathfrak{p} \subseteq A$ é um ideal primo que não é maximal então existe (pelo menos) um ideal maximal $\mathfrak{m} \subseteq A$ tal que $\mathfrak{p} \subsetneq \mathfrak{m}$ (ver [AM, Chapter 1, Corollary 1.4]). Assim o fecho de $\{\mathfrak{p}\}$, que é $V(\mathfrak{p})$, contém pelo menos dois pontos, \mathfrak{p} e \mathfrak{m} .

Exemplo 1.2.5. Seja K um corpo algebricamente fechado. Vimos no Exemplo 1.2.2 que

$$Spec(K[x]) = \{(0)\} \cup \{(x-a) / a \in K\}.$$

O único destes ideais que não é maximal é (0). Pelo exemplo anterior (0) é o único ponto de Spec(K[x]) que não é fechado. Afirmamos que os únicos conjuntos fechados de Spec(K[x]) além de Spec(K[x]) e \varnothing são as uniões finitas de pontos que são ideais maximais de K[x]. De fato, seja $\varnothing \neq V(\mathfrak{a}) \subsetneq Spec(K[x])$ um subconjunto próprio, não vazio e fechado de Spec(K[x]). Então $\mathfrak{a} \neq (0)$. Tomando $p(x) \in \mathfrak{a} \setminus (0)$ ele escreve-se unicamente como

$$p(x) = c(x - a_1) \cdots (x - a_n)$$
 para certos $c, a_1, \dots, a_n \in K$.

Assim os únicos ideais primos de K[x] que contém p(x) são $(x-a_1), \ldots, (x-a_n)$. Em particular

$$V(\mathfrak{a}) \subseteq \{(x-a_1), \dots, (x-a_n)\}$$

e isso demonstra a afirmação.

Dado $f \in A$, denotaremos $D_A(f)$, ou simplesmente D(f) quando estiver subentendido o anel a que estamos nos referindo, o aberto complementar de V(f) em Spec(A).

Os abertos desse tipo formam uma base de abertos para a topologia de Zariski. De fato, por definição, um subconjunto de um espaço topológico é aberto se e somente se seu complementar é fechado. Assim todo aberto de Spec(A) é da forma

$$\begin{aligned} \mathit{Spec}\left(A\right) \; - \; V\left(\mathfrak{a}\right) \; &= \; \; \mathit{Spec}\left(A\right) \; - \; V\left(\bigcup_{f \in \mathfrak{a}}(f)\right) \\ &= \; \; \mathit{Spec}\left(A\right) \; - \; \bigcap_{f \in \mathfrak{a}}V\left(f\right) \\ &= \; \bigcup_{f \in \mathfrak{a}}\left(\mathit{Spec}\left(A\right) - V\left(f\right)\right) \\ &= \; \bigcup_{f \in \mathfrak{a}}D\left(f\right) \end{aligned}$$

para algum ideal \mathfrak{a} de A.

A proposição abaixo segue imediatamente da Proposição 1.2.3, tomando complementares.

Proposição 1.2.6. Sejam $f, g \in A$.

- $\text{(i)}\ \ D\left(f\right)\ \cap\ D\left(g\right)\ =\ D\left(fg\right)\ ,\ em\ particular\ \ D\left(f\right)=D\left(f^{n}\right)\ \ para\ todo\ \ n\geq1\ ;$
- $\text{(ii)} \ \ D\left(f\right) \ = \ \varnothing \ \iff \ f \ \ \acute{e} \ nilpotente;$
- (iii) $D(f) = Spec(A) \iff f \notin invertivel;$
- (iv) $D(f) \subseteq D(g) \iff f \in \sqrt{(g)}$.

Seja $\varphi:A\to B$ um homomorfismo de anéis. Se $\mathfrak p$ é um ideal primo de B, então $\varphi^{-1}(\mathfrak p)$ é um ideal primo de A. Assim φ induz a aplicação

$$\varphi^*: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$$

$$\mathfrak{p} \mapsto \varphi^{-1}(\mathfrak{p})$$

É imediato verificar que se $\varphi:A\to B$ e $\psi:B\to C$ são homomorfismos, então $(\psi\circ\varphi)^*=\varphi^*\circ\psi^*$. Além disso, $id_A{}^*=id_{\mathit{Spec}(A)}$ para todo anel A. Por

essa razão diz-se que a correspondência

$$\begin{array}{ccc} A & \mapsto & \mathit{Spec}\,(A) \\ A \overset{\varphi}{\to} B & \mapsto & \mathit{Spec}\,(B) \overset{\varphi^*}{\to} \mathit{Spec}\,(A) \end{array}$$

é um funtor contravariante.

Exemplo 1.2.7. Seja \mathfrak{a} um ideal de A. A projeção canônica $\pi: A \to A/\mathfrak{a}$ induz a aplicação $\pi^*: Spec(A/\mathfrak{a}) \to Spec(A)$, a qual leva fechados de $Spec(A/\mathfrak{a})$ em fechados de Spec(A). Mais precisamente, um ideal de A/\mathfrak{a} é da forma $\mathfrak{b}/\mathfrak{a}$ para algum ideal \mathfrak{b} de A que contém \mathfrak{a} , e $\pi^*(V_{A/\mathfrak{a}}(\mathfrak{b}/\mathfrak{a})) = V_A(\mathfrak{b})$.

Proposição 1.2.8. $Se \ f \in A \ então$

$$(\varphi^*)^{-1}(D_A(f)) = D_B(\varphi(f)).$$

Em particular φ^* é contínua.

Além disso, se φ é sobrejetiva, então φ^* é um homeomorfismo de Spec(B) sobre sua imagem $V_A(\ker(\varphi))$. Assim, dado um ideal \mathfrak{a} de A, $Spec(A/\mathfrak{a})$ é naturalmente homeomorfo a $V_A(\mathfrak{a})$. Em particular, Spec(A) é naturalmente homeomorfo a $Spec(A/\mathcal{N}(A))$, onde $\mathcal{N}(A)$ é o nilradical de A.

Demonstração: $\mathfrak{p} \in (\varphi^*)^{-1}(D_A(f))$ se e somente se \mathfrak{p} é um primo de B tal que $\varphi^*(\mathfrak{p}) = \varphi^{-1}(\mathfrak{p}) \in D_A(f)$, ou seja, tal que $\varphi^{-1}(\mathfrak{p})$ é um primo de A que não contém f. Mas $f \notin \varphi^{-1}(\mathfrak{p})$ se e somente se $\varphi(f) \notin \mathfrak{p}$. Logo $\mathfrak{p} \in (\varphi^*)^{-1}(D_A(f))$ se e somente se $\mathfrak{p} \in D_B(\varphi(f))$.

Dado então um aberto qualquer $\bigcup D_A(f)$ de Spec(A), sua imagem inversa

$$(\varphi^*)^{-1}\left(\bigcup D_A(f)\right) = \bigcup (\varphi^*)^{-1}\left(D_A(f)\right) = \bigcup D_B(\varphi(f))$$

é um aberto de Spec(B). Logo φ^* é contínua.

Supomos agora que φ é sobrejetiva. Temos um diagrama comutativo

$$A \xrightarrow{\varphi} B$$

$$\pi \downarrow \qquad \qquad \psi$$

$$A/\ker(\varphi)$$

que induz o diagrama comutativo

$$Spec (A) \xleftarrow{\varphi^*} Spec (B)$$

$$\pi^* \bigwedge_{\psi^*} \psi^*$$

$$Spec (A/\ker(\varphi))$$

Como φ é sobrejetiva, ψ é um isomorfismo, donde segue imediatamente que ψ^* é um homeomorfismo. Por outro lado, pela parte já demonstrada, π^* é contínua e como leva fechados em fechados (exemplo 1.2.7) é um homeomorfismo sobre sua imagem $V(\ker(\varphi))$. Logo $\varphi^* = (\psi \circ \pi)^* = \pi^* \circ \psi^*$ é um homeomorfismo sobre sua imagem $V(\ker(\varphi))$.

Seja ${\mathfrak a}$ um ideal de A. Se ${\mathfrak a}^e=\varphi\left({\mathfrak a}\right)\cdot B$ é a extensão de ${\mathfrak a}$ em B, está bem definido o homomorfismo

$$\overline{\varphi}: A/\mathfrak{a} \rightarrow B/\mathfrak{a}^e$$

$$a + \mathfrak{a} \mapsto \varphi(a) + \mathfrak{a}^e$$

Temos então um diagrama comutativo

$$A \xrightarrow{\varphi} B$$

$$\downarrow \qquad \qquad \downarrow$$

$$A/\mathfrak{a} \xrightarrow{\overline{\varphi}} B/\mathfrak{a}^e$$

que induz o diagrama comutativo

Seja \mathcal{S} um subconjunto multiplicativo de A. O homomorfismo canônico

$$\tau_{\mathcal{S}}: A \to \mathcal{S}^{-1}A$$

$$a \mapsto \frac{a}{1}$$

induz a aplicação $\tau_{\mathcal{S}}^*: \operatorname{Spec}(\mathcal{S}^{-1}A) \to \operatorname{Spec}(A)$, a qual é uma bijeção entre os ideais primos de $\mathcal{S}^{-1}A$ e os ideais primos de A que não interseptam \mathcal{S} . Mais precisamente, um ideal de $\mathcal{S}^{-1}A$ é primo se e somente se é da forma

$$\mathcal{S}^{-1}\mathfrak{p} = \left\{ \left. \frac{a}{s} \right/ a \in \mathfrak{p} , s \notin \mathcal{S} \right. \right\}$$

para algum ideal primo $\mathfrak p$ de A que não intersepta $\mathcal S$ e

$$au_{\mathcal{S}}^{*}\left(\mathcal{S}^{-1}\mathfrak{p}\right) \;:=\; au_{\mathcal{S}}^{-1}\left(\mathcal{S}^{-1}\mathfrak{p}\right) \;=\; \mathfrak{p}$$

(ver [AM, Chapter 3, Proposition 3.11]).

Um caso particular importante é quando fixamos um elemento f de A e tomamos o subconjunto multiplicativo $\mathcal{S} := \{1, f, f^2, \ldots\}$. Nesse caso denotamos $A_f := \mathcal{S}^{-1}A$. Pelo exposto acima, existe uma correspondência biunívoca natural entre $Spec(A_f)$ e o aberto D(f) de Spec(A).

Outro caso particular importante é quando fixamos um primo \mathfrak{p} de A e tomamos o subconjunto multiplicativo $\mathcal{S}:=A-\mathfrak{p}$. Nesse caso denotamos $A_{\mathfrak{p}}:=\mathcal{S}^{-1}A$. Pelo exposto acima, existe uma correspondência biunívoca natural entre $\mathit{Spec}(A_{\mathfrak{p}})$ e o conjunto dos ideais primos de A contidos em \mathfrak{p} . Além disso, todo ideal próprio de $A_{\mathfrak{p}}$ deve estar contido na extensão $\mathfrak{p}A_{\mathfrak{p}}$ de \mathfrak{p} em $A_{\mathfrak{p}}$ (ver [AM, Chapter 3, Proposition 3.11]). Assim, $A_{\mathfrak{p}}$ é um anel local com ideal maximal $\mathfrak{p}A_{\mathfrak{p}}$. Em particular $K(\mathfrak{p}):=A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$ é um corpo, chamado corpo de $\mathit{resíduos}$ de $A_{\mathfrak{p}}$.

Proposição 1.2.9. A aplicação $\tau_{\mathcal{S}}^* : \operatorname{Spec}(\mathcal{S}^{-1}A) \to \operatorname{Spec}(A)$ é um homeomorfismo de $\operatorname{Spec}(\mathcal{S}^{-1}A)$ sobre sua imagem.

Em particular, se f é um elemento de A e \mathfrak{p} é um ideal primo de A existem homeomorfismos naturais entre $Spec(A_f)$ e D(f) e entre $Spec(A_{\mathfrak{p}})$ e o subconjunto dos ideais primos de A contidos em \mathfrak{p} .

Demonstração: Já sabemos que $\tau_{\mathcal{S}}^*$ é contínua e injetiva. Mostremos que a imagem de um aberto em $Spec(\mathcal{S}^{-1}A)$ é um aberto em $\tau^*(Spec(\mathcal{S}^{-1}A))$.

Tomemos um aberto base $D_{\mathcal{S}^{-1}A}(a/s)$ de $Spec(\mathcal{S}^{-1}A)$. Um ideal primo \mathfrak{p} de A pertence à $\tau^*(D_{\mathcal{S}^{-1}A}(a/s))$ se e somente se não intersepta \mathcal{S} e $a/s \notin \mathcal{S}^{-1}\mathfrak{p}$. Mas $a/s \notin \mathcal{S}^{-1}\mathfrak{p}$ se e somente se $a \notin \mathfrak{p}$. Portanto $\mathfrak{p} \in \tau^*(D_{\mathcal{S}^{-1}A}(a/s))$ se e somente se $\mathfrak{p} \in \tau^*(Spec(\mathcal{S}^{-1}A)) \cap D_A(a)$.

Assim, a imagem de um aberto $\bigcup D_{\mathcal{S}^{-1}A}(a/s)$ de $Spec(\mathcal{S}^{-1}A)$ é

$$\tau^{*}\left(\bigcup D_{\mathcal{S}^{-1}A}\left(a/s\right)\right) = \bigcup \tau^{*}\left(D_{\mathcal{S}^{-1}A}\left(a/s\right)\right)$$

$$= \bigcup \left(\tau^{*}\left(\operatorname{Spec}\left(\mathcal{S}^{-1}A\right)\right) \cap D_{A}\left(a\right)\right)$$

$$= \tau^{*}\left(\operatorname{Spec}\left(\mathcal{S}^{-1}A\right)\right) \cap \left(\bigcup D_{A}\left(a\right)\right)$$

que é um aberto em $\tau^* \left(\operatorname{Spec} \left(\mathcal{S}^{-1} A \right) \right)$.

Seja $\varphi:A\to B$ um homomorfismo de anéis. Fixemos um primo $\mathfrak p$ de A e tomemos $\mathcal S:=A-\mathfrak p$. Denotaremos $B_{\mathfrak p}$ o localizado de B no subconjunto multiplicativo $\varphi(A-\mathfrak p)$ e $\mathfrak p B_{\mathfrak p}$ a extensão de $\mathfrak p A_{\mathfrak p}$ em $B_{\mathfrak p}$ via homomorfismo induzido

$$\varphi_{\mathfrak{p}}: A_{\mathfrak{p}} \to B_{\mathfrak{p}}$$

$$\frac{a}{s} \mapsto \frac{\varphi(a)}{\varphi(s)}.$$

Proposição 1.2.10. A fibra $(\varphi^*)^{-1}(\mathfrak{p}) \subseteq Spec(B)$ de φ^* sobre \mathfrak{p} é naturalmente homeomorfa a $Spec(B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}})$.

Demonstração: O diagrama comutativo de anéis

$$\begin{array}{ccc}
A & \xrightarrow{\varphi} & B \\
\downarrow & & \downarrow \\
A_{\mathfrak{p}} & \xrightarrow{\varphi_{\mathfrak{p}}} & B_{\mathfrak{p}}
\end{array}$$

induz o diagrama comutativo

$$Spec(A) \stackrel{\varphi^*}{\longleftarrow} Spec(B)$$

$$\uparrow \qquad \qquad \uparrow$$

$$Spec(A_{\mathfrak{p}}) \stackrel{\varphi^*}{\longleftarrow} Spec(B_{\mathfrak{p}})$$

Dado $\mathfrak{q} \in (\varphi^*)^{-1}(\mathfrak{p})$, temos $\varphi^{-1}(\mathfrak{q}) := \varphi^*(\mathfrak{q}) = \mathfrak{p}$. Então $\varphi(A - \mathfrak{p}) \cap \mathfrak{q} = \emptyset$, donde $\mathfrak{q}B_{\mathfrak{p}}$ é um primo de $B_{\mathfrak{p}}$ cuja imagem em $\operatorname{Spec}(A)$ é \mathfrak{p} . Como o diagrama acima comuta, segue que $\varphi_{\mathfrak{p}}^{-1}(\mathfrak{q}B_{\mathfrak{q}}) = \varphi_{\mathfrak{p}}^*(\mathfrak{q}B_{\mathfrak{q}}) = \mathfrak{p}A_{\mathfrak{p}}$. Em particular $\mathfrak{p}B_{\mathfrak{p}} \subseteq \mathfrak{q}B_{\mathfrak{p}}$. Portanto \mathfrak{q} pertence a imagem de $V_{B_{\mathfrak{p}}}(\mathfrak{p}B_{\mathfrak{p}})$ em B.

Reciprocamente, suponhamos que \mathfrak{q} é um primo de B que pertence a imagem de $V_{B_{\mathfrak{p}}}(\mathfrak{p}B_{\mathfrak{p}})$. Então $\mathfrak{q}B_{\mathfrak{p}}$ é um primo de $B_{\mathfrak{p}}$ que contém $\mathfrak{p}B_{\mathfrak{p}}$, donde $\varphi_{\mathfrak{p}}^*(\mathfrak{q}B_{\mathfrak{p}}) := \varphi_{\mathfrak{p}}^{-1}(\mathfrak{q}B_{\mathfrak{p}})$ é um primo de $A_{\mathfrak{p}}$ que contém $\mathfrak{p}A_{\mathfrak{p}}$. Como $\mathfrak{p}A_{\mathfrak{p}}$ é maximal, segue que $\varphi_{\mathfrak{p}}^*(\mathfrak{q}B_{\mathfrak{p}}) = \mathfrak{p}A_{\mathfrak{p}}$. Assim, a imagem de $\mathfrak{q}B_{\mathfrak{p}}$ em A é \mathfrak{p} , donde $\varphi^*(\mathfrak{q}) = \mathfrak{p}$ e portanto $\mathfrak{q} \in (\varphi^*)^{-1}(\mathfrak{p})$.

Resumindo, a imagem de $V_{B_{\mathfrak{p}}}(\mathfrak{p}B_{\mathfrak{p}})$ em Spec(B) é $(\varphi^*)^{-1}(\mathfrak{p})$. Como a aplicação $Spec(B_{\mathfrak{p}}) \to Spec(B)$ é um homeomorfismo de $Spec(B_{\mathfrak{p}})$ sobre sua imagem, concluímos que $V_{B_{\mathfrak{p}}}(\mathfrak{p}B_{\mathfrak{p}})$ e $(\varphi^*)^{-1}(\mathfrak{p})$ são naturalmente homeomorfos.

Por outro lado, segue da Proposição 1.2.8 que $V_{B_{\mathfrak{p}}}(\mathfrak{p}B_{\mathfrak{p}})$ e $Spec(B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}})$ são naturalmente homeomorfos. Isso completa a demonstração.

Definiremos agora um feixe de anéis $\mathscr{O}_{\mathit{Spec}(A)} =: \mathscr{O}$ no espaço topológico $\mathit{Spec}(A)$ da seguinte maneira. Dado um subconjunto aberto não-vazio U de $\mathit{Spec}(A)$, uma seção s em U é uma função de U na união disjunta $\coprod_{\mathfrak{p}\in U} A_{\mathfrak{p}}$, tal que $s(\mathfrak{p})\in A_{\mathfrak{p}}$, \forall $\mathfrak{p}\in U$, e s é localmente o quociente de elementos de A. Esta última condição significa que, para cada $\mathfrak{p}\in U$, existe uma vizinhança

V de \mathfrak{p} contida em U e elementos $a_{\mathfrak{p}}, f_{\mathfrak{p}} \in A$ com $f_{\mathfrak{p}} \notin \bigcup_{\mathfrak{q} \in V} \mathfrak{q}$, tais que $s(\mathfrak{q}) = a_{\mathfrak{p}}/f_{\mathfrak{p}}$ em $A_{\mathfrak{q}}$ para todo $\mathfrak{q} \in V$.

