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Chapter 1 Introductioh

Chapter 1

Introduction

A general view of the automated synthesis of digital circuits is presented. Some

aspects of the logic synthesis are introduced. The proposed work is outlined.

In a few decades computers and informatics have deeply changed our daily life. The basis of
this revolution is the simultaneous progress attained in several domains of science that are
globally referred as microelectronics. Semiconductor technology, for instance, has been
continuously reducing the minimum device's feature size. As a result, device density has been
increasing at an O(n?) rate, which allows for a corresponding augmentation of circuit
complexity. One of the challenges of digital design is to deal with such complexity and to
explore the ever-increasing functionality provided by VLSI systems. New design
methodologies have evolved, with intensive use of automatic synthesis tools. This work

addresses one of the design automation fields, the logic synthesis.
1.1 Design Process

The design complexity of VLSI circuits is dictated by several interrelated factors. Minimum
device's feature size, maximum chip area, maximum dissipated power and the maximum
number of 1/0O pads impose physical limits to the circuit's capability. The design complexity
increases as long as designers try to explore these technological limits in order to integrate

large digital systems into a single chip.

Minimum feature size is by far the most important technological parameter. The number of
devices per chip is as an O(n?) function of the feature size. Moreover, device's switching time
varies as an O(n) function of its dimension. Thus, decreasing the minimum feature size is

responsible for an O(n3) increasing in the computing capability of integrated systems. Its
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reduction from 50 microns in 1960 to 0.8 w in 1990 gives an idea of the evolution of the

device density and computing capability in last decades.

The amount of information involved in a VLSI project have grown at similar rate. Roughly
speaking, a VLSI design consists in translating an abstract system specification into an intricate
layout description to be sent to a foundry. When circuits were built with a small set of logic
gates the designer's attention was concentrated in the layout details. As circuits became larger
and larger, the designer started to build abstractions that hidden the mass of layout details and
simplify the problem. The process continued to evolve and a set of abstraction levels was then
developed that establish a smoother path from the initial description up to the masks. Each
level presents a particular view of the design in terms of primitive components proper to that

abstraction level.

Although the widespread use of abstraction levels, there is no consensus about a design and
synthesis representation model. Little work was done in this area. Two similar approaches are
presented in [Wal85] and [Gaj88] and have gained some acceptation. They proposed to divide
the design representation into three domains: behavioral, physical and structural. The domains
are further subdivided according to a set of general abstraction levels. Following the naming

convention of [Gaj88], they are:

* system level

* algorithm level

* microarchitectural level
* logic level

e circuit level

The domains and their subdivisions can be graphically visualized in a tri-partite diagram called
Y-chart (see figure 1.1). Each domain correspond to an axle in the diagram. Each abstraction
level is drawn as a circle that intersects every axle. The intersection points define the respective
domain's abstraction levels. One design process can be described in this diagram by indicating
its transitions from the circuit specification up to the final layout over the diagram. A single

transition is denoted by an arrow that connects two abstraction levels!.

It is interesting to note that the Y-chart could be further improved by adding a fourth axle to represent the time
domain. In this case, the following correspondence could be depicted:

* system level - inter-chip synchronization

* algorithm level - scheduling of the operations
e microarchitectural level - process synchronization

* logic level - gate delays

* circuit level - detailed devices timing
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Figure 1.1. Y chart.

The Y-chart can be interesting to present a detailed description of a design or synthesis flow. A
more resumed way to represent it is with data flow graphs. Indeed, this is the most used
description method found in the literature. The synthesis process is presented linearly, as a set
of transitions between general abstraction levels. The levels can vary from one author to
another, but in general they are close to the division presented above. In this work we will use
mainly the data flow graphs when discussing the synthesis process. A typical synthesis flow

is shown in figure 1.2.

The input description is an algorithm written in a high level hardware description language.
We have currently several ones, as Verilog, Silage, HardwareC and VHDL. The later deserves
special attention as it was conceived to be the standard in this area. The behavioral synthesis
consists in extracting from this initial description control and data flow graphs that are
manipulated by scheduling and allocation algorithms to optimize the circuit architecture in
terms of timing and size at a high abstraction level. The architectural synthesis takes these
intermediate data and transform them into a more detailed register transfer level circuit
representation. Operators are assigned to specific library modules and variables are associated
to memory elements. Next step is the logic synthesis which provides detailed netlists for the
combinational and sequential blocks. The final step is the layout generation, that yields the

mask description to be sent to the foundry.
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The automation of these tasks was subject of intense research in last decade. Systems that fully
automate this process were first called Silicon Compilers [Cor88][Kow85][Jac89a][Rab88]
[Gin89]. This is a very hard problem, and feasible solutions can be found only under a set of
severe restrictions (typically the definition of a target technology for a specific class of

circuits).

Algorithms

(Behavioral Synthesis )

Control and Dataflow graphs

@rchitectural Synthesis)

¢ RT description

( Logic Synthesis )

Gate level description

( Layout Generation )

Masks
Figure 1.2. Synthesis flow.

The logic synthesis area - the subject of this work - can still be subdivided into two main
domains: sequential and combinational logic synthesis. Sequential synthesis deals with the
design of finite state machines (FSM), which combines memory elements with pure
combinational logic blocks. Combinational blocks are built with memoryless devices that are
interconnected in a cycle free way. In the literature, the expression logic synthesis is often
associated to pure combinational blocks. In the other case, sequential logic or finite state
machine terms are explicitly mentioned. We adopt this convention through this work, which

concerns exclusively pure combinational logic.
1.2 Logic Synthesis

The logic synthesis is the task of generating an acceptable circuit design starting from a logic
description of its functionality. An acceptable circuit must meet some design constraints, like
surface on silicon, delay and testability. These requirements, derived from the architectural
level or established by the designer, are incorporated to the synthesis process by the use of

cost functions.
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The logic circuit is modeled by Boolean functions. They provide a behavioral description that
is the starting point for the circuit synthesis. The synthesis process adds structural information
to the initial behavioral specification, producing a net-list in the target technology. This process
can be represented in the Y-chart as depict figure 1.3. It is represented by a simple transition
from the behavioral axis to the structural one. If the net-list is composed by logic gates the
transition is done at the same abstraction level, as shown by arrow 1. If the net-list is
composed by transistors, then the synthesis is represented by arrow 2 - a transition between

two abstraction levels.

Structural .
Domain Beha\{loral
Domain
Processor, memory, switch Systems
Hardware Modules Algotithms
ALUs, MUXs, register, Register Transfer
Gates, flip-flops,cell ’ g Logit
Tranistors, corftacts,/wires Y& X Transfer functions
Layout
Modules
Floor Plans
Clusters
Physical Partitions

Physical Domain
Figure 1.3.Y chart representation of the logic synthesis process.

In general, logic synthesis can be divided in two areas: two-level and multi-level synthesis.
The term two-level indicates that any input signal in the circuit traverses at most two logic
gates up to arrive to the output (supposing that the complement of the signals are directly
available). The circuit is described by two-level expressions which are implemented in a
regular and compact structure called Programmable Logic Array (PLA). The development of
efficient methods for the minimization of two-level expressions and the existence of a
economical circuit to implement them made the two-level synthesis very popular in the
research community and also in industrial applications. It is still widely used for the design of

logic circuits and it is offered almost by any commercial logic synthesis system.

Multi-level or multi-stage logic is a circuit were the signals can cross an arbitrary number of

gates before reaching the outputs. The circuit, in this case, is described by a set of
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interconnected subfunctions. Multi-level synthesis techniques have been studied for a long
time. Its first application was probably for the design of switching circuits, but it was lagged
behind two-level synthesis with the advent of PLAs. However, as integrated systems grow in
complexity and new technologies were developed, multi-level design became an interesting
alternative to implement large circuits that are difficult to implement with a single PLA. In the
last decade we have seen a strong development of multi-level optimization techniques and
multi-level circuits start to compete in terms of area and delay with PLA implementations and

even with hand-crafted designs.

One of the reasons of the progress attained by multi-level design is the development of new
design styles associated with new powerful layout synthesis tools. In fact, the logic synthesis
methods are strongly tied to the design style the circuit will be implemented. This relationship

can be exemplified by historical facts:

* the switching theory known a strong development [Sha49] [Lee59] when the relays and
vacuum tubes were used as primitive devices to design logic circuits;

* the introduction of small scale logic gates stimulates the development of NAND/NOR
[Dav69] [Die69] [Iba71]based synthesis methods;

* the development of regular structures like PLAs fostered the research in two-level logic
minimization tools [Hon74] [Bra84][Dag86][Gur89];

» more recently, the emergence of complex cells based design encouraged the development
of multi-level logic synthesis methods [Bra87][Bar86][ Ykm89][Abo90][Mat88] [Geu85]
[Bos87].

The sum-of-products form and its associated PLA target implementation is perhaps the most

significant example of this interrelationship. The PLA structure is shown in figure 1.4.

It is composed by two interconnected matrices, one performing the logic AND operation of the
input variables and the other executing the logic OR operations of the AND plane outputs. The
columns of the AND plane are associated to the input literals. The rows represent the product
terms. A dot indicates the electrical connection among the orthogonal wires. The columns of
the OR plane stand for the function outputs. A multiple output function is implemented by
specifying the connections in the AND/OR planes such that the first one contains all the cubes
used by the functions and the second one describes which cubes are used by each output
function. The minimization of the number of products in the sum-of-products representation
implies the minimization of the number of rows in the PLA, which reduce its size. Thus, there

is a direct association between the data structure and its implementation.

Next sections make a brief overview of two and multi-level synthesis to better situate the scope

of this work.
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Figure 1.4. The PLA structure.
1.3 Two-level logic synthesis

Two-level minimization appears first as a general logic minimization tool to deal with truth
functions. Quine [Qui52] laid down the basic theory that was adapted by McCluskey [McC56]
for switching circuits applications. The resulting method, called Quine-McCluskey, basically
consists in computing all prime implicants of the function followed by the selection of an
optimal subset of them that covers all minterms. The main disadvantages of the method is that
it uses minterms as starting point for minimization and requires computing all prime
implicants. The number of minterms, for instance, grows exponentially with the number of
input variables. Thus, the method is applicable only to small problems. Any way, it is a
milestone in logic minimization and its principles can be found even in recent publications
[Dag86].

The next important contribution in this area was MINI [Hon74], a multi-valued logic minimizer
that introduced several significant improvements. The use of cubes instead of minterms as
starting description, the reduction/expansion iterative process and many other heuristics that

are the foundations of the next generation of logic minimizers can be found in MINI.

MINI concepts were the basis of ESPRESSO [Bra84], the most popular two-level minimizer up
to date. ESPRESSO improved the heuristics proposed in MINI and developed new efficient

algorithms that speed up significantly the logic minimization process. It is able to find optimal



Chapter 1 Introductio®

or near-optimal solutions for incompletely specified Boolean functions with hundreds of
inputs and outputs in a reasonable computing time. ESPRESSO has had several versions. The
first one was in APL. This first version was quickly replaced by other written in C language.
Next versions were ESPRESSO-MV (multi-valued) and ESPRESSO-EXACT [Rud86][Rud87].
The multi-valued program adopt the strategy of MINI, with new algorithms. ESPRESSO-EXACT
computes all prime implicants, which allows it to find the best solution with respect to product
count. It should be noted that the best solution for non trivial cases was first proposed in
MacBoole [Dag86], which extended the techniques of Quine-McCluskey using efficient data
structures and algorithms. However, these techniques are still restricted by the total number of
prime implicants of the function, which is upper bounded by 3"/n, where n is the number of

inputs.

Although well known, two-level logic minimization is still a research field. The use of two-
level techniques in multi-level minimization lead to the development of new techniques to
overcome some restrictions introduced by the multi-level context [Mal88]. More recently, a
new method for the implicit computation of prime and essential prime implicants was
presented by Coudert and Madre [Cou92] that allows the treatment of functions with huge sets
of implicants. It was already extended to deal with multiple output functions with symbolic

inputs [Lin92] and its use in two-level minimization is currently under research [Cou93].
1.3 Multi-level logic synthesis

Two-level logic and PLAs provide good solutions to a wide class of problems in logic design.
However, it suffer from some limitations that stimulated the development of multi-level

synthesis techniques.

The improvement of the quality of the circuits in terms of area and delay is one of such
motivations. The long connections crossing active regions in large PLAs can lead to significant
or unacceptable critical path delays. A set of interconnected active gates can produce faster
circuits. Area reduction, however, is harder to obtain. It depends heavily on the layout
generation tools. Standard Cells synthesis, for instance, can eventually lead to larger circuits
than those designed with PLAs. This reflect some limitations of current multi-level techniques.
But multi-level circuits are more flexible both in the topological and in the functional sense.
They can be more easily adapted to different layout situations. They can also be used in data

flow design, while PLAs are restricted to control logic.

Multi-level design can produce better solutions than PLAs essentially due to the degrees of
freedom introduced by the increased potential for re-using subfunctions. This implies a larger

solution space and, consequently, higher design complexity.
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Several approaches have already been developed to tackle this problem. A systematic method
that produces optimal solutions was proposed in [Law64]. It is not applicable for practical
circuits, but it is interesting from theoretical viewpoint. Rule-based systems like LSS [Dar81]
appears in the late '70's and worked directly on the circuit netlist, trying to improve the
solution by performing local transformations. Each rule describes a subcircuit configuration
and proposes an equivalent one that is optimized in some aspect. The optimization process
consists in identifying and replacing subcircuits in the netlist. It has the advantage of taking
into account technological features, but it is limited by its local nature and its lack of flexibility
to support different technologies. The algorithmic approach starts its development at the
beginning of the '80's. It is based on algorithmic transformations and is divided into two
phases: a technology independent optimization followed by a technology mapping step. In the
technology independent phase the minimization is performed on a general Boolean function
representation of the circuit. Its global nature leads to significant reduction of the circuit logic
complexity. Then the set of optimized subfunctions is mapped into gates of the chosen design

style. In this step the particular features of each technology are considered.

Both approaches have been successful, but the algorithmic method usually produces better
results due to the global nature of its minimization process and it is more efficient in terms of
computing resources (time and storage). Several synthesis systems based on this technique
have emerged [Bra87][Bos87][Abo90][Mat88][Mat89]. Some rule-based systems [Dar84]
[Bar88] incorporated it in earlier phases of the synthesis, creating a mixed approach where the
technology independent minimization is performed by algorithmic tools and the technology

mapping is done using the rule-based approach.

The general multi-level synthesis flow is depicted in figure 1.5. The initial Boolean function is
described by a sum-of-products form. It is minimized with respect to the number of cubes and
literals. Then it is decomposed into a set of subfunctions, producing a Boolean network
description. These subfunctions can still be simplified by computing redundancies that arise
from the multi-level nature of the Boolean network. They are also named internal don't cares
in the literature [Bar86] [Bra89]. These phases characterize the technology independent
minimization. The next step in the mapping of the subfunctions into gates of the target

technology, also called fechnology dependent synthesis or technology mapping.

The two phase synthesis approach works well for libraries of regular size, with no exotic
gates, as those usually provided by standard cells and gate array design styles. Those gates
can be easily decomposed in terms of the generic Boolean operators AND, OR and NOT, with
are the basis of the generic Boolean minimization techniques. But it is not efficient to deal with
implementation styles that are not adequately represented by a set of gates, like FPGAs. In this
case, the programmable nature of FPGAs makes them difficult or even impractical to be

represented by a library of cells, even applying Boolean function classification [Gol59]
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techniques to reduce its size. New approaches that explore the very nature of these devices

must be developed to overcome the limitations of the multi-level synthesis methods.

Two-level description

(Two-level Optimization )

Optimized Two-level description

( Logic Decomposition )

Boolean network
Technology
independent . —
synthesis (Mulh-level Optimization )
Technology Optimized Boolean network
dependent
synthesis ( Technology Mapping )

Circuit net-list
Figure 1.5. Multi-level synthesis flow

Several kinds of FPGAs emerged in last years. Two of the most important ones are the Look
Up Tables from Xilinx [Xil92] and the multiplexor based cells from ACTELs [EIG89]. In both
cases, all elementary cells have the same cost. The global circuit cost can then be estimated by
the number of cells it is built with. Xilinx cells - also called Configurable Logic Blocks (CLBSs)
- implements any Boolean function with a small number of inputs (typically: 4 or 5 inputs).
The synthesis problem reduces to the decomposition of a Boolean function into an as small as
possible set of CLBs [Kar91a][Fil90][Wan92][Wo0091][Bab92]. It does not matter the
complexity of the individual subfunctions to be implemented by the CLBs. The point here is the
relationship among subfunctions and its contribution in reducing the total number of blocks

required to implement the circuit.

ACTEL multiplexor cells have already been modeled as a set of gates in a library based
synthesis style [Mai88]. However, ACTEL cells can be more adequately treated if we adopt a
Boolean function representation that reflects more closely its implementation cost in terms of
two-input multiplexors. Binary Decision Diagrams (BDDs) [Lee59] [Ake78] [Bry86], in this
case, seems a good solution due the direct correspondence that exists between a BDD node and
a multiplexor cell. Indeed, some synthesis systems started recently to use BDDs in the
synthesis with ACTEL cells [Kar91][Ben92][Mur92][Erc91] obtaining better results than those

based on traditional multi-level synthesis techniques.
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Xilinx and ACTEL are examples where the introduction of technology related factors in early
phases of the synthesis and a good choice for the Boolean function representation improved
the results. Indeed, there is a current trend in considering implementation factors during the
synthesis stages. The influence of the connections in the final circuit layout surface have
received more attention lately. In [Abo90] the complexity of the connections is modeled as a
topological ordering of the variables in the circuit. In [Ped91] the position of the gates in the
final layout is estimated by a simulation of the placement and routing during the technology
mapping step. [Hwa89] tries to reduce the interconnection complexity by reducing the number
of connections during the logic decomposition phase. The relative small improvements
produced by these methods is a symptom of the difficulties to grasp the inter-relationship
between the logical and the physical aspects of the design. The success in the FPGAs case is
better explained by the nature of the new features introduced by the technology, which are
closer to the logical aspects of the design than by the progress in modeling physical properties

of the technology.
1.5 Comments

The diversity of possible implementations of logic circuits makes the research on new data
structures and algorithms an essential step in the quest of optimal or near-optimal solutions.
Growing research efforts in this direction gave rise to new interesting logic representations like
Reduced Ordered Binary Decision Diagrams (ROBDDs) [Bry86] and If-Then-Else DAGs
[Kar89]. Other non-usual logic descriptions as the Reed-Muller expressions has gained
increasing attention recently due to its advantages in some particular applications [Sau92]. The
point here is that each kind of logic representation can highlight certain functional properties
that can be useful for the synthesis. In general, the adequacy of a data structure for a given
application can be measured in terms of the speed of the logic operations that manipulate it and
the amount of memory it requires. Linear functions, for example, are easily represented with
Reed-Muller expressions while its sum-of-products space complexity grows exponentially
with the number of inputs. Another advantages are those that favor some target technology, as
sum-of-products and their PLA implementation. Some circuit properties, however, are not
always easily identified and require an extensive exploratory work to be perceived. Indeed,
every logic function representation may have useful properties for synthesis purposes and a lot

of work must be done to discover them.

The present work is motivated by the research of new synthesis methods based on the use of
ROBDDs to represent logic functions. The idea is not really new. Lee [Lee59] and Akers
[Ake78] have already proposed the use of Binary Decision Diagrams (BDDs) in combinational
logic synthesis. However, only after the modifications proposed by Bryant [Bry86] they
gained more attention. Bryant's contribution was the introduction of a variable ordering

constraint in the computation of the BDDs. The resulting graph is called Reduced Ordered
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Binary Decision Diagram. The main advantage of ROBDDs is that they are canonical

representations of Boolean functions and they can be very compact.

Initially, ROBDDs were considered just as an efficient representation of a truth table. In fact, it
holds much more information. In this work, we develop an exploratory study of the
application of Modified Binary Decision Diagrams (MBDs) in several phases of the logic
synthesis problem. MBDs are multi-rooted ROBDDs where a third terminal value X is added to
represent the don’t care set. The main research focus is in multi-level logic synthesis. Two-
level minimization techniques for MBDs are also addressed, mainly for its use in the multi-level
context. As there is a wide range of possible design styles for multi-level circuits, we opted to
tackle only two of them: the synthesis on multiplexor based FPGAs (ACTEL cells) and on
library based designs, like standard cells. The use of multiplexor type FPGASs is a natural
outcome of the choice of MBDs to represent the Boolean functions. Moreover, the flexibility of
application and the fast turn-around time of FPGAs make them a major technology trend for the
next years. Library based design, on the other hand, covers a large range of applications.
Indeed, any design style that relies on a small to medium set of gates can be treated by these
techniques. Among them, standard cells and gate arrays are two of the most important

examples.

The strategy adopted in this work was to build a complete logic synthesis system. Its

architecture is shown in figure 1.6.

Logos: Initial MBD

( MBD Ordering )

Ordered MBD

( MBD Decomposition) ( MBD Minimization )
Multi-level Circuit Optimized MBD
C MLL Optimizatior ) ( Resubstitution )
Optimized MLL Hierarchical MBD
(Technology Mapping ) ( FPGA Mapping )
Net-list Net-list

Figure 1.6. LOGic Optimization System architecture.
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The starting point is a MBD of the function to be synthesized. Left branch shows the library
based synthesis flow and the right one the FPGA synthesis flow. The first step, common to
both synthesis, is to find a good input ordering for the MBD. The size of the MBD depends on
its variable ordering, and a good ordering is an ordering that reduces the MBD size. In the
library based synthesis the next step is the logic decomposition of the MBD into a set of
subfunctions, which prepares its implementation in terms of the cells of the target library. The
multi-level circuit produced by the decomposition is then minimized (if possible) by computing
the don’t care set of each subfunction and simplifying them using two-level minimization
techniques. The simplified multi-level network is then mapped into cells of the target library,
producing the final circuit net-list. This synthesis path is open, i.e., the user can start with a
MBD or he may provide its own multi-level circuit and apply only the minimization and/or
technology mapping steps. The FPGA synthesis is composed also by three main phases. The
initial MBD is simplified with respect to its don’t care set, if it exists. The idea is to further
reduce the MBD size, which is a good estimation of the final circuit cost in terms of multiplexor
cells. Then, a subgraph resubstitution phase is performed, where isomorphic subgraphs are
identified and extracted in order to produce a hierarchical MBD. The resubstitution goal is to
reduce the total MBD size, which is given by the size of the main graph plus the size of the
extracted subgraphs. The final step is the mapping of the MBD into FPGA cells, that follows a
completely different approach than that used in the library based synthesis. The result is a

netlist of the circuit in terms of ACTEL cells.

The structure of this text follows the flow presented above. Each set of inter-related task is

presented in one chapter. Each chapter has the following structure:

- chapter abstract, presented in italics below the chapter title
- brief introduction to the subject

- description of the method developed or implemented

- experimental results

- comments

As there is an intense research in multi-level synthesis today, we compare (when possible) the
results obtained in each topic with the results provided by the literature. In the comments
section the positive or negative aspects of the methods are analyzed. In the sequel we

summarize the contents of each chapter.
Chapter 2 introduces some basic definitions used through this work.

In chapter 3 the data structure we have adopted is defined. It is an extension of ROBDDs to
allow the representation of incompletely specified multiple-output Boolean functions and is

called Modified Binary Decision Diagrams (MBDs). Its definition is developed step by step,
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showing first the derivation of ROBDDs from Binary Decision Trees. Some properties of MBDs
are presented as well as the extension of the elementary logic operations AND and OR to deal

with the incompletely specified case.

Chapter 4 deals with the input variable ordering problem, which is a way to produce compacts
MBDs by considering just the ordering the decision variables appear in the graph. A method for
the reordering of the variables after the MBD is created is presented. It relies on an incremental
technique called swap, that exchanges to adjacent variable in the MBD. We present three
reordering methods based on swap. First, a greedy approach that produces fast results with an
average reduction of 20% of the initial MBD size. Second, a stochastic method is shown that
produces better results (30% reduction) at the expense of more computing time. Finally, an

exact method is presented that can compute the best solution for relatively small cases.

Chapter 5 regroups the methods for the minimization of incompletely specified functions
represented by MBDs. Two methods were developed, one that applies two-level simplification
techniques in order to derive a sum-of-products from MBDs and another one that uses graph
matching algorithms in order to reduce the MBD's size, used for FPGAs synthesis. The two-
level based approach is used to simplify single-output incompletely specified subfunctions of
the multi-level circuit. It is used in the multi-level minimization phase as well as in the
technology mapping phase. In this case, it provides a sum-of-products expression that is
useful to split complex subfunctions into a AND/OR tree. The subgraph matching method can
be applied to both single and multiple output functions. It finds equivalent nodes in the MBD
by matching the X terminal with MBD subgraphs. The result is a completely specified MBD that
is smaller than the original one. We show that this approach produces better results than the

application of the traditional two-level minimization for the reduction of the MBD size.

Chapter 6 describes the synthesis into multiplexor type FPGAs. The ACTEL cell architecture as
well as the chip architecture are introduced. The minimization of the MBD with respect to the X
terminal was already presented in chapter 5. The subgraph resubstitution technique and the
MBD mapping are presented. Subgraph resubstitution consists in finding a particular kind of
isomorphic subgraphs that can be replaced by a single node in the MBD. This means that they
must start with a single root and have only two descendants. The resubstitution may further
reduce the total number of nodes of the MBD. The mapping into FPGAs is done using a graph
covering approach based on dynamic programming. Each subtree is optimally mapped and

some pos-processing steps are presented to improve the solution.

Chapter 7 touch the library based multi-level synthesis. Three decomposition techniques are
presented. The first one extract directly subMBDs of the MBD and replaces it by new variables.
These are subgraphs that start at some MBD node and end at the terminals. Applying iteratively

this kind of extraction transforms a multiple output MBD into a multi-level circuit where each
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subfunction is described by a MBD. The second decomposition method is path oriented. At
each step a node in the MBD is selected and all the paths that cross it are extracted and
represented by separate MBD. This produces a logic division in the form f = g-dvr. The third
decomposition method is based on the Boolean methods. Next the satisfiability and
observability don’t cares are introduced. We use some known algorithms to compute them in
order to simplify the node functions with the don’t care based minimization presented in
chapter 5. The last section describes technology mapping process that applies Boolean
techniques to match subfunctions to gates of the target library. A fast symmetry detection
method is presented that is used to classify Boolean functions in the matching phase. A
flexible network covering algorithm allows the mapping of single as well as complex
subfunctions. The mapping finish with a global phase minimization step that tries to reduce the
number of inverters of the circuit by choosing the polarity of the each mapped subfunction

(direct or complemented).

Chapter 8 discuss the results obtained and analyze some ideas of future research.
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Chapter 2

Preliminaries

In this chapter we present the definitions of some basic concepts that are

frequently used through this work.

Digital combinational systems can be seen as black boxes that receive a set of input signals and
after some delay provide a set of output signals, established as a function of those inputs. To
analyze the input-output transformation performed by the digital system it is necessary, first,
to establish a mathematical structure that could model its behavior. Digital signals may assume
only two meaningful distinct values (say, 0 volts and 5 volts). Their binary nature leads to a
natural association with logical values true and false from formal logic. One of the first
scientists that perceived this analogy was the American mathematician Claude Shannon in the
late ‘30’s [Sha38]. The structure he adopted was the Boolean algebra, conceived by the

English mathematician George Boole around 1850 to model human reasoning!.
2.1 Definitions

Definition 2.1. A Boolean algebra <B,-,v ,_,0,1> is a mathematical structure composed by a set

B which contains at least two distinct elements, 0 and 1, on which are defined three

operations:

€e.

* the Boolean product ““” (or conjunction);
e the Boolean sum *“ v (or disjunction);

* the unary operation called complementation, denoted by an upper bar;

IHis work is reported in two books: The Mathematical Analysis of Logic, Cambridge, 1847, and The Laws of
Thought, Cambridge, 1854.
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A more precise definition of Boolean algebra should include the more general concepts of
algebraic structures, lattices and distributive lattices and is out of the scope of this work. A
good introduction to this subject can be found in [Ger82]. A digital systems oriented view is

given in [Har65] and [Dav91a]. [Rut65] presents a good introduction to the lattice theory.

The set B denotes any set of elements that forms a Boolean algebra. The simplest one is
B = {0,1}. A n-tuple of Boolean variables B" = {0,1}" forms also a Boolean algebra if the

operations on this set are a component wise extension of the operations on B.

Definition 2.2. A Boolean function fis a mapping f: B" — B. Its domain (also denominated
Boolean space) is the set of 2" binary vectors {(0,0,...,0), (0,0,...,1), ..., (1,1,...,1)}. An
input vector is represented by xj = (by, by, ..., by), where i = E’;/Zj_['bf ,bj €{0,1}.

Thus, a Boolean function is a set of ordered pairs in which the first element is an binary input
vector and the second element is the constant 0 or 1. If the domain D of a Boolean function f
is B" then fis said to be a completely specified function.1f D C B" then fis an incompletely
specified function, and is represented as ]” For the set of points in DC = B"\ D, the value of
the function is undefined. DC is called the don’t care set of f. The undefined values of the

function are represented by the symbol *-’.

Proposition 2.1. There are 22n completely specified Boolean functions of n variables.

Proof. The truth vector of a function with n inputs contains 2" elements. For completely

specified functions, to each element must be assigned a binary value. Thus, there are

ize(truth vector) 2" L. . .
psreettruth veeton) — 2= different functions of n variables. O

Another way to denote an incompletely specified function f is through its characteristic sets
f'l(b) ={x 1 f(x)=b,b €{0,1,-}}. The characteristic set of f'l(O),f'l(l) and f'](-) are
called, respectively, the OFF-set, the ON-set and the DC-set of f and are represented by fo,

fon and fy.. Therefore, an incompletely specified function can be represented by a triplet

f= (fOl’lafOff’de)'
A multiple-output Boolean function is a mapping in the form:
f: B" — B™, with n inputs and m outputs.

In any Boolean algebra B the set B x B is a partially ordered set in which a binary relation
x <Yy is defined. The binary relation < is partial order relation (that is, reflexive, anti-
symmetric and transitive). Intuitively, if X <y then for each 1 in vector x there must be a 1 in
vector y at the same position. For example, (1,0,1,0) < (1,0,1,1), but (1,0,1,0) does not

relates to (1,1,0,0). Since Boolean functions can be represented by truth vectors, the set of all
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functions of n variables forms a partially ordered set under the relation <. Using this relation,
an incompletely specified function ]‘ may be expressed by an interval [fi,in, finax], and any
function f that satisfies fy,;in < f < finax 1S compatible with f Note that f,,in = fon, and

Jmax = fon V Jdc.

The algebraic manipulation of Boolean functions relies on the use of variables to represent
elements in B. A Boolean variable is a single coordinate in the Boolean space, and is
represented by a lowercase character with an integer index: x;, for instance. A literal is a
variable x; or its complement X; . X = {x;, x2, ..., x,} 1s the set of input variables of a
Boolean function. The representation of Boolean functions by means of variables, constants

and operators introduces the concept of Boolean expression.
Definition 2.3. A Boolean expression is defined recursively as follows:

e any element e €B is a Boolean expression;

e any variable x; € X is a Boolean expression;

« if F, G and H are Boolean expressions, then (F vG), (F-G) and H are also Boolean
expressions;

* there are no others Boolean expressions than those resulting from the application of the

rules above.

The precedence of the Boolean operators is NOT, AND and OR, in this order. To simplify the
notation, the parenthesis are dropped out where the meaning of the expression can be deduced
from the precedence relation of the operators. The product operator ‘-> can be also eliminated
and replaced by the juxtaposition of the literals, i.e., xy = xy. The Boolean function
associated to a Boolean expression can be retrieved by evaluating the expression for each input

vector.

The support of a Boolean function is the set of variables the function effectively depends on.

For instance, if X = {x;,x2,x3} and f = x;-x2, then support(f) = {x;,x2}.
Definition 2 4. The function x(¢) is called Boolean exponenciation, and is defined by:

x(¢)=0,if x= e and

x@)=1ifx=e
It is component-wise extended to vectors: x(®) = (x,(¢7), x,(¢2), ..., x,(¢,)).
Let v=(vj, vy, ..., v;), be a Boolean vector.

Definition 2.5. A cube (or product term) c is a function defined by a cluster of adjacent vertices

in the Boolean space that can be expressed by a conjunction of literals.
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c= A x’

i €D
where D C {1,2,...n}, x; € X and v; € v.

Therefore, I(x; ,/) = x; and I(x; ,0) = X;. D is a subset of indices that identifies the support of
c. For example, ¢ = xj X,x31s a Boolean expression that denotes a cube function with
support(c) = {x;,x2,x3+ C X and v = (1,0,1, ... ), the polarity vector of c. Since a Boolean
expression always denotes a Boolean function, we will sometimes let the former term implicit
and use explicitly the later one. Therefore, c is called a cube function or simply a cube. For all
the vertices in the cube the function evaluates to 1. For this reason it is also called an implicant

of the function f, which can be denoted by:
c=<forcCf

The expression at left invokes the truth vector representation of the functions over the domain
B", while the right hand expression is more related to the description of a function as a set of

ordered pairs.

The number of vertices contained by a cube depends on the number of literals that appear in
the product and on the total number of variables of the function, n = IXI. If we represent the
support of a cube ¢ by a subset X; € X, then the number of vertices it contains is equal to
2XI-1Xel When the support of a cube is X then it denotes a single point in the Boolean space
and it is called a minterm. The dual case is a sum of n literals (anti-cube) that represents a

single vertex in the Boolean space where the function evaluates to 0. It is called a maxterm.

One particular type of Boolean expression that is very important in logic synthesis is the

factored form. Its definition is very similar to the Boolean expression’s one.
Definition 2.6. A factored form is defined by a recurrent relation:

e any element ¢ €B is a factored form ;

* any literal x; or X; is a factored form;

¢ if F and G are factored forms, then (F v G) and (F-G) are also factored forms;

* there are no others factored forms than those resulting from the application of the rules

above.

A factored form is a Boolean expression where the complement operator has its application
restricted to the input variables. Thus, f= X;(x2 + x3) is a factored form but its complement,

f =x1 + x,x3 is not. Any Boolean expression can be transformed into an equivalent factored

form by applying the De Morgan’s rules.
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Theorem 2.1. (De Morgan’s law) In a Boolean algebra,

x-y=xvyand xvy=Xx-y

Proof. To prove the assertions above we must just to show that (x-y)(xvy) = 0 and

xyv(xvy)=1.

(X-y)(xvy)=Xxyx v xyy=xxyv0=0;
xyv(xvy)=(xyvx)vy=(xvXx)(yvx)vy=1(yvx)vy = yvxvy =
=yvyvx =1. 0

Therefore, by successive application of the De Morgan’s law we can transform a generic
Boolean expression in a factored form. One type of factored form, the normal forms, play an

important role in the synthesis of two-stage logic.

Definition 2.7. A disjunctive normal form (also called sum-of-products or cover) is a sum of
products of literals (or cubes). A conjunctive normal form (also called product-of-sums) is

a product of sums of literals (or anti-cubes).

Sum-of-products (SOPs) and products-of-sums (POSs) are also known as two-level
expressions, two-stage logic or two-level forms because they can be implemented by two

layers of logic gates.

Two-level expressions possess some interesting properties. A sum-of-minterms (product of
maxterms) is a canonical representation of a Boolean function. A canonical form define a
unique Boolean function, i.e., there can not be two different representations of the same
function. This is very useful in some logic fields as Boolean verification, where the
equivalence between two logic functions can be checked by comparing their logic
representations. Unfortunately, the complexity of sum-of-minterms is O(2") and it is of
practical use only for very small functions. As we will see later, there are another types of
representations, like BDDs, that also hold the canonical property and are applicable to practical

problems.

Another important feature of logic representation forms is the existence of evaluation criteria
that estimate their implementation cost. A good example are two-level expressions and their
PLA implementations (see chapter 1, figure 1.4). Finding the smallest cover of a function is a
NP-complete problem. An alternative is to find good or acceptable solutions using heuristic
techniques. For two-level expressions, prime and irredundant covers form a set of acceptable

solutions.

Definition 2.8. A prime and irredundant cover of a Boolean function f'is a sum of prime cubes

where no cube is covered by a proper subset of the remaining cubes of the cover. A prime
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cube cj is a cube no properly contained in another cube c; of the function, i.e.,

Acij=sflci <cj.

If a cube is prime, no literal can be replaced 1 without making the cube intersect the function
OFF-set. O prime implicant is called essential if it covers a minterm that is not covered by any

other implicant of the function.

Multi-level logic expressions are an extension of the two-level concept where there is a non
limited number of logic levels between the inputs and the outputs. The derivation of a multi-
level expression from a Boolean function can be accomplished by means of decomposition
techniques. A method that is the basis of several decomposition techniques is the Shannon
expansion [Sha49]. The Shannon expansion of a function f with respect to a variable x; is

given by:
fx) = X f(xg, ..., x;i=0,....x) vxifixy, ..., xi=1,....x,)

The function f{xy, .., x;=1(0),...,x,) is the cofactor or residual function of f with respect to x;
(xp) f X; ( f?c,-) . It is obtained by replacing all instances of literal x; (X;) by 1(0) in the Boolean

expression that denotes the function.

The mathematical model of multi-level expressions is the Boolean Network (BN). It is a direct
acyclic graph (DAG) where to each node n; is associated a subfunction f; and a variable y; =
filtX,Y ,Z). Y = {y;} is the set of intermediate variables and Z = {z;} is the set of output
variables of BN. Each edge ¢; in BN is defined by an ordered pair (ng, no). The first element is
the start node and the second is the end node. The start nodes of the set of edges that have n;
as end node form the fanin nodes of n; . The literals associated to the fanin nodes of n; are the
inputs of f;. The end nodes of the set of edges that have n; as start node are the fanout nodes of
n; . A set of nodes connected by edges is a path in BN. The number of edges in a path is the
length of the path. Thus, the fanout nodes of n; define the set of paths with length = 1 that start
at n; and the fanin nodes of n; define the set of paths with length = 1 that end at »; . The set of
nodes that can be reached from n; are the transitive fanout of n; and the set of nodes that are in

any path that ends in n; form its transitive fanin.
2.2 Comments

The algorithms in this work will be presented in a Pascal-like pseudo-code. The commands of
the language are printed in bold type characters, like “begin”. Comments delimiters are either
curly brackets “{}” or “/* */”. The fields of variables of type record (structure in C) are

accessed by the point ‘.” operator. Thus, a.first means the data called first inside the record a.
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Only the algorithms that were effectively implemented are presented in pseudo-code, which is
a summary of the programmed code. Description of algorithms from the literature with be

present in textual way, for easy of reading.
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Chapter 3

Modified Binary Decision Diagrams

This chapter describes the data structure that is the kernel of our the synthesis
techniques. It is an extension of the Reduced Ordered Binary Decision Diagrams

(ROBDDs), which we call Modified Binary Decision Diagrams (MBDs). Some
useful properties of MBDs for logic synthesis are outlined.

Boolean functions play an important role in several areas of computer science and digital
system design. It can be used to model or simulate both physical and abstract structures like
digital circuits and logic reasoning. It has a large application in the automatic design and test of
logic circuits. Consequently, the representation and the manipulation of Boolean functions are
problems of major concern. In general, even simple tasks as testing if a Boolean expression is
a tautology (f = 1) or checking if two Boolean expressions denote the same function require
solutions to NP or co-NP complete problems. In the worst case, any known logic
representation can require solutions of exponential cost for such problems. For most practical
applications, however, a good choice for the logic representation and algorithms can avoid this

exponential complexity.

