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“O light! This is the cry of all characters of ancient drama brought face to face

with their fate. This last resort was ours, too, and I knew it now. In the middle of

winter I at last discovered that there was in me an invincible summer.”

— ALBERT CAMUS
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ABSTRACT

The recent innovations in Machine Learning techniques have led to a large utilization of

intelligent models to solve complex problems that are especially hard to compute with

traditional data structures and algorithms. In particular, the current research on Image

and Video Processing shows that it is possible to design Machine Learning models that

perform object recognition and even action recognition with high confidence levels. In

addition, the latest progress on training algorithms for Deep Learning Neural Networks

was also an important milestone in Machine Learning, leading to prominent discoveries

in Computer Vision and other applications. Recent studies have also shown that it is pos-

sible to design intelligent models capable of drastically reducing the optimization space

of mode decision in video encoders with minor losses in coding efficiency. All these

facts indicate that Machine Learning for complexity reduction in visual applications is

a very promising field of study. The goal of this thesis is to investigate learning-based

techniques to reduce the complexity of the HEVC encoding decisions, focusing on fast

video encoding and transcoding applications. A complexity profiling of HEVC is first

presented to identify the tasks that must be prioritized to accomplish our objective. Sev-

eral variables and metrics are then extracted during the encoding and decoding processes

to assess their correlation with the encoding decisions associated with these tasks. Next,

Machine Learning techniques are employed to construct classifiers that make use of this

information to accurately predict the outcome of these decisions, eliminating the time-

consuming operations required to compute them. The fast encoding and transcoding so-

lutions were developed separately, as the source of information is different on each case,

but the same methodology was followed in both cases. In addition, mechanisms for com-

plexity scalability were developed to provide the best rate-distortion performance given

a target complexity reduction. Experimental results demonstrated that the designed fast

encoding solutions achieve time savings of 37% up to 78% on average, with Bjontegaard

Delta Bitrate (BD-BR) increments between 0.04% and 4.8%. In the transcoding results,

a complexity reduction ranging from 43% to 67% was observed, with average BD-BR

increments from 0.34% up to 1.7%. Comparisons with state of the art confirm the effi-

cacy of the designed methods, as they outperform the results achieved by related solutions.

Keywords: Video coding. Video transcoding. Complexity reduction. Complexity scal-

ing. Machine Learning. HEVC.





RESUMO

As recentes inovações em técnicas de Aprendizado de Máquina levaram a uma ampla

utilização de modelos inteligentes para resolver problemas complexos que são especi-

almente difíceis de computar com algoritmos e estruturas de dados convencionais. Em

particular, pesquisas recentes em Processamento de Imagens e Vídeo mostram que é pos-

sível desenvolver modelos de Aprendizado de Máquina que realizam reconhecimento de

objetos e até mesmo de ações com altos graus de confiança. Além disso, os últimos avan-

ços em algoritmos de treinamento para Redes Neurais Profundas (Deep Learning Neural

Networks) estabeleceram um importante marco no estudo de Aprendizado de Máquina,

levando a descobertas promissoras em Visão Computacional e outras aplicações. Estu-

dos recentes apontam que também é possível desenvolver modelos inteligentes capazes

de reduzir drasticamente o espaço de otimização do modo de decisão em codificadores

de vídeo com perdas irrelevantes em eficiência de compressão. Todos esses fatos indi-

cam que Aprendizado de Máquina para redução de complexidade em aplicações de vídeo

é uma área promissora para pesquisa. O objetivo desta tese é investigar técnicas base-

adas em aprendizado para reduzir a complexidade das decisões da codificação HEVC,

com foco em aplicações de codificação e transcodificação rápidas. Um perfilamento da

complexidade em codificadores é inicialmente apresentado, a fim de identificar as tarefas

que requerem prioridade para atingir o objetivo dessa tese. A partir disso, diversas va-

riáveis e métricas são extraídas durante os processos de codificação e decodificação para

avaliar a correlação entre essas variáveis e as decisões de codificação associadas a essas

tarefas. Em seguida, técnicas de Aprendizado de Máquina são empregadas para cons-

truir classificadores que utilizam a informação coletada para prever o resultado dessas

decisões, eliminando o custo computacional necessário para computá-las. As soluções de

codificação e transcodificação foram desenvolvidas separadamente, pois o tipo de infor-

mação é diferente em cada caso, mas a mesma metologia foi aplicada em ambos os casos.

Além disso, mecanismos de complexidade escalável foram desenvolvidos para permitir o

melhor desempenho taxa-compressão para um dado valor de redução de complexidade.

Resultados experimentais apontam que as soluções desenvolvidas para codificação rápida

atingiram reduções de complexidade entre 37% e 78% na média, com perdas de qualidade

entre 0.04% e 4.8% (medidos em Bjontegaard Delta Bitrate – BD-BR). Já as soluções para



trancodificação rápida apresentaram uma redução de 43% até 67% na complexidade, com

BD-BR entre 0.34% e 1.7% na média. Comparações com o estado da arte confirmam a

eficácia dos métodos desenvolvidos, visto que são capazes de superar os resultados atin-

gidos por soluções similares.

Palavras-chave: Codificação de vídeo. Transcodificação de Vídeo Redução de comple-

xidade. Complexidade escalável. Aprendizado de Máquina. HEVC.
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1 INTRODUCTION

The rapid advances in semiconductor technologies allow an increasing number of

processing cores in a single chip, motivating the industry to continuously develop new

products. Naturally, this fast-paced technological race has affected the consumer mar-

ket, establishing an increasing demand for more powerful electronic products and better

quality media services. A practical example of this trend is observed in current mobile

devices: a single smart phone can perform tasks that would require several apparatuses a

few years ago, such as internet browsing, high-definition video recording/playback, GPS

routing, etc.

A second side effect of these innovations is the growing use of digital video ap-

plications. Video-streaming services like YouTube and Netflix are steadily replacing the

traditional means of entertainment. In addition, video conferences become more frequent

as the communication technology improvements provide larger bandwidths, and stereo or

multi-view videos are also increasingly common. To quantify this trend, a forecast paper

published by Cisco shows that the internet-video bandwidth will go from 70% of the total

traffic in 2015 to 82% by 2019 (CISCO, 2016).

The main concern that arises from this fact is that, as the use of digital video in-

creases, so does the need for larger resolutions and higher frame rates. These two param-

eters, along with the number of views in multi-view sequences, are directly proportional

to the bandwidth required to transmit a video, as well as to the memory capacity needed

to store them. This can actually be quantified for uncompressed sequences. The equa-

tion below shows the bandwidth required to transmit an uncompressed video sequence

considering a 4:2:0 color sampling:

BW = NV IEWS ×W ×H × FPS ×Bitdepthx1.5bits/s (1.1)

In (1.1), NV IEWS represents the number of views (one for single-view sequences

and 2 or more for multi-view), Bitdepth, the size of a luminance or chrominance sample

in bits (usually 8), whereas W , H , and FPS are respectively the width, height and frame

rate of the sequence. Note that the 4:2:0 color subsampling is already a mechanism for

compressing data, since it defines that, for each 4 luminance samples, only 2 chrominance

samples (one for each layer) are required. That explains the 1.5 multiplication factor in

the formula (if 4:4:4 subsampling is adopted, defining one chrominance sample for each

luminance one, this factor would be 3).
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For an uncompressed Full HD sequence (1920×1080 pixels, also called 1080p)

captured at 30 frames per second, a bandwidth of 746.5 Mbps is required to transmit

this video in real time. This also means that if we want to store a 60-minute Full HD

sequence, it would take 336 GB to do so. These requirements are clearly prohibitive

with current technology, especially if portable devices with tighter constraints like smart

phones and tablets are considered. Therefore, compressing this information using video-

coding techniques is imperative to enable the broad utilization of this media.

Video coding can be roughly described as a process that explores frames and re-

gions inside frames (blocks) in search for redundant information that can somehow be

compressed by exploiting such redundancies. The output of this process is a stream of

bits that must be decoded whenever the video is displayed. There are several video-

coding techniques available, each performing the same task through a different manner,

so video-coding standards were created in order to allow a common language between

encoders and decoders in different platforms.

The latest video-coding standard is commonly referred to as High Efficiency Video

Coding (HEVC), registered under recommendation H.265 by ITU-T (ITU-T, 2013). HEVC

emerged from a collective effort of many video-coding experts from both industrial and

academic branches, known as Joint Collaborative Team on Video Technology (JCT-VC).

Starting at April 2010, several JCT-VC meetings took place with the purpose of deciding

whether proposed tools should be part of the codec or not.

The HEVC standard employs a block-based hybrid coding architecture, combin-

ing motion-compensated prediction and transform coding with high-efficiency entropy

coding. However, in contrast to previous video coding standards, it provides a flexible

quadtree coding block partitioning structure that enables the use of large and multiple

sizes of coding, prediction, and transforms blocks. It also employs improved intra predic-

tion and coding, adaptive motion parameter prediction and coding, a new loop filter and an

enhanced version of context-adaptive binary arithmetic coding (CABAC) entropy coding

(KIM et al., 2013). New high-level structures for parallel processing are also employed.

A more detailed discussion on this standard is presented in Chapter 2. As seen in Table

1.1, despite the similarities with its predecessor, the data structures and the techniques

defined in HEVC are more sophisticated than those of H.264/AVC (ITU-T, 2003).
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Table 1.1: Coding tools used in the H.264/AVC and HEVC standards
Tool H.264/AVC HEVC
Data structures Macroblock, block CTU, CU, PU, TU
Intra-prediction 9 modes 35 modes
Inter-prediction 4 partitions 8 partitions
Transforms 2 modes 8 modes (RQT)
Filters DF SAO, DF

1.1 Problem Formulation

HEVC outperforms H.264/AVC in terms of coding efficiency by 39.3% on average

for the same image quality (using the Bjøntegaard Difference metric – BD-Bitrate or

simply BD-BR as the efficiency metric) (GROIS et al., 2013), (BJONTEGAARD, 2001).

The aforementioned innovations are key components that enable such coding im-

provements, but they also convey an issue that has been subject of research for many

years: the computational requirements of real HEVC encoding applications. In fact, as

stated in (VANNE et al., 2012), the HEVC encoder requires from 20% to 50% more

computations to compress data compared to H.264.

This will apparently remain a problem when the next-generation encoder emerges.

The same group of experts that developed HEVC is now working on a project called Joint

Video Exploration Team on Future Video coding (JVET). The latest reports from the

current implementation of the JVET encoder show that it is 11.3 times more complex

than HEVC for a 25% BD-BR gain (KARCZEWICZ; ALSHINA, 2016).

Practical applications introduce many factors that cannot be ignored by complex

systems such as video encoders. For instance, if a camera needs to record and instantly

transmit a video (such as live transmissions), then real-time encoding is needed, which

means that more than 20 frames per second (fps) must be encoded (the required through-

put is usually 30 fps or greater). This is further aggravated if the resources used by the

encoder are shared among other components of the device, meaning that a variable amount

of computation is available at each time interval. Furthermore, if the device is battery-

powered, the remaining battery life may be just enough to perform a very low-complexity

encoding task.

The reference software for HEVC contains every tool defined in the JCT-VC work,

and it is referred as HEVC Model (HM) (KIM et al., 2013). The HM code was designed

to be the reference HEVC software and is not a suitable option for practical encoder im-

plementations, mainly because its goal is to support and to document every tool defined
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in the standard. In other words, the HEVC Model disregards computational costs or en-

ergy constraints typical of real-world platforms. Fast encoder implementations such as

x265 (for HEVC) (MULTICOREWARE, 2017) and VP9 (MUKHERJEE et al., 2013) re-

duce this setback, but real-time throughput is still limited to specific cases and platforms,

so even these implementations can benefit from reduced computation requirements. In

addition, a variable amount of energy (in battery-powered platforms), computation, and

memory resources are available at each time interval for video encoding. To ensure that

the best output quality is obtained based on the current amount of resources available,

adaptation techniques must be employed.

All these facts combined call for adjustments that somehow reduce encoding com-

plexity. One possible way to solve this is to design a low-complexity encoder that reduces

a fixed amount of computation compared to the traditional approach. However, this im-

plies that the same process will be carried out even when there are more resources avail-

able to achieve a better compression. Alternatively, an encoding system that is capable of

adapting itself according to the available processing budget is a more promising solution.

A plethora of solutions that tackle video-coding complexity issues can be found in

the literature, and the most relevant ones are discussed in Chapter 4. These solutions can

be separated into two categories: the ones based in complexity reduction, and the ones tar-

geting complexity scaling. Complexity reduction in video coding fundamentally consists

in replacing a component of the system by one that is faster and does a similar job. This

is done by designing new lightweight algorithms and faster heuristics. In contrast, com-

plexity scaling relies on building solutions with scalable levels of complexity to achieve

different computation targets. This takes advantage of the fact that the optimization space

of the RDO mode decision is enormous and can be reduced in numerous ways. Both ap-

proaches are valid, but complexity reduction has been exhaustively studied for years, and

most of them rely on heuristics built from statistical analysis, but the generalization prop-

erty of learning-based models suggest that there is room for improvement. Additionally,

the lack of adaptability from such solutions limits its applications, whereas complexity

scaling enables a set of options to best address the computing constraints of each system.

Lastly, a limited number of works focusing on complexity scalability are found in the

current literature, indicating that significant potential innovations can be sought after.

Solutions for complexity reduction of HEVC-related transcoding, also presented

in Chapter 4, have proven that the transcoding process can be guided using relevant infor-

mation from a pre-encoded bitstream. The works that address this problem usually focus
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on two applications: when the source bitstream is encoded with another standard and

must be re-encoded in HEVC, which is called heterogeneous transcoding; and homoge-

neous transcoding, when both source and output bit streams are both encoded in HEVC,

but under different constraints, such as scaled resolution or lower bitrates. This work will

focus on the particular case of homogeneous HEVC transcoding with different bitrates,

as this problem is very important for adaptive streaming systems.

1.2 Thesis Claim

The claim defended in this thesis is that Machine Learning techniques can be used

to efficiently achieve complexity reduction and scaling on video-coding and transcoding

applications. To prove this concept, this work will present several solutions that are capa-

ble of reducing the enormous computational effort required by these applications through

the use of learning-based techniques. In addition, every method will consider the need for

complexity scalability that exists in computation-constrained environments.

Our motivation comes from the recent innovations in Machine Learning tech-

niques that have led to a large utilization of intelligent models to solve complex problems

that are especially hard to compute with traditional data structures and algorithms. In

particular, the current research on Image and Video Processing shows that it is possible to

design Machine Learning models that perform object recognition and even action recogni-

tion with high confidence levels. In addition, the latest progress on training algorithms for

Deep Learning Neural Networks was also an important breakthrough in Machine Learn-

ing, leading to prominent discoveries in Computer Vision and other applications. Lastly,

recent studies have also shown that it is possible to design intelligent models capable of

drastically reducing the optimization space of mode decision in video encoders with mi-

nor losses in coding efficiency. All these facts indicate that Machine Learning for complex

reduction in video coding is a very promising field of study.

The need for fast transcoding solutions is reaffirmed in a recent Call for Evidence

document release at the 119th MPEG meeting (MPEG, 2017), asking for contributions

that enable the transcoding of videos with reduced computational complexity compared

with a full re-encode approach. The call hints the possibility of using a highest bitrate

stream and an additional side stream that is used to assist the transcoding process of lower

bitrate encodings.
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1.3 Thesis Organization

This thesis is organized as follows:

Chapter 2 presents the background information on HEVC encoding, showing the

most important components of this process. Afterwards, the test conditions commonly

applied in the video-coding research are explained. Finally, the constant quality and con-

stant bitrate coding modes are described, followed by a brief explanation of transcoding

systems.

Chapter 3 gives an overview of Machine Learning, as well as the main techniques

that are relevant to this thesis. Model evaluation and the main software tools that can be

used to develop ML models are also presented.

The challenges that are involved with the complexity reduction of video coding

and transcoding are uncovered in Chapter 4, followed by a study of the main references

related to the topics addressed in this thesis.

Chapter 5 provides an extensive analysis of the HEVC encoding partitioning de-

cisions, identifying relationships between these decisions and the information that can be

obtained from the encoding process (useful for fast encoding decisions) or from a pre-

encoded bitstream (applicable in fast transcoding).

The fast encoding and transcoding solutions developed in this thesis are explained

in Chapters 6 and 7, presenting extensive experimental results for the main methods and

comparisons with state-of-the-art solutions. The complexity scalability mechanisms of

each approach is also discussed.

Finally, Chapter 8 closes this thesis with the conclusions and future directions of

this work.

Appendix A lists and describes all the sequences used in the analyses and perfor-

mance assessments of this work.

Appendix B describes the features extracted at the encoding and the transcoding

data collection steps, as well as the scores that measure the utility of these features in the

partitioning decisions.

Appendix C presents the publications that were produced from this research, which

include one book chapter, one published journal paper (plus one under consideration), one

published conference paper, two accepted conference papers, and one submitted confer-

ence paper.
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2 HIGH EFFICIENCY VIDEO CODING

Despite its many innovations, which will be duly explained in this chapter, HEVC

encoding shares many similarities with H.264/AVC. Prior to encoding, a sequence is sep-

arated into Groups of Pictures (GOPs). A GOP defines how the Intra (I) and P/B frames

are arranged, as well as the QP values and references that will be used for each frame in

the GOP. Only intra-prediction is possible in I frames, whereas P/B frames support both

intra- and inter-prediction. Periodically, special I frames called Instant Decoder Refresh

(IDR) are also defined in the encoding configuration. These frames establish that pre-

ceding frames cannot be used as reference in subsequent encodings. This allows seeking

back and forth in a video stream using the IDR frames as anchors. Figure 2.1 shows a

GOP example using and IBBBP structure.

Figure 2.1: Group of Pictures (GOP) example using I, P, and B frames. (source:
(BOSSEN; FLYNN; SÜHRING, 2013))

After the GOP is defined, each frame is partitioned into blocks – named Coding

Tree Unit (CTU) – that undergo the encoding loop, as depicted in Figure 2.2.

The process can be roughly described as follows: (I) retrieve the next CTU from

the input frame. In HEVC encoders, a partitioning decision is performed, in which the

CTU is subdivided into smaller blocks, and the following steps (II to VIII) are repeated

for each of these blocks. This was omitted in Figure 2.2 for visual purposes, but it will

be explained in Section 2.1. Each block is sent to the (II) prediction stage in which its

redundancies are exploited. (III) The predicted block is then subtracted from the current

CTU, producing a residue block (this can be interpreted as an error). (IV) The residual

information serves as input for the transforms (T) and quantization (Q) stages, in which

the information with lower energy is discarded (the threshold for this elimination is com-

puted based on the Quantization Parameter – QP). (V) The quantized output is sent to the

entropy encoder, generating the final bit stream that can be either stored or transmitted.

Next, (VI) the quantization output is also sent to a decoding stage, after which the residue
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Figure 2.2: HEVC encoding loop and the main tasks involved.
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is reconstructed and added to the predicted samples yet again. (VII) The resulting block

is then filtered to remove visual artifacts introduced by the encoding process (due to its

block-based operation). Finally, (VIII) this information is stored as a reconstructed frame,

which will be used as a reference in the next encoding iterations.

HEVC introduced more complex data structures. This standard defines that each

CTU can be encoded in a variety of distinct ways with the possibility to recursively sub-

divide themselves into four smaller Coding Units (CUs) to allow more flexibility, forming

a quadtree structure. Each CU can be further subdivided into Prediction Units (PUs) dur-

ing prediction and into Transforms Units (TUs) at the transforms stage. This flexibility

was designed to achieve the best possible relation between the compression efficiency

and quality, represented by a metric called Rate-Distortion cost. Each new subdivision

introduces significant amount of computations to determine the best encoding mode.

Aside from the CTU structure and its subdivisions, other novel techniques defined

in HEVC also contribute to its coding efficiency, such as improved entropy with CABAC

and Rate-Distortion Optimized Quantization (RDOQ). These tools are all implemented in

the HEVC Model (KIM et al., 2013), a reference software developed by JCT-VC experts.

The HM implements every tool and technique supported by HEVC (although not all of

them are enabled under default configurations), so it is widely adopted as a test bed in the

video coding community. The next sections describe the most important tools and coding

modes supported in this standard. Following, the algorithm used to decide the best mode

among the many possibilities available is explained.
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2.1 Prediction in the HEVC standard

The current HEVC version defines that a frame must be subdivided into CTUs,

which are broadly analogous to Macroblocks in the H.264/AVC standard (BROSS, HAN,

et al., 2011). The largest CTU size currently supported is 64×64 luminance samples,

although this may increase in the near future (the current version of JVET supports

128×128 blocks (CHEN, ALSHINA, et al., 2017)). As with Macroblocks, the chromi-

nance samples are also part of the CTU. This size is fixed throughout and must be set

prior to encoding a sequence.

To provide a more flexible coding structure, each CTU can be divided into Coding

Units. The reason behind this is to separate distinct regions of a frame with similar redun-

dancies that can be exploited by the prediction process. The process occurs recursively,

so a 64×64 CTU is divided into four 32×32 CTUs, and each of these can be subdivided

into four 16×16 CTUs. This is repeated until the smallest CTU size is reached (currently

defined as 8×8), or when a terminating condition is satisfied (since the HM reference im-

plements heuristics in its mode decision), implicitly forming a quadtree. Figure 2.3 shows

an example of a quadtree partitioning.

Figure 2.3: Example of a CTU and its respective CU and PU partitioning decisions. The
gray-filled blocks are evaluated, but not used in the final encoding.
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During prediction, CUs are again partitioned into Prediction Units (PUs), which

store the information related to this process, such as prediction mode (inter, intra), motion

vectors, reference frames indices etc. Four Symmetric Motion Partitions (SMPs) and four

Asymmetric Motion Partitions (AMP) are defined. The SMPs are depicted as the top

four partitions in Figure 2.2, whereas the AMPs are the bottom four ones. For each PU,

the prediction process is executed, which encompasses the Integer (IME) and Fractional

Motion Estimation (FME) searches. The PU partitions available for a CU depend on

its size and its prediction mode. Table 2.1 displays all the enabled partitions for each

prediction mode.
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Table 2.1: Enabled/Disabled partitions for each prediction mode and each CU size
Mode CU 2N×2N 2N×N N×2N N×N 2N×nU 2N×nD nL×2N nR×2N
Intra 64×64 E D D D* D D D D

32×32 E D D D* D D D D
16×16 E D D D* D D D D
8×8 E D D E D D D D

Inter 64×64 E E E D* E E E E
32×32 E E E D* E E E E
16×16 E E E D* E E E E
8×8 E E E D D D D D

* Only available if the minimum CU size is greater than 8×8

In Table 2.1, N represents half of the CU dimension, i.e., a 2N×N PU in a 64×64

CU stands for a 64×32 partition. In addition, n represents a quarter of the CU dimen-

sion, so a 2N×nU PU is actually a 64×16, whereas the complementary partition must

be dimensioned as 64×48. Note that N×N PUs are available for inter-prediction only if

the minimum CU size is other than 8×8, as opposed to the default HM implementation.

The experts behind this software stated that N×N was disabled in 8x8 CUs to reduce

bandwidth requirements (KIM et al., 2013).

The following sections describe the intra- and inter-prediction processes, granting

more focus to the latter due to its dominant share in the overall computational effort.

2.2 Intra Prediction

This prediction mode is responsible for compressing information by exploiting re-

dundant information in a frame, such as homogeneous regions or repeating patterns. This

type of prediction is used in notorious image compressing standards, such as Portable

Network Graphics (PNG) (ISO/IEC, 2004). The abstract notion behind the intra predic-

tion is simple: use the borders of neighboring blocks to predict the pixels of the current

one.

HEVC defines 35 ways to predict the information. 33 of them, called directional

modes, are useful when there are similarities in the texture direction of the luminance

samples, such as diagonal or straight lines. The other two are called DC mode, which

predicts that the average sample is repeated throughout the block; and planar mode, that

repeats information from more than one border, useful in gradient patterns. For 64×64

PUs, only 5 modes are evaluated, and on 4×4 PUs, 17 modes are considered.

In order to minimize computations, a heuristic called Rough Mode Decision (RMD)

is implemented in the HM software. In RMD, only a subset of the 33 directional modes
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available is evaluated, instead of testing all of them. After the best direction is selected, a

refinement step is applied, testing the neighboring directions.

2.3 Inter Prediction

The inter-prediction is based on exploiting redundant information between two or

more frames in a sequence. High frame rates and absence of movement are two typical

situations that raise the odds of achieving good compression through inter-prediction.

During inter-prediction, HEVC defines that a PU can be coded under three modes:

inter, merge, SKIP. Each will be described in the following paragraphs.

• Inter: when a PU is inter-coded, its motion information is derived from the Motion

Estimation (ME) process. The ME implements a block-matching algorithm that

follows a given search pattern. The main goal is to find the most similar block to

the one being encoded in a reference frame (a previously encoded frame), and reuse

this information to provide compression. Different ME algorithms were proposed

throughout the years, each with a different search pattern or different starting point.

The starting point for the search can be, for instance, the collocated position in

the reference frame, or the same as motion vector of the surrounding PUs. Two

ME algorithms are implemented in the HM software: Full Search and Test Zone

Search (TZ-Search), the latter being a fast algorithm that reduces ME complexity

with minimum RD penalties (PAN et al., 2013).

• Skip: This mode significantly contributes to compression gains, because no move-

ment or residual information is transmitted. In this mode, the PU partition is invari-

ably square (8×8 up to 64×64, represented always as a 2N×2N PU). In inter-coded

CUs, the motion information is derived from spatial and temporal neioghbors.

• Merge: consists in deriving the motion parameters for a PU based on the infor-

mation obtained from spatial and temporal neighbors. This provides significant

compression gains, because only the merge flag and the PU index are sent to the

bitstream; the motion information is inferred from the pointed PU. The merge mode

is used for SKIP-coded PUs (when the residue is not included in the bitstream), but

can also be used for inter-coded ones (including the residual information).

Inter-predicted frames also support two other modes: intra, and Pulse Code Mod-

ulation (PCM).
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The ME process, performed in inter-coded PUs, is responsible for most of the

encoding computational effort. This process is divided into Integer ME (IME) and Frac-

tional ME (FME). During IME, the block-matching algorithm uses one or more reference

frames to look for the most similar match. The same process is applied in the FME, but

blocks with fractional pixels are also computed. Since the fractional pixels are not orig-

inally represented in the sequence, they must be interpolated using 4-, 7- or 8-tap filters,

further increasing the computational effort of this process.

The FME introduces motion vectors that represent movements smaller than a

pixel, which increases the precision of Motion Estimation. In HEVC, half-pixel, quarter-

pixel and 1/8-pixel (chrominance pixels only) precisions are supported. Half-pixels of

luminance are interpolated using an 8-tap filter, and quarter-pixels with a 7-tap filter.

Chrominance pixels are always interpolated with 4-tap filters. As opposed to H.264/AVC,

the fractional part of ME in the HM software cannot be disabled by any encoding param-

eter; so fractional vectors are always expected in the bitstream.

As pointed in (VANNE, VIITANEN, et al., 2012), IME and FME share 17% and

54% of the overall coding computational effort, adding up to 71%. This shows that the

ME computations pose a serious concern, so it must be prioritized in complexity solutions

that aim to achieve significant reductions.

2.4 Transforms and Quantization

The residue produced between the current CTU and the one predicted is sent to

a process that can be referred to as residual coding. During this process, the transforms,

quantization, and their inverse counterparts are applied, thus it is also called T/Q/IQ/IT

loop.

The transforms are responsible for translating pixel values to the frequency do-

main. This process also compacts the energy in the upper-left side of the block (low

frequencies coefficients), which is useful for quantization and entropy that follow it. Like

in prediction, the HEVC transforms also have different modes. The data structure used in

this step is called TU, and it can assume sizes of 4×4 up to 32×32 samples, introducing

a mode decision tree, called Residual Quadtree (RQT), that is similar to the CTU one.

Note that one RQT is nested in each CU of the CTU quadtree, aggravating the computa-

tional costs of the latter. In the HM implementation, the transform is performed by partial

butterfly structure for low computational complexity (KIM, MCCANN, et al., 2013).
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Next in the residual coding process is the quantization. With the transformed

coefficients of a block given as input, it is possible to use Human Visual System (HVS)

theories to discard the frequencies that are less relevant to our vision. The threshold used

decides the frequencies ranges that will be attenuated, and is calculated based on a very

important parameter called Quantization Parameter (QP). Higher QP values increase the

frequencies discarded, causing significant compression gains (the explanation is presented

in the next section), but this also increases the quality losses, since frequencies that are

actually relevant to our vision get discarded as well. The opposite occurs for lower QPs.

The best QP in terms of rate-distortion depends on the characteristics of each region in

the frame. Therefore, a technique called Rate-Distortion Optimized Quantization can be

employed. The basic concept behind the RDOQ is to use different QP values for each

coefficient, given both its impact on the bitrate and quality. To estimate the impact of a

coefficient in the number of bits, the tabulated values stored in CABAC (employed in the

entropy coding) are used (KIM, MCCANN, et al., 2013). A simpler alternative to RDOQ

is to perform the Quantization using a fix QP in every CTU of the frame. Both modes are

supported in the HEVC encoders.

2.5 Entropy Coding

This is the step where the compressed bitstream is generated. The entropy coding

reduces statistical redundancies by applying data compression techniques similar to the

ones used in famous algorithms such as ZIP. The entropy of a data set (in this context,

a block of pixels) is measured based on how predictable each data point (or pixel) is.

This explains why transforms and quantization are so important for compressing visual

information. The transforms energy-compaction property combined with the quantization

discarding produce low entropy regions in the lower-right region of a Macroblock. This is

better illustrated in Figure 2.4, which shows a residual block (BlkRES), its Discrete Cosine

Transform (DCT) result and then its quantized output.

Note that the residue was spread in the blocks before and after the DCT, but only a

few non-zero samples appear after quantization, and they are compacted in the upper-left

corner of the block.

In HEVC, a lossless compression technique based on arithmetic coding named

CABAC is used. This algorithm implements efficient compression based on statistical

analysis, which is updated online, granting adaptability to the video characteristics.
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Figure 2.4: Example of a residual block (a), the DCT coefficients of this block (b), and
the coefficients after quantization (c).

Residual Block
(BlkRES)

Transformed Coefficients 
(CoeffsT)

DCT(BlkRES) Q(CoeffT)

Quantized Coefficients 
(CoeffsQ)

(a) (b) (c)

2.6 Rate-Distortion Optimization

Based on what was explained so far, it is possible to conclude that there are many

combinations possible to encode a single CTU: different prediction modes, partition sizes,

transforms sizes, quantization parameters etc. In order to decide which one is best, a

decision called Rate-Distortion Optimization (RDO) is used.

As the name suggests, this decision is based on optimizing the Rate-Distortion

Cost, which is calculated as follows:

RDcost = Distortion+ λmode ∗Bmode (2.1)

In (2.1), λ andB are respectively a Lagrange multiplier and the cost in bits of a par-

ticular mode (e.g., the bit cost to encode a 64×64 CU using SKIP mode). The Lagrange

multipliers for each mode are hardcoded in the reference software (KIM, MCCANN, et

al., 2013). The distortion corresponds to the SAD (Sum of Absolute Differences), SATD

(Sum of Absolute Transformed Differences), or SSE (Sum of Squared Error) result using

the residual block (current block minus predicted block).

Note that, to obtain the value ofBmode, it is necessary to go through the transforms,

quantization and entropy steps. This introduces a great computation overhead, especially

during prediction, because the RD cost of each CU must be calculated during the CTU

quadtree decision, so transforms and quantization are called many times just to decide

the best prediction mode. The same occurs during RQT decision, in which entropy must

also be performed to decide the best TU size. Therefore, reducing the number of nodes in

both, CTU and RQT quadtrees is an important way of reducing the overall complexity.
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2.7 Common Test Conditions

Video encoders have several applications, from broadcasting to videoconferencing

on smart phones, thus video-coding standards must provide a wide range of configuration

sets in order to support them all. Nonetheless, this can become a problem when it is

necessary to compare two different implementations, since it is important that the same

configuration was used in both cases to maintain fair comparisons.

With that in mind, the JCT-VC made an effort on creating a document that de-

scribes the Common Test Conditions (CTC) for the HEVC Model reference (BOSSEN,

2011). This document establishes several conditions, for instance how the reference

frames should be distributed in a GOP. Three distributions are defined: All Intra (AI),

Random Access (RA) and Low Delay (LB, the B stands for B frames). The RA and LB

distributions, often referred to as temporal structures, are depicted in Figure 2.5(a) and

Figure 2.5(b). All Intra was omitted as it simply consists of encoding every frame using

only the intra prediction.

The CTC document also defines six classes (from A to F) of sequences that should

be used when running tests on HEVC. They are classified according to their resolution

and target application. For instance, classes A to E refer to broadcasting applications,

whereas class F targets user-generated content, such as video-conferences and gaming.

2.8 Metric for Assessing Coding Performance

The metrics employed to measure encoding efficiency are also discussed in the

CTC. This document encourages the use of metrics based on the Bjøntegaard Difference

(BD) (BJONTEGAARD, 2008). These metrics are called BD-bitrate (BD-BR), measured

in percentage, and BD-Peak Signal-to-Noise Ratio (BD-PSNR), measured in dB. To cal-

culate them, the following steps must be executed:

1. The sequences are encoded under two target configurations: one considered as ref-

erence, the other being the object of comparison. For each target, four QP values

(22, 27, 32, and 37, as established in the CTC) are used, producing eight (bitrate,

PSNR) pairs (four from each target).