Definimos então \mathscr{O} pondo $\mathscr{O}(\varnothing)=0$ e, se U é um aberto não vazio de $\mathscr{S}pec\left(A\right)$, pondo

$$\mathscr{O}\left(U\right) \;=\; \left\{\; s:U
ightarrow \coprod_{\mathfrak{p} \in U} A_{\mathfrak{p}} \;\; \middle/ \;\; s \;\; \text{\'e} \; \text{uma seção em} \;\; U \; \right\} \;.$$

Temos uma maneira natural de definir as operações de soma e multiplicação em $\mathscr{O}(U)$: se $s,t\in\mathscr{O}(U)$, então $(s+t)(\mathfrak{p})=s(\mathfrak{p})+t(\mathfrak{p})$ e $(s\cdot t)(\mathfrak{p})=s(\mathfrak{p})\cdot t(\mathfrak{p})$ para todo $\mathfrak{p}\in U$. Ou seja, dado $\mathfrak{p}\in U$, se $s(\mathfrak{p})=a/f$ e $t(\mathfrak{p})=b/g$ em $A_{\mathfrak{p}}$, então $(s+t)(\mathfrak{p})=a/f+b/g=(ag+bf)/fg$ e $(s\cdot t)(\mathfrak{p})=a/f\cdot b/g=ab/fg$ em $A_{\mathfrak{p}}$.

A estrutura de anel em $A_{\mathfrak{p}}$, $\mathfrak{p} \in \mathit{Spec}(A)$, induz uma estrutura de anel em $\mathscr{O}(U)$. Em particular, as funções $0_U, 1_U \in \mathscr{O}(U)$, definidas por $0_U(\mathfrak{p}) = 0/1$ e $1_U(\mathfrak{p}) = 1/1$ em $A_{\mathfrak{p}}$ para todo $\mathfrak{p} \in U$, são os respectivos elementos neutros da soma e multiplicação. Analogamente, se $s \in \mathscr{O}(U)$ então a função -s (definida por $(-s)(\mathfrak{p}) = -s(\mathfrak{p})$ para todo $\mathfrak{p} \in U$) é o elemento simétrico de s. Segue que $\mathscr{O}(U)$ é naturalmente um anel comutativo com unidade.

Definiremos agora as restrições de \mathscr{O} . Para isso sejam V e U abertos de $\mathit{Spec}(A)$ com $V\subseteq U$. Se $V=\varnothing$ então existe um único homomorfismo $\mathscr{O}(U)\to\mathscr{O}(V)=0$. Suponhamos que $V\neq\varnothing$, então também $U\neq\varnothing$. Dado $s\in\mathscr{O}(U)$, a restrição $s|_V$, que a $\mathfrak{p}\in V$ associa $s(\mathfrak{p})$ em $A_{\mathfrak{p}}$, é um elemento de $\mathscr{O}(V)$. Assim, fica bem definido o homomorfismo de restrição

$$\rho_{UV}: \mathscr{O}(U) \to \mathscr{O}(V)$$
$$s \mapsto s|_{V}.$$

Claramente \mathscr{O} satisfaz as condições da Definição 1.1.1, e portanto é um préfeixe em $\mathit{Spec}\,(A)$. Também é evidente que a condição (iv) da Definição 1.1.2 é satisfeita.

Quanto a condição (v), sejam U um subconjunto aberto de Spec(A) e $U = \bigcup U_i$ uma cobertura de U por meio de abertos U_i de Spec(A). Suponhamos dados $s_i \in \mathscr{O}(U_i)$ para cada i, tais que para todo i e todo j tem-se $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$. Isso quer dizer que, sempre que $U_i \cap U_j \neq \varnothing$ tem-se $s_i(\mathfrak{p}) = s_j(\mathfrak{p})$ em $A_{\mathfrak{p}}$ para todo $\mathfrak{p} \in U_i \cap U_j$.

Nessas condições temos uma função $s:U\to\coprod_{\mathfrak{p}\in U}A_{\mathfrak{p}}$ definida por $s(\mathfrak{p})=s_i(\mathfrak{p})$ para $\mathfrak{p}\in U_i$. Como cada s_i é localmente o quociente de elementos de A então s também é, donde $s\in\mathscr{O}(U)$. Além disso, é claro que $s|_{U_i}=s_i$ para todo i. Assim \mathscr{O} também satisfaz a condição (v) da Definição 1.1.2 e por isso é um feixe de anéis em Spec(A). Em outras palavras, $(Spec(A),\mathscr{O})$ é um espaço anelado.

Proposição 1.2.11.

- (i) Para qualquer $\mathfrak{p} \in Spec(A)$ o stalk $\mathscr{O}_{\mathfrak{p}}$ é isomorfo ao anel local $A_{\mathfrak{p}}$. Em particular $(Spec(A), \mathscr{O})$ é um espaço anelado local.
- (ii) Para qualquer $f \in A$, o and $\mathcal{O}(D(f))$ é isomorfo ao localizado A_f . Em particular $\mathcal{O}(Spec(A)) \cong A$.

 $Demonstração: \ \ (\mathrm{i})$ Por definição de $\ \mathscr{O}_{\mathfrak{p}}$, temos uma aplicação natural

$$\varphi: \mathscr{O}_{\mathfrak{p}} \to A_{\mathfrak{p}}$$

$$\langle U, s \rangle \mapsto s(\mathfrak{p}),$$

que é um homomorfismo de anéis. Vejamos que φ é uma bijeção.

Para mostrar a sobrejetividade de φ fixemos $a/f \in A_{\mathfrak{p}}$, $a, f \in A$ e $f \notin \mathfrak{p}$. Então D(f) é uma vizinhança de \mathfrak{p} . Além disso, a função

$$s: D(f) \rightarrow \coprod_{\mathfrak{q} \in D(f)} A_{\mathfrak{q}}$$

$$\mathfrak{q} \mapsto \frac{a}{f} \in A_{\mathfrak{q}}$$

é claramente um elemento de $\mathscr{O}\left(D\left(f\right)\right)$ e $\varphi\left(\left\langle D\left(f\right),s\right\rangle \right)$ = a/f.

Quanto a injetividade de φ , sejam $\langle U,s \rangle, \langle V,t \rangle \in \mathscr{O}_{\mathfrak{p}}$ tais que $s(\mathfrak{p}) = \varphi(\langle U,s \rangle) = \varphi(\langle V,t \rangle) = t(\mathfrak{p}) = a/f$, $a,f \in A$ e $f \notin \mathfrak{p}$. Da definição do feixe \mathscr{O} , segue que existem vizinhanças U' e V' de \mathfrak{p} , com $U' \subseteq U$, $V' \subseteq V$, tais que $s(\mathfrak{q}) = a/f$ para todo $\mathfrak{q} \in U'$ e $t(\mathfrak{q}) = a/f$ para todo $\mathfrak{q} \in V'$. Então, tomando $W = U' \cap V'$ temos $s|_W = t|_W$. Portanto

$$\langle U, s \rangle = \langle W, s|_{W} \rangle = \langle W, t|_{W} \rangle = \langle V, t \rangle$$
.

(ii) Definimos a aplicação $\psi:A_f\to \mathscr{O}(D(f))$ da seguinte maneira. Dado $a/f^n\in A_f$, $\psi(a/f^n)$ será o elemento de $\mathscr{O}(D(f))$ que a $\mathfrak{p}\in D(f)$ associa a/f^n em $A_{\mathfrak{p}}$. É fácil verificar que esta aplicação está bem definida e é um homomorfismo. Demonstremos que ψ é bijetiva.

Para a injetividade, sejam $a/f^n, b/f^m \in A_f$ tais que $\psi\left(a/f^n\right) = \psi\left(b/f^m\right)$. Então, para cada $\mathfrak{p} \in D\left(f\right)$, $a/f^n = b/f^m$ em $A_{\mathfrak{p}}$. Isso significa que, para cada $\mathfrak{p} \in D\left(f\right)$, existe $h_{\mathfrak{p}} \notin \mathfrak{p}$ tal que $h_{\mathfrak{p}}(af^m - bf^n) = 0$ em A, isto é, $h_{\mathfrak{p}} \in \mathfrak{a} := ann\left(af^m - bf^n\right)$.

Resumindo, para todo $\mathfrak{p} \in D(f)$, $h_{\mathfrak{p}} \in \mathfrak{a} \backslash \mathfrak{p}$ e portanto $\mathfrak{a} \nsubseteq \mathfrak{p}$. Em outras palavras, todo ideal primo de A que contém \mathfrak{a} deve também conter f, ou seja, $V(\mathfrak{a}) \subseteq V(f)$. Pela Proposição 1.2.3 temos $f \in \sqrt{(f)} \subseteq \sqrt{\mathfrak{a}}$. Assim, existe $k \geq 1$ tal que $f^k \in \mathfrak{a}$, ou seja, $f^k(af^m - bf^n) = 0$, donde $a/f^n = b/f^m$ em A_f .

Para a sobrejetividade, consideremos $s \in \mathcal{O}(D(f))$. Pela definição de \mathcal{O} , existe uma cobertura $D(f) = \bigcup U_i$ por abertos U_i de Spec(A) de modo que, para todo i existem $a_i, g_i \in A$ com $g_i \notin \bigcup_{\mathfrak{p} \in U_i} \mathfrak{p}$, tais que $s(\mathfrak{p}) = a_i/g_i$ em $A_{\mathfrak{p}}$ para todo $\mathfrak{p} \in U_i$. Em particular temos $U_i \subseteq D(g_i)$ para todo i.

Por outro lado, os subconjuntos de Spec(A) da forma D(h) formam um base para a topologia de Zariski. Assim, para cada i, $U_i = \bigcup_j D(h_{ij})$ para certos $h_{ij} \in A$, donde concluímos que $D(f) = \bigcup_{i,j} D(h_{ij})$.

Agora observemos que D(f) pode ser coberto por um número finito de abertos $D(h_{ij})$. De fato, a igualdade $D(f) = \bigcup_{i,j} D(h_{ij})$ é equivalente à $V(f) = \bigcup_{i,j} D(h_{ij})$

 $\bigcap_{i,j} V\left(h_{ij}\right) = V\left(\sum_{i,j}(h_{ij})\right)$, o que implica $f \in \sqrt{(f)} = \sqrt{\sum_{i,j}(h_{ij})}$ (Proposição 1.2.3). Assim, existe $m \geq 1$ tal que $f^m \in \sum_{i,j}(h_{ij})$. Isso significa que f^m pode ser expresso como uma soma finita de múltiplos de certos h_{ij} . Denotemos h_1, \dots, h_k tais elementos. Como $(f^m) \subseteq \sum_{r=1}^k (h_r)$, temos

$$V(f) = V(f^m) \supseteq V\left(\sum_{r=1}^{k} (h_r)\right) = V(h_1) \cap \ldots \cap V(h_k)$$

(Proposição 1.2.3) donde

$$D(f) \subseteq D(h_1) \cup \ldots \cup D(h_k)$$
,

e como $D(h_r) \subseteq D(f)$ para todo r

$$D(f) = D(h_1) \cup \ldots \cup D(h_k) ...$$

Além disso, para cada $r \in \{1, \ldots, k\}$ existe i_r tal que $D\left(h_r\right) \subseteq U_{i_r} \subseteq D\left(g_{i_r}\right)$, o que implica $h_r \in \sqrt{(g_{i_r})}$ (Proposição 1.2.6). Isso significa que existe $n_r \geq 1$ tal que $h_r^{n_r} \in (g_{i_r})$, ou seja, $h_r^{n_r} = c_r g_{i_r}$ para algum $c_r \in A$. Portanto $a_{i_r}/g_{i_r} = c_r a_{i_r}/h_r^{n_r}$ em $A_{\mathfrak{p}}$ para todo $\mathfrak{p} \in D\left(h_r\right) \subseteq D\left(g_{i_r}\right)$.

Pondo então $f_r := h_r^{n_r}$ e $b_r := c_r a_{i_r}$, obtemos

$$D(f) = D(h_1) \cup \ldots \cup D(h_k) = D(h_1^{n_1}) \cup \ldots \cup D(h_k^{n_k})$$
$$= D(f_1) \cup \ldots \cup D(f_k)$$

(Proposição 1.2.6) e

$$s\left(\mathfrak{p}\right) = \frac{a_{i_r}}{g_{i_r}} = \frac{c_r a_{i_r}}{h_r^{n_r}} = \frac{b_r}{f_r} \text{ em } A_{\mathfrak{p}}, \qquad \forall \ \mathfrak{p} \in D\left(h_r\right) = D\left(f_r\right)$$

para todo $r \in \{1, \dots, k\}$.

Fixemos agora $r, \ell \in \{1, ..., k\}$. Se $f_r f_\ell$ não é nilpotente, então $D(f_r) \cap D(f_\ell) = D(f_r f_\ell) \neq \emptyset$ (Proposição 1.2.6). Segue que

$$\frac{b_r}{f_r} = s(\mathfrak{p}) = \frac{b_\ell}{f_\ell} \quad \text{em} \quad A_{\mathfrak{p}} \qquad \forall \ \mathfrak{p} \in D(f_r f_\ell) \subseteq D(f) \ .$$

Assim, b_r/f_r e b_ℓ/f_ℓ representam o mesmo elemento $s|_{D(f_rf_\ell)}$ no anel $\mathcal{O}\left(D\left(f_rf_\ell\right)\right)$. Pela injetividade de ψ (demonstrada acima) aplicada a $D\left(f_rf_\ell\right)$

$$\frac{b_r}{f_r} = \frac{b_\ell}{f_\ell} \quad \text{em} \quad A_{f_r f_\ell}.$$

Isso significa que existe $n_{r\ell} \geq 1$ tal que

$$(f_r f_\ell)^{n_{r\ell}} (b_r f_\ell - b_\ell f_r) = 0 \quad \text{em} \quad A.$$

Caso $f_r f_\ell$ seja nilpotente, basta tomar $n_{r\ell}$ tal que $(f_r f_\ell)^{n_{r\ell}} = 0$ para obter a igualdade acima.

Tomando então $n := \max \{ n_{r\ell} / r, \ell = 1, ..., k \}$, obtemos

$$(f_r f_\ell)^n (b_r f_\ell - b_\ell f_r) = 0 , \qquad \forall r, \ell$$

ou seja,

$$f_{\ell}^{n+1}(b_r f_r^n) = f_r^{n+1}(b_{\ell} f_{\ell}^n), \qquad \forall r, \ell.$$

Além disso,

$$D(f) = D(f_1) \cup \ldots \cup D(f_k)$$
$$= D(f_1^{n+1}) \cup \ldots \cup D(f_k^{n+1})$$

(Proposição 1.2.6) e como vimos acima, isso implica que existem $m \geq 1$ e $\alpha_1, \ldots, \alpha_k \in A$ tais que

$$f^m = \sum_{r=1}^k \alpha_r f_r^{n+1} .$$

Tomemos $a := \sum_{r=1}^{k} \alpha_r b_r f_r^n$. Para todo $\ell = 1, \dots, k$ temos

$$af_{\ell}^{n+1} = \sum_{r=1}^{k} \alpha_r b_r f_r^n f_{\ell}^{n+1} = \sum_{r=1}^{k} \alpha_r b_{\ell} f_{\ell}^n f_r^{n+1} = b_{\ell} f_{\ell}^n f_r^m$$

ou seja,

$$f_{\ell}^n(af_{\ell}-b_{\ell}f^m)=0.$$

Segue que, para todo $\ell = 1, \dots, k$

$$\frac{a}{f^m} = \frac{b_{\ell}}{f_{\ell}} = s(\mathfrak{p}) \text{ em } A_{\mathfrak{p}}, \qquad \forall \ \mathfrak{p} \in D(f_{\ell}) .$$

Como $D(f) = D(f_1) \cup \ldots \cup D(f_k)$

$$\frac{a}{f^{m}} = s(\mathfrak{p}) \text{ em } A_{\mathfrak{p}}, \qquad \forall \ \mathfrak{p} \in D(f) \ .$$

Assim $\psi\left(a/f^{m}\right)=s$. Isso mostra que ψ também é sobrejetiva, portanto um isomorfismo.

Definição 1.2.12. O espaço anelado local $\left(\operatorname{Spec}\left(A\right),\mathscr{O}\right)$ é chamado espectro de A .

Definição 1.2.13. Um esquema afim \acute{e} um espaço anelado local (X, \mathscr{F}) que \acute{e} isomorfo ao espectro de algum anel.

Um esquema é um espaço anelado local (X, \mathcal{F}) em que cada ponto p de X possui uma vizinhaça U tal que $(U, \mathcal{F}|_U)$ é um esquema afim.

1.2.2 Caso projetivo

Um anel comutativo com unidade S é dito graduado se admite uma decomposição da forma

$$S = \bigoplus_{i \in \mathbb{Z}} S_i = \cdots \oplus S_{-1} \oplus S_0 \oplus S_1 \oplus \cdots$$

onde cada S_i é um grupo abeliano e $S_i S_j \subseteq S_{i+j}$ para todo $i,j \in \mathbb{Z}$. Também serão considerados anéis graduados da forma

$$S = \bigoplus_{i=0}^{\infty} S_i = S_0 \oplus S_1 \oplus \cdots$$

ou seja, aqueles em que $S_i = 0$ para todo i < 0.

Dado um elemento

$$f = \cdots \oplus f_{-1} \oplus f_0 \oplus f_1 \oplus \cdots =: \cdots + f_{-1} + f_0 + f_1 + \cdots, \qquad f_i \in S_i$$

de S, diremos que f_i é a componente homogênea de grau i de f. Se, para algum inteiro k, tivermos $f_k \neq 0$ e $f_i = 0$ para todo $i \neq k$, então diremos que f é um elemento homogêneo de grau i e escreveremos $\deg(f) = i$. Nesse caso algumas vezes abusaremos da notação e escreveremos $f =: f_i$ ou $f \in S_i$. O elemento nulo também será considerado homogêneo, porém sem grau definido.

Como conjunto, a soma direta $\bigoplus_{i\in\mathbb{Z}} S_i$ pode ser considerado o subconjunto dos elementos do produto cartesiano $\prod_{i\in\mathbb{Z}} S_i$ que possuem apenas um número finito de componentes não-nulas. Por isso, muitas vezes escreveremos apenas $f=f_{i_1}+f_{i_2}+\ldots+f_{i_k}$, indicando que as demais componentes homogêneas de f são nulas.

Nesse sentido, se I é um ideal de S diremos apenas que f_i pertence à I para significar que pertence à I o elemento cuja componente homogênea de grau i é f_i e as demais são nulas.

Definição 1.2.14. Um ideal de S é chamado homogêneo se ele é gerado por elementos homogêneos.

Lema 1.2.15. Um ideal I de S é homogêneo se e somente se cada elemento de I têm todas as suas componente homogêneas em I. Além disso, se I é um ideal homogêneo então \sqrt{I} também é homogêneo.