Several methods for the representation of Boolean functions have been developed. Truth
tables, Karnaugh maps, canonical sum-of-products, prime and irredundant sum-of-products,
Reed-Muller expressions, factored forms, Binary Decision Diagrams (BDDs) [Lee59][Ake78]
and, more recently, Reduced Ordered Binary Decision Diagrams (ROBDDs) [Bry86] and If-
Then-Else (ITE) Dags [Kar88][Kar89] are the most relevant examples among them. Truth
tables, Karnaugh maps and canonical sum-of-products always produce exponential size
representations, i.e., their size is proportional to 2", where 7 is the number of input variables.
This is unacceptable for practical problems. Prime and irredundant sum-of-products and

factored forms are two of the most pooular logic representations that nrovide interesting
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solutions for a variety of practical functions. Although their widespread use they suffer from
serious drawbacks. First, some common functions, like odd and even parity ones, lead to
exponential size representations. Second, certain simple operations as logic complementation
can have exponential cost. Third, none of these representations are canonical forms,i.e., two
different Boolean expressions can denote the same function. Thus, equivalence checking can

be a time consuming task.

ROBDDs provide interesting solutions to most of these problems. It is a canonical form whose
size keeps between reasonable limits for a large set of practical functions. These features allow

the development of fast and efficient algorithms to perform Boolean manipulations.
3.1 Reduced Ordered Binary Decision Diagrams

We will introduce ROBDDs by following the evolution of logic functions representation. Truth
tables have been certainly the first method developed to denote Boolean functions. From the
computational viewpoint it can be described by a vector with 2" elements or by a square matrix
with 2"2 entries. Each element of these structures is associated with a vertex in the Boolean
space. The entries are represented by binary codes and each binary digit stands for an input
variable of the function. A Karnaugh diagram is a particular case of the truth table where the
row and columns' entries are Gray coded, i.e., two successive codes differ only in one bit.

Figure 3.1 gives an example of the same function represented by a truth table and a Karnaugh

diagram.
x1x0 x1x0
x3x2 00 01 10 11 x3x2 00 Of 11 10
oof Of Of 1 - oo| Of o - 1
o1l O 0 1 - 01 0 0 - 1
10 1] 1| 1| 1 11| 0] of - 1
1 of o 1 - 100 1] 1| 1] 1
(a) Truth table (b) Karnaugh Diagram

Figure 3.1. The truth table and the Karnaugh diagram representations

Karnaugh diagrams provide an useful notation for small functions due to the easy of
visualizing cubes in it. We shall adopt them when discussing Boolean functions properties but
using a different notation. Zero values are not indicated, and the sub-regions where the

variables have value 1 are indicated as depicted in figure 3.2.
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Another way to describe a truth table is by means of graph based structures, like trees and
DAGS.

Definition 3.1: A binary decision tree (BDT) is a direct, acyclic and connected graph, where
each node has at most two successor and only one ancestor. There are two types of nodes:
non-terminal (or internal) and terminal (or leaf) ones. Terminal nodes have no successors
and represent Boolean constant functions. Each non-terminal node n; is associated with a
decision variable x; . Let low(n; ) and high(n; ) be the n;'s successors. The Boolean

function denoted by n;, f"(X), can be described by the following Boolean expression:

O = 500 v 1 o)

x0

x2

x3

x1
Figure 3.2. Karnaugh diagram notation

To get the value of the function at one vertex we must traverse the tree from the root up to a
terminal. The path is defined by the values of the input variables. If the variable associated
with one node evaluates to 1 then the high branch is added to the path. If the variable evaluates

to 0, then the low branch is taken. The cost of a BDT is, of course, proportional to 2".

A significant improvement in the Boolean function representation was proposed by Akers
[Ake78]. He suggested the application of some simplification rules to reduce the complexity of

a BDT, transforming it into a direct acyclic diagram.

Definition 3.2: Two nodes are equivalents in a BDT either if they are the same terminal or if
they are associated with the same input variable and both their low successors are

equivalents and their high successors are equivalents.
Definition 3.3: A node n is redundant in a BDT if low(n) is equivalent to high(n).

Definition 3 .4: A Binary Decision Diagram (BDD) is a direct acyclic graph derived from a BDT

wxihawva wadiiindant vnadan ava AAlatad anAd ,,,...i‘.,.l/mu nndan ava vmanw~nd
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The main feature of a BDD is that its size complexity is much smaller than BDTs for a large
class of functions. The application of simplification rules saves a lot of storage space. For
instance, while a BDT has 2" terminal nodes the BDD needs only two leaves to represent the
logic values 1 and 0. An illustration of the derivation of a BDD from a BDT is presented in
figure 3.3. A "d" indicates nodes that will be deleted and a "m" indicates two nodes that will

be merged. The decision variables are shown inside the nodes they control.

(b)

Figure 3.3. (a) binary decision tree (b) binary decision diagram

BDDs were shown to be an efficient structure for the analysis, simulation and test of digital
circuits. Akers [Ake78][Ake79] gives several examples of such applications for well known
combinational and sequential devices. He states, without proof, that even thought in the worst
case the size of a BDD can be exponential with respect to the number of inputs ([Lee59]), for
almost all common digital devices this number grows linearly with n. Unfortunately, the
examples and the methods proposed are not oriented to computer implementations and are
more adequate to pencil and paper investigation, which restricts its application to small
problems. Another problem is the complexity of logic operations performed with BDDs. How
to combine two BDDs with an AND operator? A possible solution is to connect the two graphs
in series with respect to the 1 terminal, but it will be a waste of data space because there will
be no sharing of subfunctions. Logic equivalence and tautology checking are examples of
other logic operations frequently performed in digital analysis and synthesis that can be quite

complex to implement with BDDs.

These drawbacks were overcame by the introduction of an ordering restriction for the input
variables [Bry86], which lead to the ROBDD structure.

Definition 3.5: A Reduced Ordered Binary Decision Diagram is a BDD in which the input
variables are ordered in such a way that in every ROBDD path each variable appears only

once and in the same relative order.
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Every input variable is associated with an integer index which indicates its position in the
ordering. In the same way, each node » in the ROBDD has an attribute index(n) that indicates
the variable it is associated with. Index(n) grows from the root to the leaves of the graph.

Thus, in each ROBDD path the indices of the nodes must appear in crescent order. As variables

appear only once in a path, the function associated with a node n with index(n) =1, f & (X),

can be described by the Shannon expansion:
ni _ _ M ;
=X f O+ xof, (X)

It is curious to note that ROBDDs had already been obtained before Bryant. One example is the
work of Thayse [Tha82][Tha84] with his P-functions. In this work, the author proposes some
methods for the synthesis of binay decision programs. One of them, the simple BDD synthesis,
effectively leads to the construction of a ROBDD. Bryant, however, was the first to perceive the

interest of ROBDDs as a logic representation form.

One of the main properties of a ROBDD is that it is a canonical representation. This means that
if two Boolean functions are equivalent their ROBDDs are isomorphic. Logic equivalence, thus,
is reduced to checking if two DAGs are isomorphic, which is O(s), where s is the size of the
graph. Another useful outcome of the ROBDD canonicity is that tautology checking becomes
trivial: the graph must be the 1 terminal. Complementing a ROBDD consists in exchanging the
values of its terminals, which is also O(s). In general, operations involving two ROBDDs are
O(sp.s1), i.e., proportional to the product of their sizes. Figure 3.4 shows the graphs for some

well known logic functions.

x1 AND x2 x1 OR x2 x1 XOR x2 x1 NAND x2 x1 NOR x2 x1 XNOR x2

Figure 3.4. ROBDDs of some simple functions.

The algorithms for the construction and manipulation of ROBDDs are reported in [Bry86].
They rely on two main functions, apply and reduce. Apply combines two graphs using a
binary operator and then reduce is called to put the ROBDD in its canonical form by deleting all
redundant nodes. More recently, in [Bra90] a new method was developed that was shown to

be more efficient than the apply/reduce technique. The logic operations are based on the ite (if-
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then-else) operator that combines three ROBDDs without need of the reduce operation. It is

defined as follows:
ite(f.g.h) =fg v fh

It is the same operation performed by a ROBDD node, the basic building block of the diagram.
The difference is that ite takes three functions as parameters, each one described by one
ROBDD while a ROBDD node implements the same function but with the f parameter replaced

by a single variable.

The node operation can be represented by a triple (x;, f, , fz), where x; is the variable

associated with node n;. Let z = ite(f,g,h). The ROBDD of z is built using the following

recurrent formulae:
= (V’ ite(fv’ gv’ hv)r ite(fﬁ’ g17’ hf) )

A more detailed description of the method can be found in [Bra90], including the main data
structures and computing techniques to improve the algorithm’s performance. In this work we
have first developed a prototype system in Common Lisp that uses the apply/reduce method. A
second version of the system was re-coded in C++ and a mixed approach was adopted, using
ite as well as reduce in some cases. The rationale for these decisions and others are presented

in the last section of this chapter.
3.2 Modified Binary Decision Diagrams

Consider the problem of dealing with multiple output incompletely specified functions. One
can handle multiple outputs by assigning a ROBDD to each output function. This is not an
efficient solution because there is no sharing between subfunctions from distinct outputs. For
example, a function with m outputs would have 2-m terminal nodes. In the same way, a
incompletely specified function could be described by two distinct ROBDDs, one for f,,, and
another for f;., with the same limitation. Thus, in the general case a m output function will
require 2-m ROBDDSs.

To simplify the representation complexity we have made the choice of representing all these

data in a same graph, the Modified Binary Decision Diagram (MBD).

Definition 3.6: A Modified Binary Decision Diagram is a ROBDD where multiple roots are
allowed to appear to represent multiple-output functions and a third terminal value X can be

also added to the graph to denote the don’t care set.

Thus, in a MBD there is an explicit representation of (fon, foff, fdc) of multiple output functions.

An advantage of this representation is that it is always more economical to merge MBDSs into a
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single diagram than to keep them separated, due to the subgraph sharing. An example of the

MBD of a multiple output incompletely specified function is shown in figure 3.5.1

Note that the added features are optional and the ROBDD is a particular case of the MBD. By
consequence, when we refer to a MBD herein it is not implied that it denotes an incompletely
specified and/or multiple output function. This shall be clear from the context, although
sometimes the term ROBDD will be used instead to stress that it is the case of a single output

completely specified function.

Figure 3.5. Example of a MBD.

3.2.1 Some Properties of MBDs

The MBD can be thought as a compact graph representation of a truth table. Besides being
more compact, it presents several interesting properties derived from its graphic nature. The
properties presented are well known and may be found in some previous works on BDDs and
BDTs as [Ake78] and [Cer78]. For instance, each path in a MBD denotes an implicant of the
function. The value of the function at the vertices contained in the implicant is given by the
terminal node connected to the path. This is illustrated in figure 3.6, where a path in the MBD

and its associated implicant in the Karnaugh diagram are indicated.

IThe figure 3.5 was generated automatically by a program and does not follow the notation adopted in this
work. The one (or then) branches are drawn with thicker lines, output functions are represented by literal ‘F’
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More interesting from the minimization viewpoint is the relationship between MBD paths and a

cover for the function.

Theorem 3.1: The set of all paths that connect the root of the MBD to the 1 (0 or X) terminal,
called ON (OFF or DC) paths, defines a disjoint and irredundant cover for the ON (OFF or
DC) set of the function.

Proof: First, let us assume that the MBD is generated from a BDT representation of the function.
Then each ON path in the BDT defines a minterm of the function. The set of all ON paths in
the BDT forms a cover for the ON-set of the function. As the reduction operation performed
on the BDT removes only redundant information and does not eliminate any minterm, the set
of ON paths to the 1 terminal in the MBD is still a cover for the ON set of the function. They
are disjoint because any pair of paths must differ at least in one variable, that appears in
opposite phases in each path. It is a irredundant cover because all implicants are essential

and, thus, no implicant can be covered by a combination of the other ones. O

Disjoint covers are generally a good starting point for two-level minimization [Hon74].
Moreover, a disjoint cover can be directly converted into a Reed-Muller expression, which is

useful for the synthesis of linear functions.

0
0X1 x0

9 ! X2

Figure 3.6. Relationship between MBD paths and implicants of the function.

As in BDTs, the simulation of the function for a given input vector (also called satisfiability)
can be easily executed by traversing the graph and selecting the low or high branch at each
node according to the value of its associated variable (0 or 1, respectively) up to reaches a
terminal. The total number of minterms for the ON (OFF or DC) set can be computed in a single
traversal of the diagram, by keeping track of the number of variables in each path connected to

the 1 (0 or X) terminal. If a path have k variables then the number of minterms it contains is
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27K \where 7 is the total number of variables. The set cardinality is given by the sum of the
minterms in all paths. For further properties of ROBDDs the reader can refer to [Bry86],
[Min90] and [Lia92] among others.

3.2.2 Logic Verification with MBDs

The inclusion of the don’t care set in the MBD saves not only space but also computing time for
some logic operations. We show here how logic verification is simplified by the presence of
the X terminal [Cal91].

In order to verify if two single output incompletely specified functions fand g are equivalent,
it is necessary to prove that fo, N go= @ and foir N gon = . Using ROBDDs, this is done
by building four graphs, one for each on-set and one for each dc-set. Afterwards, the apply

[Bry86] procedure is used to verify the following equality:
(&on —=(Jfon Viac)) - (fon — (gon V &dc)) =1

If the expression is found to be a tautology, fand g are equivalent. This is the approach used
by Malik et al. [Mal88]. On the other hand, using MBDs only two graphs must be built, one
for f and another for g. The equivalence is performed in a one step by extending the MBD
isomorphism checking to deal with X terminals. In is worthy to extend definition 3.2 to the
case of MBDs.

Definition 3.7: two nodes in a MBD are X-equivalents if either:

* they are the same terminal;
* one of the nodes is the X terminal.
e they are associated with the same input variable and both their low successors are

X-equivalents and their high successors are X-equivalents.

Some experimental results comparing the two approaches with respect to total number of

nodes and execution time for logic verification can be found in [Cal91].
3.2.3 Logic Operations with MBDs

All logic functions with two variables can be implemented with the ite operator [Bra90], by an
adequate choice of its function parameters. For example, consider the case of AND, OR and

NOT functions:

ite(f, g, h)=fg v f-h
AND(f, g) = ite(f, g, 0)
OR(f, g) = ite(f, 1, g)
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NOT(f) = ite(f, 0, 1)

The NOT operation, however, is more efficiently realized by just inverting the value of the

terminals.

In the case of MBDs, the algorithms that manipulate ROBDDs should be adapted to deal with the
X terminal. For constant Boolean values the results of the application of logic operators AND,

OR, NOT are shown in figure 3.7.

The logic operation of a MBD with the X terminal results in a new MBD with the terminal’s
values changed according the tables above, as illustrated in figure 3.8. This means that, when
recursively traversing two MBDs to perform a logic operation, if a X terminal is found,
recursion proceeds in the other MBD up to the leaves. In this case, an explicit reduction of the

MBD may be required if the X terminal is duplicated.

AND| o0 1 X OR| 0 1 X NOT
0|0 0 O 0l0 1 X 0
110 1 X 101 1 1 0
Xl 0 X X X| X 1 X X | X

Figure 3.7. Logic operations with don’t cares

- ® [H =
o] [ KD

a) AND operation with MBDs b) OR operation with MBDs

Figure 3.8. Logic operations with MBDs.
3.3 Other Types of ROBDDs

MBDs implement two kind of extensions to the original ROBDD from [Bry86]: the don’t care
terminal and the multiple roots. Several other alternatives can be found in the literature. Akers
[Ake78] had introduced the concept of complement edges. 1t follows from the fact that one can
very easily find the complement of a BDD by just complementing the terminal’s values. The
rest of the BDD remains unchanged. Thus, instead of representing two subfunctions fand f
with two different subgraphs, we can use a single graph for f and indicate that some node uses
f by adding a tag in the edge that connects them. The tag can be seen as an embedded NOT

nneratinn annlied ta the fiinction dennted hv the nade Thic avtencinn wac imnlamentad in



Chapter 3 Modified Binary Decision3Piagr

some ROBDD packages like [Bra90], and it was reported that it can in average reduce the size
of the graph by 7%. However, there is an overhead of introducing a tag on each edge and also
an additional processing step to keep the graph canonical with respect to the tags, which is
done by reorganizing them in such a way that the high (or then) branch of a node is always
untagged. In [Bra90] the tag is stored in the lowest bit of the node address with no increase in
memory space, but in machines that have not this capability it must be explicitly represented,

which increases the space needed to store the graph.

In [Min90] Minato presents a set of extensions to ROBDDs that result in a new data structure
named Shared Binary Decision Diagrams (SBDDs). Don’t cares can be included in the graph
either as a third terminal value or as an especial input variable D. If D appears as the top
variable, we have a representation of type fi,in (D =0), finax (D = 1). If D appears as the
bottom variable, it is equivalent to a third terminal value. The term shared indicates, of course,
a multiple output graph. A more elaborate feature is the Variable Shifter. The index of a node
is not unique, but relative the father’s index plus an increment associated with the edge. This
can reduce the size of the graph in some cases, but no comments are made on the complexity
of the algorithms that manipulate these kind of graphs. SBDDs use also the complement edge
attribute and proposes another variation called Input Inverter. In this case, the edge tag
indicates that the low and high pointers of a node are exchanged, which is equivalent to
complementing the variable. A further enhancement is the combination of the graph with truth
tables. A function with 4 variables can be represented by a binary vector of 16 bits. This
corresponds to a single word in a computer and is more economical than using set of nodes.

Of course, there is no sharing of subfunctions with less that 4 variables.

Another interesting improvement is the so called strong canonical form, proposed by Karplus
[Kar89]. In this case two identical functions must have the same address in the memory. The
idea is that when a new ROBDD is needed the system checks if there is an equivalent one
already computed and, in this case, the later is returned. The main advantages of this approach
are the reduction of the graph size and the transformation of the Boolean verification problem

in a simple comparison of two pointers.

In [Bra89a] a reference is made to multi-valued ROBDDs. This means that a node can have
more than two successors, one for each value of the correspondent multi-valued variable. No
further details are provided, but this kind of representation could be directly used in multi-
valued logic, expectedly with an advantage equivalent to that provided by ROBDDs for Boolean

functions.

Finally, a generalization of ROBDDs, called If-Then-Else DAGs (ITEs), was proposed by
[Kar89]. He replaces the decision variable of the ROBDD nodes by an arbitrary Boolean
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expression that is itself described by another ITE. It presents some advantages with respect to

ROBDDs in certain cases and may be another interesting subject for future research.
3.4 Comments

In this chapter we introduced the data structure used through this work, the MBDs. It extends
the original ROBDD structure by allowing multiple roots and the representation of the don’t care
set in the graph by means of a third terminal value X. MBDs improve the performance and
compactness attained with the ROBDD representation for the treatment of multiple outputs
incompletely specified functions. An example was given for the logic verification problem. We
have shown also how to extend some elementary logic operations to deal with the X terminal

case.

MBDs implement two out of several possible ROBDD generalizations. Among those not
supported by MBDs presented in this chapter, the complement edges and the strong canonical

form are surely the most important ones. We present now some reasons for not using them.

Most systems use ROBDDs basically for logic verification purposes. In general they perform
only elementary logic manipulations as function composition and the logic operations AND,
OR, NOT, XOR, etc. In these cases, complemented edges and, specially, strong canonical
forms can be interesting to improve the performance of the algorithms and to reduce the
storage requirements. In our case, however, these attributes will be counterproductive due to
the nature of the graph manipulations performed by our system. The strong canonical form can
be seen as a large multiple output MBD that holds all possible functions in the system. If we
swap two variables in a small function, we must in fact update all the nodes in this large MBD,
because we can not have functions with different orderings. In the technology mapping phase
this will be particularly ackward, because each subfunction in the Boolean network is
represented by a local MBD that has its own ordering. The classification of these subfunctions
generated MBDs with different orderings, which will be not possible with the strong canonical
representation. For the case of complement edges, they require an additional external bit along
with the node address, which increases the storage requirements and introduces alignment
problems (a pointer + a bit). Worse yet, the algorithms for two-level minimization can not be
applied to complement edges MBDs because they generate intermediate sum-of-products whose

complement will be too complex to compute.
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Chapter 4

Input Variable Ordering Problem

In this chapter the problem of finding good input variable orderings for MBDs,
i.e., orderings that leads to smaller graphs, is discussed. A new technique called
incremental manipulation is described which produces new orderings by
exchanging adjacent variables in the MBD. Three methods for the search of new
orderings are presented: a greedy reduction, a stochastic reduction and the exact

solution, all of them based on the incremental technique.

The MBD'’s size is very sensitive to the ordering of the decision variables, at least for most
practical functions. It should be emphasized that this is valid for practical functions, which is
an empirical outcome of the research in this area. Indeed, it was proven in [Lia92] that, from
the theoretical point of view, ROBDDs for general Boolean functions are not sensitive to the
variable ordering. The general case considers Boolean functions up to an infinite number of

inputs and has little correspondence to practical applications.

The relationship between variable ordering and the graph size is exemplified in figure 4.1 for
the function x;x2 vx3x4 vxsxe. In this case, the natural ordering <x;.x2 x3,x4 x5 X6> gives
the smaller graph, which is shown at left. The worst ordering is shown in the diagram at right
and consists in taking one variable of each cube at time, i.e., <x; x3,x5x2,x4 x6>. The
problem can be interpreted by considering the MBD as a functional processor that tries to find
the result of an expression by examining the values of its successive decision variables. In the
former case, the processor needs only to keep track of the value of the preceding cube. If the
cube does not evaluates to 1 then we examine the next cube. In the later case, the processor
must store the first three arguments before starting to evaluate the possible function result.
This ordering problem is valid for any sum of products where the cubes have disjoint

supports.
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The size of a MBD (ROBDD) is a very important factor because it not only dictates the amount
of memory required to store the logic functions but also directly affects the speed of the logic
manipulation algorithms. In some cases, for complex functions a bad variable ordering can
lead to a huge diagram and the machine may run out of memory. Nonetheless, the same
function with a good variable ordering could be represented by a feasible diagram. For those
reasons the research on the variable ordering has received a lot of attention recently. The exact
solution requires the generation of all possible orderings and the selection of one of the
orderings that results in the smaller diagram. The complexity of the exact solution is O(n/2"),
where n! represents all possible permutations of the variables and 2" is due to the time to build
the graph for each ordering. This, of course, is impractical even for medium size problems
(IXI' = 10). A better algorithm to find the exact solution was proposed in [Fri87], that exploit
some ROBDD’s properties to prune the space search and attain a cost of O(n23"). This is also
too time consuming for practical problems, but it defines a upper bound for the cost of the best
solution. The complexity of the problem stimulates the search of heuristic solutions that could

produce good orderings, i.e., that avoid the exponential explosion of diagram’s size.

Figure 4.1. Ordering sensitivity for MBDs

The first methods published address the problem of finding a good ordering from a net-list
description of a logic circuit. The idea is to traverse the circuit using a deep first algorithm
oriented by some heuristic and keep track of the primary inputs found in the traversal. The
heuristics should take into account fanin/fanout constraints and fanout reconvergence. Several
works based on this method have produced similar results [Mal88], [Fuj88], [Cal92],
[Jeo92].
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Another approach consists deriving new orderings after the diagram is built. In this case, for
each new ordering generated the diagram must be updated accordingly to reflect the change in
the order of the decision variables. The method presented here belongs to this class of
solutions. The initial MBD is built using a net-list analysis to find a good initial ordering
[Cal92]. The generation of new orderings relies on an incremental manipulation technique (see
[Jac91]) that exchanges two variables in the variable ordering and update the diagram to keep
the representation coherent. It is interesting to note that two similar methods were developed

almost simultaneously by different authors and were presented in [Fuj91] and [Ish91].

In the next sections we present the incremental manipulation technique and the heuristics
developed to reduce the size of MBDs based on it. An exact solution that exploit the incremental

nature of the algorithm is presented in the last section.
4.1 Incremental Manipulation of MBDs

The basic idea is to swap two adjacent variables in the MBD to produce a new ordering that
leads to a different diagram (figure 4.2). The variables in the ordering vector are exchanged
and the problem now is to update the diagram to reflect this change. The term incremental is
used here to emphasize that the operation is of local nature. In fact, only the nodes associated
to the variables being swapped are manipulated, the rest of the graph remains unchanged. The
importance of this fact is that we can generate new MBDs (for the same function) without need

of rebuilding the whole graph.

Figure 4.2. Example of the swap of variables x; and x;.

Let us first define what is intended by adjacent variables in a MBD. Two adjacent variables in
the MBD ordering are not necessarily adjacent in the diagram because the MBD may not depend
on one or both of them. Thus, there is no meaning in selecting two variables from the ordering
for swapping if they do not appear in the MBD. To circumvent this notation problem, we

define the effective MBD ordering as the ordering of the variables that the function depends on.
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Definition 4.1. The effective ordering of a MBD M is the ordering in which the variables
{xi | x; E support(M)} appears in the graph. It is defined as efO(M) = (&},52,....§p), where
p = IXI, & = xzj), and 7r(j) is a permutation of the indices of the input variables
{xjlxj €X}

Definition 4.2. Two variables x;, x; € X are adjacent in the effective MBD variable ordering if
i) =u,n(j)=v,andu=v = I.

Herein, all references to the variable ordering will address the effective one, and the term

effective will be dropped out for short.

The exchange of adjacent variables is implemented in a two step process. First, the nodes at
the adjacent levels are swapped, i. €., they are re-organized in order to reflect the change in the
ordering. This may introduce redundancies that are eliminated in a second step, in which a
local reduction is performed to put the diagram back into its canonical form. The locality of the

swap operation is stated by the following theorems.

Theorem 4.1. Let fbe a Boolean function of the input variables X = {x;, x2, ..., x,}. Let M
be a MBD of f, constructed using the input variables ordering
O] = <§],---§i,§i+],---,§p>, where &; is given by: & = xzj). Let Oz = <§1,...§i+1,.§i,...§p> be
another ordering obtained from O] by exchanging two adjacent variables {&;, &+;}. The
MBD M, of f, corresponding to this new ordering, differs from M only at the MBD levels

corresponding to indices i and i+/.

Proof. Consider a partition of the nodes of M into three blocks, related to three disjoint

subsets of levels (figure 4.3):

Xo={njl n; € leveljMy), I <j < i},
S={n;| n; € levelj(M1), i <j <i+I} and
X1={n;l n; € level; My), i+1 < j <n}.

To prove that M» differs from Mj only at S, we must show that Xy and X remain
unchanged. Consider first the block Xj. It defines a set of paths starting at the root and
ending at level i - 1. Each path can be associated with a partial cube ¢y, composed by the
conjunction of the literals related to the nodes visited in the path. The set of subfunctions f;
defined by cofactoring f with respect to each ¢y corresponds to a set of subMBDs with root
either in S or in X. Since function evaluation is independent of variable ordering, {f;}
cannot be changed by any transformation that preserves the equivalence between M1 and f.
Thus, all the paths in Xy must remain associated to the same subfunctions in M», and X is
not altered. A similar reasoning can be applied to the set of subfunctions gj of My, obtained

by cofactoring f with respect to the partial cubes defined by levels Xq and S. Since the
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cofactor operation is commutative, i.e. (fy)y=(fy)x , for any x, y, {g;} is unaffected by the

swapping of variables &, & 7. So, block X| must remain unchanged after the swapping of
Eiand &4 . 0

Theorem 4.2: Let M2 be the MBD obtained by the application of the swap function on indices i
and i+ of a reduced MBD M. Only the nodes at level i+1 can be eliminated by the

application of the local reduction operation after swapping.

Proof: Suppose we have x, = & and x, = ;. After swapping, a node corresponding to
variable x, can appear at level i if and only if it already existed at level i+ before the
swapping. It is associated to subfunctions in the MBD that depend on x,,, since the canonical
form is prime and irredundant. Eliminating a node at level i means either making some
subfunction independent of x,, or replacing the subdiagram whose root is the eliminated
node by an equivalent one. The first case is clearly impossible because it implies modifying
the Boolean function f, represented by the MBD. The second case imply the creation of two
equivalent subfunctions at level i by the swapping procedure, but this cannot occur due to
the independence of function evaluation with respect to variable ordering. So, for two
subfunctions at level i to be equivalent after the swapping, they should be equivalent before
it. This cannot happen because the initial MBD is supposed to be reduced. O

\

X0

R

i+1 / \ X1
o]

Figure 4.3. Swapping variables and MBD partition

The swapping of the variables is implemented by two functions: swap and inc_reduce. Swap
is based on the independence of the cofactor operation with respect to the order of the
cofactored variables. The MBD can be built by successively cofactoring the function up to

reach a constant value. Consider a function f{X). We can build the MBD by successively
calculating fy , fx x,, €tc. Based on the commutative property of the cofactor operation, which

states that fy ,= fx,x,» We can verify the equivalence between subgraphs in figure 4.4.
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Figure 4.4: swapping configurations

The subgraphs represent possible configurations of nodes in the swapping levels i, i+1.
Letters A, B, C and D denote some subfunctions (subdiagrams) in the MBD connected to the
swapping nodes. Swap function performs a kind of expansion of the subgraphs, in the sense
that it produces a complete subtree of three nodes (cases a, b and ¢ in figure 4.4). The
expansion phase may introduce new nodes (cases a and b) and in this case the size of the
diagram is increased, but some of them can become redundant and must be deleted, eventually
reducing the size of the MBD. A node become redundant either if (1) its two sons points to the
same subfunction or if (2) an equivalent node is created after the subgraph’s expansion. Figure
4.5 illustrates both cases. It was shown in [Lia92] that the contribution of factor (1) to the

diagram’s reduction is much smaller than the contribution of (2).

The deletion of the redundant nodes is done by the function inc_reduce. The algorithm is
based on the reduce function by [Bry86], adapted to deal only with the set of i_brothers nodes
with index i+1. A first step is to delete those nodes that have their low sons equivalent to their
high sons (figure 4.5 (a)). Next step is to delete equivalent nodes at level i+1. For each of
such nodes a key in the form k(n) = (node, low(node), high(node)) is built and a pair (n, k(n))
is stored in an associative list keylist. If a node n; has its key k(n; ) already computed then it is
discarded and its fathers are redirected to its equivalent node retrieved from keylist. Pseudo-

codes for the swap and inc_reduce algorithms are shown in figures 4.6 and 4.7.
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Figure 4.5. Redundancies arose after swapping variables.

Function swap uses a hash table to store all fathers of each node, the Fathers_Table, and an
array of i_brothers; the Brothers_Array. The variable ordering is stored in MBD_order and the
current size of the diagram in MBD_size. These data are computed at the beginning of the
process and incrementally updated along the swapping process. The first step is to duplicate
the nodes in the second swapping level (foreach node n in second) in such a way that each node
will have only one father. If a node from this level is the root of one function of the MBD and
has a non empty set of fathers, then a special copy of it that can not be swapped is made for
the output function. This prevents the modification of the function behavior that would be
produced by the swapping of the root node. Next step in the algorithm is the identification of
the cases shown in figure 4.4 (foreach n in first) and the application of the correspondent

transformation.

The function inc_reduce scans all nodes in level i+1. Each node is checked for redundancy, as
stated in definition 3.7. If a node is redundant, then a pair with the redundant node as the first
element and the node that will replace it in the diagram as the second element if created and
inserted in the list redundant_list. After all nodes in level i+1 are processed, the redundant_list
is used to delete the redundant nodes. Redundant nodes are found by checking either if their
low and high pointers are equal or if there is a brother node with the same low and high sons.
The later case is detected with the help of the list Keys that holds pairs in the form ((low(n),
high(n)), n). For each node m in level i+1 a pair (low(m), high(m)) is formed. If there is an
equivalent pair in Keys, then m is redundant and it will be replaced by its equivalent node
retrieved from Keys. The elimination of the redundant nodes requires the update of the MBD

diagram and also the update of the auxiliary data structures Fathers_Table and Brothers_Array.
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function swap (i,, i;: index)

begin
var first, /*list of nodes with index = ig*/
second, /*list of nodes with index = i;*/
fathers, /*1list of fathers of a node*/
gfathers: /*list of grandfathers of a node*/
list;

/*take all nodes with index i, and index i; */

first := get brothers (Brothers Array, i;);
second := get brothers (Brothers Array, i;);
foreach node n in second begin
fathers := get fathers (n, Fathers Table);
gfathers := {n in fathers | index (n) < iy}
fathers := fathers - gfathers;

if (gfathers not null or is_ output (n))
then let the original node to the gfathers or to the
output function
else /*let the original node to the first father*/
fathers := remove first element(fathers);
foreach f in fathers begin
duplicate node (n);
update MBD, Fathers_Table, Brothers_ Array and MBD_size;
end;
end;
/* now perform transformations */
foreach n in first begin
ig index(low(n));
ip := index(high(n));
if (i; = ip = i,;) then begin /*low and high sons at i;*/
exchange high(low(n)), low(high(n));
update Fathers_ Table;
end;
else if (i; = i;) then begin /*no high son at i;*/
create a new node and place it at high(n);
update Fathers Table, Brothers Array and MBD size;
end;
else if (i, = i;) then begin /*n has no low son at i;*/
create a new node and place it at low(n);
updateFathers_Table, Brothers_ Array and MBD_size;
end;
else /*no sons at i;*/
change n from level, update Brothers_ Array;
end;
update variable order in MBD order;
end;

Figure 4.6. The pseudo-code for swap function.
4.2 Variable Ordering: a Greedy Approach
The variable ordering can be modeled as a permutation problem.

Definition 4.3. Let X = {xy, x2, ..., x,} be the set of input variables of a MBD M and
E = {€1,&2....&n} be the set of locations of the x’s in the variable ordering O of M. An

ordering O is a bijective function JU: X -> E, which is a permutation of the input variables.

The set of all possible orderings forms the solution space of the variable ordering problem.
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A solution of the variable ordering problem is a permutation JU' that, when used to build M,

result in a MBD with the minimum number of nodes.

function inc_reduce (i: index)

begin
var redundant list, /*nodes to be eliminated*/
reduced_list, /*nodes that will stay*/
Keys, /*1list of node keys*/
node lis: /*nodes at level ix*/
list;
node lis := get nodes (Brothers Array,i);

for each n in node list begin
if (low(n) = high(n))
then redundant list := append (<n,low(n)>, redundant lis);
else
if (find (<low(n),high(n)>, Keys) /*isomorphic subgraphs*/
then begin

new_node := get isomorphic subgraph root from Keys;
redundant lis := append (<n, new_node>, redundant lis);
end;
else Keys := append (<<low(n),high(n)>,n>, Keys);
end;
reduced list := node list - redundant list;

update Brothers Array, MBD_size;
foreach pair <n,newn> in redundant list
foreach father in get parents(n, Fathers_ Table)
begin
replace n by newn in father;
update Father Table;
end;
regenerate node identifiers in MBD;
end;

Figure 4.7. Pseudo-code of function inc_reduce.

A first remark is that the solution is not unique. In fact, there may have several distinct
orderings that produce a diagram with the minimum number of nodes. Regarding the problem
as a generic combinatorial problem, the only way to obtain an exact solution is to scan all the
solution space, which is too costly for practical functions. An alternative way to find
acceptable solutions within reasonable costs is to navigate the space solution following an

heuristic strategy.

Definition 4.4. A point in the solution space is called a state. X is the set of movable elements.
A new state JU: X -> E, is generated by moving some elements in the current state. A move
can be simple or composed. In any case, a move must generate an unique new state. The

gain of a move m is defined as the difference between the cost of the current state JU' and

the next state TU*: gain(m) = cost(TT}) - cost(TTH1).
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A simple move in the ordering space is obtained by swapping two adjacent variables. Thus,
for a MBD with n variables there are n-1 simple moves that can be made at the current state.
The figure 4.8 illustrates the simple moves for a 4 variables ordering. A composed move is

obtained by combining a set of simple moves.

<a, b, c, d>

<b, a, ¢, d> <a, c, b, d> <a, b, d, c>
Figure 4.8. Set of simple moves for a 4 variable ordering.

Definition 4.5. A greedy heuristic to find a solution to the variable ordering problem selects

among the set of possible next states the state that produces the highest gain.

We have implemented two greedy heuristics to find a good ordering for MBDs. The first one is
called swap_all and the second one is swap_down. Swap_all evaluates all simple moves and
selects the move that produces the highest gain. The process is repeated until no further gain is
obtained. A pseudo-code for the functions swap_all and swap_down are presented in figures
4.9 and 4.10.

function swap all (mbd): MBD_TYPE
var mbd: MBD_TYPE;

begin

var i,cost, oldcost: integer;

oldcost := MBD_size(mbd);
/*returns the move with the minimum cost and its index*/
cost := eval swaps(mbd,i);
while (cost < oldcost) do
begin
swap(mbd,i); /*swap and reduce index i,i+1%*/
oldcost := MBD size(mbd); /*store new size*/
cost := eval swaps(mbd,i);
end;
return(mbd) ;
end;

Figure 4.9. Pseudo-code of function swap_all..

Swap_down differs from swap_all by allowing composite moves to occur at each iteration.
The term down is used to express that the process start at the root of the MBD (which
corresponds to the leftmost variable in the ordering) and continues down fo the terminals!. In a

composite move the algorithm visits all variables consecutively in the current ordering, starting

1 In fact, there is no up or down regions defined in the MBDs. This concept comes from the tendency of
drawing the diagrams with the roots at the top and the terminals at the bottom.
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by the leftmost one. Each variable is swapped as long as it does not increase the MBD size
(negative gain). Thus, if variable with index 1 does not produces a negative gain when
swapped, it is exchanged with variable with index 2. Next, it is tested against variable with
index 3. If it produces a negative gain when swapped, it stays at index 2 and the process
continues from index 3 up to index IXI - 1. In each composite move an arbitrary number of

swaps can be executed.

function swap _down (mbd) : MBD_TYPE
var mbd: MBD_TYPE;
begin
var cost, oldcost: integer;

cost := oldcost := MBD_size(mbd);

while (true) do {endless loop}

begin

for i := 1 to (depth (mbd) - 1) /*don't swap terminals!*/

/*eval swap returns the number of nodes eliminated*/
if (eval _swap(mbd,i) >= 0)
then begin
swap(mbd,i);
cost := MBD size(mbd);
end
if (cost = oldcost)
then return(mbd);
else oldcost := cost;
end
end

Figure 4.10. A pseudo-code of function swap_down..

The algorithm finishes when a composite move does not produce a positive gain. Figure 4.11
gives an example of the behavior of the algorithms in the same situation. An hypothetical
ordering {a,b,c,d,e) is shown and the gain of each possible swap is indicated. Note that in (b)
while the pair (c,d) had a swap gain of -1, the new pair introduced (a,d) has a gain of 1. The
creation of new pairs that may lead to further gains is the main potential advantage of

swap_down.

b b b b b
3}1 2@ al’ 2}@ all ottt it oM
} 0 } o } 0 } o o }o } 0
c o} c c c a d d
}-1 }-2 }-2 }-1 31 ORSE }-1
d}@ e B’ ’ d » d » d > a}@ e "
e d} d} e} e} e} e a}
(a) (b)

Figure 4.11. (a) swap_all and (b) swap_down examples.
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4.3 Variable Ordering: a Stochastic Approach

One restriction of the greedy method is that it can get stuck at a local minimum that may be far
away from the best solution. The result obtained is too dependent on the initial state in the
solution space. As the exhaustive search is impractical, we must find an alternative way to

explore the solution space without expending too much computing resources.

The variable ordering problem can be modeled as a permutation problem (definition 4.3),
which belongs to a class of pure combinatorial problems. Therefore, we can apply
combinatorial optimization methods in the search of a good solution. Note that this is feasible
mainly due to the availability of the incremental manipulation techniques, otherwise the

generation of new permutations would be too costly.

Combinatorial optimization is a vast research field. Its application in the CAD area has been
growing in last years, stimulated by the development of new algorithms. Simulated annealing,
for example, is one of such algorithms that was successfully applied in different synthesis
domains like placement and routing of physical cells as well as in logic optimization. It is
based on a random navigation of the space solution, controlled by a parameter called
temperature (T) which regulates the amount of negative gain can be accepted when moving
from one state to another. The initial temperature Ty is high, which allows large jumps in the
solution space. As in a physical cooling process, T starts to get smaller and smaller, and the
search converges to a more precise region. Of course, the algorithm keeps track of the best
solution found in the walk and returns it at the end. The method, however, suffer from some
limitations. The time expended to find the solution is usually large. The algorithm is very

sensitive to the cooling strategy, which is usually hard to define.