2. A piece-wise cubic Hermite interpolator is then used to generate two Rate-Distortion

(RD) curves, given four (bitrate, PSNR) points for each curve. These curves will
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Figure 2.5: Random Access and Low Delay temporal configurations used in HEVC en-
coders. (source: (KIM et al., 2013))
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be referred to as REF and TEST, representing the reference HEVC encoder and a

modified version respectively.

3. The differential area between both curves is integrated, using the X-axis as refer-

ence for BD-BR and the Y-axis for BD-PSNR. The final value is obtained from

dividing the integral by its integration interval. For understanding purposes, the

BR-BR formula is displayed in the equation below:

BDBR =

∫ b

a

(REFPSNR(x)− TESTPSNR(x))dx

b− a
(2.2)
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In (3), REFPSNR(x) and TESTPSNR(x) respectively represent the PSNR values

obtained with the refence and test encoders, and a and b are the second minimum and

second maximum PSNR values from both curves. The BD-PSNR formula is analogous,

but the bit rate values are used instead. This is better illustrated in Figure 2.6 (consider

each mark as the results for QPs 22, 27, 32 and 37, from right to left).

Figure 2.6: Rate-distortion plots between a reference (REF) and a test (TEST) encoder
and the respective BD-PSNR (a) and BD-BR (b) areas shaded in gray.

The BD-BR metric can be interpreted as how lower/higher is the bitrate of the test

subject compared to its reference considering the same quality. Thus, most of the works

found divulge only BD-BR results, given that this value is sufficient to determine how one

target compares against the other (BJONTEGAARD, 2008).

For solutions that deal with complexity, time is also an important metric, so this

work will make use of a ratio between BD-BR and time savings, defined as:

BDTSratio =
BDBR

TS
=

BDBR

1− Ttest

Tref

(2.3)

The BDTSratio can be interpreted as the amount of BD-BR loss required to

achieve a 1% time savings using the proposed method.

2.9 Variable Bitrate and Average Bitrate Coding

Regardless of the application, quality and bitrate must always be optimized, but in

some cases it is preferable to sacrifice quality or even compression to generate a stream

with a stable bitrate. When the communication bandwidth is not an issue, it is better to

maintain the image quality at similar levels throughout the whole sequence even though

some scenes will require more bitrate to be transmitted than others. On the other hand,

live transmission is a typical case where the user experience is severely affected by frame
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drops caused by bitrate peaks in the incoming stream. In the first scenario, Variable Bitrate

(VBR) encoding is usually applied. In this mode, the same QP (or very small variations)

is used during encoding to maintain a sense of constant quality. The second situation

introduces a harder constraint on the bitrate, so it is necessary to employ a Constant Bitrate

(CBR) or Average Bitrate (ABR) technique.

In CBR encodings, the bitrate will remain close to the assigned target throughout

the entire video stream. This means that the same amount of bits will be spent for simple

and complex scenes. In contrast, ABR does not promise a constant bitrate for every part

of the video stream, introducing the possibility of adapting the target bitrate to the scene

characteristics. However, predicting the best bitrate distribution while moving the average

close to the target is very difficult. To overcome this problem, rate control algorithms have

been developed with the aim of achieving the best possible quality under a target bitrate.

Rate control algorithms usually follow two steps: (1) allocate a suitable number

of bits to each coding hierarchy, such as GOPs, pictures, and (possibly) coding units; and

(2) modify the encoding parameters so that the assigned bits of each level are satisfied.

As mentioned in Section 2.4, the QP is used to tune the trade-off between quality and

compression efficiency, so this parameter is usually used in the second step.

In the HEVC model, the rate-control algorithm follows a λ-domain control, which

defines a relationship between the target bitrate and the Lagrange multipler λ (LI et al.,

2014). The λ-Rate model can be updated for each frame or for each CTU with minor

adaptations. After computing λ, the model parameters are adjusted dynamically using the

actual bits spent to encode the CTU or frame. Afterwards, the algorithm adjusts the QP

with a technique proposed in (LI et al., 2013), using the computed λ as input.

2.10 HEVC Transcoding

In the recent years, the advances in telecommunication technologies are steadily

paving the way for a world that is fully connected to the Internet. The ubiquity of this

service has revolutionized not only the way information and knowledge is transferred,

but also the means of entertainment. Nowadays, Video On Demand (VOD) services are

growing in popularity, replacing the traditional television shows. Companies like Netflix

(NETFLIX, 2018) and Amazon (AMAZON, 2018) took advantage of this trend and are

now counting with millions of user subscriptions worldwide, and this number is expected

to increase in the upcoming years. According to (STATISTA,2017), Netflix has closed
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the year of 2016 with more than 90 million subscribers worldwide, 49% of which in the

United States alone.

A typical challenge faced by streaming services is that they have to transmit videos

in accordance with the capabilities of each client. More specifically, the server has to en-

sure two things: (1) the streams are encoded following a standard that can be decoded on

the client device; and (2) the bitrate required to transmit the stream takes into account the

network bandwidth available on the client side. In a realistic scenario, different devices

request the same content to the server, each with its own network capabilities, forming a

heterogeneous environment.

Protocols based on adaptive streaming have emerged to address the heterogene-

ity of end-user device capabilities and network bandwidth variations in real-time and

on demand video streaming. Two main examples are the HTTP Live Streaming (HLS)

(PANTOS, 2017), developed by Apple, and the Dynamic Adaptive Streaming over HTTP

(DASH), created by the Motion Picture Experts Group (MPEG) (ISO/IEC, 2014a). One

of the advantages of using DASH is that it is codec agnostic and can therefore deliver

streams from any type of codec. The general idea is that the streaming server has multiple

bitrate and resolution versions (representations) of the contents, which are served to the

users by choosing the highest quality version that the network and the rendering device

are able to transmit and process. Figure 2.7 shows a typical client-server interaction in a

DASH-based system.

Figure 2.7: DASH framework illustrating the interactions between the server (on the left
side) and the client (right side) in an adaptive streaming system. (adapted from (BIT-
MOVIN, 2018))
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The server is responsible for dividing the sequence into independent segments and

storing representations with different quality levels (thus different bitrate ranges). In ad-



42

dition, the server must provide a MPEG-DASH Media Presentation Description (MPD)

(ISO/IEC, 2014b), an XML document that details how the segments are organized and

their URLs. The control of which segments must be requested at each time is imple-

mented on the client side, taking into account, for instance, a network bandwidth model

to estimate how much bitrate can be received in the next time steps.

The most straightforward way of producing different representations for all seg-

ments of a video is to simply encode them all and store the resulting bitstreams, which is

referred to as simulcast coding (WALLENDAEL; COCK; WALLE, 2012). This is con-

sidered a low complexity solution, because encoding can be performed without timing

constraints before actually storing the bitstreams. However, this approach has two ma-

jor drawbacks: (1) encoded data volume increases with the number of representations,

creating data storage constraints especially if several representations are demanded; (2)

some of the stored content can be a dead weight since some representations might never

be requested or only very rarely.

A second solution would be employing a scalable compression technique, like

H.264/AVC Scalable Video Coding (SVC) extension (SCHWARZ; MARPE; WIEGAND,

2007). An SVC stream is composed of a Base Layer and one or more Enhancement Lay-

ers that can be used to increase spatial/temporal resolutions or to improve image quality.

This requires less space than our first suggestion, because Enhancement Layers are much

less expensive than full bitstreams. However, using SVC reduces compatibility, because

it requires an SVC decoder on the client side.

It is also possible to generate the bitstreams on demand using transcoding tech-

niques. In this solution, only a high quality version of each segment is stored, and the

other representations are generated upon request through transcoding. To implement a

transcoder, one can simply decode the input bitstream and (re)encode the decoded video

frames to meet the new requirements. This is called cascaded pixel domain transcoder

(CPDT) (VETRO; CHRISTOPOULOS; SUN, 2003). The advantages of this approach

include less storage requirements (only a reference bitstream must be stored per segment),

and high flexibility, as it allows any type of representation to be created, so long as the

server has the necessary tools. The main drawback is that CPDT transcoding is computa-

tionally complex, especially with recent complex encoders like H.264/AVC, HEVC and

VP9, making real-time implementations a challenge.
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2.11 Final Remarks

The HEVC standard defined many novel techniques, but the excessive number

of configurations supported by this standard cause many computations to be performed.

If complexity-constrained applications are considered, it is important to find alternative

solutions that reduce the computational effort of this process. The number of modes tested

is clearly one of the aspects that could be reduced, since only one is effectively used to

encode the video.

All the tools and techniques implemented in this standard must work for different

applications, from broadcasting to video-surveillance, each with particular requirements.

With that in mind, most of these tools were designed to work under several operation

modes, which are assigned with encoding parameters. It is possible exploit this charac-

teristic to provide complexity scalability to encoders. For instance, it is possible to reduce

the optimization space of the CU splitting decision to reduce amount of computations.

With fewer computations, the time to encode the sequence will naturally be shorter, as

shown in the preliminary results of this thesis proposal (Chapter 6).

Hence, instead of designing new algorithms for this standard, which could cause

decoding incompatibility, the idea of skipping modes that will not be used to generate

the final bitstream is a promising approach. In addition, as reported in the state-of-the-art

survey presented in Chapter 4, the results that follow this line of thought found in the

literature are very encouraging. Nevertheless, most investigations present a superficial

analysis, so there are many venues open to new research in this field. This work sets out

to make contributions in this direction.
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3 MACHINE LEARNING

Machine learning is a branch of study in Artificial Intelligence that is concerned

with designing algorithms capable of obtaining knowledge from observations (RUSSELL

et al., 2003). In computational problems, this knowledge is represented as a model that

estimates the output of a task based on some indicators. This definition is intentionally

broad, because it shows that machine learning can be applied to many cases, as long

as errors are allowed to some degree. The following sections will discuss all steps and

techniques involved to build such models. The steps for building predictive models with

machine learning techniques are quite straightforward. Given a set of examples (or sam-

ples) related to the prediction task:

• The input samples are initially pre-processed in order to remove spurious or noisy

information. This step is also applied to obtain new features from the input. For

instance, an edge detection algorithm can be applied to an image, and its output can

then be used as a feature to train a face-detection model.

• The pre-processed data is then used to train the model. Many techniques can be

applied here, like Decision Trees or Neural Networks. Each method performs dif-

ferently depending on the nature of the problem and the type of training data, so

usually more than one should be analyzed.

• The generated model is tested using input samples different from the ones used dur-

ing training. This phase is necessary to avoid over-fitting, a common phenomenon

in machine learning that should be avoided in most cases.

The set of possible algorithms to be used depends on the kind of training (super-

vised, unsupervised) and desired output (classification, regression).

Unsupervised training takes place when there is no predicted outcome for samples.

In this case, clustering techniques are applied to separate examples into groups and dis-

cover hidden similarities among them. In contrast, supervised training is possible when

the input data contains the expected output of each case. For instance, the input for a

weather forecast model can be a set of relevant measurements from previous days (tem-

perature, air humidity, wind speed etc.), followed by a label stating whether it rained that

day or not.

Supervised training can be further categorized into classification or regression.

The former consists in classifying the input samples based on a group of known, discrete
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Figure 3.1: Subdivisions of Machine Learning concepts.
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values, also referred to as classes or labels, whereas the latter is based on predicting an

expected value with several or even infinite possibilities. Figure 3.1 illustrates how these

definitions are associated with one another.

In most cases, training is performed offline using the entire training set. If the

model generalizes well, a good performance is expected when it is tested against an eval-

uation set, which must be different from the training one.

However, the task to be modeled can sometimes be too difficult to generalize. This

could happen due to input variability. In some cases, one can simply not build a generic

model if the input changes drastically for each case. A possible solution for this is to train

models using online sampling. In this case, the process is initially executed normally for

feature extraction. When enough data is gathered, the model is trained, and the execution

can then operate on prediction mode.

In this thesis, we will focus on classification techniques to skip time-consuming

mode decision steps during RDO optimization in video-coding applications. For simplic-

ity, the output of each step will be limited to a binary value that signifies whether RDO

should continue or not, configuring a binary classification problem.

3.1 Binary Classification Models

Binary classification is the most studied case in classification algorithms. Binary

problems are easier to interpret, easier to train, and multiclass problems can be reduced
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to an ensemble of several binary problems.

The objective of a binary classifier is to formulate a hypothesis h that is capable of

separating two classes given a set of variables (also called features). Figure 3.2 depicts the

distribution of binary classes as a function of two variables. In Figure 3.2(c), h is a linear

model, but functions of higher degree like (a) and (b) can be applied for better accuracy

in some cases.

Figure 3.2: Class distribution over two labels and three different classifiers. (source:
(LORENA; CARVALHO, 2007))

In Figure 3.2(a), the hypothesis is capable of separating both classes completely,

while (b) and (c) had some misclassifications. However, it is possible that (a) became

too specific to maximize accuracy on the training set. This is a common phenomenon

called over-fitting, and should be avoided in most cases, as it reduces the generalization

of classifiers.

A visual analysis of Figure 3.2(b) lets us conclude that the polynomial hypothesis

gives better results for this particular training set, but this does not mean that it will better

than the linear classifier (c) for future instances. This is a problem that many machine-

learning academics faced when deciding what kind of classifier is better. A possible

approach is to apply the Ockham’s Razor, a principle named after the philosopher William

of Ockham, stating that the simpler solution should always be prioritized.

3.2 Algorithms for Building Classification Models

There are several algorithms that can be used to train classifiers. Each technique

will dictate the type of model and the prediction performance. There is no ground rule

to define which technique is better for each application, so usually more than one case
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should be considered. The following sections describe the techniques investigated in this

work.

3.2.1 Decision Trees

This is one of the simplest and yet most successful machine learning techniques.

A Decision Tree receives a feature vector as input and returns a decision (class) based

on a series of logical tests over the input values. Figure 3.3 illustrates a tree for deciding

the species of a plant based on a famous data set called Iris. The first line in each node

represents the test to be applied in the corresponding feature. The second line contains the

gini impurity (a measure of how often a randomly chosen element from the set would be

incorrectly labeled) at that node. Note that only continuous values were used as features,

but discrete values are also supported.

Figure 3.3: A Decision Tree for classification of the Iris dataset. (adapted from (SCIKIT,
2018))

Computationally, Decision Trees are modeled either as Directed Acyclic Graphs

(DAG) or as a set of rules formed with logical tests. The canonical algorithms for building



49

Decision Trees were proposed by Quinnlan (QUINLAN, 1986), namely the seminal Iter-

ative Dichotomizer 3 (ID3), its first improvement, the C4.5, and more recently the C5.0

implementation. All versions follow the same strategy:

1. Select the feature with highest importance (fbest);

2. Split the data into the values of fbest the separate classes the most;

3. Repeat steps (1) and (2) to each split subset until the stopping criterion is reached.

The differences of each implementation lie on how these steps are performed. The

ID3 uses Information Gain (IG) as metric to select fbest, whereas C4.5 and C5.0 use the

improved Information Gain Ratio (IGR). The ID3 algorithm did not support continuous

features or incomplete data samples (when the values of some features is unknown), but

this was implemented in both subsequent versions. Finally, the C4.5 and C5.0 implement

a bottom-up pruning technique to reduce over-fitting and generate smaller trees.

The main differences between C4.5 and C5.0 is that the latter provides support for

boosting, automatic removal of irrelevant features (attribute winnowing), and misclassifi-

cation weighting.

The IG metric used in the ID3 algorithm measures the expected gain in entropy

(H) of the output when some information is given. In other words, given a training set T

with P positive and N negative samples, the IG computes how H(T ) is reduced with the

information from feature f . This is formulated as:

IG(T, f) = H(T )−H(T |f) (3.1)

H(T ) = −(P log2 P +N log2N) (3.2)

H(T |f) =
∑

v∈vals(f)

|Tf=v|
|T |

∗H(Tf=v) (3.3)

In (3.3), vals(f) represents the possible values of feature f , and Tf=v corresponds

to the set of samples where the value of feature f is equal to v, i.e., Tf=v = {x ∈ T |

xf = v}.

For features that can take on a large set of values, the IG might lead to over-fitting.

This happens, for instance, when a feature has a unique value in each training sample,

leading to a high IG but reducing the generalization of the model.

The Information Gain Ratio used in C4.5 and C5.0 is based on the ratio between
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Figure 3.4: (a) Three classifiers with inefficient decision margins and (b) an SVM linear
classifier with maximum margin
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the Information Gain and the Intrinsic Value (IV), which measures the potential informa-

tion generated by splitting the training data into each value of f .

IV (T, f) = −
∑

v∈vals(f)

|Tf=v|
|T |

∗ log2
(
|Tf=v|
|T |

)
(3.4)

This equation shows that the IV increases with the number of subdivisions that a

feature produces in the training set, so lower values indicate better efficiency. Finally, the

IGR is obtained from the division of both IG and IV:

IGR(T, f) =
IG(T, f)

IV (T, f)
(3.5)

Features with high IG but also with high IV will have a reduced IGR value, which

shows why this metric is used in the recent Decision Tree algorithms.

3.2.2 Support Vector Machines

Support Vector Machines emerged as an approach that solved an important issue

in classifiers: the decision margin optimization. To illustrate this problem, let us consider

Figure 3.4.

The hypotheses in Figure 3.4(a) are all capable of separating both classes, but the

decision margin never seems to grasp the actual behavior of the data. In contrast, Figure

3.4(b) shows the maximum margin between the training samples of each class that are

closest to the decision boundary (circled points in Figure 3.4(b)).
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The basic idea behind SVMs is that some training samples are more important

than others and paying more attention to them might lead to a better generalization.

The SVM training algorithm consists in discovering those circled points (called

support vectors) and using them to make decisions on future instances.

When training data is not linearly separable, SVMs apply a transform function

called kernel, which maps the representation to a higher dimensional space. This is better

illustrated in Figure 3.5. Note in Figure 3.5(a) that the decision boundary is not linear

(x21 + x22 < 1), but it becomes linear after mapping the samples to a tridimensional space

(x21, x
2
2,
√

2x1x2) in Figure 3.5(b).

Figure 3.5: Example of the kernel function employed in SVMs to transform linearly
inseparable data (a) into an equivalent distribution that is separable by a hyperplane (b).
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There are several possible kernels to apply, but SVM implementations come with

a preset that contains a Gaussian, a polynomial, and a linear kernel.

Since this work will focus on using pre-built implementations, we will not dive

into the mathematical details of SVMs. However, it is important to note that finding the

decision boundary is a Lagrangian optimization problem represented by the following

formula:

arg max
a

{
n∑

i=1

ai −
1

2

n∑
i,j=1

aiajyiyjK(xi, xj)

}
(3.6)

subject to


0 ≤ ai ≤ C, ∀i
n∑

i=1

aiyi = 0
(3.7)

The C parameter is used to tune the trade-off between misclassification and model
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generalization. High values of C will drive the SVM algorithm to train classifiers with

few misclassifications, but it also increases the number of support vectors and might lead

to model overfitting.

Training SVMs is a particularly hard task, as it includes performing the Lagrange

optimization for different values of C, along with the hyper-parameters of each kernel.

For instance, the Gaussian kernel has an extra gamma parameter G, which defines the

area of influence of each unitary training sample in the decision boundary, where lower

values mean higher influence for each sample.

There are no heuristics to find the optimal values for C or G, so usually a search

is done over all possible combinations, which is very time consuming. Despite this draw-

back, SVMs are still widely used due to their maximum margin property and better data

separability characteristics.

3.2.3 Ensemble Learning

Both Decision Trees and SVMs generate a single model for classification. The

idea behind Ensemble Learning is to select a collection of trees or SVM hypotheses and

combine their predictions to form a compound model.

The motivation behind this is simple: if we have five models, we can use majority

voting to make a decision, which will be incorrect only when three models make wrong

predictions.

The most widely used Ensemble method is called Boosting. This technique uses

instance weighting on the input samples, i.e., each training sample will contain a weight-

ing factor that is adjusted iteratively.

Boosting starts by setting an equal weight (wj = 1) to all training samples, which

is the same as usual training procedure. The resulting model (h1) will be tested against

these training samples and make eventual misclassifications. Afterwards, the misclas-

sified instances are assigned with larger weights, whereas the correctly classified ones

will have a smaller weight. Samples with higher weights will be of more importance in

the next iteration. The next hypothesis (h2) will be trained with the adjusted samples,

increasing the odds of correctly classifying the instances misclassified by h1.

AdaBoost (FREUND; SCHAPIRE, 1995) is a successful Boosting algorithm, im-

plemented as default method for building Ensemble Decision Trees in the C4.5 and C5.0

implementations. The pseudo-code is described in Algorithm 1.
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Algorithm 1 The AdaBoost algorithm used to build ensemble models
Input: examples: set with N training samples identified as (x1, y1), ..., (xN , yN )

L: a learning algorithm
K: the number of classifiers to train

1: h← ∅ . vector with K classifiers
2: w← 1/N . vector with N example weights
3: z← ∅ . vector with K classifier weights
4: for each k = 1 to K do
5: h[k]← L(examples, w)
6: error← 0
7: for each j = 1 to N do
8: if h[k](xi) 6= yi then
9: error← error + w[j]

10: else
11: w[j]← w[j]*error/(1-error)
12: end if
13: end for
14: end for

15: bestModel←MAX( ~models, key = BDCRatio)

3.2.4 Random Forests

Random Forests are a special case of Ensemble Learning that consists in com-

bining several Decision Trees into a single classifier. This technique was created as a

means to reduce the overfitting tendency of Decision Trees by inserting randomness in the

construction of each individual tree (FRIEDMAN; HASTIE; TIBSHIRANI, 2001). The

canonical algorithm for building Random Forests was proposed in a paper by Breiman

(BREIMAN, 2001), and is composed of two main steps:

• Tree bagging: in this step the Bootstrap Aggregating (Bagging) technique is em-

ployed, which consists in random sampling the training set with replacement, then

training the trees with each resulting subset. After the trees are trained, the decision

is made by either taking the average the predictions of all the individual trees (for

regression) or by computing the majority voting (for classification problems). The

bagging method, also proposed by Breiman, reduces the variance of the model with

the subsampling and averaging steps.

• Randomized Decision Tree Training: in order for a collection of Decision Trees

to be called a Random Forest, at least some degree of randomness must be part of

the process. In this algorithm, this is introduced in the features selection step that
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takes place in the split decision of each node. Traditionally, the algorithm ranks all

the available features and selects the best one using a metric like IGR. In Random

Forests though, only a random subset of these features is available. This is done to

reduce the correlation among the trees, i.e., if one or a few features are very strong

predictors for the target label, they will be selected by most of the trees in the forest,

causing them to become correlated (therefore redundant).

Random Forests have been used in a variety of applications, including for arbitrary

downscaling of video sequences (VAN et al., 2015). They require more training time

compared to Decision Trees, but are still easier to train compared to Neural Networks and

SVMs, as they do not involve several variables that must be optimized.

3.3 Evaluating Models

The performance of binary classification models can be assessed with different

metrics, most of which can be formulated using known concepts in machine learning:

True Positives (TP), which stand for the number of correctly classified Positive values; and

True Negatives (TN), representing the Negative values. In addition, the False Positives

(FP) and False Negatives (FN) are interpreted as the additive inverse of TP and TN.

Three common metrics that will be used in this thesis, True Positive Rate (TPR),

True Negative Rate (TRN), and accuracy (ACC), are formulated below:

TPR =
TP

P
=

TP

TP + FN
(3.8)

TNR =
TN

N
=

TN

TN + FP
(3.9)

ACC =
TP + TN

(TP + FP + TN + FN
(3.10)

Other metrics like Logarithmic Loss and Area Under ROC Curve (AUC) can be

used, but accuracy is usually a good starting point to assess different models. In addi-

tion, TPR is useful in particular cases where True Positives are more important than True

Negatives.
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3.4 Tools and Frameworks

With the huge success of machine learning applications, several tools, libraries,

and frameworks are constantly being developed. These tools comprise every task involved

in the process, from data analysis and preprocessing to model training and testing. The

following tools were identified as the most prominent ones among several possibilities:

• R: R is a special language designed specifically for data machine learning and sta-

tistical learning implementations (TEAM, 2014). It provides a series of databases,

learning algorithms for classification and regression, feature analysis methods, etc.

The R community is also very active, providing support via forums and custom

libraries for specific purposes.

• Weka: this software is a collection of machine learning algorithms for data mining

tasks (WITTEN et al., 2016). The algorithms can either be applied directly to a data

set or called from a Java code using the source codes provided. Weka contains tools

for data pre-processing, classification, regression, clustering, association rules, and

visualization. It is also well-suited for developing new machine learning schemes.

• Scikit-Learn: this is a set of packages available in Python that greatly assist ev-

ery step required for model training (PEDREGOSA et al., 2011). The Scikit-Learn

libraries implement virtually all traditional learning algorithms, a plethora of data

processing and analysis methods, and they also contain many famous data sets.

Combined with NumPy for fast vector operations processing and PyPlot for graph-

ical features, Scikit-Learn is one of the most complete and powerful tool sets avail-

able.

• TensorFlow: this is an open source software library created by the Google Brain

Team for the purposes of conducting machine learning and deep neural networks

research (ABADI et al., 2016). The computations are modeled using data flow

graphs. Nodes in the graph represent mathematical operations, while the graph

edges represent the multidimensional data arrays (tensors) communicated between

them. The flexible architecture allows one to deploy computation to one or more

CPUs or GPUs in a desktop, server, or mobile device with a single API.

• LibSVM: this C++ library contains specific functions to train and test models us-

ing Support Vector Machines (CHANG; LIN, 2011). Classification and regression

models are supported. This library also implements different kernel functions, and
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an interesting feature that provides the probability of a decision to be correct. Some

helpful scripts in Python can also be obtained from the library’s website, providing

feature selection and data subsampling routines.

• C4.5/C5.0: these are also C++ libraries, but for Decision Tree learners (QUINLAN,

2006). Model training, testing, and even ensemble methods (using AdaBoost) are

implemented.

From this list, the Scikit-Learn was used for data analysis and preliminary model

training. However, the HM software is implemented in C++, so the specific LibSVM and

Decision Trees libraries (C5.0) were used to modify the HM encoder.

A final note on this topic is that the need for better and more efficient machine

learning environments are also encouraging the circuits and systems industry. Google’s

Tensor Processing Unit (TPU) is one of the main examples. The TPUs are application-

specific processors developed to improve the performance and power efficiency of Ten-

sorFlow operations (JOUPPI, 2016). These units are especially interesting, because they

reduce the precision (bit width) of operations in order to maximize the IOPS (input/output

operations per second) per Watt.
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4 CHALLENGES AND RELATED WORKS

This chapter begins with a complexity analysis of HEVC encoders, which will

be used to identify the challenges connected with the topic of this thesis. Following,

a literary study of the main contributions regarding complexity reduction and Machine

Learning in visual applications will be presented, with special focus of HEVC encoding

and transcoding.

4.1 HEVC Encoding Complexity Analysis

The H.265 norm (ITU-T, 2013) dictates how to decode HEVC-compliant bit-

streams, explaining how each decoded word must be interpreted. Therefore, there is not

much ground to innovate in HEVC decoders, apart from parallel implementations, CPU-

specific optimizations, etc. The encoder, however, can be implemented in many different

ways, with a single restriction of generating streams whose syntax is compliant with the

HEVC norm. While this opens a large space for exploration, it also makes it difficult to

compare different solutions under fair circumstances. Therefore, experts associated with

the JCT-VC group developed the HEVC Model (HM) software to serve as a reference for

research with this standard. The HM was not designed to be efficient in terms of com-

plexity, but in return it contains all the tools supported by HEVC, thus it was adopted by

many researches of both industrial and academic branches.

The chart in Figure 4.1 gives an overview of the tasks involved in the compression

of a single CTU using the HM implementation. The round arrows indicate loops, and the

associated conditions represent the default configuration. Note that the Compress CU and

Residual Quadtree loops are actually replicated four times at each iteration to form the

quadtree structures.

Note in Figure 4.1 that the Inter-Prediction Search and the Residual Quadtree

loops that compose the Check RD-Cost process are nested inside the Compress CU method,

which forms the CTU quadtree. This composition gives us a hint of which encoding

tools are responsible for most of the encoding execution time, as most of these tasks in-

volve several computations to be performed. For instance, the Integer Motion Estimation

(IME) search involves computing Sum of Absolute Differences (SAD) of each candi-

date, whereas the Fractional Motion Estimation (FME) search is composed of a fractional

interpolation step followed by a block-matching search using the Sum of Absolute Trans-
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Figure 4.1: Main tasks required to encode a single CTU of an HEVC encoder.
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formed Differences (SATD) as metric. To quantify how each step is involved in the en-

coding complexity, the HM was instrumented using the GNU Profiler (GProf) tool set,

and it was monitored while encoding 32 frames of three sequences with a QP of 32. The

results are presented in Figure 4.2 in terms of absolute elapsed time, and also in the form

of a complexity share breakdown in Figure 4.3.

Figure 4.2: Processing time and average complexity share of several encoding compo-
nents for three video resolutions (sorted by average time share).
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As Figures 4.2 and 4.3 show, the FME is the most computation-intensive step

in the encoding process, consuming on average 43% of the encoding time (combining

the FME Search and the Half/Quarter Interpolation steps). Other steps related to inter-

prediction have shown to be quite consuming as well, such as the IME and the Motion

Compensation. It can be also observed in Figure 4.2. that Quantization is almost six

times more complex than the Transforms, most likely due to Rate-Distortion-Optimized
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Figure 4.3: Complexity share breakdown of encoding components for three video resolu-
tions (sorted by average time share).
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Quantization (RDOQ). This algorithm is highly control-flow and contains inter-coefficient

dependencies in its mode decision.

The inter-prediction, and the T/Q/IT/IQ loop add up to 72.7% (combining the

FME+IME Searches, the Half and Quarter Interpolations, Motion Compensation, and

Inter Merge steps) and 17.7% (combining the Transforms, Quantization and their inverse

counterparts) of the total time respectively. In light of these facts, a detailed analysis

was carried out to discover how scalable the inter-prediction complexity is and, more

importantly, how this scalability can be extended even further.

During inter-prediction, the pixel block is sub-partitioned into Prediction Units

(PU). There are eight possible PUs for each CU in the quadtree: two square Symmetric

Motion Partitions (2N×2N, N×N SMPs); two rectangular SMPs (2N×N, N×2N); and

four asymmetric ones (AMP). From these, only the one with best rate-distortion values is

effectively used.

As depicted in Figure 4.1, the FME and IME searchs are called for each reference

frame (RF), which by default is equal to four. Figure 4.4. shows the inter-prediction time

spent in each RF and also in each PU group.

Figure 4.4(a) indicates that the search takes about the same time in each RF. This

is interesting for this work, as it means that a 25% reduction is expected each time the

number of RFs is reduced by one. In addition, Figure 4.4(b) shows that the rectangular

SMPs (2N×N, N×2N) take 55% from the ME time, whereas the AMPs represent a minor

7% slice due to a fast mode-decision algorithm that skips AMP evaluation in many cases.
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Figure 4.4: Motion Estimation complexity share of in each reference frame (a) and in
each Prediction Unit group (b) – sequence: BQMall (832×480).
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Surprisingly, AMP can be completely disabled in the current HM versions, but this is not

possible for the time-consuming SMPs.

The encoding time spent within each CTU quadtree depth (or for each CU size) is

also an important indicator, as it allows us to estimate how much time can be saved using

CU early termination techniques. The results depicted in Figure 4.5 show this distribution

in terms of QP (a), using the average of all tested sequences, and in terms of sequence,

using the average of all QP values (b).

Figure 4.5: Encoding time share spent to process each CU size. The results were averaged
for each QP (a) and for each sequence (b).
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From this figure we deduce that significant encoding time is spent on smaller CUs.

For all tested cases, regardless of QP or sequence resolution, more than 50% of the en-

coding time is spent on 16x16 and 8x8 CUs. If 32x32 CUs are also considered, the com-

plexity share increases to more than 80%. These results show the potential of early CU

termination methods and justifies the great amount of solutions that have been proposed
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on this topic. On the left side of Figure 4.5, it is noticeable that the QP does not affect

this distribution significantly, although lower QP values seem to increase the complexity

share of 8x8 CUs a little. The sequence-wise bars in Figure 4.5 show a similar behavior,

where more time is spent on smaller resolutions. An exception is the NebutaFestival se-

quence, which has a 2560x1600 spatial resolution and seems to spend more time on 8x8

CUs compared to its counterpart of the same resolution (Traffic). It is difficult to figure

out where this discrepancy occurs though, so Figure 4.6 presents a more detailed profiling

of these two sequences, showing the average encoding time (QP-wise) spent on the RQT,

FME and IME processes for all CU sizes.

Figure 4.6: Encoding time spent on the main HEVC tools for two sequences with
2560×1600 resolution.
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Although both sequences have the same spatial resolution, Nebuta takes almost

twice the time in the RQT processing compared to Traffic. The main explanation for this

comes from a fast method implemented in recent HM versions that inserts a termination

criterion in the RQT subdivision process. Basically, the subdivision stops when the abso-

lute sum of transformed coefficients is below a threshold value, which is computed based

on the QP. Therefore, scenes that are less complex in motion and texture information

achieve the termination condition more easily. In fact, this also explains why higher QP

values reduce the encoding time for the same sequence. Figure 4.7 shows that the RQT

processing and the IME take less time as we increase the QP (thus decreasing the number

of significant coefficients).

Note that the FME takes practically the same amount of time, whereas the RQT

time decreases by more than 45% for BasketballDrive and 41% for ParkScene when QP

changes from 22 to 42. In the framework of this thesis, where fast decisions were envi-

sioned, this means that eliminating the RQT processing has a smaller potential compared

to a CTU early termination method, especially with higher QPs. On the other hand, it
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Figure 4.7: Average encoding time spent on the RQT, IME, and FME processes for the
BasketballDrive and ParkScene sequences (1920×1080).
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also gives us a clue regarding the importance of the residual information in the encoder

decisions.