Demonstração: Suponhamos que I é um ideal homogêneo de S. Então, dado $f\in I$, existem elementos homogêneos g_1,\ldots,g_r em I e elementos a_1,\ldots,a_r em S tais que

$$f = \sum_{i=1}^r a_i g_i.$$

Decompondo cada a_i em componentes homogêneas $a_i = a_{i,j_1} + \cdots + a_{i,j_{k_i}}$ podemos escrever

$$f = \sum_{i=1}^{r} \sum_{\ell=1}^{k_i} a_{i,j_{\ell}} g_i$$
.

Como cada g_i e cada a_{i,j_ℓ} é homogêneo, cada parcela $a_{i,j_\ell}g_i$ do somatório acima é um elemento homogêneo. Agrupando os termos do somatório segundo os graus e igualando às componentes de f, concluímos que cada componente de f é combinação linear de elementos de I, e portanto está em I.

Reciprocamente, suponhamos que cada elemento de I tem todas as suas componentes homogêneas em I. Então cada elemento de I é soma finita de elementos homogêneos de I. Assim I é gerado pelo conjunto dos seus elementos homogêneos, portanto é um ideal homogêneo.

Supomos agora que I é um ideal homogêneo de S. Pela parte já demonstrada, basta provar que dado $f \in \sqrt{I}$, cada componente homogênea de f está em \sqrt{I} . Faremos isso por indução no número de componentes não-nulas de f (pois as componentes nulas evidentemente estão em \sqrt{I}), e para isso, consideraremos a decomposição de f em elementos homogêneos não-nulos dada por

$$f = f_{i_1} + \dots + f_{i_d}$$
, $f_{i_j} \in S_{i_j}$, $i_1 < \dots < i_d$.

Se d=1, ou seja, se f é homogêneo, o resultado é trivial. Suponhamos então d>1. Existe $n\geq 1$ tal que $f^n\in I$. A decomposição de f^n em elementos homogêneos é da forma

$$f^n = f_{i_1}^n + (elementos de grau maior).$$

Sendo Ihomogêneo segue que $\,f_{i_1}^{\ n}\in I$, donde $\,f_{i_1}\in \sqrt{I}$. Então

$$f - f_{i_1} = f_{i_2} + \dots + f_{i_d} \in \sqrt{I}.$$

Pela hipótese de indução temos também $f_{i_2}, \ldots, f_{i_d} \in \sqrt{I}$.

No lema a seguir veremos que, quando restritos a ideais homogêneos de um anel graduado, é possível caracterizar um ideal primo impondo a hipótese de primalidade apenas nos elementos homogêneos.

Lema 1.2.16. Seja $\mathfrak{P} \subseteq S$ um ideal homogêneo. Suponhamos que $ab \in \mathfrak{P}$ implica $a \in \mathfrak{P}$ ou $b \in \mathfrak{P}$, para quaisquer elementos homogêneos a e b de S. Então \mathfrak{P} é primo.

Demonstração: Sejamf,gelementos quaisquer de S que não pertencem $\mathfrak P$. Queremos demonstrar que $fg\notin \mathfrak P$.

Escrevamos

$$f = a + a'$$
$$q = b + b'$$

com a e b sendo, respectivamente, a soma das componentes homogêneas de f e g que não pertencem à $\mathfrak P$. Como $a',b'\in\mathfrak P$, temos $fg\notin\mathfrak P$ se e somente se $ab\notin\mathfrak P$.

Podemos escrever

$$a = a_{k_1} + (\text{termos de maior grau})$$

 $b = b_{n_1} + (\text{termos de maior grau})$

com $a_{k_1}, b_{n_1} \notin \mathfrak{P}$, para certos $k_1, n_1 \in \mathbb{Z}$. Pela hipótese do Lema, isso implica $a_{k_1}b_{n_1} \notin \mathfrak{P}$. Como \mathfrak{P} é homogêneo, obtemos

$$ab = a_{k_1}b_{n_1} + (\text{termos de maior grau}) \notin \mathfrak{P}$$

portanto
$$fg \notin \mathfrak{P}$$
.

Denotaremos $\operatorname{Proj}(S)$ o conjunto dos ideais primos homogêneos de S que não contém o ideal irrelevante $S_+ = S_1 \oplus S_2 \oplus \cdots$. De maneira análoga ao caso afim,

os subconjuntos de Proj(S) da forma

$$\mathcal{V}(I) := \left\{ \mathfrak{P} \in \operatorname{Proj}(S) / \mathfrak{P} \supseteq I \right\}$$

para algum ideal homogêneo I de S, satisfazem os axiomas de subconjuntos fechados de um espaço topológico, definindo assim uma topologia em $\operatorname{Proj}(S)$.

Evidentemente que se I é um ideal homogêneo de S então

$$V(I) = V(I) \cap Proj(S)$$

(onde $V(I)=\left\{\mathfrak{p}\in\mathcal{S}pec\left(S\right)/\mathfrak{p}\supseteq I\right\}$ como antes). Por outro lado se \mathfrak{a} é um ideal de S, tomando o ideal homogêneo J gerado pelo conjunto

 $F \ = \ \left\{ \ x \in S \ \middle/ \ x \ {\rm \'e} \ {\rm componente} \ {\rm homog}{\rm \^e}{\rm nea} \ {\rm de} \ {\rm algum} \ {\rm elemento} \ {\rm de} \ {\mathfrak a} \
ight\},$

temos

$$V\left(\mathfrak{a}\right)\ \cap\ \operatorname{Proj}\left(S\right)\ =\ \mathcal{V}\left(J\right)\ .$$

Assim esta topologia é a topologia induzida de Spec(S). Em particular, os subconjuntos abertos do tipo

$$\mathcal{D}\left(f\right) \ = \ \mathit{Proj}\left(S\right) \ \cap \ D\left(f\right) \ = \ \left\{ \ \mathfrak{P} \in \mathit{Proj}\left(S\right) \ / \ f \notin \mathfrak{P} \ \right\}$$

com f homogêneo, formam uma base de abertos para $\operatorname{Proj}(S)$. Com efeito, se $f=f_{i_1}+\ldots+f_{i_k}$ então

$$\operatorname{Proj}\left(S\right)\ \cap\ D\left(f\right)\ =\ \operatorname{Proj}\left(S\right)\ \cap\ \left(\ \int D\left(f_{i_{j}}\right)\ =\ \left(\ \int \left(\operatorname{Proj}\left(S\right)\ \cap\ D\left(f_{i_{j}}\right)\right)\ .$$

Sejam $S = \bigoplus_{i=0}^{\infty} S_i$ um anel graduado e \mathcal{T} um subconjunto multiplicativo de S constituído por elementos homogêneos. O localizado $\mathcal{T}^{-1}S$ tem uma graduação natural:

$$\mathcal{T}^{-1}S = \bigoplus_{k \in \mathbb{Z}} (\mathcal{T}^{-1}S)_k$$

onde

$$(\mathcal{T}^{-1}S)_k = \left\{ \frac{a_i}{f_j} \middle/ a_i \in S_i, f_j \in S_j \cap \mathcal{T}, i-j=k \right\}.$$

Análogo ao caso afim, temos dois casos particulares importantes. Um deles é quando fixamos $\mathfrak{P} \in \operatorname{Proj}(S)$ e tomamos \mathcal{T} o subconjunto multiplicativo dos elementos homogêneos de S que não estão em \mathfrak{P} . Nesse caso denotamos

$$S_{\mathfrak{P}} := \mathcal{T}^{-1}S.$$

É importante ressaltar aqui que $S_{\mathfrak{P}}$ é o localizado de S com denominadores no subconjunto multiplicativo dos elementos homogêneos de $S-\mathfrak{P}$, não o localizado de S com denominadores em $S-\mathfrak{P}$ como no caso afim, pois $S-\mathfrak{P}$ contém elementos que não são homogêneos.

O outro é quando fixamos um elemento homogêne
ofde Se tomamos
 $\mathcal{T}=\{1,f,f^2,\ldots\}$. Neste caso denotamos

$$S_f := \mathcal{T}^{-1}S.$$

Consideremos o homomorfismo canônico $\tau: S \to \mathcal{T}^{-1}S$. Já sabemos que a aplicação induzida $\tau^*: Spec(\mathcal{T}^{-1}S) \to Spec(S)$ é um homeomorfismo de $Spec(\mathcal{T}^{-1}S)$ sobre sua imagem, a qual consiste dos ideais primos de S que não interseptam \mathcal{T} (Proposição 1.2.9). A Proposição 1.2.17 abaixo mostra que a restrição $\tau^*|_{\mathcal{P}roj(\mathcal{T}^{-1}S)}$ tem propriedade análoga.

Proposição 1.2.17. A restrição $\tau^*|_{\operatorname{Proj}(\mathcal{T}^{-1}S)}$ é um homeomorfismo de $\operatorname{Proj}(\mathcal{T}^{-1}S)$ sobre sua imagem, a qual consiste dos elementos de $\operatorname{Proj}(S)$ que não interseptam \mathcal{T} .

Em particular, se f é um elemento homogêneo de S e \mathfrak{P} é um elemento de $\operatorname{Proj}(S)$, existem homeomorfismos naturais entre $\operatorname{Proj}(S_f)$ e $\mathcal{D}(f)$ e entre $\operatorname{Proj}(S_{\mathfrak{P}})$ e o subconjunto dos elementos de $\operatorname{Proj}(S)$ que estão contidos em \mathfrak{P} .

Demonstração: Sabemos que todo ideal primo de $\mathcal{T}^{-1}S$ é da forma $\mathcal{T}^{-1}\mathfrak{P}$ para algum primo \mathfrak{P} de S que não intersecta \mathcal{T} , e que

$$\tau^* \left(\mathcal{T}^{-1} \mathfrak{P} \right) := \tau^{-1} \left(\mathcal{T}^{-1} \mathfrak{P} \right) = \mathfrak{P}.$$

Como a topologia de Proj é a topologia iduzida de Spec , basta então mostrar que um ideal primo $\mathcal{T}^{-1}\mathfrak{P}$ de $\mathcal{T}^{-1}S$ é homogêneo e não contém $(\mathcal{T}^{-1}S)_+$ se e somente se \mathfrak{P} é homogêneo e não contém S_+ .

Observemos primeiramente que $\mathfrak{P} \not\supseteq S_+$ se e somente se $\mathcal{T}^{-1}\mathfrak{P} \not\supseteq (\mathcal{T}^{-1}S)_+$. Com efeito, se $\mathfrak{P} \not\supseteq S_+$, existe $a \in S_i \backslash \mathfrak{P}$ para algum $i \geq 1$, o que implica $a/1 \in (\mathcal{T}^{-1}S)_+ \backslash \mathcal{T}^{-1}\mathfrak{P}$, donde $\mathcal{T}^{-1}\mathfrak{P} \not\supseteq (\mathcal{T}^{-1}S)_+$. Reciprocamente, se $\mathcal{T}^{-1}\mathfrak{P} \not\supseteq (\mathcal{T}^{-1}S)_+$, existem $a \in S_i$ e $f \in \mathcal{T} \cap S_j$, com $i > j \geq 0$, tal que $a/f \notin \mathcal{T}^{-1}\mathfrak{P}$. Isso implica $a \in S_+ \backslash \mathfrak{P}$, donde $\mathfrak{P} \not\supseteq S_+$.

Além disso, se \mathfrak{P} é um ideal homogêneo de S, então é gerado pelo conjunto dos seus elementos homogêneos. Segue imediatamente que $\mathcal{T}^{-1}\mathfrak{P}$ é o ideal de $\mathcal{T}^{-1}S$ gerado pelo conjunto de elementos homogêneos

$$\left\{ \left. \frac{a}{f} \right/ a \in \mathfrak{P}, f \in \mathcal{T} \right\},\right.$$

portanto também é homogêneo.

Reciprocamente, suponhamos que $\mathcal{T}^{-1}\mathfrak{P}$ é um ideal homogêneo de $\mathcal{T}^{-1}S$. Dado

$$a_{i_1} + \dots + a_{i_d} \in \mathfrak{P}$$
, $a_{i_k} \in S_{i_k}$ com $i_1 < \dots < i_d$

temos

$$\frac{a_{i_1}}{1} + \dots + \frac{a_{i_d}}{1} \in \mathcal{T}^{-1}\mathfrak{P}, \qquad \frac{a_{i_k}}{1} \in (\mathcal{T}^{-1}S)_{i_k} \quad \text{com} \quad i_1 < \dots < i_d.$$

Como $\mathcal{T}^{-1}\mathfrak{P}$ é homogêneo cada $a_{i_k}/1$ pertence a $\mathcal{T}^{-1}\mathfrak{P}$, donde cada a_{i_k} pertence a \mathfrak{P} . Logo \mathfrak{P} também é homogêneo.

Lembremos que se \mathcal{T} é um subconjunto multiplicativo de S constituído por elementos homogêneos, $(\mathcal{T}^{-1}S)_0$ denota o subanel dos elementos de grau 0 de $\mathcal{T}^{-1}S$. Como casos particulares, dados $\mathfrak{P} \in \operatorname{Proj}(S)$ e $f \in S$ homogêneo, denotaremos $S_{(\mathfrak{P})} := (S_{\mathfrak{P}})_0$ e $S_{(f)} := (S_f)_0$, respectivamente.

A proposição a seguir mostra um fato importante que acontece quando o subconjunto multiplicativo \mathcal{T} contém elementos de grau positivo. **Proposição 1.2.18.** Suponhamos que \mathcal{T} contém algum elemento homogêneo de grau positivo. Então a aplicação

$$\sigma: \operatorname{Proj}\left(\mathcal{T}^{-1}S\right) \to \operatorname{Spec}\left((\mathcal{T}^{-1}S)_0\right)$$

$$\mathcal{T}^{-1}\mathfrak{P} \mapsto \mathcal{T}^{-1}\mathfrak{P} \cap (\mathcal{T}^{-1}S)_0$$

é um homeomorfismo.

Em particular, se f é um elemento homogêneo de grau positivo de S e \mathfrak{P} é um elemento de $\operatorname{Proj}(S)$, existem homeomorfismos naturais entre $\operatorname{Spec}(S_{(f)})$, $\operatorname{Proj}(S_f)$ e $\mathcal{D}(f)$ e entre $\operatorname{Spec}(S_{(\mathfrak{P})})$, $\operatorname{Proj}(S_{\mathfrak{P}})$ e o subconjunto dos elementos de $\operatorname{Proj}(S)$ que estão contidos em \mathfrak{P} .

Demonstração: A aplicação σ nada mais é do que a restrição à $\operatorname{Proj}(\mathcal{T}^{-1}S)$ da aplicação induzida pela inclusão $(\mathcal{T}^{-1}S)_0 \hookrightarrow \mathcal{T}^{-1}S$. Segue então da Proposição 1.2.8 que σ é contínua. Assim, só falta mostrar que σ é uma bijeção e que a imagem de um fechado de $\operatorname{Proj}(\mathcal{T}^{-1}S)$ é um fechado de $\operatorname{Spec}((\mathcal{T}^{-1}S)_0)$.

Provaremos primeiro que σ é injetiva. Para isso, sejam $\mathcal{T}^{-1}\mathfrak{P}$ e $\mathcal{T}^{-1}\mathfrak{Q}$ elementos de $\operatorname{Proj}(\mathcal{T}^{-1}S)$ tais que

$$\mathfrak{p} \;:=\; \mathcal{T}^{-1}\mathfrak{P} \;\cap\; (\mathcal{T}^{-1}S)_0 \;=\; \mathcal{T}^{-1}\mathfrak{Q} \;\cap\; (\mathcal{T}^{-1}S)_0 \;.$$

Precisamos mostrar que $\mathcal{T}^{-1}\mathfrak{P}=\mathcal{T}^{-1}\mathfrak{Q}$. Mostraremos apenas que $\mathcal{T}^{-1}\mathfrak{P}\subseteq \mathcal{T}^{-1}\mathfrak{Q}$, pois a outra inclusão é análoga. Além disso, como ambos os ideais são homogêneos basta mostrar que todo elemento homogêneo de $\mathcal{T}^{-1}\mathfrak{P}$ pertence à $\mathcal{T}^{-1}\mathfrak{Q}$.

Seja então a um elemento homogêneo de $\mathcal{T}^{-1}\mathfrak{P}$, digamos $\deg(a)=i$, e seja $f\in\mathcal{T}\cap S_j$, com $j\geq 1$. Temos $a^j/f^i\in\mathcal{T}^{-1}\mathfrak{P}$ com $\deg(a^j/f^i)=0$, portanto $a^j/f^i\in\mathfrak{p}\subseteq\mathcal{T}^{-1}\mathfrak{Q}$, donde $a^j=(a^j/f^i)f^i\in\mathcal{T}^{-1}\mathfrak{Q}$. Como $\mathcal{T}^{-1}\mathfrak{Q}$ é primo isso implica $a\in\mathcal{T}^{-1}\mathfrak{Q}$.

Para provar a sobrejetividade de σ devemos mostrar que, dado um ideal primo

 \mathfrak{p} de $(\mathcal{T}^{-1}S)_0$, existe um ideal primo homogêneo de $\mathcal{T}^{-1}S$ que não contém o ideal irrelevante $(\mathcal{T}^{-1}S)_+$, e cuja contração em $(\mathcal{T}^{-1}S)_0$ é \mathfrak{p} . Afirmamos que $\sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)}$ é tal ideal.

Provaremos isso em etapas. Primeiro observemos que $\mathfrak{p}(\mathcal{T}^{-1}S)$ é um ideal homogêneo, pois é gerado por elementos de grau zero, o que implica que $\sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)}$ é um ideal homogêneo (Lema 1.2.15).

Além disso, é claro que $\mathfrak{p} \subseteq \sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)} \cap (\mathcal{T}^{-1}S)_0$. Quanto à inclusão contrária, se $a \in \sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)} \cap (\mathcal{T}^{-1}S)_0$, então existe $n \geq 1$ tal que $a^n \in \mathfrak{p}(\mathcal{T}^{-1}S) \cap (\mathcal{T}^{-1}S)_0$. Isso quer dizer que existem $c \in \mathfrak{p}$ e $x \in \mathcal{T}^{-1}S$, tais que $a^n = cx$. Como $\deg(a^n) = \deg(c) = 0$, devemos ter também $\deg(x) = 0$. Assim $x \in (\mathcal{T}^{-1}S)_0$, donde $a^n = cx \in \mathfrak{p}$. Sendo \mathfrak{p} um ideal primo, temos $a \in \mathfrak{p}$. Logo $\sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)} \cap (\mathcal{T}^{-1}S)_0 = \mathfrak{p}$.

