

COMPARAÇÃO DO DESEMPENHO ANALÍTICO DAS TÉCNICAS EDXRF E ICPOAS NA DETERMINAÇÃO DE TRAÇOS EM AMOSTRAS DE ÁGUAS NATURAIS DESTINADAS AO ABASTECIMENTO PÚBLICO

Leonardo Roggen¹; Rodrigo de Castro²; Arci Dirceu Wastwoski³

1,2,3 Universidade Federal de Santa Maria - e-mail: leonardo.roggen@hotmail.com; rodrigocastro.eas.ufsm@gmail.com; arciwastwoski@ufsm.br

Introdução

Águas Naturais MATRIZ AMBIENTAL **Abastecimento Publico**

Capacidade de dissolver compostos

Quantificação de espécies químicas (CONAMA 357/2005) -Características dos solos na bacia hidrográfica -Atividades humanas desenvolvidas na região

A gestão dos riscos ecológicos oriundos da contaminação por elementos-traço Inorgânicos (metais, ametais, semi-metais) em ambiente aquáticos permanece um desafio importante para as ciências ambientais, pois esses continuam a ser empregados em grande escala nos produtos utilizados pelas sociedades modernas (LUOMA et al., 2009).

- Quantificação de espécies metálicas em matrizes ambientais têm progredido ao longo das últimas décadas e diferentes técnicas instrumentais têm sido empregadas na quali-quantificação de compostos (SILVA et al., 2016).
- > Pesquisas que avaliem o grau de proximidade dos resultados obtidos por técnicas de diferentes naturezas, quando confrontados a uma mesma matriz ambiental são de grande importância na área analítica.

Objetivos da Pesquisa

Avaliar o desempenho da técnica Espectrometria de Fluorescência de Raios-X por Energia Dispersiva (EDXRF) na quantificação de espécies químicas inorgânicas em amostras de águas naturais tendo como referencia a técnica Espectrometria de Emissão Atômica por Plasma indutivamente Acoplado (ICPOAS) e o uso de figuras de mérito analítico.

Área de Estudo

O reservatório do rio Lajeado Pardo (53°26'08" W; 27°22'28" S) tem por função de acumulo de águas naturais que serão destinadas ao abastecimento público das cidades de Frederico Westphalen e Caiçara, municípios localizados na região norte do estado do Rio Grande do Sul.