4.2 Related Works

Machine Learning techniques have been applied in several studies related to Video

and Image Processing. The following section will highlight important contributions in

different visual applications. Section 4.2.2 focuses on complexity reduction solutions for

video encoders. Section 4.2.3 presents some relevant video-coding complexity reduction

studies that make use of Machine Learning techniques. The references related to com-

plexity management in video encoders are presented in Section 4.2.4. Finally, Section

4.2.5 presents important contributions regarding HEVC transcoding.

4.2.1 Machine Learning for Visual Applications

Some works found in the literature apply Machine Learning techniques to solve

problems related to Video Coding, such as (XU et al., 2017), (WANG; ZHU; YIN, 2016),

and (WU et al., 2016).

(XU et al., 2017) shows that compressed domain features can be effectively used
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for salience detection using a wide eye-tracking database. This work points out that re-

gions with higher splitting depth, higher bit allocation and/or larger motion vectors infor-

mation are often the regions that attract human attention, proving that these features can

be used for attention modeling.

(WANG; ZHU; YIN, 2016) presents a video anomaly detection mechanism using

Extreme Learning Machines (ELM, a particular case of Neural Networks). As features,

the authors use texture information from Local Gradient Pattern (LGP) descriptors com-

bined with Optical Flow descriptors for motion information.

A crowd movement detection mechanism based on Support Vector Machine learn-

ers is presented in (WU et al., 2016). The authors designed a retrieval system that is ca-

pable of detecting hand-drawn motion patterns in video scenes of crowded areas in order

to facilitate indexing and retrieval applications. A series of motion-based calculations are

used as features for classification.

4.2.2 Complexity Reduction in Video Coding

This section presents a collection of works found in the literature that propose

solutions for HEVC complexity issues based on heuristics faster than the ones already

defined in the standard. The works are classified according to the coding stage affected.

4.2.2.1 Intra Prediction

(JIANG; MA; CHEN, 2012) presents a fast mode decision algorithm for the intra-

prediction process based on applying a Sobel filter on the picture to identify regions with

more details. The authors claim that, based on optical flow theories, the gradient direction

of a pixel represents its maximum variation, whereas the perpendicular direction indicates

the minimum. Thus, before calling the intra-prediction method, the gradients of each

pixel are calculated, identifying the dominant gradient direction of the PU being encoded.

Lastly, the intra-mode directions evaluated are the ones perpendicular to the dominant

gradient. The results show a 20% time savings with a 0.74% increase in BD-BR using the

All-Intra configuration.

In the work of (KIM et al., 2011), the authors propose a heuristic that limits how

deep the quadtree goes on intra CTUs. This kind of technique is usually referred to as

Early Termination. Two methods are proposed: the first one evaluates the best mode of
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the CU immediately above (in terms of depth) in the quadtree. If the best mode from

the above CU is the same as the one for the current CU and if the current CU size is the

same as the current TU size, the quadtree partitioning is interrupted. The second method

considers a mode decision heuristic that was actually adopted by HEVC, called Rough

Mode Decision. RMD consists in evaluating a smaller set of the 35 available directional

modes. Based on the best result from the RMD, a refinement is applied, evaluating only

the modes similar to the best one from RMD. By combining both methods, the results

point a 23% time reduction, with a 0.9% BD-BR increase using the All-Intra configura-

tion. The RMD was actually implemented in the HEVC reference, showing the efficacy

of this solution.

Other works related to intra-prediction were found. To cite a few: (ZHAO et al.,

2011), (YAN et al., 2012), (SHEN; ZHANG; AN, 2013), and (SHI et al., 2013). However,

since this dissertation focuses mostly on inter-prediction, they will not be discussed here.

4.2.2.2 Inter Prediction

The authors in (LENG et al., 2011) employ a frame-level fast mode decision,

which is based on counting the occurrence of CTU depths. If the occurrence of a given

depth d is much smaller than that of d + 1, then d is not evaluated for all CTUs of the

next frame. Secondly, a CTU-level decision evaluates the neighboring CTUs to decide the

depth interval that will be evaluated in the current CTU. The average results correspond

to a 45% reduction in the ME execution time, whereas bitrate is increased by 0.01% and

PSNR is decreased by 0.066dB. However, the authors did not present results in accordance

with the CTC, so it is difficult to define the quality of the results.

(CHOI; PARK; JANG, 2011) propose a CTU Early Termination algorithm based

on the occurrence of the SKIP mode. The algorithm is rather simple: if SKIP mode is

selected as best mode in the current depth, then the following depths are not evaluated.

The authors present statistics showing that if SKIP is selected as best mode for depth d,

the next depth has a 5% chance of having a better mode. Encoding time is reduced by

42%, with a 0.6% BD-BR increase.

The solution presented in (CASSA; NACCARI; PEREIRA, 2012) is composed of

two fast mode decisions. The first one, named Top Skip, consists in skipping the larger

CU sizes. To support this decision, the authors claim that there’s a low probability of

finding the best mode in these CUs, especially in high-resolution pictures. Therefore, the

Top Skip decision starts from the largest CU found on the previously encoded CTU. The
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second decision tries to remove the lower CUs based on an Early Termination algorithm,

which defines a threshold value based on the standard deviation of the residual samples.

The results show a 40.3% encoding time reduction, with a 1.91% bitrate increase and

0.007dB BD-PSNR decrease.

The following works also target inter-prediction fast mode decisions: (KIM et al.,

2012) and (XIONG et al., 2014). The inter-prediction is the most computation exhaustive

process in the encoding loop, therefore many researchers focus on trying to reduce its

complexity. The references cited here are only some examples from many.

4.2.2.3 Other HEVC Encoding Steps

In (TENG; HANG; CHEN, 2011), the authors present a fast decision for the TU

mode decision. The proposed solution reverses the evaluation order of the possible TU

mode, prioritizing smaller TU sizes. The authors also define some Early Termination

conditions: when the PU transformed coefficients after the transforms are all zero, then

quadtree partitioning is interrupted. The divulged results show a 49% average time reduc-

tion in the TU mode decision time (defined as RQT), with a 0.31% BD-BR increase and

a 0.013 BD-PSNR decrease. The time reduction in the overall HEVC encoder was not

divulged.

Many other works that target a specific HEVC component can be found. (MIYAZAWA

et al., 2012) presents an algorithm that disables the Adaptive Loop Filter (ALF) when

certain conditions are met. (JOO; CHOI; LEE, 2013) proposes a fast algorithm for SAO

encoding based on the best intra mode.

4.2.3 Machine Learning for Video Coding Complexity Reduction

Most references that focus on complexity reduction using Machine Learning clas-

sifiers deal with the RDO mode decision, due to the enormous optimization space of this

method. In (CORRÊA et al., 2015), the authors present fast decision models for CU,

PU and TU mode decisions using Decision Trees as learners. Several coding domain

features, like splitting depth and rate-distortion cost, are used as features to build each

Decision Tree. The authors also present a feature analysis, showing that coding domain

features are very useful for mode decision classification. The results show that a 65%

complexity reduction can be achieved with minor losses of 1.36% in coding efficiency
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(using Bjøntegaard Delta Bitrate – BD-BR (BJONTEGAARD, 2001)).

Momcilovic et al. (MOMCILOVIC et al., 2015) present a run-time learning sys-

tem based on Neural Networks. The authors extract coding features online and use them

to train Neural Networks asynchronously on a separate thread. When the model is trained,

a signal is sent to the encoder thread, and the model is then applied for fast CU decisions.

The results show that 47.5% complexity reduction is achieved on average with a 1.17%

BD-BR penalty.

A SVM-based fast CU decision is proposed in (ZHANG et al., 2015a). In this

work, the authors designed a hierarchical classification framework for different block

sizes. The features used for model training include coding features, like SKIP flag, motion

vector, and neighboring depth. Online and offline training modes are discussed, showing

that it is possible to build adaptive models that fit the scene characteristics. This solution

achieves an average complexity reduction of 51.45% with 1.98% BD-BR loss.

The authors in (SHEN; YU, 2013a) also present a CU splitting early termination

algorithm to reduce encoding complexity. CU splitting is modeled as a binary classifica-

tion problem, on which a SVM is applied. The authors apply a weighted SVM strategy to

reduce the rate-distortion loss that occurs during misclassifications. The presented results

show that the proposed algorithm achieves about 44.7% complexity reduction on average

with 1.35% BD-rate increase under the Random Access configuration.

Another SVM approach for CU and PU partitioning is proposed by (ZHU et al.,

2017). This work employs binary classification model for CU early termination, whereas

the PU partitions are decided with a multi-class SVM. The models are trained offline,

online, or in a mixed mode that combines both offline and online versions. Using the

mixed online/offline mode, a complexity reduction of 65.6% is achieved with a 3.67%

BD-BR increase under the Random Access configuration.

A Bayesian Decision Rule using online-trained models is proposed by (KIM;

PARK, 2016). The authors propose the use of joint online and offline learning methods

to produce a more robust classifier. The online models were trained with the minimum

error Bayesian decision rule with selective input training pictures. The offline model is

responsible for modeling the loss function based on the minimum risk Bayesian decision

rule. The proposed method reduces the computational complexity of HEVC encoder by

34.9% on average with a 0.71% BD-BR loss using the Random Access configuration.
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4.2.4 Complexity Management in Video Coding

This section describes the most relevant works on complexity management found

in the literature, as well as one that targets thermal control. These solutions make use

of the complexity scalability that is provided by many HEVC tools due to their high

configurability.

The main challenge consists in how to efficiently scale complexity up and down

in order to maintain quality and compression requirements. (MIRTAR; DEY; RAGHU-

NATHAN, 2012) presents a solution based on dynamic thermal control for an H.264/AVC

encoder. The goal of this work was to reduce coding complexity before the CPU reaches

temperature levels considered too high. The authors initially defined different thermal

complexity profiles, with varying frequencies and voltages. The second step consisted

on running the H.264/AVC encoder for each profile in order to create offline complexity

estimations for all sequences. These results were stored in what they called a Thermal

Policy Characterization Table (TPC). The authors do not detail how the TPC used in the

presented solution was built, but apparently, a single sequence was used as training set.

To circumvent the offline training issues (e.g., videos that stray from the training set), the

authors present and online tuning equation in order to scale the estimations up or down.

The results point a 2.4 dB average PSNR drop and a bitrate 4% higher. These results were

extracted for three sequences only, compromising the confidence of the analysis.

The work presented in (HUIJBERS; ÖZÇELEBI; BRIL, 2011) proposes a complexity-

scalable Motion Estimation algorithm. This method limits the number of candidates eval-

uated in the ME process, based on the amount of computation available for each Mac-

roblock. Computation budgeting is decided upon the pre-quantized residue generated for

the collocated Macroblock in the previous frame: if the residue is considered too high,

more computation is granted to the current Macroblock; otherwise, less candidates will be

evaluated for it. This routine is called before each Macroblock is processed to compensate

cases when the resources are over/under-used, leaving concerns regarding the computa-

tion overhead introduced by this solution. The results from this work are only presented

as charts, with no quantified values to allow comparisons.

In (TAN et al., 2009), a solution for H.264/AVC encoders that initially selects

SKIP mode for all Macroblocks of a wave front (Macroblocks without interdependence)

is proposed. After this initial step, the algorithm refines each Macroblock until the avail-

able resources are used up. This can be interpreted as a bottom-up budgeting strategy.
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The budgeting is calculated by using a single parameter that represents the percentage of

available resources. The results in this work are also presented as charts.

In (CORRÊA et al., 2012), a complexity control solution is presented. The authors

initially show that the maximum depth of collocated CTUs remains the same through a

considerable number of consecutive frames. Based on that conclusion, they designed

an algorithm that classifies frames as unconstrained (the regular encoding is performed),

and constrained, in which a fast mode decision is applied to limit the maximum quadtree

depth (Early Termination). The main contribution in this work is the fact that the authors

developed a model that dynamically classifies frames as constrained or unconstrainedby

using online-based estimations. For a 60% target complexity (40% time savings), the

results divulged show a 6.29% BD-BR increase and an actual encoding time savings of

38%.

In (GRELLERT et al., 2017), a complexity control scheme based on parameter

presets to reach specific targets was designed. Each preset controls the configuration

of several encoding algorithms in order to achieve higher reductions. The presets are

assigned to each CTU depending on the estimated computations. The authors also imple-

ment a dynamic frame-level control system using PID controllers to increase the accuracy

of the system, achieving complexity savings from 10% up to 90%.

A similar strategy is applied in (CORRÊA et al., 2016), in which the authors apply

a Pareto-based analysis to generate the best presets for each target savings, optimizing the

rate-distortion tradeoff. Dynamic control mechanisms are not considered in this work,

as the presets are assigned statically, but the authors are still able to achieve complexity

savings near 90%.

In (DENG; XU; LI, 2016), a hierarchical complexity control that also applies CTU

and frame-level techniques is proposed, reaching complexity reductions from 10% up to

90%. In this work, a statistical analysis was conducted to assign the maximum depth for

each CTU.

4.2.5 Complexity Reduction in Video Transcoding

The research on HEVC transcoding can be cathegorized into two groups. The

first one comprises solutions that aim at reducing the HEVC transcoding time given an

input bitstream encoded in a different standard, such as H.264/AVC. This can be referred

to as heterogeneous transcoding. The second group is composed of methods to reduce
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transcoding time using a reference HEVC bitstream as input, which is called HEVC bi-

trate transcoding or homogeneous transcoding. Important contributions from both groups

can be found in the literature, and the following sections will discuss the ones that were

most relevant to this work.

4.2.5.1 H.264 to HEVC Transcoding

H.264/AVC encoders have steadily conquered the domestic and professional mar-

kets over the last ten years. Therefore, there is a lot of legacy content encoded with this

standard, so H.264/AVC to HEVC transcoding is necessary to enable a gradual migration

to the most recent technology. Also, H.264 to HEVC transcoders allow streaming services

to take advantage of the superior RD performance provided by the latter.

The authors in (PEIXOTO; IZQUIERDO, 2012) propose a fast mode decision for

HEVC using the motion vector information from H.264/AVC bitstreams. The algorithm

computes the variance of all the MVs that are inside the current CU area, and compare this

result with two thresholds (Tlow, Thigh). When there are MVs from different reference

frames, this metric is not computed. Based on the computed variance, some decisions can

be skipped.

Two strategies are employed to speed up ME as well: MV reuse and refinement

(which basically considers the H264/AVC in the search plus some other important cases

when refinement is enabled); and MV scaling, which computes the variance even for MVs

that are not from the same reference frame, using a distance-based scaling factor.

Different combinations of threshold values, as well as enabling or not the MV

refinement and scaling techniques, are tested. Therefore, the authors called their solution

complexity-scalable.

Compared to a trivial cascaded transcoder, the authors achieve a minimum speedup

of 2x (with 2.92% BD-BD loss) up to 3.6x (with 9.1% BD-BR loss). The results were

encoded under VBR conditions, so different QPs were used to achieve bitrate variations.

The authors in (DÍAZ-HONRUBIA et al., 2016) propose an Adaptive Fast Quadtree

Level Decision (AFQLD) approach, which exploits the information gathered in the H.264/AVC

decoder in order to assist decisions on CU splitting in HEVC using a statistical Naïve–Bayes

(NB) classifier to avoid an exhaustive RDO search. Adaptive refers to the fact that the

algorithm can dynamically be adapted to the content of each sequence. In an offline

data mining process, all the knowledge needed is extracted from the H.264/AVC decod-

ing statistics by means of machine learning (ML) techniques, and is then converted into
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mathematical models that can be executed in the online transcoding process.

For decisions at level 0 and 1, they build one model for each level of residual

energy (basically different delta QPs in a GOP), adding up to 8 models.

A fast H.264/AVC to HEVC transcoder using Data Mining is proposed by (COR-

RÊA et al., 2015). Several features from decoded H.264/AVC streams were gathered,

including sum of coefficients, Macroblock partitioning information, and number of SKIP

Macroblocks withing the CU area. Afterwards, the HEVC encoder was used in the same

sequences to extract the CU partitioning information, which was used as labels of the data

set. A data analysis is provided, showing that there is a great correlation between the num-

ber of SKIP Macroblocks and the CU partitioning, as well as with the sum of coefficients.

The extracted features were used to train Decision Trees with the C4.5 algorithm, which

were then implemented in the HEVC Model code to apply fast CU partitioning decisions.

Separate trees were trained for each CU size, except for 8x8 CUs, since they are already

the smallest size, thus cannot be partitioned.

Experimental results show that, compared with a cascaded transcoder, a 44%

transcoding time reduction is achieved with a 1.67% BD-BR loss. The results were ob-

tained under VBR conditions, using different QPs to achieve varying bitrates.

4.2.5.2 HEVC Bitrate Transcoding

Generating multiple representations on the fly is not a trivial task even for large

companies like Youtube and Netflix, as the computing resources are finite, so fast transcod-

ing solutions are valuable assets to mitigate this problem. In addition, even fast encoders

like x265 and VP9 struggle to achieve real-time throughput for Full HD sequences. Lastly,

all of these problems will be intensified as Ultra HD resolutions (such as 4k and 8k1) are

becoming more popular. The following references bring contributions in this direction.

The work of Schroeder et al. (2016) presents a fast transcoding method for adap-

tive HEVC streaming based on using the encoding information from a high-quality ref-

erence to constrain the rate-distortion-optimization of lower-quality encodings. Several

reuse strategies are discussed, namely prediction mode, intra angle, motion vector, and

CU partitioning. The authors show that there is a high correlation between the decisions

of the reference stream and those of the dependent streams.

Most savings are achieved with the CU partitioning reuse, specifically 33.6% on

average with a BD-BR increment of 0.53%. The authors also showed that reusing the

1Full High Definition, 4k, and 8k respectively stand for 1920×1080, 3840×2160, and 7680×4320 pixels
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motion vector from the reference encoding actually increases the compression efficiency

by 0.12% on average, while time is reduced by 6.2%. However, it is stated that the

surrounding area of the reused MV must be searched, because there is usually a small

offset. Combining all methods, ab average time savings of 38% are achieved with a BD-

BR increase of 0.96%.

Wang et. al (WANG et al., 2016) also propose a Single Input/Multiple Output

system that speeds up the CU partitioning on subsequent encodings (called Low Quality

– LQ) based on input from reference (High Quality – HQ) bitstreams. In this work, how-

ever, both HQ and a LQ bitstreams are used as input. The CU partitioning from the HQ

bitstream is used to define Lower Bounds in the partitioning decision of the lower-quality

representations, while the LQ partitioning is used to infer the Upper Bounds. These

bounds are mapped directly from the HQ and LQ streams. Experimental results show

that an average savings of 51.91% were achieved using three QP values (27, 32, and 37),

with a PSNR drop of 0.7 dB on average. Bitrate results were not divulged.

Decision Trees are used in the fast decision method of (VAN et al., 2013) for

HEVC transrating is proposed. The authors extract information from a decoded bitstream

in higher quality and use it as input for the tree-based classifier. One model for each CU

size (64x64 down to 16x16) was built using the J48 algorithm.

To improve rate-distortion performance, the accuracy of a prediction is also com-

puted and compared with two thresholds in the decision process. If the accuracy is larger

than or equal to Th2, the split-flag accuracy is classified as high. If the accuracy is smaller

than Th1, the split-flag is classified as a low accuracy. Otherwise, the accuracy is classi-

fied as medium. From this analysis, which modes will be processed are detailed in Table

4.1.

Table 4.1: CU evaluation table of the method proposed by (VAN et al., 2013)
Predicted Split ACC Check CUd Check CUd+1 ET

High Y N Y
Medium Y Y Y0

Low Y Y N
High N Y N

Medium Y Y N1
Low Y Y Y

The authors in (VAN et al., 2013) implemented their solution in the reference HM

encoder 7 and encoded classes B to F sequences in accordance with the CTC. Compared

to a traditional cascaded transcoder, the proposed method achieved an average reduction
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of 64.03% with a BD-bitrate increment of 1.76%.

Fast transcoding methods for CU and PU decision are presented in (VAN et al.,

2016). The first presented method, called Top-to-Bottom (T2B), starts with the CU at

the root of the CTU quadtree and processes the four sub-CUs only if the co-located

CU in the reference stream was split. Otherwise, the subdivision is halted. The sec-

ond method, called Bottom-to-Top (B2T) follows the reverse path, starting at the leaves

of CTU quadtree. First, all the leaves are processed. Then, at each iteration, the T2B

algorithm checks if the current CU was split in the reference bitstream. If it was not split,

it is processed, and if it was, the split flags of its four sub-CUs are evaluated. If they are

all zero, it means that there is a chance that the current larger CU is a better option, so it

is still evaluated. If at least one of the four sub-CUs was split, the current CU is skipped.

Fast PU decision adaptations were also implemented in each of these methods,

using the split flag information to decide whether to compute all PUs (when the split flag

is equal to one), or only the 2Nx2N and the best PU of the co-located CU (when the split

flag is zero).

Learning-based classifiers were also designed for the top-down and bottom-up

strategies, using a set of five features: split flag, delta depth between the current CU

depth and the max depth of the input CUs, sum of depths, number of PUs, and the Coded

Block Flag (CBF) of the CUs in the reference stream. With this data, Decision Trees

were trained using the C4.5 algorithm, one for each CU size and ∆QP combination. The

authors worked with three ∆QPs, adding up to nine classifiers.

From the proposed schemes, the fastest approach is able to reduce the complex-

ity by 82% with an average BD-BR increase ranging from 1.04% to 2.77%, using ∆QPs

equal from 2 to 6 in their simulations and VBR conditions. CBR encodings were also per-

formed, in which the same method achieves savings around 81%, with BD-BR increases

ranging from 2.47% to 3.01%. One important remark of this work is that the best results

were not obtained from the learning-based methods, proving that a simple fast heuristic

is sometimes more efficient than a complex classifier to solve a problem.

4.3 Final Remarks

Although significant ground has already been covered for fast HEVC encoding

methods, there is still much room for innovation. Recent works revealed the potential

of learning-based methods to achieve complexity reduction of HEVC encoders, but the
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methodology can be improved by taking into account the compression efficiency in the

training process. The methods of (CORRÊA et al., 2015) prove that combining fast CU,

PU and RQT partitioning decision methods can improve the complexity reduction with

tolerable compression penalty, but the complexity analysis presented in the first section

of this chapter indicated that the Motion Estimation searches also need to be addressed.

The fast encoding methods proposed in this thesis aim at filling this gap by using fast

Motion Estimation decisions, while increasing the efficiency of the fast CU, PU and RQT

methods compared to competing solutions.

The transcoding solutions demonstrated that using a reference HQ bitstream can

be extremely useful to guide the decisions of subsequent encodings of the same sequence.

This is an important discovery for adaptive streaming applications, and will be explored

in this thesis. It was also shown that limiting the Upper and Lower Bounds of the CTU

quadtree during the CU partitioning decision can provide significant reduction in com-

plexity, but the corresponding solution requires the production of an extra reference bit-

stream to accomplish this. It is preferable to use a single reference to reduce the execution

pipeline of the proposed method, specially if real-time transcoding is required. In addi-

tion, the works of (SCHROEDER et al., 2016) and (VAN et al., 2016) let us conclude

that fast heuristics can be also efficient for fast transcoding, and the latter reference even

shows that they outperform learning-based approaches. However, the set of features used

in (VAN et al., 2016) is limited, which might explain the reduced performance of their

classifiers. The transcoding methods proposed in this thesis will make use of the positive

aspects of these works while trying to mitigate the drawbacks of each case.
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5 ANALYSIS OF HEVC ENCODING AND BITSTREAM INFORMATION

In its essence, Machine Learning algorithms are capable of building predictive

models based on observed measurements (or features), which can or not be associated

with an output value (or label). Therefore, the relevance of such measurements is a key

component for a successful implementation. In many cases, the relationship between

each feature and the modeled task is known, so an expert can easily identify the ones that

are useful and the ones that can be discarded without affecting model performance. For

instance, when building a predictive model for face detection, it is expected that pixel-

based features and edge detection measurements will be helpful in the classification and

should not be disregarded.

There are also cases when a feature does not have any apparent relation with the

modeled task, but it is identified as relevant information by the training algorithm. De-

tecting these hidden relationships is an important motivation of using Machine Learning

techniques, as these discoveries might help us to better understand complex problems.

It is possible to design new features as well, which is sometimes referred to as

Feature Engineering. For instance, linear combinations of two or more features, scaling,

and even data transformation methods can be used to design novel features that could

prove to be more useful than the original ones.

Regardless of the method used to extract features, it is important to assess how

they relate with the output variables to discard irrelevant or noisy ones and to discover

hidden relationships. Some applications also have complexity or storage constraints, so a

feature analysis can assist on how to reduce the feature space to alleviate these issues.

In the following sections, we will discuss which information can be extracted from

HEVC encoders and decoders, and then assess the importance of this information in the

classification problems addressed in this thesis. Initially, the setup and methods used in

this analysis are detailed. Afterwards, the encoding features will be assessed with the

encoding partitioning decisions, whereas the decoding ones will be evaluated with the

transcoding modes.

The sequences listed in Table 5.1 were used in all the analyses presented in this

chapter. This is a subset of the sequences defined by the JCT-VC in their Common Test

Conditions document (BOSSEN, 2012).

We used a wide range of sequences with varying spatial/temporal resolutions and

motion characteristics to increase the quality of our analysis. A detailed description of
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Table 5.1: Video sequences used in the analysis

class sequence resolution fps bit depth
Traffic 2560x1600 30 8

A
NebutaFestival 2560x1600 60 10

BasketballDrive 1920x1080 50 8
B

ParkScene 1920x1080 24 8

BQMall 832x480 60 8
C

PartyScene 832x480 50 8

BlowingBubbles 416x240 50 8
D

RaceHorses 416x240 30 8

E Vidyo1 1280x720 60 8

F SlideShow 1280x720 20 8

each sequence is presented in Annex A.

5.1 Feature Analysis for the HEVC Encoding Decisions

Our first set of experiments aimed at discovering which information can be used

to efficiently predict the best partitioning of the HEVC structures, namely the CU, PU,

and TU partitions. Therefore, we collected several encoding-domain variables, such as

rate-distortion costs, collocated depth and so on. The flowchart in Figure 5.1 shows the

CU/PU/TU mode decision algorithm implemented in the HM 16.8 (BOSSEN; FLYNN;

SÜHRING, 2013) and the points at which data was extracted.

Three Extraction Points were defined. The first two are responsible for extracting

the encoding information. In the framework of Machine Learning, this corresponds to

the features that will be used to train our classifiers. The last point corresponds to the

extraction of the final decisions, which are equivalent to the labels of each classifier.

At Extraction Point 1, the information is collected after the SKIP/Merge and

2Nx2N inter-prediction are computed. This is useful for fast decisions that will affect

the current depth of the CTU quadtree, because up to six more PUs are going to be com-

puted, including the RQT evaluation. It is also possible to extract data before this point,

but important information from the inter-prediction would be unavailable.

The CU data was extracted at a later point, after all PUs were evaluated (Extraction

Point 2), because the decision to split or not a CU will only affect the lower depths of the

CTU quadtree. It is important to note that the features extracted at point 1 can still be
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Figure 5.1: Data collection scheme for the HEVC encoding decisions.
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used for the partitioning decision, but the information is more reliable at point 2, because

the actual best mode of the current CU is available.

Finally, the final CU, PU and TU decisions are collected at Extraction Point 3. The

CU split label has two values: when the rate-distortion cost of the four sub-CUs in the

next depth is less than the cost of the current depth, it is assigned to 1 (True), otherwise

it is 0 (False). The PU labels were initially assigned as the PU partitions themselves, so

it has eight possible values. Finally, the TU labels are the RQT depth, which can assume

values from 0 up to 3.

A set of 54 features (see B) was extracted for this analysis and for training the fast

encoding decision classifiers. They can be categorized into the following groups:

• Coding Flags: this group contains information that is either used or produced in

the encoding process, and which can be directly accessed from the encoder software
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without extra computations. To exemplify: prediction mode, PU partition, RQT

depth, CTU depth of the temporal co-located CUs etc.

• Coding metrics: these are the metrics used in the rate-distortion computations,

such as number of encoded bits, distortion, rate-distortion cost, SSE, and number

of non-zero coefficients.

• Motion cues: contains the values related with the Motion Estimation process, in-

cluding magnitudes of the integer and fractional portions of the ME vector, FME

precision (full pel, half pel or quarter pel), and reference frame index.

The following sections of this chapter will only mention the most noteworthy

ones on each discussion, but a complete list of these features can be found in Annex B.

Most features are extracted directly from the encoding variables, but some were designed

specifically to be used in the training of classifiers: the ratio between the rate-distortion

costs of two modes (CostRatio), and the normalized difference, also between two costs

(NormCostDiff). The following equations detail how these derived features are computed:

CostRatiom1,m2 =
RDCostm1

RDCostm2

(5.1)

NormCostDiffm1,m2 =
|RDCostm1 −RDCostm2|

RDCostm2

(5.2)

∆CtxDepthCTU = CtxDepthCTU − depthcurr (5.3)

CtxDepthCTU =

∑N AvgDepth(N)

N
(5.4)

AvgDepth =

∑M DepthCU(M)

M
(5.5)

In (5.1), the Ratio between the RD costs obtained from modes m1 and m2 is com-

puted, and its normalized version is computed in (5.2). In (5.3), the average depth of

the neighboring CTUs is first computed with (5.4), using the depth of its M constituent

CUs, as in (5.5). Then, the average of these averages is computed and subtracted from the

depth of the CU being currently encoded, yielding the ∆CtxDepthCTU value. The neigh-

boring CTUs include four spatial neighbors and up to two temporal neighbors (one from

each reference list), so up to 6 neighbors are used in the calculation of ∆CtxDepthCTU .
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In addition to these, two other features (CtxDepthCU and ∆CtxDepthCU ) have similar

formulations, but they use the average depth of neighboring CUs instead of the entire

CTU.

In every analysis of this thesis, the input data were randomly sub-sampled until

the distribution of the class attribute is balanced, i.e., until the number of examples of

each class was the same. This is important to ensure the analysis is not biased towards the

decision of the majority class.

5.1.1 CU Partitioning

The CU partitioning decision has a lot potential for saving encoding time, because

the PU and TU decisions are nested inside each node of the CTU quadtree. Therefore, this

was the first and most scrutinized part of this research. Figures 5.2, 5.3, and 5.4 show the

distribution of the CU partitioning for each sequence and QP value. Each figure represents

a particular CU size, from 64x64 down to 16x16. The 8x8 CUs are not accounted for,

because that is already the smallest size supported by HEVC. The CUs that were further

partitioned in the RDO mode decision are marked as Split, and Not Split otherwise.

Figure 5.2: Occurrence of CU splits on 64×64 CUs.
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The plots of these figures lead to important conclusions about the CU partitioning.

The first one is that there is a correlation between the QP and the amount of split CUs.

Regardless of its size, the odds of a CU being split decrease significantly as QP increases.
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Figure 5.3: Occurrence of CU splits on 32×32 CUs.
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Figure 5.4: Occurrence of CU splits on 16×16 CUs.
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On average, 64.9% of the 64x64 CUs are split with a QP of 22, and this goes down to

19% when QP is set to 42. The differences are larger for 32x32 and 16x16 CUs, namely

35.9% down to 5.3% (32x32), and 14.6% down to 1.2% (16x16). This type of behavior is

related with the fact that larger CUs tend to increase the compression efficiency, because

less header information (motion vector delta, reference index, etc) is sent to the bitstream.

The second observation is that smaller CUs are much less likely to be split than

larger ones. For instance, with a QP of 32, a 64x64 CU is 2.4 times more likely to be
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split than a 32x32 CU, and 7.42 times more than a 16x16 CU. This is also expected for

the same reasons mentioned in the first observation, i.e., larger CUs are more efficient in

terms of compression.

A final consideration from Figure 5.2 is that the CU partitioning is not tightly

related to the spatial resolution of sequences, but it seems to be more affected by spe-

cific scene characteristics. This can be clearly observed when comparing the RaceHorses

and the SlideShow results. The former sequence contains high movement and complex

textures in the background. whereas the latter is mostly still, with many homogeneous

regions. Therefore, features that are related with these parameters, e.g., motion vectors,

are possibly efficient for CU partitioning prediction.

The following paragraphs will discuss the importance of the extracted features to

the CU partitioning decision problem, using different metrics: (1) Information Gain Ratio

(IGR); (2) F-Score; and (3) Mean Random Forest (MRF) score. The motivation to use

IGR is that this metric is used in the C4.5 decision tree building algorithm (QUINLAN,

1986). It is a very efficient metric with improved efficiency compared to the Information

Gain (IG) used in the seminal ID3 implementation (QUINLAN, 1986). The F-Score will

also be measured, because it is reportedly efficient with SVMs classifiers (CHEN; LIN,

2006). The F-score measures the separation of two sets of real numbers. Given a set of

training vectors xk, k = 1, ...,m, and the number of positive (P ) and negative (N ) values,

the F-score of feature i is calculated as follows:

Fscore(i) =
(x̄Pi − x̄i)2 + (x̄Ni − x̄i)2

1
P−1

P∑
k=1

(xPk,i − x̄Pi )2 + 1
N−1

N∑
k=1

(xNk,i − x̄Ni )2

(5.6)

In (5.6), x̄i, x̄Pi , x̄Ni are respectively the average of the ith feature of the whole,

positive, and negative data sets, xPk,i is the value of feature i in the kth positive instance,

and xNk,i is the value of feature i in the kth negative instance.

Finally, Random Forests have recently been used to measure the efficiency of a set

of features, providing the best selection for the final model (VAN et al., 2015). A nice

advantage of the MRF score is that it actually build Random Forests using a random subset

of the input features at each iteration, so it is capable of detecting the inter-dependencies

among them, whereas the other metrics consider each feature separately.