Para mostrar que $\sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)}$ é primo, tomemos elementos homogêneos $a,b\in\mathcal{T}^{-1}S$, digamos $\deg(a)=i$ e $\deg(b)=j$, tais que $ab\in\sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)}$. Existe $n\geq 1$ tal que $(ab)^n\in\mathfrak{p}(\mathcal{T}^{-1}S)$. Por hipótese, existe também $f\in\mathcal{T}\cap S_k$, para algum $k\geq 1$. Temos então

$$\frac{a^{nk}}{f^{ni}} \cdot \frac{b^{nk}}{f^{nj}} = \frac{(ab)^{nk}}{f^{n(i+j)}} \in \mathfrak{p}(\mathcal{T}^{-1}S) \cap (\mathcal{T}^{-1}S)_0 \subseteq \sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)} \cap (\mathcal{T}^{-1}S)_0 = \mathfrak{p}.$$

Como

$$deg\left(rac{a^{nk}}{f^{ni}}
ight) \ = \ deg\left(rac{b^{nk}}{f^{nj}}
ight) \ = \ 0$$

e p é primo, isso implica

$$\frac{a^{nk}}{f^{ni}} \in \mathfrak{p}$$
 ou $\frac{b^{nk}}{f^{nj}} \in \mathfrak{p}$

donde

$$a^{nk} = \frac{a^{nk}}{f^{ni}} \cdot f^{ni} \in \mathfrak{p}(\mathcal{T}^{-1}S)$$
 ou $b^{nk} = \frac{b^{nk}}{f^{nj}} \cdot f^{nj} \in \mathfrak{p}(\mathcal{T}^{-1}S)$

e portanto $a \in \sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)}$ ou $b \in \sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)}$. Logo $\sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)}$ é um ideal primo (Lema 1.2.16).

Para completar a prova da sobrejetividade de σ só nos falta mostrar que

 $(\mathcal{T}^{-1}S)_+ \not\subseteq \sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)}$. De fato, existe $f \in \mathcal{T} \cap S_k$, para algum $k \geq 1$. Então $f/1 \in (\mathcal{T}^{-1}S)_+$. Mas como f/1 é invertível em $\mathcal{T}^{-1}S$, não pode pertencer à nenhum ideal primo de $\mathcal{T}^{-1}S$. Em particular $f/1 \notin \sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)}$.

Finalmente, provaremos que a imagem de um fechado de $\operatorname{Proj}(\mathcal{T}^{-1}S)$ é um fechado de $\operatorname{Spec}((\mathcal{T}^{-1}S)_0)$. Para isso fixemos um fechado $\mathcal{V}(\mathfrak{A})$ de $\operatorname{Proj}(\mathcal{T}^{-1}S)$, \mathfrak{A} um ideal homogêneo de $\mathcal{T}^{-1}S$, e consideremos sua contração $\mathfrak{a}:=\mathfrak{A}\cap(\mathcal{T}^{-1}S)_0$ em $(\mathcal{T}^{-1}S)_0$. É claro que se $\mathcal{T}^{-1}\mathfrak{P}\supseteq\mathfrak{A}$ então $\mathcal{T}^{-1}\mathfrak{P}\cap(\mathcal{T}^{-1}S)_0\supseteq\mathfrak{a}$. Portanto $\sigma(\mathcal{V}(\mathfrak{A}))\subseteq V(\mathfrak{a})$.

Reciprocamente, suponhamos que \mathfrak{p} é um ideal primo de $(\mathcal{T}^{-1}S)_0$ que contém \mathfrak{a} . Dado um elemento homogêneo a de \mathfrak{A} , digamos com $\deg(a)=i$, tomamos $f\in\mathcal{T}\cap S_k$, $k\geq 1$. Temos $a^k/f^i\in\mathfrak{A}$ com $\deg(a^k/f^i)=0$, portanto $a^k/f^i\in\mathfrak{a}\subseteq\mathfrak{p}\subseteq\mathfrak{p}(\mathcal{T}^{-1}S)$. Assim, $a^k=(a^k/f^i)f^i\in\mathfrak{p}(\mathcal{T}^{-1}S)$, donde $a\in\sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)}$. Resumindo, todo elemento homogêneo de \mathfrak{A} pertence à $\sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)}$. Sendo ambos ideais homogêneos, isso implica $\sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)}\supseteq\mathfrak{A}$, donde $\sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)}\in\mathcal{V}(\mathfrak{A})$. Além disso, vimos acima que $\sigma\left(\sqrt{\mathfrak{p}(\mathcal{T}^{-1}S)}\right)=\mathfrak{p}$. Isso mostra que também vale a inclusão $\sigma\left(\mathcal{V}(\mathfrak{A})\right)\supseteq V\left(\mathfrak{a}\right)$, completando a demonstração.

Corolário 1.2.19. Seja $S = \bigoplus_{i=0}^{\infty} S_i$ um anel graduado. Proj $(S) = \emptyset$ se e somente se cada elemento de $S_+ = \bigoplus_{i=1}^{\infty} S_i$ é nilpotente.

Demonstração: O conjunto dos elementos nilpotentes de S é a intersecção de todos os ideais primos de S. Assim, se cada elemento de S_+ é nilpotente, então todo ideal primo de S contém o ideal irrelevante S_+ , o que implica $\operatorname{Proj}(S) = \varnothing$.

Reciprocamente, suponhamos que existe $x \in S_+$ que não é nilpotente. Então x possui alguma componente homogênea x_i , a qual tem grau estritamente positivo, que não é nilpotente. Neste caso temos $S_{(x_i)} \neq 0$, e portanto $Spec(S_{(x_i)}) \neq \varnothing$. Segue da Proposição 1.2.18 que $\mathcal{D}(x_i) \neq \varnothing$, donde $Proj(S) \neq \varnothing$.

Análogo ao caso afim, definiremos um feixe de anéis $\mathscr{O}_{Proj}(S) =: \mathscr{O}$ em Proj(S). Dado um subconjunto aberto não-vazio U de Proj(S), uma seção s em U é uma função de U na união disjunta $\coprod_{\mathfrak{P}\in U} S_{(\mathfrak{P})}$, tal que $s(\mathfrak{P})\in S_{(\mathfrak{P})}$, $\forall \mathfrak{P}\in U$, e s é localmente o quociente de elementos homogêneos de mesmo grau de S. Esta última condição significa que, para cada $\mathfrak{P}\in U$, existe uma vizinhança V de \mathfrak{P} contida em U e elementos homogêneos de mesmo grau $a_{\mathfrak{P}}, f_{\mathfrak{P}}\in S$ com $f_{\mathfrak{P}}\notin \bigcup_{\mathfrak{Q}\in V}\mathfrak{Q}$, tais que $s(\mathfrak{Q})=a_{\mathfrak{P}}/f_{\mathfrak{P}}$ em $S_{(\mathfrak{Q})}$ para todo $\mathfrak{Q}\in V$.

Definimos então \mathscr{O} pondo $\mathscr{O}(\varnothing)=0$ e, se U é um aberto não-vazio de $\mathit{Proj}\,(S) \;,\; \mathrm{pondo}$

$$\mathscr{O}\left(U\right) \; = \; \left\{\; s: U \to \coprod_{\mathfrak{P} \in U} S_{\left(\mathfrak{P}\right)} \;\; \middle/ \;\; s \;\; \text{\'e uma seção em } \; U \; \right\} \; .$$

Como no caso afim, é fácil verificar que \mathscr{O} com as restrições naturais é um feixe de anéis em $\mathscr{P}roj(S)$.

Proposição 1.2.20.

- (i) Para qualquer $\mathfrak{P} \in \operatorname{Proj}(S)$ o stalk $\mathscr{O}_{\mathfrak{P}}$ é isomorfo ao anel local $S_{(\mathfrak{P})}$. Em particular $(\operatorname{Proj}(S), \mathscr{O})$ é um espaço anelado local.
- (ii) Para qualquer $f \in S$ homogêneo de grau positivo, o espaço anelado local $(\mathcal{D}(f), \mathcal{O}|_{\mathcal{D}(f)})$ é isomorfo ao espectro de $S_{(f)}$. Em particular $(\operatorname{Proj}(S), \mathcal{O})$ é um esquema.

Demonstração: (i) A demonstração de que a aplicação

$$\varphi: \mathscr{O}_{\mathfrak{P}} \to S_{(\mathfrak{P})}$$

$$\langle U, s \rangle \mapsto s(\mathfrak{P}).$$

é um isomorfismo é análoga à demonstração do item (i) da Proposição 1.2.11.

(ii) Como vimos nas Proposições 1.2.17 e 1.2.18 a aplicação

$$\phi: \mathcal{D}(f) \rightarrow Spec\left(S_{(f)}\right)$$

$$\mathfrak{P} \mapsto \mathfrak{P}S_f \cap S_{(f)}$$

é um homeomorfismo. Falta então definir um isomorfismo

$$\phi^{\#}: \mathscr{O}_{Spec(S_{(f)})} \to \phi_* \left(\mathscr{O}_{Proj(S)}|_{\mathcal{D}(f)} \right)$$

de feixes em $Spec\left(S_{(f)}\right)$ tal que, para cada $\mathfrak{P}\in\mathcal{D}\left(f\right)$, o homomorfismo induzido nos stalks

$$\phi_{\mathfrak{P}}^{\#}: \left(\mathscr{O}_{\mathit{Spec}\left(S_{(f)}\right)}\right)_{\phi(\mathfrak{P})} \to \left(\mathscr{O}_{\mathit{Proj}(S)}|_{\mathcal{D}(f)}\right)_{\mathfrak{P}}$$

é um homomorfismo local.

Primeiramente observemos que se $\mathfrak{P} \in \mathcal{D}(f)$, então os anéis $S_{(\mathfrak{P})}$ e $\left(S_{(f)}\right)_{\phi(\mathfrak{P})}$ são naturalmente isomorfos. De fato, $S_{(\mathfrak{P})}$ é contituído das frações a/b, com a e b elementos homogêneos de mesmo grau de S e $b \notin \mathfrak{P}$, e $\left(S_{(f)}\right)_{\phi(\mathfrak{P})}$ é contituído por frações do tipo $(a/f^n)/(b/f^m)$, com a e b elementos homogêneos de S tais que $\deg(a) = n \deg(f)$, $\deg(b) = m \deg(f)$ e $b/f^m \notin \phi(\mathfrak{P})$, ou seja, $b \notin \mathfrak{P}$.

Como \mathfrak{P} não contém f é fácil verificar que a aplicação

$$\sigma_{\mathfrak{P}}: \left(S_{(f)}\right)_{\phi(\mathfrak{P})} \to S_{(\mathfrak{P})}$$

$$\frac{a/f^n}{b/f^m} \mapsto \frac{af^m}{bf^n}$$

está bem definida e é um homomorfismo. Além disso, $(af^m)/(bf^n)=0$ em $S_{(\mathfrak{P})}$ significa que existe um elemento homogêneo c em S que não pertence a \mathfrak{P} tal que $c\,af^m\,=\,0$. Portanto, se $\deg\,(c)=k$ e $\deg\,(f)=r\geq 1$, temos

$$\frac{c^r f^m}{f^{k+m}} \in S_{(f)}$$

$$\frac{c^r f^m}{f^{k+m}} \notin \mathfrak{P}S_f \cap S_{(f)} = \phi(\mathfrak{P}) \quad \epsilon$$

$$\frac{c^r f^m}{f^{k+m}} \cdot \frac{a}{f^n} = 0 \quad \text{em } S_{(f)},$$

donde $(a/f^n)/(b/f^m)=0$ em $\left(S_{(f)}\right)_{\phi(\mathfrak{P})}$. Logo $\sigma_{\mathfrak{P}}$ é injetiva.

Quanto à sobrejetividade, dado $a/b \in S_{(\mathfrak{P})}$, a e b homogêneos de mesmo grau ℓ , $b \notin \mathfrak{P}$, temos

$$\sigma_{\mathfrak{P}}\left(\frac{(a\,b^{r-1})/f^{\ell}}{b^r/f^{\ell}}\right) \;=\; \frac{a}{b}\;,$$

onde $r = deg(f) \ge 1$.

Agora observemos que, por ser ϕ um homeomorfismo, um subconjunto U de $Spec\left(S_{(f)}\right)$ é aberto se e somente se $\phi^{-1}\left(U\right)$ é um aberto de $\mathcal{D}\left(f\right)$. Além disso, se U é um aberto de $Spec\left(S_{(f)}\right)$ então, por definição, $\phi_*\left(\mathscr{O}_{Proj(S)}|_{\mathcal{D}(f)}\right)\left(U\right):=\mathscr{O}_{Proj(S)}|_{\mathcal{D}(f)}\left(\phi^{-1}\left(U\right)\right)$. Por isso $\phi_*\left(\mathscr{O}_{Proj(S)}|_{\mathcal{D}(f)}\right)\left(U\right)$ é contituído pelas seções $s:\phi^{-1}\left(U\right)\to\coprod_{\mathfrak{P}\in\phi^{-1}\left(U\right)}S_{(\mathfrak{P})}$ que são localmente um quociente do tipo $s\left(\mathfrak{P}\right)=a/b$ com $a,b\in S$ homogêneos de mesmo grau e $b\notin\mathfrak{P}$. Analogamente, $\mathscr{O}_{Spec\left(S_{(f)}\right)}\left(U\right)$ é contituído pelas seções $s:U\to\coprod_{\mathfrak{P}\in\phi^{-1}\left(U\right)}\left(S_{(f)}\right)_{\phi(\mathfrak{P})}$ que são localmente um quociente do tipo $s\left(\phi\left(\mathfrak{P}\right)\right)=(a/f^n)/(b/f^m)$ com $a,b\in S$ homogêneos, $deg\left(a\right)=n$ $deg\left(f\right)$, $deg\left(b\right)=m$ $deg\left(f\right)$ e $b\notin\mathfrak{P}$.

Assim, os homomorfismos $\sigma_{\mathfrak{P}}$ induzem, para cada aberto U de $\mathit{Spec}\left(S_{(f)}\right)$, um homomorfismo $\phi_U^\#:\mathscr{O}_{\mathit{Spec}\left(S_{(f)}\right)}\left(U\right)\to\phi_*\left(\mathscr{O}_{\mathit{Proj}(S)}|_{\mathcal{D}(f)}\right)\left(U\right)$, que por ser $\sigma_{\mathfrak{P}}$ um isomorfismo para todo $\mathfrak{P}\in\mathcal{D}\left(f\right)$, cada $\phi_U^\#$ também é um isomorfismo. Além disso, é fácil verificar que para cada inclusão $V\subseteq U$ de abertos de $\mathit{Spec}\left(S_{(f)}\right)$, o diagrama

$$\mathcal{O}_{Spec\left(S_{(f)}\right)}\left(U\right) \stackrel{\phi_{U}^{\#}}{\longrightarrow} \phi_{*}\left(\mathscr{O}_{Proj\left(S\right)}|_{\mathcal{D}(f)}\right)\left(U\right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathscr{O}_{Spec\left(S_{(f)}\right)}\left(V\right) \stackrel{\phi_{U}^{\#}}{\longrightarrow} \phi_{*}\left(\mathscr{O}_{Proj\left(S\right)}|_{\mathcal{D}(f)}\right)\left(V\right)$$

comuta. Logo $\phi^{\#}: \mathscr{O}_{Spec(S_{(f)})} \to \phi_{*}\left(\mathscr{O}_{Proj(S)}|_{\mathcal{D}(f)}\right)$ é um isomorfismo de feixes em $Spec\left(S_{(f)}\right)$.

Por outro lado, os stalks $\left(\mathscr{O}_{Spec\left(S_{(f)}\right)}\right)_{\phi(\mathfrak{P})}$ e $\left(\mathscr{O}_{Proj(S)}|_{\mathcal{D}(f)}\right)_{\mathfrak{P}}$ são naturalmentes isomorfos a $\left(S_{(f)}\right)_{\phi(\mathfrak{P})}$ e $S_{(\mathfrak{P})}$, respectivamente (Proposição 1.2.11 e parte (i)). Além disso, pela forma como são dados esses isomorfismos e pela forma como foi contruído o isomorfismo $\phi^{\#}:\mathscr{O}_{Spec\left(S_{(f)}\right)}\to \phi_{*}\left(\mathscr{O}_{Proj(S)}|_{\mathcal{D}(f)}\right)$, para cada $\mathfrak{P}\in\mathcal{D}(f)$, o homomorfismo induzido $\phi^{\#}_{\mathfrak{P}}$ é na verdade $\sigma_{\mathfrak{P}}$. Mais precisamente,

$$\phi_{\mathfrak{P}}^{\#}: \left(\mathscr{O}_{Spec\left(S_{(f)}\right)}\right)_{\phi(\mathfrak{P})} \cong \left(S_{(f)}\right)_{\phi(\mathfrak{P})} \rightarrow \left(\mathscr{O}_{Proj(S)}|_{\mathcal{D}(f)}\right)_{\mathfrak{P}} \cong S_{(\mathfrak{P})}$$

$$\frac{a/f^{n}}{b/f^{m}} \mapsto \frac{af^{m}}{bf^{n}} = \sigma_{\mathfrak{P}}\left(\frac{a/f^{n}}{b/f^{m}}\right).$$

Segue que cada $\phi_{\mathfrak{P}}^{\#}$ é um isomorfismo. Em particular cada $\phi_{\mathfrak{P}}^{\#}$ é um homomorfismo local.

Corolário 1.2.21. Se existe algum elemento homogêneo f em S_+ que não pertence a nenhum elemento de $\operatorname{Proj}(S)$, então $\left(\operatorname{Proj}(S), \mathscr{O}_{\operatorname{Proj}(S)}\right)$ é um esquema afim isomorfo a $\left(\operatorname{Spec}\left(S_{(f)}\right), \mathscr{O}_{\operatorname{Spec}\left(S_{(f)}\right)}\right)$.

 $\begin{array}{lll} \textit{Demonstração:} & \text{Como nesse caso} & \mathcal{D}\left(f\right) = \textit{Proj}\left(S\right) \text{, temos} & \left(\textit{Proj}\left(S\right), \mathcal{O}_{\textit{Proj}\left(S\right)}\right) = \\ & \left(\mathcal{D}\left(f\right), \mathcal{O}_{\textit{Proj}\left(S\right)}|_{\mathcal{D}\left(f\right)}\right) \text{. Além disso, pela Proposição 1.2.20} & \left(\mathcal{D}\left(f\right), \mathcal{O}_{\textit{Proj}\left(S\right)}|_{\mathcal{D}\left(f\right)}\right) \cong \\ & \left(\textit{Spec}\left(S_{(f)}\right), \mathcal{O}_{\textit{Spec}\left(S_{(f)}\right)}\right). & & \Box \end{array}$

Capítulo 2

Expansão de Puiseux e normalização de curvas algebróides planas

2.1 Lema de Hensel e Teorema de Preparação de Weierstrass

Começaremos demonstrando dois lemas que serão úteis para a demonstração do Lema de Hensel.

Lema 2.1.1. Seja R um anel comutativo com unidade e sejam $g, h \in R$ tais que

$$qR + hR = R.$$

Suponhamos que g não é um divisor de zero e que foi fixado um subconjunto $E \subseteq R$ com exatamente um representante para cada classe residual de R/(g). Então dado $f \in R$ existem únicos $v \in E$ e $u \in R$ tais que

$$f = ug + vh.$$

Demonstração: Existem $a,b\in R$ tais que $a\,g+b\,h=f$. Se $v\in E$ é o representante da classe residual de b em R/(g), então b=v+cg para algum

 $c \in R$. Assim, tomando u = a + ch temos

$$ug + vh = (a+ch)g + (b-cg)h = ag + bh = f$$

com $v \in E$ e $u \in R$.

