# EXPERIMENTOS DE PIRÓLISE A VÁCUO – Conversão de Combustíveis Sólidos e Implicações para a Geração de Produtos Gasosos, Líquidos e Resíduos Sólidos

Vitória Lawall<sup>1</sup> e Wolfgang Kalkreuth<sup>1</sup>

<sup>1</sup>Universidade Federal do Rio Grande do Sul, Instituto de Geociências vitorialawall@gmail.com; wolfgang.kalkreuth@ufrgs.br

## INTRODUÇÃO

O consumo de energia aumenta continuamente, em escala mundial. Dessa forma, há uma demanda crescente por combustíveis renováveis não fósseis, como a biomassa. A turfa também possui potencial como material gerador de eletricidade. No sul do Brasil, existem grandes reservas de carvão, turfa e biomassa. Dessa forma, o conhecimento do potencial de geração de produtos líquidos e gasosos desses materiais por pirólise a vácuo é altamente desejável, pois esta é a principal tecnologia para transformá-los em um importante aporte energético para o país.

### **OBJETIVO**

Submeter amostras de biomassa, turfa e carvão ao processo de pirólise a vácuo em escala de bancada, para avaliar as características de conversão desses combustíveis sólidos e determinar as propriedades dos produtos líquidos do processo em termos de volume e qualidade.

#### **AMOSTRAS**

As amostras selecionadas para este trabalho foram:

- 1. Carvão da Mina São Vicente do Norte Leão-Butiá da empresa CRM no Rio Grande do Sul;
- 2. Turfa grossa (2,0 x 0,5) cm da região de Águas Claras no município de Viamão no Rio Grande do Sul;
- 3. Bagaço de cana, representando a biomassa, fornecido pela empresa ECO FOGO situada no município de Viamão no Rio Grande do Sul.

## **METODOLOGIA**

Os experimentos de pirólise a vácuo foram realizados em reator de 1200 cm³, construído pela *Pyrovac* (Figura 1). Os produtos gerados durante o processo correspondem aos líquidos orgânicos, água, gases e resíduos sólidos.



**Figura 1.** Equipamento utilizado para realização dos experimentos de pirólise a vácuo (*Pyrovac Inc.*).



**Figura 2.** (a) Amostra original de bagaço de cana; (b) *traps* contendo os produtos da conversão condensados; (c) produtos já retirados dos *traps*; (d) amostra pirolisada – resíduo sólido.

Além disso, as amostras originais (20 gramas) foram extraídas no equipamento *Soxtec 2050* da *Foss*, através do uso de uma mistura de solventes (93 mL de diclorometano e 7 mL de metanol). O extrato obtido corresponde ao betume gerado, o qual foi concentrado em evaporador rotatório (*Fisatom-802D*), seguido da remoção do enxofre elementar em coluna de cobre ativado, quando necessário.

O óleo gerado e o betume, obtidos por ambos os métodos, foram submetidos à técnica de cromatografia líquida preparativa, a fim de serem separados em frações por polaridade dos solventes utilizados (F1 - alifáticos, F2 - aromáticos e F3 - polares).

## **RESULTADOS E DISCUSSÕES**

O método da pirólise a vácuo e o método *Soxtec* geraram as massas de óleo e betume mostradas na Tabela 1 (apresentadas em porcentagem relativas à massa total da amostra original).

**Tabela 1.** Massas de óleo e betume geradas por ambos os métodos, para todas as amostras analisadas.

| Amostra           | Pirólise a vácuo | Soxtec |  |  |
|-------------------|------------------|--------|--|--|
| 1. Carvão         | 21,0%            | 1,6%   |  |  |
| 2. Turfa          | 12,0%            | 3,9%   |  |  |
| 3. Bagaço de cana | 18,2%            | 1,2%   |  |  |

As massas obtidas para cada fração, resultantes do processo de cromatografia líquida, estão apresentadas na Tabela 2, em porcentagem relativa à massa total da amostra original.

**Tabela 2.** Massas de cada fração obtida, por ambos os métodos, e taxas de conversão (matéria orgânica recuperada e gases) para todas as amostras analisadas.

|                   | Pirólise a vácuo |      |       | Soxtec |      |       |           |
|-------------------|------------------|------|-------|--------|------|-------|-----------|
| Amostra           | F1               | F2   | F3    | F1     | F2   | F3    | Conversão |
| 1. Carvão         | 3,1%             | 7,5% | 36,6% | 0,3%   | 6,4% | 67,1% | 18,2%     |
| 2. Turfa          | 3,1%             | 4,2% | 30,0% | 0,0%   | 1,0% | 0,0%  | 32,5%     |
| 3. Bagaço de cana | 1,8%             | 0,4% | 13,8% | 0,5%   | 0,3% | 14,7% | 36,3%     |

## **CONCLUSÕES**

A geração de hidrocarbonetos foi maior pelo método de pirólise a vácuo do que pelo método *Soxtec*. Além disso, para todas as amostras analisadas, nos líquidos orgânicos a fração alifática (F1) aumentou quando comparada com o betume obtido a partir das amostras de matéria-prima e, ainda, pode-se observar uma maior geração de compostos polares para a maioria dos casos.

As frações obtidas, então, serão submetidas ao método de cromatografia gasosa acoplado a espectrômetro de massas, para detecção e identificação das diferentes substâncias que compõem as amostras, dando continuidade à pesquisa.

#### **AGRADECIMENTOS**

À Simone Barrionuevo e à Marleny Blanco pelos ensinamentos e auxílio no laboratório, às empresas CRM e ECO FOGO pelo fornecimento das amostras e ao CNPq pelo subsídio à pesquisa.