We will start with a detailed IGR analysis in order to answer important questions

regarding the quality of our data and to find out how we can handle all this information to

maximize the efficiency of the trained classifiers. Ideally, all the information can used to

build a single model for all CU sizes and QP values, but that is not necessarily the case,
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because some features might be more useful in a particular case.

The chart in Figure 5.5 shows the top ten features in terms of IGR, using three

different approaches: using the samples from all QP values and CU sizes in a single

model (Figure 5.5(a)); separating the samples by the QP used to encode the sequences,

adding up to five training sets, one for each QP (Figure 5.5(b)); and grouping the samples

by CU size, producing three separate models (Figure 5.5(c)).

In Figure 5.5(a), it is possible to see that the most important features for the CU

partitioning are related to the rate-distortion values (like BitsBest and NormDiffBest,MSM )

and the partitioning of neighboring CUs (such as ∆CtxDepthCU ). On the other hand, the

least relevant features (which were not included in the chart for visual purposes) are the

ones obtained from ME, like motion vector magnitudes. This indicates that the motion

complexity is not particularly related with the partitioning complexity.

A second important conclusion is that the compound features created with the spe-

cific purpose of increasing the quality of our data set (NormDiffBest,MSM ), CtxDepthCU

etc) fulfilled their purpose, showing that spending some effort designing new features can

be rewarding.

Comparing the three plots of Figure 5.5, we observed that the most relevant fea-

tures are almost the same regardless of how data is separated, but their scores vary. Sepa-

rating the data by the QP or CU size increases the IGR of the extracted features, indicating

that better classifiers will be trained if we group our input data accordingly. Particularly

in Figure 5.5(b), it is clear that the information becomes more relevant as we increase the

QP, which indicates that the task of predicting the best CU partitioning becomes easier

with larger QPs. The CU-wise scores in Figure 5.5(c) present and analogous behavior,

where the larger CUs features tend to achieve higher scores compared to smaller ones.

On average, the CU-wise and QP-wise results presented very similar results: the

best feature achieved an average IGR score of 0.444 on both cases, whereas the 10th best

feature achieved scores of 0.266 (CU-wise) and 0.271 (QP wise). The average difference

between the scores of these two groups of results is -0.003, showing that both approaches

are likely to perform similarly when training the classifiers.

In this work, we opted for a CU-wise separation of the training data for a simple

reason: if we adopted a QP-wise separation, the training data would have to be produced

for several values between the valid range (0 to 51). On the other hand, the CU sizes are

standardized and will remain in the 64x64-8x8 range regardless of the encoding config-

uration. Therefore, the analyses presented from this point on will not consider the other
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Figure 5.5: Information gain Ratio of the input features considering three types of data
separation: using all samples (a); separating by QP size (b); and separating by CU size
(c).
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(c) CU-wise separation
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approaches.

Figures 5.6 and 5.7 respectively show the F-Score and the NRF score of the ten

best features using each metric.
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Figure 5.6: F-Score of the top ten features using this criterion for CU sizes 64×64, 32×32,
and 16×16.
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Figure 5.7: NRF score and standard deviation of the top ten features using this criterion
for CU sizes 64×64, 32×32, and 16×16.
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Note that the F-Score seems to favor discrete features compared to the IGR score.

For instance, the BitsBest was the best feature in both IGR and NRF rankings, but it is not

even among the ten best scores with this metric. In fact, relevant features in terms of IGR

and NRF like NormDiffBest,MSM and RatioBest,MSM are among the least relevant ones in

the F-Score results.

The NRF results are similar to the ones obtained in the IGR analysis. This is

expected, as Random Forests are actually a group of Decision Trees with some degree of

randomness in the feature selection step of the training algorithm. As these results did

not provide new insights in this analysis, the NRF scores will be omitted in the following

sections of this chapter.
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5.1.2 PU Partitioning

Since there are up to seven possible PU partitionings for each CU, predicting the

exact one is very hard, so it might be interesting to relax this problem. In our initial anal-

yses, we realized that most PUs are encoded as 2Nx2N, most likely because these parts

require less overhead with header information. Therefore, our first analysis presented in

Figures 5.8, 5.9, 5.10, and 5.11 shows the statistics of a PU being encoded as any part

different from 2Nx2N for CU sizes of 64x64, 32x32, 16x16, and 8x8 respectively.

Figure 5.8: Occurrence of non-2N×2N PUs on 64×64 CUs.
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The charts show that 2Nx2N are clearly predominant. Note that scene complex-

ity also takes a crucial part in the PU partition decision: RaceHorses is once again the

sequence with the highest occurrence of non-2Nx2N PUs, achieving a peak occurrence

of 85% on 64x64 CUs with a QP of 22. In contrast, the SlideShow results presented a

highest occurrence of 5.4% in the same circumstances. The effects of QP and CU size are

also noticeable: for 64x64 CUs, the average occurrence of non-2Nx2N PUs ranges from

57% down to 22% as the QP is increased from 22 up to 42; and when QP is set to 32,

the occurrence goes from 43% on 64x64 CUs down to 3% on 8x8 CUs. Therefore, our

labels for PU partitioning were defined as True, when the best PU of a CU is encoded as

2Nx2N, and False otherwise.

The IGR and F-Score of the top ten features for the PU partitioning decision are

presented in Figures 5.12 and 5.13 respectively.
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Figure 5.9: Occurrence of non-2N×2N PUs on 32×32 CUs.
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Figure 5.10: Occurrence of non-2N×2N PUs on 16×16 CUs.
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In Figure 5.12, the features with highest information for this problem are very sim-

ilar to the ones obtained in the CU partitioning analysis. The main difference is that we

only have 2Nx2N and SKIP/Merge results in this case, so features like NormDiffBest,MSM

are replaced by NormDiff2Nx2N,MSM . It is also important to highlight that the PU parti-

tioning seems to be easier to predict on 8x8 CUs, as the features in this case achieved a

higher overall score. This probably comes from the fact the 8x8 CUs cannot be encoded

as AMP partitions in the HM software, reducing the input variability.
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Figure 5.11: Occurrence of non-2N×2N PUs on 8×8 CUs.
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Figure 5.12: IGR score of the top ten features for the PU partitioning problem (CU sizes
64×64, 32×32, 16×16, and 8×8).
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Figure 5.13: F-score of the top ten features for the PU partitioning problem (CU sizes
64×64, 32×32, 16×16, and 8×8).
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As expected, the F-scores depicted in Figure 5.12 favored discrete attributes, re-

sulting in a very different set. Note also that the SplitFlagCtx attribute is useless on 8x8

CUs, as it has a constant value of 0 for this case (see the formula in Annex B to understand

this). However, this feature is useful for other CU sizes, so it is still relevant.

5.1.3 RQT Partitioning

In the HEVC Model implementation, the RQT partitioning decision is performed

for each PU. The root of the RQT corresponds to the largest TU, which is the same size

as the current CU (except for 64x64 CUs, in which case the largest TU size is 32x32). In

most cases, the best RQT partitioning is at the root of the RQT, because larger transforms

tend to increase the compression efficiency of the input residual blocks. With that in

mind, we decided to label the RQT samples as: True when the best partitioning is below

the RQT root, and False, when it is at the root node (no partitioning). The charts presented

in Figures 5.14 to 5.17 depict the occurrence of RQT splits for all tested sequences and

QP values.

Figure 5.14: Occurrence of RQT splits on 64×64 CUs.
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The behavior observed in these charts is similar to that of the CU and PU parti-

tionings. A special remark is that the QP has a greater impact in this case: on 64x64 CUs,

the highest average occurrence of RQT splits is 61.4% when QP is set to 22, and this is

reduced to 15.4% with a QP of 42, yielding a reduction factor of 3.9×. In the case of
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Figure 5.15: Occurrence of RQT splits on 32×32 CUs.
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Figure 5.16: Occurrence of RQT splits on 16×16 CUs.
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8x8 CUs this disparity is much higher though: 8.6% at QP=22 and 0.2% at QP=42, thus

a reduction factor of 43×.

Once again we show the IGR and F-score the features in Figures 5.18 and 5.19,

this time for the RQT partitioning.

Here we can observe high correlation between the CBF flag and RQT partition-

ing, specially in F-score results. The reasoning of this lies on the semantics of the CBF

flag, which is False when the residue block has no significant coefficients, meaning the
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Figure 5.17: Occurrence of RQT splits on 8×8 CUs.
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Figure 5.18: IGR score of the top ten features for the RQT partitioning problem (CU sizes
64×64, 32×32, 16×16, and 8×8).
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Figure 5.19: F-score of the top ten features for the RQT partitioning problem (CU sizes
64×64, 32×32, 16×16, and 8×8).

CBF

Pre
dMODE

Skip Fla
g

RQTDep
th

CtxD
epth CTU

CtxD
epth CU

Cost
Ratio

BEST, 2
Nx2N

Norm
Cost

Diff BEST, 2
Nx2N

SplitF
lag

CTX

SideIn
fo BITS

0.0

2.5

5.0

7.5

10.0

12.5

F-
sc

or
e

64x64
32x32
16x16

8x8
Average



91

transforms will either be as large as possible or even skipped, if such mode is enabled.

5.1.4 Reference Frame Index

In order to decrease the IME complexity, the first solution that comes to mind is

to skip the search algorithm altogether with the assistance of a motion vector predictor.

Since the range of motion vectors depends on an input parameter (namely the search

range), it would not be possible to define a classification model for this task. Therefore,

to predict the motion vector using ML, one would have to rely on regression models. A

second approach was adopted in (CORRÊA et al., 2017), in which the authors skip some

steps of the TZ Search algorithm to reduce the IME time. In this work, we decided to

follow a different approach: reducing the number of reference frames that are searched in

this process. In the default configuration of the HM software, up to four reference frames

are searched, so 75% of the IME time is saved if one can predict which reference frame

is the most suited one and disregard the others. However, the number of reference frames

is also arbitrary, so we further relaxed this problem into two groups: when the reference

frame is the first one in the list of references (thus with a reference index of zero), and

when it is any of the other references, with an index higher than zero. This approach is

interesting, because it works with any number of references. Figures 5.20 to 5.23 depicts

the occurrences of the latter for each CU size.

Figure 5.20: Occurrence of non-zero reference frame indices on 64×64 CUs.
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Figure 5.21: Occurrence of non-zero reference frame indices on 32×32 CUs.
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Figure 5.22: Occurrence of non-zero reference frame indices on 16×16 CUs.
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It is clear that the on most cases, the best reference index is the first one of each list.

The main explanation for this is that the first frame in the search is the closest temporal

neighbor of the current frame, so it is expected that it is more correlated in general. It is

important to note that the effects of QP and CU size are much less apparent here. When

QP is increased, there is a small reduction of non-zero reference frame indices, but some

sequences (i.e., SlideShow and BlowingBubbles) are not affected at all. In addition, CU

size is almost irrelevant in this case, although a slight increase of non-zero reference
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Figure 5.23: Occurrence of non-zero reference frame indices on 8×8 CUs.
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indices can be observed on smaller CUs.

The IGR and F-score of the features for the Reference Frame Index problem are

presented in Figures 5.24 and 5.25.

Figure 5.24: IGR score of the top ten features for the ME early termination problem (CU
sizes 64×64, 32×32, 16×16, and 8×8).
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The scores obtained with our features are considerably lower for this problem.

The IGR analysis shows us that only a few of the attributes are notably relevant. The

reference index from the 2Nx2N PU and the inter-prediction direction were the only ones

to achieve an IGR score higher than 0.1. Low scores are also observed in the F-score

analysis, although the discrepancy seems to be smaller. Despite their lower importance,

we can see that attributes related to the distortion computation (SAD, SSE) are more

relevant for this problem, which is intuitive. This indicates that better features should
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Figure 5.25: F-score of the top ten features for the ME early termination problem (CU
sizes 64×64, 32×32, 16×16, and 8×8).
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be introduced to increase the relevance of our data, most probably ones related with the

distortion computation.

5.1.5 Fractional Motion Vector

The last analysis of this section aims at evaluating how often the FME is effectively

used in the encoding process. To accomplish, the fractional part of the motion vectors

was extracted, and the samples were categorized into two groups: when the fractional

part is equal to zero (thus FME was not useful), and when it was higher than zero. The

occurrence of non-zero fractional MVs is illustrated in Figures 5.26 to 5.29.

Figure 5.26: Occurrence of motion vectors with fractional offsets on 64×64 CUs.
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Figure 5.27: Occurrence of motion vectors with fractional offsets on 32×32 CUs.
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Figure 5.28: Occurrence of motion vectors with fractional offsets on 16×16 CUs.
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Note that the FME statistics are similar to the ones observed in Reference Index

results. QP and CU size do not play a significant role, and scene complexity seems to

be the real motive behind the occurrences. Furthermore, most the vectors in our data set

contained a fractional part, showing that the time savings potential is inferior compared

to the other resources considered in this study.

Finally, consider the charts in Figures 5.30 and 5.31 depicting the top ten features

in terms of IGR and F-score respectively.
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Figure 5.29: Occurrence of motion vectors with fractional offsets on 8×8 CUs.
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Figure 5.30: IGR score of the top ten features for the FME skip problem (CU sizes 64×64,
32×32, 16×16, and 8×8).
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Figure 5.31: F-score of the top ten features for the FME skip problem (CU sizes 64×64,
32×32, 16×16, and 8×8).
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While some features presented a fairly high IGR, the results are still lower than

the ones observed in the CU, PU and RQT charts. The F-score results are even more con-

trasting, indicating that at most three of the 54 features are relevant. This shows that the

expected performance of the models trained with these features is limited. Nevertheless,

this is still an important finding, showing that new features are still to be discovered to

predict the occurrence of a fractional offset during Motion Estimation.

5.2 Feature Analysis of the HEVC bitstream information for transcoding decisions

The second group of experiments performed during this thesis had the objective of

figuring out how the information obtained from a source bitstream could help predicting

the decisions of subsequent encoding tasks. The findings of this analysis will be used to

elaborate fast decision methods for transcoding-based systems.

Before describing the data collection procedure, it is important to clarify the data

preparation. As mentioned in Chapter 1, we envisioned an adaptive streaming scenario,

in which a reference, high-quality (HQ) bitstream is used to produce lower quality (LQ)

representations that meet each client’s processing and transmission budgets. The first

thing to decide was a suitable target bitrate for the HQ bitstream: it should be high enough

to ensure image quality, but also low enough to reduce storage constraints. The CTC

document defines the QP values that must be used, but it does not mention suitable target

bitrate values when encoding under ABR or CBR conditions.

Therefore, we adopted the following methodology in our ABR analysis:

1. Encode each sequence with a low QP (we used 22) and get its achieved bitrate

(BRQP22).

2. Re-encode the sequence using BRQP22 as target bitrate. This will be our high-

quality representation with BRHQ.

3. Generate low-quality versions using reduced bitrate factors of BRQP22 as target

bitrate (0.9 ∗BRHQ, 0.8 ∗BRHQ, and so on).

This time, decoding-domain variables were extracted, many of which are also

available during encoding: motion vector magnitude, PU partition, CU depth, etc. There

are two main differences between the encoding and decoding-domain variables: (i) the

former may contain temporary rate-distortion values from the RDO evaluation, whereas

the latter only contains the ones actually sent to the bitstream; (ii) the former has access
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to pre-quantized residues and other uncompressed data, as opposed to the latter. These

differences limit the scope of features that can be extracted from the decoder, but this is

not necessarily a major drawback if relevant ones can still be found.

Table 5.2 shows the bitrate used to encode the HQ bitstreams of the training se-

quences and the assigned bitrates for all the bitrate factors used in this work. The x265

(MULTICOREWARE, 2017) fast HEVC encoder was used using the "placebo" preset in

every encoding. The number of frames was fixed to 150.

Table 5.2: Target bitrates (in kbps) used to encode the HQ bitstreams (HQBR) as well as
for every bitrate factor used in this work

Factor Traffic BsktDrive ParkSc. PartySc. BQMall BBubble RaceH.
1 (HQBR) 18377 27835 10882 12484 7206 2181 1903

0.9 16539 25051 9793 11236 6485 1963 1712
0.8 14702 22268 8705 9988 5765 1745 1522
0.7 12864 19484 7617 8739 5044 1527 1332
0.6 11026 16701 6529 7491 4324 1309 1142
0.5 9189 13918 5441 6242 3603 1091 952
0.4 7351 11134 4353 4994 2883 873 761
0.3 5513 8351 3265 3746 2162 655 571
0.2 3676 5567 2177 2497 1442 437 381
0.1 1838 2784 1089 1249 721 219 191

The flowchart in Figure 5.32 shows the data collection flow adopted for the transcod-

ing decisions.

Figure 5.32: Data collection scheme for the HEVC transcoding decisions.
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In Figure 5.32, the attributes are extracted from the HQ bitstream using a modified

FFmpeg decoder (FFMPEG, 2017) at Extraction Point 1. Then, the partitioning decisions

are obtained from the LQ representations at Extraction Point 2, also using the FFmpeg
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decoder. These will be used to design fast heuristics, and also as labels for fast decision

classifiers. Our decision to use the FFmpeg decoder instead of the one implemented in

the HEVC Model was motivated by the efficiency of this software in terms of processing

time. The FFmpeg implementation is able to decode 2560x1600 in real time, which is an

important requirement for transcoding systems that aim to generate the required on the fly

in real time.

It is important to highlight that the partitionings of the HQ and LQ versions are

different, so the amount of CUs in each case vary. Since our goal is to assign one label

(from the LQ bitstream) for each feature vector (from the HQ one), we first had to find a

way of ensuring a 1 to 1 correspondence among these data files. To accomplish this, two

approaches were used:

1. CU-grain information: in the first approach, the information was extracted for

each 8x8 CU regardless of the actual CU size. When a decoded CU is larger than

8x8, we simply repeat the data samples to represent the same area of this CU. For

instance, a CU that is decoded as a 16x16 block will produce 4 identical feature

vectors, one for each 8x8 block in the 16x16 area. Note that this brings redundancy

to our data samples, but at the same time it solves the disparity between the data

extracted from two different bitstreams.

2. CTU-grain information: the CTU data can also be extracted with a 1 to 1 corre-

spondence, as the CTU size is fixed. In contrast with the first approach, where more

samples are generated, here we condense the information of all CUs into a single

value. The reduction operations used in this thesis were average(xf ), max(xf ) and

min(xf ), where xf is the vector with the values of feature f for all the decoded CUs

in a CTU.

In this work, the CU-grain data was used in fast heuristics to reduce the transcod-

ing time in each CU, whereas the CTU data was applied to train ML classifiers for pre-

dicting upper and lower CTU quadtree bounds. The following section will discuss the

first set of experiments.

5.2.1 CU-grain Analysis

A set of 19 features was extracted from each decoded CU, which can be defined

into the following groups:
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• Encoding Decisions: this group contains the decisions that can be directly accessed

in the decoding process. To exemplify: prediction mode, PU partition, prediction

mode, CTU depth, CBF of the luminance and chrominance components etc.

• Decoding metrics: includes attributes that are calculated from the decoded data,

such as sum of coefficients before and after dequantization, sum of the predicted

block pixels etc.

• Motion cues: composed by the magnitude of the motion vector in both reference

lists.

The following results were obtained from the average of all tested bitrate factors

(from 0.1 to 0.9). Table 5.3 shows the occurrence of a CU being encoded as size SizeLQ,

provided it was encoded as size SizeHQ in the HQ bitstream. Each cell is red-shaded with

an intensity that corresponds to its value. In other words, high probabilities are strongly

red-shaded, whereas low probabilities are practically white-filled.

Table 5.3: CU size probabilities given the size in the HQ bitstream

SizeLQ/SizeHQ 64x64 32x32 16x16 8x8
64x64 95.7% 3.4% 0.6% 0.3%
32x32 42.5% 54.5% 2.7% 0.3%
16x16 21.4% 26.8% 48.0% 3.8%
8x8 11.8% 19.3% 25.5% 43.4%

This table shows that there is a high correlation between the HQ and LQ in terms

of CU partitioning. The average probability of a 64x64 CU being encoded as 64x64 on

LQ representations is above 95%, so a great amount of computations can be saved if this

information is provided beforehand. The chances of smaller CUs occur in LQ encod-

ings are very low (at most 3.7%), which indicates that the HQ partitioning information

can be used as a lower bound in the LQ CTU quadtree with small losses in compression

efficiency. Also note that the chances of a CU being encoded with a larger size is signif-

icantly high on average. In fact, the odds of a CU encoded as 8x8 in the HQ bitstream

being encoded as 8x8 in the LQ versions is smaller than the odds of it being encoded as a

larger block. However, this information alone cannot be used to define upper bound in the

CTU quadtree of LQ encodings, because the probabilities of the larger CUs are similar.

The occurrences of a PU being encoded as part PL, provided it was encoded as

part PH in the HQ bitstream are listed in Table 5.4.

Like with the CU sizes, the PU decision is also very likely to select the same

partition of the HQ reference, but the larger 2Nx2N partitions seem to be predominant
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Table 5.4: PU partition probabilities given the partition in the HQ bitstream

PL/PH 2Nx2N 2NxN Nx2N NxN 2NxnU 2NxnD nLx2N nRx2N
2Nx2N 91% 3% 3% 0% 1% 1% 1% 1%
2NxN 60% 29% 3% 0% 3% 3% 1% 1%
Nx2N 60% 3% 29% 0% 1% 1% 3% 3%
NxN 52% 3% 3% 38% 1% 1% 1% 1%

2NxnU 62% 6% 3% 0% 25% 2% 1% 1%
2NxnD 60% 7% 3% 0% 2% 26% 1% 1%
nLx2N 61% 3% 7% 0% 1% 1% 26% 2%
nRx2N 61% 3% 7% 0% 1% 1% 2% 25%

in general. The probability of a PU being encoded as 2Nx2N is above 50% in every

row of the table, reaching its peak at 91% when the HQ PU is also 2Nx2N. Rectangular

SMPs (2NxN and Nx2N) have a small chance of occuring when AMPs were encoded in

the reference bitstream, following the same orientation (horizontal of vertical). In other

words, if a PU was encoded as 2NxnU or 2NxnD, it has a chance of being encoded

as 2NxN in the lower-quality representations. We can also see that the chances of an

AMP being selected is very small unless the same happened in the HQ version. If we

accumulate the probabilities of a PU being encoded as either 2Nx2N or as the same part

from the HQ bitstream, we come up with a percentage higher than 85% for all cases.

Therefore, it is also clear that many PUs can be skipped if we know the decision from the

reference encoding.

Table 5.5 shows the occurrences of transforms of size TrLQ in each CU, given

that the same CU in HQ bitstream used transforms of size TrHQ. As we know, more

than one TU can be present in a single CU, so this size actually represents the minimum

transform size, which can also be interpreted as the maximum RQT depth. The Skip value

represents the cases in which transforms were not applied due to the lack of significant

residues (generally when the residue block is made of zeroes).

Table 5.5: Minimum transform size probabilities given the minimum sizes in the HQ
bitstream

TrLQ/TrHQ Skip 4x4 8x8 16x16 32x32
Skip 98.4% 0.3% 0.3% 0.3% 0.7%
4x4 45.0% 35.0% 9.5% 6.8% 3.7%
8x8 28.8% 7.2% 36.7% 11.3% 16.0%

16x16 40.7% 2.1% 4.3% 37.1% 15.8%
32x32 37.6% 0.2% 1.2% 2.3% 58.8%

The size of the transforms used in the LQ encodings are also highly correlated with
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the ones from the HQ version. Specially when a transform is skipped in the HQ stream,

the chances of it being skipped in the LQ versions is above 98%. We also observe a similar

trend observed in the CU and PU analysis, where larger blocks and transform skips are

more likely to occur as bitrate is reduced. This is expected, because the rate control

algorithms use the QP to guide the bitrate towards its target, increasing this parameter

when the target bitrate gets smaller. As we know, higher QPs reduce the significance of

the residue samples, which ultimately favors the use of large transforms. Note however

that there is a small chance of smaller transform blocks occur on LQ representations,

which was not observed in the previous analyses. This means that if we limit the RQT

depth based on the transform size of the HQ bitstream, there is a higher chance of making

wrong decisions. However, this does not necessarily mean that compression efficiency

will be penalized, as will be discussed in Chapter 6.

Table 5.6 shows the prediction mode probabilities, where each value corresponds

to the probability of a CU being predicted as ModeLQ given that it was predicted as

ModeHQ in the reference stream, where Inter represents the inter-prediction mode with

motion vectors and reference indices, SKIP stands for either SKIP or Merge mode, in

which the motion parameters are inherited from neighboring PUs.

Table 5.6: Prediction mode probabilities given the minimum sizes in the HQ bitstream

ModeLQ/ModeHQ Inter Intra Skip
Inter 59.7% 1.3% 39.0%
Intra 25.4% 68.0% 6.6%
Skip 11.3% 0.1% 88.7%

When CUs are encoded with inter prediction in the HQ bitstream, there is high

possibility that they will be encoded as SKIP mode in the lower representations. When

the HQ mode is SKIP, this probability increases significantly, but the chances of inter-

prediction are not negligible, so it might be interesting not to discard the inter-prediction.

Finally, we can conclude that if the HQ mode is inter os SKIP, there is very low prob-

ability of it being intra-coded in the LQ encodings, so at least this mode can be safely

disregarded.

The last analysis of this section studies how motion vectors from the HQ reference

can be used to guide the Motion Estimation search on subsequent LQ representations. The

first idea that comes to mind in this case is that the motion vectors are likely to be the same

and can be directly mapped from the HQ to skip the ME entirely. To test this hypothesis,

we extracted both horizontal and vertical coordinates of the motion vectors from each pair
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and computed the deltas between them (∆MV (x) and ∆MV (y)). The chart in Figure

5.33 shows the occurrences for some values of delta. Note that a (0,0) delta means LQ

Motion Estimation produced the same MV of the HQ encoding.

Figure 5.33: Average distribution of motion vector deltas between the HQ bitstream and
the LQ representations.
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We can see with this chart that usually the motion vector produced in the ME of

lower bit rates is very similar to the ones produced in the HQ encodings. This informa-

tion can be used either to skip the ME process or to guide the search of the subsequent

encodings, accelerating the convergence of the search algorithm. Note also that either the

MV delta is very near the (0,0) region or very far (more than four pixels). The chart is

pretty much flat on 0% for deltas equal to ±4, ±3, and ±2.

5.2.2 CTU-grain Analysis

As stated in the previous section, limiting the CTU quadtree with upper and lower

bounds with direct mapping or statistical-based rules is a promising solution to reduce

transcoding complexity. However, a literary study on this topic showed that Machine

Learning can also be used to implement efficient classifiers for this task. Most of them
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work on a CU-grain decision, meaning that one classifier is built for each CU size (like it

is done with the fast encoding decisions in this thesis). However, we decided that it might

be interesting to try a different approach with CTU-level decisions. Our motivation came

from the results presented in Figure 5.34, showing the minimum and maximum CU size

of CTUs for different bitrate factors (a bitrate factor of 0.9 means that the target bitrate

used was 0.9 ∗ HQBR, and a bitrate factor of 1 represents the reference encoding with

HQBR as target).

Figure 5.34: Maximum (a) and minimum (b) CU size on CTUs at different bitrate factors.
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(b) Minimum CU size
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As expected, reducing the target bitrate has a significant impact in the CTU par-

titioning. In the maximum CU size chart, it is possible to see that the 64x64 and 32x32

CUs are clearly used the most, the latter being the most common of the two. While the

64x64 occurrence starts at 24% in the reference bitstream, increasing to almost 50% at

the lowest bitrate, the 32x32 occurrence has an almost constant behavior between 44%

and 47%. If we combine the 32x32 and 16x16 results, the probability of making a correct

guess with these values ranges from 50% (lowest bitrate) to almost 76% (highest bitrate).

This means that in many cases it is possible to skip the 64x64 evaluation, specially at

higher bitrates. The 8x8 CUs are very rarely the maximum size, occurring at most 0.34%

in the HQ encodings. This is also expected, because a maximum size of 8x8 means that

the entire CTU was encoded as 8x8 CUs, which is very unlikely given the advantages of

encoding larger blocks.

In Figure 5.34(b), it is clear that the minimum CU size is predominantly 8x8 at

higher bitrates, starting at almost 54% in the reference stream, but this value constantly

diminishes for lower bitrates, reaching a minimum of 20% with a 0.1 bitrate factor. There-

fore, the 8x8 CUs can be skipped 80% of the times without compromising the compres-
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sion efficiency in the lowest bitrate. Surprisingly, the intermediate 32x32 and 16x16 are

not usually the minimum CU size. In fact, if we combine the 32x32 and 16x16 occur-

rences, the result is always inferior to those of 64x64 CUs regardless of the bitrate factor.

This is actually a positive conclusion, because it means that in many cases it is possible

to completely skip the CTU quadtree evaluation, and this is accentuated at lower bitrates.

Therefore, if we are able to train two classifiers that can predict the upper (maxi-

mum size) and lower (minimum size) bounds of the CTU quadtree, we will be able to take

advantage of two scenarios: when encoding for high bitrates, where more partitionings

are expected, the upper bounds will assist in skipping large CUs; in the case of low target

bitrates, in which larger blocks are more common, the lower bounds will be responsible

for skipping the evaluation of smaller CUs.

The features extracted for each CU in the previous section were reduced to a single

value for the entire CTU, using the average, minimum, and maximum operations. Two

different types of labels were considered in this analysis as well: the minimum and the

maximum CU size. This will require the use of two data sets to train the classifiers, so the

following analyses will be presented for each separate data set, one with the minimum and

one with maximum CU size as label. The reasoning here is that these values can be used

as the lower and upper bounds for the CTU quadtree evaluation, reducing the encoding

time.

Note that, differently from the encoding models, each label has four possible val-

ues, which correspond to the supported CU sizes. However, the analysis of Figure 5.34(a)

proved that there is no sense in considering 8x8 as a possible maximum CU size. There-

fore, for this particular case, our labels were reduced to three: 64x64, 32x32, 16x16.

Figure 5.35 shows the IGR of the top ten features for the maximum and minimum

CU size prediction problem. Since only Random Forests were used to train the transcod-

ing classifiers in this work. The F-score analysis will be omitted.

The charts show that the features related with the CU depth of the HQ bitstream are

the most relevant ones to predict the upper (CUSizeMAX) and lower (CUSizeMIN ) bounds

of the LQ encodings. In Figure 5.35(a), we can also observe that the metrics related with

the sum of coefficients are also relevant. This is probably related to the fact the blocks with

low coefficients are more likely to be encoded with larger CUs. Different features appear

in Figure 5.35(b). For this case, the coefficients are less important and are replaced by

information regarding the decisions made in the HQ encoding. The SkipFlagMIN feature

is equal to zero, when at least one CU in the CTU was encoded with the intra or inter
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Figure 5.35: Information Gain Ratio of the CTU-grain transcoding features for prediction
the maximum (a) and minimum (b) CU size in each CTU.
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modes, or one, when all CUs are encoded as Skip. This features was identified as relevant

because, when all CUs are encoded as Skip in the HQ version, there is a very high chance

of it being encoded as a single 64x64 block in lower bitrates.

Figure 5.36 shows the probability distribution of the classes in function of average

CU size. In Figure 5.36(a) it is possible to observe that when the average CU size in HQ

BS is near 64x64, there is a high possibility of found Max. CU sizes of LQ BS with size

64x64 as well. When looking to the other classes, if the average is between 16x16 and

32x32, the frequency of CU sizes with 32x32 blocks is higher, and when the average CU

size is between 8x8 and 16x16, the Max. CU size of LQ BS are in the biggest part of the

cases, 8x8. So visually, a high predictive power of this feature is observed. On the other

hand, in Figure 5.36(b) it is observed that when average CU size of HQ blocks are near

64x64, the Min. CU sizes of the LQ BS, will be predominantly 64x64. However, when

looking for the other 3 classes, a overlap is observed, whereby the predictive power of
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Figure 5.36: Probability density functions of all classes in function of the most important
feature
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that feature is not very explicit visually.

5.3 Final Remarks

The encoding analysis showed that the information extracted from this process

can be of great assistance in predicting the outcome of the partitioning decisions. It was

shown that, if we group our data by the related CU size, our information gain is optimized,

achieving higher scores than other alternatives. This guided the decisions of the fast

encoding methods discussed in the next Chapter. It was also concluded that the Motion

Estimation analysis presented worse results in terms of information gain ratio, and this

might be related to how we modeled the fast ME methods during this study, or even to the

quality of the extracted features for these particular processes.

In the transcoding analysis, we observed that the partitioning decisions are highly

correlated across encodings under different target bitrates. This supports the framework

that will be presented in the next Chapter, in which a reference (HQ) bitstream is used to

guide the decisions of dependent (LQ) encodings while eliminating those which probably

will not be efficient. The ME analysis revealed that usually the MV from the HQ is very

similar to the MV produced in the LQ encodings, showing that this vector can be used to

either skip the entire IME or at least reduce its search range. As will be discussed in next

Chapter, the latter approach was adopted, because there is a non-negligible chance of a

better MV being in the vicinity.
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6 LEARNING-BASED MODE DECISION FOR HEVC ENCODING

The analyses discussed in Chapter 5 was key to enable a good understanding of

how the encoding and the bitstream information can be used to predict the decisions of

HEVC encoders. From this analysis, and with the help of Machine Learning techniques,

fast decision models were trained to reduce the encoding and transcoding (more specif-

ically transrating) complexity using early termination (ET) methods. In addition, fast

heuristics based on decoding information were also designed for transcoding complexity

reduction. An overview of the contributions of this chapter and the sections where they

are presented is shown in Figure 6.1.