Suponhamos agora que

$$f = uq + vh = u'q + v'h$$

com $v,v'\in E$ e $u,u'\in R$. Isso implica que

$$(u - u') g = (v' - v) h. (2.1)$$

Tomando $r,s\in R$ tais que $r\,g+s\,h\,=\,1$, temos

$$v' - v = (v' - v) r g + (v' - v) s h$$
$$= (v' - v) r g + (u - u') s g$$
$$= [(v' - v) r + (u - u') s] g$$

múltiplo de g, portanto v'=v. Da igualdade 2.1 obtemos $(u-u')\,g=0$. Como g não é divisor de zero cuncluímos que u-u'=0, ou seja, u=u'.

Lema 2.1.2. Seja R um anel comutativo com unidade e seja R[[x]] o anel das séries de potências com coeficientes em R. Se

$$G(x) = \sum_{i=0}^{\infty} g_i x^i$$
 , $H(x) = \sum_{i=0}^{\infty} h_i x^i$

 $s\~ao$ duas séries de potências em R[[x]], ent $\~ao$

$$g_0 R + h_0 R = R \implies G(x) R[[x]] + H(x) R[[x]] = R[[x]].$$

Demonstração: Dada $P(x) = \sum_{j=0}^{\infty} p_j x^j \in R[[x]]$ devemos provar que existem

$$A(x) = \sum_{j=0}^{\infty} a_j x^j$$
, $B(x) = \sum_{j=0}^{\infty} b_j x^j \in R[[x]]$

tais que

$$P(x) = A(x) G(x) + B(x) H(x).$$

Faremos isso por indução.

Por hipótese, existem $a_0, b_0 \in R$ tais que

$$p_0 = a_0 g_0 + b_0 h_0.$$

Suponhamos agora encontrados $a_0, \ldots, a_m, b_0, \ldots, b_m \in R$ tais que

$$p_i = (a_i g_0 + b_i h_0) + (a_{i-1} g_1 + b_{i-1} h_1) + \cdots + (a_0 g_i + b_0 h_i)$$

para cada $j=0,1,\ldots,m$. Existem $a_{m+1},b_{m+1}\in R$ tais que

$$a_{m+1}g_0 + b_{m+1}h_0 = p_{m+1} - \left[\sum_{k=1}^{m+1} (a_{m+1-k}g_k + b_{m+1-k}h_k)\right].$$

Isso implica

$$p_{m+1} = (a_{m+1}g_0 + b_{m+1}h_0) + (a_mg_1 + b_mh_1) + \dots + (a_0g_{m+1} + b_0h_{m+1}),$$

como precisávamos.

Dados uma série de potência $F(x)=\sum_{i=0}^{\infty}f_i\,x^i\in R[[x]]$ e um inteiro nãonegativo m , denotaremos

$$F_m(x) := \sum_{i=0}^m f_i x^i$$

a m-ésima soma parcial da série F(x).

Teorema 2.1.3 (Lema de Hensel). Seja R um anel comutativo com unidade e seja $F(x) = \sum_{i=0}^{\infty} f_i x^i \in R[[x]]$ uma série de potência com coeficientes em R. Se

$$f_0 = g_0 h_0$$
 e $g_0 R + h_0 R = R$

então existe uma fatoração

$$F(x) = G(x) H(x)$$
 com $G(0) = g_0$ e $H(0) = h_0$. (2.2)

Além disso, se g_0 não for divisor de zero e $E \subseteq R$ é um conjunto com exatamente um representante para cada classe residual de $R/(g_0)$, então a fatoração (2.2) é única se exigirmos $g_i \in E$ para todo $i \ge 1$.

Demonstração: A existência da fatoração é conseqüência da existência de elementos $g_1,g_2,\ldots\in E$ e $h_1,h_2,\ldots\in R$ tais que, se

$$G(x) = g_0 + \sum_{i=1}^{\infty} g_i x^i$$
 e $H(x) = h_0 + \sum_{i=1}^{\infty} h_i x^i$

então, para cada $m = 1, 2, \dots$

$$G_m(x)H_m(x) \equiv F(x) \mod (x^{m+1})$$
.

Mostraremos isso por indução em m.

Pelo Lema 2.1.1 existem $g_1 \in E$ e $h_1 \in R$ tais que $h_1g_0 + g_1h_0 = f_1$, donde

$$G_1(x)H_1(x) \equiv F(x) \mod (x^2)$$
.

Suponhamos agora $m \ge 1$. Suponhamos também que existem elementos $g_1, \ldots, g_m \in E$, $h_1, \ldots, h_m \in R$ tais que

$$G_m(x)H_m(x) := \left(g_0 + \sum_{i=1}^m g_i x^i\right) \left(h_0 + \sum_{i=1}^m h_i x^i\right) \equiv F(x) \mod(x^{m+1}).$$

Isso significa que

$$G_m(x)H_m(x) \equiv F(x) + ax^{m+1} \mod (x^{m+2})$$
.

para algum $a \in R$. Novamente pelo Lema 2.1.1 sabemos que existem $g_{m+1} \in E$ e $h_{m+1} \in R$ tais que

$$h_{m+1}q_0 + q_{m+1}h_0 = -a$$
.

Assim, se

$$G_{m+1}(x) = g_0 + \sum_{i=1}^{m+1} g_i x^i = G_m(x) + g_{m+1} x^{m+1}$$
$$H_{m+1}(x) = h_0 + \sum_{i=1}^{m+1} h_i x^i = H_m(x) + h_{m+1} x^{m+1}$$

então

$$G_{m+1}(x)H_{m+1}(x) \equiv F(x) \mod (x^{m+2})$$
.

Isso completa a demonstração da existência.

Para a parte da unicidade, observemos que devemos ter

$$f_1 = h_1 g_0 + g_1 h_0 .$$

Pelo Lema 2.1.1, $g_1 \in E$ e $h_1 \in R$ são os únicos tais que isso acontece. Isso determina de maneira única g_1 e h_1 . Supomos agora que $m \geq 1$ e que já sabemos serem únicos os elementos $g_1, \ldots, g_m \in E$, $h_1, \ldots, h_m \in R$. Devemos ter

$$f_{m+1} = h_{m+1}g_0 + h_mg_1 + \dots + h_1g_m + h_0g_{m+1}$$

ou seja,

$$f_{m+1} - (h_m g_1 + \dots + h_1 g_m) = h_{m+1} g_0 + h_0 g_{m+1}$$

com $g_{m+1} \in E$ e $h_{m+1} \in R$. Novamente pelo Lema 2.1.1 concluímos que g_{m+1} e h_{m+1} também são únicos. Isso demonstra a unicidade.

O Lema de Hensel pode ser generalizado para anéis de séries de potências em várias variáveis.

Corolário 2.1.4. Seja R um anel comutativo com unidade e seja

$$F(x_1, \dots, x_n) = \sum_{i_1, \dots, i_n} f_{i_1, \dots, i_n} x_1^{i_1} \cdots x_n^{i_n} \in R[[x_1, \dots, x_n]]$$

 $uma\ s\'erie\ de\ pot\ \^encia\ em\ n\ vari\'aveis\ com\ coeficientes\ em\ R$. Se

$$f_{0,\dots,0} = gh$$
 e $gR + hR = R$

então existe uma fatoração

$$F(x_1, \dots, x_n) = G(x_1, \dots, x_n) H(x_1, \dots, x_n)$$
 (2.3)

com

$$G(0,...,0) = g$$
 e $H(0,...,0) = h$.

Além disso, se g não for divisor de zero e $E \subseteq R$ é um conjunto com exatamente um representante para cada classe residual de R/(g), então a fatoração (2.3) é única se exigirmos $g_{i_1,...,i_n} \in E$ sempre que $(i_1,...,i_n) \neq (0,...,0)$.

Demonstração: Demonstraremos primeiro a existência da fatoração (2.3), utilizando indução no número de variáveis n. O caso de uma variável é o Teorema 2.1.3.

Suponhamos agora o resultado válido para n-1 variáveis, e denotemos $S:=R[[x_n]] \text{ . Então } R[[x_1,\ldots,x_n]]=S[[x_1,\ldots,x_{n-1}]] \text{ e pondo}$

$$F_{i_1,\dots,i_{n-1}}(x_n) = \sum_{i_n=0}^{\infty} f_{i_1,\dots,i_{n-1},i_n} x_n^{i_n}$$

podemos escrever

$$F(x_1,\ldots,x_n) = \sum_{i_1,\ldots,i_{n-1}} F_{i_1,\ldots,i_{n-1}}(x_n) \ x_1^{i_1}\cdots x_{n-1}^{i_{n-1}}.$$

como um série de potência em n-1 variáveis com coeficientes em $S:=R[[x_n]]$. Pelo Teorema 2.1.3 existem $G_0(x_n), H_0(x_n) \in S$ tais que

$$F_{0,\dots,0}(x_n) = G_0(x_n) H_0(x_n)$$

com $G_0(0)=g$ e $H_0(0)=h$. Além disso, pelo Lema 2.1.2,

$$G_0(x_n) S + H_0(x_n) S = S$$
.

Segue então da hipótese de indução que existem

$$G'(x_1,\ldots,x_{n-1})=G(x_1,\ldots,x_n)$$

$$H'(x_1,\ldots,x_{n-1})=H(x_1,\ldots,x_n)$$

em $S[[x_1, ..., x_{n-1}]] = R[[x_1, ..., x_n]]$ tais que

$$F(x_1, \ldots, x_n) = G'(x_1, \ldots, x_{n-1}) H'(x_1, \ldots, x_{n-1})$$

com

$$G'(0,\ldots,0) = G_0(x_n)$$
 e $H'(0,\ldots,0) = H_0(x_n)$.

Portanto

$$F(x_1,\ldots,x_n) = G(x_1,\ldots,x_n)H(x_1,\ldots,x_n)$$

com

$$G(0,...,0) = G_0(0) = g$$
 e $H(0,...,0) = H_0(0) = h$.

Quanto a unicidade, procedemos por indução na soma dos índices dos coeficientes de $\,G\,$ e $\,H\,$. Devemos ter

$$f_{1,0,\dots,0} = h_{1,0,\dots,0} g + g_{1,0,\dots,0} h$$

e, pelo Lema 2.1.1, $g_{1,0,\dots,0}\in E$ e $h_{1,0,\dots,0}\in R$ são os únicos tais que isso acontece. Por argumento análogo demonstra-se a unicidade de cada coeficiente, tanto de H quanto de G, cuja soma dos índices é igual a 1.

Suponhamos agora $m \geq 1$ e demonstrada a unicidade de $g_{j_1,\dots,j_n} \in E$ e $h_{k_1,\dots,k_n} \in R$ sempre que $j_1+\dots+j_n \leq m$ e $k_1+\dots+k_n \leq m$. Um coeficiente f_{i_1,\dots,i_n} de F tal que $i_1+\dots+i_n=m+1$, é dado por

$$f_{i_1,\dots,i_n} = h_{i_1,\dots,i_n} g + g_{i_1,\dots,i_n} h + \sum_{\substack{j_r + k_r = i_r, \ r = 1,\dots,n \\ j_1 + \dots + j_n \le m \\ k_1 + \dots + k_n}} g_{j_1,\dots,j_n} h_{k_1,\dots,k_n} .$$

Novamente pelo Lema 2.1.1, sabemos que $g_{i_1,\dots,i_n} \in E$ e $h_{i_1,\dots,i_n} \in R$ são únicos tais que isso acontece. Isso completa a demonstração.

O seguinte resultado é uma outra versão do Lema de Hensel.

Corolário 2.1.5. Seja K um corpo e seja $F(x_1, \ldots, x_n, y) \in K[[x_1, \ldots, x_n]][y] = K[y][[x_1, \ldots, x_n]]$ um polinômio em y cujos coeficientes são séries de potências em n variáveis. Suponhamos que

$$F(0,\ldots,0,y) = g(y) h(y)$$

 $com\ g(y), h(y) \in K[y]\ relativamente\ primos.\ Então\ existe\ uma\ fatoração$

$$F(\mathbf{x},y) = G(\mathbf{x},y) H(\mathbf{x},y)$$
 com $G(\mathbf{0},y) = g(y)$ e $H(\mathbf{0},y) = h(y)$.

Além disso, se exigirmos que seja

$$\deg_{y}\left(G(\mathbf{x},y)-g(y)\right)<\deg_{y}\left(g(y)\right)$$

então a fatoração é única.

 $\begin{array}{lll} \textit{Demonstração:} & \text{Basta tomar} & R := K[y] \ , & g := g(y) \ , & h := h(y) \ \text{e} & E = \left\{ \left. f(y) \in K[y] \ \middle / \ \textit{deg}_y \left(f(y) \right) < \textit{deg}_y \left(g(y) \right) \right. \right\} & \text{no Lema 2.1.4, e observar que para todo polinômio} & p(y) \in K[y] \ \text{existe um único} & r(y) \in K[y] \ \text{tal que} \end{array}$

$$\deg_y(r(y)) < \deg_y(g(y))$$
 e $p(y) \equiv r(y) \mod g(y)$.

Um corolário importante do Lema de Hensel é o seguinte:

Corolário 2.1.6 (Teorema de Preparação de Weierstrass). Seja K um corpo e seja

$$F(x_1, \dots, x_n, y) \in K[[x_1, \dots, x_n, y]]$$

uma série de potência, tal que $F(0,\ldots,0,0)=0$. Suponhamos que y^m aparece em F com coeficiente não nulo e que m é o menor inteiro para o qual isso acontece. Então F pode ser escrito de maneira única como

$$F(\mathbf{x}, y) = [y^m + u_{m-1}(\mathbf{x})y^{m-1} + \dots + u_0(\mathbf{x})] \cdot U(\mathbf{x}, y)$$

 $com\ u_i(\mathbf{x}) \in K[[x_1, \dots, x_n]]\ e\ U(\mathbf{x}, y) \in K[[x_1, \dots, x_n, y]]\ invertivel.$

Demonstração: Nessas condições nós podemos escrever $F(0,y)=y^m\cdot v(y)$, onde $v(y)\in K[[y]]$ é invertível. Tomamos R:=K[[y]], $g:=y^m$, h:=v(y) e

 $E = \left\{ \ f(y) \in K[y] \ / \ \deg_y (f(y)) < m \ \right\} \subseteq R$. O Corolário 2.1.4 afirma que existe uma única fatoração

$$F(\mathbf{x}, y) = G(\mathbf{x}, y) H(\mathbf{x}, y)$$

com

$$G(\mathbf{x}, y) = y^m + \sum_{\substack{(i_1, \dots, i_n) \neq (0, \dots, 0)}} g_{i_1, \dots, i_n}(y) x_1^{i_1} \cdots x_n^{i_n}$$

$$H(\mathbf{x}, y) = v(y) + \sum_{\substack{(i_1, \dots, i_n) \neq (0, \dots, 0)}} h_{i_1, \dots, i_n}(y) x_1^{i_1} \cdots x_n^{i_n}$$

se exigirmos que $\deg_y(g_{i_1,\dots,i_n}(y)) \leq m-1$ para todo $g_{i_1,\dots,i_n}(y)$. Tomando então $U(\mathbf{x},y) = H(\mathbf{x},y)$ e reescrevendo $G(\mathbf{x},y)$ como elemento de $K[[x_1,\dots,x_n]][[y]]$ obtemos o resultado.

2.2 Extensões de K(t) e Expansão de Puiseux

Seja $\,K\,$ um corpo. Dado $\,c(t)\in K[[t]]\backslash\{0\}$, denotaremos

$$\mathit{mult}_0\left(c(t)\right) := \max\left\{\; \ell \geq 0 \;\middle/\; c(t) \;=\; t^\ell\,b(t) \;\; \mathrm{para\; algum} \;\; b(t) \in K[[t]] \;\right\} \;.$$

Convencionaremos que $\operatorname{mult}_0(0) = +\infty$.

Uma série formal de Laurent sobre K é uma expressão do tipo

$$\sum_{i=r}^{\infty} a_i t^i , \quad a_i \in K , \quad r \in \mathbb{Z} .$$

Lema 2.2.1. O corpo de frações de K[[t]] é o conjunto das séries formais de Laurent sobre K.

Demonstração: Seja $\sum_{i=r}^{\infty}a_i\,t^i$ uma série formal de Laurent. Se $r\geq 0$ então esta série pertence a K[[t]], donde pertence a $K((t))=\operatorname{Frac}\left(K[[t]]\right)$. Se r<0,

então podemos escrever

$$\sum_{i=r}^{\infty} a_i t^i = \frac{\sum_{i=0}^{\infty} a_{i+r} t^i}{t^{-r}}$$

com $\sum_{i=0}^\infty a_{i+r}\,t^i\,,t^{-r}\in k[[t]]$. Portanto $\sum_{i=r}^\infty a_i\,t^i\in K((t))$ também nesse caso.

Reciprocamente, seja $a(t)/b(t)\in K((t))$, $a(t),b(t)\in K[[t]]$ com $b(t)\neq 0$. Se $\ell=\mathit{mult}_0(b(t))$, então

$$b(t) = t^{\ell} \sum_{i=0}^{\infty} b_i t^i$$

para certos $b_i \in K$ com $b_0 \neq 0$, donde $\sum_{i=0}^{\infty} b_i t^i$ é invertível em K[[t]]. Assim

$$\frac{a(t)}{b(t)} = \frac{a(t) \left(\sum_{i=0}^{\infty} b_i t^i\right)^{-1}}{t^{\ell}} = \frac{\sum_{i=0}^{\infty} c_i t^i}{t^{\ell}} = \sum_{i=-\ell}^{\infty} c_{i+\ell} t^i$$

para certos $c_i \in K$, donde a(t)/b(t) é uma série formal de Laurent.

Teorema 2.2.2. Seja K um corpo algebricamente fechado com char (K) = 0. Se $L \supseteq K((t))$ é uma extensão finita de grau m, então

$$L = K((t^{1/m})) .$$

Demonstração: Primeiramente mostraremos que $L\subseteq K((t^{1/N}))$ para $N=\prod_{i=1}^m i!$, utilizando indução no grau de L/K((t)). Se m=1 o resultado é trivial. Suponhamos então m>1 e o resultado válido para $\deg(L/K((t)))\leq m-1$.

Todo $y \in L \setminus K((t))$ satisfaz uma equação (polinomial) minimal do tipo

$$y^n + a_{n-1}(t)y^{n-1} + \cdots + a_0(t) = 0$$
, com $a_i(t) \in K((t))$,

onde $2 \leq n \leq m$. Para algum $\ell \in \mathbb{N}$ suficientemente grande, tem-se $t^\ell a_i(t) \in K[[t]]$, para todo i. Multiplicando então essa equação por $t^{n\ell}$ e pondo $y_1 := t^\ell y$, obtemos uma equação minimal para y_1 do tipo

$$y_1^n + b_{n-1}(t) y_1^{n-1} + \dots + b_0(t) = 0, \quad \text{com} \quad b_i(t) \in K[[t]].$$

Tomando ainda $y_2 := y_1 + (1/n) b_{n-1}(t)$, obtemos uma equação minimal para y_2 do tipo

$$y_2^n + c_{n-2}(t) y_2^{n-2} + \dots + c_0(t) = 0, \quad \text{com} \quad c_i(t) \in K[[t]].$$

Evidentemente que $y \in K((t^{1/N})) \setminus K((t))$ se e somente se $y_2 \in K((t^{1/N})) \setminus K((t))$. Assim podemos supor que a equação minimal de y é

$$F(t,y) := y^n + c_{n-2}(t) y^{n-2} + \cdots + c_0(t) = 0, \quad \text{com} \quad c_i(t) \in K[[t]].$$

Afirmamos que $F(0,y)=(y-\alpha)^n$ para algum $\alpha\in K$. De fato, se não fosse assim F(0,y) possuiria pelo menos duas raízes distintas e daí admitiria uma fatoração $F(0,y)=g(y)\,h(y)$ com $g(y),h(y)\in K[y]$ relativamente primos. Pelo Lema de Hensel, F(t,y) admitiria uma fatoração não trivial $F(t,y)=G(t,y)\,H(t,y)$, contradizendo o fato de F(t,y) ser minimal. Portanto $F(0,y)=(y-\alpha)^n$ para algum $\alpha\in K$. Comparando os coeficientes de y^{n-1} , de F(0,y) e de $(y-\alpha)^n$, concluímos que $\alpha=0$, donde $F(0,y)=y^n$. Logo $t|c_i(t)$ para todo $i=0,\ldots,n-2$.