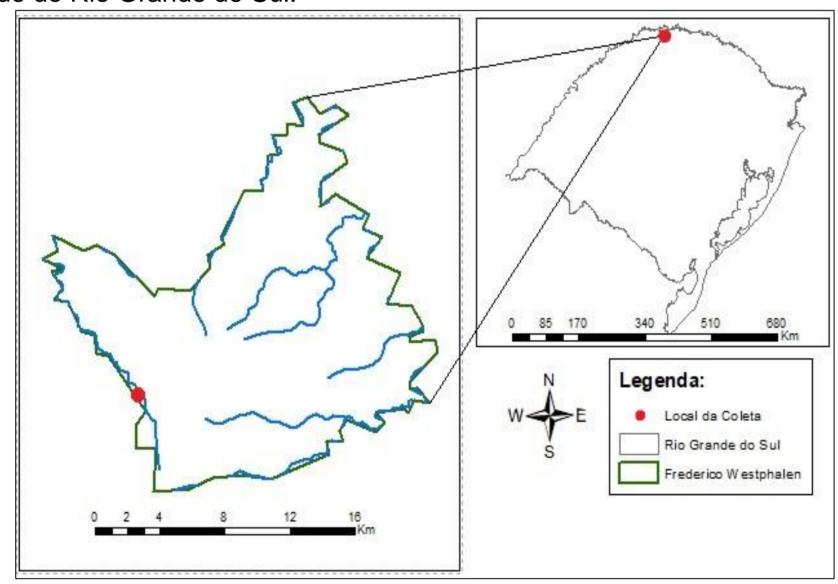


Figura 1. Localização do Reservatório do Lajeado Pardo

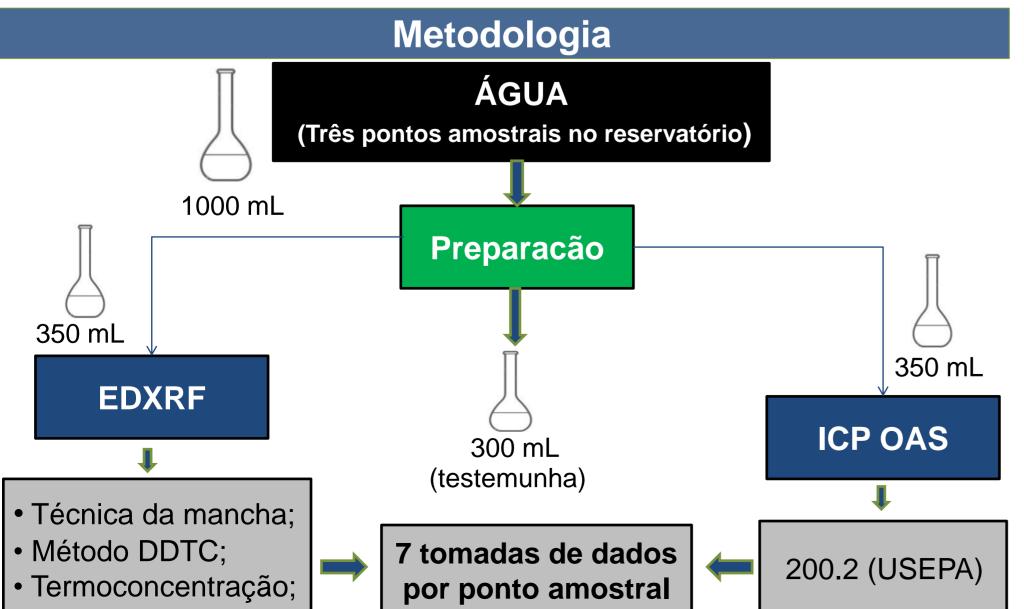


Figura 2. Esquema da metodologia analítica e de preparação amostral

Resultados Parciais e Discussão

Tabela 1. Concentrações médias obtidas pelas técnicas segundo cada protocolo analítico

ICPOAS			EDXRF								
3051a - USEPA			Analise Direta			DDTC			Termoconcentração		
	$\bar{X} \pm IC$	C.V.(%)		$\bar{X} \pm IC$	C.V.(%)		$\bar{X} \pm IC$	C.V.(%)		$\bar{X} \pm IC$	C.V.(%)
Ponto 1			Ponto 1			Ponto 1			Ponto 1		
Ca	56,57 ± 3,8	15,7	Ca	0,38 ± 0,02	10,7	Ca	1,68 ± 0,1	9,7	Ca	22,11 ± 1,4	1,1
Fe	2,46 ± 0,7	6,4	Fe	ND	-	Fe	0,60 ± 0,1	0,7	Fe	3,73 ± 0,1	1,3
K	6,05 ± 0,32	7,2	K	5,98 ± 1,5	21,2	K	1,44 ± 0,9	22,1	K	5,8 ± 0,48	1,5
Mg	10,84 ± 0,84	17,6	Mg	ND	-	Mg	ND	-	Mg	10,35 ± 0,9	4,0
Na	6,88 ± 0,4	10,5	Na	ND	-	Na	ND	-	Na	6,01 ± 1,1	5,8
Sr	0,11 ± 0,01	11,9	Sr	0,03 ± 0,02	21,6	Sr	ND	-	Sr	1,91 ± 1,2	11,5
Ponto 2			Ponto 2			Ponto 2			Ponto 2		
Ca	67,69 ± 4,7	17,9	Ca	0,53 ± 0,01	6,8	Ca	3,72 ± 0,2	4,6	Ca	62,01 ± 13,0	19,4
Fe	2,44 ± 0,9	7,3	Fe	0,12 ± 0,01	9,6	Fe	2,31 ± 0,4	0,4	Fe	1,95 ± 0,9	7,2
K	4,3 ± 0,3	7,2	K	ND	-	K	5,7 ± 0,9	9,7	K	3,83 ± 1,0	35,6
Mg	9,64 ± 0,4	10,1	Mg	ND	-	Mg	ND	-	Mg	9,85 ± 2,9	19,5
Na	3,51 ± 0,4	15,3	Na	ND	-	Na	ND	-	Na	ND	-
Sr	0,11 ± 0,02	4,7	Sr	ND	-	Sr	0,85 ± 0,2	20,6	Sr	0,27 ± 0,1	40,1
Ponto 3			Ponto 3			Ponto 3			Ponto 3		
Ca	16,52 ± 2,0	19,6	Ca	3,63 ± 0,01	4,7	Ca	1,12 ± 0,1	3,8	Ca	16,74 ± 1,2	1,1
Fe	3,47 ± 0,3	16,4	Fe	0,60 ± 0,03	7,3	Fe	0,82 ± 0,1	0,6	Fe	4,09 ± 1,1	4,8
K	26,51 ± 4,0	17,9	K	3,56 ± 0,9	20,8	K	24,43 ± 0,9	1,9	K	64,48 ± 0,4	10,9
Mg	7,87 ± 0,70	21,9	Mg	ND	-	Mg	ND	-	Mg	6,50 ± 1,6	5,4
Na	6,01 ± 0,9	31,7	Na	ND	-	Na	ND	-	Na	ND	-
Sr	0,06 ± 0,01	23,8	Sr	0,17 ± 0,1	29,0	Sr	0,61 ± 0,3	13,1	Sr	1,48 ± 0,2	19,4