Recently, new set of algorithms based on biological evolution have evolved. [Kin89] presents
an algorithm that applies the ideas of genetic evolution and mutation in the combinatorial
optimization domain. The process can be roughly divided into two main phases that are
supposed to simulate the biological evolution of living beings. First, the evolution phase,
where the system tries to progress as far as possible in the search of a optimum solution.
Second, when the evolution is blocked then the system mutates, and try to continues its
evolution. Saab and Rao [Saa91] have adapted these ideas and formulated a new combinatorial

optimization approach, called Stochastic Evolution (SE).

The basic difference between SA and SE is that in the latter the process initially allows only
positive gains, running quickly up to the nearest local minimum. Then it tries to uphill climb
by increasing the amount of negative gain that can be accepted. The moves in SE are not
random as in SA, but heuristically oriented to improve the solution. According to the

experiments reported in [Saa91], this strategy produces similar or better quality results than SA
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in a smaller computing time. For those reasons we have decided to apply SE techniques to the

variable ordering problem.

The process consists in a controlled traversal of the state solution where new states are
generated by single or composed moves (definition 4.4). Each move m is accepted if its gain
gain(m) is greater than an integer r defined as a random value in the interval [-p,0]. P is the
control value that allows negative gains in order to uphill climb. It is initially set to zero. Thus,
only positive gains are accepted at the beginning. The number of iterations is controlled by R
which is an estimation of the time needed to improve the current solution. Each time a better
solution is found, the counter ¢ is decremented by R, providing more steps to the SE algorithm

to improve the solution. The SE algorithm can be summarized by the following steps:

SE(S: state):
1) set initial values: ¢ <- 0, p <- po
2) store the current cost Ceyr <- cost(s), the initial best value Spest <- S.
3) iteration: while c <R
3.1 store old cost Cyjq = cost(S)
3.2 generate a new state S = perturb(S, p)
3.3 compute current cost Ceyr = cost(S)
3.4 update negative gain control p = update(p,Ceur,Cold)
3.5 if improved, Ccyr < cost(Spest) then store best solution, Spes=S, and update counter,
c<-c-R
3.6 if not improved, increment counter ¢

Function perturb(S, p) computes the new state taking into account the current control gain p.
Function update computes the new value for control gain p, which should be incremented each
time the solution is not improved. These functions must be adapted for the variable ordering
case. Thus, a single move in the ordering state space is given by swapping two adjacent
variables. A composed move is obtained by a sequence of single moves. The SE algorithm for
the variable ordering problem is called MBD_SE and is parameterized in order to accept
different cost functions. The search in the ordering space is based on the SE algorithm and the
cost function to be optimized is passed as a parameter to MBD_SE. The cost function can be
any function that returns an integer value that reflect some property of the MBD. A condition
that must be met is that positive gains correspont to an improvement of the solution. MBD_SE

algorithm is shown in figure 4.12. The perturb function is presented in figure 4.13.

Perturb performs a composed move. Each simple move is accepted if the gain is positive or if
it is smaller than a random negative value between 0 and -p. Variables can thus be arbitrarily

displaced in the ordering. One alternative way to implement perturb is to execute a simple
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move each time it is called, but in this case the counter ¢ is too much decremented. For this

reason a set of single swaps is used in order to produce higher gains. By the way, this may

also produce higher negative gains to escape from a local minimum.

function MBD_SE (mbd,
var costf: function;
mbd: MBD_TYPE;

costf)

begin
var p:
Cc:
cost,
best:

integer;
integer;
integer;
MBD_TYPE;

oldcost

c
p
best
while

oldcost
mbd
cost
p
if (cost < costf(best))
best := mbd;
C c - R;
end;
else c
end;
return(best);
end;

mbd;
(c < R) begin
costf(mbd);

costf (mbd);

c+l;

MBD_TYPE
/* cost function */
/* initial MBD */

perturb(mbd, p, costf);

update(p, cost, oldcost);
then begin

/*control gain parameter*/
/*counter*/

/*current and old cost*/
/*best mbd*/

Figure 4.12. Pseudo-code of MBD_SE algorithm.

function perturb (mbd, p,
var mbd: MBD_TYPE;

p: integer;
costf: function;
begin

var integer;
integer;

gain:
oldcost:

if (Last _Best > R)
then begin
mbd = random_order (mbd);
return(mbd);
end;
oldcost costf(mbd);
for i = 0 to n-2 begin
mbd = swap(mbd, i);
gain oldcost - costf(mbd);
if (gain > random(-p))
then oldcost

else mbd = swap(mbd,i);
end;
return (mbd);
end;

costf):
/* current state */

/* control parameter */
/* the cost function */

/* if no improvement after R steps */

costf(mbd);

MBD_TYPE;

/* generate a random ordering */

store initial cost */

for all indices */

make a move */

compute the gain */

random accept */

update initial cost */
no:restore initial state*/

/*
/*
/ *
/*
/*
/*
/*

Figure 4.13. Pseudo-code of theperturb algorithm.
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A potential problem with the SE algorithm which was detected in our experiments is the lack of
large uphill climb steps. The solution can cycle around a local minimum if the valley is too
deep (see figure 4.14). There is no mechanism to prevent the process to go back to the same
local minimum after a few steps. To avoid this problem a random state is generated if the best
solution is not improved after R steps. The number R is chosen because it is the expected

number of iterations to improve the best solution.

The update function should also adapted to the ordering problem. We have verified that
perturb generates states that oscillate around a local minimum if we adopt the approach of
[Saa91] where the control parameter is incremented only if two successive costs are equal and
otherwise reinitialized. To circumvent this problem we choose an average value of the last four
costs as a reference. If the difference between the current cost and the average value is smaller
than a threshold value ¢, p is incremented, otherwise it is reinitialized to its default value. The
threshold t is selected to take into account the small oscillations around a local minimum and is

usually set to 2 or 3. The update function is sketched in figure 4.15.

A

random order

start

Size of the MBD

local minimum

)

cycle

o
Ordering space

Figure 4.14. Cycles in the SE algorithm.

4.4 Variable Ordering: the Exact Solution

There are only two methods to find the exact solution for the MBD ordering problem up to
date. The exhaustive search, which performs all n/ permutations rebuilding the MBD at each
new ordering with cost of O(n/2") and the method proposed by [Fri87] that restricts the search
to a subset of the combinations based on the partial orderings, leading to a time-complexity of
o( n3" ) . In order to get a reference to compare the results of the SE technique, we developed
a version of the exhaustive search algorithm that uses the incremental techniques to produce
new orderings. The advantage is that the MBD must be build only once and the resulting
algorithm has complexity ofO(n/) only. To have an idea of the differences with respect to the

other cost functions we show in table 4.1 the respective costs for some small values of n.



Chapter 4 Input Variable Orderin§( Prok

The algorithm is based on a method proposed in [Knu69]. For each permutation of
{x1, x2, ..., x5} variables, it generates n others by inserting the variable x,, in all possible

places:

{xn xp x2 3 s {xp xp x2 3 o XL X2, e, Xno ], Xt

This procedure can be easily implemented using the swap technique. Each swapping generates

a new ordering not already produced. Thus, the number of steps is exactly n/.

global Queue: array of integer; /* last four costs */
Threshold: integer;
Pse: integer; /* default value */
function update (p, cost, oldcost) : integer
var p : integer; /* control parameter */
cost: integer; /* current cost */
oldcost: integer; /* last cost */
begin

var av: integer;

push(oldcost, Queue); /* put last cost in the queue */
a=(Queue[0]+Queue[l]+Queue[2]+Queue[3])/4; /*compute average*/
if (abs(cost - av) < Threshold) /* if out of threshold */

then return(p + 1) /* increase p */
else return (Pse); /* else return default value */
end;

Figure 4.15. Pseudo-code of update function.

n n23n n!2n n!
6 26.244 46.080 720
8 419.904 ~ 10.000.000 40.320
10 ~5.900.000 ~3.7x 109 3.628.800
11 ~21.500.000 ~2x1012 ~40.000.000

Table 4.1. Cost functions for the exact solution
4.5 Experimental Results

We have tested a prototype of the algorithms implemented in Common LISP over a set of
circuits from the MCNC benchmark set and from the Berkeley PLA test set. The results
obtained are summarized in table 4.2. The Initial column shows the MBD size built with the
variable ordering specified in the file. The Swap column shows the application of the greedy
methods. First the function swap_all is applied and then the function swap_down is executed.

This have produced the best results with respect to the greedy methods. Swap% gives the
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percentage of gain of the greedy methods. Column MBD_SE presents the results for the
stochastic approach applied to the initial MBDs. SE% shows the gains produced with the
stochastic approach. Column Exact presents the exact solution for the cases where it could be
computed, here restricted to IXI < 10. Nvar column informs the number of input variables of
each circuit. Last columns AR and ARSA refers to results published in [Ish91]. AR is a greedy
approach that swaps arbitrarily chosen variable pairs and accepts the swap only if it reduces
the size. ARSA is based on simulated annealing and provides, thus, a hill climb alternative to

better explore the ordering space. A ‘-’ indicates that there is no reported result.

Circuit Initial |Swap | Swap% | MBD_SE | SE % | Exact | nvar | AR [ARSA
S5xpl 90 87 3 70 22 70 7 70 70
Alu3 145 | 99 32 65 55 65 10| 65| 65
Bw 120 | 112 7 107 11 107 5 107 107
Dekoder 24 23 4 21 13 21 4 - -
Dk27 33 28 15 28 15 28 9 30 28
Duke2 978 | 449 54 404 58 - 22 - -
F51m 72 69 4 69 4 69 8 71 69
02 20 20 0 20 0 20 4 - -
Ml 49 42 14 38 22 38 8 38| 38
M2 142 | 113 27 87 39 - 25 - -

P1 347 | 243 30 193 44 193 8 - -
P82 72 67 7 61 15 61 5 - -
Risc 111 | 72 35 70 36 70 8 70 | 70
Sgn 81 70 14 55 32 55 7 55| 60
74 66 28 57 28 57 28 7 35 33

Table 4.2. Experimental results for swapping based techniques.

If we do not consider circuit O2, which is a pathological case for the reduction?, we have an
average reduction of the initial MBD of 20% for the greedy approach and of 30% for the
stochastic approach. Compared with the greedy method, MBD_SE produces an average
improvement of 10% over the swap result which represents a relative gain of 50%. MBD_SE
found the exact solution it in all cases where we could compute it. For increasing values of n
the space solution grows in n/ and it is hardest to find the exact solution in a reasonable
computing time. In theory, the best solution should be found if enough computing time is
provided. In practical cases we can expect that, in average, the solution is close to the
optimum. Of course, the time required by the stochastic algorithm is sometimes much larger
than that require by the greedy method. In the worst case (Duke2) MBD_SE run for several
hours, while the greedy algorithms required a few minutes. We have thus a compromise: if
one needs a reasonable solution in a shorter time the greedy approach can be used. If a better

result is more important (as in the case of FPGA synthesis, for example), then the stochastic

2In fact, there is a class of functions whose MBD size is insensitive to the variable ordering. It is the class of
symmetric functions. In this case, for a given function any ordering will produce a MBD with the same size.
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approach should be chosen. Last but not least, for small functions with IX| < 10, the exact
solution can be computed in reasonable time (some hours in LISP on a Macintosh, surely less

than a hour in a workstation in C++).

Comparing our results to those from [Ish91], we may roughly say that they have implemented
a better greedy approach, while our stochastic evolution method have obtained better results
than their simulated annealing one. One precision must be done, however. The execution times
provided in [Ish91] indicates that AR takes in average more than a half of the ARSA average
execution time. In our case, the ratio between MBD_SE and Swap times ranges from 5 to 10
times. As the stochastic techniques should take comparable time, we estimate that Swap

should be much faster than AR in comparable environments.
4.6 Comments

The size of the MBD is a very important parameter. It is directly related to the storage required
to manipulate Boolean functions and to the performance of its logic manipulation algorithms.
For the synthesis into FPGA devices, the diagram’s size is the main criterion in the estimation

the final circuit cost for the methods based on the graph covering approach.

The main factor in the determination of the MBD size is its variable ordering. In this chapter we
have introduced a incremental manipulation technique for MBDs that allows the fast generation
of new variable orderings by swapping adjacent variables in the diagram. As we will see in a
later chapter, this technique can be useful not only for the production of new orderings but

also in the determination of some Boolean properties of functions represented by MBDs.

We have developed three incremental methods for the reduction of the MBD size. One method
uses a greedy approach and is the fastest one, yielding an average reduction of 20% over the
initial MBD size. The stochastic approach overcomes one limitation of the greedy algorithms -
to get stuck at local minimum - at the expenses of more computing time, obtaining average
reductions of 30% with respect to the initial MBD size. Finally, we have implemented the exact
solution by exhaustive search. All input variable permutations are generated by swapping
adjacent variables in the ordering and the best result is retrieved. Its main feature is that it is the
fastest method to find the exact solution for small to medium functions (IXI = 10, see table
4.1). The reason why it achieves better performance than the traditional exhaustive search is
that the use of incremental generation of new orderings avoids the cost of rebuilding the
diagram at each step. For functions with more than 10 variables the approach proposed by

[Fri87] provides better results, but any way they are already too costly to be of practical use.

The greedy method can be used in cases where no strong MBD compaction is required. For
example, if one need to perform a few logic operations with the MBD, then the overhead

introduced by a larger diagram in the manipulation algorithms is probably less important than
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the time needed to find a smaller diagram with the stochastic approach. On the other hand, for
the FPGA synthesis, where the MBD size reflects the final implementation cost, a strong
compaction is recommended even if it can take hours to be completed. The exact approach can
be used efficiently in very small functions, from 4 to 6 variables, as those that occur in nodes

of a Boolean network, for instance.

We found two other similar works in this domain in the literature, both coming from Japan.
[Fuj91] had developed a similar technique for swapping variables. However, the heuristics
proposed to reduce the BDD size based on their swapping technique did not seem very

interesting. They provided a few results on some benchmarks that were not treated here.

[Ish91], on the other hand, presents a set of interesting heuristics based on the swapping
technique of [Fuj91] over a large range of benchmarks. In particular, they have obtained an
important constant time improvement on the exact method from [Fri87] by using BDDs to
compute the intermediate functions. They developed a more exhaustive greedy approach, that
swaps arbitrarily pairs of variables while this reduces the BDD size. If a pair of non-adjacent
variables is selected for swapping, this is done by displacing the variables through a series of

adjacent swaps. This produces better results that our greedy approach, but it takes more time.

Their simulated annealing approach have produced worse results than our stochastic evolution
in two examples. However, this is not really concluding, since they are both stochastic
techniques. To have more confident comparison, we should run both algorithms several times

over the same benchmarks and compare the average results.

In short, the important point here is that the swapping technique allow us to develop several
reordering approaches that are useful not only for the reduction of the MBD size, but also in

other domains of logic synthesis, as it will be seen in next chapters.
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Chapter 5

Minimization of Incompletely Specified Functions

This chapter describes two methods for the simplification of incompletely
specified functions described by MBDs. One is based on the two-level
minimization techniques and generates a prime and irredundant cover for the
Junction. The other one is based on a graph matching approach and aims at the

reduction of the number of nodes of the diagram.

The minimization of incompletely specified functions plays an important role in logic
synthesis. The existence of a set of points where the function value is not defined introduces
additional degrees of freedom in the design that can be explored to reduce the cost of its
physical implementation. A incompletely specified function defines a family of compatible
completely specified functions. The logic minimization problem is how to select among those
functions one that minimizes the circuit realization in the desired technology. The solution is,

of course, strongly related to the design style the logic function shall be implemented.

Let ]7 = (fon> fofp, fac) be an incompletely specified function f: D — {0,1},DC Xf
defines a family of functions comprised between two extremes: fiin <f < finax, Where fiin
and f;,4x are the completely specified functions obtained by setting the values associated to the
vertices in the don’t care set fgc to 0 and to 1, respectively. Thus, finin = (fon» foff V fde» @)
and finax = (fonV facs foff, @). Consider also that cost(f) is the cost function we want to

minimize.

Definition 5.1. The logic minimization of an incompletely specified function f consists in the

choice of a compatible function f, f,in <f =< fimax, such that cost(f) is minimum.
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Although we usually refer to the minimization of a Boolean function, in fact what is minimized
is its logic representation. Indeed, the solution to the minimization problem is a compatible
function whose logic representation leads to a minimal realization in a given technology. The

expressions are related to technological features by means of cost functions.

There are several ways to describe logic functions. Sum-of-products, Boolean networks,
factored forms, Read-Muller expressions, MBDs, Functional Decision Diagrams [Keb92] and
ITE DAGs are some examples. Our interest here concentrates on the minimization of sum-of-

products, Boolean networks and MBDs, due to their application in multi-level synthesis.

The exact minimization of logic functions involves the solution of NP-complete problems and,
thus, can not be envisaged for all but small problems. The alternative in this case is to turn our
attention to heuristic algorithms that can produce good or acceptable solutions. To define more
precisely what is a good solution, let us first generalize the concepts of primality and

irredundance.

Definition 5.2. Let S be a set of elements sj, where each element s; is itself a set. An element
sk is prime if there is no other element sj € S such that sg C sj. S is irredundant if there is

no element sk such that sy © S\ {sk}.

A prime and irredundant form is not necessarily an optimum solution, but it presents some

interesting properties:

* the fact that each element is prime means that the correspondent digital devices implement
no useless logic.
« if the expression is irredundant, the resulting circuit contains no redundant gates.

* a prime and irredundant circuit is 100% testable for single stuck-at faults.

For those reasons, primality and irredundance are used to guide the heuristic minimization
algorithms in the search of acceptable solutions. Therefore, the logic minimization problem can
be restated as follows:

* given a function ]7, find a compatible function f, f;,in <f < fmax, such that the logic

expression of fis prime and irredundant.

The concepts of prime and irredundant cover come from the two-level minimization context.
Using the set notation, the ON-set of the function f'is defined as f,, = { x; € B | f(x; ) = 1}.

A cube is defined as the set of points in the Boolean space that is covered by the cube function.
If C is a cover of f, then a cube ¢; € C is prime if it can not be expanded without intersecting

the OFF-set of the function f. This is equivalent to say that there is no cube c¢; belonging to the
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set P of all implicants of f such that ¢; C c;. Finally, C is irredundant if there is no cube c; that

is covered by C\ {ci}.

A node nj in a MBD is prime if its low and high sons are not equivalent. In other words, n; is
prime is there is no n; € {ny | ny is descendent of n;} such that the f "iis covered by f A
MBD M is irredundant if there are no nodes n; and n; such that n; is equivalent to nj. A MBD
without the X terminal is always prime and irredundant. An incompletely specified MBD, i.e.,
a MBD with the don’t care terminal, is prime but not irredundant because the X terminal

introduces node equivalencies.

The primality and irredundance concepts are extended to multi-level expressions (or Boolean
networks) by considering that each node function is represented by a two-level expression.
Then, if the covers of the nodes are prime and irredundant with respect to the function denoted
by the Boolean network, the network itself is prime and irredundant. It must be emphasized
that a cube of a node cover is prime with respect to the global function, and not to the node
function. This means that we may expand the cube even if this alters the node function,
provided that the network function is not changed. These concepts were used in the multi-level

minimizer BOLD [Bos87].

In this chapter we discuss the minimization MBDs and two-level expressions. The problem of
minimizing multi-level expressions will be tackled in a later chapter, but it is essentially based
on the application of the techniques presented here to minimize the node functions of the
Boolean network. Next section presents a method that produces prime and irredundant two-
level forms [Jac92] directly from the function diagram. The following one aims at the

reduction of MBD size [Jac93], and is targeted to FPGA synthesis.

5.1 Two-level Minimization with MBDs

One of the first logic minimization methods was based on the use of the Karnaugh diagram.
With a little practice, the user can find optimal solutions for functions up to 6 variables.
Beyond this limit the task becomes very cumbersome. The diagram provides a graphical

notation for the following Boolean property:
X;t Xy V f] Xy = (xl \ )_C])'xZ = Xy

This property says that two cubes that differ only by one variable that appears in opposite
phases in each one may be merged into a single cube that does not depend on that variable. By
applying iteratively this property we can generate the prime implicants of the function. Lets

show some examples.
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 Figure 5.1 illustrates the process of generating a prime implicant of a function. The
starting point is a single minterm x;-x2-x3-x4. It is expanded first in the x) direction (Z).

Next it is expanded in the x4 direction (2), producing the prime implicant x;-x3. The

operations performed are the following ones:

(1) X]°X2:X3°X4 v X]X2>°X3'X4 = X]"X3°X4
(2) x1°X3X4 v X]"X3'X4> = X]'X3

* Figure 5.2 shows an example of three different covers of the same function.

(a) is not prime but irredundant. The cubes marked with an asterisk can be merged.
(b) is prime but redundant. The minterms contained on the cube marked with an asterisk are
already covered by other cubes.

(c) is prime and irredundant.

x1

R

X2
Figure 5.1. Cube expansion example.

The first systematic method for two-level minimization was developed by Quine [Qui52]. It

consists basically in two phases:

* compute all prime implicants of the function

* find a minimum prime cover

The main handicap on this approach is the necessity of computing all prime implicants. It can
be shown that a function with n inputs may have up to 3"/n primes. Moreover, the extraction
of a minimum cover from the set of primes is implemented with a branch and bound technique
that is known to belong to the class of NP-complete problems. These limitations restrict the

application of the method to very simple problems.

The advent of the PLAs in the 70’s stimulated the development of new heuristic algorithms for
the minimization of more complex two-level functions. They start by relaxing some

optimization criteria such as either computing a subset of all primes or extracting a near
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minimum cover. Further improvements in terms of performance were achieved by working

directly with the implicants of the function, instead of computing all minterms.

x1 x1

Alial Ak

x3 U U x3 b V-D
abinl» LI

1)

U U
x2 X2

(a) (b)

x1

gl
<

anal®
Y

X2

()
Figure 5.2. Examples of primality and irredundance.

MINI [Hon74] introduced a set of new heuristics that produced remarkable results. It is a multi-
valued minimizer, that is, the inputs may have more than two binary values. The motivation
for the extension of the minimization to multi-valued functions came from the use of decoders

at the PLA inputs. A two-bit decoder receives two inputs, say x; and x» and produces four
outputs: x;*X,, X;*X,, X;°X, and X;-X,. The inverse of these are fed into the input plane of

the PLA. These four functions provide more information than the non-decoded inputs x;, x,,

X; and X,, and may reduce the PLA array of 10-20%. A decoded input can be represented by a

single multi-valued variable. Moreover, MINI approach to handle the multiple-output
minimization was to represent the outputs as a single multi-valued variable, and treat it as any
other input in the minimization process. Another major contribution of MINI was the expand-
reduce iteration. In a first step, an implicant is maximally expanded in its input and output
parts, and the other implicants covered by it are removed. The problem here is that the prime
cover found depends on the ordering in which the variables are taken in the expansion. A

simple example is given in figure 5.3 (a) and (b), with a function of five variables. Both
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covers are prime and irredundant, but (a) is composed by five cubes while (b) is formed by

only four cubes.

x5

x1 x1

x3 x3

i) y
------------------------------------------ o

I | D 55 g | G D
IO @
e | O

X2 (b) X2

Figure 5.3. Two prime and irredundant covers.

The problem in cover (a) is that cube x;-x3 was missed due to the ordering the variables were
selected in the expansion. To minimize the effect of the expansion ordering, MINI reduces the
expanded cover such that each cube contains only essential minterms. Then the expansion-

reduction process iterates until no improvement.

Several minimizers followed the approach pioneered by MINI. The most successful one was
ESPRESSO [Bra84][Rud86]. Based on the expansion-reduction cycle, ESPRESSO introduced
new algorithms that improved the results of MINI both in execution time as well as in the cover

size. The main operations carried out by ESPRESSO are summarized bellow.

1) Compute the OFF-set of the function.
2) Expand implicants into primes and remove covered implicants.

3) Extract essential primes and put them in the don’t care set.
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4) Find a minimal irredundant cover

5) Reduce each implicant until it is composed by only essential minterms.

6) Iterate 2, 3 and 5 until no improvement.

7) Lastgasp - try 5, 2 and 4 one last time using a different heuristic. If successful, continue
the iteration.

8) Makesparce - include the essential primes back to the cover and make the PLA structure

as sparse as possible.

ESPRESSO needs the OFF-set of the function to check if the prime implicants can be expanded
with respect to some variable. If the expanded cube intersects the OFF-set, then the expansion
fails for that variable. Since the essential primes must be present in any solution, they are
removed from the cover in the beginning of the process and included in the don’t care set, in
order to allow the other implicants to be expanded over them. The expansion-reduction
process reshapes the cubes exploring several different covers. The lastgasp is a final try to
improve the result by making sure that no new prime can be added to the cover in such a way
that two primes are removed. This algorithm has produced good results over a large set of PLA
examples. A new version called ESPRESSO-MV was presented in [Rud86]. It extends the
original algorithms to tackle the multi-valued minimization problem. The new heuristics
produced better results than the original ESPRESSO even for binary valued inputs. Another
methods that use different approaches were presented in the literature, as [Gur89] and
McBoole [Dag86]. This later presents an exact procedure that can be applied to functions with
up to 20 inputs. ESPRESSO also had its exact version [Rud87], that computes all primes and
use an exact branch and bound technique to find a minimum cover. Both EXPRESSO-EXACT

and McBoole has achieved comparable results, treating functions of reasonable complexity.

In this work we are interested in the application of two-level techniques for the multi-level
synthesis problem. Its main application is the minimization of the node functions which is
employed either in the multi-level minimization phase or in the node decomposition for
technology mapping. This restrict our attention to single output functions. Another
particularity of the multi-level context is that node functions may generate large OFF-sets. This
can lead to inefficient performance for minimizers that need the OFF-set to expand its primes,
which is the case of ESPRESSO. A new version of ESPRESSO was developed specially to tackle
this problem [Mal88]. They propose to use what they called reduced OFF-set. The idea is that
not all cubes of the OFF-set are needed for the expansion of the implicants. Only the OFF-set

cubes that are adjacent to the implicants are used and the others may be discarded.

We have developed a method that generates prime and irredundant sum-of-products from
single output incompletely specified MBDs. It works directly on the diagram and use some
properties of the MBDs to simplify the minimization process. The cover is produced in a single

bottom-up traversing of the graph. The ordering in which cubes are expanded is defined by the
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ordering of the variables in the MBD. It should be noted that a cube with k variables may be
expanded in k! different ways. Restricting the directions of the cube expansion speeds up the
process, at the price of eventually missing a better expansion. A useful property of MBDs is
that the ON, DC and OFF-sets are all represented in the same graph. Thus, there is no need of
computing a separate OFF-set for cube expansion, we just use the OFF-set already present in
the MBD. As it is a compact representation, the large OFF-sets of the node functions do not

introduce significant overhead.

5.1.1 The MBD Cover

Dealing at the same time with MBDs and sum-of-products introduces a compatibility problem.
They are different types of function representations and a conversion is needed from one type
to the other in order to manipulate them together. To simplify this task we have adopted a
mixed representation called the MBD cover. Each cube is represented by a small diagram, the

MBD cube. An example of this kind of representation is shown in figure 5.4.

The advantage of using this mixed representation is that we can apply all logic operations
defined over MBDs to the MBD cubes as well. In the following subsections we describe the

method in detail.

Figure 5.4. A MBD cover for the function f=xxpx3 v X;x2x4 V X3 X4.

5.1.2 The Method

Let fbe a Boolean function and M its MBD representation. Each node # inside M is the root of
aof M and is associated to a subfunction f"of f. The basic idea behind this method is to find a
prime and irredundant cover for each node n of M, starting by the terminal we want to
compute the cover. Then, at the end of the process, the root of M will contain a prime and

irredundant cover of f.

To find a prime and irredundant cover of f", we assume that the low and high sons of n are

already described by prime and irredundant covers. The variable associated to node n, v,
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divides the Boolean space of f"into two disjoint subspaces: one connected to v, and the other
connected to its complement, v, . This fact is illustrated in figure 5.5. The cover of the

function f low(n) g represented by Sy = {ci1, 21, ... , ¢p1} and the cover of the function

high(n) . .
e " is represented by Sp = {c1h, C2h, ... , Cgh}. This corresponds to the Shannon

expansion [Sha49]:
1 fn _ fhigh(n) —  plow(n) _ —
() =V, vy, f = Vp(Clh V €2n V ...V Cgh) V V,,(C11 V €21 V ...V Cpl

= Vn Vn

Cyv Cyve [ CppY GV

C“v C2lv Clhv CZhv-"

Figure 5.5. Boolean subspaces of N.

The cover of f"is computed by merging the covers of f highn) and £ lowm) as in (1). The
cubes are made prime with respect to node variable v, and the cover is checked for

irredundance. The global process is exemplified in figure 5.6.

|x1x2 v x1x3 vx2x3|

Legend:

[ x2 v x3 |- node's cover
arrows - cover propagation
a,..,0 - node identifier

Figure 5.6. Generation of a cover for a MBD.

The diagram of figure 5.6 represents the majority function. To find its correspondent sum-of-
products form we start by the terminal 1. The next step is to compute the cover of node a.

Then, the covers of B and  can be computed. Finally, the root cover is found. Note that this

order must be respected to allow the application of (1).

5.1.3 Primality

Verifying if a cover is prime can be done by taking each cube and testing it for cube primality.
ESPRESSO [Bra84] expand procedure does this by expanding each cube - from a list of cubes
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ordered by size - and eliminating any cubes of the rest of the cover that are covered by the

high
expanded one. In the MBD context, as the covers of f lowtm and f™* " are assumed to be
prime, the primality of the cover of f* can be guaranteed by dropping the variable v,, (v,) from

the cubes ¢; € f""™ ( £y cover that can be made independent of v, (,) . Thus, a

prime cover for /' can be found as stated in the following theorem:

Theorem 5.1. Let n be a node of a MBD. Suppose that the low and the high sons of n have

their associated functions represented by prime covers. Then, a prime cover that describes
the function associated to n is obtained by dropping the variable v, (V,) from the cubes c;

€ phishtn) ( f [ov(")y that can have their ON set expanded over the £/ ( £78"™y ang

merging with single cube containment the covers of 8" and £ (sons’ covers).

Proof. If the sons' covers are already prime, the only variable that can be dropped is v,. The
high
only exception is if a cube ¢; € f © " ( £y cover is contained by a cube GE f low(n)
high
(f ) ), and both cubes are independent of v,. This is solved by testing the cubes for

single cube containment when merging the two covers. O

The first step in obtaining a prime cover for the function associated to a node 7 is to look for
the cubes that can be made independent of variable v,,. Let ¢, be a cube that belongs to the high
son node’s cover, and c| be a cube that belongs to the low son node’s cover. The expansion of
the ON set of a cube from the high (low) son’s cover over the low (high) son’s cover can be

verified by testing the following cases:

1) if there are two cubes cp, and cj that are identical, i.e., ¢y = ¢] , then these cubes can be
merged and v,, and v, are eliminated.

VnCh V V,C¢1 = ch(vpvv,) = ¢h = ¢

2) if a cube ¢y, (c) is contained in some cube c] (cp), then v, (v,) can be dropped from cp

(cn)-

Ch=Cl: Vyeh V V,cl=vuchp v V,(Chvel) =VuCh V V,Ch V V,C1=Ch V V,C]

Simplification occurs due to the Boolean property: x <y = x v y =y. A graphical

representation of the expansion of c¢j over ¢y, in a Karnaugh like diagram is shown in figure
5.7. The dashed lines shows the effect of dropping v, and v,, .

3) if a cube cp (cp) is contained by the low (high) son’s cover, then v, (Vv,) can be

dropped from cy, (cy).
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low(n) low(n) ) —

ch= W yen v v, f =VuCh V V,(chV f

= VyCh V V,ChV V, f =ChV V

An example of a Karnaugh like diagram of property (3) is shown in figure 5.8.

Vn Vn

[ [

Figure 5.7. Cube expansion over another cube in an adjacent Boolean space.

The first two tests above are easy to implement when representing two-level functions by
theirs covers. Cube identity and cube containment involves the comparison of only two cubes
at a time. The third case concerns function containment and is costlier. In ESPRESSO a
tautology checking algorithm is used to verify if a cube is contained by a cover. It should be
noted that the three cases above are in growing generality. Testing the third one automatically

implies testing the first two ones.

=<I
<

Figure 5.8. Cube expansion over a set of cubes in an adjacent Boolean space.

With the mixed sum-of-bdd-cubes representation, it is quite easy to implement the third
option. The imply operation [Bry86] can be used to verify if a cube ¢ is contained by a
function f: ¢ = f= ¢ vf =1. Figure 5.9 illustrates the idea. However, with MBDs there is a
simpler way to verify this implication using the restrict operation. Restricting the MBD to the
cube is equivalent to cofactor the function with respect to the literals that appear in the cube.
Checking the resulting function provides the desired information. In the implementation

section more details of the operation will be provided.
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5.1.4 Irredundance

The first cover of node n, obtained according to the previous section, is already prime. To be
irredundant, there must be no cube c; in f* such that ¢; is contained by f= f" \ {¢;}. Let us
first analyze how redundant cubes can be created when merging the prime and irredundant

covers of each son of 7.

Figure 5.9. Test for cube primality.

When dropping the node variable v, from a cube, it expands its ON set over the complemented
side of the variable in the Boolean space, as illustrated in figure 5.7 and 5.8. In this case,
some cubes in the complemented side can be totally or partially covered by the expanded ones.
By consequence, some irredundant cubes can become redundant. Making the cover of n
irredundant consists in identifying and removing those cubes that become redundant due to

this process.

Some heuristics can be applied to simplify the identification of the redundant cubes. We do not
need to look for redundant cubes inside one son's cover. Only those cubes who intersect

expanded cubes from the brother's cover can be made redundant.

We can divide the cubes from each son’s cover into two categories: the expanded and the non

expanded ones. We have then four groups:

* low expanded cubes
* low non-expanded cubes
* high expanded cubes

* high non-expanded cubes
Candidate cubes for elimination are those that intersect expanded ones:

* low cubes that intersect high expanded ones.

* high cubes that intersect low expanded ones.
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We do not need to test low and high non expanded cubes between themselves, as they do not

intersect.

The solution adopted here was to keep a list of intersection cubes for each cube. The whole
process consists in a bottom up traversing of the MBD, starting at the terminal from which we
want to obtain the cover. The cube’s intersection list is updated as it climbs up the MBD. Cube
redundancy is detected by testing the cube against its intersection list. More details of this

procedure are presented in section 5.1.7.

5.1.5 Don't Care Minimization

When minimizing a incompletely specified MBD, the don’t care set must be taken into account

both in the test for cube primality and in the verification of cube redundancy.

The checking for cube primality is easily extended to the don’t care case using the restrict
operation. When the function is restricted to the cube we generate a new subfunction, which is
independent of the variables in the support of the cube. The new subfunction is defined over
the set of vertices contained in the cube. Figure 5.10 presents an schematic view of this
operation by representing the cube as a window over a Karnaugh like diagram. If we do not
consider the DC set, the cube imply the function when the function is a tautology over the cube
domain, i.e., Vx € support(cube), f(x) = 1. Taking the DC set into account then the cube
imply the function if Vx € support(cube), f(x) € {1, -}, i.e., if the function is not 0 over

any vertex of the cube domain.

don't care cube

| expanded cube
=>window

on set cubes

Figure 5.10. Cube expansion over the don’t care and on sets.

The cube redundancy check is performed by keeping for each cube ¢ in the subfunctions’
covers a list of the cubes that intersect it. Any time the list is modified, ¢ is compared against
the cubes in the list to see if it is covered by then. The DC set can be present both in ¢ and in
the cubes of the intersection list. Indeed, a cube may be expanded over don’t care points and
these becomes part of the cube. If the ON set points of ¢ are covered by the cubes in the

intersection list, then the DC points can be switched to 0 and the cube is deleted.
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Applying the extensions above allows the generation of prime and irredundant covers for

incompletely specified functions.

5.1.6 Implementation

To compute the cover of a node function we have supposed that both sons have their
associated covers already generated. To achieve this, we start processing the MBD at the target
set’s terminal and process all nodes in all paths that connect the root to this terminal. We create
first a list of processing nodes, which is initialized with the 1 terminal. The method is general
in the sense that, if we initialize the list with the 0 terminal, we get the cover of the OFF set. To
process a node means to take all of its fathers, make a copy of its cover for each father and
merge it with the fathers covers. These fathers are placed in the processing list and the node
just processed is removed from it. The nodes inside the list are ordered by level, so the root is

always the last node to be processed.

Node variable dropping (v,) can be tested by verifying if each arriving cube from the sons

covers implies the brother's function, i.e., if (cjj — [ high(n)) then the variable v, can be
dropped from cube c;j. The cubes are stored into two lists: exp and nexp, corresponding to
cubes that were expanded over the node variable and cubes that were not expanded,
respectively. The “cube imply MBD” operation is implemented in the following way. Let
c =lplj...l. be a cube, where [; is a literal of c. If ¢ is an implicant of a function f, then
cofactoring f with respect to all /; € ¢ should produce a tautology.

As it was explained in a previous section, cube implication may be reduced to MBD restriction,
which is a faster operation. The time needed to restrict a MBD to a set of variable values {/;} is
constant [Bry86] and independent of the cardinality of {/;}. It is basically the cost of traversing
the whole MBD.

The redundancy verification is made by keeping all cube intersections of a cube in an
intersection list. Cube intersection is verified when merging the sons covers. After merging the
covers, each cube is tested against its intersection list. Each intersecting cube is subtracted
from it. If the cube is reduced to the O terminal or is contained in the DC set of the node, it is
redundant. Note that when subtracting two cubes, a sum of products form can arise. MBDs are
nice to handle this problem because the MBD diagram can hold either a cube or a sum of

products.

The function that does the main job is MBD_SOP. A sketch of the algorithm is shown in figure
5.11. The variable associated to a node n is referred as n.var. The function takes as parameters
a list of node_st’s called node_list and a hash table father_table(k d), where the keys are MBD

nodes and the associated data is a list of the key node’s fathers in the MBD. The node_st is an



Chapter 5 Minimization of Incompletely Spégifie

auxiliary structure that holds a MBD node, the cover of the node function (herein called node’s
cover, for short) and the lists of expanded and non-expanded cubes of the node’s sons. The
list node_list is used to execute a breath first traversing of the MBD, starting by the terminal we
want to compute the cover. The list is initialized with the desired terminal node. Each time
MBD_SOP is called it processes the first node of node_list (the current node) and remove it
from the list, discarding all data associated to it (the cover associated to the node, etc.). Then
the fathers of the current node which are not already present in node_list are included in it,
ordered by their variable index. The function is executed iteratively up to the root node is

processed, which indicates the end of the algorithm.

function mbd_sop (node_list, father_table): list

var node: node_st; /* current processing node */
fl: MBD_node; /* list of fathers of the node */
fst: node_st; /* father’s node structure */
begin

n := node_list[1];
node_list := delete(node_list, 1);
make_irredundant(n);
fl := get_fathers(n, father_table);
if (fl = nil) /* the empty list indicates the root */
then return(n);
foreach fin fl begin
cover := make a copy of n.cover;
if (f not in node_list) /* first time f is acessed */
then begin
fst := create a node_st for f;
foreach cube in cover begin
if (cube imply brother function)
then put cube in fst.exp
else fst.nexp:= fst.nexp+(n.var - cube)
node_list := adjoin(fst, node_list);
end; {foreach}
end; {then}
else begin /* f has one son already prosseded */
fst := get fst from node_list;
foreach cube in cover begin
if (cube do not imply brother function)
then cube:= add n.var to cube;
if (cube not covered by fst.exp)
then put cube in fst.cover;
end;
end; {clse}
end; {foreach}
end; {MBD_SOP}

Figure 5.11. MBD_SOP algorithm.