Como $y \notin K((t))$, devemos ter $c_i(t) \neq 0$ para algum i. Assim, fica bem definido

$$r = \min_{i=0,\dots,n-2} \left\{ \frac{\operatorname{mult}_0(c_i(t))}{n-i} \right\} \in \mathbb{Q}.$$

Além disso, como $t|c_i(t)$ para todo $i=0,\ldots,n-2$, temos r>0 e podemos escrever r=u/v com u e v inteiros positivos relativamente primos. Dividindo a equação F(t,y)=0 por t^{nr} obtemos

$$\left(\frac{y}{t^r}\right)^n + \frac{c_{n-2}(t)}{t^{2r}} \left(\frac{y}{t^r}\right)^{n-2} + \dots + \frac{c_0(t)}{t^{nr}} = 0.$$

Fixemos $i_0 \in \{0,\ldots,n-2\}$ tal que $r = \mathit{mult}_0\left(c_{i_0}(t)\right)/(n-i_0)$. Então $v|(n-i_0)$. Em particular v|n!, e portanto $t^r,t^{-r}\in K((t^{1/n!}))$. Assim

$$\frac{y}{t^r} \; = \; \frac{y}{(t^{1/v})^u} \; \in K((t^{1/n!})) \quad \iff \quad y \in K((t^{1/n!})) \; .$$

Por outro lado, pela definição de r, temos

$$\frac{u(n-i)}{n} = r(n-i) \leq \operatorname{mult}_0(c_i(t)) , \qquad i = 0, \dots, n-2 ,$$

valendo a igualdade quando $i = i_0$. Assim, pondo

$$d_i(t^{1/v}) := \frac{c_i(t)}{t^{r(n-i)}}$$

temos $d_i(t^{1/v}) \in K[[t^{1/v}]]$, para todo i, e $d_{i_0}(0) \neq 0$. Tomando então $s=t^{1/v}$ e $z=y/t^r$ obtemos a equação

$$G(s,z) := z^n + d_{n-2}(s) z^{n-2} + \dots + d_0(s) = 0, \quad \text{com} \quad d_i(s) \in K[[s]].$$

Como $d_{i_0}(0) \neq 0$, temos $G(0,z) \neq z^n$. Pelo argumento utilizado anteriormente, sabemos que existem $G_1(s,z), G_2(s,z) \in K[[s]][z]$, com $\deg_z(G_j(s,z)) < n$ para j=1,2, tais que

$$G(s,z) = G_1(s,z) G_2(s,z)$$
.

Em particular, se $n_1=\deg\left(K((s))(z)/K((s))\right)$ então $n_1\leq m-1$. Pela hipótese de indução

$$z \in K((s^{1/(\prod_{i=1}^{n_1} i!)})) = K((t^{1/(v \cdot \prod_{i=1}^{n_1} i!)})) \subseteq K((t^{1/(\prod_{i=1}^{n} i!)})) \subseteq K((t^{1/N})),$$
 portanto $y = t^r z \in K((t^{1/N}))$. Concluímos assim que $L \subseteq K((t^{1/N}))$.

Agora provaremos que $L=K((t^{1/m}))$. Ora, $K((t^{1/N}))$ é o corpo de decomposição do polinômio $y^N-t\in K((t))[y]$. Portanto, $K((t^{1/N}))/K((t))$ é uma extensão normal e finita (ver [St, Chapter 17, Theorem 17.10]). Além disso, como char (K)=0, esta extensão também é separável e portanto de Galois. O grupo de Galois correspondente é cíclico de ordem N. Como todo subgrupo de um grupo cíclico de ordem N é cíclico de ordem que divide N, da correspondência de Galois concluímos que todo corpo intermediário da extensão acima é o corpo de decomposição de um polinômio da forma $y^n-t\in K((t))[y]$, para algum $n\in\mathbb{N}$ tal que n|N (ver [La, Chapter 6, Theorem 6.2]). Como $\deg(L/K((t)))=m$, devemos ter $L=K((t^{1/m}))$, conforme afirmado.

Com isso podemos obter uma resolução de singularidades utilizando séries de Puiseux.

Teorema 2.2.3 (Expansão de Puiseux). Seja $F(x,y) \in K[[x,y]]$ uma série de potência irredutível sobre um corpo K algebricamente fechado com char (K) = 0,

tal que F(0,0)=0. Suponhamos que y^m aparece em F(x,y) com coeficiente não-nulo e que m é o menor inteiro tal que isso acontece. Então F(x,y)=0 tem uma solução da forma

$$y = \sum_{i=1}^{\infty} a_i x^{i/m} \in K[[x^{1/m}]].$$

Demonstração: Pelo Teorema de Preparação de Weierstrass

$$F(x,y) = [y^m + u_{m-1}(x) y^{m-1} + \dots + u_0(x)] U(x,y), \quad u_i(x) \in K[[x]]$$

com $U(x,y) \in K[[x,y]]$ invertível. Como F é irredutível em K[[x,y]],

$$P(x,y) := y^m + u_{m-1}(x)y^{m-1} + \cdots + u_0(x)$$

também é irredutível em K[[x,y]] . Isso implica que P(x,y) é irredutível em K[[x]][y] .

De fato, suponhamos que

$$P(x,y) = G(x,y) H(x,y)$$

com

$$G(x,y) = g_s(x) y^s + g_{s-1}(x) y^{s-1} + \dots + g_0(x)$$

$$H(x,y) = h_r(x) y^r + h_{r-1}(x) y^{r-1} + \dots + h_0(x)$$

 $g_i(x), h_i(x) \in K[[x]]$ e s+r=m. Como P(x,y) é mônico, podemos supor que $g_s(x)=h_r(x)=1$. Sendo P(x,y) irredutível em K[[x,y]], devemos ter G(x,y) ou H(x,y) invertível em K[[x,y]]. Para fixar as idéias, supomos H(x,y) invertível em K[[x,y]]. Então

$$F(x,y) = [y^{s} + g_{s-1}(x) y^{s-1} + \cdots + g_{0}(x)] H(x,y) U(x,y)$$

com $H(x,y)\,U(x,y)$ invertível em K[[x,y]], ou seja, $H(0,0)\,U(0,0)\neq 0$. Assim, a hipótese que m é o menor inteiro tal que y^m aparece em F(x,y) com coeficiente não-nulo implica $y^s+g_{s-1}(0)\,y^{s-1}+\cdots+g_0(0)=y^m$ e portanto s=m.

Segue então da unicidade demonstrada no Teorema de Preparação de Weierstrass que P(x,y)=G(x,y) e H(x,y)=1. Logo P(x,y) é irredutível em K[[x]][y].

Agora observemos que K[[x]] é um domínio de ideais principais. De fato, K[[x]] é noetheriano (ver [AM, Chapter 10, Corollary 10.27]). Dado então um ideal não-nulo $I=(f_1,\ldots,f_n)$ de K[[x]], $f_i\neq 0$ para todo i, existem inteiros não-negativos ℓ_1,\ldots,ℓ_n tais que $f_i(x)=x^{\ell_i}g_i(x)$ com $g_i(x)$ invertível, $i=1,\ldots,n$. Temos então $I=(x^\ell)$, onde $\ell=\min\{\ell_1,\ldots,\ell_n\}$.

Segue do Lema de Gauss (ver [GL, Capítulo II, Teorema II.2.1 e Lema II.3.6]) que P(x,y) é irredutível como polinômio em K((x))[y]. Assim, K((x))(y)/K((x)) é uma extensão de corpos de grau m e P(x,y) é o polinômio minimal de y. Pelo Teorema 2.2.2, $y \in K((x^{1/m}))$, ou seja, $y = \sum_{i=r}^{\infty} a_i \, x^{i/m}$ para um certo $r \in \mathbb{Z}$ e certos $a_i \in K$.

Temos então $P(x,\sum_{i=r}^{\infty}a_ix^{i/m})=0$, o que implica $a_i=0$ para todo i<0, donde $y=\sum_{i=0}^{\infty}a_i\,x^{i/m}\in K[[x^{1/m}]]$. Por outro lado P(0,0)=0, ou seja, y=0 é uma raíz do polinômio $P(0,y)=y^m+u_{m-1}(0)\,y^{m-1}+\cdots+u_0(0)\in K[y]$. Pelo Lema de Hensel, a irredutibilidade de P(x,y) implica $P(0,y)=y^m$, ou seja, $u_i(0)=0$ para $i=0,1,\ldots,m-1$. Portanto a equação $P(x,\sum_{i=r}^{\infty}a_i\,x^{i/m})=0$ implica também $a_0=0$.

A solução dada pelo teorema acima é chamada a expansão de Puiseux de $\,y\,$ em relação a $\,F\,$.

Corolário 2.2.4. Nas hipóteses do Teorema 2.2.3 consideremos o homomorfismo K-linear

$$K[[x,y]] \stackrel{\varphi}{\to} K[[t]]$$

$$x \mapsto t^{m}$$

$$y \mapsto \sum_{i=1}^{\infty} a_{i} t^{i}$$

 $onde \quad \textstyle \sum_{i=1}^{\infty} a_i \, x^{i/m} \quad \acute{e} \ a \ expans\~{a}o \ de \ Puiseux \ de \quad y \quad em \ relaç\~{a}o \ a \quad F \ . \quad Ent\~{a}o \ a = 0$

 $\ker\left(\varphi\right)=(F)\;.\;Em\;particular\;\;K[[t]]\;\;\acute{e}\;a\;normalizaç\~{a}o\;de\;\;K[[x,y]]/F(x,y)\;.$

Demonstração: Seja $G(x,y) \in K[[x,y]] \setminus \{0\}$ tal que $G(t^m, \sum_{i=1}^{\infty} a_i t^i) = 0$ e seja r o maior inteiro não negativo tal que

$$G(x,y) = x^r H(x,y)$$
, com $H(x,y) = \sum b_{j,\ell} x^j y^{\ell} \in K[[x,y]]$.

Temos $H(t^m, \sum_{i=1}^\infty a_i t^i) = 0$, portanto $H(x, \sum_{i=1}^\infty a_i x^{i/m}) = 0$. Em particular $b_{0,0} = 0$. Assim, existe um inteiro positivo mínimo n tal que y^n aparece em H(x,y) com coeficiente não-nulo. Pelo Teorema de Preparação de Weierstrass podemos escrever

$$H(x,y) = [y^n + v_{n-1}(x) y^{n-1} + \dots + v_0(x)] \cdot V(x,y), \quad v_i(x) \in K[[x]]$$

com $V(x,y) \in K[[x,y]]$ invertível.

Denotemos $Q(x,y):=y^n+v_{n-1}(x)\,y^{n-1}+\ldots+v_0(x)$. Temos $Q(t^m,\sum_{i=1}^\infty a_it^i)=0$, o que implica $Q(x,\sum_{i=1}^\infty a_i\,x^{i/m})=0$. Assim, se P(x,y) é o polinômio minimal de $y=\sum_{i=1}^\infty a_i\,x^{i/m}$, devemos ter Q(x,y) múltiplo de P(x,y), portanto múltiplo de F(x,y) (ver demonstração do Teorema 2.2.3). Segue que $G(x,y)=x^r\,Q(x,y)\,V(x,y)$ é múltiplo de F(x,y), o que demonstra a primeira afirmação.

Mostraremos agora que K[[t]] é a normalização de $K[[t^m, \sum_{i=1}^\infty a_i\,t^i]]$ em K((t)). Suponhamos primeiro que $p(t) = \sum_{i=r}^\infty b_i\,t^i \in K((t))$ é inteiro sobre $K[[t^m, \sum_{i=1}^\infty a_i\,t^i]]$. Então existe $n \in \mathbb{N}$ tal que

$$(p(t))^n + v_{n-1}(t^m, \sum_{i=1}^{\infty} a_i t^i) (p(t))^{n-1} + \dots + v_0(t^m, \sum_{i=1}^{\infty} a_i t^i) = 0,$$

com $v_i(x,y) \in K[[x,y]]$. Analizando os coeficientes dos termos de menor grau desta equação é facil de ver que $b_i=0$ para todo i<0. Assim $p(t)=\sum_{i=0}^{\infty}b_i\,t^i\in K[[t]]$.

Por outro lado, dado $p(t) = \sum_{i=0}^{\infty} b_i t^i \in K[[t]]$, podemos escrever

$$p(t) = \sum_{i=0}^{\infty} b_{mi} t^{mi} + t \sum_{i=0}^{\infty} b_{mi+1} t^{mi} + \cdots + t^{m-1} \sum_{i=0}^{\infty} b_{m(i+1)-1} t^{mi}.$$

Como t^j é inteiro sobre $K[[t^m]]$ (pois satisfaz o polinômio mônico $y^m - t^{mj}$), para todo $j = 1, \ldots, m-1$, e a normalização de $K[[t^m, \sum_{i=1}^{\infty} a_i t^i]]$ é um anel (ver [AM, Chapter 5, Corollary 5.3]), segue que p(t) é inteiro sobre $K[[t^m, \sum_{i=1}^{\infty} a_i t^i]]$. Isso completa a demonstração do corolário.

O morfismo de esquemas $Spec(K[[t]]) \to Spec(K[[x,y]]/F(x,y))$ definido por $t \mapsto (t^m, \sum_{i=1}^{\infty} a_i t^i)$ chama-se a resolução das singularidades da curva algebróide F(x,y)=0.

Exemplo 2.2.5. Seja $F(x,y)=y^2-x^3\in\mathbb{C}[[x,y]]$. Uma solução de F(x,y)=0 é $y=x^{3/2}\in\mathbb{C}[[x^{1/2}]]$ e uma resolução da curva $y^2=x^3$ é $t\mapsto (t^2,t^3)$.

Exemplo 2.2.6. Seja $F(x,y)=y^2-x(x^2-1)\in\mathbb{C}[[x,y]]$. Uma solução de F(x,y)=0 é

$$y = i x^{1/2} - \frac{i}{2} x^{5/2} - \frac{i}{8} x^{9/2} - \frac{i}{16} x^{13/2} - \frac{5i}{64} x^{17/2} - \cdots$$

onde $i=\sqrt{-1}$. Uma resolução da curva $y^2=x\left(x^2-1\right)$ é

$$t \mapsto (t^2, it - \frac{i}{2}t^5 - \frac{i}{8}t^9 - \frac{i}{16}t^{13} - \frac{5i}{64}t^{17} - \cdots).$$

Observemos que a série $it - (i/2)t^5 - (i/8)t^9 - \cdots$ tem raio de convergência positivo, definindo assim uma série convergente (não formal) numa vizinhança da origem.

Capítulo 3

Normalização de domínios noetherianos semi-locais de dimensão 1

3.1 Blow-up

Seja S um domínio noetheriano semi-local de dimensão 1 com ideais maximais $\mathfrak{m}_1, \ldots, \mathfrak{m}_k$, e seja $I = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_k$ o radical de Jacobson de S. Se \mathfrak{p} é um ideal primo de S que contém $I = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_k$, então \mathfrak{p} deve conter algum \mathfrak{m}_i (ver [AM, Chapter 1, Proposition 1.11]) e portanto é maximal. Assim

$$V(I) = \{\mathfrak{m}_1, \dots, \mathfrak{m}_k\}$$

e, como S é um domínio de dimensão 1, (0) é o único primo de S que não é maximal. Em particular $I \neq 0$ e para todo $a \in I \setminus \{0\}$

$$\left\{ \left(0\right)\right\} \;=\; \mathit{Spec}\left(S\right)\backslash V\left(I\right) \;=\; D\left(a\right) \;.$$

Além disso, é claro que podemos supor que $\mathfrak{m}_1, \ldots, \mathfrak{m}_k$ são dois a dois distintos. Assim, se $i \neq j$, então \mathfrak{m}_i e \mathfrak{m}_j são coprimos, ou seja, $\mathfrak{m}_i + \mathfrak{m}_j = (1)$, pois $\mathfrak{m}_i + \mathfrak{m}_j$ contém ambos os ideais \mathfrak{m}_i e \mathfrak{m}_j e estes são maximais e distintos. Por isso temos $I = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_k = \mathfrak{m}_1 \cdots \mathfrak{m}_k$ (ver [AM, Chapter 1, Proposition 1.10]).

Definição 3.1.1. O Blow-up de I em S é o anel graduado

$$B_I S = S \oplus I \oplus I^2 \oplus \cdots$$

Consideremos agora a inclusão canônica

$$\varphi: S \to B_I S$$

$$a \mapsto a \oplus 0 \oplus 0 \oplus \cdots$$

Como vimos no Capítulo 1, φ induz uma aplicação natural $Spec(B_IS) \to Spec(S)$, a qual pode naturalmente ser restringida à $Proj(B_IS)$:

$$\varphi^*: \operatorname{Proj}(B_I S) \to \operatorname{Spec}(S)$$

$$\mathfrak{P} \mapsto \mathfrak{P} \cap S.$$

Conforme definido no Capítulo 1, dado um ideal primo \mathfrak{p} de S, como $\varphi(S \setminus \mathfrak{p}) = S \setminus \mathfrak{p} \oplus 0 \oplus 0 \oplus \cdots$ e $\varphi_{\mathfrak{p}}(\mathfrak{p}S_{\mathfrak{p}}) = \mathfrak{p}S_{\mathfrak{p}} \oplus 0 \oplus 0 \oplus \cdots$,

$$\frac{(B_I S)_{\mathfrak{p}}}{\mathfrak{p}(B_I S)_{\mathfrak{p}}} := \frac{(\varphi(S \backslash \mathfrak{p}))^{-1}(B_I S)}{\varphi(\mathfrak{p} S_{\mathfrak{p}}) \cdot (B_I S)}$$

$$= \frac{S_{\mathfrak{p}} \oplus I_{\mathfrak{p}} \oplus I_{\mathfrak{p}}^2 \oplus \cdots}{\mathfrak{p} S_{\mathfrak{p}} \oplus \mathfrak{p} I_{\mathfrak{p}} \oplus \mathfrak{p} I_{\mathfrak{p}}^2 \oplus \cdots}$$

$$\cong \frac{S_{\mathfrak{p}}}{\mathfrak{p} S_{\mathfrak{p}}} \oplus \frac{I_{\mathfrak{p}}}{\mathfrak{p} I_{\mathfrak{p}}} \oplus \frac{I_{\mathfrak{p}}^2}{\mathfrak{p} I_{\mathfrak{p}}^2} \oplus \cdots$$

Além disso, por construção, a aplicação $Spec((B_IS)_{\mathfrak{p}}/\mathfrak{p}(B_IS)_{\mathfrak{p}}) \to Spec(B_IS)$ leva ideais homogêneos em ideais homogêneos. Segue da Proposição 1.2.10 que a fibra $(\varphi^*)^{-1}(\mathfrak{p})$ é homeomorfa à

$$\operatorname{Proj}\left(rac{S_{\mathfrak{p}}}{\mathfrak{p}S_{\mathfrak{p}}}\oplusrac{I_{\mathfrak{p}}}{\mathfrak{p}I_{\mathfrak{p}}}\oplusrac{I_{\mathfrak{p}}^{2}}{\mathfrak{p}I_{\mathfrak{p}}^{2}}\oplus\cdots
ight)\ .$$

Se $\mathfrak{p}=(0)$, então $I_{\mathfrak{p}}=S_{\mathfrak{p}}$, já que $I\neq 0$ (ver [AM, Chapter 3, Proposition 3.11]), e $S_{\mathfrak{p}}=\operatorname{Frac}(S)=:K$ é o corpo de frações de S. Nesse caso temos

$$\frac{S_{\mathfrak{p}}}{\mathfrak{p}S_{\mathfrak{p}}} \oplus \frac{I_{\mathfrak{p}}}{\mathfrak{p}I_{\mathfrak{p}}} \oplus \frac{I_{\mathfrak{p}}^{2}}{\mathfrak{p}I_{\mathfrak{p}}^{2}} \oplus \cdots = \frac{S_{\mathfrak{p}}}{\mathfrak{p}S_{\mathfrak{p}}} \oplus \frac{S_{\mathfrak{p}}}{\mathfrak{p}S_{\mathfrak{p}}} \oplus \frac{S_{\mathfrak{p}}}{\mathfrak{p}S_{\mathfrak{p}}} \oplus \cdots \\
\cong \frac{S_{\mathfrak{p}}}{\mathfrak{p}S_{\mathfrak{p}}}[t] = K[t].$$

Assim, a fibra $(\varphi^*)^{-1}((0))$ é homeomorfa à $\operatorname{Proj}(K[t])$ o qual é homeomorfo à $\operatorname{Spec}(K)$, e portanto consiste de um único ponto.