Figure 6.1: Overview of the contributions presented in this thesis for encoding applica-
tions.

Learning-based HEVC Encoding

Output

Bitstream

Input

Sequence

SVM-based CU ET

Section 6.1

DT-based CU ET

( Section 6.2)

DT-based PU ET

(Section 6.3.1)

DT-based RQT ET

(Section 6.3.2 )( )

DT-based ME ET

(Section 6.3.3)

DT-based FME ET

(Section 6.3.4 )

The following sections will elaborate each encoder-based approach developed in

this thesis, starting with its first milestone, which consisted of a fast CU partitioning deci-

sion using SVMs. Then, we will show how we extended this analysis for other encoding

decisions with the use of Decision Trees. The motives to migrate from SVMs to Decision

Trees are also explained. Finally, the transcoding solutions will be presented in Chap-

ter 7, showing that Machine Learning and statistical-based heuristics can be combined to

provide excellent time savings with minor losses in compression.

Table 6.1 lists the sequences used to train our models, as well as those used to

extract the compression and time savings results of the encoding fast decisions, where Tr

and Te represent the sequences in the training and testing phases respectively.

The sequences were encoded following the common test conditions (BOSSEN,

2012), with Random Access reference structure and QP values of 22, 27, 32, 37 and 42.

The first 150 frames of each sequence were used instead of the entire sequence to re-

duce the volume of information, but this frame count guarantees that at least two seconds

of each sequence are accounted for. In addition, Intra frames were removed from our
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Table 6.1: Video sequences used for training and testing in the encoding fast decision
methods

class sequence resolution fps frame count assignment
Traffic 2560x1600 30 150 Tr

A
NebutaFestival 2560x1600 60 300 Tr

BasketballDrive 1920x1080 50 500 Tr
B

ParkScene 1920x1080 24 240 Tr

BQMall 832x480 60 600 Tr
C

PartyScene 832x480 50 500 Tr

BlowingBubbles 416x240 50 500 Tr
D

RaceHorses 416x240 30 300 Tr

PeopleOnStreet 2560x1600 30 150 Te
A

SteamLocomotiveTrain 2560x1600 60 300 Te

BQTerrace 1920x1080 50 500 Te
Cactus 1920x1080 50 500 TeB

Kimono 1920x1080 24 240 Te

RaceHorsesC 832x480 30 300 Te
C

BasketballDrill 832x480 50 500 Te

BasketballPass 416x240 50 500 Te
D

BQSquare 416x240 60 600 Te

Johnny 1280x720 60 600 Te
E

Kristen&Sara 1280x720 60 600 Te

ChinaSpeed 1024x768 30 500 Te
F

SlideEditing 1280x720 30 300 Te

sampling because they do not contain motion information, which is part of our encoding

feature set.

6.1 Fast HEVC CU partitioning Decision with Support Vector Machines

Figure 6.2 depicts the framework designed in this work to implement the SVM-

based Mode Decision in HEVC encoders.

In Figure 6.2, coding features are computed during HEVC encoding along with

information about the CU partitioning. The scaling step is required to train the SVM clas-

sifiers, as they do not perform well when features have different value ranges. Afterwards,

features are analyzed based on their F-Score, and the less useful features are ignored in the

next steps. The selected feature samples are used as input to the SVM training procedure.
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Figure 6.2: Framework used in this work for training CU partitioning decision SVM
classifiers.
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In this work we used the LibSVM implementation to train our classifiers (CHANG; LIN,

2011). The final step consists in assessing the coding efficiency of the trained classifiers

using a modified encoder, which incorporates the SVM functions to decide if further CU

splitting is necessary.

As stated in Chapter 3, SVMs are difficult to train due to their multi-parameter

optimization. To keep the computation requirements at manageable levels, we used at

most 10 thousand random samples, decreasing the training time significantly. For testing,

50 thousand feature vectors were used. The training set was equally distributed, i.e., it

contains the same number of examples for split and unsplit CUs, because SVMs are less

efficient with unbalanced data.

6.1.1 SVM Algorithm Analysis

In this work, one classifier for each CU size (64×64, 32×32 and 16×16) was

trained. The 8×8 CUs do not require a partitioning decision classifier, as they are already

the smallest size supported by HEVC. The setup used for SVM training is described

in Table 6.2. The training and test sets are from Table 6.1. Aside from the standard QPs

defined in the CTC document, an extra QP of 42 was used to increase the input variability.

Note that each classifier was trained with samples from every resolution and QP value

defined in this setup in order to increase the generalization of our method. The limits for

testing the C and G parameters were assigned as an extended range, using as reference the

default values used in the Grid Search implementation available in the LibSVM toolset
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(CHANG; LIN, 2011).

Table 6.2: Setup used for SVM training.
LibSVM version 3.22

Encoder (E) HEVC Model 16.8
QPs 22, 27, 32, 27 and 42

Reference Structure Random Access
Kernel Radial Basis Function (RBF)

Slack Parameter (C) From 2−8 to 28

Gamma (G) From 2−8 to 28

Training size (K) From 100 to 2500
Features (F) From 1 to 28

We first compared SVM and Decision Tree classifiers in order to assess whether

SVMs are better suited for solving the partitioning problem under analysis. Figure 6.3

depicts the decision margin for CU splitting decision using an SVM with the Gaussian

(RBF) kernel (a) and a Decision Tree (b). For visual purposes, this is a simplified in-

stance of our analysis, using only two features with high F-score and a reduced sample

count (2000 samples). It is possible to observe that the SVM classifier provided a 1.6%

better accuracy, and its decision surface is simpler than the one using a Decision Tree. In

Machine Learning, simpler decision margins are preferred over complex ones, because it

reduces the chance of overfitting.

The LibSVM implementation supports different kernel functions, but the Gaussian

Radial Basis Function (RBF) kernel performs well on most cases. In this study, we exper-

imented the linear kernel as well, but training was considerably slower, and the accuracy

was very similar to that of RBF (usually within a 3% error margin).

Figure 6.3: Decision margin for the 64x64 CU partition decision using (a) SVM with an
RBF kernel and (b) Decision Tree classifiers (simplified instance).

(a) SVM margin (b) Decision Tree margin
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Examining the plots in Figure 6.3, along with results from previous analyses using

SVMs, the following observations were made:

Observation 1: the SVM decision boundary is capable of grouping most instances

correctly, but there are still many misclassifications. Increasing the number of features is

a typical solution to improve accuracy, but it can also lead to overfitting when many

irrelevant features are used.

Observation 2: experiments with SVM classifiers also showed that the number of

support vectors is related to the number of input samples. Since all the support vectors are

used to compute the decision function, the decision complexity can become a hindrance

and lead to negligible time savings. In other words, it is pointless to use SVM decision

to skip some CU computations if it takes more time than evaluating every CU partition.

Therefore, our training procedure also aimed at minimizing the number of training sam-

ples.

Observation 3: in the framework of CU partitioning prediction, there are two

types of misclassifications: (1) when a CU is not split and the classifier decides to split

it further; and (2) when a CU must be split and the classifier decides otherwise. The

former is a misclassification that incurs in more computations, because smaller CUs will

be evaluated and the encoder will still choose to use a larger partition, but rate-distortion

remains the same because the correct partition is still considered in the process. The

second type, however, introduces rate-distortion penalties, because the correct partitioning

will not be considered.

From the observations stated in the previous section, we designed a procedure to

train SVMs considering not only the decision accuracy, but also the impact of classifiers

on rate-distortion efficiency. This method is described by Algorithm 2. SVM training

consists of optimizing the C parameter along with the kernel hyper-parameters. The

RBF kernel has a single gamma (G) parameter to optimize. Note that we repeated this

procedure for each CU size: 64×64, 32×32 and 16×16.

The algorithm starts with an empty set (~h) that will contain the temporary classi-

fiers. Note that a scaling step is applied on the input samples (line 3) prior to their use

in the training. Following the algorithm, on lines 4 to 13 we have the outer loop, which

corresponds to a grid search over the number of samples (k) and features (f ). The k

examples are randomly sub-sampled from the original training set. On line 7, a filtering

of samples is applied, in which only the top f features are kept using the F-Score metric

as ranker. Then we perform a nested grid search (line 8), which optimizes the C and G
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Algorithm 2 SVM training procedure to optimize the C, G, K and F variables
Input: examples: set with N training samples

E: HEVC encoder with SVM-based CU decision
~K, ~F , ~C, ~G: vectors with the number of samples, features, slack parameters, and
RBF gammas respectively

1: ~h← ∅ . vector of SVM classifiers
2: ~models← ∅
3: datascaled← scale(examples, range = [0,1])
4: for each k ∈ K do
5: datacrop← randomSample(datascaled, k)
6: for each f ∈ F do
7: datafiltered← filter(datacrop, f )
8: ~h[k, f ]← gridSearch(datafiltered, ~C,~G)
9: accuracy← SVMPredict(~h[k, f ], datascaled)

10: BDTSRatio← runEncoder(E, ~h[k, f ])
11: ~models[k, f ]← [~h[k, f ], BDTSRatio]
12: end for
13: end for

14: bestModel←MAX( ~models, key = BDTSRatio)

parameters on the filtered samples.

The best model selected after all these computations is the one with the best trade-

off between rate-distortion and complexity, which is represented by the BDTSRatio value,

defined in Equation 2.3.

Since we need to maximize savings and minimize compression penalty, smaller

BDTSRatio values are better. To reduce training time, we computed this ratio using rate-

distortion results from encoding a single sequence with low resolution (BasketballPass).

The necessity of employing BDTSRatio in the training process was confirmed after

several tests, because some classifiers with equivalent accuracy presented different rate-

distortion results when used for HEVC mode decision, as explained in Observation 3.

The works that use SVMs with RBF kernels commonly perform a grid search to

find the best C and G values. This is necessary because there is no direct relationship

between C, G and training accuracy, so it is very difficult to design heuristic methods to

speedup this process. In our analysis, we observed that a second grid search to optimize

the number of samples (k) and features (f ) was also required in order to obtain good

performance with a subset of the train data.

The final classifiers for each CU size (trained with the setup described in Table

6.2) and their respective values for C, G, k and f are listed in Table 6.3.
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Table 6.3: Characteristics of the SVM classifiers obtained using Algorithm 2

CU size 64x64 32x32 16x16
Slack Param. (C) 25 27 27

RBF Gamma (G) 23 2−3 2−7

Number of samples (K) 900 700 1000

Number of features (F) 9 21 18

BDTSRatio* 0.29 -0.086 -0.026

Train Accuracy 90% 81% 75.6%

* Using the BasketballPass sequence only

Note that prediction is a harder problem on smaller CU blocks. For 32x32 and

16x16 classifiers, more features had to be used in order to achieve better results. Also note

that the number of training samples was very similar on every CU classifier, indicating

that using more features is more important than larger training sizes. The fact that no

more than one thousand samples was required to build our classifiers is very significant,

as it means that no more than one thousand support vectors will be used in the decision

function.

To ascertain the efficiency and robustness of our classifiers, we compared the

SVM-based HEVC encoder with the reference implementation under Variable Bitrate

(VBR) and Constant Bitrate (CBR) conditions. These results are displayed in Tables 6.4

and 6.5. For the CBR tests, the initial QP was set to zero (default value in the HM con-

figuration), and the average bitrates achieved with each QP value in the VBR tests were

used as target bitrate. In addition, our VBR analysis was performed using Random Ac-

cess (RA), Low Delay B (LB) and Low Delay P (LP) coding configurations. The Time

savings (TS) between the reference HM encoder (Ref) and our proposed encoder (Test)

were computed using the following equation:

TS =
TRef − TTest

TRef

(6.1)

As shown in Tables 6.4 and 6.5, the proposed encoder is capable of significantly

reducing the encoder complexity with acceptable losses in BD-BR. The best results were

achieved under VBR conditions, especially with the RA configuration. For the LB and

LP configurations, a slight increase in BD-BR loss is noticed with less time savings com-

pared with the RA results. However, time savings around 40% with BD-BR increases of

0.62% (LB) and 0.6% BD-BR (LP) are still good compromises between rate-distortion

and complexity. Under CBR conditions, the highest BDTSRatio increase was observed,
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Table 6.4: BD-BR, Time Savings and BDTSRatio relative to HM 16.8 using SVMs under
Variable Bitrate and Constant Bitrate conditions (VBR QPs = 22, 27, 32, 37 , CBR Targets
= BitrateQP22, BitrateQP27, BitrateQP32, BitrateQP37)

Random Access, VBR Low Delay B, VBR
Sequence BD-BR TS BDTSR BD-BR TS BDTSR

PeopleOnStreet 0.65% 25% 2.6 0.79% 22% 3.58

SteamLocomotive 0.17% 55% 0.31 0.18% 50% 0.36

BQTerrace 0.46% 52% 0.88 0.50% 47% 1.07

Cactus 0.62% 46% 1.35 1.23% 40% 3.08

Kimono 0.57% 44% 1.3 0.69% 40% 1.73

BasketballDrill 0.36% 39% 0.92 0.59% 36% 1.64

RaceHorsesC 0.45% 22% 2.05 0.5% 18% 2.74

BasketballPass 0.65% 46% 1.41 0.92% 43% 2.14

BQSquare 0.39% 47% 0.83 0.16% 35% 0.47

Johnny 0.25% 65% 0.39 0.66% 63% 1.06

Kristen& Sara 0.17% 64% 0.27 0.53% 62% 0.85

ChinaSpeed 0.99% 35% 2.83 0.77% 32% 2.44

SlideEditing 0.66% 70% 0.94 0.50% 69% 0.72

Average 0.49% 47% 1.04 0.62% 43% 1.44

with a complexity reduction of 46% at the cost of 1.12% in BD-BR. This drop in perfor-

mance could be tied to the fact that only Random Access encodings under VBR conditions

were used to generate our training set, which may bring unexpected circumstances during

the test runs. However, the overall results are still promising considering that they were

obtained without any additional model tuning, which ultimately let us conclude that the

SVM-based CU partitioning decision is effective and robust. Also note that there is no ap-

parent correlation between the spatial/temporal resolution of a sequence and the efficiency

of our method, indicating that the performance will remain when varying resolutions need

to be encoded.

6.1.2 Decision Threshold Effect on Rate-Distortion Performance

As stated in Section 6.1.1 (third observation), reducing incorrect decisions of not

splitting a CU is important to maintain coding performance.

To accomplish this, one can modify the decision function of the SVM classifier to

favor splitting CU decisions. By default, the decision threshold (ThSplit) used by SVMs
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Table 6.5: BD-BR, Time Savings and BDTSRatio relative to HM 16.8 using SVMs under
Variable Bitrate and Constant Bitrate conditions (VBR QPs = 22, 27, 32, 37 , CBR Targets
= BitrateQP22, BitrateQP27, BitrateQP32, BitrateQP37)

Low Delay P, VBR Random Access, CBR
Sequence BD-BR TS BDTSR BD-BR TS BDTSR

PeopleOnStreet 0.67% 21% 3.19 1.15% 26% 4.48

SteamLocomotive 0.73% 41% 1.8 0.02% 54% 0.05

BQTerrace 0.78% 42% 1.83 1.13% 52% 2.18

Cactus 0.98% 37% 2.66 1.02% 47% 2.18

Kimono 0.37% 36% 1.04 0.05% 42% 0.12

BasketballDrill 0.40% 32% 1.26 1.88% 39% 4.84

RaceHorsesC 0.52% 16% 3.21 2.15% 22% 9.61

BasketballPass 1.01% 40% 2.53 1.67% 42% 4.01

BQSquare 0.33% 29% 1.11 1.07% 41% 2.6

Johnny 0.24% 61% 0.4 1.09% 66% 1.66

Kristen& Sara 0.47% 61% 0.77 1.38% 64% 2.14

ChinaSpeed 0.80% 29% 2.78 1.81% 35% 5.24

SlideEditing 0.54% 70% 0.78 0.18% 65% 0.28

Average 0.6% 40% 1.52 1.12% 46% 2.54

is 0.5 (since our labels are 0 and 1), and the confidence of a prediction is given by how

close to 0 or 1 is the decision function output. In other words, if the decision function

output is higher than 0.5, the classifier will label the current CU as split and vice-versa.

Therefore, if we decrease this decision threshold to 0.25 for instance, more split decisions

will be made, since the CUs that would be classified as skip with low confidence are still

labeled as split. This will likely lower the complexity reduction, but it will also reduce

rate-distortion losses. On the other hand, increasing ThSplit to 0.75 leads to more CUs that

are skipped. In this case, rate-distortion is sacrificed for the sake of higher computation

savings. This is depicted in Figure 6.4.

In Figure 6.4, when ThSplit = 0.25, more CUs will be classified as split. This

will likely reduce the complexity reduction, but it will also reduce rate-distortion losses.

On the other hand, increasing ThSplit to 0.75 leads to more CUs that are skipped. In

this case, rate-distortion is sacrificed for the sake of higher computation savings. With

this approach, it is possible to tune the decision threshold for applications that need to

preserve quality or to increase complexity reduction. Figure 6.5 depicts different BD-BR

and time savings results for each tested value of ThSplit.

With this approach, it is possible to adjust the decision threshold to favour encod-
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Figure 6.4: Split decision for different values of ThSplit.
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ing quality or to reduce encoding complexity. Figure 6.5 depicts different BD-BR and

time savings results for each tested value of ThSplit.

Figure 6.5: Average Time Savings, BD-BR increment, and their linear and polynomial
fits, for different values of ThSplit.
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The plot in Figure 6.5 shows that the encoding time savings is very sensitive to

the decision threshold. When this threshold is closer to zero, the savings are also small,

but the BD-BR increase is also negligible. For instance, when ThSplit = 0.1, time is

reduced by 29.3% and BD-BR is incremented merely by 0.13%. On the other hand,

as the threshold gets closer to one, the time savings decrease linearly, and the BD-BR
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increases exponentially. When ThSplit = 0.8, time savings go up to 52.2%, but the BD-

BR increment also scales up to 2.1%. Therefore, in order to keep a high encoding quality,

a small decision threshold should be used. Still, even when ThSplit is set to 0.6, the BD-

BR increment is smaller than 1% (precisely 0.77%), which is negligible, and the time

savings are around 46%. It is also possible to tune this parameter to achieve different

complexity points. For instance, if 30% encoding time savings are sufficient, the decision

threshold should be around 0.2. However, if a time reduction of 50% is required, the

threshold should be in the 0.5 to 0.7 range.

6.1.3 Results and Discussions

Tables 6.6, 6.7 and 6.8 show the rate-distortion and complexity results achieved

on each test sequence using the SVM-based partitioning decision with different values of

decision threshold, namely 0.1, 0.3 and 0.7 (for ThSplit = 0.5, see Table 6.4). The Time

Savings were computed using the formula in (6.1).

These results confirm the effect of the decision threshold on both time savings and

rate-distortion performance loss. Higher values of ThSplit increase time savings and rate-

distortion loss proportionally, though it is clear that the latter grows at a much faster pace.

When ThSplit scales from 0.1 to 0.7, the average time savings increase by a ratio of 1.53,

whereas BD-BR increment goes up by a 8.615 factor, reinforcing that smaller values of

ThSplit should be prioritized when possible.

In addition, the complexity reduction of our approach seems to be affected by

scene characteristics. For a ThSplit of 0.1, the savings range from 5% (RaceHorses) to

67% (SlideEditing). The content of these sequences is very different: the first one is

characterized by intense motion and complex texture, whereas the latter is mostly still,

with simple texture. This type of variation was expected because some sequences require

much more partitioning than others.

The second analysis compares the partitioning obtained using the reference HEVC

encoder and the SVM-based encoder. For this comparison, the lists of CU partitions were

extracted from the reference (Lref ) and test (LT ) encoders, and the Partition Similarity



120

Table 6.6: Rate-Distortion-Complexity of the test sequences when ThSplit = 0.1 (Ran-
dom Access, QP=22, 27, 32, 37)

Class Sequence BD-BR TS BDTSRatio

A SteamLocomotive 0.14% 43% 0.32

A PeopleOnStreet 0.11% 11% 1

B Kimono 0.17% 23% 0.75

B Cactus 0.16% 33% 0.48

B BQTerrace 0.26% 43% 0.6

C BasketballDrill 0.03% 18% 0.17

C RaceHorsesC 0.03% 5% 0.64

D BasketballPass 0.16% 28% 0.58

D BQSquare 0.13% 33% 0.41

E Johnny 0.25% 57% 0.44

E Kristen&Sara -0.01% 56% -0.02

F ChinaSpeed 0.20% 19% 1.07

F SlideEditing 0.05% 67% 0.07

Average 0.13% 33.5% 0.39

(PSim) metric is defined as:

PSim(Lref , LT ) =

∑
CU∈Lref

Hit(CU,LT ) ∗ CUwCUh∑
CU∈Lref

CUwCUh

(6.2)

In (6.2), the Hit(CU,LT ) function returns 1 when the partition is found in the test

list and 0 otherwise, and CUw and CUh are used to compute the area that corresponds

to this partition. Thus, the numerator is the area within the frame that was partitioned

equally with both encoders, and the denominator represents the total frame area. The

PSim metric corresponds to the percentage of CUs that are equally partitioned on both

encoders, where each partition count is normalized by the corresponding CU area. Figure

6.6 shows the partitioning results of a Full HD video frame using ThSplit = 0.5 and a QP

of 32. Partitions marked in red represent the CUs that were split further in the reference

encoder. They represent higher rate-distortion penalties for our SVM-based encoder. The

green-marked partitions are the ones that were split with the SVM-based encoder, but

not in the reference. These partitions reduce the time savings, but without rate-distortion

penalty.

The partitioning of both encoders is similar, with a PSim of 93.7%. The main

differences occur in regions with intense motion, and many cases correspond to further
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Table 6.7: Rate-Distortion-Complexity of the test sequences when ThSplit = 0.3 (Ran-
dom Access, QP=22, 27, 32, 37)

Class Sequence BD-BR TS BDTSRatio

A SteamLocomotive 0.02% 47% 0.04

A PeopleOnStreet 0.16% 15% 1.03

B Kimono 0.34% 31% 1.08

B Cactus 0.25% 38% 0.65

B BQTerrace 0.34% 47% 0.71

C BasketballDrill 0.05% 27% 0.17

C RaceHorsesC 0.06% 10% 0.56

D BasketballPass 0.20% 37% 0.54

D BQSquare 0.21% 37% 0.57

E Johnny -0.04% 62% -0.06

E Kristen&Sara 0.09% 61% 0.15

F ChinaSpeed 0.40% 25% 1.58

F SlideEditing 0.34% 69% 0.49

Average 0.19% 38.9% 0.49

partitioning (split) misclassifications, which are not harmful to coding efficiency (as ex-

plained in Section 6.1.2).

The rate-distortion plots for the ChinaSpeed test sequence are shown in Figure

6.7. The curves confirm that the coding penalties of using SVMs for fast mode decision

are negligible. ChinaSpeed was specially selected for this analysis, as it is the one with

highest average BDTSRatio among all tested sequences, i.e., it is one of the worst cases

performance-wise.

Comparison with State of the Art

Table 6.9 compares our results with the most recent HEVC encoding complexity

reduction methods found in the literature using all the temporal structures.

The results show that our solution is capable of achieving the lowest BDTSRatio

among all references, but with different time savings. To provide a fair comparison, we

also compiled results that came as close as possible to the time savings of each reference

by adjusting the SVM decision threshold. The sequences used to evaluate our method are

the ones marked "Te" in Table 6.1. With the RA configuration, we are able to outperform

all of the related works in both time savings and BD-BR using a decision threshold of 0.3
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Table 6.8: Rate-Distortion-Complexity of the test sequences when ThSplit = 0.7 (Ran-
dom Access, QP=22, 27, 32, 37)

Class Sequence BD-BR TS BDTSRatio

A SteamLocomotive 0.39% 60% 0.65

A PeopleOnStreet 1.90% 31% 6.12

B Kimono 1.00% 52% 1.93

B Cactus 1.49% 52% 2.87

B BQTerrace 0.68% 55% 1.24

C BasketballDrill 1.32% 45% 2.94

C RaceHorsesC 1.22% 29% 4.19

D BasketballPass 1.65% 47% 3.50

D BQSquare 0.61% 50% 1.21

E Johnny 0.61% 66% 0.92

E Kristen&Sara 0.63% 66% 0.96

F ChinaSpeed 2.27% 42% 5.39

F SlideEditing 0.74% 70% 1.05

Average 1.12% 51.2% 2.19

and outperform most of them with a 0.5 threshold. In the LB case, although we achieve

a better BDTSRatio compared to the other works, (ZHANG et al., 2015b) is able to save

2.2% more encoding time, but this difference is not very significant and could be easily

dealt with finer decision threshold adjustments. Also note that (ZHANG et al., 2015b)

used QP values different from the ones defined in the CTC (24, 28, 32, and 36), so this

might also affect the analysis. The LP results are the hardest to outperform in terms of

time savings. We were not able to outperform (MOMCILOVIC et al., 2015), but since

only sequences from classes A, B and F were encoded in that work, and the authors did

not include the processing time of the online training routines nor the time of the decision

function in their analysis, the comparison is not fair towards our work. Despite that, our

method was still able to overcome their results when the same sequences are considered.

In this case, our SVM-based encoder achieves time savings equal to 53.2% at the cost

of 1.48% BD-BR, which results in a 2.77 BDTSRatio against the 2.79 achieved by their

results. Finally, it was also not possible to outperform the time savings of (ZHU et al.,

2017), even though our BDTSRatio is superior for all tested decision thresholds.

These references are very recent and can be regarded as state-of-the-art solutions

due to their efficiency. Therefore, this is an indicator that the computational complexity

reduction method proposed is an improvement over previous works in terms of combined
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Figure 6.6: Partition Similarity of the BasketballDrive sequence for ThSplit = 0.5.

ThSplit=0.5      PSim=93.7%

rate-distortion and complexity. Our improvements come from the use of more features

to train the classifiers (such as RQT depth and motion vector prediction index), the in-

herent advantages of SVM over Decision Trees, and also through the use of a fine-tuned

methodology that includes rate-distortion performance in the training step.

6.2 Fast HEVC CU partitioning Decision with Decision Trees

The SVM results showed that it is possible to overcome other references by: (i) us-

ing an appropriate feature selection coupled with a (ii) fine-tuned parameter optimization.

However, it was still not clear which step (i or ii) was the main responsible to achieve

these gains in performance. Therefore, the next step in this work consisted in training

Decision Trees with the same set of features used in the SVM training to implement a CU

Early Termination (CU ET) method.

The decision tree models were trained with data collected from the HEVC Model

(HM) encoder (version 16.8) for the sequences defined in Table 6.1. The sequences were

encoded with QP values of 22, 27, 32, 37 and 42, using the Random Access (RA) config-

uration, and the number of encoded frames per sequence was limited to 150. The features

described in Chapter 5 were collected for each CU, forming feature vectors that were

labeled as split, when the cumulative RD cost of the four sub-CUs was smaller than the

current one, or unsplit otherwise. After all data were collected, three training sets were

built, one for each CU size (64x64, 32x32, and 16x16). Then, each set was balanced to
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Figure 6.7: Rate-Distortion plots for the ChinaSpeed sequence, using different values of
ThSplit.

ensure the same distribution of split and unsplit cases using random under-sampling.

Table 6.10 shows the training results using the C5.0 algorithm (QUINLAN, 2015),

including accuracy, true positive rate (TPR), and max tree depth of each classifier, using

200,000 training vectors. To ascertain the efficiency of the proposed set of features, Table

6.10 compares the training accuracy of the classifiers trained with both feature sets. Note

that using more features increases the depth of the trees, but it represents a very small

overhead when compared with the enormous amount of computations that are saved every

time an early termination happens, as section 6.2.3 shows.

Finally, a feature usage statistics is presented in Table 6.11, where each value

represents the percentage of decisions that required a test with the corresponding feature.

Note that the features with the highest GR are tested on 100% of the decisions, as they

were selected as root nodes of the decision trees.
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Table 6.9: Comparison with related work

Cfg. Ref. Technique BD-BR TS BDTSR

(CORRÊA et al., 2015) Dec. Trees 0.28% 36.7% 0.77
(KIM; PARK, 2016) Bayesian Dec. 0.71% 34.9% 2.03
(SHEN; YU, 2013b) SVM 1.35% 44.7% 3.02

SVM, ThSp=0.3 0.19% 38.9% 0.49

RA

This
Work SVM, ThSp=0.5 0.49% 47% 1.04

(KIM; PARK, 2016) Bayesian Dec. 0.63% 32.6% 1.93
(SHEN; YU, 2013b) SVM 1.66% 41.9% 3.02

(ZHANG et al., 2015b) SVM 1.98% 51.4% 3.84

SVM, ThSp=0.5 0.62% 42.8% 1.44

LB

This
Work SVM, ThSp=0.7 1.7% 49.2% 3.45

(KIM; PARK, 2016) Bayesian Dec. 0.62% 32.7% 1.89
(MOMCILOVIC et al., 2015)* Neural Net. 1.43% 51.3% 2.79

(ZHU et al., 2017) SVM 2.66% 59.9% 4.44

SVM, ThSp=0.5 0.6% 39.7% 1.52

LP

This
Work SVM, ThSp=0.7 1.69% 48.3% 3.49

* Only sequences from classes A, B and F

Table 6.10: Train accuracy, true positive rate, and tree depth of the trained classifiers
(200,000 vectors per data set)

Feature set depth Accuracy TPR Tree Depth
d0 90.9% 89.5% 13

previous (CORRÊA et al., 2015) d1 91.2% 89.1% 13
d2 91.2% 88.8% 19
d0 92.7% 91.9% 20

proposed d1 93.6% 92.2% 24
d2 94.2% 92.3% 21

6.2.1 Low-Complexity HEVC Encoder

The trained classifiers are used as input to a modified HEVC encoder that im-

plements an CU Early Termination scheme, depicted in Figure 6.8. Two methods were

implemented in the HM software: (1) the feature extraction and (2) the decision function

using the classifiers and the extracted features as input.

In Figure 6.8, the best mode for the current CU is computed and then the feature

extraction routine is called to generate the input vector for classification. The decision

function is called in the next step, using the classifier trained for the corresponding CU

size, and its output is tested. If the classifier outcome is split, the CU partitioning evalu-
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Table 6.11: Average usage of the top ten features considering both data sets
Previous Proposed

Rank Feat. ID Usage (%) Feat. ID Usage (%)
1st SkipFlag 100 Bits 100
2nd CtxDepthCTU 86 SplitFlagLeft 57
3rd MergeFlag 39 NormDiffBest,2N×2N 54
4th NormDiff2N×2N 33 SkipFlag 38
5th CostRatio2N×2N,MSM 25 SplitFlagUpper 37
6th CostMSM 22 SplitFlagUpperRight 36
7th PUPart 19 MergeFlag 30
8th CostN×2N 11 Distortion 26
9th Cost2N×N 6 RQTDepth 24
10th Cost2N×2N 6 CtxDepthCTU 21

Figure 6.8: CU Early Termination scheme.

compressCU(d, part)compute_best_mode

compute_features

split = classify (features, d, threshold)

split = 1? return best_mode

compressCU(d+1, part0)

compressCU(d+1, part1)

compressCU(d+1, part2)

compressCU(d+1, part3)

NY

Early CU Termination
64x64 32x32 16x16

trained classifiers

ation is continued. Otherwise, the splitting evaluation is terminated prematurely and the

best mode found for the current CU is chosen.

6.2.2 Decision Tree-based Complexity-Scalable HEVC Encoder

The complexity reduction strategy presented in the previous paragraphs was em-

ployed in a complexity-scalable encoder implementation. This was achieved by including

a split threshold (ThSplit) parameter in the decision function, which leads to more or less

split outcomes. This is an approach similar to that presented in Chapter 6.1.2. First, the

original decision is computed (split) along with its confidence factor (C). The confi-

dence of a decision is always computed along with it in the C5.0 algorithm. Then, split′
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is computed as:

split′ =


1 if ThSplit < 0.5 and C < (1− ThSplit)

0 if ThSplit > 0.5 and C < ThSplit

split otherwise

When ThSplit is set to 0.5, the final output is exactly the same as the original clas-

sifier decision. When it is set below 0.5, any decision with a confidence below 1−ThSplit
is reset to split, which increases the compression efficiency while decreasing the time

savings. The opposite behavior occurs when the threshold is set above 0.5, favoring time

savings over compression efficiency. A split threshold analysis and other comparisons are

presented in the following section.

6.2.3 Results and Discussion

To assess the RD performance of the proposed method, 13 sequences with varying

resolutions were used, following the Common Test Conditions defined by the JCT-VC

group (BOSSEN, 2012). To reduce the risk of bias, the set of sequences in this analysis

is complementary to the one used in the training phase. The RD and complexity results

of the test sequences are presented in Table 6.12. For these experiments, the default

threshold was used in the decision function (i.e., ThSplit = 0.5). Time savings (TS) were

computed as per Equation (6.1), where Tref is the encoding time of the original reference

software (HM 16.8), and T test is the encoding time with the proposed method, including

the decision function calls. On average, the results in Table 6.12 show that the method

is capable of reducing the HEVC encoding time in 47.8%, at the cost of a negligible

compression efficiency loss of 0.24%. The rightmost column shows the ratio between RD

efficiency and TS (BDTSRatio), which is defined in Equation 2.3. On average, for every

1% in TS, a BD-rate increase of 0.0051% is required.