The current node n must have its cover already computed by a previous call to MBD_SOP. The
first step is to make the cover of n irredundant, which is done by function
make_irredundant(n). It scans all cubes in the n’s cover and check if each cube is not covered
by the set of cubes that intersects it. After the current node is processed, then the fathers of the

node will be handled. For each father f of n one out of two cases may arrive. Let b be the
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node connected to the other branch of f, i.e., a brother of n. In the first case, b has not already
been processed. Then, the cover of n will form an initial cover of f. The cubes that come from
n’s cover will be tested against the function associated to b to check for cube primality. Those
that have the variable f.var dropped are stored in a list of expanded cubes, f.exp. The cubes
that are not expanded are stored in the list f.nexp. The second case is when b has already been
processed. In this case, f has already an initial cover obtained from the processing of » and
the cover of n is combined with the initial f’s cover. If a cube from n’s cover is expanded with
respect to f.var then it is compared with the lists f.exp and f.nexp to find cube intersections.
Cubes from n’s cover that are not expanded are checked against those from f.exp to find

possible cube intersections.

5.1.7 Experimental Results

We have implemented these algorithms in Common Lisp and experimented MBD_SOP with the
PLA test set from Berkeley. The results were compared with ESPRESSO. For each PLA we
have selected the output that produces the greater MBD and applied to it the minimization
algorithms. The results are shown in table 5.1. We see that MBD_SOP produces the same
results as ESPRESSO most of the time. This is rather surprising, because MBD_SOP does not
iterate over the final solution trying to jump out of a local minimum. Neither can it identify
local minimum during the MBD processing. We estimate that the fact that the MBD is itself a

prime and irredundant representation of a function could have led to these good initial results.

We have tried to analyze the effect of the MBD size on the performance of MBD_SOP. The
MBDs were processed twice. First MBD_SOP was applied to the MBDs built with the original
variable ordering. Then they were reduced with the incremental manipulation techniques
presented in the previous chapter. The last columns of table 5.1 shows the results. We present
the ratio of the size of the MBDs before and after the reduction and the ratio of the processing
time to generate the two-level covers as well as the results in terms of number of cubes and
literals. We can see that generally a smaller MBD for the same function requires less computing
time. This is striking for the DUKE example, were the initial MBD was reduced by a factor of
0.24, and the computing time was reduced to 0.142 of the initial case. But DUKE is rather a
pathological case where the initial variable ordering is too bad. A counter example is circuit
5XP1, where the diagram compaction lead to an increase in computing time. The problem is
that the variable ordering affects the way cubes are expanded and merged and thus may alter

the result obtained, eventually leading to a degradation in the algorithms performance.

The MBD could be considered as a look ahead structure to predict the binate variables selection
in the unate recursive paradigm [Bra84]. The size of a MBD is not, nevertheless, a good
estimation for computing complexity. If we analyze some circuits with similar MBD size as

5XP1, F51M, RD73 and M2, after reduction, we observe that they have covers that are far
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different. The processing time in this case is proportional to the cover size rather than to the

MBD size.
ESPRESSO BDD-SOP BDD-SOP Gain %
non-reduced reduced

Circuit Cubes Lit. Size Cubes Lit. Size Cubes Lit. Size Time
5XP1 18 82 25 19 89 19 19 89 0.76 1.167
ALU3 22 124 52 22 124 31 22 124 059 04
BW 6 21 15 6 21 12 6 21 0.8 1.044
DEKODER 4 6 8 4 6 7 4 6 0875 0.754
DK27 2 12 15 2 12 9 2 12 0.6 0.269
DUKE 15 160 180 15 160 44 15 160 0.24 0.142
F51M 23 110 41 23 110 23 23 110 0.56 0.845
Ml 5 21 15 5 21 13 5 21 0867 0.771
M2 2 19 19 2 19 19 2 19 1 1
02 3 9 8 3 9 7 3 9 0875 1.1
P1 13 54 63 14 60 32 13 54 0.51 0.31
P82 5 18 14 5 18 13 5 18 0.92 0.778
RD73 42 252 22 48 288 22 48 288 1 1
RD8&3 10 40 14 14 56 14 14 56 1 1
RISC 3 17 12 3 17 12 3 17 1 1
SQN 17 85 38 17 85 31 17 85 0826 1.03
X9DN 20 368 61 20 368 57 20 368 0934 0.871
74 28 136 33 28 136 13 28 136 0712 0.712

Table 5.1. Comparison with ESPRESSO.

5.2 Minimizing the MBD Size Using the Don’t Care Set

More recently, the development of the application of programmable devices like FPGAs raised
up the interest on new methods to synthesis and optimization programmable networks. The
particular features of FPGAs open new fields of research targeted to specific technologies.
Among them, the synthesis on selector based FPGAs using MBDs is one of the subjects of this
work. The proposed method, described in a later chapter, relies on a graph covering approach
that maps the MBD diagram directly to a network of multiplexor cells. In this case, the MBD
size is a good estimation of the cost of the mapped network. It is well known that the size of
the MBD diagram is closely related to the ordering of the input variables (see chapter 4). There
is, however, a correlated problem that, up to the knowledge of the author, was never treated in

the literature:

« given a incompletely specified function f, select a completely specified function

Jmin =f = fimax, that has the minimum MBD size.

The problem is how to use the don't care information to attain this goal. One way is to use
two-level minimization techniques: first compute a prime and irredundant cover for the

function and then use this cover to build the MBD of the now completely specified function.
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But in fact the two-level logic's cost functions - number of cubes and literal count - do not
directly relate to the MBD size. A smaller cover does not necessarily lead to a smaller MBD.
This may be shown on the example of figure 5.12. The cover of function (a) is greater than
the cover of function (b), but the MBD of (b) is greater than the MBD of (a). In consequence,
the use of efficient two-level minimization techniques may be inefficient to tackle the MBD

size's minimization problem.

x1 x1
0 1 1 0
X2 X2 X2 X2
oT!  orrl <L o7l
x3 x3 x3
07 ) 0>rf
0 1 0 1
(a) (b)
X]X2 V X2X3 V X]X3 X]XpX3 VX2X3

Figure 5.12. Sum-of-products and MBD representation of two functions.

The solution proposed here relies on the interrelation between graphs and logic properties in
MBDs. The don’t cares in the function’s domain are used to locate redundant nodes in the MBD

diagram that can then be removed, reducing the diagram’s size.

5.2.1 The Subgraph Matching Approach

The method proposed here works directly on the MBD graph, using the X terminal in such a
way that the number of nodes is reduced. The basic idea is to assign values to the don't care
set and then to reduce the MBD by deleting redundant nodes that can result from the don't care
assignment. A node is redundant in the MBD if either there is another node in the MBD that is
equivalent to it or its low and high sons are equivalents. Remember that two nodes are

equivalent if:

e they are the same leaf, or
* they have the same index and value, and their respective low and high sons are equivalent

t0o.
The following property of MBDs is the basis of our minimization method.

Proposition 5.1. Let M be an MBD that represents an incompletely specified Boolean function f

of p variables. Let n be a node in M that has the don't care terminal X as one of its sons.
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Let i be the index of n. The X son of n can be replaced by any subfunction which depends
on any subset of variables in & = {xjli<j=<p}.

Proof. The ordered nature of the MBD indicates that the subfunctions connected to the low and
high branches of n depend only on variables with indices i < j < p. If one of its sons is X
then it stands for a subfunction with 2" minterms in the domain of fde- Its clear that X
can be replaced by any subfunction in this domain by assigning appropriate values to each

of its minterms.

Figure 5.13 puts in evidence this point. The low son of x; can be replaced by any subfunction
depending on any subset of X| = {x2, x3, x4}. Note that, in an MBD, this is equivalent to

replace the X terminal by any possible submbd depending on those variables.
The MBD minimization problem can then be stated as follows:

* find an adequate subfunction to replace the X terminal

* reduce the resulting MBD by deleting redundant nodes

The reduction of a completely specified MBD is identical to the reduction of ROBDDs, and is
implemented as described in [Bry86]. Hence, the main problem in MBD minimization is the
choice of a subfunction to replace the X terminal. If its father is a node n with index i, then
there are 22(p_i) candidate subfunctions to replace it. The exhaustive search is, of course,
impractical. The problem is simplified by noting that the only subfunctions that can introduce

redundancies in a MBD are those that already appears in it.

0 1
0 x2 Y Y
] i

3 H d

XS 1 x4
0 x4 Y 1 1 u

0T x3
d H
X 0 1

X2
Figure 5.13. A MBD and its correspondent Karnaugh diagram.

Proposition 5.2. Let M be a MBD that denotes an incompletely specified Boolean function f of
p variables. Let n, with index i, be a X leaf’s father. Then, the set of submbds depending
on X; = {xjli <j =p} that can generate redundant nodes in M when replacing the X leaf is
contained in the set S = {n;;j EM i < j < p}, where njj; means a MBD node with index j.
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Proof. Redundancy in a MBD is based on node equivalence. In the general case, two nodes are
equivalent if they have the same indices and values and if their respective low and high sons
are equivalent too. Thus, a node » that has the X terminal as son can be make equivalent to

other node m in M if and only if X is replaced by a son of m (low or high). O

The space solution for subfunctions is then reduced to the subset of submbds that start with
nodes with indices greater than i. Put another way, the MBD minimization can be seen as a
matching problem: two nodes are equivalent if it is possible to find a matching for the X

terminal that make them isomorphic subgraphs.

Figure 5.14 . Subbdds equivalence.

Figure 5.14 shows an example. Nodes o, 3, % and d are submbds of an MBD, all of them
with same index and value. Either node 3 or node 0 can be made equivalent to node «,
depending on the matching chosen to the low(a) = X. If low(a) = X is replaced by
low(a) = 1, then nodes a and & become equivalent, and node a can be deleted, for instance.
In this case, node a's fathers will be redirected to node 9. In trivial cases, X can be either
replaced by its brother - in this case the father is redundant and can be replaced by the X's
brother - or simply by the 0 or 1 constant. The objective here is to find a matching to X that
maximizes the reduction of the MBD. Consider still figure 5.14. If node o is made equivalent
to node 3 or 0, or if low(a) = X is replaced by low(a) = €, then node o will became
redundant and will disappear when the MBD is reduced. It is not however, the only node that
can be eliminated. The redirection of the branches from the fathers of node a to the node that
replaces it may produce new redundant nodes among node a's fathers and the reduction

proceeds.

Figure 5.15 gives another example that illustrates this point. In this graph, when replacing
low(B) = X by low(B) =0 in MBD (a), we have low(p) = high(p) and node § becomes
redundant. Replacing 3 by high(f3) we get the MBD (b). However, if low(g) = X is replaced
by the low(B) = €, we have that low(B) = low(x) and high(p) = high(y). In this case, p and
are equivalents. Thus, low(a) = high(a) and node a is redundant. Replacing o by high(a)
we get the MBD (d). We say that the redundancy has propagated through node § up to node a.
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In general, it is hard to predict the reduction achieved when replacing X by another subgraph
without reducing the entire MBD. It should also be noted that a X leaf can have several fathers.
In this case, a X leaf is associated to each father and can be matched independently of the
others. Hence, to find the best reduction we must evaluate all possible combinations of X

matching.

produces

(b)

produces

(©) (d

Figure 5.15. Alternative assignments.

5.2.2 Subgraph Selection

The approach presented here consists in finding all the subgraphs that can be matched to the X
leaf and then selecting the matches that produce the smallest MBD. The set of candidate
submbds to match the X leaf is defined in proposition 5.2. However, for a given X father n,
the number of candidates may be significantly further reduced. Indeed, as we look for the
generation of equivalent nodes in the MBD, only the i-brothers of n (nodes at level /;) must be

compared against n. Nodes with different indices can not be equivalent.
The subgraph (submbd) selection can be divided into the following steps:

* find all nodes that have the X leaf as one son
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» for each of these nodes find the set of equivalent nodes in the MBD

* select the set of matchings that produces the smallest MBD

Finding all X's fathers is trivial. One must traverse the MBD and look at the node's sons. To
build the set of equivalent nodes for a X's father f we must test it against each of its brothers.
Subgraph equivalence is checked by means of a graph isomorphism verification algorithm that
includes the don't care processing. Selecting the set of subgraph matchings that produces the
smallest MBD is not a trivial task. The subgraph interactions must be taken into account when

evaluating the possible matches.

LetLj, I <j =<p,be the set of nodes at level j, where p is the number of input variables. Let
{n; } be the set nodes nj in Lj that are X's fathers, and Ej = {m | mj is equivalent to n; } be
the subset of i-brothers(j) that match n; . For each my there is a set of X matchings that makes
mj equivalent to 7; . This set is composed by X leaves directly connected to 7; and also by all
X leaves that can be reached from nodes 7n; and mg. Remember that the heuristic adopted deal
only with the X's fathers and do not consider the others X's ancestors. The point here is that,
if n; is matched against a i-brother m, some X leaves that can be reached from n; and from
mj can be matched too. This means that, if there is a X's father f which can be reached from
n; or mk, the matching of n;' with mk may imposes a match to f, and in this case we must

forget all other possible matches of f with its brothers. This is illustrated in figure 5.16.

w
o
x1 x1
0 1 § v 0 L o
X2 0 X2 X2
1
% 0 1 e 1 0
x3)1\ 5 x3), 0
0 0
x4 0 x4 ]
0171
X 0 1 0 X 1
(a) (b)

Figure 5.16. X leaf matchings.

Subdiagrams (a) and (b) belongs to the same MBD. To match submbds (a) and (b) we must set
low(a) = v and low(o) = . This is illustrated in figure 5.17. Subdiagrams y and v appear
duplicated for easy of visualization. The subdiagram that results from the matching is shown
in (c¢). Thus, if a and w are matched, node o can not be further matched with another node at
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level 2. However, if o and w are not matched then node o can be treated independent of graph

(a).
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Figure 5.17. MBD matching.

Definition 5.3. A bound set of assignments of two subgraphs s; and s; is the set of

assignments of the X leaves needed to make s equivalent to s.

In the previous example, the bound set of assignments of subgraphs (a) and (b) is
{(low(a), v), (low(o), x)}. The term bound enforces the fact that these assignments must be
made simultaneously to guarantee the equivalence. Note that high(v) do not need to be
matched to make (a) and (b) equivalent, because it was introduced in subdiagram (a) by a
previous assignment (low(a) = v) that made (a) equivalent to (b). To say in other words, node
v can be independently matched with any other i-brother of the MBD that contains (a) and (b),

because it does not belongs to the bound set of assignments that makes (a) equivalent to (b).
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To find the set of X matches that produces the smallest MBD we compute all possible
combinations of X's fathers assignments. For each X's father we build a list of equivalent
nodes. For each equivalent node we build the bound set of assignments. We start the matching
from the root down to the terminals of the MBD. For each match we remove from the X fathers
set all fathers that are involved in the bound set of assignments of the match. This restrict the
search by reducing the matching possibilities of the affected X's fathers. When the X's father
set is empty, we reduce the MBD and evaluate its size. The set of assignments that results in the
smallest MBD is returned as the desired result.

5.2.3. Algorithms

Two auxiliary data structures are used: a fathers-table, which is a hash table with the node
pointers as keys and the list of their father nodes as data and a brothers-array, which is an
array of lists of i-brothers. The main function is MBD_DC. It takes an MBD with a X terminal
and reduces it by applying the subgraph matching technique. A sketch of the algorithm is
shown in figure 5.18. The main functions are make_eqvlis and get_best.assgn. The first one
finds all equivalent nodes for the X's fathers and builds the bound set of assignments for each
match. The second one evaluates the set of assignments and chooses those that result in the
smaller MBD. Finally, the selected set of assignments is applied to the MBD. Then it is reduced
and returned as the result of the function.

function MBD-DC (mbd) : MBD_TYPE

var mbd: MBD_node;

begin
build up Brothers_Array and Fathers_Table;
X_node = find_node_in_mbd(mbd, value, X);
X_Fathers = get_fathers(X_node);
/* for each X_Father make the list of equivalent nodes

and the associated binded assignment sets */

eqvlis = make_eqvlist(Brothers_Array, X_Fathers);
best_assgn = get_best_assgn(mbd,eqvlis,X_Fathers,null);
mbd = reduce(apply_assgn(mbd, best_assgn));
return(mbd);

Figure 5.18. MBD_DC algorithm.

Make_eqvlis simply takes each X's father and finds its list of equivalent nodes by successive
calls of match_MBD. Match_MBD works basically as the unification function of PROLOG. If
the two MBDs are identical, it returns TRUE. If they can be made equivalent by matching X
leaves then the function returns the list of matched nodes. If the two MBDs are not equivalent,
then the function returns FALSE.

The result of make_eqvlis is a structure that contains for each X's father, the list of equivalent

nodes. Each equivalent node is in fact a structure composed by the following fields:



Chapter 5 Minimization of Incompletely Spégifie

- EQV: the equivalent node.
- ASSGN: the list of X's fathers that must to be matched.

The function get_best_assgn, shown in figure 5.19, recursively processes the list of X's
fathers for every set of assignments. When the list is empty there is a complete set of X
assignments done and the MBD is reduced to evaluate its size. The best result is stored and

returned as a bound set of assignments.

function get_best_assgn (mbd, eqv_lis, X-fathers, assgn)

var x_node: MBD_vertex;
eq_nlis: list;
eq_node: MBD_node;
begin

if (empty(X_fathers)) then begin

evaluate_assgn(assgn);

size = count_nodes(redude(mbd));

if (size < Best_Size)

then begin

Best_Size = size;
Best_Assgn = assgn;

end;
return();
end;
x_node = first(X_fathers);
X_fathers = rest(X_fathers);
/* get all i-brothers that are equivalent to x_node */
eq_nlis = get_eqv_nlis(x_node, eqv_lis);
for each eq_node in eq_nlis begin
x_f = remove matched x_fathers from X_fathers;
/* add to the current set of assignments the set obtained from eq_node */
assgn_aux = append(assgn, get_assgn(eq_node));
/* proceed to match the remainding x_fathers */
get_best_assgn(mbd, eqv_lis, x_f, assgn_aux);
end;
return(Best_Assign);

end;

Figure 5.19. Get_best_assgn procedure.

5.2.4. Experimental Results

We have implemented a prototype version of the algorithms in common LISP in our system.
To simplify the generation of the functions to test the algorithm we have selected them among
the outputs of incompletely specified PLAs from a PLA benchmark set. The idea is to simulate a
multi-level circuit by representing each circuit subfunction by a PLA output. There are some
advantages with this approach. First, we have a rich variety of subfunctions, possibly far
different each other. Second, they are known subfunctions, not a set of anonymous ones

produced by some decomposition method.
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The subfunctions are optimized with respect to their don't care sets and then they are mapped
into ACTEL cells. The cost function to be minimized is the size of the MBDs that represent the

subfunctions, which is a good estimation of the final circuit cost in terms of multiplexor cells.

We have compared MBD_DC against ESPRESSO [Bra84] for the minimization of the MBD size.
When using ESPRESSO, we start with a sum-of-products representation of an incompletely
specified subfunction that is minimized to generate a prime and irredundant cover. Then its
MBD representation is built. When using MBD_DC, the don't care set of a subfunction is
directly included in its MBD representation. Then the subfunction is optimized with MBD_DC.
In both cases the variable ordering is the same. After being minimized, the MBDs are mapped
onto ACTEL cells. The results are shown in table 5.2.

example initial MBD espresso MBD DC % gain
apla0 35 29(15) 17(7) 41(53)
aplal 34 28(14) 16(7) 43(50)
apla2 30 15(7) 12(7) 20(0)
becd0 8 5(1) 5(1) 0(0)
bcdl 10 9(3) 7(2) 22(33)
bed2 11 10(4) 8(3) 20(25)
bench0 24 6(1) 5(1) 17(0)
benchl 29 7(3) 7(3) 0(0)
bench2 35 18(8) 15(6) 15(25)
dk170 38 21(8) 10(4) 52(50)
dk171 35 21(7) 10(3) 52(57)
dk172 32 18(7) 9(4) 50(43)
dk270 25 8(2) 7(2) 13(0)
dk271 25 8(2) 7(3) 13(-33)
dk272 32 15(5) 7(2) 53(60)
Total 428 218(87) 142(55) 35(37)

Table 5.2. Comparison between Espresso and MBD_DC

The initial MBD is the subfunction's MBD with don't cares included. It is the starting point for
the MBD_DC algorithm. The espresso and MBD_DC columns show the size of the minimized
MBDs and, in parenthesis, the number of ACTEL cells after technology mapping. We have used
the same mapper in both cases. The column gain compares the results of ESPRESSO and
MBD_DC. For the MBD size, MBD_DC wins in all but two cases, where ESPRESSO obtained
equivalent results. For the number of ACTEL cells, MBD_DC lost in one case, even though the
MBD it has generated is smaller. This occurs because the mapping is affected not only by the
MBD size but also by its specific topology. Considering this set of subfunctions as a single
multi-level circuit, the minimization of MBDs with MBD_DC has saved 35% in terms of MBD
size and 37% in terms of number of ACTEL cells with respect to the minimization with
ESPRESSO.
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5.3 Comments

In this chapter two minimization methods for incompletely specified functions represented by

MBDs were presented.

In the case of the two-level minimization, it was introduced a mixed representation of
functions, the sum-of-mbd-cubes that provides a uniform way to deal with both MBDs and
two-level covers. The algorithm is flexible in the sense that it can generate a cover for either
the ON or the OFF sets by just selecting the starting terminal and exchanging the terminal
values. The minimization process is exactly the same for both cases. An additional interesting
feature is that in this approach we do not need to compute explicitly the OFF set of the function
to perform the minimization. In multi-level logic optimization node functions may have large
don’t care sets, which can produce huge OFF sets. This is a serious drawback for minimizers
such as ESPRESSO that computes the OFF set in the simplification process. It should be noted
that recent versions of ESPRESSO where modified to tackle this problem [Mal89].

The cost of the generation of the sum-of-products is difficult to estimate. It is more related to
the cover size than to the MBD size. The specific topology of the diagram is also important
because it dictates the way cubes are merged when computing the covers of the MBD nodes.
The quality of the results was similar to those obtained by ESPRESSO, which is rather

surprisingly due to the sophistication of its algorithms.

Next, a new method was presented for the minimization of incompletely specified MBDs
targeted to the reduction of its size, which is an important factor in the case of selector-based
FPGA synthesis. The method is based on an algorithm that uses the X terminal to match
subgraphs in the MBD in order to maximize the number of redundant nodes that, when deleted,
will reduce the diagram size. The algorithm is quite complex and the solution proposed is
exhaustive in the sense that it tries all possible matchings. It can, thus, be time consuming for
large examples. As in the two-level case, the time complexity is not directly related to the MBD
size, but depends on the number of nodes connected to the X terminal and on their topology.
The matching itself is not the bottleneck of the algorithm, but the selection of the best set of

matchings can be quite costly if the number of bound set of assignments is large.

The benchmarks results have confirmed that the MBD size minimization with subgraph
matching produce better results than the application of two-level techniques. This is a rather
natural outcome of the lack correspondence between the two-level cost function and the size of
the MBDs.
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Chapter 6

FPGA Synthesis

This chapter presents a method for the synthesis of selector based FPGAs circuits.
The initial MBD is reduced using the techniques described in chapters 4 and 5.
Then a subgraph resubstitution phase takes place that tries to replace isomorphic
subgraphs by new variables. The multiplexor cells are represented by small MBDs.
The MBD diagram is then covered with these small MBDs and a netlist of

multiplexor cells is obtained.

It is well known that the design of a digital system is guided by a set of competing targets. The
choice of the design style to implement the circuit is driven not only by performance aspects
but also by economical purposes. Fast turn around time (the time to design and implement a
circuit in a given technology), for instance, is very important factor in the highly concurrent
market of digital electronics. Another key factor is the amount of devices produced. Circuits
produced in large scale must be strongly optimized to reduce fabrication costs. On the other
hand, circuits fabricated in small scale should privileged the reduction of the development
costs.

The set of design styles available to the designer today reflects this diversity of constraints.
Gate arrays, standard cells and full custom technologies provide different trade off between
device density and turn around time. Gate arrays allow for faster but less complex designs
than full custom, for instance. Another important category is the Programmable Logic Devices
(PLDs). A PLD is a logical device that can be programmed to implement a variety of different

logic functions. Its main features are:

e fast turn around time (from some minutes to a few hours)

* low cost computational resources (most designs are made in personal computers)
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» fast and simple correction of design errors

* flexibility of application

The first PLDs were introduced in the beginning of the 70’s, the Programmable Read-Only
Memory (PROM). In 1975 Signetics introduced the Programmable Logic Array (PLA), which
had (and still has) a large acceptation in the market. The Programmable Array Logic (PAL)
developed by MMI appeared in 1978. Its is composed by a programmable AND matrix
connected to a fixed OR matrix. In 1985 Lattice proposes the Generic Array Logic (GAL), that
is an extension of the PAL but with the additional feature of being electrically erasable. Since
then new devices had been introduced with crescent complexity, including features as internal

registers, feedback loops, output polarity and so forth.

A major restriction of these devices was the low density of integration. However, the
technological evolution associated to new pre-diffused architecture is changing this panorama.
Two of the main major advances in the PLD area were the introduction of the Logic Cell Array
(LCA) by Xilinx [Xil92] and the multiplexor based cells by ACTEL [EIG89], which were
afterwards denoted Field Programmable Gate Arrays (FPGAs). The FPGAs can be viewed both
as an evolution of PALs, where size is increased by an order of magnitude as well as a
refinement of mask programmed gate arrays, where reprogramming time and cost are
drastically reduced. These features lead to a increasing acceptation and use of those devices by

the electronic industry.

Xilinx architecture consists in an array of Configurable Logic Blocks (CLBs) that can be
connected by a network of programmable interconnections. The circuit interface is controlled
by Input/Outputs interface Blocks (I0Bs). Each CLB is a rather complex block if compared with
the previous PLDs. In general it is composed by two logic blocks that can implement any
function up to 4 variables (series 3000/4000) plus a set of multiplexors, two D flip-flops and
some feedback loops. One of the main features of Xilinx devices is its complete
reconfigurability. Both the interconnections and the logic functions implemented by the CLBs
can be reprogrammed. Interconnections are implemented with FETs controlled by SRAM cells.

Thus, the same device can be reused to realize a completely different logic function.

ACTEL cells, on the other hand, provide a completely different approach. Its structure is
similar to the mask programmable gate arrays, formed by strips of logic cells separated by
interconnection channels. Each logic block provides a tree of three 2 to 1 multiplexors. The
interconnections are programmed by means of fuses (or anti-fuses) that connects vertical and
horizontal segments. A fundamental difference with respect to Xilinx devices is that the fuses
are not reconfigurable. The lack of flexibility of this approach is compensated by a greater

device density due to the smaller size of the fuses.
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Each type of FPGA device has its advantages and disadvantages [Hil92]. The multiplexor
based nature of the ACTEL devices had motivated us to develop synthesis techniques based on

MBDs due to the direct correspondence that exists between MBD nodes and multiplexor cells.

The first mapping systems that address the ACTEL technology used the standard cells based
approach [Mai88], [Bra87]. This requires the creation of a library with the set of all possible
gates that can be simulated by the ACTEL cell. Each cell implements all functions with two
variables, 243 functions of 3 variables [Kar91], and so forth. It results in a large and complex

library.

The problem can be simplified by choosing logic representations that are closer to the target
device. Amap [Kar91], for instance, is based on If-Then-Else DAGs (ITE), the data structure
created by Karplus [Kar88] as an extension of BDDs. The main difference between a ITE and a
BDD is that in the former the decision function associated to a node is not a single variable, but
an arbitrary Boolean function. If we restrict the decision function to a single variable, then the
ITE becomes equivalent to a BDD. Amap constructs an ITE for each function and covers it with
a greedy approach. The algorithm exploits the similarity between multiplexors and ITEs to
achieve a very fast mapping. Proserpine [Erc91] and ASYL-FPGA [Ben92] are BDD based
FPGA mappers. They differ in the way BDDs are used to cover the functions. In Proserpine
the circuit is represented by a Boolean network, where each node function is described by a
BDD. The matching algorithm checks if the node function can be covered by ACTEL cells by
looking for graph isomorphism between the BDD of the node and a BDD representation of the
multiplexor cell. In the search of a solution several orderings for the node BDD are tried, up to
find a good match. In ASYL-FPGA the Boolean functions are represented by a single multi-

rooted BDD, and the mapping consists in covering it with the BDDs of the multiplexor cells.

Another mapper is Mis-PGA [Mur92], which combines different alternative techniques in the
search of the best solution. It uses in fact three mapping methods. The initial circuit is
represented by a Boolean network. In the first step the node functions are mapped from its
sum-of-products representation. If a node can not be mapped into a single cell then its function
is re-expressed as a ITE DAG. The ITE is then implemented using a graph covering approach
that matches it with a ITE representation of the cells. A final improvement is tried by collapsing
the circuit into a single multi-rooted BDD and then by mapping it directly with the BDD of the

cells. The best result is returned.

Our approach is similar to that of [Mur92] and [Ben92]. In this case the cost of the final circuit
is proportional to the size of the MBD. The idea is to apply the techniques shown in chapters 4
and 5 to reduce the size of the MBD, which should heuristically minimize the final circuit, and

then to map the reduced MBD the multiplexors using a graph covering approach.
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The global process is depicted in figure 6.1. The starting description is the MBD of the function
to be synthesized. The graph covering technique associates nodes in the diagram with
multiplexors in the cells. The relationship among nodes and multiplexors is not one to one
because each ACTEL cell contains three multiplexors and only one of them, the root, is
externally accessible. The consequence is that some multiplexors of the ACTEL devices will not
be associated to MBD nodes. Anyway, the size of the MBD is still the most important parameter

in the estimation of the implementation cost in this kind of synthesis.

The first step in the synthesis is to reduce the size of the MBD using the incremental
manipulation techniques presented in chapter 4. This first step is based on the sensitivity of the

MBD size with respect to its input variable ordering.

MBD description

( MBD Ordering )

¢ Reduced MBD description

( MBD DC Minimization )

Minimized MBD

( Subgraph Resubtitution)

Hierarquical MBD

( FPGA Mapping )

Circuit net-list
Figure 6.1. FPGA synthesis process.

Next step tackle the case of incompletely specified functions, which are minimized using the
subgraph matching approach presented in chapter 5. This method takes the number of nodes
of the diagram as cost function and tries to minimize it by replacing the X terminal by other
subgraphs in the MBD. The resulting diagram is submitted to a resubstitution process that
identifies isomorphic subgraphs in the MBD that can be replaced by a single node associated to
a new variable. This produces a hierarchical MBD, where some input variables can represent
subfunctions described by subMBDs. The final step is the mapping into ACTEL cells, which is
performed using a graph covering approach. The rest of the chapter gives a more detailed view

of these processes.
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In the next section, the architecture of the ACTEL cells is described. The subgraph
resubstitution method is presented in the sequel. Finally, the mapping into ACTEL devices is

outlined.
6.1 ACTEL Devices Architecture

The ACTEL devices combines some of the flexibility of mask programmable gate arrays and
the convenience of field programmable devices. The basic logic block is based on multiplexor
devices that can implement a large set of Boolean functions through an adequate assignment of
values to the logic block inputs. The channeled structure eases the task of CAD routing tools,

while the electrically programmable architecture improves its flexibility of application.

The architecture of the chip is sketched in figure 6.2. It consists in a set of rows of logic
blocks separated by routing channels. The interconnections are realized by programming the
fuses that connects predifused horizontal and vertical wire segments. The fuse is a special
structure that present a high impedance in its original state. It can be turned on by the
application of a high voltage across it. The fuses have a relatively low resistance in the

conducting state (= 500 Q) and are relatively small.
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Figure 6.2. ACTEL chip architecture.
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There are two kind of fuses. Cross fuses controls the interconnection of vertical and horizontal
segments. Horizontal fuses control the interconnection of horizontal segments. Programming
the fuses is simplified by an efficient addressing scheme that uses the wiring themselves, pass

transistors connecting adjacent segments and control logic at the periphery of the array.

The logic block architecture is shown in figure 6.3. It consists on a tree of two to one
multiplexors. The inputs of the first stage multiplexors as well as the control signals of all of
them can be programmed by the user. The second stage multiplexor’s control signal is driven
by an OR gate, which enhances the flexibility of the logic module. The user can program the
logic function implemented by the block by selecting appropriate values for those inputs. The
logic block can realize any function with two inputs, most of the functions with three inputs,

and so forth, up to a single function with eight inputs.

A0 — 0
/-
Al g
0 ouT
SAJ /I
1 s
Z_
B1—1 g |

- | SO S1

Figure 6.3. Logic block architecture.

The ACTEL chip present some limitations specially in term of routability. The fuse resistance
together with the parasitic capacitance’s of the segments form a RC tree. To avoid an
unacceptable growth of the circuit delay the number of fuses in a path that drives any input is
restricted to three. Another restriction is that the inputs of a logic block are accessible either
from the channel above or below but not from both of them. This handicap was minimized by
using a flexible cell, where most logic function can be implemented in different ways, using
distinct inputs. Selecting which implementation meets the routing constraints is the task of the

router.
6.2 Subgraph Resubstitution

The subgraph resubstitution step can be seen as a kind of logic decomposition. The idea is to
find some subgraph configurations that may be replaced by a single node in the MBD. The
subgraphs extracted form new subfunctions, associated to intermediate variables that are

introduced into the original MBD. This process can be quite complex. We shall introduce it

thranah a cat af avamnlac far tha calra Af cimmnlicita
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A simple example is given in figure 6.4. The two subgraphs in 6.4(a) belongs to the same
MBD M. They have the same structure, the edges have the same labels (0 and 1) and they
depend on the same variables. Moreover, each subgraph has one root and only two
descendants. If we make a copy of one of these subgraphs and assign Boolean constant values
0 and 1 to its descendants we obtain a subMBD that denotes a subfunction of M (figure
6.4(b)). We then choose a intermediate variable to stand for this function, say y; and replace
the subgraphs on M by a single node depending on y;, as depict figure 6.4(c). We obtain a
new MBD M’, where the subgraphs of figure 6.4(a) were replaced by subgraphs of figure
6.4(c). The size of M’ is two less the size of M, because we replaced two subgraphs of size
two by two subgraphs of size one. However, a new subfunction was introduced, and the
global size of M’ is size(M’) + size(MBD of y;). If we discard the terminals, then the global

size of M’ is the same of M and there was no gain with this resubstitution.

0
1 o \1 o \1
B C D A B C D
(a) (b) (©)

Figure 6.4. A simple subgraph resubstitution.

This simple example introduces some of the main problems with subgraph resubstitution. The
first one is the identification of isomorphic subgraphs, and the second one is the evaluation of
the gain obtained. The isomorphism detection algorithm must consider the subgraph structure,
the labels of the edges and also the variables associated to each node. Therefore, if the node
connected to B in figure 6.4(a) was associated to a variable different than x;, then these
subgraphs will not be isomorphic. On the other hand, the gain of must be evaluated before
executing the resubstitution. Note that there can be several possible resubstitutions inside a
MBD and some of them may be incompatible. The gain evaluation must consider only

compatible resubstitutions.

The subgraph isomorphism algorithm is similar to the MBD equivalence one, with some
additional constraints derived from possible interactions between the subgraphs. Let us make
an initial analysis of the problem in order to get a felling of the type of difficulties that must be
tackled. Equivalent or isomorphic subgraphs may appear in any region of the MBD. They must

have a single root, otherwise they could not be replaced by a single node. Another restriction
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is that any set of equivalent subgraphs must start at the same MBD level. This is exemplified in
figure 6.5, where two sets of isomorphic subgraphs are shown. The first set S; is composed
by subgraphs whose roots are associated to variable xp. The second set S; is that whose
subgraph’s roots are associated to variable x;. As S1 and S, have a non empty intersection,
they are incompatible subgraphs. This means that we can resubstitute one of them, but not
both. Note that we can have more than a set of equivalent subgraphs that start with roots with
same index. This is shown in figure 6.6. In this case, the subgraphs are compatible, even
though they can share some nodes. These nodes do not preclude the resubstitution, but will
affect the gain evaluation. In the follow we define more precisely the terms used informally up

to here.

VN

Figure 6.6. Two sets with the same root.

Definition 6.1. Two subgraphs s; and sp of a MBD M are single-output-equivalent
(s-out-eqv, for short) if the following conditions are verified.
* 51 and s have a single root node
* all the edges that leave s (s2) are connected to only two distinct nodes of M
* the MBDs associated to s; and sp are logic equivalent under as adequate choice of its
descendant nodes.

A set of s-out-eqv subgraphs S = {sj} of a MBD M is referred as a s-out-eqv class.
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Definition 6.2. The characteristic MBD of a set of s-out-eqv subgraphs {s;} of a MBD M is the
MBD obtained by making a copy of one subgraph and assigning a terminal node to each of
its two descendants. It represents the subfunction that is extracted from the M if the set of

subgraphs {s;} is resubstituted by a new node.

For instance, the MBD of figure 6.5(b) is the characteristic MBD of the subgraphs shown in
figure 6.5(a).

Definition 6.3. The resubstitution gain (r_gain) of a set of s-out-eqv subgraphs S = {s;} of a
MBD M is the difference between the size of M and the global size of M, the hierarchical

MBD obtained after the resubstitution. Its value is determined by the following formula:
r_gain(S) = ISI*(size(Ms) - 1) - size(Ms)
where Mg is the characteristic MBD of S. Size(Mg) is the size of Mg without terminals.

Thus, r_gain(S) gives the amount of nodes saved if we resubstitute each s-out-eqv subgraph
si in S by a single node. The formula simple states that each subgraph s; contributes with a
gain of size(s;) (the size of its characteristic MBD less the terminals) minus one (the new node
introduced at its place). To the contribution of all subgraphs we must still subtract the number

of nodes of Mg, the intermediate function that was created.
6.2.1 Resubtitution Algorithms

The process of finding, evaluating and resubtituting subgraphs in a MBD is called
mbd_sg_rsb, summarized in figure 6.7. It is a greedy approach, were the algorithm iterates
over the MBD until no more gain is obtained. At each loop it scans the diagram computing the
r_gain associated to each MBD level /;. The r_gain of [; is the gain obtained if we resubstitute
the s-out-eqv subgraphs that have their roots in /;, if any. If the algorithm finds a set of
positive gains in a single loop, then it selects and executes the resubstitution corresponding to
the highest gain and continues the iteration. If no positive gain is found in a single loop, it

stops and return the new MBD generated.

Figure 6.7 shows only the logic flow of the process. In fact, to compute the resubstitution
gain of the s-out-eqv subgraphs of MBD level i we must first to find them. This is the more
complex task. To avoid repeating this process later (when doing the resubstitution) we keep
the s-out-eqv subgraphs previously computed in a auxiliar data structure. Thus, the function
subgr_rsb does not recompute those subgraphs, but just replace then by a new node in the
MBD.

The identification of the s-out-eqv subgraphs works at each MBD level at time. The nodes of
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subgraphs must be compared among themselves to identify the equivalent ones. Note that the

depth of the subgraph is not known a priory.

function mbd sg rsb (mbd): MBD_type
var ga: array of int; {gain array}
imax: int; {max gain index}
begin
repeat
forall_levels i in mbd
ga[i] = subgr_gain(mbd,i);
imax = max_gain(ga);
if (ga[imax] > 0)
subgr rsb(mbd, imax);
until (ga[imax] <= 0);
end; {MBD SOP}

Figure 6.7. MBD_SG_RSB algorithm.

=T (W

—
E-Y

Figure 6.8. Example of equivalent subgraphs.

Comparing subgraphs two by two will result in an unacceptable cost. We should consider not
only n/2*(n-1) comparisons, where n is the number of subgraph roots in the level being
processed, but we must take into account that the same root can denotes more than one
subgraph and may belong to different s-out-eqv classes. Figure 6.8 exemplifies this point.
Roots O3 and O2 denote two subgraphs each one, one defined by the set of nodes inside the

rectangular region and the other, smaller, defined by the nodes inside the circular region. The
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subgraphs in the rectangular region are deeper than those in the circular regions, but smaller in
number (two against three). We must evaluate all possible resubstitutions to get the better

result.