IC = Intervalo de confiança das medias ND = Não detectado

A Tabela 1 apresenta as concentrações médias das espécies químicas obtidas para as amostras de água pelas técnicas analíticas e para os distintos protocolos de preparação amostral. Nela pode se observar um melhor acordo entre as técnicas ICPOAS (3051a) e EDXRF (termoconcentração) em relação aos demais protocolos de preparação amostral. Isto sugere a termoconcentração das amostras para analise por EDXRF poderá tornar-se uma metodologia promissora para o monitoramento de espécies químicas inorgânicas em águas naturais de reservatórios.

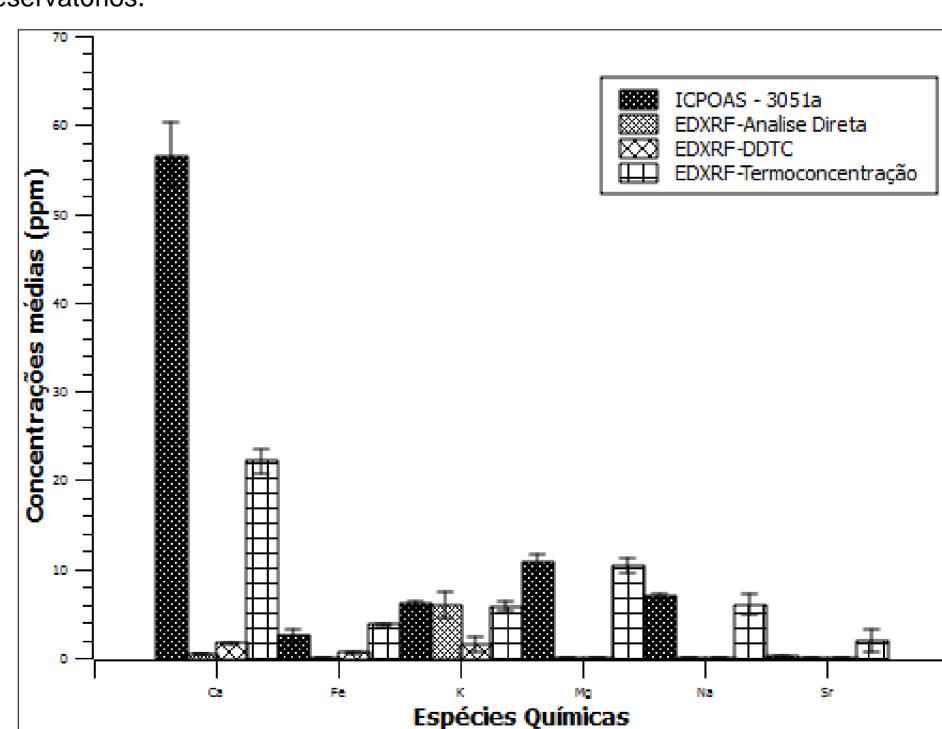


Figura 3. Comparação do desempenho ICPOAS (3051a) comparado com a EDXRF (termoconcentração) - Ponto amostral 1

A Figura 3 apresenta a comparação de desempenho analítico entre as técnicas ICPOAS e EDXRF, frente a matriz ambiental das águas do reservatório Lajeado Pardo coletadas no Ponto 1, por meio das concentrações médias determinadas para as espécies químicas Ca, Fe, K, Mg, Na e Sr. Nela pode-se observar um melhor acordo para as espécies químicas Fe, K, Mg e Na.

Referências

LUOMA, S.; CAIN, D.J.; RAINBOW, P.S. Calibrating biomonitors to ecological disturbance: a new technique for explating metal effects in natural waters. Integrated Environmental and management, v. 6, n.02, 199, 2009.

SILVA, P.R.B; MAKARA, C.N.; MUNARO, A.P.; SCHNITZLER, D.C.; WASTOWSKI, A.D.; POLETO, C. Comparison of the analytical performance of EDXRF and FAAS techniques in the determination of metal species concentrations using protocol 3050B

(USEPA). International Journal River Basin Management, 14(4), 401-406, 2016.