

Evento	Salão UFRGS 2017: SIC - XXIX SALÃO DE INICIAÇÃO
Evento	Saldo UFRGS 2017: SIC - AXIX SALAO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2017
Local	Campus do Vale
Título	RESPOSTA DE CULTIVARES DE SOJA AO DÉFICIT HÍDRICO
Autor	FILIPE KALIKOSKI COELHO
Orientador	CARLA ANDREA DELATORRE

RESPOSTA DE CULTIVARES DE SOJA AO DÉFICIT HÍDRICO

Filipe Kalikoski Coelho¹; Carla Andréa Delatorre².

A soja (Glycine max) é uma das culturas de maior importância econômica para o Brasil, com aumento de produtividade e de área cultivada no país ao longo dos últimos anos. No entanto, a grande maioria da área cultivada de soja permanece sob sistemas não irrigados, estando vulnerável a estiagens. Desta forma, o déficit hídrico imposto por uma seca pode impactar severamente a produção de soja. Dado este cenário, o entendimento e a elucidação de mecanismos fisiológicos de tolerância à seca em soja se fazem cruciais para serem alcançadas, futuramente, alternativas que minimizem perdas causadas por déficit hídrico. Através deste trabalho, buscou-se analisar a reação ao déficit hídrico, em diferentes estádios fenológicos, de três cultivares de soja com tolerância considerada contrastante, sendo elas: BR16 (sensível), EMB48 (tolerante) e CD202 (tolerante). Na condução do experimento, adotou-se o delineamento experimental em blocos casualizados com quatro repetições. Os tratamentos constaram de três cultivares e cinco condições de estresse: irrigada, estresse hídrico no estádio vegetativo e vegetativo com recuperação pós-estresse, estresse hídrico no estádio reprodutivo e no reprodutivo com recuperação pós-estresse. O experimento foi realizado na casa de vegetação do Departamento de Plantas de Lavoura, na Faculdade de Agronomia da UFRGS, durante o verão de 2017. O volume dos vasos utilizados era de 5 litros, preenchidos com substrato comercial. As sementes foram inoculadas logo antes da semeadura, sendo mantidas quatro plantas por vaso após o desbaste. Os vasos eram pesados e irrigados diariamente, mantendo a capacidade de campo (CC) em 90% até o momento do déficit hídrico. Na aplicação do estresse, os controles tiveram a irrigação mantida em 90% da CC e os estressados tiveram a irrigação interrompida. O déficit hídrico na fase vegetativa foi aplicado em plantas entre os estádios V6 e V7, durando 12 dias, enquanto que na fase reprodutiva foi aplicado entre R1 e R2, durando 9 dias. Medidas de taxas de fotossíntese líquida e de assimilação de CO₂, teores de clorofila, transpiração, eficiência de uso da água e condutância estomática, bem como medidas relacionadas à fluorescência, rendimento quântico do fotossistema II e taxa de transporte de elétrons foram obtidas, avaliando-se dois trifólios de desenvolvimento equivalente por vaso. O potencial hídrico foi medido nos mesmos trifólios usados nas avaliações de fotossíntese. Quantificou-se a biomassa e mediu-se a área foliar. Comparando condições de estresse e irrigação, sem distinção entre cultivares, constatou-se que plantas estressadas apresentaram atraso de desenvolvimento fenológico, elevada eficiência de uso da água, redução de área foliar, menor potencial hídrico mínimo das folhas, diminuição de biomassa da parte aérea e taxas fotossintéticas inferiores, quando comparadas com plantas irrigadas. Os genótipos considerados tolerantes apresentaram, durante alguns dias, taxas fotossintéticas superiores sob estresse, tanto na fase vegetativa como na reprodutiva. A área foliar das três cultivares não diferiu ao final do estresse na fase reprodutiva. Não houve diferenças de potencial hídrico mínimo das folhas entre cultivares, quando finalizado o estresse nas fases vegetativa e reprodutiva.

⁽¹⁾Graduando, bolsista de iniciação científica pelo CNPq e aluno da Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul.

⁽²⁾Docente, pesquisadora e professora da Faculdade de Agronomia/Departamento de Plantas de Lavoura, Universidade Federal do Rio Grande do Sul.