We describe know the algorithm for the identification of candidate subgraphs for
resubstitution. A candidate subgraph (or simply candidate, for short) has a single root and
only two descendants. Following this definition, any node in a MBD is a candidate, because all
of then are connected to the two terminals of the MBD. This definition of candidate is too
general, and we must restrict ourselves to a simpler type of subgraph. We consider only
subgraphs formed by a set of predefined patterns, where each pattern is itself a candidate. The

set of basic patterns is shown in figure 6.9.

(d) (e ®
Figure 6.9. Candidate patterns for resubstitution.

Patterns from (a) through (f) show explicitly the subgraphs as they appear in a MBD. Subgraph
(g) denotes a set of patterns in a compact way, in order to avoid drawing all possible

combinations obtained by replacing labels {a, b, ¢, d} by 1’s and 0’s.

The identification of a candidate using patterns is a stepwise process. Each root node is
checked to see if it is the root of one candidate pattern. The root nodes associated to the same
candidate pattern are grouped together. For example, in figure 6.8 roots O1, O2 and O3 are
associated to the candidate pattern MAJ (figure 6.9(g)). They form a s-out-eqv class which is a
first alternative for subgraph resubstitution. In this example, there is no other s-out-eqv classes
in the same MBD level, but in general there can be more than a single one. Next step is to
reapply the candidate recognition algorithm to the subgraphs rooted at {01, 02, O3} in order
to determine its depth. To do that, the root nodes are changed to the set of nodes {144, 142,

143}, respectively. Then, these new roots are checked against the candidate patterns. Nodes
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{144, 142} match the MAJ pattern, but 143 not. The subgraphs that start at {O1, O2} and
finish at nodes {39, 20} and {35, 18} form a second alternative for resubstitution. Each of

these alternatives are evaluated and the best one is selected. Their respective gains are:

r_gain({01,02,03})=3*4-1)-4=5
r_gain({01,02}) =2*%(7-1)-7=5

Therefore, in this example both alternatives provide the same gain. Resubstituting subgraphs
{01, O2} results in the MBD shown in figure 6.10.

D3 N2 D1 DO

g

Figure 6.10. MBD after resubstitution.

A sketch of the algorithm for finding candidates is presented in figure 6.11. First the two main
structures used are described. SubgrType holds the data associated to a subgraph being
identified. PatternGroup store a set of s-out-eqv subgraphs, the type of the current pattern and
the characteristic MBD of the subgraphs. The function receives a PatternGroup as parameter.
The first step when processing one MBD level is to create a PatternGroup where each node in
that level is transformed into a SubgrType. In this case, the root and the current nodes are the
same, and t0 and tl are the low and high sons. The list nl is used to keep track of the nodes
present in the subgraph. Its purpose, among others, is to help computing the r_gain associated
to the subgraph. In fact, the r_gain presented in definition 6.3 is valid only for a special case
where the nodes of the subgraph have no fathers outside the subgraph. Otherwise we must
subtract from the subgraph size all nodes with external fathers as well as all their descendants.

Eliminating nodes used outside the subgraph would corrupt the function represented by the
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MBD. The list nl helps in locating the node’s fathers and in identifying nodes that must stay in
the diagram. The algorithm summarizes the following steps:

1. splitting a set of subgraphs passed as parameter into a set of PatternGroups;
2. recursive application of subgr resub to every new PatternGroup created;

3. the evaluation of the cost of the subgraph resubstitutions.

record SubgrType:

root: MBD Node; /* the root of the subgrah */

cur: MBD Node; /* current root of a new pattern */

t0, tl: MBD_Node; /* the current subgraph terminals */

nl: list of MBD Node;/*the list of nodes inside the subgraph*/
end record;

record PatternGroup:
type: PatternType /* type of the pattern (figure 6.9)*/
mbd: MBD_type; /* characteristic MBD - s-out-eqv class*/
subgr list: list of SubgrType; /* the s-out-eqv class */

end record;

function subgr resub (PatternGroup pg) : PatternGroupCost
var pattern list: list of PatterhGroup;

subgr list: list of SubgrType;
begin

subgr list = make a copy of pg.subgr list;
foreach subgraph sb in subgr list begin
n = sb.cur; /* get the current node of sbgraph */
if (n is the root of a pattern) then begin
if pattern € pattern list /* pattern already exists */
then insert sb in pattern.subgr list;
else begin
create a new pattern p;
put sb in p.subgr list;
include p in pattern list;
end;
update sb; /* sb.cur, sb.t0, sb.tl and sb.nl */
end;
end {foreach};
if (pattern list is empty) then
return (r_gain(pg), list(pg));
else begin
foreach PatternGroup p in pattern list begin
(cost, pgl) = subgr resub(p);
accum_cost += cost;
patt group list = patt group list U pgl;
end;
if (accum cost > r gain(pg))
return (accum_cost, patt group list);
else
return (r_gain(pg), list(pg));
end;
end;

Figure 6.11. Subgraph_resubstitution algorithm.

Steps 2 and 3 are meaningful only if step 1 is successful. If the current nodes of the subgraphs
passed as parameter to the function are not associated to candidate patterns, then the function

returns the cost of its parameter. If one or more new PatternGroups is found, then
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subgr resub is applied to each one of them. The r_gain of those subgraphs is computed,
added and compared with the r_gain of the subgraphs passes as parameter. The best result is
returned in the form of a list with the cost as first element and a list of PatternGroups as the

second element.

After a set of PatternGroups is selected, the resubtitution takes place. See figure 6.4 to follow
this process. For each PatterGroup PG a new variable is created (6.4(a) is a possible PG). This
variable is associated to a new subfunction, represented by the characteristic MBD of PG
(6.4(b)). For each subgraph in the subgr_list of PG a new MBD node is created. The ancestors
nodes of the subgraph root are redirected to the new node. The new node’s low son is

assigned to the tg subgraph’s terminal and its high son is assigned to t terminal (6.4(c)).
6.3 FPGA Mapping

Once the MBD is reordered, minimized with respect to the don’t care set and decomposed by
subgraph resubstitution, it is ready for the mapping. The mapping is performed directly over
the MBD diagram. The ACTEL device is represented itself by a MBD. As the control variables of
the ACTEL_MBD nodes are accessible to the user, it is possible to generate a family of MBDs
from the ACTEL_MBD by setting those control variables to adequate values. Figure 6.12 shows
the ACTEL_MBD and its derived subgraphs.

The approach proposed here is to cover the MBD using the derived patterns obtained from the
ACTEL_MBD. Graph covering is known to be a complex task, belonging to the class of NP-
complete problems. For such intractable problems we must turn out to heuristic methods that
may produce acceptable results. The covering algorithm adopted here is based on the dynamic
programming approach [Aho83]. This technique was been successfully used in the technology

mapping area [Keu87][Det87]. We describe herein its application for the MBD covering case.

The MBD diagram is logically decomposed into a forest of trees. We use the term logically
because the subfunctions are not extracted and replaced by new variables. What happens is
that MBD nodes with more than one father are not merged during the covering process.
Instead, each of these nodes is treated as the root of a subMBD, and the dynamic covering is
applied independently to each subMBD. The dynamic covering algorithm finds the optimal
solution for each MBD tree, by computing the cost of all possible subtrees. This idea is
illustrated in figure 6.13. First, subtrees B and C are optimally covered. Then the other

subtrees can be optimally covered using the results obtained to B and C.

To see how this work on a MBD, let us take another example. Figure 6.14 shows a familiar

MBD example in (a) and a set of possible matchings of the root node (0).
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1 0
BO B1 A0 A1 BO Bl AO A1 BO B1 A0 BO A0
(a) ACTEL_MBD (b) SO = S1 (c) S0=S1,SA=0  (d) S0=S1,SA=0,SB=0

BO A0 A1 BO A0 BO A0 A1 BO B1 A0

(e)SB=0 (f) SB=0,SA=0  (g) SB=0,S1=S0 (h) SA=0

Figure 6.12. ACTEL_MBD and derived subgraphs.
A B C
independently
covered
T T 1T T 1

Figure 6.13. Dynamic covering (tree tiling).

Thus, from the eight subgraphs derived of the ACTEL_MBD (figure 6.12), four subgraphs can
be matched against the root node 0. Note that node 3 can not be used in the matching because
it has more than one father. In the dynamic covering, the four possible matches of node O must
be evaluated. As the ACTEL device is the same for all matches, the cost of each match is 1.
Therefore, the cost of the mapping in terms of area is approximated by the total number of

devices used. The goal here is to find a mapping with the minimum number of devices.
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Figure 6.14. A MBD and the possible matchings of its root node.

Following the dynamic covering approach the cost of the root mapping is one (the root match)

plus the sum of the costs of the input subgraphs mappings.

cost(node_match) =1 + E cost(i)

i € match_inputs
In our example, the cost of the match (b) is one plus the cost of the mapping of nodes
{3.,4,5}. For match (c) the cost is one plus the mapping of nodes {2,3,4}, and so on. The
root node match will be determined only after the all subgraphs bellow it were mapped. The

cost evaluation of the mapping of our example is depicted in figure 6.15.

Nodes {3.,4,5} must be matched independently because they have more than one father. It
remains four possible matches for nodes {0,1,2}, as shown in figure 6.14. The four
corresponding costs are shown at the root node 0. The values in parenthesis are the costs as
calculated by the algorithm, while the real cost is shown outside. The difference between the
values is that some costs are computed twice or more, due to reconvergent paths in the MBD
(nodes 5-2 and 5-3-2 are reconvergent). However, this difference propagates upward in the
MBD and provide a relative estimation of the costs. The effective cost can be found easily by a

single traversing of the mapped MBD.

The result of the mapping is shown in figure 6.16 (a). There is a potential problem with the
dynamic covering method that is put in evidence in the ACTEL case. The constraint that a node
with a fanout greater than one must be mapped separately is too restringent here. The problem
is that an ACTEL device associated to a single MBD node has a high absorption capability, i.e.,
it can absorb up to three other nodes, and this capability is sometimes lost in the dynamic
covering. This drawback is tackle by a post-processing step where the devices are selectively

collapsed.
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6,5,5.4(11,10,10,9)

4(5)

Figure 6.16. MBD mappings.

Two collapsing rules are used to reduce the ACTEL devices count:

1. if a single node is associated to a ACTEL cell then all its fathers are checked to verify is
they can absorb it. In this case, the node is unmapped and included in its father’s cells.

2. if all but one fathers of a single mapped node can absorb it, then it is unmapped and the
father that could not absorb it is mapped into a new ACTEL cell containing the father and
the node.

Rule 2 above is a generalization of a similar rule presented in [Ben92]. The result of these
rules can be see in figure 6.16. In (a) node 4 (5) can be absorbed by node 3, but not by node 1
(2). Applying rule 2 node 4 (5) is unmapped and node 1 (2) becomes the root of an ACTEL
device. Know nodes 1 and 2 can absorb node 3, and the final result is shown in (b), a

mapping that saves one device.
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6.4 Experimental Results

We use our LISP prototype to evaluate the method on a set of standard benchmarks for logic
synthesis. The circuits come from the MCNC benchmark set and [Geu86]. The circuits are
described in the MLL or in the PLA format (see annexes). Each file is read and coverted into a

MBD. Then we apply the following operations:

* MBD reordering, with the greedy and the stochastic approaches
* subgraph resubstitution

* mapping

Table 6.1 draws the results. We compare our technique with Amap [Kar91], ASYL-PGA
[Ben92], Mis-PGA [Mur92], Proserpine [Erc91] and to MislI [Bra87]. The later uses a general
mapping algorithm, while the others are targeted to multiplexor based mapping. Results from
Amap, Mis-PGA and MislI were taken from [Mur92]. The results from Proserpine were taken
from [Erc91] and those from ASYL-PGA were obtained by running it on a SPARC station.

Circ Logos [ Misll | MisPGA | AsylPGA | Proser | Amap
5xp1 41 51 35 37 53 42
alu2 34 193 175 39 - 188
bw 61 81 54 61 67 83
duke2 217 176 158 266 177 175
f51m 38 52 39 35 63 56
misex1 21 22 16 21 25 25
misex2 52 46 38 46 45 47
rd53 10 - - 10 - -
rd73 20 32 25 20 - 32
rd84 30 62 36 30 70 62
sao2 47 52 49 48 - 56
vg2 243 47 30 43 46 44
z4 9 20 14 15 - 20

Table 6.1. Benchmarks for mapping with ACTEL cell.

The results from Logos correspond to the best ones produced by the combination of the
heuristics described above. As expected, most of them comes from the application of the

stochastic reordering, which produces smaller MBDs than the greedy approach.

We can see from the table that Logos produces in average circuits with costs equivalent to
those produced by the state-of-art technology mappers. In some cases we indeed obtain the
best result. Z4 is an example were the stochastic ordering finds the best ordering, which have a
topology that is suitable for the graph covering approach with ACTEL cells. A counter example

i1s VG2. This is a particular case where the multi-level representation is simple, but its MBD
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representation is large (= 1000 nodes). The difference with respect to the other mappers is that
their results refers to the multi-level circuit mapping. Both ASYL and MisPGA map both the
decomposed and the flattened MBD representations and report the best result. The ordering
heuristics in this case where not able to reduce the MBD such that the direct mapping produces
results equivalent to the mapping of the multi-level representation, probably because such

ordering does not exists (the minimum size MBD is still too large).

There is a trade off between a fast reordering (greedy) that produces in average less optimal
outcomes and the more time consuming reordering (stochastic) that usually leads to better
mappings. In synthesis, the quality of the result is more important than design time, if this one
keeps among reasonable limits. A good solution, in this case, is to try both ordering methods
and take the best solution. Although the time for stochastic reordering can be of one to two
orders of magnitude greater than the greedy approach, this is feasible for most practical

circuits.

In these examples, the synthesis time goes from a few minutes to some hours in the LISP
prototype running on a personal computer. It is expected that an efficient implementation in a

workstation could change minutes and hours in seconds and minutes, respectively.

This is valid for medium and even large circuits. On the other hand, industrial strength
examples ! as those from ISCAS benchmarks are sometimes so complex that we are not able
even to build their MBD representation. The workstations run out of memory because the
diagram required is too large. For huge MBDs we certainly will not be able to apply stochastic

re-ordering techniques, but the greedy one may be surely envisaged.
6.5 Comments

In this chapter we have developed algorithms to synthesize multiplexor based circuits from the
MBD description of the functions. The basic assumption at the beginning of this task was that
the similarity between the logic representation primitives and the technological resources
should lead to an improvement in the results obtained with respect to standard or general
synthesis methods. The empirical results obtained seems to confirm this hypothesis. In fact, if
we analyze the results of the benchmarks in terms of standard mapper x specialized mappers
(those based on multiplexor like structures as ITEs and BDDs) we can see that the standard
mapper (Misll) never produced the best result, but frequently the worst one. The same

remarks are valid for the time taken for the synthesis.

The approach adopted here is a natural outcome of three main factors:

' The term industrial strength is used in the literature to refers to huge circuits, with very high time
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* MBDs are suitable for the synthesis in ACTEL cells
* the main cost function in multiplexor-based synthesis is the MBD size

* the availability of good reordering heuristics for the reduction of the MBD size

Thus, the proposed method relies on a good initial reduction of the MBD size followed by the
mapping to the ACTEL cells. An intermediate step, always pursuing the goal of reducing the
MBD size, is the subgraph resubstitution that produces an hierarchical structure. In this case,
some of the MBD inputs represent in fact subfunctions which are themselves described by their
own MBDs.

Among the heuristics introduced in the FPGA synthesis, the reordering algorithms presented in
chapter 4 are surely the main responsible of the good results obtained. The mapping itself is
quite similar to the other approaches based on graph covering. The subgraph resubstitution,
although conceptually interesting, is useful only for particular cases. In most examples the

subgraph resubstitution either does not apply or does not produce any gain.

The minimization of the MBDs with respect to the don’t care set is another factor with strong
influence in the FPGA synthesis. In this case it can be used after the reordering heuristics in
order to produce a further reduction of the MBD size. The reordering techniques can then be
reapplied after the don’t care minimization as a final step in the reduction process before the
mapping. Some examples of the application of the don’t care based MBD minimization were

presented in the previous chapter.

With respect to the performance of the algorithms, the subgraph resubstitution is quite fast,
because it deals with a simplified version of the subgraph isomorphism problem. In a single
top-down step all the s-out-eqv classes for one MBD level are computed. Looking for the s-
out-eqv classes of all levels requires n - 2 steps, where n is the number of MBD levels. At each
step the algorithm can potentially go from the processing level up to level n - 2. If we let
k = n - 2, this stands for a complexity in the order of O(k(k-1)/2) = O( K ). But in almost all
cases there are either no s-out-eqv subgraphs or only swallow ones, which drastically reduces

the average algorithm cost.

The FPGA mapping cost is dominated by the dynamic programming graph covering technique.
Again in this case the cost is reduced due to the small size of the trees. It is a consequence of
the MBD reordering that increases the sharing of subfunctions. This leads to a reduction in the
processing time but also means that the optimality of the dynamic programming is somewhat

lost. The pos-processing steps compensate this improving the quality of the result.
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Chapter 7

Multi-level Logic Synthesis

This chapter presents an application of the MBDs in the synthesis of library based
multi-level circuits. After compacted with respect to its input variable ordering, the
MBD is decomposed into a Boolean network. The network is then minimized with
respect to its internal and external don’t care set. Then, the resulting network is

mapped on the target technology.

In this chapter we discuss the application of MBDs in the synthesis of library based designs.
An introductory analysis of the multi-level synthesis problems was done in section 1.3. The
approach adopted here is to follow the traditional two-phases method that split the synthesis in
two tasks: a technology independent logic optimization followed by a technology mapping

step. The synthesis flow is presented in figure 7.1.

The starting Boolean function description is a MBD. The first step is the variable ordering that
tries to reduce the MBD size using the techniques presented in chapter 4. The reduction of the
MBD size leads to savings in memory and computing time. Another aspect to consider is that a
reduced MBD means a diagram where the sharing of subfunctions is increased. This statement
is based on the following reasoning. There are two ways a node n can be eliminated on a
MBD. First, if its low and high sons are in fact the same node. Second, if there is another node
m that have the same low and high sons. In this case, n and m are equivalents and n can be
deleted. The fathers of n are then redirected to m. This implies that the subfunction represented
by m is shared by more subMBDs. It was proven in [Lia92] that node deletion due to
equivalent nodes is responsible by more than 90% of the reduction of a MBD. Thus, a MBD
that is reduced with respect to its variable ordering has a greater amount of sharing among its
subfunctions, and this feature can be interesting for some decomposition techniques that aims

to split the MBD into a reduced number of subfunctions.
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MBD description
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Figure 7.1. Multi-level synthesis with MBDs.

After the variable ordering, the MBD is decomposed into a set of subfunctions represented by a
Boolean network. New methods were developed in order to explore some MBD features in the
logic decomposition. One of those methods induces a relative ordering on the variables that are
introduced in the network, in order to heuristically optimize the interconnection complexity.
The technology independent phase ends with a multi-level minimization step. Subsets of the
node functions’ don’t care sets are computed and the techniques presented in chapter 5 are
used to simplify them. The technology mapping is performed using Boolean methods, and
relies on a fast algorithm to detect symmetric variables in MBDs that is used in the classification

of the Boolean functions. Next sections explain these topics with more detail.
7.1 Logic Decomposition

Logic decomposition of digital circuits has been studied after some decades. The basic idea
relies on a divide and conquer strategy where a function f is re-expressed in terms of simpler
functions, which are easier to implement. In general, a Boolean function f{(X) is

decomposable if we can find function g(X) such that:

J(X) = f(g(X).X)

A fundamental problem associated to any decomposition method is the evaluation of the
complexity of the subfunctions generated. A decomposition is meaningful only if the

subfunctions obtained are simpler than the original function. This allows the recursive
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decomposition of the subfunctions until no simpler function is found or until some
technological constraint is attained. The estimation of the complexity of subfunctions is a
difficult problem. Ideally, it should be expressed as technological costs such as area and delay
of the implemented circuit. In practice, however, the physical properties are abstracted and the
cost of a function is defined either in terms of Boolean properties or in terms of primitives of a
given logic representation. The decomposition methods are closely related to the cost functions

they use.

Definition 7.1. A logic decomposition that is based on Boolean properties is called functional
decomposition. A logic decomposition based on the properties of a given logic

representation is called structural decomposition.

The next two sub-sections introduce and discuss some aspects of functional and structural
decomposition. The rest of the section presents some decomposition methods developed based
on MBDs, which can be used in both approaches. Functional decomposition will benefit from
their compactness and from the speed of the logic operations that manipulate them. Structural
decomposition can also be envisaged with MBDs, by exploring some of its topological

features. It provides a fast method to broke a Boolean function into a set of subfunctions.
7.1.1 Functional Decomposition

Functional decomposition is more general, because it deals with any Boolean function with no
regard to the particular logic representation used. On the other hand, the advantage of
structural decomposition is that their logic expressions may be related to some implementation
technology and the cost functions in this case are closer to the physical design. For this
reason, structural decomposition has received more attention in last decades. The advent of

several types of FPGAs with a variety of complex logic cells is changing this panorama.

In functional decomposition, the Boolean property most used as cost function is the number of
variables in the support of a Boolean function. The decomposition goal in this case could be to
split a n variable function into a set of k variable subfunctions, with k < n. Other properties
that may be useful as cost functions are the size of the ON-set (OFF or DC sets too), unateness,

number of symmetry classes, and so forth.

A simple way to ensure that a decomposition will produce subfunctions depending on less
variables is to restrict our attention to decompositions where the subfunctions have disjoint

supports.

Definition 7.2. A function f'is disjoint decomposable if we can find a partition (X,X3) of X,
with X1l = k and IX»| = n-k, and a function g(X1) such that:
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f(X) = f(g(X1).X2)

One of the first disjoint decomposition methods was proposed by Shannon [Sha49] and is
usually referred as Shannon expansion. Let (X1, X») be a partition of the set of input
variables X and e; be a binary vector with length s = IX{| which is the binary representation

of the integer i. Then:

2% 1

)=V Xi'fi(X)

In other words, f; (X») is the function obtained by evaluating f with the variables x; € X set
to the corresponding values e; € e;. If we make X = X, then the expansion produces the
canonical sum of minterms form. The Shannon expansion is a landmark in the switching
theory. Its main contribution is to provide a systematic way to evaluate and manipulate
Boolean expressions. Indeed, this recursive algorithm, with some variations like the unate
recursive paradigm [Bra84], is up today the most used method for evaluating Boolean

expressions.

Another significant contribution in functional decomposition was the work of Ashenhurst
[Ash57] which was further developed by Curtis [Cur62]. They proposed several
decomposition schemes both for the disjoint and for the non-disjoint cases. In the sequel we

enumerate some of the more interesting cases.
* Simple disjoint decomposition:
f(X) = f(g(Xy), X2)

* Multiple disjoint decomposition:

fX) = f(g(X1), MX2), ..., p(Xk), Xkv 1)

* [terative disjoint decompositions:

AX) = f(g(h(X1).X2), X3, X4)

* Complex disjoint decomposition:

fX) = f(g(X1), X2), p(X3), X4)

Curtis [Cur62] provides a detailed analysis of these among other decomposition techniques in
terms of decomposition charts, which are truth table like representations. These techniques are
useful for technologies where the cost function may be expressed by the number of input
variables of a function, which is the case of Look-up Table FPGAs from Xilinx [Xil92]. An
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example of the application of these techniques can be found in [Wan92], which addresses the

Xilinx target.

Another type of functional decomposition applies transformations to the input variables in
order to derive simpler functions. These techniques are known as spectral methods or spectral
transforms, as the Reed-Muller transform and the Rademacher-Walsh transform [Dav91a]. In
[Dav86], a spectral method is developed using Binary Decision Trees. The leaves of the tree
are exchanged in order to generate a unate function, which is easier to synthesize. The
complexity of the transformations, however, is not easy to predict. Another interesting
approach is presented in [Ola90], where the set of input vectors is reduced by successive
mappings. The idea is that two input vectors xj, Xy € X may be mapped into a single point xg
of a new Boolean space X!, thus reducing the size of the Boolean domain. The
transformations are applied up to transform the initial function into a goal function, which
usually corresponds to a simple gate like a NAND, NOR or XOR. [Iba71] proposes a method
that looks for the generation of negative unate functions, which exploits the fact that negative
gates are less costly in most technologies, as CMOS and NMOS. The technique used is to
introduce new intermediate variables that modify the Boolean space in such a way that any pair
of points (Xj, Xj), with xj < Xj, f(xj) = 0 and f(xj) = 1 on the original domain are mapped to
unrelated points in the new Boolean space. Hence, all positive unate variables are transformed
into negative ones. The main problem with those methods is their exponential complexity on

the number of variables of the function, which restrict their application to small problems.
7.1.2 Structural Decomposition

Most structural decomposition approaches rely on the algebraic representation of Boolean
functions. In this case, the function is expressed as a polynomial, and the decomposition is

implemented using algebraic manipulations. For example, the function:
fIX) = x1°x2°x3 VX6'X2:X3 VX7

can be expressed as:
fIX) = (x1 vx6)x2:x3 VX7

or:

AX,Y) = fi(X)f2(X) vx7=yly2 vx7
f1(X) = x1 vxg =yl
f2AX) = x2x3=y2

where f; and f> are subfunctions of fand y/ and y2 are intermediate variables introduced to

represent them in the system of equations obtained.
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The algebraic decomposition works much as our common paper and pencil method of putting
in evidence common terms that are factored out of the expression. The starting description is a
sum-of-products form and the resulting representation is a system of equations or Boolean
network. In the example above, the first step was to find the common sub-expressions x2-x3
that was factored out of the terms it appears on. Then, the factored expressions were extracted

out and replaced by new functions.

It is worthy to note the difference that exists between factorization and decomposition, which
are sometimes erroneously used as synonymous in the literature. The factorization is the
process of rewriting an expression putting common sub-expressions in evidence in a
parenthesized form. The decomposition is the identification and extraction of the sub-
expressions from the original form. Hence, the decomposition introduces new intermediate

variables and also new subfunctions, creating a system of Boolean equations.

One of the first methods successfully applied to large problems was the optimum NAND-gate
synthesis of Dietmeyer and Su [Die69]. They start with a sum-of-products form and
successively factors out common cubes which have the highest figure of merit, which is a cost
function that estimates the decomposition gain as the number of literals eliminated by the
factorization. Some restrictions of this method is that it works only for single-output functions
and it fails in identifying more complex common sub-expressions. A method that overcomes
this restriction was developed by Brayton [Bra82][Bra87a][Bra89]. The decomposition is
based on logic division , which is a rather improper use of the corresponding mathematical

term, since there is no additive or multiplicative inverses in Boolean algebra.

Definition 7.3. Let f and d be two Boolean functions. The logic division of f by d consists in

finding two functions g and r such that:
f=qdvr

If g and d have disjoint support, then the process is called algebraic division, otherwise it is
called Boolean division. To select good divisors for the decomposition, Brayton proposes the

use of the kernels of an expression.

Let D(f) be the set of expressions { f/c | ¢ is a cube }, which are called the primary divisors of
f- The symbol /' refers to the logic division of /by a cube ¢, which produces a subfunction sf
of fsuch that sf < c. An expression is said to be cube free if there is no common literal that can

be factored out.

Definition 7 4. The kernels of a function f are the elements of the set K(f) = { k€ D(f) | k is

cube-free}.
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The level of a kernel identifies the depth of its parenthesized expressions. Hence, a kernel of
level O contains no kernel except itself and a kernels of level n contains at least one kernel of
level n-1 and no kernel of level n except itself. The cube that originates a kernel k is called the

co-kernel of k. A kernel may have more than one co-kernel.
For example, in the expression:
f= 1V x2)x3V Xqx5

we find the following kernels and associated co-kernels:

kernel co-kernel
X7 \ X2 X3
(.?C]VXZ)'.X3 \Y Xy X5 1

Note that the whole expression is also a kernel with respect to the cube 1. Kernel based
decomposition became very popular and was employed by several synthesis systems, both in
the academic [Abo90][Ber88][Bra87][Bra87a][Mat88] as well as in the industrial context

(Synopsys, Compass, Fujitsu and many others).

Kernels are suitable both for algebraic and for Boolean division. Algebraic decomposition is
usually faster. A common heuristic is to take any level O kernel as starting point, which was
shown to produce minor disadvantages with respect of using higher level kernels [Bra87]. For
Boolean division, however, higher level kernels are required, which increases the computing
time. This lead to the development of new heuristics to overcome the speed limitations of the
Boolean division [Mal89][Dev88][Dev88a]. [McG89] presents a formal analysis of the
factorization problem, applying the concept of primality to factored forms in order to derive
some criterion to evaluate optimal solutions. In particular, it is proved that there is a unique
prime factorization for any logic expression. However, no experimental results are presented

for the sake of comparison with heuristic approaches.
7.1.3 MBD Direct Decomposition

In this subsection we develop a structural decomposition method for MBDs. It is structural

because it relies entirely on the underlying MBD topology to select and extract subfunctions.

It is a common accepted idea that MBDs are not associated to any structural information. They
are considered simply as a graph representation of a truth table. However, is not difficult to

extract structural information from the MBD. We have seen that each node in diagram is the
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root of a subdiagram and, thus, stands for a subfunction of the function represented by the
MBD. The direct decomposition, proposed here, consists in extracting these subfunctions from
the MBD up to find a convenient Boolean network representation. By convenient we mean a
Boolean network that is adequate to the target technology. For instance, in the case of a Xilinx
target, a good criteria is to extract subfunctions that dependents on a limited number of inputs
(4 or 5). For the usual standard cells or gate array targets, the decomposition must produce

simple subfunctions, that is, subfunctions with complexity near the library gate’s complexity.

The extraction of a MBD’s subfunction is done in the following way. First, we must find a
subfunction that meet the criteria established to find a convenient Boolean network. When
such subfunction is found, we have located a node r in the MBD which is the root of the
subfunction. Then a new intermediate variable y; is created that will represented in the
subfunction in the Boolean network that is being built. A new MBD node r; depending on this
variable is introduced in the MBD replacing the subfunction’s root node r. All the fathers of r
point now to r;. Note that r; represents the whole subfunction, and its low and high sons are
connected to terminals {0, 1}. Thus, the nodes and edges that were used only by the extracted
subfunction can now be eliminated from the MBD. This is done by traversing the subfunction

and deleting any node that have no father outside it.

Definition 7.5. The direct decomposition of a MBD consists in the selection and extraction of
subfunctions associated to the MBD subgraphs in order to derive a Boolean network
representation of the function. The subfunctions are associated to new intermediate

variables that are reintroduced in the original MBD replacing the subgraphs they represent.

Definition 7.6. The transitive closure of a MBD node n is defined as the set of nodes of the

MBD that can be reached only through .
We propose three criteria to select a subgraph to extracted from the MBD:

1. Select a node that has at least father_threshold fathers.
2. Select a node that its subfunction depends on at least variable_threshold inputs.

3. Select a node whose subMBD has a size equal or greater than node_threshold.

Those threshold values should be specified by the designer. The first criterion is related to the
amount of sharing of a subfunction in the MBD. The number of fathers of a MBD node n
indicates the number of subfunctions that use or depends on the subfunction associated to n.
This gives a direct measure of the fanout of the node n,, representing n’s subfunction in the
Boolean network. Each n’s father in the MBD corresponds to a node nyin the network that will
have nj, in its fanin. Thus, the fanin/fanout constraints may be analyzed directly in the MBD
graph. The second criterion is an approximation of the function complexity by the number of

variables it depends on. It directly related to the complexity of the gates in the library, which



Chapter 7 Multi-level Logic Sjdothe

frequently is estimated by its fanin capability. The third criterion provides an alternative where

the size of the subMBD is used as cost function.

The algorithm that does the job is depicted in figure 7.2.

function MBD dir dcmp (mbd): MBD_TYPE
var mbd: MBD_TYPE;

begin
var n,m: MBD_NODE;
smbd: MBD_NODE;
v VARIABLE_TYPE;
brother_ar: array of MBD_NODE;

init brother array(brother ar, mbd);

for i = legth(brother ar) down to 1 begin
n := select subfunction(brother ar[i], CriterialList);
if (n != NULL) then begin
smbd := copy_mbd(n);
vV := create new variable;

v.mbd = smbd;

m = new node(v, low(m)=0, high(m)=1);

forall node € transitive closure(n)

delete(node);
replace(n,m,mbd); /* replace n by m in the mbd */
end;
end;
end;

Figure 7.2. Direct decomposition algorithm.

The parameter mbd holds the MBD to be decomposed. Brother_ar is an array of lists of nodes.
Each list contains a set of nodes of the MBD with same index. The decomposition is performed
in a single bottom up step. Each MBD level is processed in turn, starting from the last level
before the terminals. A node 7 is selected according to the criteria explained above. CriteriaList
is a global parameter that store a list of node selector functions. Each node selector (a LISP or a
C++ function, for instance) is applied to n and if one of them is satisfied, then the node is
selected for extraction. For instance, if we want to apply just the first criterion, i.e., the
amount of sharing, then we set CriteriaList = (sharing_degree(n)). Sharing_degree(n) is a
function that checks if the amount of fathers of n exceeds the fathers_threshold. When n
satisfies one decomposition criterion, then a copy of the subMBD that starts at n is made and
associated to a new intermediate variable v. The nodes in the transitive closure of n are
eliminated, thus reducing the MBD. Note that we can not eliminate a node contained in the
subMBD rooted at n if it can be reached from a node outside this subMBD. This is illustrated in
figure 7.3(b)-(c), where nodes associated to variable x4 must stay in the MBD after the
extraction of the subMBD rooted at the node associated to variable x3. Then # is replaced by a
new node depending on the new intermediate variable created. This node is connected directly
to the terminals 0 and 1. External don't cares are not considered in this step. They are left to

be used in the next phase of the multi-level synthesis, the multi-level minimization.
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The algorithm is illustrated at figure 7.3. In this example father_threshold is 2,
variable_threshold is 2 and node_threshold is 3. In 7.3(a) the initial MBD is shown together
with its Boolean network representation. In this case, the network is represented by a single
node that is associated to the global function. By applying the criterion 1, we select node
controlled by x3 as the root of a subMBD to be extracted, because it has two fathers.(figure
7.3(b)). A new intermediate variable y; is associated to the extracted subfunction. The new
extracted subfunction is represented by a new node in the network that depends on the subset
of inputs { x3 ,x4 }. With the extraction of subfunction y;, the main function f becomes
independent of variable x3 , which does not appear in its MBD representation (7.3(c)). In the
resulting MBD the criterion 1 no more applies. Thus, criterion 2 is applied and nodes
associated to variable x) are selected. Both depend on three variables. Their subMBDs are
extracted and the new subfunctions are associated to intermediate variables y» and y3. Both
subfunctions depends on the same subset of variables, { x2 , x4, y; }. Note that y; appears on

both subfunctions. This is shown in the network by the two connections that go out of node

Y-

Finally, in 7.3(d) the final multi-level circuit is presented. No criterion applies to the remaining
MBD that is associated to the output node of the network. The final network contains four
nodes, with three intermediate variables. The nodes are ordered from left to right according to
the their logic level. Node y; belongs to the first logic level; y» and y3 belong to the second
logic level, because they have y; in their fanin and f belongs to the third logic level, because it

comes after yp and y3.

One interesting feature of the direct decomposition is that it induces a partial ordering among
the inputs. Variables with smaller indices tend to be nearer to the output’s logic level. The root
variable, for instance, usually traverses only one logic level to arrive to the output because it is
the last one to be extracted. In figure 7.3, variables { x3 , x4 } traverse three logic levels,
variable x) traverses two logic levels and variable x;, the root, traverses only one logic level.
The order relation, however, depends on the particular MBD topology and can not be uniquely
determined by the variable index. The ordering in the way variables enter the logic stages is in
fact a useful property. First, this lead to a heuristic reduction on the complexity of the
interconnections [Abo90]. Second, this information can be used to optimize the critical path
delay. The delay of a signal s is the time it takes to go from one input up to the circuit outputs.
Variables near the root traverse less logic stages, and thus introduce smaller delays to logic
signals. If the inputs of a circuit are associated to different delays, a delay oriented
decomposition can reorder the MBD in such a way that inputs submitted to more severe delay

constraints should be assigned smaller indices in the variable ordering.
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x4

Figure 7.3. Example of direct decomposition of a MBD.
7.1.4 Experimental Results - Direct Decomposition

We have evaluated the algorithm on a set of benchmark circuits for multi-level synthesis. A
first experiment addresses the effect of the reordering step on the decomposition. Since it is
clear that for this method a larger MBD should lead to a larger Boolean network after

decomposition, we present only one example for illustration purposes.
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The circuit description was read and converted into a MBD. The initial ordering is the sequence
the variables appear in the input file. The initial MBD and the MBD reduced by the re-ordering
techniques shown in chapter 4 are decomposed for several choices of the decomposition
parameters. Table 7.1 shows the results in terms of size of the Boolean network, total number
of vertices and number of connections. The circuit is the Z4 PLA, from the Berkeley PLAs

benchmark set.

Z4.PLA MBD size: 28 nodes MBD size: 66 nodes Misll
var/sh 2/2 |13/2 |4/2 |12/3|3/3 |4/3 |2/2 |3/2 |4/2 |2/3 | 3/3 | 4/3

Net 24 |12 8 (24 (12 | 9 62 |60 | 56|62 |54 | 50 12

MBD |128 (73 |49 [128 | 73 | 65 |354 (350 |335 (354 |326 320 64

Arcs 60 |36 |26 |60 [ 36 | 32 |160 |158 [150 |160 |154 | 151 30

Table 7.1. Direct decomposition of Z4.PLA.

The field Net indicates the number of subfunctions generated (nodes in the Boolean network).
MBD is the sum of the size of the MBDs of all subfunctions. Arcs is the number of connections
in the Boolean network. Thus, Net is an estimation of the final gate count of the circuit, MBD
is an estimation of the complexity of the subfunctions and Arcs is an estimation of the
interconnection complexity. The field var/sh indicates the variable_threshold and
father_threshold used, respectively. We have seen that node_threshold had little influence in
this example. One reason is that the reduction of the MBD size increases the sharing and
therefore it becomes a dominant parameter when low father_threshold values are used. The
same reasoning is valid for low values of variable_threshold. Increasing the value of these
parameters leads to a greater influence of the node_threshold, but this may be not interesting
for library based designs. A decomposition driven by the size of the MBD of the subfunctions
is better suited for technologies where this parameter is important, like selector-based FPGAs,

for example.

The results confirm the interest in the MBD reordering as a prior step for direct decomposition.
The ratio between the MBD sizes and the ratio between the decomposition results are quite
similar. This does not mean that they are directly proportional. However, a larger MBD usually
leads to a larger Boolean network derived by direct decomposition. We can see also that the
variable_threshold has a major influence in the size of the Boolean network obtained. The
larger the number of variables allowed by subfunction, the smaller the number of nodes of the

Boolean network.

These results must be analyzed with care. A larger Boolean network does not always denotes

a worse solution. Indeed, some synthesis systems such as MislI [Bra87], BOLD [Bos87] and



Chapter 7 Multi-level Logic SyiBthe

Olympus [Dem90], among others, decompose the multi-level optimized network into two
input functions before mapping, which temporarily increases its size. Although some global
information of the optimized multi-level network may be lost, the new network is composed
by simpler subfunctions and its quality is roughly the same of the previous one. The point
here is that the quality of the solution is more related to the optimality of the multi-level circuit,
which is expressed both in terms of the number of subfunctions and also by the complexity of
each of them. For this reason we have included also the accumulated size of the subfunctions’
MBDs, that is an estimation of their complexity, and the number of interconnections, which is

an estimation of the routing complexity.