Por outro lado, como S é domínio, B_IS também é domínio. Em particular, o ideal nulo de B_IS é primo. Além disso, este ideal é homogêneo, não contém o ideal irrelevante $(B_IS)_+$ e evidentemente se contrai no ideal nulo de S. Logo $(\varphi^*)^{-1}((0))$ é o ideal nulo de B_IS .

Se $\mathfrak{p} = \mathfrak{m}_i$ é um ideal maximal de S, então $I_{\mathfrak{p}} = I_{\mathfrak{m}_i} = (\mathfrak{m}_i)_{\mathfrak{m}_i} =: \mathfrak{m}_i S_{\mathfrak{m}_i}$ (ver [AM, Chapter 3, Proposition 3.11]). Nesse caso, como $S_{\mathfrak{m}_i}/\mathfrak{m}_i S_{\mathfrak{m}_i} \cong (S/\mathfrak{m}_i)_{\mathfrak{m}_i} \cong S/\mathfrak{m}_i$ (ver [AM, Chapter 3, Corollary 3.4]), temos

$$\frac{S_{\mathfrak{p}}}{\mathfrak{p}S_{\mathfrak{p}}} \oplus \frac{I_{\mathfrak{p}}}{\mathfrak{p}I_{\mathfrak{p}}} \oplus \frac{I_{\mathfrak{p}}^{2}}{\mathfrak{p}I_{\mathfrak{p}}^{2}} \oplus \cdots = \frac{S_{\mathfrak{m}_{i}}}{\mathfrak{m}_{i}S_{\mathfrak{m}_{i}}} \oplus \frac{\mathfrak{m}_{i}S_{\mathfrak{m}_{i}}}{\mathfrak{m}_{i}^{2}S_{\mathfrak{m}_{i}}} \oplus \frac{\mathfrak{m}_{i}^{2}S_{\mathfrak{m}_{i}}}{\mathfrak{m}_{i}^{3}S_{\mathfrak{m}_{i}}} \oplus \cdots$$

$$\cong \frac{S}{\mathfrak{m}_{i}} \oplus \frac{\mathfrak{m}_{i}}{\mathfrak{m}_{i}^{2}} \oplus \frac{\mathfrak{m}_{i}^{2}}{\mathfrak{m}_{i}^{3}} \oplus \cdots$$

Portanto, se \mathfrak{m}_i é um maximal de S, então $(\varphi^*)^{-1}(\mathfrak{m}_i)$ é homeomorfo à $\operatorname{Proj}(S/\mathfrak{m}_i \oplus \mathfrak{m}_i/\mathfrak{m}_i^2 \oplus \mathfrak{m}_i^2/\mathfrak{m}_i^3 \oplus \cdots)$.

Lema 3.1.2. Proj $(S/\mathfrak{m}_i \oplus \mathfrak{m}_i/\mathfrak{m}_i^2 \oplus \mathfrak{m}_i^2/\mathfrak{m}_i^3 \oplus \cdots) \neq \varnothing$ para todo ideal maximal \mathfrak{m}_i de S.

Demonstração: Fixemos $i \in \{1, ..., k\}$. Como S é noetheriano, $\mathfrak{m}_i = (c_1, ..., c_r)$ para certos $c_1, ..., c_r \in S$.

Suponhamos, por absurdo, que $\operatorname{Proj}\left(S/\mathfrak{m}_i\oplus\mathfrak{m}_i/\mathfrak{m}_i^2\oplus\mathfrak{m}_i^2/\mathfrak{m}_i^3\oplus\cdots\right)=\varnothing$. Pelo Corolário 1.2.19, todo elemento homogêneo de grau positivo de $\operatorname{gr}_{\mathfrak{m}_i}S=S/\mathfrak{m}_i\oplus\mathfrak{m}_i/\mathfrak{m}_i^2\oplus\mathfrak{m}_i^2/\mathfrak{m}_i^3\oplus\cdots$ é nilpotente. Portanto, para cada $j=1,\ldots,r$,

existe $\ell_j \geq 1$ tal que $c_j^{\ell_j} \in \mathfrak{m}_i^{\ell_j+1}$. Tomando $\ell = \ell_1 + \cdots + \ell_r$, obtemos $\mathfrak{m}_i^{\ell} = \mathfrak{m}_i^{\ell+1}$.

O anel $S_{\mathfrak{m}_i}$ é noetheriano local de dimensão 1 com ideal maximal $\mathfrak{m}_i S_{\mathfrak{m}_i}$. Por outro lado, a igualdade $\mathfrak{m}_i^{\ell} = \mathfrak{m}_i^{\ell+1}$ induz $(\mathfrak{m}_i S_{\mathfrak{m}_i})^{\ell} = (\mathfrak{m}_i S_{\mathfrak{m}_i})^{\ell+1}$ o que, pelo Lema de Nakayama (ver [AM, Chapter 2, Proposition 2.6]), implica $\mathfrak{m}_i S_{\mathfrak{m}_i} = 0$. Uma contradição já que $S_{\mathfrak{m}_i}$ tem dimensão 1.

Lema 3.1.3. Seja A um anel noetheriano. Todo primo mínimo de A é associado. Em particular, se A é semi-local de dimensão 1, então Spec (A) é finito.

Demonstração: Como todo ideal primo de A contém o zero, temos $A_{\mathfrak{p}} \neq 0$ para todo $\mathfrak{p} \in Spec(A)$, portanto $Supp(A) := \{ \mathfrak{p} \in Spec(A) / A_{\mathfrak{p}} \neq 0 \} = Spec(A)$. Por outro lado, o conjunto dos primos associados minimais A é finito e coincide com o conjunto dos elementos minimais de Supp(A) (ver [Ma, Chapter 2, Theorem 6.5]), donde segue a primeira afirmação.

Se A tem dimensão 1 , então um primo de A que não é minimal tem que ser maximal, donde segue a segunda afirmação.

Lema 3.1.4. Seja A um anel noetheriano semi-local de dimensão 1. Dado um ideal maximal \mathfrak{m} , existe um ideal \mathfrak{m} -primário principal.

Demonstração: Pelo Lema 3.1.3, Spec(A) é finito. Assim, existe $a \in A$ tal que \mathfrak{m} é o único primo de A que contém (a) = ann(A/(a)) (ver [AM, Chapter 1, Proposition 1.11]). Além disso, todo primo associado de A/(a) deve conter (a). Como $Ass(A/(a)) \neq \emptyset$ (ver [Ma, Chapter 2, Theorem 6.1]) isso implica $Ass(A/(a)) = \{\mathfrak{m}\}$, donde (a) é \mathfrak{m} -primário (ver [Ma, Chapter 2, Theorem 6.6]).

Lema 3.1.5. Sejam $\mathfrak{P}_1, \ldots, \mathfrak{P}_\ell$ elementos distintos de $\operatorname{Proj}(B_IS)$. Então existe algum elemento homogêneo de grau positivo em B_IS que não pertence à união $\bigcup_{i=1}^{\ell} \mathfrak{P}_i$.

Demonstração: Provaremos isso por indução em ℓ . Como o ideal irrelevante $(B_IS)_+$ não pode estar contido em \mathfrak{P}_1 , deve existir algum elemento $f_{j_1}+\cdots+f_{j_d}$ em $(B_IS)_+$, $f_{j_r} \in I^{j_r}$ e $j_0 < \cdots < j_d$, que não pertence à \mathfrak{P}_1 . Então algum f_{j_r} não pertence à \mathfrak{P}_1 . Isso mostra que o resultado é válido para $\ell=1$.

Suponhamos agora que $\ell > 1$ e o resultado é válido para $\ell - 1$ ideais. Então, para cada $i = 1, \ldots, \ell$ existe algum elemento homogêneo f_i em $(B_I S)_+$, digamos de grau n_i , tal que

$$f_i \notin \bigcup_{j \neq i} \mathfrak{P}_j$$
.

Se, para algum i tivermos também $f_i \notin \mathfrak{P}_i$, então está terminado. Caso contrário, se $f_i \in \mathfrak{P}_i$ para todo i, então teremos, em particular,

$$f_1^{n_2+\cdots+n_\ell} \in \mathfrak{P}_1 - \bigcup_{j=2}^{\ell} \mathfrak{P}_j$$
 e $f_2^{n_1}\cdots f_\ell^{n_1} \in \bigcap_{j=2}^{\ell} \mathfrak{P}_j - \mathfrak{P}_1$

com $\deg \left(f_1^{n_2+\cdots+n_\ell}\right) = \deg \left(f_2^{n_1}\cdots f_\ell^{n_1}\right) = n_1(n_2+\cdots+n_\ell)$. É claro que nessas condições o elemento homogêneo (de grau positivo) $f_1^{n_2+\cdots+n_\ell} + f_2^{n_1}\cdots f_\ell^{n_1}$ não pertence à união $\bigcup_{i=1}^\ell \mathfrak{P}_i$.

Proposição 3.1.6. Proj $(S/\mathfrak{m}_i \oplus \mathfrak{m}_i/\mathfrak{m}_i^2 \oplus \mathfrak{m}_i^2/\mathfrak{m}_i^3 \oplus \cdots)$ é finito.

Demonstração: Seja $\mathfrak{q}=(a)$ um ideal \mathfrak{m}_i -primário (Lema 3.1.4) e seja $n\geq 1$ tal que $\mathfrak{m}_i^n\subseteq \mathfrak{q}$ (ver [AM, Chapter 7, Corollary 7.16]). Temos um homomorfismo canônico

$$\sigma: (S/\mathfrak{q})[t] \rightarrow \frac{S}{\mathfrak{q}} \oplus \frac{\mathfrak{q}}{\mathfrak{q}^2} \oplus \frac{\mathfrak{q}^2}{\mathfrak{q}^3} \oplus \cdots =: gr_{\mathfrak{q}}S$$
$$t \mapsto 0 \oplus \overline{a} \oplus 0 \oplus 0 \oplus \cdots$$

que é sobrejetivo (onde t é uma indeterminada). Segue da Proposição 1.2.8 que $Spec\left(gr_{\mathfrak{q}}S\right)$ é homeomorfo à um subconjunto fechado de $Spec\left((S/\mathfrak{q})[t]\right)$. Em particular $dim\left(gr_{\mathfrak{q}}S\right) \leq dim\left((S/\mathfrak{q})[t]\right)$. Mas S/\mathfrak{q} é um um anel noetherino (ver [AM, Chapter 6, Theorem 6.6]) de dimensão 0, já que $Spec\left(S/\mathfrak{q}\right) = \{\mathfrak{m}_i/\mathfrak{q}\}$ devido a escolha de a. Logo $dim\left((S/\mathfrak{q})[t]\right) = 1$ (ver [AM, Chapter 11, Exercise 7]).

Além disso, como $\mathfrak{q}\subseteq\mathfrak{m}_i$, fica bem definida a aplicação canônica de anéis graduados

$$gr_{\mathfrak{q}}S := \frac{S}{\mathfrak{q}} \oplus \frac{\mathfrak{q}}{\mathfrak{q}^2} \oplus \frac{\mathfrak{q}^2}{\mathfrak{q}^3} \oplus \cdots \rightarrow \frac{S}{\mathfrak{m}_i} \oplus \frac{\mathfrak{m}_i}{\mathfrak{m}_i^2} \oplus \frac{\mathfrak{m}_i^2}{\mathfrak{m}_i^3} \oplus \cdots =: gr_{\mathfrak{m}_i}S.$$

Esta aplicação tem como imagem o subanel

$$A := \frac{S}{\mathfrak{m}_i} \oplus \frac{\mathfrak{q} + \mathfrak{m}_i^2}{\mathfrak{m}_i^2} \oplus \frac{\mathfrak{q} + \mathfrak{m}_i^3}{\mathfrak{m}_i^3} \oplus \cdots \subseteq gr_{\mathfrak{m}_i}S,$$

assim pode ser fatorada como

$$gr_{\mathfrak{q}}S \stackrel{\phi}{\longrightarrow} A \stackrel{\psi}{\longrightarrow} gr_{\mathfrak{m}_i}S$$
,

com ϕ sobrejetiva (e ψ injetiva). Utilizando novamente a Proposição 1.2.8 concluímos que $\operatorname{Spec}(A)$ é homeomorfo à um subconjunto fechado de $\operatorname{Spec}\left(\operatorname{gr}_{\mathfrak{q}}S\right)$ e portanto $\operatorname{dim}(A) \leq \operatorname{dim}\left(\operatorname{gr}_{\mathfrak{q}}S\right) \leq \operatorname{dim}\left((S/\mathfrak{q})[t]\right) = 1$.

Mas S é noetheriano. Assim, para cada $j=1,\ldots,n$, existem $x_{j,1},\ldots,x_{j,r_j}$ em S tais que $\mathfrak{m}_i^j=\left(x_{j,1},\ldots,x_{j,r_j}\right)$. Como $\mathfrak{m}_i^n\subseteq\mathfrak{q}$, denotando por $\mathbf{x}_{j,\ell}$ o elemento homogêneo de $gr_{\mathfrak{m}_i}S$ cuja componete homogênea de grau j é $x_{j,\ell}$ e as demais são nulas, o anel $gr_{\mathfrak{m}_i}S$ é finitamente gerado, como A-módulo, pelo conjunto finito $F=\left\{|\mathbf{x}_{j,\ell}|/1\leq j\leq n\;,\;1\leq \ell\leq r_j\;\right\}$. Logo a extensão $A\subseteq gr_{\mathfrak{m}_i}S$ é inteira (ver [AM, Chapter 5, Proposition 5.1]), donde $\dim\left(gr_{\mathfrak{m}_i}S\right)=\dim\left(A\right)\leq 1$ (ver [AM, Chapter 5, Corollary 5.9 and Theorems 5.10 and 5.11]).

Por outro lado, como S/\mathfrak{m}_i é um corpo, o ideal irrelevante $(gr_{\mathfrak{m}_i}S)_+$ é o único ideal maximal de $gr_{\mathfrak{m}_i}S$, donde todo elemento de $\mathcal{P}roj(gr_{\mathfrak{m}_i}S)$ deve ser um primo mínimo de $gr_{\mathfrak{m}_i}S$ (já que não pode conter o ideal irrelevante). Sendo

 $\operatorname{Proj}\left(\operatorname{gr}_{\mathfrak{m}_{i}}S\right)\neq\varnothing\ \ (\operatorname{Lema}\ 3.1.2),\ \operatorname{segue}\ \operatorname{que}\ \operatorname{\dim}\left(\operatorname{gr}_{\mathfrak{m}_{i}}S\right)=1\ .$

Além disso, $gr_{\mathfrak{m}_i}S$ é noetheriano (ver [AM, Chapter 10, Proposition 10.7]). Pelo Lema 3.1.3 temos $Spec\left(gr_{\mathfrak{m}_i}S\right)$ finito, donde $Proj\left(gr_{\mathfrak{m}_i}S\right)$ é finito.

Em particular, a aplicação $\varphi^*: \operatorname{Proj}(B_IS) \to \operatorname{Spec}(S)$ é finita (ou seja, $(\varphi^*)^{-1}(\mathfrak{p})$ é finito para todo $\mathfrak{p} \in \operatorname{Spec}(S)$) e como $\operatorname{Spec}(S)$ é finito temos $\operatorname{Proj}(B_IS)$ também finito.

Corolário 3.1.7. Existe $f \in (B_IS)_+$ homogêneo tal que $(Proj(B_IS), \mathcal{O})$ é isomorfo ao espectro de $(B_IS)_{(f)}$. Em particular, $(Proj(B_IS), \mathcal{O})$ é um esquema afim.

Demonstração: Como $\operatorname{Proj}(B_IS)$ é finito, segue do Lema 3.1.5 que existe algum elemento homogêneo $f \in (B_IS)_+$ que não pertence a união $\bigcup_{\mathfrak{P} \in \operatorname{Proj}(B_IS)} \mathfrak{P}$. O resultado segue então do Corolário 1.2.21.

Além disso, segue também do Corolário 1.2.21 que se g é outro elemento homogêneo de $(B_IS)_+$ que não pertence nenhum elemento de $\mathcal{P}roj(B_IS)$, então os espectros de $(B_IS)_{(f)}$ e de $(B_IS)_{(g)}$ são isomorfos.

Lema 3.1.8. Seja Frac (S) o corpo de fração de S. Se $f \in (B_I S)_+$ é homogêneo e não-nulo, então a aplicação natural

$$\sigma_f: (B_I S)_{(f)} \rightarrow \mathcal{F}rac(S)$$

$$\frac{a}{f^n} \mapsto \frac{a}{f^n}$$

é um isomorfismo sobre sua imagem $BS_f := \sigma_f\left(\left(B_IS\right)_{(f)}\right)$, a qual contém S. Além disso, se $g \in \left(B_IS\right)_+$ é outro elemento homogêneo e não-nulo, tal que $\mathcal{D}\left(f\right) \supseteq \mathcal{D}\left(g\right)$, então $BS_f \subseteq BS_g$.

Demonstração: Por definição,

$$(B_IS)_{(f)} := \left\{ \left. \frac{a}{f^n} \right. \middle/ \left. a \right.$$
é homogêneo com $\left. \textit{deg} \left(a \right) = n \, \textit{deg} \left(f \right) \right. \right\}$.