A comparison with related works is presented in Table 6.13. Note that Previous

represents the work of (CORRÊA et al., 2015), which was re-implemented in HM 16.8 for

comparison. The results prove that the new strategy outperforms (CORRÊA et al., 2015)

for all configurations. The performance difference is smaller for the RA configuration

because the authors in (CORRÊA et al., 2015) used RA data to train their models, but

when other configurations (LP and LB) are considered, the difference is more significant.
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Table 6.12: Rate-distortion and complexity results of the proposed method for all tested
sequences using ThSplit = 0.5. (QP = 22, 27, 32, 37)

Random Access Low Delay B
Class Sequence BD-BR TS BDTSR BD-BR TS BDTSR

A PeopleOnStreet 0.28% 23.0% 1.21 0.19% 19.4% 1.00
A SteamLocomotive 0.32% 53.9% 0.59 0.20% 46.6% 0.43
B Kimono 0.42% 43.7% 0.96 0.39% 35.1% 1.11
B BQTerrace 0.47% 53.1% 0.88 0.37% 48.7% 0.75
B Cactus 0.42% 47.8% 0.88 0.40% 41.5% 0.96
C RaceHorsesC 0.14% 20.8% 0.68 0.14% 17.3% 0.82
C BasketballDrill 0.17% 40.7% 0.41 0.09% 37.2% 0.24
D BasketballPass 0.16% 43.1% 0.37 0.46% 42.0% 1.08
D BQSquare 0.22% 45.5% 0.48 -0.02% 31.7% -0.05
E KristenAndSara 0.12% 69.1% 0.18 -0.03% 64.4% -0.04
E Johnny 0.19% 69.1% 0.27 -0.09% 64.8% -0.13
F SlideEditing 0.01% 73.3% 0.01 0.20% 73.0% 0.28
F ChinaSpeed 0.44% 37.8% 1.17 0.17% 34.3% 0.50

Average 0.26% 47.8% 0.54 0.19% 42.8% 0.45

These results show that the proposed classifiers generalize better than (CORRÊA et al.,

2015), since the training sets are also composed of RA data only. When compared to the

remaining related works, the results outperform them in BD-BR, TS and BDTSRatio.

We can also conclude that the Decision Trees classifiers performed better in terms

of rate-distortion and complexity compared with our previous SVM approach: with the

default decision threshold, the first achieved a 0.54 BDTSRatio against the 1.04 obtained

with the latter. The decision threshold analysis also presented a better curve, meaning that

Decision Trees should be used due to their simpler training procedure. That does not mean

that Decision Trees are definitively better for the CU partitioning decision, because there

might better ways of training SVM classifiers that might improve the final results, but

at the cost of numerous, time-consuming training refinements. Therefore, the solutions

for other partitioning decisions that will be presented in the next sections will focus on

Decision Trees for the sake of simplicity.

The final analysis presents the effect of the Splitth parameter on rate-distortion-

complexity efficiency. Several values for this parameter were tested, using the same se-

quences listed in Table 6.12. The results are summarized in Figure 6.9. The chart shows

that the Splitth has significant impacts on both time savings and BD-BR. TS increases in a

quasi-linear trend, whereas the BD-BR barely changes with a Splitth up to 0.8, but grows

rapidly with larger values. The smallest time savings achieved are 28% with negligible

0.04% increase in BD-BR, whereas the highest time savings of 60% are achieved at the
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Table 6.13: Comparison with the related work
Cfg. Reference BD-BR (%) TS (%) BDTS (×100)
RA (KIM; PARK, 2016) 0.71 34.9 2.03

(SHEN; YU, 2013b) 1.35 44.7 3.02
Previous (CORRÊA et al., 2015) 0.32 47.2 0.67

Proposed DT classifier 0.24 47.8 0.51
LB (KIM; PARK, 2016) 0.63 32.6 1.93

(SHEN; YU, 2013b) 1.66 41.9 3.02
Previous (CORRÊA et al., 2015) 0.46 40.8 1.12

Proposed DT classifier 0.19 42.8 0.45
LP (KIM; PARK, 2016) 0.62 32.7 1.89

(ZHU et al., 2017) 2.66 59.9 4.44
Previous (CORRÊA et al., 2015) 0.39 38.1 1.03

Proposed DT classifier 0.22 41.2 0.53

cost of 3.6% in BD-BR. However, a smaller BD-BR increase of 0.61% is observed for an

average savings of 51%, which is a much better trade-off. These results ultimately let us

conclude that several complexity points can be achieved with minimum RD loss using the

Splitth threshold, which is useful for applications that require complexity scaling whereas

still maintaining the encoding efficiency.

Figure 6.9: TS and BD-BR for different values of Splitth

6.3 Learning-based HEVC Mode Decision with Decision Trees

After confirming that Decision Trees were more efficient than SVMs for the CU

partitioning decision, we decided to apply the same methodology to generate classifiers of

other decisions that also take part in the encoding complexity. Therefore, more Decision



130

Trees were trained to predict some outputs of the PU, RQT, IME and FME processes. The

following paragraphs will explain how each process was optimized with the help of the

trained classifiers.

6.3.1 PU Early Termination

From the analysis of Chapter 5, we could observe that the Prediction Unit decision

spends a significant amount of time deciding on rectangular SMPs (2N×N and N×2N)

and AMPs. Therefore, we designed Decision Trees to predict if the PU processing should

stop at the 2Nx2N evaluation or if it should continue with the other PUs.

The feature data was extracted right after the 2Nx2N PU evaluation (see the Ex-

traction Point 1 of Figure 5.1). The labels were assigned to 0, when the best PU was

2Nx2N, and 1 otherwise. After the trees were trained with the C5.0 algorithm, using the

same set of features from the CU ET classifiers, they were incorporated in the HM soft-

ware. Algorithm 3 shows the pseudo-code of the proposed PU Early Termination (PU ET)

method coupled with the CU ET algorithm discussed in the previous section. The sections

formatted in red correspond to the logic that was inserted in the original implementation.

Note that the PU decision affects the features used in the CU early termination

method (computed in line 17). If the PU classifiers decide not to evaluate the other PU

parts (in line 4), features that rely on these evaluations (e.g., PUpart) will not have the same

values that they would otherwise, because lines 6 to 11 will be skipped. Therefore, using

both methods to speed up encoding time can be more harmful to compression efficiency.

This could be circumvented with separate CU early termination classifiers trained with

features from Extraction Point 1. This strategy is considered as a future investigation of

this work. The rate-distortion-complexity results of the PU fast decision, as well as both

strategies combined are presented in Table 6.14.

The results achieved with the PU ET method shows that 44.7% time savings can

be achieved at the cost of 0.42% BD-BR penalty. Although this is a good compromise

between rate-distortion and complexity reduction, the results are not on par with the ones

achieved using the CU ET method. Therefore, it is possible to conclude that, for average

time savings of 40% and below, it is preferable to disable the PU fast decision and stick

with the CU early termination only. However, for higher savings, the PU fast decision

should be used, increasing the average time savings to more than 61% at the cost of

1.94% in BD-BR. Note that the BD-BR penalty is of both methods combined is more
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Algorithm 3 CTU compression algorithm with the CU and PU Early Termination logic
Input: CU: current CU block

d: current CU depth

1: costMSM ← skipMergePrediction(CU, d)
2: cost2N×2N ← interPredSearch(CU, d, 2N × 2N )
3: ~f ← computeFeatures(CU, d) . Extraction Point 1
4: evalPU← decidePU(~f , d) . Fast PU decision

5: if evalPU then
6: cost2N×N ← interPredSearch(CU, d, 2N ×N )
7: costN×2N ← interPredSearch(CU, d, N × 2N )
8: cost2N×nU ← interPredSearch(CU, d, 2N × nU )
9: cost2N×nD ← interPredSearch(CU, d, 2N × nD)

10: costnL×2N ← interPredSearch(CU, d, nL× 2N )
11: costnR×2N ← interPredSearch(CU, d, nR× 2N )
12: end if

13: if d = 3 then
14: costN×N ← interPredSearch(CU, d, N ×N )
15: end if

16: costSplit← +∞

17: ~f ← computeFeatures(CU, d) . Extraction Point 2
18: splitCU← decideCU(~f , d) . Early CU termination

19: if d < 3 and splitCU then
20: costSplit← compressCU(CU, d+1, part0)
21: costSplit += compressCU(CU, d+1, part1)
22: costSplit += compressCU(CU, d+1, part2)
23: costSplit += compressCU(CU, d+1, part3)
24: end if

25: ~modes← (costMSM , cost2N×2N , ..., costN×N , costSplit)
26: bestMode←MIN( ~modes, key = RDcost)
27: return bestMode
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Table 6.14: Rate-Distortion and complexity reduction achieved using the PU fast decision
method, as well as a combined CU+PU decision.

PU CU+PU
Sequence BDBR TS BDTSRatio BDBR TS BDTSRatio

PeopleOnStreet 0.58 26.7 2.19 1.42 35.3 4.02
SteamLocomotiveTrain 0.47 46.6 1.00 0.85 65.0 1.31

BQTerrace 0.20 45.9 0.43 1.01 64.0 1.57
Cactus 0.48 42.1 1.13 1.85 59.2 3.12

Kimono 1.14 39.7 2.87 2.86 57.1 5.01
BasketballDrill 0.47 36.9 1.29 1.27 52.4 2.42
RaceHorsesC 0.54 21.0 2.56 1.34 30.0 4.46

BasketballPass 0.23 47.6 0.48 0.66 62.6 1.05
BQSquare 0.09 40.9 0.23 0.54 58.0 0.92

Johnny 0.24 64.0 0.37 0.70 84.4 0.83
KristenAndSara 0.06 65.0 0.10 0.57 84.3 0.67

ChinaSpeed 0.79 36.2 2.18 1.98 52.1 3.80
SlideEditing 0.17 69.1 0.25 0.37 89.8 0.41

Average 0.42 44.7 0.94 1.18 61.1 1.94

than the sum of the penalties of each method applied separately. One of the reasons that

might explain this is the effect of skipping some PUs with the fast decision method, as

explained previously.

With the CU and PU ET methods, most of the CTU quadtree algorithm is covered.

The following solutions will focus on reducing the inter-prediction search, which is the

method that is called several times in Algorithm 2.

6.3.2 RQT Early Termination

The inter-prediction search is composed of two major steps: (i) Motion Estimation,

which is responsible for finding the integer and fractional motion vector offsets; and (ii)

Residual Quadtree estimation, where the TU blocks are partitioned several times until the

partitioning with best rate-distortion is found. For all of these steps, three fast methods

were defined, and for all of these methods, the same features used in the PU classifiers

were employed to build their respective trees.

The analysis of Chapter 5, which served as foundation for all the methods of this

work, showed that in many cases the best partitioning is at the RQT root. Therefore, a

RQT Early Termination (RQT ET) scheme was envisioned with the purpose of skipping

the entire quadtree evaluation, thus reducing the number of transforms computations.

To train the RQT classifiers, the features obtained from Extraction Point 1 (see
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Algorithm 3) were used, and the labels were assigned to 0 when the best TU was at the

root node of RQT and to 1 otherwise. Then, the Decision Trees were built using the

samples from Extraction Point 1 (line 4 in Algorithm 3). To apply the early termination,

the trees were consulted, and their decision was sent as input to every RQT estimation call.

Figure 6.10 shows a diagram of the RQT ET application. The results for this approach

are presented in Table 6.15.

Figure 6.10: Block diagram of the RQT ET application.
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Table 6.15: Rate-Distortion and complexity reduction achieved using the RQT ET
method, as well as a combined CU+RQT ET.

RQT ET CU+RQT ET
Sequence BDBR TS BDTSRatio BDBR TS BDTSRatio

PeopleOnStreet -1.98 10.3 -19.35 0.78 29.7 2.61
SteamLocomotiveTrain 0.25 10.5 2.35 0.25 57.3 0.44

BQTerrace 0.32 10.3 3.08 1.02 56.7 1.79
Cactus 0.10 10.5 1.00 0.49 51.8 0.95

Kimono 0.41 10.2 4.06 0.95 48.6 1.97
BasketballDrill -0.04 10.5 -0.38 0.26 44.9 0.57
RaceHorsesC 0.27 8.7 3.06 0.62 26.5 2.33

BasketballPass 0.24 15.4 1.59 0.59 53.7 1.09
BQSquare 0.21 11.8 1.75 0.46 51.1 0.91

Johnny 0.12 11.1 1.07 0.08 72.7 0.11
KristenAndSara -0.01 10.7 -0.06 0.23 71.4 0.32

ChinaSpeed 1.56 10.1 15.34 2.15 43.4 4.95
SlideEditing -0.08 12.5 -0.66 0.12 75.2 0.15

Average 0.10 11.0 0.95 0.61 52.5 1.17

Compared with the other methods that were presented so far, reducing the RQT

computations has a smaller impact in terms of time savings. However, the BD-BR penalty

is proportionally smaller as well. In fact, the BDTSRatio of the RQT Early Termination
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method is smaller than the PU one, and this remains the case when the RQT and the CU

fast methods are jointly used. This time, more than 52% time savings can be achieved at

the cost of a BD-BR increment smaller than 1.17%. Therefore, the RQT method can be

used along with the CU method to achieve savings close to 50% on average, but the PU

method should take place to achieve higher figures. Combining the three methods, the

average time savings raises to more than 64% with a 1.39% increase in BD-BR.

6.3.3 ME Early Termination

The IME search complexity was reduced by skipping the reference frames that are

searched in this process. Traditionally, the four reference frames are considered: two from

each list when the slice is bi-predicted, or four from the L0 list if the slice type is P. Our

decision for this process was to search only the first reference of each whenever possible.

The first reference of a list is the closest temporal neighbor of the current slice, so more

correlation is expected in general. Like with the other trees that were trained in this work,

the labels assigned to each example correspond to the task we are modeling, meaning they

were assigned to 0, when the best reference of a search was the first frame of the list, and

1 otherwise. The diagram in Figure 6.11 shows how the ME Early Termination (ME ET)

method was applied. Table 6.16 shows the rate-distortion complexity results of the fast

ME ET, as well as results with a combined CU, PU, RQT, and ME ET strategy.

Skipping reference frames based on our classifiers’ decision produces an average

BD-BR increase of 0.64% and a time savings of almost 20%. This represents a rate-

distortion-complexity efficiency much lower than that observed in the other methods pre-

sented so far, which indicates that more effort should be spent on this particular branch

of this work. One possible solution is to design more features that are related with this

process, for instance the reference index of neighboring PUs. There could also be a prob-

lem with how the task was framed, i.e., maybe it is better to predict the exact reference

index instead of keeping only the first one of each list. All of these considerations will be

assessed in future works.

Still in Table 6.16, we should highlight that combining this method with the pre-

vious ones achieves higher time savings, namely 69%, at the cost of 2.13% in BD-BR.

The final BDTSRatio metric points a better tradeoff compared to using the IME alone,

which means that the other methods are making up for its reduced efficiency. Therefore,

applying this method is only recommended when time savings above 65% are demanded.
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Figure 6.11: Block diagram of the ME ET application.
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6.3.4 FME Early Termination

Our final effort in reducing the HEVC encoding complexity targeted the FME

search. This process is particularly tricky to optimize, because most of the motion vectors

have a fractional offset in some sequences, as discussed in Chapter 5. Nonetheless, Deci-

sion Trees were still trained to see if it is possible to predict the necessity of the FME with

the extracted features. The labels for the FME classifiers were assigned as True when

the final motion vector had a fractional offset, and as False otherwise. Initially, the FME

Early Termination (FME ET) method consisted of skipping the entire fractional search

when the output of the trees said so, but the BD-BR increase of initial tests were higher

than expected. To alleviate this, we only skip the quarter-pixel interpolation and search.

A diagram of the RQT ET application is illustrated Figure 6.12. Table 6.17 presents the

results of the FME ET method, as well as results with all the previous methods combined

with it.

Clearly the fast FME method is not as efficient as any other method tested in this

work. The average BD-BR increment was not particularly high, but the time savings it

allows does not make up for it, so it has the worst rate-distortion-complexity of all the
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Table 6.16: Rate-Distortion and complexity reduction achieved using the RF skip early
termination method, as well as a combined CU+PU+RQT+ME Early Termination meth-
ods.

ME ET CU+PU+RQT+ME ET
Sequence BDBR TS BDTSRatio BDBR TS BDTSRatio

PeopleOnStreet 0.45 16.7 2.68 2.17 47.9 4.52
SteamLocomotiveTrain 1.09 18.1 6.04 1.76 71.2 2.47

BQTerrace 1.98 19.3 10.26 4.00 71.5 5.60
Cactus 0.39 18.8 2.05 1.84 67.5 2.73

Kimono 0.29 19.0 1.51 2.85 65.4 4.37
BasketballDrill 0.44 16.9 2.59 2.23 61.6 3.62
RaceHorsesC 0.92 14.0 6.55 2.60 43.1 6.04

BasketballPass 0.23 23.1 1.01 1.45 71.4 2.03
BQSquare 1.19 21.6 5.52 1.96 68.2 2.87

Johnny 0.41 26.5 1.56 1.37 88.4 1.55
KristenAndSara 0.27 27.7 0.97 1.04 88.7 1.17

ChinaSpeed 0.78 14.5 5.38 3.87 60.9 6.35
SlideEditing -0.12 20.4 -0.58 0.49 91.7 0.53

Average 0.64 19.7 3.24 2.13 69.0 3.08

Figure 6.12: Block diagram of the FME ET application.
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methods. When combined with the previous methods, the average time savings increases

to almost 71% at the cost of almost 3.8% increment in BD-BR, which is much worse in

comparison with the combined results of Table 6.16. These results were presented for

completeness, but the overall performance of the FME fast decision method did not prove

to be efficient enough to justify its application.
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Table 6.17: Rate-Distortion and complexity reduction achieved using the FME skip early
termination method, as well as a combined decision with all the proposed methods.

FME ET CU+PU+TU+IME+FME ET
Sequence BDBR TS BDTSRatio BDBR TS BDTSRatio

PeopleOnStreet 0.94 9.0 10.52 3.15 50.9 6.19
SteamLocomotiveTrain 0.26 3.6 7.33 2.06 71.9 2.87

BQTerrace 0.35 0.4 79.04 4.36 71.8 6.08
Cactus 0.50 10.6 4.68 2.30 69.6 3.30

Kimono 0.20 2.7 7.50 3.10 66.4 4.67
BasketballDrill 0.94 12.2 7.74 3.51 64.6 5.43
RaceHorsesC 0.90 3.4 26.25 3.57 45.2 7.88

BasketballPass 0.76 15.5 4.88 2.45 73.1 3.35
BQSquare 0.45 5.9 7.69 2.95 69.0 4.28

Johnny 0.57 17.4 3.28 2.00 89.2 2.24
KristenAndSara 0.28 16.0 1.73 1.51 89.4 1.69

ChinaSpeed -0.34 14.0 -2.45 3.54 64.8 5.47
SlideEditing -0.62 26.2 -2.34 0.31 92.8 0.34

Average 0.40 10.5 3.80 2.68 70.7 3.79

6.3.5 Decision Threshold effect on Decision Trees

Based on the positive results obtained in the decision threshold analysis conducted

with SVMs and Decision Trees for the CU ET method, it was concluded that similar ex-

periments should be performed combining the other fast decision methods. The problem

is that, for each N values that are tested on S sequences with four QP values, NM ∗ S ∗ 4

encodings must be performed, where M is the number of methods that will be tested. In

order to avoid a prohibitive amount of encodings, we limited this analysis for the three

best methods, namely the CU, PU, and RQT ET ones. The decision threshold values

ranged from 0 to 1 in steps of 0.1. In addition, only two sequences from our training set

were encoded: RaceHorsesC and BasketballPass. This configuration resulted in 113∗2∗4,

yielding 10647 encodings.

Figure 6.13 shows a BD-BR/TS plot of all the tested threshold combinations. The

points are grouped depending on which methods are jointly used. Up to 92% average

time savings were achieved with these experiments, but at the cost of prohibitive 120%

increment in BD-BR. These values were omitted by limiting the horizontal axis to a 10%

maximum in Figure 6.13(a), and to a 1% maximum in Figure 6.13(b).

The points that lie in the superior border of both figures correspond to the best

ones in terms of rate-distortion and complexity. The plot in Figure 6.13(a) demonstrates

that significant time savings can be achieved with up to 10% BD-BR increment. More
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Figure 6.13: Average BD-BR/TS plot of the tested decision threshold combinations com-
binations for sequences RaceHorsesC (832x480) and BasketballPass (416x240).
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specifically, 80.6% time savings are achieved with a 8.9% BD-BR increment. Note that

the best points are usually the ones using all the three ET methods, specially when higher

time savings are considered, showing that a combined solution is preferable over one that

employs each method individually.

When smaller BD-BR values are targeted, we can see in Figure 6.13(b) that, even

for such small BD-BR tolerance, up to 51.1% time savings were achieved, with a 0.99%

increment in BD-BR. In general, the combined solutions are still more adequate in most

cases. The only cases where a single solution is better is when very small BD-BR in-
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crements are targeted, but this also will lead to less time savings. Finally, the RQT ET

method performed worse than the other ones in the Rate-Distortion-Complexity (RDC)

trade-off, showing that it is inadvisable to use this method individually.

From these results, the 16 best decision threshold combinations in the RDC trade-

off were used to encode all of the test sequences. The average results are presented in

Table 6.18.

Table 6.18: BD-BR and Time savings achieved using the CU+PU+RQT ET methods for
several combinations of decision thresholds

Point Threshold CU/PU/RQT Average BD-BR Average TS Average BDTSRatio

P1 0/0.1/0 0.04 37.28 0.12
P2 0.4/0/0 0.21 45.84 0.46
P3 0.2/0.1/0 0.27 54.32 0.49
P4 0.3/0.1/0 0.38 55.14 0.68
P5 0.6/0.1/0 0.40 56.30 0.71
P6 0.2/0.1/0.1 0.52 58.13 0.89
P7 0.2/0.2/0.5 0.74 60.07 1.23
P8 0.2/0.3/0.3 0.80 61.87 1.30
P9 0.2/0.6/0.3 0.96 64.16 1.50

P10 0.4/0.6/0.5 1.28 65.28 1.97
P11 0.4/0.7/0.8 1.68 66.55 2.53
P12 0.3/0.7/0.9 1.84 68.25 2.70
P13 0.2/0.8/0.9 2.24 69.00 3.24
P14 0.1/0.9/0.6 2.84 74.85 3.79
P15 0.1/0.9/0.9 3.13 76.66 4.08
P16 0.1/0.9/1 4.80 78.28 6.13

The results demonstrate that several complexity points can be achieved by ade-

quate tuning of the threshold parameters, ranging from 37% up to more than 78%. Note

that using the 0.2/0.1/0 combination performed better than the CU ET method for a thresh-

old of 0.5, achieving 54.3% TS with a 0.27% BD-BR increase on average against the

47.8% and 0.24% obtained with the latter.

The rate-distortion plot of the points identified in the above table for the BQTerrace

sequence are depicted in Figure 6.14. Since it is difficult to visualize every curve in the

entire plot, the right side of the figure contains magnified portions of two QP values.

It is possible to observe that the fast encoding decisions tend to gradually decrease

the bitrate as the target time savings increase, but quality is slightly decreased as well at

each point. The difference between the reference results and the point with most time

savings (P16) is close to 1 dB for the two QPs displayed in the right side of the figure.

Also note that the rate-distortion curve for the point with smallest BD-BR increase (P1)

almost coincides with the reference results in the magnified charts.
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Figure 6.14: Rate-distortion curves of the proposed CU+PU+RQT ET methods us-
ing several combinations of decision thresholds (sequence: BQTerrace, resolution:
1920x1080@60fps, QP=22, 27, 32, 37)
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Although there is room for improvement in the proposed methods (especially the

ones related to the ME searches), we concluded with these results that the amount of

contribution for fast encoding decisions provided in this thesis was already significant,

proving that learning-based methods are a promising alternative to predict the complex

partitioning decision of encoders. Therefore, we decided to explore a second branch of

study in visual applications, which is related to the transcoding complexity in adaptive

streaming systems. The following sections will describe the designed methods for this

problem.
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7 LEARNING-BASED MODE DECISION FOR HEVC TRANSRATING

Given its importance in the recent adaptive streaming services, HEVC transcoding

is the second application contemplated in this thesis. As mentioned in Chapter 2, the

transcoding complexity is usually concentrated on the encoding side. This means that fast

encoding decisions can also be used to reduce transcoding complexity, but this type of

solution disregards an important source of information: the reference bitstream. Figure

7.1 shows the main contributions of this thesis for HEVC transrating applications, where

a reference (HQ) bitstream can be used to guide the decisions of subsequent encodings.

Figure 7.1: Overview of the contributions presented in this thesis for transrating applica-
tions.

Learning-based HEVC Transrating
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For the transrating analyses and results of this work, the x265 (MULTICORE-

WARE, 2017) fast HEVC encoder was used, using the "placebo" preset. In addition, the

FFMpeg (FFMPEG, 2017) fast HEVC decoder was used in the decoding part. The next

sections will explain each of these components, followed by the obtained results.

7.1 CTU-level Partitioning Decision for Fast HEVC Transrating with Random Forests

As demonstrated in Chapter 5.2, there is a high correlation between the decisions

of the source bitstream and those of the subsequent encodings. Therefore, the HEVC

transrating solutions proposed in this thesis focus on exploiting the bitstream information

to reduce the transcoding complexity.

Our first initiative consisted in a speedup method for HEVC transrating that op-

erates by determining Lower and Upper bounds for the depths to be tried in the search

for the best CTU partitioning quadtree. The designed algorithm is based on classifiers

that use information from a HQ bitstream from which the transrated bitstream is to be
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Figure 7.2: Methodology used to apply the trained Random Forests in a fast HEVC en-
coder.
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obtained, following the adaptive streaming setup depicted in Figure 2.7. These classi-

fiers are designed (and evaluated) using Random Forests and trained using features and

datasets collected from a set of pre-encoded and transrated videos. The features used are

the ones discussed in Chapter 5.2.2. The full set of features is listed in Appendix B.

In the proposed scheme the encoding stage of the transcoding operation restricts

the quadtree depths of each CTU to be between a Upper (UB) and an Lower (LB) bound.

These bounds are predicted by two algorithms, as represented in Figure 7.2. As will be ex-

plained, these two algorithms take the form of Random Forests (RF), which have as inputs

features derived from a High-Quality (HQ) bitstream and extracted during the bistream

decoding. Note that the prediction of these UB and LB is not a binary classification prob-

lem, as there are four possible outcomes for each classifier, namely depth levels 0 through

3 corresponding to CU sizes 64×64, 32×32, 16×16 and 8×8. Computational savings

exist when the number of levels between those bounds is on average smaller than the un-

restricted full-search across the 4 levels. However, minimizing computational savings is

only one the objectives of the method, as it is important that these savings do not result

in large degradation of encoding performance, i.e., the coding performance loss also has

to be minimized. To achieve a good balance between these two conflicting objectives we

resorted to Machine Learning techniques to train a set of Random Forests which will act

as the depth bound estimators.

The methodologies for training and testing the classifiers used in this work are

shown in Figure 7.3 and 7.2 respectively.

As depicted in Figure 7.3, the training phase is divided into the following steps:

Raw feature extraction: in this step, several train sequences are HQ encoded

into CBR bitstreams using as target the average bitrate obtained when the same videos

are encoded with QP value 22. Then each bitstream is parsed using a modified FFm-
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Figure 7.3: Methodology used to train the CTU-level classifiers.
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peg (FFMPEG, 2017) decoder to extract information such as CTU partitioning statistics,

transform coefficient values, and motion vectors. This information is gathered for each

CU and post-processed to obtain secondary features.

Label Extraction and Dataset Assembly: the second step consists in encoding

several representations with bitrates that are smaller than the average bitrate used in the

HQ bitstream encoding, producing Lower-Quality (LQ) bitstreams. The LQ bitstreams

are then parsed to obtain the maximum and minimum CU partitions of each CTU. These

two values are used to label our previously extracted features, generating distinct datasets:

the maximum CU sizes are used to form the DataUB set, and the DataLB set is formed with

the mininum CU sizes as labels. The target bitrate used to obtain each LQ bitstream was

computed using the formula αBR ∗BRHQ, where BRHQ represents the bitrate of the HQ

bitstream, and αBR took values from 0.1 to 0.9 in steps of 0.1.

Dataset Preprocessing: Once DataUB and DataLB are generated, additional pre-

processing is carried out to increase the quality of our training samples by balancing the

datasets using random undersampling. This ensures that all labels (minimum and maxi-

mum quadtree depths) are equally represented in the datasets.

Random Forest Training: The next step is the training of the two depth bound

predictors. After extensive experimentation not reported here, RF were selected, as exper-

imental results showed that they performed better than other techniques in terms of com-

plexity reduction and coding performance. Furthermore, empirical evaluations showed

that the best performance was achieved using forests with 20 trees.
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In the test phase, illustrated in Figure 7.2, the HQ bitstream is decoded using

the modified FFmpeg software. The features extracted from the decoder are sent to the

classifiers, and the output decisions create a CTU map, which contains the upper and

lower bounds of each CTU that will be encoded. The x265 encoder was modified to read

this data and to limit the CUs whenever they are not within the Upper/Lower Bound range.

The x265 fast encoder was used with the placebo1 preset under an IPBBB GOP structure

during our train and test phases. Adaptive B-frames and scene-cut detection were disabled

to allow a coherent mapping between the decoded and the re-encoded data.

The sequences assigned to the train and test sets are listed in Table 7.1. Two

seconds of each sequence were encoded.

Table 7.1: Train and test sequences used in the fast transcoding schemes.

Class Name Resolution FPS Train/Test
A Traffic 2560x1600 30 Train

BasketballDrive 1920x1080 50 Train
B

ParkScene 1920x1080 24 Train
BQMall 832x480 60 Train

C
PartyScene 832x480 50 Train

BlowingBubbles 416x240 50 Train
D

RaceHorses 416x240 30 Train
A PeopleOnStreet 2560x1600 30 Test

BQTerrace 1920x1080 60 Test
B

Cactus 1920x1080 50 Test
RaceHorsesC 832x480 30 Test

C
BasketballDrill 832x480 50 Test
BasketballPass 416x240 50 Test

D
BQSquare 416x240 60 Test

7.1.1 Feature Design and Processing

The CTU-level features discussed in Chapter 5.2 were extracted to train the Upper

and Lower Bound classifiers. Since the target bitrate has an important impact on the

partitioning, the αBR value of each LQ encoding is also used as a feature. Combining all

the information, a total of 58 features are defined.

Some of these features may not be useful to train the classifiers, so they can be

discarded without affecting significantly the performance of the overall scheme. Further-
1One of the x265 predefined configurations.
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more, less features are helpful in complexity-aware solutions, because this reduces the

time of the feature extraction and decision computation routines. A smaller feature set

also reduces the input size of classifiers, which is advantageous for systems with tight

storage/communication constraints. Two methods of FR were tested: feature selection,

where only the most relevant non-redundant features are kept to train the classifiers; and

a transformation method that employs autoencoders (AE) (CHOLLET et al., 2015) to

transform the original features into a new lower dimensional space.

Feature Selection: the feature selection followed a traditional filtering approach

(DASH; LIU, 1997). Different feature sets were prepared using different ranking strate-

gies. In one case, two feature subsets were constructed using Information Gain Ratio

(IGR) as a dependency indicator between the features and the UB and LB predictions.

Another two feature subsets were constructed using a similar procedure but with Infor-

mation Gain (IG) (WITTEN et al., 2016) as the utility function. In all four feature sets

only the higher ranked N were kept to be later used as input to the classifiers. The com-

plete list of IGR scores for these features is found in Appendix B. As an example, Table

7.2 shows the top 10 features for the UB and LB decisions ranked by Information Gain.

Table 7.2: Top 10 Features Ranked by Information Gain
Upper Bound Lower Bound
Feature IG Feature IG

DepthAVG 0.84 DepthAVG 0.64
DepthMIN 0.77 DepthMAX 0.58
DepthMAX 0.48 BitsAVG 0.42

BitsAVG 0.45 DepthMIN 0.38
PredSumAVG 0.43 PredModeAVG 0.38
PredSumMAX 0.42 TrSizeAVG 0.32
CoeffSumMAX 0.40 CoeffSumMAX 0.32
PredModeAVG 0.39 QCoeffSumAVG 0.32

TrSizeAVG 0.39 PUAVG 0.30
QCoeffSumAVG 0.39 SkipFlagAVG 0.30

Feature transformation: as explained, the aim of using autoencoders is to trans-

form the initial set of features into a smaller one with the smallest possible degradation in

performance. Our autoencoder, has three distinct layers: input layer, intermediate layer

and output layer. The input layer has 58 nodes, corresponding to the number of features

in the original training set. The intermediate layer will have a number of nodes corre-

sponding to the number of features that we want in our transformed training set (which

ranged from 5 to 30). Similarly to the input layer, the output layer has also 58 nodes,

being its output a reconstruction version of the transformed data, which ideally would be
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the original training set.

Training AEs was particularly challenging, as Neural Networks have a large num-

ber of parameters that must be fine-tuned to achieve the best results. Besides that, con-

vergence wasn’t verified without input data normalization. Starting by that topic, each

feature was normalized to a 0-1 range without altering their relative distribution. Using

the Mean Squared Error loss function and the Adam optimizer, we observed convergence

after training 50 epochs with batches of 1000 training examples. As activation function,

we used the sigmoid function.

The next section will present transrating results using the proposed CTU-level fast

CU decision based on RF trained with the complete and reduced feature sets.

7.1.2 Results and Discussion

The performance of the proposed transrating scheme was evaluated empirically,

by comparing its time complexity and encoding efficiency to those of a reference Cas-

caded Pixel-Domain Trascoding (CPDT) implementation, also based on the x265 encoder.

To compare the encoding efficiency, the Bjontegaard-Delta Bitrate (BD-BR) (BJONTE-

GAARD, 2001) was calculated using the (PSNR, bitrate) pairs of the two transraters (ref-

erence and ours) for four operation points corresponding to αBR = 0.2, 0.4, 0.6, 0.8.