In our experiments, the difference between the networks generated from the MBD with the
original ordering and the reordered one, using the same decomposition parameters (i.e., same
father_threshold and variable_threshold ) is significant, and indicates that the original MBD
M4 uses more information than it is needed to describe the Boolean function. We can not
properly say that Mz, contains redundant information, because no node in Mz4 may be
eliminated without changing its functionality. But we can say that M4 is not optimized with
respect to the ordering. In this example, we know that the reordered MBD My4. o is the
optimum solution (see table 4.2, chapter 4), but in general there is no way to compute the best
ordering without using some brute force method. The heuristics proposed in chapter 4,

however, produce very good average results.

To get a point of reference for comparison, we present the same data for an algebraic
decomposition of 74 PLA obtained with Misll. We can see that the direct decomposition
produced similar results when variable_threshold and father_threshold are set to (4,3) and
(4,2), respectively. The best result is obtained for parameters (4,2). In this case, a subfunction
is extracted either if it has four variables in its support or if it has more than two variables
(single variable subfunctions are not extracted) and a fanout greater than two. Four variables is
still a reasonable support size for library based designs, and this example compares favorably

with respect to Misll, which is a standard reference in terms of logic synthesis.

Table 7.2 provides a more extended comparison with MislIl. The best results are indicated for
each evaluation factor. We can see most of times the direct decomposition with
variable_threshold of four and a father_threshold of two provides the best results. This
indicates that for these evaluation parameters the direct decomposition provides interesting
results. Another important point is that it is surely a faster decomposition method than the
kernel factorization used by Misll. The algebraic manipulation performed by Misll may be at
best O(n) with respect to the number of variables [McG89]. This, however, is not true for all
the cases. The method presented here is clearly linear with respect to the number inputs,
because each MBD level is scanned only once. For each level, all subMBDs with roots at that

level are traversed once. A simplification that must be taken into account is that the MBD is
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stepwise decomposed, due to the deletion of the nodes by the extraction process. We estimate
that the manipulation of subMBDs can be much faster than the kernel extraction and algebraic

decomposition performed by MislII.

Direct Decomposition MislI

var=2 shar=2 var=3 shar=2 var=4 shar=2

Nodes |MBD| Arcs |Nodes|MBD| Arcs [Nodes | MBD| Arcs | Nodes| MBD| Arcs

5xp1 65 |276 |162 | 52 |237 [143 | 38 [187 [119 | 42 |244 |120
alu3 55 |231 |135 | 35 |168 [106 | 28 |142 | 95 | 28 |192 | 145

bw 102 | 420 (279 | 90 (382|266 | 63 [276 | 227 [ 65 | 400|216
dekoder| 17 | 61 | 39 | 15 | 556 | 37 | 12 [ 42 | 34 10 | 55 | 30
dk27 22 | 74149 | 15 |51 |40 | 13 | 43 | 35 11 | 55 | 30
f51m 62 |275]|163 | 57 |260 | 153 | 37 |197 |117 | 42 | 243 | 119
fo2 15 | 60 | 36 | 11 | 48 | 31 8 |35 | 24 12 | 56 | 32

misex1 | 34 |148 ] 92 | 32 |139| 90 | 18 | 91 | 68 18 | 118 | 67
misex2 | 86 |322|184 | 54 |223 |153 | 42 |181 |136 | 30 | 190|113

r53 21 95 |1 55119 |89 | 53| 14 |69 | 41 14 | 85 | 41
r73 41 193|113 | 39 | 187 (111 | 31 |159 | 96 28 (193] 93
r84 57 1265|155 | 54 |256 | 152 | 44 |223 | 137 | 37 | 337 | 140

Table 7.2. Decomposition benchmarks.

7.1.5 Path Oriented Decomposition

This decomposition method is based on the theorem 3.1, which states that there is a
correspondence between paths in a MBD and cubes of the function it represents. Indeed, each
path in a MBD corresponds to a cube of a disjoint cover of the function. Following this
analogy, we can introduce the idea of covering paths of a MBD as a way of covering the

function it represents.

Definition 7.7. A path that connects the MBD root to the 1 terminal is called a ON-path. In a

similar way we define a DC-path for the X terminal and a OFF-path for the 0 terminal.

Definition 7.8. A MBD M is covered by a set of MBDs SM = {M;} if each path of M appears at
least in one element SM.

Therefore, covering all paths of a MBD is equivalent to cover the function it represents. One
immediate way of doing that is to generate a sum of disjoint MBD cubes (section 5.2), where

each cube corresponds to a MBD path. However, such cubes are not prime, and the resulting
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sum of products will be not useful for a direct implementation. What we propose here is to

cover the MBD with a set of subfunctions that are directly extracted from the diagram.

Definition 7.9. A path oriented decomposition of a MBD M is the re-expression of M in terms
of a set of subfunctions {SF;j}, each one represented by a MBD Mj, such that M is covered

by {M;}.

The idea is illustrated here by an example. Consider our familiar MBD shown in figure 7.4.
We identify in the MBD the paths that connect the root to the 1 terminal. They are labeled using
the letters a, b, c, etc. To each MBD arc the labels of the paths that it belongs to are indicated in
the figure. The disjoint cubes associated to the MBD paths are indicated in a Karnaugh
diagram. It is interesting to remark the slicing effect of the variable ordering on the cover. The
root variable, for instance, must be present in any path and, therefore, all cubes of the cover
depends on it. This can be visualized in the Karnaugh diagram by the fact that no cube is
expanded over x;, the root variable. As the first MBD level (index 1) is complete, the cubes of
the cover are also sliced with respect to x2, the variable associated to index 1. We say that a
MBD level [; is complete if all its paths contains one variable with index i. In this case, the path
cover of the function is sliced with respect to that variable. In figure 7.4, the cubes are sliced

with respect to x;, x2 and x4, which can be easily checked in the Karnaugh diagram.

de abc

x3
1 @ | [
« 0 X‘D 3 b m d@ x4
cef 1 ' M
0 1 X2

Figure 7.4. Path cover of a MBD.

To decompose the MBD into a set of subfunctions we must find a way to select subsets of the
MBD paths and to cover them with extracted subfunctions. Our goal is to exploit the graphical
nature of the MBD in order to obtain a fast algorithm. The process consists basically in the

following steps.
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1. Select a node n of the MBD M according some cost function. Let S be the set of paths
that pass by n, which is called the splitting node.

2. Builds a new MBD QD with the set of paths S. All arcs of QD that are not defined are

pointed to the 0 terminal.

3. Let S! be the set of remaining paths of M. Builds a new MBD R with S!, and point all

undefined arcs to the 0 terminal.
4. The sum of the MBDs QD and R is a cover of M:
M=0QDb+R

In the example of figure 7.4, if we select the node labeled x; we have S={ b, ¢, d, e } and
sl= {a, f}. The resulting MBDs QD and r are shown in figure 7.5 (a) and (b), respectively.

ni
x1 x1
0 1 0 1
x2 X2 x2 X2
1
\ 0 1 0T 1 1
n2
X3
0 1
x4 x4 x4 XLD
0 0 g
1 1
1
1
0 1 0 1
(a) (b)

Figure 7.5. Path oriented decomposed MBDs (a) QD and (b) R.
The path oriented decomposition has some interesting properties.

Proposition 7.1. The path oriented decomposition of a MBD relies on an algebraic division of

the function it represents.

Proof. We must just to show that the path oriented decomposition produces three subfunctions
q,d and r, with f = g-d v r and sup(q) N sup(d) = J. The procedure described above re-
express the original MBD in terms of the sum of two MBDs QD and R. MBD QD is defined by
all the paths that cross a selected node n, which divides these in two set of subpaths: PU,

the set of paths that go from the root up to n (upper paths) and PL, the set of paths that go
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from n to the terminal (lower paths). All the paths that do not cross node #n are redirected to
the 0 terminal in QD. The set of paths P covered by QD is obtained by concatenating each
upper path with every lower path. If we assume that # is the concatenation operator, then
we have P = PU#PL. Thus, each path p in QD is decomposed into a upper path pu € PU and
a lower path p/ € PL. Since each p corresponds to a cube ¢ of a disjoint cover C of the
function denoted by QD, the concatenation of pu and p! defines an AND decomposition of ¢
into two cubes cu and cl: ¢ = cu-cl. Cubes cu and ¢/ are obtained from subpaths pu and p/ in
the same way that c is generated by p. Thus, the concatenation of paths corresponds to the
product of cubes, and the cover C of QD’s function can be expressed as C = CU-CL, where
CU is the set of cubes corresponding to the upper paths and CL is the set of cubes associated
to the lower paths. From the ordered nature of the MBD is evident that CU and CL depends
on different variables. As a set of parallel paths in a MBD describes a sum of cubes, CU and
CL are, in fact, two sum of products that are disjoint between themselves, i.e.,
sup(CU) N sup(CL) = &. Thus, the path oriented decomposition of a MBD M
corresponds to an algebraic division of a function f denoted by M, where subfunctions

q = CU,d =CL and r is denoted by the remaining MBD R. O

In figure 7.5 the subfunctions ¢ and d are indicated by subgraphs n; and ny. The set of paths

contained in the original MBD of figure 7.5 is given below.

a=X]'X2X4

b=x; X,x3x4
C=xp Xy X3 Xy
d= X;-x2:x3x4
e= X, X2 X3 Xy

f= XI'XZ'X4

The node n chosen covers paths { b, c, d, e }. The subpaths from the root up to n, PU, are
associated to the sum of products CU = x;-X, v X;-x2 and the subpaths from n to the 1

terminal, PL, define the function CL = x3-x4 v X3- X,. The MBD R is formed by the remaining

paths { a, f }. Thus, the decomposition produces:

f=qdvr
q=X]"Xy V X;"X2
d:x3'X4 14 f3'.¥4

r=X]X2:'X4 V XI'XZ'X4

In general, the choice of the splitting node is not trivial. One possible criterion is the choice of
the node which covers the largest number of paths. But in this case, the root node covers all

paths, which is certainly not a good choice. The next candidates are frequently the root son’s.
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Therefore, the application of this criterion tends to produce a Shannon decomposition, that

will reproduce the MBD structure in the Boolean network.

A simple criterion is to select a node that produces functions g and d with similar support
lengths. Splitting the support into similar length subsets will produce a balanced network for ¢
and d subfunctions if we use the support length as a estimation of the function complexity.
However, r will be not balanced with respect to ¢ and d. In fact, if we select only one splitting

node at a time the decomposed network can be highly unbalanced, as illustrates figure 7.6.

o splitting node

Figure 7.6. Unbalanced path decomposition.

An alternative approach is to select a set of splitting nodes at a time, referred here as the
splitting line. This will reduce the complexity of r, increasing the fanin of the OR gate, as
shown in figure 7.7. As r is simpler, the depth of the unbalanced part is smaller. In some
cases the splitting line covers all paths of the MBD and r disappears, leading to a completely

balanced decomposition.

f
i f
&
qa:D_ r <
j>_ e
d & &

Figure 7.7. Balanced path decomposition.

splitting line

The balanced path decomposition re-express fin terms of a sum-of-products:
f=qrdy v vapdi v vapdevr

where k is the number of splitting nodes. Thus, if the splitting line has k nodes, f is

decomposed into a new function of 2k (balanced) or 2k + I (unbalanced) variables.
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This method may be used both for the factorization or for the decomposition of a function. In
the case of the factorization, we simply compute the new subfunctions ¢, d and r and
recursively apply the algorithm on them. The algorithm for path oriented factorization is

presented in figure 7.8.

function MBD path fact (mbd) : FactoredForm
var mbd: MBD_TYPE;
begin
var q,d,r: MBD_TYPE;
v: MBD_NODE;

/* check for stop condition */
if (support(mbd) <= *min_ support*)
return(mbd);
else if (simple fform(mbd))
return(snode_ fact(mbd));
* compute the splitting node and the subfunctions q,d,r */
select _split node(mbd);
copy_mbd (V) ;
get up paths(mbd,v);
r get rest function(mbd,v);
return(MBD path fact(d)+-MBD path fact(q) v MBD path fact(r));
end;

/
\4
d
q

Figure 7.8. MBD path factorization algorithm.

Two stop conditions are checked. One is the number of variables in the support of the MBD.
The other one is the identification of simple factored forms, which is made using the concept
of supernodes [Cal92]. A supernode is a simple AND/OR factored form in which only one
node may appear at each MBD level. When this special case is identified, the factorization is
straightforward. The selection of the splitting node is done by taking, among the nodes of the
MBD level corresponding to the variable that divides the support of the MBD into two similar
length subsets, the node that covers the larger number of paths and also that has the larger
number of fathers. An special case that is considered is the occurrence of dominators nodes
[Kar89]. A node ngy dominates another node ng if all the paths from the root up to ng pass
through ny . If the MBD as a dominator for the 0 terminal, then it has a simple disjoint OR
decomposition. It the MBD as a dominator for the 1 terminal, then it has a simple disjoint AND
decomposition. Thus, if we find a dominator for a terminal node, it is selected as splitting

node.

Subfunction d is just a copy of the subMBD that has the splitting node as root. Subfunction g
is composed by the sum of all the paths from root of the MBD up to the splitting node ». In
each of such paths, n is replaced by the terminal 1. Each path corresponds to a cube that is
made prime according to the method described in section 5.1.4. Subfunction ¢ is obtained by
ORing all these cubes. The rest r is obtained by replacing n by terminal 0 in f and by reducing

it. In the section 7.1.6 some examples of path oriented factorization are provided.
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The path oriented decomposition is more complicated. In the factorization, the subfunctions
are treated independently and there is no sharing among them. In the case of the
decomposition, since the subfunctions are extracted and are associated to new nodes in the
network, identical subfunctions must be merged, to avoid useless duplication of logic.
Moreover, the factorization is a process applied to single output functions, while the
decomposition may be applied to multiple output functions. In this case, each MBD root is
associated to an output variable, which is not the controlling variable denoted by the root node

index.

All the decomposition process is performed within a single MBD. Any time a new subfunction
sf (g, d or r) is extracted, it is compared against the functions denoted by the roots of the MBD.
If there is no equivalent function then a new intermediate variable is created to represent sf, the
MBD of sfis merged into the global MBD and the root of sf becomes a new root of the MBD. If
there is some MBD root that is equivalent to sf or to its complement, then the output variable
associated to that root is used to represent sf. The extraction of d type subMBDs is completed
by replacing the d root by a new node that depends on the variable created or chosen to
represent the subMBD, which is similar to process executed in direct decomposition. The

algorithm for path decomposition is presented in figure 7.9.

The input to the decomposition algorithm is a list of variables that is initially the list of output
variables of the function. Each variable in varlist stands for a single output function. All
functions are represented by a single MBD M. Thus, every variable in varlist is associated to a
root node of M. The algorithm treats one output at a time. Since varlist is updated along the
algorithm, we make a copy of its initial contents to avoid modifying it at the same time it is
scanned by the top level loop (foreach v in vi). For each variable, the splitting line of its
respective MBD is computed. If the MBD has a 1 (0) terminal dominator a special function is
called that decomposes it into a two inputs AND (OR) subfunction and call recursively
MBD_path_dcmp for both subfunctions. The special case is in fact a simplified version of the
decomposition algorithm. If the function has no dominator, then the subfunctions g and d are
computed for each node in the splitting line. They are stored together with the splitting node as
a triple (v, d, g) in pairlist (list of pairs of functions). After all splitting nodes are processed
then the rest r is computed. The procedure treat_subfunctions takes pairlist and varlist and
performs the extraction and re-insertion of the new subfunctions in the global MBD. If a
subfunction (d or g) has an equivalent one in the MBD either in direct or in complemented form
then the equivalent one is used, otherwise a new variable is created and the subfunction is
merged in the MBD. treat_subfunctions returns a list with the literals that represent the
subfunctions in the form ((yq7, Y1) --- (Vdk-Ygk))- If the r functions exists, then a new variable
yr representing it is created and included in pairlist. Finally, the new decomposed function for

the current variable var is created based on the elements in pairlist. For each pair (yg;, y4i) an
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AND MBD M representing the function M = yg;-y,4; is created. For the y, variable a single
variable MBD is built. Then all MBDs are ORed and the resulting MBD is associated to the

current variable var.

function MBD path dcmp (varlist): VARIABLE_LIST;
var varlist: VARIABLE_LIST;

begin
var f,q,d,r,v: MBD_TYPE;
rec: Boolean;
pairlist: List;

rec = false;
vl = copy list(varlist);
foreach var in vl begin
f = get mbd(var);
split line = get split line(f, dom);
if dom then return(simple dcmp(f,dom,varlist));
else begin
rec = true;
foreach v in split line begin
d = copy_mbd(v);
q = get_up paths(£f,v);
pairlist = add (v,d,q) to pairlist;
end;
r = get rest function(f,split line);
pairlist = treat subfunctions(varlist, pairlist);
if r then add (new var(r),l) to pairlist;
set mbd(var, build anor(pairlist));
end;
if rec then MBD path decmp(varlist);
else return (varlist);
end;

Figure 7.9. Path oriented decomposition algorithm.
7.1.6 Experimental Results - Path Oriented Decomposition

We have applied the path decomposition method to the same benchmark set used to evaluate
the direct decomposition. We reproduce the results of direct decomposition in table 7.3 in

order to compare them with the path oriented one.

The results of path decomposition are quite erratic. As we can see from table 7.3, in a few
cases it wins (r84, fo2 and dekoder), while at the other extreme it gives very bad results (bw,
5xpl and f51m). It is an indication that the method is very sensitive to the MBD topology. Of
course, the size of the MBD plays an important role, but its specific topology is an important
factor too. This suggest that some improvements may be obtained by detecting which
topological factors most influences the results and by looking for variable orderings that
maximize them. Another alternative that could be tried is the selection of overlapping splitting
nodes, which eventually may belong to the same path. This will provide more freedom in the

search of a minimal path covering.
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Direct Decomposition Path

var=2 shar=2 var=3 shar=2 var=4 shar=2 | Decomposition

Nodes| MBD| Arcs|Nodes| MBD| Arcs|Nodes| MBD| Arcs| Nodeq MBDJ| Arcs

5xp1 65 |276 |162 | 52 |237 |143 | 38 |187 [119 | 87 |427 |236
alu3 55 231|135 | 35 [168 |106 | 28 (142 [ 95 49 244 (138

bw 102 (420 [279 | 90 (382 |266 [ 63 [276 | 227 [ 228 |1040( 568
dekoder| 17 | 61 [ 39 | 15 [55 | 37 | 12 |42 | 34 7 |47 | 25
dk27 22 |74 149 |15 |51 |40 | 13 |43 | 35 16 | 73 | 41

f51m 62 |275 |163 | 57 |260 |153 | 37 |197 |117 | 116 | 518 | 278
fo2 15 (60 [ 36 [ 11 (48 | 31 8 |35 |24 4 | 30| 16

misex1 | 34 |148 | 92 | 32 |139 |90 | 18 |91 | 68 48 229 ( 130
misex2 | 86 |322 |184 | 54 |223 |153 | 42 |181 | 136 | 44 | 276|185

r53 21 95 55 | 19 (89 |53 | 14 |69 | 41 19 101 | 53
r73 41 |193 |113 | 39 |187 |111 | 31 |159 | 96 46 | 286 | 153
r84 57 |265 |155 | 54 |256 |152 | 44 |223 | 137 | 26 | 219 | 102
z4 24 128 1 60 | 12 | 73 | 36 8 |49 (26 | 12 | 80 | 40

Table 7.3. Comparison between Direct x Path oriented decomposition.

This approach has some interesting aspects. The extraction of d type functions is executed
simultaneously for all outputs. Also, by controlling the number of cut nodes we may control
also the depth of the circuit. Moreover, the decomposition tends to produce several functions

with similar supports, which may be useful for the multi-level minimization.
7.1.7 Boolean Division

Boolean decomposition techniques are potentially more powerful than structural ones. They
can exploit the whole Boolean space and, thus, can produce optimum solutions. The price to
pay is that the time to compute good solutions is longer. In the Boolean decomposition there
are much more candidate subfunctions for decomposition, and their evaluation is quite
complex. We discuss in this section a Boolean division method based on MBDs. First, let us

restate the definition of Boolean division.

Definition 7.10. Let f and d be two given functions. The Boolean division of f'by d consists in
finding functions g and r such that

f=qdvr

such that the supports of the g and d are not disjoint, i.e., sup(q) N sup(d) = J.
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In the general case, f is an incompletely specified function fyin < f =< fmax, While d is
supposed to be a completely specified function. Then, ¢ and r may be expressed by a set of

inequalities:

0 =q = gvfmax
Smin'(q-d) =<r

Their graphical representation is presented in figure 7.10. Function g can range from 0 (in this
case r=f)upto d V fuax. The upper limit indicates the complement of the region where d is
1 and fis 0 - the forbidden region for g. Function r must at least to cover the region not
covered by g-d (left hand inequality) and on the other extreme it is limited by f;,,4x. It can not
be greater than f;;,4x, otherwise it will introduce 1’s in points of the domain where fis 0. In
the figure, the lower limit of r is the internal polygon with dashed line. The square in the
center of f indicates its don’t care region. The r’s upper limit is the square with thicker line.
The empty square at left, tagged with letter ‘d’ is the forbidden region for g, i.e., g’s OFF-set.
Its ON-set is the indicated by the shaded region inside the intersection of rectangles d and q.
All the rest is the g’s don’t care set. If we know d, then the Boolean division can be performed

by the following steps:

1 - compute 7= { ropn, Foffs Fde }
2 - minimize 7 with respect to its don’t care set, which produces r.

3 - compute g = { qon qoff 9dc }
4 - minimize gwith respect to its don’t care set, generating function g.

The minimization is performed with the algorithms presented in chapter 5. r is computed in the

following way:

1. 7ron =fmin-67
2.1de = fmax'd

The idea is to make rq. as large as possible in order to provide more alternatives to the logic
minimizer. Thus, we initially suppose that g will intersect all points {x €d -1(1) N fiac " 1(1)},
such that f,,'d"q = finaxd. For the same reason fmax is chosen instead of f,,;,. The logic
minimization of 7 = { rop, roff, rdc } yields the rest function r. The g is computed as follows:

L. Ggon = fmin-T
2.qac=dvr
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de(f)

Figure 7.10. Graphic representation of the Boolean division.

Since r is already known, we can use it in computing ¢. The minimum ON-set that must be
covered by g-d is the portion of f,;, that is not covered by r. g4 is given by everything that
lies outside d plus the portion of r that eventually intersects d. The Boolean division algorithm

is presented in figure 7.11. It is just a stepwise description of the ideas presented above.

function MBD bool div (£f,d): MBD_PAIR
var f,d : MBD_TYPE;
begin

var r, d, Ydcs 9dc: MBD_TYPE;

fn = £(dc->0);
fu = f(dc->1);

rdc = fy-d; /* don’'t care set for r */
r = build_mbd(fy,rgqc); /* build r */
MBD minimize(r); /* logic minimize r */
ddec = ¥ Vv not(d); /* compute don’t care for g */
g = build mbd(fp, d4c); /* build g */
MBD minimize(q); /* logic minimize g */
return (q,r); /* return quocient and rest */
end;

Figure 7.11. Algorithm for Boolean division.

Since the Boolean division is based on logic minimization, which in general is independent of
the type of logic representation adopted, it can be used to implement functional decomposition.
As the logic minimization is a complex task, the functional decomposition of large MBDs can
be very time consuming. In this work, we restrict our attention to its application in the
factorization of node functions in a Boolean network. Although there is no consensus about
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how complex a node function can be (the only restriction is that it is a single output function),
in practice we may control its complexity by selecting an appropriate decomposition method.
In the methods presented in this section, one can easily restrict the complexity of node

functions by limiting the number of variables in their support.
7.1.7.1 Boolean Divisors

The main problem in the Boolean factorization is the choice of a good divisor function. The
fact that the Boolean division provides a larger solution space implies that the set of bad
solutions is also larger. Since the selection of candidates is based on heuristics, there is no
guarantee that the solution will be the best one (that produces functions g, d and r such that the
total number of literals is minimum) or even that it will be always better that the algebraic
division ([Bra87a] presents some efficient algebraic factorizations algorithms). However, as

algebraic division is faster, it is possible to try both and select the best solution.

We study here two heuristics for finding Boolean divisors. The first one is based on the

concept of MBD-kernels.

Definition 7.11. A MBD-kernel of a MBD M is any MBD My such that My is a cube-free primary

divisor of M.

A MBD is cube-free is there are no literals xf " € support(M) such that M < xf" , where
e; € {0, 1} is the phase of variable x;. To establish a correspondence with the kernel

definition, note that if M < x;’ then M may be evenly divided by x;" . Clearly, a MBD-cube M
is not cube-free, because M. < xie i for all literals xl-e " € support(M.). The levels of a MBD-

kernel are defined in the same faction as for kernels. Since computing all kernels is usually too
costly, we select a divisor among the MBD-kernels of level 0. The algorithm is based on

[Bra87], and is presented in figure 7.12.

The algorithm successively factors out variables in the support of the function up to find a
cube-free expression composed by a sum of products where no literal appears in more than
one cube. Initially, the algorithm is called with the MBD and its support as parameters. Each
variable in the support is processed in turn. First, the MBD is cofactored with respect to one
variable in the direct phase. If there is a set of literals {xf a xl.e "< fx; }, the function is
degenerated with respect to them (make_cube_free) and the cube composed by the conjunction

of these literals is assigned to cube variable. If there exists one or more literals in the support
of the cube that do not belong to the current support, then fy, is discarded because it was

already processed in previous step. In the case that fy, does not produce a MBD-kernel of level

0, the process is repeated for fy,,.
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function MBD kernel 0 (f, sup) : MBD_TYPE
var f : MBD_TYPE;
sup : LIST;
begin
var fx;, fxg,6 cube : MBD_TYPE
/* for all variables in the list sup */
while ((var:=pop(sup)) != NULL) begin
fx7 := cofactor(f, var, 1); /*degenerate f: var=1 */
if (! is cube?(fx1)) then begin /* if not cube */
fx1 := make_cube_free(fx;, cube); /* cube={xj|fx; < x;} */
if (support(cube) C sup) then /*if 1it not processed */
return(MBD kernel 0(fx;,sup)); /* continue on fx; */
end;
/* if fx; does not contains a MBD kernel0O, look at fxg */
fxg := cofactor(f, var, 0); /*degenerate f: var=0 */
if (! is_cube?(fxgp)) then begin /* if not cube */
fxo := make_cube_free(fxp,cube); /* cube={xj|fxo < x;} */
if (support(cube) C sup) then /*if 1lit not processed */
return(MBD_kernel 0(fxg,sup)); /* continue on £fxg */
end;
end;
/* if no MBD kernel0 found, return f */
return (f);
end;

Figure 7.12. Algorithm for finding one level 0 MBD-kernel.

The second heuristic to find Boolean divisors try to estimate the gain of a divisor by analyzing
its OFF-set. The idea is that the OFF-set of the divisor d becomes the don’t care set of the
quotient function g. According to the algorithm MBD_Bool_div(), qon = fon and qg4. = dvr.
Therefore, one way to evaluate a candidate divisor d would be to verify how much fis
simplified if we make f;. = d and minimize f. Since logic minimization is costly, some
approximations are considered instead. One possibility is to generate a sum-of-products of f,
add the don’t care d to fand check how much cubes of the ON-set of f may be expanded with
respect to the new DC-set. In figure 7.13 we present an algorithm that uses this technique to

select a Boolean divisor for f.

First, the sum-of-products of the function (MBD-cover) is computed. The MBD-kernels of level
0 are taken as candidate divisors. Each candidate k is then evaluated. The don’t care of fis set
to the OFF-set of k. Then, every cube of f'is tested for expansion with the new don’t care set
and the total number of literals deleted from the expanded cubes is computed. The gain is the
difference between the number of literals saved and the number of literals of the MBD-cover of
k. This allows taking into account the complexity of k£ in the divisor selection. The kernel

which produces the highest gain is selected as divisor.
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function sel Bool div (f) : MBD_TYPE

var f : MBD_TYPE;
begin
var sop: MBD_COVER;
kl: KERNEL_LIST;
lit: integer;
gain, maxgain: integer;
div: MBD_TYPE;
sop := MBD_sop (f);

kl := MBD kernels 0(f);
foreach k in k1l begin
f4gc := not(k);
foreach cube in sop
1lit := 1lit + number of deleted literals;

gain := 1lit - literals(k);
if (gain > maxgain) then begin

gain = maxgainj;

div = k;
end;
end;
return(div);

end;

Figure 7.13. Algorithm for the selection of a Boolean divisor.

7.1.7.2 Factorization Examples

We present in this section the application of some factorization techniques over a set of small

functions obtained from the literature. The experiments compare the use of different

approaches:

* ALG - algebraic factorization based on weak division [Bra87]
* PATH - path oriented factorization

* B-ANY-KO - Boolean factorization using a MBD-kernel of level O as divisor

* B-OFF-K0 - Boolean factorization using OFF-set based divisor selection.
Function 1: 36 literals and 8 cubes
f=X1X2:X3X4°X5'X6 V X]'X2" X5  Xg V X]'X2"X3° X4 V X3'X4"X5° Xg V
X3' X4'x5'X6 14 f]' fz'Xj"x4 14 .f]' fz'.Xj'X6 14 .f]' .fz' fj’ f4' f5 f6

ALG: 28 literals

f=(x4x3 vXexs5sV Xg- X5 X4 X3) X" Xy V(X4 X3 V X4'X3°X2°X])X5°X6 V

(X2°X] V X4°X3) X5 Xg V X4° X3°X2°X]
PATH: 48 literals

f: )?2)?4)?]()_66)_63)_65 VX3‘X6) ng'X4'xI'(x6'X3-X5 14 f3f6) 14
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Xz'x4'f]'(X5'.x3'X6 V)C5) v ()72')74')61 V.x2'X4'XI)'.¥5'X3'X6 14

(Xy'X4'X] V X2°X4°X])'X5"X3"Xg V X2:X4°X]*(X5°X3° Xg V X5)
B-ANY-KO: 30 literals

f: ((f4 "4 )_66)()_61 14 X4'.f3 v X6X5) VX6'X5'.X4'.X3)'((.X6'X5 4 )_66')_65')_64')?2')71)-)_63

V X5°X4'X3 V X2°X]) V (X6'X5 V X4°X3)- X" Xp"
B-OFF-KO: 27 literals

= (x3:(x6'X5:X4'X2°X] V Xpr X;) V Xg* X5 V Xy X3°X]) (X4 X3 Xp" X; V X4°X3 V X2°X])

V X6'X5( Xy X3 V Xp° X;)

Function 2: 15 literals and 5 cubes

f= X;"X3'X5 V X]"X2'X3 V X]"X2" X5 V X]'X3'X4 V X]'X4" X5
ALG: 8 literals

f=(xqg vx2)xp(x3 Vv X5) Vv X;X3°X5
PATH: 8 literals

f=x1(x4 vx2) (X5 vx3) v X;X3°X5
B-ANY-KO: 7 literals

J=1((xq4 vx2)x vxsX;)(Xs vx3)
B-OFF-KO: 7 literals

f=(x1(xq4 vx2) vxsX;)(Xs vx3)
Function 3: 17 literals and 6 cubes

f=X;" Xy X3:X5V X]" Xy Xy V X]"X3X6V X3° X4 V X2 X5°X6V X2°X4
ALG: 14 literals

f=(X3 vX]"X5) Xy V(X6 X5 V X4) X2V (X6°X]V X5 X" X5)'X3
PATH: 20 literals

f=X;x3 (x4 X5:(x6v x2) VX5:(X4 VX2)) VXI'X3(Xg'(Xp X4 VX2 X4) VXg) V

X3:(x4v X5)
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B-ANY-KO: 19 literals

f=(X, vxivxg)((xexjv x5:X;)x3V X4°X2) V (X3 V X6 X5)(X2V X3°Xy) VX]" X4 X
B-OFF-KO: 15 literals

=X (X7 Xy VX5:X;°X3) VX6 (X]"X3V X5°X2) V X3° X4 V X4'X2
Function 4: 41 literals and 13 cubes

f=X2:X8 VX2:X9 V X]'X2'X5° X7 V X]'X2°X5'X6 V X]'X2* X5°X7 V X4* X5°X7 V

X4°X5°X6 V X4°X5°X7 V X['X3"X5°X7 V X]"X3°X5'X6 V X]'X3°X5°X7; V X3'X9 V X3'X§
ALG: 16 literals
f=(x3vx2)(((x6 v X;)Xx5 VX7:X5)X] VX8 VX9) V((X7 VX6)X5V X7 X5) X4
PATH: 20 literals

f: ((XZXQX_? v XQXZ)X8()C] V)C4) v fz'X4'f3)'(x7'(.X6 4 X_s) V)C5')_C7) 14

(x2 v x3):(x9 v x8)

B-ANY-KO: 14 literals

f=(x7X5 vxegxs v X;:x5)((x2 v x3)'x] V X4) v (x8 V X9)(x2 V x3)
B-OFF-KO: 19 literals

f=(xp(x5 vxy)(X; vxe) vxgVvxgVvxyXsXxy)(x2Vvx3) Vvxsxy(X; Ve VixyXsxyg
Function 5: 21 literals and 6 cubes

f=X;X3X4 X5 V X;"X2°X3" X4 V X2°X3°X4°X5 V X]'X2"X3 V X[ X3°X5 V X]* X3°X4
ALG: 14 literals

f=((x5x4 vxi)x2 V(x4 VvX5)x]) X3 V(X4 X2 V X5:X4) X;°X3
PATH: 23 literals

f:(f]'x_s'XZ VXJ'X5')_62)')74'X3 V.XZ'X]'Xz'.x5 v )_CZ'XJ-X4')75 4 XZ'X]'.X#'X_? 4

X]X4°X2
B-ANY-KO: 14 literals

f=(x2vxsvxg)(((x5x4: X3 V X4°X3)'X2 V X5°X3)X] V X3°X])



130 Chapter 7 Multi-level Logic Synthesis

B-OFF-KO: 13 literals
f=(x3X; v X3:x71)(X5X4 V X4°X2) V X5:X3°(X] V X4°X2)

These results are summarized in table 7.4. The field Lit shows the number of literals of the
sum-of-products form. The best results are indicated in bold type characters. We may see that
the Boolean division with OFF-set based selection of the divisor obtained the best result most
of times. In one case, algebraic factorization wins. One advantage of algebraic factorization is
that it guarantees that the factored form will have less literals than the sum-of-products, due to
its algebraic properties. In the Boolean methods presented here there is no way of asserting
that. However, empirical results indicates that Boolean factorization usually performs better
than the algebraic one. Path oriented factorization have in average a poorer performance. In
some cases increasing the number of literals with respect to initial sum-of-products
description, as in examples 1, 3 and 5. Clearly, this kind of factorization should be further

developed to produce interesting results.

Example Lit Alg Path One-k0 | Off-kO
1 36 28 48 30 27
2 15 8 8 7 7
3 17 14 20 19 15
4 41 16 20 14 19
5 21 14 23 14 13

Table 7.4. Factorization results.
7.1.8 Comments

In this section we have presented some decomposition and factorization methods based on
MBDs. Among then, the direct decomposition and the path oriented decomposition and
factorization relies on the particularities of the MBD topology, while the Boolean factorization
techniques does not explicitly depend on the MBD representation. The direct and path oriented
decompositions are alternative ways to split a MBD into a set of subfunctions. Since they are
relatively fast, one can try both of them and select the best result. The Boolean division
presented here is too costly to be applied to large circuits, but it is useful for the decomposition

and factorization of node functions in a Boolean network, which have smaller complexity.

The results of the direct decomposition indicate that it is an interesting decomposition method.
The Boolean networks it produces are of reasonable complexity and the algorithm is very fast.
Of course, to be effective this method needs a previous MBD reordering to reduce the MBD

size. Thus, the reordering time must be taken into account too. The algorithm is flexible in the
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sense that it is easy to tune the complexity of the node functions, defined in terms of the
number of variables in the support of the function . Fine granularity decomposition may be
obtained by restricting the support size to two variables, for instance. This produces a larger
network but with simpler node functions. Another decomposition parameter, the amount of
sharing of a subfunction - estimated by the number of fathers of the subfunction root -
accounts for the reduction of the network size, since it identifies subfunctions that are used
several times in the multi-level representation. It should be used concurrently with the support
size, as an alternative cost function. In this case, a subMBD is extracted both if its support has
the expected size or if its number of fathers reaches the specified threshold. If the cost function
to be minimized is the global MBD size (the sum of the MBD size of each subfunction), then the
size of the subMBDs may replace the support size as the main decomposition parameter, used

concurrently with the subfunction sharing.

The path oriented decomposition and factorization has not produced so good results. But we
believe that is can be further improved by a deeper analysis of the splitting nodes selection,
which may consider also the MBD supernodes. As supernodes represent simple factorable

functions, they should not be destroyed by the splitting nodes.

The Boolean factorization techniques where developed just to show that MBDs can also be
used in this field. The logic minimization algorithms may profit from the speed of the logic
operations performed on MBDs. We presented also a method that allows the extraction of
kernels directly from MBDs, here called MBD-kernels, which provides good candidates for
logic division. The selection of the divisors was developed based on the MBD-covers of the
functions. We believe, however, that is possible to develop methods for the evaluation of
candidate divisors that works directly on the MBD representation, without need of converting it

to a sum-of-products form.

The time complexity of the direct decomposition is linear with respect to the MBD size. The
path oriented decomposition is more complex. Each node of the g subfunctions is checked for
redundancy, which is computed by checking for implication between its son’s functions. As
the implication is proportional to the product of the size of both son’s functions, the time
complexity is bound by O(n?), where n is the MBD size. This is still acceptable for a large
class of practical circuits. The Boolean methods involve logic minimization, which is a NP-
complete problem. We do not have a precise estimation of the time complexity of the
minimization heuristics developed in chapter 5, but empirically we may state that this is not

practical for large circuits, but they can be applied to node functions, which are simpler.

Finally, it should be noted that in the case of direct and path oriented decomposition the BDD
extensions proposed in the literature, namely the strong canonical form and the negative

edges, would be useful. The negative edges allow a fast verification of the existence and use
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of the complement of the extracted subfunctions in both methods. This is implemented here by
calling an equivalence checking algorithm. The strong canonical form will be useful for the
path oriented decomposition because it keeps the global MBD always updated. Here this is

implemented by reducing the set of subfunctions extracted, which takes more time.
7.2 Multi-level Minimization

One useful feature of two-level expressions is the existence of an accurate cost function, that
closely correlates to the implementation cost. For multi-level circuits, the cost function is not
so clear. In fact, there is no simple answer to the question: “how good is one multi-level
implementation?”. The problem is that we are not able to find or to make a good estimation of
the optimum solution for a multi-level circuit. Consider the case of area minimization, for
instance. A multi-level circuit is optimum if it has the smallest possible area. But there is a
large set of factors that may affect the final circuit surface. Some of them may be treated at the
logic level. Others are related to specifics technological features, as the preference for certain
logic gates and the availability of several layers for interconnections, which eases the work of
the placement and routing tools. These information have different nature and their integration

in a unified synthesis environment is long term research work.

The search of simple cost functions to guide logic synthesis tool leads to the definition of
abstract costs at the logic level that may lead to good implementations. A common accepted
abstraction of the circuit cost is the total number of literals of the Boolean network. Some
experiences [Lig88] have demonstrated that this in fact can be a good estimation for the circuit
complexity for a large set of problems. In this case, one criteria for optimality may be found

by extending the concepts of primality and irredundance to the multi-level case.

Definition 7.12. A Boolean network m is prime if no literal can be removed from any cube of
any node function cover without changing the Boolean function it represents. It is
irredundant if no cube can be deleted from any node function cover without changing the

Boolean function denoted by .

