

Evento	Salão UFRGS 2017: SIC - XXIX SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2017
Local	Campus do Vale
Título	Distribuição em pT quadrado na fotoprodução de quarkonium
	em rapidez central para colisões pp
Autor	BRUNA MEZZARI CARLOS
Orientador	MARIA BEATRIZ DE LEONE GAY DUCATI

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Aluno: Bruna Mezzari Carlos Orientador: Maria Beatriz de Leone Gay Ducati

Distribuição em p_T^2 na fotoprodução de quarkonium em rapidez central para colisões pp

A fotoprodução de quarkonia, mésons pesados formados por um par quark-antiquark $(q\overline{q})$, tem sido uma importante ferramenta no estudo da estrutura da matéria em altas energias e de eventos como a troca de pomeron através da QCD perturbativa. Em colisões ultraperiféricas, nas quais o parâmetro de impacto b é maior do que a soma do raio dos hádrons interagentes R_A , a fotoprodução exclusiva é dominante, e os fótons virtuais emitidos são tratados através do formalismo de dipolo, no qual o fóton divide-se em um par $q\overline{q}$, e este forma um méson. Dois parâmetros cinemáticos são importantes no estudo da fotoprodução de mésons: a rapidez y e o momentum na direção transversa à linha do feixe, p_T . Sabendo-se a seção de choque σ da interação, é possível calcular a distribuição desses paramêtros: a de rapidez, $\frac{d\sigma}{dy}$, e a de momentum transverso, $\frac{d^2\sigma}{dvdp_T^2}$.

No presente trabalho, procurou-se investigar a distribuição de p_T^2 na região central y=0, considerando a fotoprodução de quarkonium em colisões hadrônicas pp (entre prótons). Nesse caso, a distribuição é dada por: $\frac{d^2\sigma}{dydp_T^2}\Big|_{y=0} \approx \frac{d\sigma}{dy}\Big|_{y=0} \cdot B_V(y=0)e^{-B_Vp_T^2}$. Onde B_V é um parâmetro conhecido como fator de inclinação, presente na distribuição de rapidez, e o termo exponencial é o comportamento gaussiano de p_T , esperado a partir de observações já realizadas em espalhamento difrativo. O objetivo é de comparar o modelo utilizado com futuros dados do LHC na produção dos mésons J/Ψ ($c\bar{c}$) e Υ ($b\bar{b}$). Um objetivo futuro, também, é de analisar a distribuição de p_T^2 ao longo de um intervalo maior de y.

Até o presente momento, foram estudados os conceitos necessários para o entendimento, como um todo, do processo de produção de mésons, em particular J/Ψ e Υ , das variáveis cinemáticas e de eventos particulares como a troca de Pomeron. Foi necessária a introdução na mecânica quântica e na física de partículas elementares, através de bibliografia em nível de graduação, como D. J. Griffithis ("Introduction to Quantum Mechanics"e "Introduction to Elementary Particle Physics") e J. W. Rohlf ("Modern Physics from α to Z^0 "). Após isso, foram estudadas publicações especializadas na produção de quarkonia, em particular as do grupo GF-PAE, sobre distribuição de y e p_T na fotoprodução dos mésons J/Ψ e Υ . O próximo passo será o cálculo numérico da distribuição p_T^2 para a comparação com dados futuros do LHC.