The computational complexity reduction was computed as TS = (1− Ttest/Tref )∗

100, where Ttest is the encoding time using the proposed method, and Tref the reference

transrater encoding time. All evaluations used the test videos listed in Table 7.1. The

BDTSRatio was used to measure how much the BD-BR increases for each TS unitary

gain. Table 7.3 shows the results obtained by the proposed method with the full set of

features, without any reduction.

Table 7.3: Transrating results using the full set of features
Sequences BD-BR Time Savings BDTSRatio

BQSquare 0.03 39.10 0.07
BasketballPass 0.25 40.49 0.61

RaceHorses 0.43 39.82 1.08
BasketballDrill 0.52 47.41 1.11

BQTerrace 0.06 39.98 0.14
Cactus 0.37 45.65 0.80

PeopleOnStreet 0.35 40.24 0.87
Average 0.29 41.81 0.68

It is possible to observe that BD-BR increment varied from 0.03 up to 0.52%,
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whereas the TS varied from 39.10 to 47.41%. On average, 41.81% TS was achieved

at the expense of a tolerable 0.29% BD-BR increment. This reduction in complexity is

significant considering that it is very difficult to optimize a fast implementation like x265.

The three feature reduction methods described in the previous section were also

evaluated. The number of features in the reduced feature sets (N ) were 5, 10, 15, 20, 25

and 30. The transrating performance results obtained for each FR method and number of

features are listed in Tab. 7.4.

Table 7.4: Average results for all dimensionality reduction methods and number of fea-
tures

Nb. of Features 5 10 15 20 25 30
Information Gain Ratio

BD-BR 0.93 0.58 0.49 0.48 0.49 0.59
TS 41.37 40.74 40.77 40.55 40.4 40.77

BDTSRatio (×102) 2.21 1.37 1.17 1.14 1.17 1.41
Information Gain

BD-BR 1.26 0.52 0.46 0.45 0.52 0.47
TS 42.53 40.7 40.67 40.37 40.71 40.37

BDTSRatio (×102) 2.92 1.26 1.1 1.06 1.26 1.11
Autoencoder

BD-BR 1.1 0.69 0.62 0.53 0.53 0.55
TS 40.85 43.26 42.96 42.44 42.92 42.39

BDTSRatio (×102) 2.68 1.59 1.44 1.25 1.24 1.29

We can observe that the effect of using less features is mixed. In some cases,

it tends to increase the TS with a slight increase in BD-BR, but in other cases the TS

decrease. The ideal number of features is within the 20-25 range, as the best averages

are in those two cases. Reducing the features to almost a third of its initial dimension

using the IGR as metric yields a TS of more than 40% with a tolerable BD-BR increment

of 0.49%. In some cases, this trade-off between performance and input size could be

advantageous, as explained in the previous section.

The best results were obtained using Information Gain as metric, but the IGR-

based selection performed similarly, showing that these two metrics work well with Ran-

dom Forests. The AE-based reduction achieved the worst results in most cases, although

it provided the highest TS.

Tab. 7.5 presents the best results achieved with each feature reduction method.

Considering the selection based on IGR, the lowest BDTSRatio (1.14%) was achieved

with 20 features. In the IG results, the best performance was also verified when the num-

ber of features was 20 with a BD-BR/TS ratio equal to 1.06%. In the case of autoencoders,
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Table 7.5: Best results for each Dimensionality Reduction method
Information Gain Ratio

Sequences BD-BR Time Savings Ratio
BQSquare 0.04 34.32 0.11

BasketballPass 0.52 38.34 1.35
RaceHorses 0.51 39.84 1.28

BasketballDrill 0.83 47.28 1.77
BQTerrace 0.16 38.71 0.41

Cactus 0.67 44.81 1.49
PeopleOnStreet 0.64 40.58 1.58

Average 0.48 40.55 1.14
Information Gain

Sequences BD-BR Time Savings Ratio
BQSquare 0.04 33.27 0.13

BasketballPass 0.42 38.78 1.08
RaceHorses 0.50 39.57 1.27

BasketballDrill 0.85 47.64 1.78
BQTerrace 0.11 37.83 0.28

Cactus 0.63 44.94 1.41
PeopleOnStreet 0.60 40.57 1.47

Average 0.45 40.37 1.06
Autoencoder

Sequences BD-BR Time Savings Ratio
BQSquare 0.43 40.48 1.07

BasketballPass 0.66 41.03 1.60
RaceHorses 0.57 40.88 1.38

BasketballDrill 0.82 49.22 1.67
BQTerrace 0.24 41.84 0.57

Cactus 0.49 46.02 1.07
PeopleOnStreet 0.53 40.96 1.30

Average 0.53 42.92 1.24

the best result (1.24%) was achieved with 25 features. It can be observed that when re-

ducing the number of features by more than 50%, the degradation in model performance

is very small with a BD-BR increment under 1% (except when 5 features were used) and

average TS over 40%.

Table 7.6 presents a comparison of the proposed method with other transrating

methods published in the literature. Note that those competing works did not publish

results using the x265 software, so this comparison is not completely fair. This is an

unavoidable problem, as there is a lack of references that use x265 in the encoding step,

perhaps due to the difficulty of modifying this encoder.

We conclude that our method outperforms those competing works in terms of

combined BD-BR and TS. The BD-BR/TS ratio of (VAN et al., 2016) is 4.3 times higher
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Table 7.6: Performance comparison with related works
Method BD-BR Time Savings BDTSRatio

Proposed 0.29 41.81 0.69
(VAN et al., 2016) 1.89 63.68 2.96

(YANG; ZHONG, 2017) 2.26 55.01 4.10

than ours, and the ratio of (YANG; ZHONG, 2017) is almost six times higher (precisely

5.94). The TS of the other references is higher than ours, but this could be attributable

to the use of HEVC reference software which is a slower implementation with larger

margin for optimization. Finally, the BD-BR of our method is unrivaled and much smaller,

showing that our solution is preferable for systems that aim at reducing the transcoding

complexity while keeping the quality virtually unchanged.

7.2 Statistical- and Learning-Based Decisions for Fast HEVC Transrating

The CTU-level decisions showed promising results in terms of compression and

time savings, but only the CU partitioning was targeted. From the fast encoding results

obtained in the previous section, we concluded that much more savings can be achieved if

other tools are also exploited with fast decisions. Therefore, we decided to use the knowl-

edge obtained from the bitstream analysis of Chapter 5 to design fast decision strategies

for the Prediction Unit decision, the RQT evaluation, Motion Estimation, and prediction

modes. The following section will explain each of these strategies. The analysis of Chap-

ter 5.2 will be used as foundation for all the methods described this section. This set of

experiments followed the same methodology applied in section 7.1.2, with the exception

that 50 frames were encoded instead of the entire sequence. This was necessary because

a huge amount of simulations were carried out to produce these results.

Before starting with the other decisions, we first implemented a CU early termina-

tion method, which consists of skipping the partitioning process if the current CU was not

partitioned in the HQ bitstream. The reasoning for this comes from the CU size analysis

presented in Chapter 5.2, which shows that the size of CUs in the LQ encodings is the

same or larger most of the time. The purpose of this is to assess the efficiency of our

CTU-level decision using Random Forests. A simplified pseudo-code of the CU decision

is presented in Algorithm 4.

Note that this type of CU ET method only reduces the time spent on CUs below

the depthHQ in CTU quadtree, so the expected complexity reduction of this approach is
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Algorithm 4 CU ET algorithm using the HQ bitstream information
Input: CU: current CU block

depth: current CU depth
depthHQ: depth of the co-located CU in the HQ bitstream

1: testSplit← 0
2: if depthHQ ≤ depth then
3: compute RD Cost for the current CU
4: testSplit← 1
5: end if
6: if depth < 3 and testSplit then
7: compress(CU, depth+1, part0)
8: compress(CU, depth+1, part1)
9: compress(CU, depth+1, part2)

10: compress(CU, depth+1, part3)
11: end if
12: return Best CU partitioning

smaller than the one obtained with the CTURF ET method. The results are given in Table

7.7. Note that the CTURF ET results are different from the ones presented in 7.3, because

in these tests the frame count was reduced to 50.

Table 7.7: Performance of CU depth limitation strategy using direct mapping from
DataHQ and comparison with the learning-based CTU-level fast decision

Sequence BD-BR TS BDTSRatio

PeopleOnStreet 1.07 19.16 5.61
Cactus 0.98 36.56 2.69

BQTerrace 0.48 28.60 1.67
BasketballDrill 0.91 36.35 2.50
RaceHorsesC 1.15 24.14 4.77

BQSquare 1.23 22.95 5.35
BasketballPass 0.72 28.41 2.52

Average 0.93 28.02 3.33
CTURF ET 0.53 40.98 1.30

The results show that limiting the lower depth using the depth from the HQ stream

directly does not perform well in terms of combined rate-distortion and complexity. The

BD-BR increment is still inferior to 1%, which is not detrimental, but the achieved time

savings was lower than 30%. Compared to the CTU-level decision, it is possible to con-

clude that the learning-based approach is much more efficient, achieving more savings

with a smaller BD-BR increment. Therefore, this method will not be considered in the

remainder of this section.
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7.2.1 PU Early Termination Heuristic

The PU partitioning decision was a natural follow-up of this work, because most

of the times the PUs selected on LQ encodings are either the same or larger than the ones

found in the HQ bitstream (PUHQ), as demonstrated in Chapter 5.2. Therefore, a partition

map was defined based on the PUHQ value, which is described in Table 7.8.

Table 7.8: PU partitions evaluated in the fast PU strategy using the information from the
HQ reference (PUHQ)

PUHQ PUs evaluated in the LQ encodings
2Nx2N 2Nx2N, 2NxN, Nx2N
2NxN 2Nx2N, 2NxN, 2NxnU, 2NxnD
Nx2N 2Nx2N, Nx2N, nLx2N, nRx2N
NxN All PUs

2NxnU 2Nx2N, 2NxN, 2NxnU
2NxnD 2Nx2N, 2NxN, 2NxnD
nLx2N 2Nx2N, Nx2N, nLx2N
nRx2N 2Nx2N, Nx2N, nRx2N

This mapping guarantees that, except when PUHQ is NxN, three to four PUs are

evaluated instead of the seven ones that are computed in the worst case of the original

x265 implementation. Most savings are achieved when the PUHQ is 2Nx2N. Note that the

2NxN PUs are still processed when the PUHQ is equal to 2NxnU or 2NxnD, analogously

for Nx2N PUs. That is because the table in Chapter 5.2 showed that there is a small

probability for this case. Other mappings were tested, but this configuration gave the

best rate-distortion-complexity performance, specifically 15% time savings with a 0.36%

BD-BR increment.

7.2.2 RQT Early Termination Heuristic

A similar strategy was adopted for the RQT partitioning. It was observed that the

transform size of the HQ input is usually the same or larger on LQ encodings. Therefore,

the maximum RQT depth from the HQ bitstream (RQTdHQ) was used to limit the depth

of the LQ encodings. The time savings achieved with this approach were 12.7% with a

BD-BR increment of 0.18% on average. This is better illustrated in Algorithm 5.
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Algorithm 5 RQT ET algorithm using the HQ bitstream information
Input: TU: current TU block

RQTd: current TU depth
RQTdHQ: minimum RQT depth of the co-located CU in the HQ bitstream

1: testSplit← 1
2: compute Transforms and Quantization for the current TU
3: if RQTdHQ ≤ RQTd then
4: testSplit← 0
5: end if
6: if RQTd < 3 and testSplit then
7: checkRQT(TU, RQTd+1, part0)
8: checkRQT(TU, RQTd+1, part1)
9: checkRQT(TU, RQTd+1, part2)

10: checkRQT(TU, RQTd+1, part3)
11: end if
12: return Best RQT partitioning

7.2.3 Prediction Mode Early Termination Heuristic

Based on the prediction mode analysis, it was concluded that we cannot infer much

from inter or SKIP CUs in the HQ information, except that they will most likely not be

intra coded in the LQ versions. Therefore, the intra-prediction was disabled whenever a

CU is encoded as inter or SKIP mode. This strategy was named Prediction Mode Early

Termination (PM ET) and enabled savings of 16.8% with a BD-BR increase of 0.36%.

7.2.4 ME Early Termination Heuristic

The MV analysis showed that the best MV found on the LQ encodings are usually

the same one from the HQ reference or in the vicinity, so the Integer Motion Estimation

step was modified to check the rate-distortion cost of the MVHQ as well. If the best cost

is found with this MV, than the search range is reduced to 4, otherwise, the search is

performed normally with the input search range. Algorithm 6 presents the pseudo-code

of this method, and Table 7.9 shows the obtained time savings and BD-BR results.

As expected, complexity is not significantly reduced, because the fast ME method

implemented in the x265 software is very efficient. Nonetheless, this technique is able

to improve coding efficiency in almost all of the test sequences. This is likely because

the inherited MV from the reference bitstream is better than the predicted MV used in
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Algorithm 6 ME ET algorithm using the HQ bitstream information
Input: PU: current PU block

MVPred: predicted MV
MVHQ: MV of the co-located CU in the HQ bitstream
SR: Search Range

1: MVstart←MVPred

2: for each MVPcand in MVPList do
3: computeRateDistortion(MVPcand)
4: if rdCostMV P < rdCostPredMV then
5: MVstart←MVPcand

6: rdCostBest← rdCostMV P

7: end if
8: end for

9: computeRateDistortion(MVHQ)
10: if rdCostHQ < rdCostBest then
11: MVstart←MVHQ

12: SR← 4
13: rdCostBest← rdCostHQ

14: end if

15: MVBest← interSearch(PU, MVstart, SR)
16: return MVBest



154

Table 7.9: Performance of MV inheritance strategy using the vector from the reference
stream as candidate.

Sequence BD-BR TS BDTSRatio

BQSquare 0.01 -0.11 -8.80
BasketballPass -0.27 4.95 -5.49
BasketballDrill -0.45 5.17 -8.72
RaceHorsesC -0.39 4.98 -7.87

Cactus -0.22 4.40 -4.99
BQTerrace -0.42 0.87 -47.90

PeopleOnStreet -0.40 3.47 -11.46
Average -0.31 3.39 -9.02

the original implementation. Therefore, this method may not stand out if used alone,

but it is useful to mitigate the compression penalties introduced by other approaches, as

demonstrated in the following section.

7.2.5 Results and Discussion

Table 7.10 summarizes the results of the methods described in this section. Each

group of results was obtained with a method employed separately.

Table 7.10: BD-BR and Time Savings of each fast transcoding method employed sepa-
rately

CU ET PU ET RQT ET Pred. Mode ET ME ET
Sequence BDBR TS BDBR TS BDBR TS BDBR TS BDBR TS
BQSquare 1.23 23.0 0.66 12.9 0.43 9.7 0.28 29.0 0.01 -0.1

BasketballPass 0.72 28.4 0.41 14.7 0.07 12.4 0.44 16.6 -0.27 5.0
BasketballDrill 0.91 36.4 0.33 12.8 0.07 13.2 0.51 14.0 -0.45 5.2
RaceHorsesC 1.15 24.1 0.49 18.6 0.26 13.3 0.43 12.0 -0.39 5.0

Cactus 0.98 36.6 0.11 13.7 0.12 14.7 0.47 17.7 -0.22 4.4
BQTerrace 0.48 28.6 0.13 13.1 0.17 11.7 -0.03 17.8 -0.42 0.9

PeopleOnStreet 1.07 19.2 0.36 19.8 0.19 13.6 0.42 10.4 -0.40 3.5
Average 0.93 28.0 0.36 15.1 0.19 12.7 0.36 16.8 -0.31 3.4

From these results, we can observe that employing the methods separately does

not bring a significant complexity reduction, but the compression efficiency is also not

severely compromised. The results vary among sequences. The performance does not

seem to be related with the spatial resolution, but with specific scene characteristics. For

instance, the BasketballPass results are always superior to the ones obtained with the

BQSquare sequence, and both have the same resolution (416×240). The following sec-

tion will extend this analysis, assessing the performance of the combined strategies.

After assessing the performance of each early termination method separately, the

next step consisted in analyzing how they perform when combined with one another, and
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also when combined with the CTU-level solution using Random Forests.

Table 7.11 presents the BD-BR and complexity reduction of the statistical-based

decisions. The cells are sorted by the BDTSRatio value, so the first cell can be interpreted

as the most efficient solution in terms of compression and complexity combined. In ad-

dition, combinations that were irrelevant were omitted. For instance, using the combined

PU+PM+ME methods, a reduction of 12.7% is achieved with 0.19% increment in BD-

BR, which is outperformed by the TU+ME combination, with 16.3% time savings and

-0.1% BD-BR increment.

Table 7.11: Rate-Distortion and Complexity Performance of all the statiscal-based
method proposed, as well as their best combinations (in terms of combined BD-BR/TS
ratio)

Methods BD-BR TS BDTSRatio

ME ET -0.31 3.39 -9.02
TU+ME ET -0.10 16.31 -0.61
PU+ME ET 0.01 16.92 0.06
PM+ME ET 0.01 19.64 0.07

PU+TU+ME ET 0.19 28.65 0.68
TU+PM+ME ET 0.27 32.52 0.82
PU+PM+ME ET 0.37 33.36 1.11

PU+TU+PM+ME ET 0.57 44.54 1.27

This table shows that several complexity points can be achieved combining the

proposed methods, with savings ranging from 3.4% up to 44.5%. Note the fast MV

technique is present in every entry of the table, proving that it works well even when

combined with other methods. In fact, this technique was able to increase the performance

of every other combination. Table 7.12 shows a similar analysis, but this time using

the the CU partitioning decision discussed in section 7.1 as well to further increase the

complexity reduction. Once again the irrelevant combinations were omitted.

Table 7.12: Rate-Distortion and Complexity Performance of all the statiscal-based meth-
ods combined with the CTU-level fast decision.

Methods BD-BR TS BDTSRatio

CTURF+ME ET 0.34 43.04 0.80
CTURF+PU+ME ET 0.67 50.50 1.33
CTURF+PM+ME ET 0.86 53.94 1.60

CTURF+PU+TU+ME ET 1.08 57.24 1.89
CTURF+TU+PM+ME ET 1.21 61.25 1.97

CTURF+PU+TU+PM+ME ET 1.73 67.54 2.56

When the CTU-level is combined with the statiscal-based early termination meth-

ods significant time savings can be achieved, ranging from 43% up to 67.5%, while the
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BD-BR ranges from 0.34% up to 1.73%. Therefore, it is possible to achieve some de-

gree of complexity scalability by enabling/disabling certain methods. Note, however, that

using the CTU ET method is only advised when the target complexity reduction is su-

perior to 30%, because for smaller time savings the statistical-based methods perform

better, as presented in the previous table. However, studying the decision threshold effect

on the CTU-level Random Forests is likely to yield better results, and this is one of the

investigations planned as future work.

Figures 7.4 and 7.5 respectively show the rate-distortion plots of the best combi-

nations of statistical-based methods with and without the help of CTU early termination.

The sequence in this case is BQTerrace and the bitrate factors used were 0.2, 0.4, 0.6, and

0.8.

Figure 7.4: Rate-distortion curves of the proposed statiscal-based ET methods (sequence:
BQTerrace, resolution: 1920x1080@60fps, αBR = 0.2, 0.4, 0.6, 0.8)

Note that the logarithmic behavior usually observed in rate-distortion plots under

VBR conditions becomes linear when we use ABR conditions with equally-spaced bitrate

factors. An interesting remark in Figure 7.4 is that the reference RD curve is below the

curves representing the fast transcoding methods when αBR is equal 0.6. It means that,

for this sequence, compression efficiency was improved. As already explained, the MV

mapping strategy is the main responsible for this, but the PM ET method also has a small

contribution (see Table 7.10). The gap between the reference and the fast methods be-

comes smaller when αBR changes to 0.4, indicating that the performance of the proposed

methods reduces when the distance between the reference and target bitrate is greater.

In Figure 7.5, we can see that the reference encoder is the most efficient in terms of



157

Figure 7.5: Rate-distortion curves of the proposed statiscal-based ET methods com-
bined with the CTURF ET method (sequence: BQTerrace, resolution: 1920x1080@60fps,
αBR = 0.2, 0.4, 0.6, 0.8)

compression, as its curve is above all others, but this is an expected trade-off for time sav-

ings above 40%. Once again we observe a slight reduction in compression performance

when the bitrate factor is equal to 0.4.

Finally, we compare once again our results with those obtained in (VAN et al.,

2016) and (YANG; ZHONG, 2017), showing that now we can achieve similar time sav-

ings with better rate-distortion efficiency.

Table 7.13: Comparison of the combined fast transcoding methods with related work
(sorted by average time savings)

Method BD-BR TS BDTSRatio

(YANG; ZHONG, 2017) 2.26 55.01 4.10
Proposed (CTURF+TU+PM+ME ET) 1.21 61.25 1.97

(VAN et al., 2016) 1.89 63.68 2.96
Proposed (CTURF+PU+TU+PM+ME) 1.73 67.54 2.56
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8 CONCLUSIONS AND FUTURE DIRECTIONS

The research that was developed to accomplish this thesis resulted in many contri-

butions for fast encoding and transcoding decisions using the HEVC standard. Extensive

simulations were carried out in each step of this study, followed by thorough analyses

that led to insightful discoveries related to: (i) the complexity of the partitioning deci-

sions and ME searches in HEVC; (ii) the usefulness of the encoding information and of

a pre-encoded bitstream in predicting the outcome of these decisions; (iii) the efficiency

of learning-based methods to reduce the encoding complexity and provide complexity

scaling mechanisms; and (iv) the efficiency of learning- and statistical-based methods to

reduce the transrating complexity. This chapter concludes this thesis, pointing the main

contributions and discussing future directions for this research.

8.1 Main Findings

In the assessment of the HEVC encoding tools that was presented in Chapter 4, it

was discovered that significant time is spent evaluating modes that are not used to encode

the output bitstream, showing the necessity of fast decision methods that try to predict

which modes are irrelevant in each case. The detailed profiling of the RQT and ME

searches revealed that the RQT and IME searches are the main important indicators of

scene complexity. When encoding two sequences of the same resolution, more compu-

tation is spent on the IME search and on the RQT processing if one of them is more

complex, whereas the FME takes practically the same time.

The analysis presented in Chapter 5 proved that some encoding variables are

highly correlated with the partitioning decisions and can therefore be used to make ac-

curate predictions on the outcome of these processes. A statistical analysis of the en-

coding decisions uncovered that usually a single mode stands out among the others, and

this mode is usually the one that brings higher bitrate savings. For instance, the encoder

chooses 2Nx2N PUs more often and larger TU blocks as well. It was also observed that

the ME searches are harder to predict, which can be linked to how this problem was

framed or to the lack of more relevant features.

The transcoding statistics revealed that a high-quality bitstream can be very useful

to predict the behavior of subsequent encodings with lower quality. A tendency of select-

ing larger CU, PU and TU blocks was also observed in this analysis, and this increases
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gradually as the target bitrate is reduced. It was also confirmed that the motion vector

produced in the High-Quality reference is a valuable information for the IME search in

LQ encodings, leading to gains in coding performance on most of the cases.

The results presented in Chapter 6 have shown that learning-based methods per-

form very well, reducing the complexity of HEVC encoders and transcoders with tolera-

ble losses in compression. It was discovered that Decision Trees outperform SVMs, even

when significant training refinements are employed to train the latter. The proposed en-

coding early termination methods achieved efficient results in most cases. The CU, PU

and RQT Early Termination (ET) results stood out compared with the ME and FME ET

methods, which was expected after the analysis of Chapter 5. It was also proven that

complexity scalability can be easily achieved via decision threshold tuning. With this ap-

proach, the time savings ranged from 37% up to 78%, with BD-BR increments between

0.04% and 4.8%.

Finally, the transcoding results have shown that it is possible to combine statistical-

and learning-based approaches to maximize the complexity reduction with small losses in

BD-bitrate. It was highlighted that the CTU-level Random Forests can predict the Upper

and Lower Bounds of the CTU quadtree computations, reducing the encoding time sig-

nificantly and outperforming a naive statistical-based approach for the same purpose. The

methods to speed up other encoding decisions performed relatively well when employed

separately, but the time savings were not very significant. However, combining them with

the proposed CTU-level ET led to average time savings ranging from 43% up to 67%

compared with a reference transcoder (full decode + full re-encode), whereas the BD-BR

increment ranged from 0.34% up to 1.7%.

Comparisons with state-of-the-art references demonstrated that the proposed meth-

ods outperform competing solutions, ascertaining the efficacy of our solutions.

In light of all this empirical evidence, we conclude that this thesis was successful

in proving its claim.

8.2 Future Directions

A lot of ground was covered throughout this research, but there are many points

that can be considered for future research. Improvement of the methods that speed the

Motion Estimation searches stands out among them, because this will significantly im-

prove the effectiveness of a solution that addresses the most time-consuming components
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of HEVC encoders. The study of novel features that are more meaningful to the Motion

Estimation decisions will be considered, as well as alternative ways of modeling these

problems to facilitate the predictability of the outcomes.

Extending the transcoding methodology to address more applications is also an

important line of work. For instance, it would be interesting to provide adaptations for

spatial scalability, in which the dependent (LQ) bitstreams are encoded with a resolution

that is lower than that of the reference (HQ) bitstream. This would increase the applica-

bility of our methods, because this is a common approach in adaptive streaming systems.

Developing learning-based solutions for heterogeneous transcoding is a promising

topic as well. There is a large amount of content encoded in previous standards, and re-

encoding them with HEVC is advantageous for streaming servers due to its increased

efficiency. Therefore, fast transcoding methods can be of great assistance in this process.

Finally, improving the methodology to simulate a real distributed video coding

environment using DASH-like protocols will increase the scope and the importance of

this research, bringing it closer to what is actually implemented in current systems.
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APPENDIX A — INPUT SEQUENCES

Picture & Specifications Scene Description

Traffic, 2560x1600.30 fps, 8

bits/sample

Shows the traffic on three lanes. The first two lanes are slightly

jammed, so the cars move slowly. The third one is free, so cars

drive by faster.

PeopleOnStreet, 2560x1600, 30

fps, 8 bits/sample

Displays a large crowd walking in many directions. The camera

remains still.

NebutaFestival, 2560x1600, 60

fps, 10 bits/sample

Shows a float of the Aomori Nebuta Festival. The camera pans

very slightly in many directions, keeping the focus on the face of

the warrior.

SteamLocomotive, 2560x1600,

60 fps, 10 bits/sample

Depicts a locomotive moving towards the camera. The locomotive

produces lots of smoke. At a later instance, the locomotive is so

close to the camera that the surroundings can no longer be seen.

Kimono, 1920x1080.24 fps, 8

bits/sample

A lady in a kimono walks around the woods. In frame 140, a change

of scene happens, showing a Japanese house.



170

Picture & Specifications Scene Description

ParkScene, 1920x1080, 24 fps, 8

bits/sample

Depicts a park in which cyclers ride by. The camera pans to the left

slowly.

Cactus, 1920x1080, 50 fps, 8

bits/sample

Shows many objects, including a pot with a cactus that rotates ver-

tically. In addition, something similar to a weather vane with cards

and an object with two tigers attached to it both rotate horizontally.

The camera remains still.

BasketballDrive, 1920x1080, 50

fps, 8 bits/sample

A group of players exercise a basketball match. Every player moves

constantly. The camera pans to the right and to the left, always

following the players.

BQTerrace, 1920x1080, 60 fps,

8 bits/sample

The terrace above the square depicted in BQSquare is shown, but

the camera moves up, revealing a road on which cars move in both

directions. The camera continues to move up until the terrace is

barely seen.

BasketballDrill, 832x480.50 fps,

8 bits/sample

A group of players run in circles while taking turns to throw the

ball against the board. While the players are constantly moving,

the camera remains still.

BQMall, 832x480.60 fps, 8

bits/sample

Depicts a typical day at the mall, with people coming and going

from both directions. The camera steadily pans to the left. In the

last seconds, fewer people are in the scene, so most of the activity

comes from camera panning.
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Picture & Specifications Scene Description

PartyScene, 832x480, 50 fps, 8

bits/sample

Shows a party with kids enjoying themselves. Two kids circle

around the tree on the left, while the one in the middle blows bub-

bles. The camera slowly zooms in on the girl in the middle. Bub-

bles fly around.

RaceHorsesC, 832x480, 30 fps,

8 bits/sample

Depicts a group of horse riders moving around a grassy back-

ground. The camera follows their movement.

BasketballPass, 416x240, 50 fps,

8 bits/sample

Another scene from the Basketball game, in which both the players

and the camera move constantly.

BQSquare, 416x240, 60 fps, 8

bits/sample

Shows a square with a restaurant, in which people spend leisure

time. Initially only the square can be seen, but a body of water

becomes visible on the background as the camera zooms out.

BlowingBubbles, 416x240, 50

fps, 8 bits/sample

Two girls play with a bubble-blow. Many bubbles fly around, and

the camera steadily zooms out through the entire sequence.

RaceHorses, 416x240, 30 fps, 8

bits/sample

Same scene from RaceHorsesC with a smaller resolution.
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Picture & Specifications Scene Description

Kristen&Sara, 1280x720, 60 fps,

8 bits/sample

Two girls discuss in what seems to be an interview. The background

is still. They turn their heads and laugh during the conversation.

There is also a moment when the girl on the left points at the banner

in the back.

Johnny, 1280x720, 60 fps, 8

bits/sample

A man presents the news with the same still background from Kris-

ten&Sara behind him. He moves and gesticulates less compared to

the girls in the related sequence.

ChinaSpeed, 1024x768.30 fps, 8

bits/sample

A car racing game in which the background changes rapidly to pro-

vide the idea of fast movement. The foreground, containing the

user interface, stays practically unchanged.