One potential problem with this cost function is that it does not take into account the
connection’s complexity, which plays an important role for larger circuits. Some recent works
have addressed the problem of interconnection complexity at the logic level. [Abo90] tries to
simplify the connections by introducing an ordering in which the variables enter in the
subfunctions trees and also by controlling the fanout of subfunctions obtained along the
decomposition. [Hwa89] models the interconnection problem by the number of
interconnection among logic blocks. It proposes a tree like decomposition where the number
of interconnection between the blocks is reduced. [Ped91] addresses the interconnection

problem during the technology mapping step. It simulates the placement of the cells and make
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estimation of the interconnection costs based on a virfual placement. It is a quite sophisticated
work, and it is striking that this as well as the other approaches have produced so little
improvement over the synthesis based on the literal count. This fact seems to indicate that the
solutions found with the literal count cost function may be near to the optimum. These
information must be taken with care, however, because we can not discard the possibility that
this lack of significant improvements comes from our limitations in dealing with the
complexity of modeling technological features at the logic level. In general, we found that the
literal count is still a good estimation of the circuit cost and we adopt it here as the cost
function to be minimized. The interconnection complexity may be indirectly minimized if we

look for logic transformations that produce subfunctions with smaller supports.

There are several minimization methods oriented to the reduction of the literal count and to the
elimination of redundant logic in a Boolean network. All these minimization can be modeled in
terms of don’t cares [Bra89]. There are globally two kind of don’t cares. External don’t cares
refers to the set of input vectors for which the output of the function is not meaningful. A
classical example is the BCD (Binary Coded Decimal) to binary code conversion, where the
input values corresponding to decimal digits above 9 are don’t cares because they never occur.
The internal or implicit don’t cares [Bar88][Bra89] are non-meaningful input conditions
derived from the multi-level nature of the circuit. There are two kinds of implicit don’t cares:
the observability (ODC) and the satisfiability (SDC) don’t cares [Bra89]. Both of them can be
used together with the external don’t care to simplify the node functions in the Boolean
network and, by consequence, reduce the logic complexity of the overall circuit. We make

now a brief survey on the main techniques used to simplify multi-level circuits.

Muroga [Mur89] has developed a method called TRANSDUCTION (TRANSformation and
reDUCTION) that computes the set of permissible functions of each node and uses it to simplify
the circuit. The permissible functions of a node are all functions that can be assigned to the
node without modifying the output functions of the circuit. Node functions are expressed in
terms of the primary inputs. As the set of permissible functions may be huge, the minimization
relies on a subset of them, called the Compatible Set of Permissible Functions (CSPF). An
interesting property of the CSPF is that it allows the simultaneous simplification of distinct
nodes, without need of recomputing the CSPF of the other nodes at each transformation. The
CSPF is computed by traversing the network from the outputs up to the inputs. The output
nodes that have no fanout have their don’t care sets initialized with the external don’t cares.
This method was first conceived to work on two inputs NOR circuits, and was extended to

work with general node functions in [Mat89] and [Sav90].

The global flow [Bra83][Ber88b] is a method that applies compiler techniques to the multi-
level logic minimization problem. The idea is to use logic implications in the form

yi = bj ->yj = bj, where y; and y; are input or internal nodes of the Boolean network and
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bj and bj € {0,1}. In the original method [Bra83] the network should be specified in terms of
a simple gate, e.g., NOR gates. In this case, if one gate input is set to 1, then the output must
be 0, independent of the other gate inputs: y; = 1 -> y; = 0. The method was generalized in
[Bra88] to deal with more than one type of gate. The implications are used to compute the
forcing sets, which establish a relationship among signals in the network. Based on the
forcing sets the frontier of influence of a signal are computed and the gates and/or connections

in this region may be transformed, simplifying the circuit.

Another interesting approach uses automatic test pattern generation (ATPG) techniques to logic
optimize the circuit [Bry89][Jac89]. The idea is that ATPG algorithms can identify and locate
faults in the network that can not be tested, the redundant faults. The fact that the outputs are
insensitive to those faults indicates the existence of redundant logic in the circuit. Removing all
redundant logic produces a logic optimized circuit that is 100% testable for single stuck-at

faults.

The single stuck-at fault is the most used fault model for testing circuits. It assumes that there
is only one fault at a time in the network, and it is modeled by setting one fanout stem to a
constant value, 0 or 1. To detect such fault, the ATPG system look for an input vector that sets
the fanout stem to the opposite value and at the same time propagates it to at least one output.
Most ATPG algorithms use fault simulation and logic implication to propagate the logic signals
through the network to verify if the fault is testable. In this process, sometimes the logic
implications produce logic contradictions, e.g., a signal that is set to two distinct values. In
this case, the algorithm backtracks and modify a previous logic assertion and repeats the
process. When the number of backtracks is too high, the algorithm is interrupted and the fault
is referred to as an aborted fault. If the number of backtracks is high, the algorithm may have a
poor performance. If there are aborted faults, it may not be able to find all redundant faults.
For those reasons, ATPG techniques were lagged behind other approaches in the logic
minimization area. This situation changed with the significant improvements discovered by
Schultz [Sch88] and incorporated to the SOCRATES ATPG system. Based on the FAN algorithm
[Fuj85], SOCRATES pioneered the use of contrapositive (or backward) implications in the
ATPG context. This and other improvements allowed for the detection of all irredundant faults
with a backtrack limit of ten, and no aborted faults. Moreover, experimental results show that
this heuristics are of linear complexity, which indicates that ATPG based logic minimization

may be quite effective for circuits that have redundant logic.

TRANSDUCTION, Global Flow and the ATPG approaches depend on the circuit topology and
on the type of the gates to compute meaningful information for the network minimization. A
somewhat different approach was proposed in BOLD [Bos87], which is based on multi-level
tautology checking. The method is an extension of the ESPRESSO [Bra84] algorithm to deal

with the multi-level case. The algorithm manipulates the node function’s covers, expanding
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and reducing them while controlling the consistency of the transformations through multi-level
tautology checking. It not only eliminates literals and cubes from the node’s covers but also
introduce new variables in the support of the node functions, executing multi-level
resubstitution. Its performance relies on the efficiency of the tautology checking algorithms,
which takes advantage of the locality of the transformations to perform fast Boolean
verification. The resulting network is multi-level prime and irredundant, 100% single stuck-at

fault testable and the test set is provided as a by product of the minimization.

All these methods use the don’t care sets in a implicit way. On the other hand, MislI [Bra87]
performs multi-level minimization by explicitly computing subsets of the observability
[Sav90] and satisfiability [Sal89] don’t cares for each node function. It then uses a two-level
minimizer (ESPRESSO) to simplify the node functions and reduce the network complexity. It
was shown in [Sav90] that this approach not only may simplify the node functions but also
can introduce new variables in their support, re-expressing them in a simpler way. Since both
SDC and ODC may be huge in practical circuits, the choice of an adequate subset of them is a
very important problem. [Sal89] presents some filters for the selection of subsets of the SDC.
In short, when minimizing a node n, they propose to build the SDC(n) using only the nodes
whose fanin is a subset of the fanin of #. In [Sav90] a technique based on the TRANSDUCTION

method is presented to compute subsets of the ODC.

In this work, we opted to implement this later technique for the minimization of multi-level
circuits. Besides of producing results of similar quality to the other approaches, this method
allows us to apply the minimization techniques presented in chapter 5 to simplify the node
functions. In the next sections we present a more detailed definition of the SDC and ODC sets,

followed by some examples of its application.

7.2.1 Implicit Don't Care Sets

We introduce the SDC by means of an example. Consider the function:
f(x1,X2,x3,%4) = X1 V x2:(X3 V X4)

When decomposing this function, suppose we introduce a subfunction y = x3 v x4, Then, f

can be expressed as:
f(x1.x2,x3,x4)y) = X1 V X2°y

The introduction of y in the support of f doubles the size of its domain. But y is not a primary
input, it represents an intermediate function that is itself expressed in terms of the primary

inputs. Clearly, the relation established by the equation y = x3 v x4 must be respected in all

points of the new domain of f. This means that the conditions that leads both to y = 0 and
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x3vxg=1lortoy=1andx3 vxs=0 in fact never occur and these points have undefined

values in the new domain of f. Figure 7.14 illustrates this example by means of a Karnaugh

diagram.
x1 x1 x1
1 1 1 1 - - - -
1 1 1 - - - - 1 1 1
x3 x3 x3
1 1 1 - - - - 1 1 1
x4 x4 x4
1 1 1 - - - - 1 1 1
X2 X2 X2
y
(a) (b)

Figure 7.14. Effect of introducing an intermediate variable.

Figure 7.14(a) shows the original function f, while 7.14(b) shows the function with its new
support. Note that the number of care points remains the same. Thus, each new intermediate
variable introduced doubles the size of the function domain by adding to it a set of don’t care
vertices. The don’t cares are distributed along the two new subdomains y =0 and y = 1

according to the equation that relates y to the variables on the previous Boolean space.

The SDC is thus a set of virtual points in the extended Boolean space of the multi-level
function. In fact, the variables that define the Boolean space will never be set to values that
correspond to vertices in the SDC because the relation

yi =fiX,Y)

must be satisfied for all intermediate variables y; on the Boolean network. The contribution of
a node n; to the global SDC is noted SDC(#n; ) and is defined based on the fact that we can not
have y; = f;(X, Y):

SDC(n; ) =y; @ f;, where @ is the exclusive-or operation.

The global SDC for a network 7 is given by the sum of the contribution of each non-primary
input node of n :

SDC(n) = Y y; @ f; for all n; €En \ {primary input nodes of n}

In figure 7.15 we give an example of the SDC for a simple Boolean network. The Karnaugh

diagram shows f expressed in terms of x;, x2 and y. The SDC due to node y is obtained by:
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SDC(y) =y @ xjx2= yxjx2+ y(X, V X,)

Simplifying f with this SDC we obtain f = x;.

le— f

Figure 7.15. SDC for a simple network.

The ODC is the don't care that arise from the fact that for some input vectors the output
functions of the network do not depend on some intermediate variables. This occurs due to the
blocking of the paths that connect that variable to the outputs by other intermediate variable
values. The ODC for a node n; with respect to an output f; can be computed by finding all the
points in the extended Boolean subspace where fi(y; = 0) = fy(y; = 1). This means that for
those points we can set y; = 0 or y; = 1 and the value of fj is not affected. Thus, in these cases
Jx 1s independent of y;. They can be computed using the concept of Boolean difference of a
function f with respect to a variable y; :
aof

(9_yl-=fyi@ fyi

Since the exclusive-or operation gives the set of points where two functions differs, the ODC
of a node n; with respect to an output fy may be computed by finding the complement of the
Boolean difference between fi and y;:

I

ODC(I’ll') = 07—

i

The ODC for multiple output functions is the conjunction of the ODCs for each output.

ODC(n;) = A(%), for all f; € {primary outputs of n }

i

This equation states that if some function f depends on y; for some input vector xj, then x;

can not be added to ODC(n;). The example from figure 7.15 can be minimized also by the
ODC. Computing the ODC(y), we find:

ODC(Y)=fy, ® f3=1 VY ly=1 @ (X7 VY )y=0=1® x; =x;
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The new function associated to y is presented in figure 7.16. Minimizing y we have either

y=0ory =xj;.Replacing y by any one of these values produces f= x;.

y X1

X2 -

Figure 7.16. ODC for node y.
7.2.2 Node Minimization

The method we have implemented consists in computing subsets of the SDC and ODC and
using the minimization techniques presented in chapter 5 to minimize the node functions. The
SDC subset that is computed is based on the subset support filter proposed at [Sal89]. First we
have tried to compute the whole SDC for a node to check if the MBD representation could be
compact enough to allow treating the general case. However, we could quickly verify that it
becomes too large even using MBDs. For instance, for the Z4 circuit with only 14
subfunctions, the MBD of one subfunction with the non filtered SDC reached 322 nodes, while
the MBD of the same subfunction built with the filtered SDC had only 9 nodes. The problem
here is not only the size of the MBD, but also the fact that most of times the non filtered don’t

cares are not useful for the simplification of the node function.

Let us define a notation convention: the SDC from a node n; is its contribution to the global
SDC of the circuit, obtained by the equation SDC(n; ) = y; @ f;. The SDC for a node n; is the
SDC used to simplify it. It is obtained by computing the contribution of all nodes nj such that
support(ng) € support(n;). The first step before computing the SDC for any node is to setup
the SDC from every node of the network. Then the SDC for a node n; is computed by simple
ORing the SDCs of nodes whose support is a subset of n;.

As we have seen above, the ODC of a node n; may be found by computing the Boolean
difference of each output with respect to y;. Of course, we can directly apply the Boolean
difference to an output f; only if fx depends explicitly on y;. Otherwise, if y; is in the transitive
fanin of f; then there is a chain rule that can be used, but it becomes complex quickly.

Suppose that f; depends on yy, ..., y,, and y, depends explicitly on y;. Then:

Wi - Ui Digy ... @ Yu Dn g

dy;  dy; 9y; Iy, 9y
2 2 2
9" fr 9y 92 g 9 fr 9y Wiy . ? Ji i W g
dy dy, dy; dy;  dy;dyz dy; Iy Y19y, Iy Iy
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"fr Iy, 9y,
dyy -+ dy, dy; 9y,

The subset of the ODC used here is computed using a simplified model derived form [Hac89]
and [Bra89]. Let

of.
Eijj= {aiy{(x)}

be the observability don’t care of node n; with respect to a node 7 in the immediate fanout of
n;. In fact, it is the ODC subset associated to edge (n;, nj ). Moreover, if f is a Boolean
function and #n; an intermediate node in a Boolean network, restrict(f, n;) is the operation that
produces a new function g obtained by degenerating f with respect to all variables in the

transitive fanout of n;. Then, the recursive formula below gives a simple and efficient

approximation of the ODC for a node n;, called OD(n;):
¢ if node n; is a primary output, then OD(#n;) = external don’t care for n;, otherwise

OD(n;) = A restrict(E; , + ODy, n;)

ny Efanout(n;)

The algorithm to perform multi-level minimization is presented in figure 7.17.

function MLL minimize (BN, dc): BOOL_NETWORK

var BN: BOOL_NETWORK;
dc: DC_TYPE; /* SDC, ODC or BOTH */
begin
var m: MBD_TYPE;

nodelist: list;

if (dc € {SDC,BOTH})
then set up SDC(BN); /* SDC(nj) = yi®@f; */
nodelist = order nodes(BN); /* minimization order */
foreach node n in nodelist begin
/* build the incompletely specified function of n */
case dc:
SDC: mpp = n.mbd; mge = n.sdc;
ODC: mpp = n.mbd; mge = DO(n);
BOTH: mgp = n.mbd; mge = n.sdc v DO(n);
end case;

n.mbd = MBD minimize(m); /* minimize the node function */
update BN(BN,n); /* update fanin and SDC of n */
end;

end;

Figure 7.17. Multi-level minimization algorithm.

The algorithm is a straightforward application of the concepts presented above. First the SDC
from each node n is computed and stored in the field n.sdc. Then, the nodes are ordered
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according to its fanin cardinality. The ordering in which the nodes are processed is important
for the minimization purposes. We adopt here the heuristic of minimizing first the nodes with
larger fanin, since they are the first to be discarded by the fanout support filter and are not
used by the nodes with smaller fanin. Next, each node of the network is processed. There are
three possibilities concerning the use don’t cares: only SDC; only ODC or both of them. The
incompletely specified node function is built by adding (in this case, dc always overrides other
values) the don’t cares to original node function. Then it is minimized using one of the

techniques presented in chapter 5. Finally, the new SDC from 7 and its fanin are updated.
7.2.3 Experimental Results

We have applied the minimization algorithm over a set of benchmark examples. The results are
shown in table 7.5. For each example, the circuit is read in the multi-level format and the MBD
of each node function is built. The circuit is then minimized with respect to its satisfiability
don’t care set. Next, the circuit is minimized with respect to its observability don’t care set.
Since our goal is the synthesis on library based designs, the node functions were simplified
using the two-level minimization techniques presented in chapter 5. To speed up the node
minimization we have used the reordering techniques to reduce the MBD size before the node

minimization.

| Initial " SDC " SDC + ODC ||

Circuit Size| Lit |MBD| Arc |Size| Lit |MBD| Arc |Size| Lit [MBD]| Arc

Z4 14 | 66 (100 | 44 (11 |58 |71 |34 |10 |56 | 67 |29
DK27 10 |37 (56 |31 (10 |30 |50 |29 |10 |30 | 50 |29
P82 19 |166 (201 | 85 (18 |144 |215 | 96 |18 |144 [215 | 96
M2 19 |185 (225 |147 (19 |163 |223 |139 [19 [163 (223 [139

X9DN 16 |173 (226 |105 (16 |160 |213 |99 |16 |160 (213 [ 99
F51M 194 |381 |769 |381 [190 |371 |751 [369 [190 371 |751 (369
RD53 12 |62 (110 | 43 |11 |55 (71 |34 |11 |55 |71 |34
P82 19 |166 (201 | 85 (18 |144 |215 |96 |18 [144 [215 |96

Table 7.5. Multi-level minimization benchmarks.
We present four cost functions for each case:

¢ size is the number of nodes of the Boolean network
¢ /it is the total number of literals of node’s covers
* MBD is the sum of the MBD size of the node functions

¢ arc is the number of interconnections in the network.
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We may check that the total number of literals is effectively reduced, as expected. The number
of nodes of the network, however, in several cases is not reduced. The MBD size and the
number of connections usually are reduced too, but in some cases they are increased. This is a
rather natural outcome of the type of minimization adopted, since one of the two-level
minimization goals is the reduction of the number of literals. The MBD size is not important in
this case. On the other hand, the increase in the number of connections indicates a possible

augmentation of the routing costs.

Curiously, most of times the use of the ODC does not improve the solution. This does not
means that it is useless, but probably that the examples taken were not particularly sensitive to
ODC techniques. It should be considered also that the minimization was done with a subset of

the ODC, which surely limits the efficiency of the method.

Another point that should be stressed is that even using the simplified models, the ODC and
SDC may be still very large. Several examples could not be processed by the LISP prototype
because the size of the MBD with the don’t cares reaches sometimes a thousand nodes by
subfunction. Even using the reordering techniques, it could take several hours for the
prototype to minimize the circuit. The examples presented above were processed in a few

minutes, at most.

The minimization complexity is not a direct function of the circuit size. It is rather a
combination of factors. The fanin of each node plays an important role. Since we use the
subset support filter, the larger the fanin of one node the larger is the number of nodes that
contributes to its don’t care. The worst case is when we have some nodes with a large fanin
and several others with a small one. In this case, the don’t care of the nodes with large fanin
may be very large, specially because it will depend on too much variables. On the other hand,
a large circuit composed by small fanin subfunctions may processed quite fast, because the
subset support filter will limits the size of the node’s SDC. It is the case of F51M, which is
presented above to exemplify this point. It has 194 nodes, but all of then have at most 2
inputs. This is a extreme case, where the subset support filter is too restrictive. The
improvements, by consequence, are not significant. These limitations can be reduced by
providing the users with a set of operations to manipulate the Boolean network in order to
obtain a topology that is more adequate to the use of those techniques. Some examples of such
operations are node collapsing, node factorization and node decomposition. Another
interesting possibility is to develop minimization techniques oriented to the reduction of the
literals in the support of the function, which should reduce the connection cost and possibly

eliminate more nodes from the network.
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7.2.4 Comments

In this section we have touched the surface of a large research field that is multi-level logic
minimization. There are several distinct methodologies to deal with this problem. All of them
may be modeled as a minimization problem over the ODC and SDC of a network. They differ

in the way they compute the subsets of the don’t cares for the minimization.

In this context, we have studied the application of MBDs in this research field. There is several
ways to apply MBDs here. Some works have already addressed the application of BDDs with
the TRANSDUCTION method [Mat89]. Global flow, on the other hand, does not seems to be
able to produce better results than the other minimization techniques described here and thus
was discarded as a candidate for MBD application. Multi-level tautology based minimization
and ATPG techniques could surely be improved by the use of MBDs, but they rely on an
approach different than that adopted in this work. Thus, we have chosen to implement a
method based on node function simplification. It consists in computing subsets of the ODC
and SDC for each node of the network, which is then logic minimized. We have developed
two methods for the minimization of the incompletely specified MBDs and both of them could
be used with this technique. Since this chapter deals with the synthesis on library based
designs, the experimental results presented here are related to the application of two-level MBD
minimization algorithms. However, it will be not difficult to extend the technology mapping
algorithm described in next section to work with FPGAs. In this case, the MBD size

minimization techniques could be used to simplify node functions.

The algorithms for computing subsets of the don’t cares were taken from the literature. They
constitute by themselves an interesting and complex research field that was not treated here.
The results show that this technique effectively reduces the complexity of some cost functions
of a multi-level network, like the literal and node count. Finally, the efficacy of the algorithm
may be improved by developing new algorithms to obtain better approximations of the don’t
care set, together with a set of operations for reshaping the network in order to guide the

minimization process.
7.3 Technology Mapping

The logic decomposition and minimization of a multi-level circuit constitutes the technology
independent phase of the synthesis. Once the logic independent optimization is done, the next
step is the technology dependent phase of the design. It is usually called technology mapping,

or simple mapping, for short.

The mapping consists in covering the network by implementing each node with a set of gates
selected from the target library, while trying to meet the design constraints. Circuit delay,

global area and testability are typical cost functions in digital circuit design. Ideally, the circuit
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should have a minimum area and delay and to be 100% testable. In practice, however, a
common goal is to minimize one cost function, area for example, and keep the others within

the design constraints.

Technology mapping can be divided into two main tasks: gate matching and network
covering. Gate matching consists in, given a Boolean function f, find all the possible gates
configurations that can implement it. In the general case the matching may include inverters at
the inputs and/or at the output of the gate. Network covering is the process of transforming the
network into an acceptable design by selecting which set of gate matchings minimize the target
cost function. Node collapsing and node decomposition are typical manipulations performed
along the covering step. Several approaches have been reported in the literature. The mapping
tools can be classified according to their matching and to the covering approaches. We may

have:

e structural or functional (also called Boolean) matching

* direct or recomposing network covering

DAGON [Keu87], one of the first mappers, treats the matching as a graph isomorphism
problem. It is based on the techniques of code minimization used in compilers. The circuit is
decomposed into a set of primitive gates, as NANDs, NORs and inverters. The library cells are
also decomposed with the same primitives. Gate matching is checked by comparing the tree
representation of the gate and of the function to verify if they are isomorphic. We call it here
structural matching, because we do not compare the functions but the structures used to
represent them. A similar approach was adopted in MislI [Bra87]. The main difference is the
introduction of duplicated inverters in each connection of the network in order to deal with the
phase assignment problem. Misll have produced better results than DAGON, but both are

limited due to the tree representation of the gates.

CERES [Mai88] is a mapper that uses Boolean matching to select the gates. Here functions and
gates are compared using the Shannon decomposition. Herein we refer to it as functional
matching because we compare Boolean functions instead of their structural descriptions. This
approach is more flexible and allows to identify a wider range of functions including EXORs
and majority functions, for example. However, the use of Shannon expansion to check a wide
range of input orderings is costly. SKOLL [Ber88] introduces an interesting alternative to the
gate matching problem. Gates and functions are described by sum-of-products (SOPs)
represented by string of integers, where each integer is the number of literals of the respective
cube. This allows a fast comparison between functions, with the restriction that repeated
literals can not be represented and only sum-of-products can be used. DIRMAP [Leg88]
proposes another interesting approach. The Boolean network is minimized with MislI and

each node is directly mapped to a set of gates. It follows a greedy approach and is based on
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the availability of autodual libraries, i.e., libraries in which each gate has its dual. It produces
better results than the mapper of Misll with a simpler algorithm. The matching itself is not
described, and so is difficult to estimate the restrictions of this method. However, when
autodual libraries are available, the results in terms of inverter count are good due to the
preservation of the global phase assignment information provided by the technology

independent minimization.

There is a class of mappers based on local transformations [Gil84][Geu85][Lis88][Lis90].
[Gil84] and [Geu85] use a similar approach that consists in identifying gate configurations
that may be replaced by equivalent ones optimized in some faction. They are limited by the
local nature of their approach. McMap [Lis88][Lis90] does not look for pre-defined patterns
but iterates over the circuit splitting and merging sets of gates trying to simplify the solution.
To avoid local minimums it performs multiple trials with random selected starting points. It
does not provide a comparison with existing tools, but the reported computing times indicate

that the algorithm is very fast.

Other mapping systems that may be cited are GATEMAP [Pit89] and TECHMAP [Mor89].
GATEMAP is in fact a multi-level synthesis system that accepts a behavioral logic description as
input and performs logic optimization and technology mapping. The mapping step is executed
along the function decomposition using a fast Rademacher-Walsh transform to match
subfunctions and gates as early as possible. A further optimization step is performed over the
mapped circuit using techniques similar to [Geu85]. This process is quite costly in terms of
CPU time, and the results obtained are similar to those of [Geu85]. TECHMAP realizes the
mapping over a 2 input NANDs decomposed network. Some interesting features are the NAND
decomposition oriented to delay optimization and the definition of a set of testability

preserving circuit transformations.

Most algorithmic mappers perform recomposing covering. The optimized multi-level network
is initially decomposed into elementary gates from the library (NORs, NANDs...). The covering
consists in breaking down the network into a forest of trees and optimally mapping each tree
using a dynamic programming technique [Aho83]. Nodes are collapsed in order to provide
alternative matching possibilities. Direct covering consists in taking the optimized multi-level
network as the starting point and trying to match directly the nodes against gates from the
library. Nodes that can not be mapped are decomposed. DIRMAP [Leg88] and ASYL [Sak90]
are examples of the direct covering approach. In [Leg88] it was shown that if we dispose of
an autodual library the direct covering can be more effective due to the preservation of the
global phase assignment optimization previous performed in the logic minimization step. In
general, we can expect the direct covering to give better results since it does not destroys the

optimized multi-level structure of the circuit. However, recomposing covering can eventually
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produce better results by providing alternative starting points to the mapping problem. It can

also be directly applied to networks of simple gates to re-map it to another technology.

In this section we discuss a technology mapping technique based on MBDs [Jac93a] that
explores the advantages of both functional and structural matching and both direct and
recomposing covering. Each node in the Boolean network has its associated function
represented by a MBD. The gates in the library are also described by MBDs. The idea is to use
the flexibility of the Boolean approach and improve the speed of the matching by the use of
MBDs. Structural matching is used to deal with some special cases. The covering is basically a

recomposing one but with a support for node decomposition in the case of direct covering.
7.3.1 Technologic Features

The target technology provides the gates that will be used in the mapping. There are some
features of the technology that have a direct influence over the mapping method and over the
cost functions. The library establish the functional resources that will be employed to cover the
network, while the technology itself defines some parameters that must be considered in the

selection process.

The cost of a given gate can vary from one technology to another. A good example is the
difference between NMOS and CMOS NANDs and NORs. In NMOS, NORs are preferable in
terms of speed and surface, while in CMOS the use of NANDs is more interesting. This kind of
information shall be automatically taken into account by the cost function used to select the

gates.

The library has a strong influence on the mapping method. The DIRMAP [Leg88] method, for
example, needs an autodual library. The basic information that must be provided by the library

is what kind of logic gates are available. We may enumerate three main library models:

* topological libraries which consist in the set of functions obtained with a matrix of
transistors that can be connected to an input signal, deleted or replaced by short circuits.

» programmable libraries which contain one or a few programmable gates that can realize
several distinct functions.

* static libraries, that provides the user with a set of pre-defined gates.

Programmable and static libraries are widely used, while topological ones are less common.
SYLON-DREAM [Che90] is an example of a system that maps the Boolean network into
topological libraries. It uses the synthesis with negative gates method [Iba71] to implement the

node functions at the transistor level.
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Cell generators and FPGAs are examples of programmable libraries. The mapping based on
cell generators [Ber88a] relies on a different approach. As in the case of the Xilinx devices,
the idea is to put as much as possible logic into a single cell, respecting the constraints

imposed by the technology.

The libraries most used in practice are static ones. They offer a set of pre-defined primitives
that implements the most commonly used logic functions. Among others, the elementary AND
(NAND), OR (NOR) and NOT gates, simple sum of products and products of sums, and also
some special functions like XNORs, XORs and majority functions. Standard cells and gate-

arrays are the most popular examples of static libraries.

The mapping proposed here addresses static libraries. Its importance comes from the fact that
it is the most used and it covers a large set design styles. Indeed, the first approach for the
mapping into ACTEL devices was to describe all possible gates generated by the ACTEL

programmable cell in a static library and then map the Boolean network using that library.

The first problem is how to describe the gates for the mapping tool. Each gate must contains
relevant information for the mapping cost functions. In the LISP prototype of our system the

gates were described by the following set of information.
Gate example:

® gate name - eX: AOI22

* INPUTS: a list of the gate inputs - ex: (INPUTS (Al A2 B1 B2))

* OUTPUT: the name of the output - ex: Z

* SIZE: the area value of the gate - ex: 4

* DELAY: the maximum delay of the gate for a standard load - ex: 20 ns

* CONNECTIONS: the relation number of inputs/number connections of the gate ex: 4/6
* EQUATION: the expression that describes the gate logic function

- ex: (EQU (~ (+ (* A1 A2) (* B1 B2))))

* MBD: the MBD of the function.

The size, delay and connections can be used by cost functions in the mapping. We use a
simplified delay model, where all inputs are supposed to have the same delay. The
connections value express the number of wires that can be saved using a given gate. It is
usually directly proportional to the gate area. The equation is an algebraic expression used for

printing purposes. The MBD holds the gate function and is used in the matching process.
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7.3.2 The Matching Problem

The matching of a function with a gate is one of the key problems in the mapping. Each gate
can implement a family of functions, according to some transformations that can be applied to

its inputs and to the output. We can point out the following set of transformations [Dav91]:

* Sp, the symmetric group of permutations of the n variables; it contains n! elements.
. Clzl, the group of complementation of variables containing 2™ elements.

* C, the complementation of the function; the group contains just two elements: the function

itself and its complementation.

Let m be a permutation of the input variables and d = x(®) a complementation of them. Let w
be the composition of both transformations: u = d(7(X)). The matching problem can be

stated as follow:

e given f, a Boolean function, and a library L = {G;}, find a subset of gates
Q = {p L} such that:

fX) = Bu (Y) or fiX) = B(u(Y) (1)

where = means a tautology.

The set Q in fact contains functions that describe the logic behavior of a set of gates. The
matching will establish a correspondence among variables of the gate function and variables of
the function being matched. If €2 is empty, then there is no gate in the library that can

implement function f.

Example: let f=x2 v X;, X ={ x7,x2 }, be the function to be matched against an AND
gate described by = Aj-Aj. Then, if Al = x;, A2 = x, we have:

B (X;.x2) = fix], x2)

In this case we have m =i (identity) and d = x(O, 1), The hardware associated consists in
the AND gate with one inverter connected at the input pin A and another connected at the

output.
Definition 7.13. A gate match of a function fon a library L is described by:

* alogic gate BEL
* a mapping m: X — A, where A is the set of input pins of the gate.

* a set of input inverters, one for each 0 value in the phase vector e of 9 = x(©)
* an optional output inverter in the case where f (X) = B;(n (Y))
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Let f be the function associated to node y; in the Boolean network. The gate match of fis
called the direct match of y; . The gate match of f is called the complement match of y; .

The transformations can be illustrated as shown in figure 7.18. There are 2n/2" possible
transformations. Using Boolean matching we should apply each possible permutation of the
input variables of the function to the gate pins and compare the result with the original
function. In practice, however, the number of comparisons can be greatly reduced by

considering the symmetry classes of a function.

Ko > > >
K= s c: —>|  GATE > ¢ s
}{n—l—l) _) _)

Figure 7.18. Input and output transformations
Definition 7.14: two variables {x;,x;j} are symmetric if:
S5 Xis Xy Xn) = (X ], 00X, 0Xn)

The symmetric property is transitive. If (x;, xj) and (xj, x¢) are symmetric, then (x;, xi) are
symmetric too. A symmetric class is a set of variables that are symmetric in a function. The
resulting simplification in the matching comes from the fact that in a symmetry class the
ordering of the variables is irrelevant and, thus, these variables need not to be permuted. For
example, consider the function f= (x; vx2 vx3)-(x4 vxs)-xgs. The variables {x;,x2,x3} and
{x4 ,x5} form two symmetry classes, and they need not to be permuted among themselves in
the matching. Although symmetric variables are not permuted, the symmetry classes of same
cardinality of the matching functions must be permuted. If S; is the number of symmetry
classes with i variables, and k the cardinality of the largest symmetry class then the total

number of input combinations to be checked is:

[T

This is true for the general case. However, we can further prune the search space of the
solutions to the matching problem if we extend the concept of symmetry to the symmetry

classes themselves. This is a straightforward generalization of definition 7.14:

Definition 7.15. Let S be the set of symmetry classes of a function f. Let S; and S; be two

symmetry classes of same cardinality. Sj and S; are symmerric if:
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f(SO9'°9Si$°-’sj9"9sm-1) = f(SO"'sSjv"Si"'aSm-l)

An example of this property is a sum-of-products form with no repeated literals. The cubes
define symmetry classes and they can be permuted without changing the associated function.
As in the case of symmetric variables, the symmetry classes with this property do not need to
be permuted, reducing the search space of possible matchings. In fact, this is a library
dependent parameter. For all standard cells libraries we have experimented, this property
holds. In this case, the matching reduces to function classification followed by tautology

checking.
7.3.3 Matching with MBDs

The MBD structure, i.e., the MBD graph without node values and unlabelled arcs, represents a
family of functions. This is exemplified in figure 7.19. The family of functions F denoted by
the MBD is:

F = x(a)-(y()4g v y(d)y) v xlblty

Xy,
— X+Y,
X'y,

Figure 7.19. MBD structure and its family of functions

Choosing values for the labels { a, b, ¢, d } and the terminals {#¢, t;}, we can derive the
family of functions F = { x'y,xvy, Xxvy, ... }. It is not the set of all functions of two
variables, but is the set of functions that can be obtained from an AND (or OR) gate by

introducing inverters on each input and at the output and also by permuting the inputs.

Comparing the MBD of figure 7.19 with figure 7.18, we can establish the following

correspondences .

* the MBD structure represents the gate

* the set Sy, stands for the different input variable orderings on the MBD

* the set C corresponds to the two different terminal node value assignments
« the set C is associated to the arc labels.

The matching of a function and a gate represented by their MBDs can be executed by first

finding two isomorphic MBD structures and then extracting from them the variables and output
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phases. The isomorphism between the graphs can be found by classifying the MBDs according
their symmetry classes. Let MBDy be the MBD of the node function to be matched. Then the

MBD matching can be performed as follows:

1. identify the symmetry classes (SymCs) of the MBDy
2. sort the classes in the descending order of cardinality
3. match the function MBD against the gates that have the same number of SymCs and the

same SymCs cardinality.

This algorithm is based on the fact that two functions f and g can match only if they have the
same number of symmetry classes and if for each symmetry class of f there is a corresponding

symmetry class in g with the same cardinality. For example:

f=(x1 vx2 vx3)(x4 vxs5 Vv x¢)
g = (X] VX2 VX3V X4 )(x5 V X¢6)

have the same number of SymCs (2), but they have different cardinality: (3,3) and (4,2)

respectively, and thus do not match.

If a gate has SymCs that are not symmetric then they must be permuted during the matching.
For the libraries where the SymCs are symmetric, the three steps above are enough to verify
the matching. In particular, step 3 is reduced to a Boolean verification between the functions

for all possible phase assignments of input variables.
7.3.4 MBD classification
To find the SymCs of a MBD, we re-interpret definition 7.14 with respect to a MBD.

Definition 7.16. Two variables {x;, xj } are symmetric in a MBD if they can be exchanged in

the MBD ordering without modifying the topology of the graph.

This can be easily checked. The MBD is a canonical description of a Boolean function. If we
change the function, the MBD must be changed accordingly. Thus, if we build a new MBD
with two variables exchanged in the ordering and the new graph is isomorphic to previous
one, then the function denoted by the MBD is the same for both orderings and, according to
definition 7.14, the variables are symmetric. Figure 7.20 gives an example of symmetry on a
MBD. Variables x; and x3 are symmetric in the function denoted by the MBD. We can see that

when they are exchanged the MBD remains exactly the same.

As we are considering the possibility of any combination of input variables complementation,

we extend the symmetry property to deal with all possible phase assignments.
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Definition 7.17: Two variables x; and x; are phase free symmetric if they can be made
symmetric by an adequate input phase assignment. Phase free symmetry classes are defined

in the same way.

For example, let f= X;'x2. Since X;x2. # x;*X,,x; and x2 are not symmetric. But they are

phase free symmetric because if we complement either x; or x» (but not both) then the
symmetry property holds. This is equivalent to say that if X, is replaced by a new function y

such that y = X, then we have f=y-xp, and x2 and y are symmetric.

X2 X2
1 1
x3 x1
0 1 0 1
x4 x4 x4 x4
0 1 0 1 0 1 0 1
x5 x5 x5 x5
1 1 1 1
0 0 0 0
X6 X6 X6 X6
1 1
0 9 1 0 Q 1
x1 x3
1 1
1 0 1 0

Figure 7.20. Two symmetric variables on a MBD.

Therefore, a simple method for detecting if two variables are symmetric is to build two MBDs
for the two respective orderings and check if they are isomorphic. If we suppose we have the
original MBD already computed, then the cost of this operation is proportional to the cost to
build a new MBD plus the cost of the equivalence checking. It is better than the method
proposed in [Mai88], which uses Shannon decomposition to perform tautology checking. A
still more efficient method is to apply the incremental techniques in order to avoid the cost of
building a new MBD. If we exchange two adjacent variables we can easily check if the MBD
was modified or not. In fact, we can check it even without exchanging the variables. The idea

is expressed in the following theorem.

Theorem 7.1. Let S be the set of subgraphs of nodes associated to two adjacent variables in
the MBD ordering (x;,x;+7) which have at least 2 nodes. Each subgraph has one root and
can lead to 2, 3 or 4 different subfunctions in the MBD. x; and x;+; are phase free

symmetric either if all s in S lead to only 2 subfunctions in the MBD or if they lead to three
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subfunctions: two subfunctions are associated to paths X; X; and x; x;jin the graph and the

third one is associated to paths X;x; and x; X;

Proof. two Boolean variables x; and x; divide the Boolean space into four subspaces,
respectively: (1) x; X it () xixj , (3) xix j and (4) x; x; . Each subspace corresponds to a
path in the subgraphs s € S. Exchanging x; and x; the subspaces (1) and (4) remains
unchanged, while subspaces (2) and (3) are exchanged. To be symmetric on these
variables, the subfunctions at subspaces (2) and (3) must be equivalent. This condition is
represented here as (2) = (3). In this case we have at most three different subfunctions
associated to subspaces (1), (2), (3) and (4): one for (1), another for (4) and a third one for
(2) and (3). If either (1) = (3) or (1) = (2) = (3) or (2) = (3) = (4) there are only two
different subfunctions and the paths in each s € S lead to only two different nodes (each

node is associated to a subfunction). If we have only (2) = (3) then the paths in s € S lead

to three different nodes. O
Xj X
XiXj | XiX; XiXj | XX
XXX | xix; Xidl xix; | xix;

Figure 7.21. Effect of exchanging variables.

This proof can be visualized with the help of Karnaugh like diagram, as in figure 7.21. Two
variables divide the function domain in four subspaces or subfunctions. If the variables are
exchanged, then the subspaces where x; = x; are also exchanged in the table. If x; and x; are

symmetric, then f(....x;xj,...) = f(....xj.Xj,...), and both diagrams must be symmetric with

respect to the diagonal. This implies that subspaces X;x; and x; X; must be equivalents. Figure

J
7.22 show some examples of symmetric variables in two variable functions.

Xi Xi Xi Xj

| I K1 E
X; || 1 X || 1 1 Xj || 1 X || 1
AND R XOR XNOR

Figure 7.22. Symmetric variables examples.

Thus, we can detect the symmetry property between two adjacent variables in a MBD just by

inspection. The subgraph topologies that correspond to symmetric and adjacent variables in a
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MBD are presented in figure 7.23. The subgraph (a) corresponds to the case where three of the

four subfunctions are equivalent. A simple example is the OR function of two variables.
Subspaces X;x; , x;x; and x; x; are associated to function 1 (g in the subgraph) while the

subspace X; X; is associated to function 0 (f in the subgraph). This can be indicated in (a) by

labeling edges that lead to subfunction g with value 1 and the edges in series that lead to f with

value 0. Subgraph of figure 7.23(b) represents the case where X;x; = x; X;

Subgraph 7.23(c) is the general case where we have only X;x; = x; x; (g in the subgraph) and

and x;xj = X;X;.

x; xj and X; X; are different.

f g f g
(a) (b) (c)

Figure 7.23. Some adjacent variables subgraphs.