Primeiramente mostremos que σ_f está bem definida. Para isso, suponhamos que $a/f^n = b/f^m$ em $(B_IS)_{(f)}$. Isso significa que existe um inteiro não negativo k tal que $f^k(af^m - bf^n) = 0$ em B_IS . Como todos estes elementos são homogêneos, podemos considerá-los como elementos de S e com tal consideração é claro que temos também $f^k(af^m - bf^n) = 0$ em S.

Sendo $f \neq 0$ (tanto como elemento de B_IS como elemento de S) e sendo S um domínio, a igualdade $f^k(af^m-bf^n)=0$ implica $af^m-bf^n=0$ em S, donde $a/f^n=b/f^m$ em $\operatorname{Frac}(S)$. Logo σ_f está bem definida.

A verificação de que σ_f é um homomorfismo é fácil. Quanto a injetividade de σ_f , se a/f^n é um elemento de $(B_IS)_{(f)}$ tal que $a/f^n=0$ em $\mathcal{F}rac(S)$ então devemos ter a=0 como elemento de S, o que implica $a/f^n=0$ em $(B_IS)_{(f)}$.

Além disso, é claro que S é a imagem do subconjunto de $(B_IS)_{(f)}$ dos elementos da forma a/1 com a elemento homogêneo de grau 0. Isso demonstra a primeira parte do lema.

Suponhamos agora que g é outro elemento homogêneo e não-nulo de $(B_IS)_+$, tal que $\mathcal{D}(f) \supseteq \mathcal{D}(g)$. Um elemento $a/f^n \in (B_IS)_{(f)}$ representa uma seção s de $\mathscr{O}(\mathcal{D}(f))$ (ver Proposições 1.2.11 e 1.2.20). Como $\mathcal{D}(f) \supseteq \mathcal{D}(g)$ temos um homomorfismo $\mathscr{O}(\mathcal{D}(f)) \to \mathscr{O}(\mathcal{D}(g))$ que leva s na restrição $s|_{\mathcal{D}(g)}$, a qual é representada por algum elemento b/g^m de $(B_IS)_{(g)}$ (Proposições 1.2.11 e 1.2.20). Então $a/f^n = b/g^m$ em $(B_IS)_{(\mathfrak{P})}$, para todo $\mathfrak{P} \in \mathcal{D}(g)$. (Notemos que sendo B_IS um domínio e sendo $g \neq 0$ temos $\mathcal{D}(g) \neq \varnothing$). Segue que $\sigma_f(a/f^n) = \sigma_g(a/f^n) = \sigma_g(b/g^m)$, ou seja, $a/f^n = b/g^m \in BS_g \subseteq \mathcal{F}rac(S)$.

Denotaremos $BS := BS_f$, onde f é algum elemento homogêneo de $(B_IS)_+$ que não pertence a união $\bigcup_{\mathfrak{P}\in \mathscr{P}roj(B_IS)}\mathfrak{P}$. Pelo Teorema 3.1.8, o anel BS está

bem definido. Além disso, segue do Corolário 1.2.21 que

$$\left(\operatorname{Proj}\left(B_{I}S\right), \mathscr{O}_{\operatorname{Proj}\left(B_{I}S\right)}\right) \cong \left(\operatorname{Spec}\left(BS\right), \mathscr{O}_{\operatorname{Spec}\left(BS\right)}\right).$$

Proposição 3.1.9. O anel BS é finito sobre S. Em particular $\dim(BS) = \dim(S)$.

Demonstração: Seja f como acima, e seja $m = \deg(f)$. Como S é noetheriano, existem $a_1, \ldots, a_n \in I^m$ não-nulos tais que $I^m = (a_1, \ldots, a_n)$. Então $BS = BS_f = S[a_1/f, \ldots, a_n/f]$ e BS é uma S-álgebra de tipo finito. Assim, basta mostrar que a extensão $S \subseteq BS$ é inteira, ou seja, que todo anel de valorização de $\mathcal{F}rac(S)$ que contém S contém também BS (ver [AM, Chapter 5, Corollary 5.22]).

Pois bem, seja R um anel de valorização de $\mathcal{F}rac(S)$ que contém S, e seja $v: \mathcal{F}rac(S)^* \to G$ uma valorização associada a R (G um grupo ordenado). Tomemos $a \in \{a_1, \ldots, a_n\}$ tal que $v(a) \leq v(a_i)$ para todo i. Então $v(a_i/a) = v(a_i) - v(a) \geq 0$ para todo i, portanto $a_i/a \in R$ para todo i, donde $BS_a = S[a_1/a, \ldots, a_n/a] \subseteq R$.

Como $\mathcal{D}(f) = \mathcal{P}roj(B_IS)$ é claro que $\mathcal{D}(f) \supseteq \mathcal{D}(a)$. Segue do Lema 3.1.8 que $BS = BS_f \subseteq BS_a \subseteq R$. Logo a extensão $S \subseteq BS$ é inteira e $\dim(BS) = \dim(S)$ (ver [AM, Chapter 5, Corollary 5.9 and Theorems 5.10 and 5.11]).

Proposição 3.1.10. BS = S se e somente se S regular.

Demonstração: Suponhamos que S é regular, ou seja, que para todo $i=1,\ldots,k$, $\mathfrak{m}_i/\mathfrak{m}_i^2$ é um S/\mathfrak{m}_i -espaço vetorial de dimensão 1. Isso implica que todo \mathfrak{m}_i é principal (ver [AM, Chapter 2, Proposition 2.8]), digamos $\mathfrak{m}_i=(x_i)$. Tomando então $f:=x_1\cdots x_k$, temos $I=\mathfrak{m}_1\cap\cdots\cap\mathfrak{m}_k=\mathfrak{m}_1\cdots\mathfrak{m}_k=(f)$. Segue que o elemento $f\in B_IS$, considerado como elemento homogêneo de grau 1, gera o

ideal irrelevante $(B_IS)_+$. Portanto $f \notin \bigcup_{\mathfrak{P} \in Proj(B_IS)} \mathfrak{P}$, o que nos permite supor que $BS = BS_f$.

Como já sabemos que $S \subseteq BS_f$, só nos falta mostrar a inclusão contrária. Ora, um elemento de $BS_f := \sigma_f\left(\left(B_IS\right)_{(f)}\right)$ escreve-se da forma a/f^n para algum $a \in I^n$ (ver Lema 3.1.8). Sendo I = (f), temos $I^n = (f^n)$, portanto existe $c \in S$ tal que $a = c f^n$. Isso implica $a/f^n = c$ em $\mathcal{F}rac(S)$. Em particular $a/f^n \in S$.

Reciprocamente, suponhamos que BS = S. Precisamos mostrar que cada $\mathfrak{m}_i/\mathfrak{m}_i^2 \cong \mathfrak{m}_i S_{\mathfrak{m}_i}/(\mathfrak{m}_i S_{\mathfrak{m}_i})^2$ é um espaço vetorial de dimensão 1 sobre o corpo $S/\mathfrak{m}_i \cong (S/\mathfrak{m}_i)_{\mathfrak{m}_i} \cong S_{\mathfrak{m}_i}/\mathfrak{m}_i S_{\mathfrak{m}_i}$ (ver [AM, Chapter 3, Corillary 3.4 and Proposition 3.11]). Como $S_{\mathfrak{m}_i}$ é um domínio noetheriano local de dimensão 1, é suficiente mostrar que cada $\mathfrak{m}_i S_{\mathfrak{m}_i}$ é um ideal principal de $S_{\mathfrak{m}_i}$ (ver [AM, Chapter 9, Proposition 9.2]). Demonstraremos apenas para i=1, pois os demais casos são análogos.

A igualdade BS = S implica que, para cada i = 1, ..., k, existe um único $\mathfrak{M}_i \in \operatorname{Proj}(B_IS)$ que se contrai em \mathfrak{m}_i via inclusão canônica $S \hookrightarrow B_IS$, e que os $\operatorname{stalks}(B_IS)_{(\mathfrak{M}_i)}$ e $S_{\mathfrak{m}_i}$ são iguais (considerados como subanéis de $\operatorname{Frac}(S)$).

Para cada $i=2,\ldots,k$, existe $y_i\in\mathfrak{m}_i\backslash\bigcup_{j\neq i}\mathfrak{m}_j$ (ver [AM, Chapter 1, Proposition 1.11]) e, como S é noetheriano, existem também $x_1,\ldots,x_n\in S$ tais que $\mathfrak{m}_1=(x_1,\ldots,x_n)$. Considerando $y_2\cdots y_k\in\bigcap_{i=2}^k\mathfrak{m}_i$ como elemento homogêneo de grau 0 e cada $x_j\,y_2\cdots y_k\in I=\mathfrak{m}_1\cdots\mathfrak{m}_k$ como elemento homogêneo de grau 1, temos que cada produto $x_j\,y_2^2\cdots y_k^2$ pertence a $\bigcap_{i=2}^k\mathfrak{M}_i$.

Afirmamos que algum $x_j\,y_2^2\cdots y_k^2$ não pertence a \mathfrak{M}_1 . De fato, como \mathfrak{M}_1 não pode conter o ideal irrelevante, deve existir algum $z\in I=\mathfrak{m}_1\cdots\mathfrak{m}_k$ que não pertence a \mathfrak{M}_1 (z considerado como elemento homogêneo de grau 1). Sendo $\mathfrak{m}_1=(x_1,\ldots,x_n)$, z é um somatório finito de termos da forma $c\,x_\ell\,y$, $y\in\mathfrak{m}_2\cdots\mathfrak{m}_k$, $c\in S$ e $\ell\in\{1,\ldots,n\}$. Isso implica que algum termo $c\,x_j\,y$ deste somatório não pertence a \mathfrak{M}_1 . Além disso, $y_i\notin\mathfrak{m}_1$, para todo $i=2,\ldots,k$. Assim, $y_2^2\cdots y_k^2$, considerado como elemento homogêneo de grau 0, não pertence

a \mathfrak{M}_1 , e portanto $h:=c\,x_j\,y\,y_2^2\cdots y_k^2\notin\mathfrak{M}_1$. Mas h é também o produto de $c\,y$, considerado como elemento homogêneo de grau 0, por $x_j\,y_2^2\cdots y_k^2$, considerado como elemento homogêneo de grau 1. Segue que $x_j\,y_2^2\cdots y_k^2\notin\mathfrak{M}_1$.

Trocando os índices se necessário, podemos supor que $f := x_1 y_2^2 \cdots y_k^2 \in \bigcap_{i=2}^k \mathfrak{M}_i \backslash \mathfrak{M}_1$. Assim $\mathcal{D}(f) = \{(0), \mathfrak{M}_1\}$, o que implica $BS_f := \sigma_f \left(\left(B_I S \right)_{(f)} \right) \subseteq \left(B_I S \right)_{(\mathfrak{M}_1)} = S_{\mathfrak{m}_1}$ (ver Lema 3.1.8).

Dado então $x/s \in \mathfrak{m}_1 S_{\mathfrak{m}_1}$, temos $x\,y_2^2 \cdots y_k^2/f \in BS_f \subseteq S_{\mathfrak{m}_1}$ ($x\,y_2^2 \cdots y_k^2$) considerado como elemento homogêneo de grau 1). Segue que existem $b,t \in S$, $t \notin \mathfrak{m}_1$, tais que $x\,y_2^2 \cdots y_k^2/f = b/t$ em $\mathcal{F}rac(S)$, e portanto $x\,y_2^2 \cdots y_k^2\,t = bf = b\,x_1\,y_2^2 \cdots y_k^2$ em S. Como $y_2^2 \cdots y_k^2 \notin \mathfrak{m}_1$, este elemento é invertível em $S_{\mathfrak{m}_1}$, donde obtemos $x/s = b\,x_1/s\,t = (b/s\,t)(x_1/1)$. Logo $\mathfrak{m}_1 S_{\mathfrak{m}_1} = (x_1/1)$ é principal.

3.2 Algoritmo de resolução

Seja S um domínio noetheriano semi-local de dimensão 1 com ideais maximais $\mathfrak{m}_1, \ldots, \mathfrak{m}_k$, e seja B_IS o blow-up de $I = \mathfrak{m}_1 \cap \ldots \cap \mathfrak{m}_k$ em S. Como vimos em 3.1, existe uma extensão natural $S \subseteq BS \subseteq \mathcal{F}rac(S)$, tal que $(\mathcal{P}roj(B_IS), \mathscr{O}) \cong (\mathcal{S}pec(BS), \mathscr{O})$. Além disso, o anel BS é também um domínio noetheriano semi-local de dimensão 1.

Isso nos permite definir uma sequência de domínios noetheriano semi-locais de dimensão 1: $S_0 := S$ e, se S_i já está definido, $S_{i+1} := BS_i$.

Teorema 3.2.1. Seja S um domínio noetheriano semi-local de dimensão 1. As seguintes afirmações são equivalentes.

i) A seqüência $S_0 = S$, S_1 , S_2 ,... estabiliza a partir de um certo ℓ e os domínios $S_{\ell} = S_{\ell+1} = \dots$ são regulares.

ii) A normalização \overline{S} de S é finita sobre S .

Demonstração: Suponhamos que a seqüência $S_0 = S$, S_1 , S_2 ,... estabiliza e seja ℓ tal que os domínios $S_{\ell} = S_{\ell+1} = \ldots$ são regulares. Isso quer dizer que para todo ideal maximal \mathfrak{m} de S_{ℓ} o localizado $(S_{\ell})_{\mathfrak{m}}$ é regular, ou seja,

$$\dim_{rac{(S_\ell)_\mathfrak{m}}{\mathfrak{m}(S_\ell)_\mathfrak{m}}} \left(rac{\mathfrak{m}(S_\ell)_\mathfrak{m}}{(\mathfrak{m}(S_\ell)_\mathfrak{m})^2} \right) = 1.$$

Mas cada $(S_{\ell})_{\mathfrak{m}}$ é um domínio noetheriano local de dimensão 1, portanto cada $(S_{\ell})_{\mathfrak{m}}$ é integralmente fechado (ver [AM, Chapter 9, Proposition 9.2]), o que implica S_{ℓ} integralmente fechado (ver [AM, Chapter 5, Proposition 5.13]). Como S_{ℓ} é finito sobre S (ver Proposição 3.1.9 e [AM, Chapter 5, Corollary 5.4]), concluímos que

$$S_{\ell} \subseteq \overline{S} \subseteq \overline{S_{\ell}} = S_{\ell}$$
.

Logo $\overline{S} = S_{\ell}$, donde \overline{S} é finito sobre S .

Reciprocamente, suponhamos que \overline{S} seja finito sobre S. Como cada S_i está contido em \overline{S} , o anel $\bigcup_{i=0}^{\infty} S_i$ é um S-submódulo de \overline{S} . Sendo S noetheriano e \overline{S} um S-módulo finitamente gerado, segue que $\bigcup_{i=0}^{\infty} S_i$ é um S-módulo finitamente gerado (ver [AM, Chapter 6, Propositions 6.2 and 6.5]).

Sejam $x_1, \ldots, x_r \in \bigcup_{i=0}^{\infty} S_i$ tais que

$$\bigcup_{i=0}^{\infty} S_i = Sx_1 + \dots + Sx_r$$

e sejam ℓ_1,\ldots,ℓ_r tais que $x_1\in S_{\ell_1}$, ..., $x_r\in S_{\ell_r}$. Tomando $\ell=\max\{\ell_1,\ldots,\ell_r\}$ temos $x_1,\ldots,x_r\in S_\ell$, donde

$$\bigcup_{i=0}^{\infty} S_i = Sx_1 + \dots + Sx_r \subseteq S_{\ell} \subseteq \bigcup_{i=0}^{\infty} S_i.$$

Logo a seqüência $S_0=S$, S_1 , S_2 ,... estabiliza a partir de ℓ e, pela Proposição 3.1.10, os domínios $S_\ell=S_{\ell+1}=\ldots$ são regulares.

Exemplo 3.2.2. Seja $F \in K[[x,y]]$ como no Teorema 2.2.3 e seja $y = \sum_{i=1}^{\infty} a_i x^{i/m}$ a expansão de Puiseux de y em relação a F. O anel S = K[[x,y]]/(F) é um domínio de dimensão 1 e $\overline{S} = K[[t]]$ via $t \mapsto \left(t^m, \sum_{i=1}^{\infty} a_i t^i\right)$.

Exemplo 3.2.3. Seja A um domínio noetheriano de dimensão 1 e sejam $\mathfrak{m}_1, \ldots, \mathfrak{m}_\ell$ ideais maximais de A. Tomando o subconjunto multiplicativo $\mathcal{S} = A \setminus \bigcup_{i=1}^\ell \mathfrak{m}_i$ temos que $S := \mathcal{S}^{-1}A$ é um domínio noetheriano semi-local de dimensão 1 com ideais maximais $\mathcal{S}^{-1}\mathfrak{m}_1, \ldots, \mathcal{S}^{-1}\mathfrak{m}_\ell$. Se \overline{S} é finito sobre S, podemos utilizar o alrgoritmo descrito acima para obter \overline{S} .

Exemplo 3.2.4. Seja $F(x,y) = y^2 - x^2(x+1) \in K[[x,y]]$, K um corpo algebricamente fechado de característica zero. Como série de potência, F não é irredutível, pois x+1 possui uma raiz quadrada em K[[x,y]],

$$x+1 = \left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + \cdots\right)^2$$

o que nos fornece a fatoração

$$y^2 - x^2(x+1) = (y - x\sqrt{x+1})(y + x\sqrt{x+1})$$
.

Por isso Puiseux não pode ser aplicado a F, mas sim a cada um de seus fatores, que agora são irredutíveis. (Note-se que mesmo sendo $y=\pm x\sqrt{x+1}$ soluções da equação F(x,y)=0 em K[[x,y]], o Corolário 2.2.4 precisa da irredutibilidade de F para garantir que K[[t]] seja a normalização de K[[x,y]]/(F)).

Entretanto, F é irredutível como elemento de K[x,y], donde A:=K[x,y]/(F) é um domínio noetheriano de dimensão 1. Além disso, como A é uma K-álgebra de tipo finito, é possível demonstrar que \overline{A} é finito sobre A (ver, por exemplo, [Ko, Chapter 1, Theorem 1.33]). Segue que o anel $S=\left(K[x,y]/(F)\right)_{(x,y)}$ é um domínio noetheriano local de dimensão 1 cuja normalização $\overline{S}=\overline{A_{(x,y)}}=\overline{A_{(x,y)}}$ é

finita (ver [AM, Chapter 5, Proposition 5.12]). Então podemos aplicar o algoritmo acima para obtermos uma normalização desse anel.

Referências Bibliográficas

- [AM] M. F. Atiyah e I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.
- [GL] A. Garcia e Y. Lequain, Elementos de Algebra, 4.ed. Rio de Janeiro: IMPA, 2006.
- [Ha] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer, New York, 1977.
- [Ko] J. Kollár, Lectures on Resolution of Singularities, Princeton University Press, Princeton and Oxford, 2007.
- [La] S. Lang, Algebra. Springer-Verlag, New York, NY, 2002.
- [Ma] H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1986.
- [Re] M. Reid, *Undergraduate Algebraic Geometry*, Cambridge University Press, Cambridge, 1988.
- [St] I. Stewart, Galois Theory 3rd ed. Chapman & Hall/CRC mathematics, Boca Raton, Flórida, 1945.