Note that when we have a set of subgraphs in the adjacent levels, all of them must be of the

same type ((a), (b) or (c) in figure 7.23). This can be visualized in figure 7.20. The MBD
represents the function f = (x; v x, v x3)(x4 vV X5)Xs. Variables x4 and x5 are known to be

symmetric. In the MBD, we can see that the two subgraphs formed by these variables

correspond to the symmetry configuration of figure 7.23(a).

The algorithm to find the phase free symmetry classes in a MBD is based on the incremental
techniques presented in chapter 4. The idea is to make a variable walk through the MBD and
meet all the other variables. The algorithm starts with the root variable v, and test it for phase
free symmetry against its right adjacent variable in the ordering (variable with the next index in
the MBD). Then, v, is swapped with its adjacent variable in the ordering. Next, it is compared
against its new right adjacent variable in the ordering, and so on. The number of steps is upper
bound by n(n-1)/2. Usually there are less comparisons due to the transitive property of
symmetric variables: if one variable belongs to a SymCs it does not need to be further
compared. After all variables are pairwise tested, the MBD is classified by putting the SymCs

with larger cardinality closer to the root. The process is sketched in figure 7.24.

Let us illustrate the process with an example. Consider again the function of figure

7.20,f = (x; VXxyVx3)(x4Vx5)xg. We have the SymCs So = {x7,x2,x3}, S1={x4,x5} and
S» = {x6}. The literal x¢ is considered as a single element SymC. In figure 7.25 we show f

with an arbitrary ordering. MBDs from (a) to (f) show the first step in the symmetry evaluation
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of variable x4, the original root. In all cases but (d), x4 and its upper neighbor are not
symmetric. In (d) the subgraphs defined by variables x4 and x5 follow the configuration of
figure 7.23(a). Finally, figure 7.25(g) shows the final classified MBD, with the three SymCs

sorted in decreasing cardinality.

function class MBD (mbd, order)
begin
/* find the symmetry classes */
foreach variable v in order
if v is not member of any symmetry class already computed
then begin
compare v against all remaining variables
put all variables symmetric to v in a new symmetry class
push the SymCs found in the set of symmetry classes S
end;
/* sort the symmetry classes */
sort S in descending order of cardinality;
/* reorder the MBD */
foreach symmetry class sc in S
foreach variable v in sc
swap the variable in the MBD from its current position up
to its position in S;
update the order;
return (mbd, order)
end;

Figure 7.24. Algorithm for MBD classification.

The gates of the library are classified automatically when the library is defined by the user,
using the same approach. The goal is to reduce the number of candidate gates for the
matching. The gates are classified first by the number of SymCs and after by a vector resulting
from the juxtaposition of the SymCs cardinality (symmetry vector). The gate AOI22 is
therefore stored with the set of gates represented by the vector 22, which belongs to the subset
of gates that have 2 symmetry classes. The gate AOI322 is associated, respectively, to vector
322 in the subset of gates with 3 symmetry classes, and so on. Thus, when the function to be
mapped is classified, its symmetry vector is extracted and used to select a subset of candidate
gates from the library. The gate indexing scheme in the library is organized as depicts figure
7.26.

7.3.5 MBD matching

MBD matching is the task of verifying if two MBDs can be made equivalent by an adequate
variable phase and function phase assignments. The matching algorithm is similar to that for

equivalence checking between MBDs, but modified to deal with the phase assignment.

Definition 7.18: Two MBDs M; and M;j can be matched if for each node vi € M there is a

correspondent node vj € M;j such that:
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(a) either they are the same terminal and the output phase is direct or they are different
terminals and the output phase is complemented;

(b) they have the same index and

* low(vj) can be matched to low(vj) and high(vj) can be matched to high(vj) and the
variable phase is direct

* low(vj) can be matched to high(vj) and high(vj) can be matched to low(vj) and the

variable phase is complemented.

The main difference with respect to equivalence checking is that the phase of the variables are
determined during the matching. If the low and high sons of two nodes of two different MBDs
can not be matched, the low/high and high/low matching is then verified. This is equivalent to
say that one variable was complemented (exchange low/high pointers). This point is illustrated
in figure 7.27. Function f'= X;+x2 is matched against gate NOR2. The root nodes x; and A;
can not equivalent, because the low son of x; leads to a terminal node and the low son of A; is
connected to a non-terminal node. However, if the variable associated to node x; is
complemented, then the low son of X; is connected to a non-terminal node, as do A;. Note
that, if we have several nodes at the same level of the graph (nodes with same index), all of

them shall be complemented, i.e., their low and high pointer must be exchanged.

Figure 7.27. Match with phase assignment

The high sons of X; and A; are now connected to terminals that have opposite values. Since

the output of f was not yet inverted, we invert it. Note that if f was already inverted then the
matching fails. Inverting a function represented by a MBD results in the same MBD with the
terminal values 1 and 0 exchanged. Thus we have that high(x;) = high(A;) = 1. Proceeding
with the matching, we check x) against Ay. In this case, they are equivalent and the resulting
match indicates that f(X;,x2 ) matches NOR(A;,A; ). Thus, we have A; = X; and Ay = x>
and f= NOR (X ;X2 ), which indicates that f can be realized by a NOR gate with one inverter

connected to input A; and another one connected to the gate output.

MBDs can be used to perform both structural and functional matching . To use the MBD for
structural matching we must assign to each node input a different index. In this case, even if

we have repeated input variables, the MBD will reflect the gate structure. If we do not impose
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different indices to the inputs, then the MBD is a Boolean function and we perform functional

matching. Figure 7.28 shows these two approaches for a XOR gate. In the graph 7.28 (a) we
have assigned to four node inputs x;, x2 , x; and X, four different indices. In this case the

MBD reflects the sum-of-products form x;-x» v x;-X,. One can verify that the subgraph
defined by the nodes inside n; corresponds to the first cube and the subgraph with nodes
inside ny corresponds to the second cube in the sum-of-products form. If we consider n; and
n as two nodes and define a new MBD with low(n;) = np, high(n;) =1, low(nz) = 0 and
high(ny) = 1, we get MBD = nj + np, which correspond to the SOP of the function. In figure
7.28(b) each variable has an unique index, and the MBD represents the XOR function. These
alternative approaches are useful because we can explore the fact that a XOR can be
implemented with an AOI22 gate, which is sometimes cheaper than a XOR gate, specially if the

inputs are available in both phases.

(b)

Figure 7.28. Structural (a) and functional (b) representations.

7.3.6 Matching Algorithms

The matching algorithms are sketched in figure 7.29. Function mach_MBD takes a MBD and its
order and return the set of matches that can implement the function. Each match is formed by
the gate and the set of inputs/output inverters generated by the matching algorithm. The
function is first classified according to its symmetry classes. Then the SymCs cardinality
vector is used to address the set of gates in the library that are candidates to match the
function. The function match_gate takes the MBD of the function to be mapped and the MBD of
the gate and return NULL if they can not be matched, otherwise it returns the input assignment
with the respective phases and the output phase.

Function rec_match_gate does the matching by traversing both MBDs and checking for direct
or complemented match at each node. bddf and bddg are the current nodes being matched. The
algorithm computes the phase of each variable in the matching and store it in the array phv[].
The phase is positive if the low sons and the high sons can be matched between themselves,

and it is negative if the low son of each node matches the high son of the other. It is not
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shown in the algorithm, but if the same variable matches with different polarities at different
nodes in the MBDs, then the match is unsuccessful. The phase of the function is computed also
by rec_match_gate. If the match requires that the MBD terminals must be inverted, an inverter
is added to the output of the gate. This is symbolically expressed by the statement invert the

output in the algorithm.

function match BDD (mbd, order): matchlist;

begin
(mbd,order) := class BDD (mbd, order);
vector := get SCs_vector(mbd);
G := get gates(vector);

foreach gate in G
if (match = match gate(mbd, G.mbd, order))
then
{ match contains the gate and inverters needed }
put match in matchlist;
return (matchlist);
end;

function match gate (bddf, bddg, order): match;
begin
initialize phase vector;
if (rec_match gate (bddf, bddg, phase vector))
then return (build match ( order, phase_vector))
else return (NULL);
end;

function rec_match gate (bddf, bddg, phv)
begin
case (bddf,bddg) begin

(they have different indices): return(false);

(both are terminals):
if terminals are distinct then

if (phv[output] = NEGATED) then return(false);
else begin

phv[output] := NEGATED;

return(true);
end;

(only one is a terminal): return (false);

((rec_match _gate (lowv (bddf), lowv (bddg), phv) and
rec_match gate (highv (bddf), highv (bddg) phv)):
return(true);

((rec_match gate (lowv (bddf), highv (bddg), phv) and
rec_match gate (highv (bddf), lowv (bddg) phv)):
phv[index(bddf)] := NEGATED;
return(true);

end;
end;

Figure 7.29. MBD matching algorithms.

7.3.7 Network Covering

The technology independent synthesis uses sophisticated algorithms to produce a logic
optimized Boolean network. There are two methods to cover the network with gates from a

library: (1) The recomposing covering further decomposes the optimized network in terms of
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elementary two input functions (typically: NANDs and NORs). This yields a fine granularity
network which is composed by simple node functions that are collapsed in order to form
larger functions to match complex gates in the library, which reduces the total gate count; (2)
The direct covering consists in trying to directly map the logic optimized network into the
target technology. The idea is to avoid the lost of the optimized structure produced in the
previous step. In this case, when a node function is too complex to be implemented by a

single gate in the library then it is decomposed into simpler functions.

The approach adopted here is a combination of both direct and recomposing covering. First
we try to map the node functions directly to gates of the library. If the mapping is successful,
we still try new mappings by generating new functions that are obtained by collapsing
intermediate variables in the support of the node function. This approach allows the algorithm
to work properly even if the input circuit is described by elementary gates. Nodes that can not
be directly mapped are decomposed into a two input AND/OR tree. To decompose the MBD of a
node we generate first a prime and irredundant sum-of-products (SOP) representation of the
node function using the techniques shown in chapter 5. The decomposition itself is trivial. The
goal is to produce a balanced tree in order to reduce the number of levels of the decomposed

node. The covering algorithm then proceeds over to the decomposed function.

The covering algorithm is similar to that presented in the FPGA mapping, based on dynamic
programming. Each network output and each multiple fanout node defines a root of a tree like
subnetwork. The leaves of the tree are the primary input nodes or multiple fanout nodes. It is
mapped optimally by computing the cost of all of its subtrees. As in the case of FPGA
mapping, this approach produces non-optimal solutions at the subtrees boundaries. There are
two main limitations: (1) some simple gates with multiple fanout are not collapsed even when
it is possible to do it and (2) the phase of a mapped function g is optimized only with respect
to the subnetwork composed by the nodes in the transitive fanin of g. Case (1) is treated by a
pos-processing step that check multiple fanout nodes for collapsing, while case (2) is tackled

by a global phase optimization algorithm that is described in the next section.

In the sequel we shall discuss in more detail the covering algorithm. Its pseudo-code is shown
in figure 7.30. The function map_node computes the match for a node in both phases, direct
and complemented. It returns the match of the required phase. The reason for computing both
matches is that the cost of a gate match is evaluated by computing recursively the cost of its
input nodes matches. When a gate match includes inverters at the inputs, the cost of the
inverter is taken into account by computing the cost of the complement match of the input. For

example, suppose the function y;'y, is matched by an AND gate plus an INVERTER at input

v1. The cost of such match is not “cost(AND) + cost(INVERTER) + the cost of the matchings of
y7 and y2”, but “cost(AND) + the cost of the matchings of y; and y,”.
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The first step in map_node is to check if the node was already matched. In this case, the match

with the desired phase is returned. Otherwise, the matching proceeds by the determination of

the cluster functions of the node. The clusters are all the functions obtained by recursively

collapsing the single output fanins of the function associated to the node up to some

technological constraint, typically the number of inputs.

function map node (n, phase) : MATCH_TYPE
var:

d map, c¢_map: MATCH_TYPE;

clusters: set of MBD_TYPE;
begin

if (matched(n)) then
case (phase) begin
ON: return(n.dir map);
OFF: return(n.cmpl map);
end;
clusters := make clusters(n);
if (!map clusters(clusters, d map, c_map)
then return(map_node(dcmp_node(n),phase);
n.dir map := d_map;
n.cmpl map := c_map;
case phase begin
ON: return(n.dir map);
OFF: return(n.cmpl map);
end;
end;

Figure 7.30. Covering algorithm.

For example, consider the function f given by:

f=yry2
YI=X] VX2
Y2 = y3X3

V3 = X4'X5 V X6

Its set K of all clusters of fis given by:

ko =yr-y2
k= (x; vx2)y2
ky =yry3x3

k3 = (x; v x2)y3x3
kq=yj.(xqg:x5 v x6)x3
ks = (x; v x2)-(x4:x5 vV X6):X3

If the target technology has a fanin limit of 4, for example, then only clusters kg, k;, kp and k4

will be generated. If node corresponding to variable y, has multiple fanout, then only clusters
ko and k; will be generated for function f. The clusters here are shown as algebraic expression

just for easy of understanding. In fact each cluster is a MBD obtained by the compose [Bry86]
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operation. This is illustrated in figure 7.31, where the MBD of k; is derived from the MBDs of
ko and y;.

Figure 7.31. Composing y; and kg to obtain k;.

Function map_clusters takes each cluster and matches it to the gates in the library. It evaluates
the matchings by recursively calling map_node for each cluster input. For the gate inputs with
inverters assigned to the algorithm calls map_node with the phase parameter set to OFF, which
means that it looks for the complemented input function. Primary inputs have a special
treatment. The direct mapping of a primary input has no cost, while its complement has the
cost of an inverter. Map_clusters returns both the direct and the complement matchings of the
cluster that has the smaller cost. If the library has only positive gates this means that an
inverter is added to the best match output. But in almost all the cases the library provides
several alternatives and the gate match produces a set of positive and negative gates with
inverters at the inputs and at the output. In this case, the best complement matching is easily

found by eliminating an inverter from the output of a gate match.

If map_clusters fails to find a match for the clusters then the node function is decomposed into
an AND/OR tree of two input functions. The decomposition starts with the generation of a MBD

cover of the node function, as described in chapter 5. The decomposition is very simple:

1. create a balanced tree of two input OR node functions with size(MBD_cover) leaves
2. to each leaf associates a MBD cube. Put the cubes with more literals in the leaves that are
nearer to the root

3. for each cube create a balanced tree of two input AND node functions.

A simple example is shown in figure 7.32. The sum of products (SOP) consists in three cubes,
represented in (a) by the conjunction of their literals. In (b) it is shown the OR tree
decomposition. There are three leaves, two with depth 2 and one with depth 1. We choose the
leaf with depth 1 to put the cube cg, which have the larger number of literals. The others are
associated to the remaining leaves. Then they are decomposed into two input AND trees. The

cubes with larger number of literals will produce deeper AND trees. Putting them in the OR
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leaves with smaller depth tend to produce a balanced tree, in which all the signals tend to have
the same delay. After decomposing the node into a AND/OR tree, the mapping continues at the

root of the tree.

c0 = x1.x2. x3.x4

c1 =x1.x3.X4"
c2 = x2.x5
.
x1 _2 x4 X4 x2 x5
c0
cl c2 x1

(b) (c)
Figure 7.32. Node decomposition with (a) SOP, (b) OR tree and (c) AND/OR tree

After the first step of the network covering the nodes have their direct and complemented
matches defined. Some original nodes are collapsed and we have a different network. A
second step is then performed in which the final phase of each node is computed. For single
fanout nodes, the phase is defined by its fanout node’s match. If the fanout gate require a
negated input, the complement of the match of the node is selected, otherwise the direct match
is chosen. For multiple fanout nodes there are two possibilities: either all fanout gates use the
same node phase and then we have the same case of a single fanout node or the fanout gates
need both phases. In this case, the cheaper match of the multiple fanout node is chosen and a
new inverting node is created to provide the complemented phase. The process starts at the
outputs that have no fanin and proceeds up to the network inputs. We use the term fanout gate

here because the match of the fanout of a node is already selected.
7.3.8 Phase Optimization

The dynamic technique guarantees the optimality of a tree mapping. However, at the tree
boundaries some redundant inverters can arise. If we use the gate size as cost function,
sometimes an NAND-NOT combination can be chosen instead of a single AND gate, if they have
the same cost. These redundancies can be detected and removed at the phase optimization step.

The gate configurations are analyzed and if inverters can be saved the gate is complemented or
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transformed by applying De Morgan’s rules (see chapter 2). As the algorithm works directly
on the mapped network, the complementation of a gate requires the presence of the dual or the
complement of the gate in the library. Some logic synthesis systems like MislI [Bra87] make
the phase optimization on the logic network, without checking the specific gates form the
library. Our approach has the advantage that only feasible node complementation are executed.
An example of the application of the De Morgan’s rule that saves two inverters is presented in
figure 7.33.

AA A

Figure 7.33. Example of the application of De Morgan’s rule.

Two approaches were implemented. The first is a greedy one. All gates of the network are
analyzed and the gate whose complementation reduces most the inverter count is selected and
complemented. The process is repeated until no more gain is obtained. The problem with this
method is that it stops at a local minimum. To circumvent this limitation, an stochastic method
is used. An initial phase assignment for the network is randomly generated and the greedy
method is then applied. A set of p trials, where p is a user supplied parameter, is executed and
the best result is selected. An sketch of the pseudo-code for these algorithms is presented in
figure 7.34.

7.3.9 Experimental Results

A set of examples of the MCNC benchmark was tested and the results were compared to MisllI,
which is a standard point of reference for multi-level synthesis. Both mappers were tuned for
area minimization. For the LISP prototype of our mapper the run times are not comparable.
Thus only the results are meaningful. To compare only the technology mapping phase we
provide the same Boolean networks for both mappers. The circuits were minimized with Misll
using the algebraic script supplied with the Octtools package [Oct91]. Two kind of inputs
were generated to our mapper: (1) the minimized network and (2) the minimized network
decomposed into 2 input ANDs. We used the Misll function tech_decompose to generate (2).
The library used is the MCNC. We reproduce here the script.algebraic file of MisllI that

indicates the logic decomposition/minimization executed on the original descriptions.



164 Chapter 7 Multi-level Logic Synthesis

Algebraic script:
sweep

eliminate 5

simplify -m nocomp -d

resub -a

gkx -abt 30
resub -a; sweep
gcx -bt 30

resub -a; sweep

gkx -abt 10
resub -a; sweep
gcx -bt 10

resub -a; sweep

gkx -ab
resub -a; sweep
gcx -b

resub -a; sweep

eliminate O

decomp -g *

function greedy phase (network):
begin
repeat
select gate g €Enetwork that reduces most the inverter count
invert g
until no more gain
end;

function stochastic_phase (network, p):
begin
greedy phase (network);
repeat p times
invs := get inv_count (network);
repeat invs times
invert a random selected gate g € network;
greedy phase(network);
return the best result;
end;

Figure 7.34. Pseudo codes for phase minimization.
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Misll Direct SP Direct GP AND2 SP AND2 GP
Circuits AIG|IT[A|]G|[T||A|G|T|A|G]|I [A]|G]|I
74 ST |17 4 ||54)115 |3 [|54(16 4 ([53]18] 3 |53 |18 6
7Z9SYM 11347 | 13 [[116]43 | 9 [|[111| 45| 11 ([114| 46 [ 11 |[113]47 | 12
7Z5XP1 1521 61 [ 12 ||1154| 60 | 11 [|153 | 62 | 16 [[155] 61 [ 15 ||153 ]| 62 | 16
SQN 16762 | 8 [[172] 62 | 10 ||[172| 65 | 13 |[168| 63 [ 10 |[168 ] 63 | 10
RISC 127 64 | 21 [[123] 61 | 19 [|123| 61 | 19 |[129| 60 [ 18 |[124 ] 61 | 19
RD53 67 [27] 9 |66 22 |4 (|67 |23 5 ([66]25]| 7 [|[67 |26 8
RD73 134 55 | 13 [[137] 53 | 15 ||[137| 54 | 16 |[132| 50 | 13 |[134]| 53 | 16
P82 145( 59 | 12 [[145] 58 | 12 [|144 | 60 | 14 [[145( 58 [ 12 |[144] 59 | 12
M1 88 [38] 9 |[86 |36 |9 (18 |37 |10 (|8 (37 (10 |[ 88 | 38 | 11
M2 150 | 66 | 20 [|[148] 60 | 17 (145 61 | 18 [[145] 62 | 18 [|[145]| 62 | 18
02 36 (16 4 4012 |10 |36 |16 4 (36|16 4 [[36 16| 4
F51IM 160 | 63 | 11 [[162] 62 | 15 ||159| 64 | 17 |[159| 62 [ 15 |[159] 64 | 17
DEKODER (44 [ 18| 5 |[43 |17 | 4 (|43 | 17| 4 ([43 |17 | 4 [|[43 |17 | 4
BW 267 (112 23 |[267|110 | 21 ||263 | 111 22 [|261 [ 109 [ 22 [[262 |110] 23
ALU3 1341 56 | 12 ||133| 54 | 13 ||[133 | 54 | 13 |[133| 52 [ 11 ||[133| 52 | 11
5XP1 158 64 | 13 [[163] 62 | 13 [|[159| 64 | 15 [[158| 61 [ 12 [[159] 64 | 14
Total: 1993|825 | 189 [|2009| 788 | 175 [[1985| 810 [ 201 [[1986] 797 | 185 ||1981] 812 | 201

Table 7.6. Results for different mappings and the MisIl mapper.

Table 7.6 shows the results for direct mapping and for the AND2 decomposed circuit mapping.
GP means greedy_phase and SP means stochastic_phase. A is the global area, G the total gate
count and I the inverter count. An interesting result is that direct map with SP produces in all
cases the smaller gate count. This indicates a good use of complex gates and a possible
reduction of interconnections complexity. Direct_SP, however, do not always produces
network with global area smaller than direct_GP, as it could be expected. This occurs because
the cost function used for these algorithms is the inverter count. Thus, if transforming two
NANDSs into two ANDs saves one inverter, this is done even if the global area is increased
(typically: cost(AND) = cost(NAND) + cost(NOT )). In average, the reduction of the number of
gates in a network by collapsing NOTs shall produce a final gain in the layout area due to the
connection costs. Another interesting observation is that the direct mapping does not improve
the average area with respect to AND2 decomposed mapping. This indicates that the
decomposition performed by MislI before the mapping do not seems to have an strong impact
on the mapping results of our method in terms of global area. Gate count, however, is affected

by the decomposition.
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7.3.10 Comments

In this section we studied the application of MBDs in the technology mapping problem. It was
shown that MBDs can be very interesting to implement Boolean matching techniques. A new
and fast technique to identify symmetric variables based on the MBD topology was developed.
It is used to classify the functions with respect to its symmetry classes, which is an important
task in the Boolean matching problem. Once the functions are classified, the matching is
executed in a one step MBD traverse. An interesting feature of the matching algorithm is that it

computes at the same time the phase assignment of the function variables and output.

The network covering step is a generalization of two main techniques, the direct covering and
the recomposing one. This is intended to provide more flexibility in the application of the
algorithm. For instance, as the Boolean mapping is speed up by fast Boolean matching
techniques, it is possible to try both approaches, one mapping starting with the optimized

multi-level circuit and another one starting with a fine granularity decomposition.

The covering uses the dynamic programming techniques to optimally map each tree of the
circuit. As in the case of FPGA mapping (although in a minor extension), it may produce non
optimal solutions at the trees boundaries. The solution is to perform a pos-processing
optimization step, that tries to merge simple gates that have multiple fanout into their fanouts
and also deals with the phase assignment problem. In the case of library based technologies
like standard cells, for instance, the absorption of gates by their fanout is more rare. But the

phase assignment indeed produces gains, reducing the final network gate count.

The mapping was exemplified using the circuit area as cost function, but it may be extended to
deal with the delay cost function. The method is general in the sense that it minimizes an user
defined cost function, that may reflect distinct technologic parameters. The problem of
mapping for delay and area, for instance, turns out to be the problem of defining a cost
function that takes into account both parameters. Of course, there are other add hoc features
that could be added to improve its performance with respect to specific problems, like the
duplication of logic to reduce the delay [Keu90] and so forth. But a well specified cost

function should allow to obtain good mapping results.
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Chapter 8

Conclusions and Future Work

This chapter present the final considerations about the work accomplished and

draws some directions for further research.

The main goal of this work was to study the application of MBDs in the context of multi-level
logic synthesis and at the same time develop new methods and algorithms based on them. It
was motivated by the observation that the MBD (BDDs and its extensions in general) is a
promising logic representation due to its compactness and its canonical features. The research
strategy was to build a complete multi-level logic synthesis system using the MBDs to represent
logic functions and verify the possible advantages of its use in each field. In this chapter we
analyze the results obtained in each logic synthesis phase and propose some topics for future

research.

The logic synthesis system built was called LOGOS (LOGic Optimization System), and its
structure is presented in the first chapter. It addresses two targets: the synthesis in library
based technologies and the synthesis in multiplexor based FPGAs. Library based technologies
covers a large range of design styles. Any technology that implements logic circuits in terms of
a set of logic gates can be tackled by this approach. Standard cells and gate-arrays are probably
the most significant examples. The FPGAs address a different kind of circuit that in not
adequately modeled by libraries of gates: the programmable devices. This area had a strong
development last years and became a major technology trend for logic synthesis applications.
There are several different FPGA architecture [Moo91]. Since we are also interested in
analyzing the relationship between logic representation and target technology we restrict our
attention to the multiplexor base FPGAs, due to the direct correspondence that exists among 2

to 1 multiplexors and nodes of the MBD. FPGAs and library base synthesis cover a significant
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range of the multi-level synthesis area and therefore provided a good feedback concerning the

interest in the use of MBDs.

The synthesis on library based designs follows a traditional approach that split the process into
two main phases: the technology independent synthesis and the technology mapping. In the
technology independent phase we apply algorithmic transformations to decompose the initial
description into a set of Boolean functions, generating a Boolean network. Then its complexity
is reduced by simplifying the node functions with respect to their don’t cares. The next step is

the technology mapping which covers the network with gates from the target library.

There is a current research trend in methodologies that integrate both phases. We believe that
this is an interesting long term research subject. For the purposes of this work, however, we

opted to follow the traditional approach that still produce the best results.

The first point to consider is the choice of MBDs as logic representation. There are several
alternative representation schemes based on BDDs. It is evident, as discussed in chapter 3, that
MBDs are advantageous with respect to the case of representing each output as well as the
don’t cares in separate BDDs. On the other hand, the alternatives proposed by Minato [Min90]
as well as the multiple-valued BDDs [Bra89] where not analyzed and could be subject of
further research. We believe that the algorithms developed in this work could be adapted to
other types of BDDs. Indeed, it was already shown that this is the case for the minimization of
the BDD size with respect to the don’t care set [Lin93]. We do not believe, however, that the
alternatives cited above could present some significant improvement over MBDs, and we do

believe that the use of a third terminal is in effect quite useful for logic manipulations.

Other extensions like strong canonical form and negative edges could be interesting for some
applications. For instance, the decomposition methods developed here would be improved if
we adopt these techniques. In the technology mapping, however, the strong canonical
introduces some problems because we can not have functions with different orderings at the
same time. Also, the generation of prime and irredundant covers presented here would be too
costly with negative edges. To take advantage of both approaches, it will be useful to include
strong canonical form BDDs with negative edges as an alternative representation in the C++
version of LOGOS. The object oriented programming eases this task by providing multiple
inheritance mechanisms that help to create hierarchies of classes in which common behavior is
factored out from similar entities. The extension of LOGOS to deal with alternative MBD

representations is therefore a subject of further research.

One of the features that makes MBDs interesting for logic synthesis is their compactness.
Although their worst case cost is exponential, in general they has a reasonable size for most

practical functions. However, we have seen that their size depends strongly on the variable
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ordering, which in turn depends on the type of the function. Only the class of symmetric
functions has MBDs that are insensitive to the variable ordering. The other functions have a
MBD size that varies in unpredictable ways with the ordering and there is no simple and general

ordering strategy for them.

To deal with this problem we have developed incremental manipulation techniques that allow
to generate new orderings without rebuilding the entire MBD at each step. A greedy and a
stochastic reordering approaches were developed upon the incremental algorithms which
produced very good results. The stochastic approach has found the best ordering for the set of
benchmarks where this ordering is known. Although there is no guarantee of finding the best
ordering in all cases, the empirical results indicates that the stochastic approach produce
solutions that are very hard to improve. The greedy approach produce results that are less
effective than the stochastic one, but it is more than one order of magnitude faster than it. The
LISP prototype allowed us to deal with small to medium functions, but we have seen that its
C++ version is quite fast and can process large problems. Both strategies are useful for
practical reasons. We could say that the stochastic method should be used whenever possible,

but for very large MBDs the greedy approach is more interesting in terms of CPU time.

The incremental manipulation technique is one of the most important outcomes of this work. It
became clear along this research that it can be useful not only for the reduction of the MBD
size, but also to help any method that explores the MBD topology to improve its solution. The
most important example is the determination of symmetry classes of a function, where the
swapping method is used to find all pairs of adjacent variables in the MBD. Another interesting
consequence of this method is that it allows the application of stochastic techniques to the
manipulation of MBDs, which was successfully applied to the ordering problem. Some
synthesis systems like ASYL [Ben92] use these techniques for FPGA mapping, while some

BDD packages start to employ it for the reduction of storage requirements.

The minimization of incompletely specified functions is fundamental problem that has a large
application in logic synthesis. The use of MBDs for logic minimization had produced
interesting results. The two-level covers can be performed in a single bottom-up step. The
quality of the prime and irredundant cover generated is similar to those produced by the state
of art two-level minimizers like ESPRESSO [Bra84]. The MBD size minimization proposed here
is in fact a new research subject that, up to the knowledge of the author, was never tackled
before. The algorithm developed here, although the simplifications derived from the filtering
of the matching candidates, is still exhaustive in the sense that it try all matchings in the search
of the best solution. This may be very time consuming if the number of candidates is large. A
further research work in this area consists in finding good heuristics to select subsets of the
matching candidates and also to develop alternative techniques to evaluate the gain of each

possible solution. In the present version, the gain is evaluated by reducing the MBD and
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verifying its size. Some incremental techniques could be developed to avoid the cost of

reducing and computing the MBD size.

For library based synthesis two logic decomposition methods were developed. The direct
decomposition provides interesting results, because it is fast and the decomposed networks are
of reasonable complexity. The path oriented decomposition needs further development to
become useful. Both of them can not preclude a previous reordering step, otherwise the results
are not interesting. The Boolean factorization method presented does not relies on specific
MBD features, but it produces good results and is useful in the factorization of the node
functions. In this field some further research can be done in the search of good divisor
functions. The method based on the analysis of the OFF set of the candidates could be further
enhanced. We believe that the analysis of the OFF set of the function to be factored could lead
to interesting results not only for the evaluation of the candidates but also to compute the

divisors themselves.

Besides the decomposition methods described here, the field of functional decomposition is a
good candidate for the application of MBDs. Several limitations of the ancient methods where
related to the exponential complexity of the logic representation adopted (truths tables). The
use of MBDs can extend those limits up to practical applications. However, if the nature of the
algorithms is not changed, the use of MBDs will just improve the solutions by a constant
factor, and the methods will still be inefficient for large problems. The combination of

structural and functional techniques could be envisaged to try to overcome this problems.

The multi-level minimization problem was not treated in depth in this work. We have
exemplified the use of MBDs for the node minimization approach, but several other alternatives
could be tried. One possibility that may be object of future research is the application of the
reduction of MBD size with respect to the don’t cares in the multi-level optimization for FPGA
synthesis. In this case, the mapping tool should be adapted to exploit the particularities of the
multiplexor cells. In the approach presented here the MBDs were useful in providing a compact
representation for the node functions, which may quickly attain huge sizes. We have also
verified that the MBDs of the node functions can be significantly reduced by the reordering
heuristics, which improved the performance of our two-level minimization. The MBD can
become huge due to the large number of variables introduced in the support of the node
function when computing the SDC and ODC of the node. The type of functions generated,

nevertheless, is very sensitive to the reordering techniques.

The technology mapping is another field where the use of MBDs present some advantages. We
have developed a Boolean mapping technique based on MBDs which yield good results. The
Boolean mapping, in general, performs better than the structural mapping proposed by most

mappers in the literature. Its main advantage is its ability to deal with a larger spectrum of
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candidate gates for matching, which may lead to better solutions. In this case, the main
contribution of MBDs was a fast method for symmetry detection between adjacent variables in
the diagram that is used to speed up the classification of the functions, an important and costly
step in the gate matching problem. The MBDs allow also the matching with simultaneous phase
assignment that is executed in a single traverse of the diagram. These techniques lead to an

important improvement in the performance of the Boolean mapping.

It should be noted that the fast symmetry detection may be useful in other areas of logic

design, as in the synthesis of symmetric functions [Kim91] and so forth.

The concept of symmetric symmetry classes that was introduced here is another important
factor in the improvement of the speed of the Boolean matching. For most gates in the usual
standard cells libraries this feature applies. The simplification obtained is that this avoid
permuting symmetry classes of same carnality in the matching phase, which reduces the cost

of the matching.

Other interesting feature of our mapping approach is a flexible network covering which
support both direct and recomposing covering. The final phase optimization step reduces the
number of inverters by means of deterministic and stochastic manipulations. Deterministic
manipulations analyze the circuit and replace a gate either by its complement or by its De
Morgan's equivalent when this lead to a reduction of the total number of inverters. The
stochastic transformations complement an arbitrarily subset of gates and then apply the
deterministic manipulations to reduce the number of inverters. These techniques in general

yield good savings in terms of inverters count.

The LISP version of the mapping tool could deal with circuits of standard benchmark sets in
reasonable computing time, confirming the efficiency of the algorithms. As is the case in other
fields of logic synthesis, its performance is evaluated empirically and its implementation in
C++ would allow us to compare it against other Boolean mappers in the literature to get a more

precise evaluation.

In the case of FPGA synthesis, we developed a method based on the direct mapping of the MBD
into ACTEL cells. The results obtained confirm the assertion that the interrelationship between
logic representation and the target technology is an important factor in logic synthesis. Here
the association between MBD nodes and multiplexor cells provide us a good cost function to
guide the MBD manipulation in order to optimize the final result. The cost function to be
minimized is the MBD size, which correlates well with the circuit complexity. To optimize the
cost function we apply the reordering techniques, the MBD size don’t care minimization and the

subgraph resubstitution.
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The subgraph resubstitution technique is an additional resource to reduce the MBD size.
Although conceptually interesting, it has a restricted application. Most of times the reduction of
the MBD size increases the sharing of nodes and prevent the application of subgraph

resubstitution. It remains, however, as an alternative for improvement of some special cases.

The mapping based on the MBD size have produced results comparable to the state of art
mappers, obtaining in several cases the best ones. This is mainly due to the reordering
techniques that obtained compact diagrams, optimizing the circuit cost. In most cases the best
results were obtained with the stochastic reordering, as expected. An interesting point that
should be observed is that in some special cases the multi-level decomposed circuit is much
simpler than the flattened MBD. We have seen two of such examples in benchmarks. These
cases does not invalidate the use of MBDs for the synthesis, because once decomposed, the
MBD mapping can be applied to the subfunctions, eventually with support for node collapsing
using the cluster functions. As we had already stated above, the multi-level mapping for FPGA

applications is a subject for future research in the context of the LOGOS system.

The overall results obtained of this work confirm that BDDs and particularly MBDs are a very
interesting logic representation for logic synthesis applications. Moreover, this had become
evident in last years due to the intense research on this subject. New methods and new
variations of the original BDD representation are continuously being generated. In the field of
logic minimization find several new applications, specially in two-level techniques. [Min92]
presents an alternative technique for computing prime and irredundant covers of BDDs, using a
top-down traverse instead of the bottom-up approach presented here. In [Cou92] a new
technique for the implicit enumeration of prime and essential prime implicants of Boolean
functions based on BDDs was presented that produced remarkable results. This technique
allows the computation of the complete set of primes for functions with hundreds of thousands
of implicants in a few seconds. It was already extended to deal with multiple value functions
[Lin92]. The implicit enumeration was applied to two-level minimization [Cou93], extending
the range of tractable problems. All these methods relies on efficiency of the BDD
representation. We believe that this and other methods can be extended and applied in multi-
level synthesis producing similar improvements. This is a new and exciting subject for future

research.
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Appendix

The LISP Prototype

The algorithms presented in this work where first developed in Common LISP on Macintosh
personal computers. A graphic interfaced was developed in order to help the study and the
research on MBDs. This tool was and important factor for the development of this work. Its
graphic feedback was a source of insight and inspiration in the topological analysis of MBDs.

This appendix describes some of its features.
1. Input Data Formats

LOGOS reads two type of circuit descriptions. The format MLL describes multilevel circuits
through a set of logic equations while the format PLA describes circuits in the sum-of-
products form. In the descriptions bellow, the words in italic indicate keywords that should be
written exactly as they appears. The system does not distinguinsh lower and upper cases. The
text between angle brackets "<>" must be replaced by the required data. Text between square

brackets "[]" may repeated several times, but should appears at least once.
1.1 MLL Format

The MLL format follows a simple and rigid structure.

:NAME-CIRCUIT <name>

: INPUT-VARIABLES ( <list of input variables separated by blanks> )

: INTERMEDIATE-VARIABLES ( <list of intermediate variables separated by blanks>)
:OUTPUT-VARIABLES ( <listof output variables separated by blanks> )
:EQUATIONS ( [ <equation><set>] )
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In the field ":equations", the <equation> is a quoted string describing a logic equation using

the following set of operators:

n_n

- assignment operator.

"~" - logic NOT operator.

"+" - logic OR operator.

"*" - Jogic AND operator, which is optional

"[1" - subexpressions.

The "<set>" parameter indicates ON, OFF or DC set, i.e., the characteristic set that is being
described by the equation. Each intermediate or output variable may appears only once, for

each set, at the left hand of the equation.
Here is an example of such description:

:NAME-CIRCUIT Test
:INPUT-VARIABLES ( x1 x2 x3 x4 )
: INTERMEDIATE-VARIABLES ( yl y2 )
:OUTPUT VARIABLES ( zl z2 )

:EQUATIONS ( " yl x1l + x2 " ON

" y2 = x3x4 + ~yl " ON

"yl = ~yl[xl + x2] + yl~-x1x2 " DC
"zl =x1+yl " ON

"x2 =yl + ~y2 " ON )
1.2 PLA Format

The PLA format is a subset of the format used by ESPRESSO. It corresponds to the default type

"td". The input description is as follows.

. I <number of inputs>

.0 <number of outputs>

.p <number of products>

[ <input cube> <output cube> ]

.e

Input and output cubes are strings of O's, I's and -'s. A "2" is a sinonymous of "-" in the

output cubes. Here is an example of single output PLA.
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i 4
.01
.p 6
0000
0001
0010
01-1
100-
-110 -
1111 2

= B O O O

.e
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2. Graphic Interface

For illustration purposes we show how the graphic interface looks like.

ﬁ File Edit Eral Tools Windows Bool-Enr Documents

= Listener

e|come to Macintosh Al legro Common Lisp 1.3.21

SER| Idle

Menu and command window

=——=— MBD Graph

A single-output MBD
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MBD Graph

@KE‘:E——"{EJ-’E ':E

A larger MBD with multiple outputs

The same MBD after greedy reordering
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FPGA Mapping. Mapped multiplexor cells presented in different colors.

Z4 network
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£
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The Karnaugh diagram of a node's function
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Standard Cells mapping. Node window indicates the selected gate, while the
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