BasketballDrillText, 832x480,

50 fps, 8 bits/sample

The same scene from BasketballDrill plus a caption box on the bot-

tom, in which a sliding text is displayed

SlideEditing, 1280x720, 30 fps,

8 bits/sample

Shows a computer screen while a user edits slides and text. Initially,

the user rolls up/down the slides panel, then starts editing a slide,

moving to the text editor afterwards. Aside from the parts being

edited by the user, the remaining background remains still.
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Picture & Specifications Scene Description

SlideShow, 1280x720, 20 fps, 8

bits/sample

Shows a Microsoft PowerPoint presentation, with many inter-

/intra-slide animations.
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APPENDIX B — FEATURES AND METRICS

B.1 List of Features used in the Fast Encoding Decisions

Feature Description Values

∆QP Delta QP of the current frame. 1, 2, 3, 4

PredMode Best prediction mode SKIP, Merge, Inter, Intra

PUPart Best PU partition
2Nx2N, 2NxN, Nx2N, NxN,

2NxnU, 2NxnD, nLx2N, nRx2N

Bits Number of encoded bits Continuous

Distortion Total distortion Continuous

CostBest Total rate-distortion cost Continuous

EntropyBins Total number of bins Continuous

SAD Absolute sum of residual data Continuous

SSE Sum of squared residual data Continuous

MSE Mean Squared Error Continuous

Cost2Nx2N

Rate-distortion cost to encode

2Nx2N partition
Continuous

Cost2NxN

Rate-distortion cost to encode

2NxN partition
Continuous

Cost2Nx2N

Rate-distortion cost to encode

Nx2N partition
Continuous

CostMSM

Rate-distortion cost to encode with

Merge-Skip mode (MSM)
Continuous

CostParent

Rate-distortion cost of the parent

CU
Continuous

CostRatio2Nx2N,MSM

RDCR between 2Nx2N and

Merge/Skip mode costs (see (15))
Continuous

CostRatioBEST,2Nx2N

RDCR between best and 2Nx2N

costs (see (15))
Continuous

CostRatioBEST,MSM

RDCR between Merge/Skip modes

and 2Nx2N costs (see (15))
Continuous

CostRatioBEST,Parent

RDCR between best CU and its

parent (see (15))
Continuous

NormCostDiff2Nx2N,MSM

NDIFF between 2Nx2N and MSM

costs (see (15))
Continuous

NormCostDiffBEST,2Nx2N

NDIFF between best and 2Nx2N

costs (see (15))
Continuous
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Feature Description Values

NormCostDiffBEST,MSM

NDIFF between MSM and 2Nx2N

costs (see (15))
Continuous

NormCostDiffBEST,Parent

NDIFF between best CU and its

parent (see (15))
Continuous

RQTDepth RQT depth of the best mode 0,1,2

CBF Coded Block Flag 0,1

SkipFlag SKIP mode flag 0,1

MergeFlag Merge mode flag 0,1

NonZeroCoeffs

Number of non-zero coefficients

from quantized data
Continuous

SideInfoBits

Percentage of bits used as side in-

formation in the CU (proposed in

(SHEN; YU, 2013b))

Continuous

RefFrameIDX

Reference index from Motion Esti-

mation
-1, 0, 1

|MVint|
Magnitude of the integer Motion

Vector
Continuous

|MVfrac|
Magnitude of the fractional Motion

Vector
Continuous

|MVpredint|
Magnitude of the predicted integer

Motion Vector
Continuous

|MVpredfrac|
Magnitude of the predicted frac-

tional Motion Vector
Continuous

|∆MVint|
Magnitude of the integer Differen-

tial Motion Vector
Continuous

|∆MVfrac|
Magnitude of the fractional Differ-

ential Motion Vector
Continuous

MVPIdx Motion Vector Prediction Index -1, 0, 1

InterDIR Inter-prediction direction None, L0, L1, Bipredicted

FMEFlag Fractional Motion Estimation mode
No FME, Half-pel FME, Quarter-

pel FME

DepthColoc

Average depth of the temporal Co-

located CUs
continuous

SplitFlagColoc

Temporal Co-located CU split

count from L0 and L1 lists
0, 1, 2

DepthLeft Depth of the left neighboring CU 0,1,2,3

SplitFlagLeft Split flag of the left neighboring CU 0,1

DepthUp Depth of the upper neighboring CU 0,1,2,3
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Feature Description Values

SplitFlagUp

Split flag of the upper neighboring

CU
0,1

DepthUpLeft

Depth of the upper-left neighboring

CU
0,1,2,3

SplitUpLeft

Split flag of the upper-left neigh-

boring CU
0,1

DepthUpRight

Depth of the upper-right neighbor-

ing CU
0,1,2,3

SplitFlagUpRight

Split flag of the upper-right neigh-

boring CU
0,1

CtxDepthCU

Average depth of the temporal Co-

located CUs plus the neighboring

ones

continuous

SplitFlagCtx

Co-located CUs plus neighboring

CUs split count
0, 1, 2, 3, 4, 5, 6

CtxDepthCTU

Average depth of neighboring

CTUs
Continuous

∆CtxDepthCU

Delta Average depth of the tempo-

ral Co-located CUs plus the neigh-

boring ones

continuous

∆CtxDepthCTU

Delta Average depth of neighboring

CTUs
Continuous

B.2 Scores of the Features used in the Fast Encoding Decisions

Information Gain Ratio for the CU partitioning prediction

IG 64x64 32x32 16x16 Average

Bits 0.50 0.41 0.42 0.44

SkipFlag 0.49 0.41 0.41 0.44

NormCostDiffBEST,MSM 0.39 0.35 0.33 0.36

CtxDepthCU 0.39 0.36 0.33 0.36

CtxDepthCTU 0.37 0.30 0.32 0.33

CostRatioBEST,MSM 0.35 0.30 0.28 0.31

CBF 0.43 0.25 0.23 0.31

RQTDepth 0.32 0.28 0.25 0.28

PredMode 0.34 0.24 0.23 0.27

CostRatio2Nx2N,MSM 0.25 0.22 0.33 0.27

SideInfoBits 0.35 0.23 0.21 0.27
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IG 64x64 32x32 16x16 Average

SplitFlagLeft 0.28 0.26 0.22 0.25

SplitFlagUp 0.27 0.26 0.22 0.25

SplitFlagUpRight 0.27 0.26 0.22 0.25

NormCostDiff2Nx2N,MSM 0.10 0.20 0.31 0.20

SplitUpLeft 0.20 0.19 0.18 0.19

SplitFlagCtx 0.17 0.18 0.19 0.18

SplitFlagColoc 0.15 0.18 0.17 0.17

DepthLeft 0.19 0.14 0.11 0.14

DepthUp 0.19 0.14 0.10 0.14

DepthUpRight 0.19 0.14 0.10 0.14

PUPart 0.15 0.14 0.14 0.14

NormCostDiffBEST,2Nx2N 0.05 0.12 0.25 0.14

CostRatioBEST,2Nx2N 0.05 0.12 0.25 0.14

DepthColoc 0.11 0.14 0.14 0.13

|∆MVint| 0.15 0.10 0.10 0.12

DepthUpLeft 0.14 0.11 0.09 0.11

MVPIdx 0.14 0.10 0.10 0.11

NonZeroCoeffs 0.13 0.06 0.06 0.08

Distortion 0.07 0.08 0.07 0.07

|∆MVfrac| 0.09 0.06 0.06 0.07

SSE 0.05 0.09 0.07 0.07

MSE 0.05 0.09 0.07 0.07

CostMSM 0.06 0.07 0.08 0.07

EntropyBins 0.09 0.04 0.06 0.07

SAD 0.05 0.09 0.06 0.07

CostBest 0.06 0.06 0.07 0.06

Cost2Nx2N 0.05 0.07 0.04 0.05

Cost2NxN 0.05 0.07 0.03 0.05

MergeFlag 0.00 0.04 0.09 0.04

∆QP 0.03 0.04 0.05 0.04

Cost2Nx2N 0.05 0.04 0.03 0.04

InterDIR 0.02 0.02 0.04 0.03

CostParent 0.00 0.02 0.05 0.03

|MVpredint| 0.04 0.01 0.00 0.02

|MVint| 0.04 0.01 0.00 0.02

RefFrameIDX 0.02 0.01 0.02 0.01

CostRatioBEST,Parent 0.00 0.01 0.02 0.01

FMEFlag 0.02 0.01 0.00 0.01

|MVfrac| 0.01 0.00 0.00 0.01

|MVpredfrac| 0.01 0.00 0.00 0.00
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IG 64x64 32x32 16x16 Average

NormCostDiffBEST,Parent 0.00 0.01 0.00 0.00

F-Score for the CU partitioning prediction

FSC 64x64 32x32 16x16 Average

SkipFlag 1.38 0.94 0.88 1.06

PredMode 1.53 0.71 0.60 0.94

SplitFlagCtx 1.06 0.91 0.67 0.88

CtxDepthCTU 0.80 0.84 0.84 0.83

CtxDepthCU 0.71 0.82 0.70 0.74

CBF 1.09 0.48 0.43 0.67

DepthColoc 0.41 0.77 0.77 0.65

RQTDepth 0.83 0.50 0.44 0.59

SplitFlagColoc 0.40 0.52 0.38 0.43

SplitFlagLeft 0.54 0.39 0.25 0.40

SplitFlagUp 0.53 0.38 0.25 0.39

SplitFlagUpRight 0.53 0.38 0.25 0.39

DepthLeft 0.42 0.37 0.22 0.34

DepthUp 0.42 0.36 0.21 0.33

DepthUpRight 0.42 0.36 0.21 0.33

DepthUpLeft 0.28 0.31 0.27 0.28

PUPart 0.30 0.28 0.23 0.27

SideInfoBits 0.41 0.16 0.21 0.26

SplitUpLeft 0.34 0.25 0.17 0.25

CostRatioBEST,2Nx2N 0.07 0.16 0.36 0.20

NormCostDiffBEST,2Nx2N 0.07 0.16 0.36 0.20

Bits 0.22 0.08 0.21 0.17

MVPIdx 0.22 0.13 0.11 0.16

|∆MVfrac| 0.17 0.10 0.08 0.12

∆QP 0.08 0.10 0.14 0.11

InterDIR 0.01 0.03 0.08 0.04

NonZeroCoeffs 0.07 0.01 0.02 0.03

MergeFlag 0.00 0.03 0.07 0.03

|MVfrac| 0.04 0.01 0.00 0.02

EntropyBins 0.01 0.01 0.03 0.02

FMEFlag 0.04 0.01 0.00 0.02

|MVpredfrac| 0.04 0.01 0.00 0.02

|∆MVint| 0.02 0.01 0.01 0.01

Cost2Nx2N 0.00 0.00 0.02 0.01

SAD 0.01 0.01 0.01 0.01
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FSC 64x64 32x32 16x16 Average

Cost2NxN 0.00 0.00 0.02 0.01

CostMSM 0.01 0.01 0.01 0.01

Cost2Nx2N 0.00 0.00 0.02 0.01

|MVpredint| 0.01 0.00 0.00 0.01

RefFrameIDX 0.01 0.00 0.01 0.00

|MVint| 0.01 0.00 0.00 0.00

CostRatio2Nx2N,MSM 0.00 0.00 0.00 0.00

NormCostDiff2Nx2N,MSM 0.00 0.00 0.00 0.00

CostBest 0.00 0.00 0.00 0.00

Distortion 0.00 0.00 0.00 0.00

MSE 0.00 0.00 0.00 0.00

SSE 0.00 0.00 0.00 0.00

CostRatioBEST,Parent 0.00 0.00 0.00 0.00

NormCostDiffBEST,Parent 0.00 0.00 0.00 0.00

CostRatioBEST,MSM 0.00 0.00 0.00 0.00

NormCostDiffBEST,MSM 0.00 0.00 0.00 0.00

CostParent 0.00 0.00 0.00 0.00

Information Gain Ratio for the PU partitioning prediction

IG 64x64 32x32 16x16 8x8 Average

Bits 0.35 0.37 0.42 0.46 0.40

CostRatio2Nx2N,MSM 0.26 0.29 0.38 0.49 0.36

SkipFlag 0.35 0.32 0.34 0.37 0.35

NormCostDiff2Nx2N,MSM 0.08 0.21 0.35 0.49 0.28

CtxDepthCTU 0.30 0.28 0.28 0.27 0.28

PredMode 0.27 0.25 0.27 0.29 0.27

CBF 0.28 0.25 0.26 0.27 0.26

SideInfoBits 0.23 0.20 0.18 0.28 0.22

CtxDepthCU 0.29 0.20 0.14 0.12 0.19

RQTDepth 0.21 0.17 0.16 0.16 0.17

NormCostDiffBEST,MSM 0.16 0.14 0.12 0.13 0.14

CostRatioBEST,MSM 0.16 0.14 0.12 0.13 0.14

|∆MVint| 0.15 0.13 0.12 0.14 0.13

MVPIdx 0.15 0.13 0.12 0.14 0.13

SSE 0.11 0.09 0.12 0.16 0.12

SAD 0.08 0.09 0.12 0.15 0.11

SplitFlagUp 0.18 0.14 0.11 0.00 0.11

SplitFlagLeft 0.18 0.13 0.10 0.00 0.10

Distortion 0.11 0.11 0.08 0.09 0.10
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CostBest 0.09 0.08 0.10 0.12 0.10

CostMSM 0.07 0.08 0.10 0.12 0.09

NonZeroCoeffs 0.14 0.10 0.07 0.05 0.09

|∆MVfrac| 0.09 0.08 0.08 0.09 0.08

DepthColoc 0.09 0.09 0.08 0.07 0.08

SplitUpLeft 0.14 0.11 0.09 0.00 0.08

SplitFlagColoc 0.15 0.09 0.09 0.00 0.08

MergeFlag 0.04 0.07 0.09 0.11 0.07

SplitFlagCtx 0.13 0.08 0.08 0.00 0.07

Cost2Nx2N 0.06 0.08 0.04 0.11 0.07

|MVpredint| 0.09 0.08 0.06 0.04 0.07

DepthUp 0.12 0.08 0.04 0.01 0.06

DepthUpRight 0.12 0.08 0.04 0.01 0.06

|MVint| 0.09 0.07 0.06 0.03 0.06

DepthLeft 0.12 0.08 0.04 0.01 0.06

DepthUpLeft 0.10 0.07 0.05 0.02 0.06

CostParent 0.00 0.04 0.07 0.09 0.05

CostRatioBEST,Parent 0.00 0.02 0.03 0.08 0.03

FMEFlag 0.05 0.04 0.03 0.01 0.03

∆QP 0.02 0.02 0.02 0.03 0.02

InterDIR 0.00 0.00 0.01 0.06 0.02

|MVfrac| 0.02 0.02 0.01 0.00 0.01

|MVpredfrac| 0.02 0.02 0.01 0.00 0.01

RefFrameIDX 0.02 0.01 0.01 0.01 0.01

NormCostDiffBEST,Parent 0.00 0.01 0.01 0.03 0.01

PUPart 0.00 0.00 0.00 0.00 0.00

Cost2NxN 0.00 0.00 0.00 0.00 0.00

Cost2Nx2N 0.00 0.00 0.00 0.00 0.00

EntropyBins 0.00 0.00 0.00 0.00 0.00

F-Score for the PU partitioning prediction

FSC 64x64 32x32 16x16 8x8 Average

SkipFlag 0.80 0.70 0.78 0.86 0.79

PredMode 0.76 0.63 0.69 0.74 0.70

CostRatioBEST,2Nx2N 0.20 0.40 0.73 1.28 0.65

CBF 0.55 0.47 0.50 0.51 0.51

CtxDepthCTU 0.51 0.49 0.46 0.43 0.47

DepthColoc 0.35 0.39 0.32 0.26 0.33

CtxDepthCU 0.42 0.39 0.25 0.14 0.30

SplitFlagCtx 0.65 0.30 0.17 0.00 0.28



182

RQTDepth 0.47 0.19 0.14 0.09 0.22

SideInfoBits 0.22 0.20 0.20 0.23 0.21

MVPIdx 0.25 0.20 0.15 0.15 0.19

SplitFlagColoc 0.40 0.20 0.14 0.00 0.19

Bits 0.10 0.10 0.14 0.29 0.16

DepthUpLeft 0.18 0.18 0.11 0.04 0.13

DepthUp 0.24 0.18 0.08 0.02 0.13

DepthUpRight 0.24 0.18 0.08 0.02 0.13

SplitFlagLeft 0.31 0.14 0.06 0.00 0.13

SplitFlagUp 0.30 0.14 0.06 0.00 0.13

SplitFlagUpRight 0.30 0.14 0.06 0.00 0.13

DepthLeft 0.24 0.18 0.07 0.02 0.13

|∆MVfrac| 0.17 0.14 0.10 0.10 0.13

SplitUpLeft 0.22 0.11 0.04 0.00 0.09

SAD 0.07 0.05 0.06 0.07 0.06

∆QP 0.05 0.05 0.05 0.09 0.06

|MVfrac| 0.08 0.06 0.05 0.02 0.05

|MVpredfrac| 0.08 0.06 0.05 0.02 0.05

FMEFlag 0.08 0.06 0.04 0.01 0.05

NonZeroCoeffs 0.07 0.03 0.03 0.02 0.04

MergeFlag 0.02 0.03 0.04 0.05 0.03

CostMSM 0.03 0.03 0.03 0.03 0.03

Cost2Nx2N 0.02 0.00 0.01 0.08 0.03

CostBest 0.03 0.03 0.03 0.03 0.03

InterDIR 0.00 0.00 0.01 0.09 0.03

RefFrameIDX 0.02 0.01 0.01 0.00 0.01

CostParent 0.00 0.01 0.01 0.01 0.01

SSE 0.02 0.01 0.01 0.00 0.01

MSE 0.02 0.01 0.01 0.00 0.01

|MVpredint| 0.01 0.01 0.00 0.02 0.01

|MVint| 0.01 0.01 0.00 0.01 0.01

Distortion 0.01 0.01 0.01 0.00 0.01

CostRatio2Nx2N,MSM 0.01 0.01 0.01 0.01 0.01

NormCostDiff2Nx2N,MSM 0.01 0.01 0.01 0.01 0.01

|∆MVint| 0.00 0.00 0.00 0.02 0.01

CostRatioBEST,Parent 0.00 0.00 0.00 0.00 0.00

NormCostDiffBEST,Parent 0.00 0.00 0.00 0.00 0.00

CostRatioBEST,MSM 0.00 0.00 0.00 0.00 0.00

NormCostDiffBEST,MSM 0.00 0.00 0.00 0.00 0.00

PUPart 0.00 0.00 0.00 0.00 0.00

Cost2NxN 0.00 0.00 0.00 0.00 0.00
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Cost2Nx2N 0.00 0.00 0.00 0.00 0.00

EntropyBins 0.00 0.00 0.00 0.00 0.00

Information Gain Ratio for the RQT partitioning prediction

IG 64x64 32x32 16x16 8x8 Average

CBF 0.87 0.60 0.62 0.68 0.69

Bits 0.80 0.58 0.62 0.68 0.67

SkipFlag 0.70 0.56 0.61 0.68 0.64

PredMode 0.70 0.53 0.58 0.65 0.62

RQTDepth 0.60 0.45 0.43 0.45 0.48

SideInfoBits 0.62 0.44 0.42 0.37 0.46

CostRatio2Nx2N,MSM 0.29 0.27 0.42 0.54 0.38

CtxDepthCTU 0.39 0.35 0.34 0.31 0.34

CtxDepthCU 0.40 0.40 0.34 0.19 0.33

NormCostDiff2Nx2N,MSM 0.10 0.22 0.37 0.53 0.31

SplitFlagUp 0.29 0.27 0.20 0.00 0.19

SplitFlagLeft 0.29 0.26 0.19 0.00 0.19

SplitUpLeft 0.23 0.21 0.17 0.00 0.15

SSE 0.18 0.10 0.13 0.16 0.14

|∆MVint| 0.17 0.13 0.13 0.13 0.14

SAD 0.15 0.10 0.12 0.16 0.13

CostRatioBEST,MSM 0.16 0.14 0.13 0.09 0.13

MVPIdx 0.15 0.12 0.12 0.12 0.13

NonZeroCoeffs 0.27 0.09 0.07 0.07 0.13

SplitFlagCtx 0.16 0.17 0.16 0.00 0.12

DepthColoc 0.09 0.15 0.14 0.10 0.12

DepthUp 0.20 0.14 0.10 0.02 0.11

DepthUpRight 0.20 0.14 0.10 0.02 0.11

DepthLeft 0.19 0.14 0.09 0.02 0.11

SplitFlagColoc 0.11 0.17 0.16 0.00 0.11

CostMSM 0.10 0.07 0.10 0.13 0.10

DepthUpLeft 0.16 0.12 0.10 0.03 0.10

CostBest 0.09 0.07 0.10 0.13 0.10

Distortion 0.09 0.08 0.10 0.11 0.09

|∆MVfrac| 0.09 0.07 0.08 0.08 0.08

Cost2Nx2N 0.08 0.06 0.05 0.13 0.08

MergeFlag 0.15 0.09 0.05 0.03 0.08

∆QP 0.06 0.06 0.07 0.08 0.07

|MVpredint| 0.10 0.04 0.04 0.02 0.05

|MVint| 0.10 0.03 0.04 0.02 0.05
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CostParent 0.00 0.02 0.06 0.10 0.05

CostRatioBEST,Parent 0.00 0.03 0.02 0.09 0.04

FMEFlag 0.05 0.02 0.02 0.01 0.03

InterDIR 0.01 0.01 0.02 0.03 0.02

NormCostDiffBEST,Parent 0.00 0.01 0.01 0.05 0.02

|MVfrac| 0.02 0.01 0.01 0.01 0.01

|MVpredfrac| 0.02 0.01 0.01 0.01 0.01

RefFrameIDX 0.02 0.00 0.00 0.01 0.01

PUPart 0.00 0.00 0.00 0.00 0.00

Cost2NxN 0.00 0.00 0.00 0.00 0.00

Cost2Nx2N 0.00 0.00 0.00 0.00 0.00

EntropyBins 0.00 0.00 0.00 0.00 0.00

F-Score for the RQT partitioning prediction

FSC 64x64 32x32 16x16 8x8 Average

CBF 12.40 1.89 2.17 2.99 4.86

PredMode 7.67 1.80 2.14 2.98 3.65

SkipFlag 3.18 1.52 1.94 2.77 2.35

RQTDepth 2.86 1.49 1.19 0.80 1.58

CtxDepthCTU 0.74 0.99 0.98 0.70 0.85

∆CtxDepthCTU 0.74 0.99 0.98 0.70 0.85

CtxDepthCU 0.74 0.99 0.75 0.29 0.69

∆CtxDepthCU 0.74 0.99 0.75 0.29 0.69

CostRatioBEST,2Nx2N 0.20 0.35 0.71 1.30 0.64

NormCostDiffBEST,2Nx2N 0.20 0.35 0.71 1.30 0.64

SplitFlagCtx 1.01 0.98 0.49 0.00 0.62

SideInfoBits 1.10 0.36 0.44 0.43 0.58

DepthColoc 0.31 0.83 0.75 0.42 0.58

Bits 0.41 0.17 0.31 0.59 0.37

SplitFlagUp 0.59 0.45 0.18 0.00 0.31

SplitFlagUpRight 0.59 0.45 0.18 0.00 0.31

SplitFlagLeft 0.58 0.44 0.17 0.00 0.30

DepthUp 0.44 0.41 0.21 0.04 0.28

DepthUpRight 0.44 0.41 0.21 0.04 0.28

SplitFlagColoc 0.27 0.51 0.32 0.00 0.27

DepthLeft 0.42 0.41 0.21 0.04 0.27

DepthUpLeft 0.32 0.35 0.28 0.08 0.26

SplitUpLeft 0.42 0.30 0.13 0.00 0.21

∆QP 0.17 0.19 0.23 0.24 0.21

MVPIdx 0.25 0.19 0.17 0.11 0.18
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|∆MVfrac| 0.21 0.15 0.13 0.09 0.14

NonZeroCoeffs 0.20 0.00 0.00 0.03 0.06

SAD 0.16 0.00 0.00 0.03 0.05

|MVfrac| 0.09 0.04 0.04 0.02 0.05

Cost2Nx2N 0.00 0.00 0.04 0.13 0.04

FMEFlag 0.08 0.03 0.03 0.01 0.04

|MVpredfrac| 0.08 0.03 0.03 0.01 0.04

|MVpredint| 0.07 0.01 0.01 0.02 0.03

|MVint| 0.06 0.01 0.01 0.01 0.02

|∆MVint| 0.03 0.02 0.02 0.02 0.02

MergeFlag 0.05 0.02 0.01 0.00 0.02

InterDIR 0.00 0.01 0.02 0.04 0.02

MSE 0.04 0.00 0.00 0.00 0.01

SSE 0.04 0.00 0.00 0.00 0.01

RefFrameIDX 0.03 0.00 0.00 0.01 0.01

Distortion 0.01 0.01 0.01 0.01 0.01

CostRatio2Nx2N,MSM 0.01 0.00 0.01 0.01 0.01

NormCostDiff2Nx2N,MSM 0.01 0.00 0.01 0.01 0.01

CostMSM 0.01 0.00 0.00 0.00 0.00

CostBest 0.00 0.00 0.00 0.00 0.00

NormCostDiffBEST,MSM 0.00 0.00 0.00 0.00 0.00

CostRatioBEST,MSM 0.00 0.00 0.00 0.00 0.00

CostParent 0.00 0.00 0.00 0.00 0.00

CostRatioBEST,Parent 0.00 0.00 0.00 0.00 0.00

NormCostDiffBEST,Parent 0.00 0.00 0.00 0.00 0.00

PUPart 0.00 0.00 0.00 0.00 0.00

Cost2NxN 0.00 0.00 0.00 0.00 0.00

Cost2Nx2N 0.00 0.00 0.00 0.00 0.00

EntropyBins 0.00 0.00 0.00 0.00 0.00

Information Gain Ratio for the ME Early Termination

IG 64x64 32x32 16x16 8x8 Average

RefFrameIDX 0.34 0.40 0.43 0.46 0.41

InterDIR 0.10 0.11 0.13 0.14 0.12

SkipFlag 0.05 0.07 0.09 0.11 0.08

Bits 0.05 0.07 0.09 0.11 0.08

CBF 0.04 0.07 0.09 0.11 0.08

PredMode 0.04 0.06 0.08 0.10 0.07

SAD 0.07 0.07 0.06 0.06 0.07

SSE 0.07 0.07 0.06 0.06 0.07
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CostRatioBEST,2Nx2N 0.05 0.06 0.06 0.08 0.07

NormCostDiffBEST,2Nx2N 0.05 0.06 0.06 0.08 0.07

CostRatio2Nx2N,MSM 0.05 0.06 0.06 0.08 0.07

SideInfoBits 0.06 0.07 0.07 0.05 0.06

NormCostDiff2Nx2N,MSM 0.03 0.05 0.06 0.07 0.06

∆CtxDepthCTU 0.05 0.05 0.05 0.04 0.05

|∆MVint| 0.02 0.03 0.04 0.06 0.04

|MVpredint| 0.04 0.04 0.04 0.03 0.04

Cost2Nx2N 0.01 0.00 0.05 0.09 0.04

|MVint| 0.04 0.04 0.04 0.03 0.04

NormCostDiffBEST,MSM 0.03 0.03 0.03 0.03 0.03

CostRatioBEST,MSM 0.03 0.03 0.03 0.03 0.03

MVPIdx 0.02 0.03 0.03 0.04 0.03

NonZeroCoeffs 0.03 0.04 0.03 0.02 0.03

∆QP 0.03 0.03 0.03 0.03 0.03

CtxDepthCU 0.05 0.02 0.01 0.01 0.02

∆CtxDepthCU 0.05 0.02 0.01 0.01 0.02

|∆MVfrac| 0.01 0.02 0.03 0.03 0.02

MergeFlag 0.02 0.01 0.01 0.03 0.02

RQTDepth 0.03 0.00 0.01 0.02 0.02

DepthColoc 0.01 0.01 0.01 0.01 0.01

CostMSM 0.01 0.01 0.01 0.01 0.01

CostBest 0.01 0.01 0.01 0.01 0.01

SplitFlagUp 0.02 0.01 0.01 0.00 0.01

SplitFlagUpRight 0.02 0.01 0.01 0.00 0.01

SplitFlagLeft 0.02 0.00 0.01 0.00 0.01

SplitUpLeft 0.02 0.00 0.01 0.00 0.01

DepthUpLeft 0.01 0.01 0.00 0.00 0.01

CostRatioBEST,Parent 0.00 0.01 0.01 0.01 0.01

DepthUp 0.01 0.01 0.00 0.00 0.01

DepthUpRight 0.01 0.01 0.00 0.00 0.01

CostParent 0.00 0.01 0.01 0.01 0.01

SplitFlagColoc 0.02 0.00 0.00 0.00 0.01

DepthLeft 0.01 0.01 0.00 0.00 0.01

SplitFlagCtx 0.02 0.00 0.00 0.00 0.01

NormCostDiffBEST,Parent 0.00 0.01 0.00 0.00 0.00

Distortion 0.00 0.00 0.00 0.00 0.00

|MVpredfrac| 0.00 0.00 0.00 0.00 0.00

|MVfrac| 0.00 0.00 0.00 0.00 0.00

FMEFlag 0.00 0.00 0.00 0.00 0.00

PUPart 0.00 0.00 0.00 0.00 0.00
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Cost2NxN 0.00 0.00 0.00 0.00 0.00

Cost2Nx2N 0.00 0.00 0.00 0.00 0.00

EntropyBins 0.00 0.00 0.00 0.00 0.00

F-Score for the ME Early Termination

FSC 64x64 32x32 16x16 8x8 Average

SkipFlag 0.08 0.11 0.13 0.14 0.11

PredMode 0.07 0.10 0.13 0.13 0.11

RefFrameIDX 0.12 0.12 0.10 0.08 0.11

CBF 0.05 0.09 0.12 0.12 0.10

CostRatioBEST,2Nx2N 0.02 0.07 0.11 0.14 0.09

NormCostDiffBEST,2Nx2N 0.02 0.07 0.11 0.14 0.09

SideInfoBits 0.08 0.10 0.10 0.07 0.09

InterDIR 0.06 0.07 0.08 0.11 0.08

SAD 0.08 0.08 0.06 0.05 0.07

Bits 0.04 0.05 0.07 0.09 0.06

∆QP 0.04 0.04 0.05 0.05 0.04

∆CtxDepthCTU 0.02 0.03 0.04 0.04 0.03

CtxDepthCTU 0.02 0.03 0.04 0.04 0.03

MVPIdx 0.03 0.03 0.02 0.02 0.02

|MVpredint| 0.03 0.03 0.03 0.02 0.02

|∆MVfrac| 0.03 0.03 0.03 0.02 0.02

NonZeroCoeffs 0.02 0.03 0.03 0.01 0.02

|MVint| 0.02 0.02 0.02 0.01 0.02

Cost2Nx2N 0.00 0.00 0.02 0.05 0.02

DepthColoc 0.01 0.02 0.02 0.02 0.02

SplitFlagCtx 0.05 0.00 0.01 0.00 0.01

CtxDepthCU 0.02 0.02 0.01 0.01 0.01

∆CtxDepthCU 0.02 0.02 0.01 0.01 0.01

|∆MVint| 0.02 0.02 0.01 0.01 0.01

MSE 0.02 0.01 0.01 0.00 0.01

SSE 0.02 0.01 0.01 0.00 0.01

SplitFlagColoc 0.04 0.00 0.00 0.00 0.01

DepthUpLeft 0.01 0.02 0.01 0.00 0.01

RQTDepth 0.03 0.00 0.00 0.00 0.01

SplitFlagUp 0.03 0.00 0.00 0.00 0.01

SplitFlagUpRight 0.03 0.00 0.00 0.00 0.01

SplitFlagLeft 0.02 0.00 0.00 0.00 0.01

DepthUp 0.01 0.01 0.00 0.00 0.01

DepthUpRight 0.01 0.01 0.00 0.00 0.01
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SplitUpLeft 0.02 0.00 0.00 0.00 0.01

DepthLeft 0.01 0.01 0.00 0.00 0.01

MergeFlag 0.01 0.00 0.00 0.00 0.01

CostMSM 0.01 0.01 0.00 0.00 0.01

CostBest 0.01 0.01 0.00 0.00 0.00

FMEFlag 0.00 0.00 0.00 0.01 0.00

CostParent 0.00 0.00 0.00 0.00 0.00

|MVfrac| 0.00 0.00 0.00 0.00 0.00

|MVpredfrac| 0.00 0.00 0.00 0.00 0.00

Distortion 0.00 0.00 0.00 0.00 0.00

CostRatioBEST,MSM 0.00 0.00 0.00 0.00 0.00

NormCostDiffBEST,MSM 0.00 0.00 0.00 0.00 0.00

CostRatio2Nx2N,MSM 0.00 0.00 0.00 0.00 0.00

NormCostDiff2Nx2N,MSM 0.00 0.00 0.00 0.00 0.00

CostRatioBEST,Parent 0.00 0.00 0.00 0.00 0.00

NormCostDiffBEST,Parent 0.00 0.00 0.00 0.00 0.00

PUPart 0.00 0.00 0.00 0.00 0.00

Cost2NxN 0.00 0.00 0.00 0.00 0.00

Cost2Nx2N 0.00 0.00 0.00 0.00 0.00

EntropyBins 0.00 0.00 0.00 0.00 0.00

Information Gain Ratio for the FMEFlag Early Termination

IG 64x64 32x32 16x16 8x8 Average

FMEFlag 0.43 0.48 0.52 0.56 0.50

|MVpredint| 0.37 0.39 0.40 0.41 0.39

|MVint| 0.37 0.39 0.40 0.41 0.39

|MVfrac| 0.21 0.24 0.26 0.29 0.25

|MVpredfrac| 0.21 0.24 0.26 0.28 0.25

CostRatioBEST,MSM 0.15 0.15 0.15 0.15 0.15

NormCostDiffBEST,MSM 0.15 0.15 0.15 0.15 0.15

CostMSM 0.13 0.11 0.10 0.10 0.11

CostBest 0.13 0.11 0.10 0.10 0.11

Distortion 0.13 0.11 0.10 0.09 0.11

MSE 0.13 0.11 0.10 0.08 0.10

SSE 0.13 0.11 0.10 0.08 0.10

SAD 0.13 0.11 0.10 0.08 0.10

CostRatioBEST,2Nx2N 0.07 0.08 0.08 0.15 0.09

NormCostDiffBEST,2Nx2N 0.07 0.08 0.08 0.15 0.09

CostRatio2Nx2N,MSM 0.07 0.08 0.08 0.15 0.09

NormCostDiff2Nx2N,MSM 0.07 0.08 0.08 0.15 0.09
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RefFrameIDX 0.07 0.07 0.08 0.09 0.08

InterDIR 0.07 0.07 0.08 0.09 0.08

CostRatioBEST,Parent 0.00 0.05 0.10 0.13 0.07

Cost2Nx2N 0.10 0.07 0.05 0.06 0.07

CostParent 0.00 0.09 0.10 0.09 0.07

Bits 0.10 0.07 0.05 0.03 0.06

SideInfoBits 0.10 0.07 0.05 0.03 0.06

∆CtxDepthCTU 0.08 0.07 0.05 0.05 0.06

CtxDepthCTU 0.08 0.07 0.05 0.05 0.06

NormCostDiffBEST,Parent 0.00 0.05 0.08 0.05 0.05

|∆MVint| 0.04 0.02 0.07 0.05 0.04

CtxDepthCU 0.08 0.03 0.01 0.00 0.03

∆CtxDepthCU 0.08 0.03 0.01 0.00 0.03

NonZeroCoeffs 0.05 0.04 0.01 0.00 0.02

DepthColoc 0.03 0.02 0.02 0.01 0.02

SkipFlag 0.05 0.02 0.00 0.00 0.02

MVPIdx 0.04 0.02 0.01 0.00 0.02

CBF 0.04 0.02 0.00 0.00 0.02

SplitFlagColoc 0.05 0.01 0.01 0.00 0.02

PredMode 0.04 0.02 0.00 0.00 0.02

|∆MVfrac| 0.03 0.02 0.01 0.00 0.01

SplitFlagUp 0.04 0.01 0.00 0.00 0.01

SplitFlagUpRight 0.04 0.01 0.00 0.00 0.01

RQTDepth 0.03 0.01 0.01 0.00 0.01

SplitFlagLeft 0.04 0.01 0.00 0.00 0.01

SplitUpLeft 0.04 0.01 0.00 0.00 0.01

SplitFlagCtx 0.03 0.01 0.00 0.00 0.01

DepthUpLeft 0.03 0.01 0.00 0.00 0.01

DepthUp 0.03 0.01 0.00 0.00 0.01

DepthUpRight 0.03 0.01 0.00 0.00 0.01

DepthLeft 0.03 0.01 0.00 0.00 0.01

MergeFlag 0.02 0.01 0.01 0.00 0.01

∆QP 0.00 0.00 0.00 0.00 0.00

PUPart 0 0 0 0 0

Cost2NxN 0 0 0 0 0

Cost2Nx2N 0 0 0 0 0

EntropyBins 0 0 0 0 0

F-Score for the FMEFlag Early Termination

FSC 64x64 32x32 16x16 8x8 Average
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FMEFlag 1.56 2.07 2.48 3.06 2.29

|MVpredfrac| 0.89 1.07 1.19 1.39 1.13

|MVfrac| 0.89 1.07 1.17 1.38 1.13

CostRatioBEST,2Nx2N 0.12 0.12 0.07 0.02 0.08

NormCostDiffBEST,2Nx2N 0.12 0.12 0.07 0.02 0.08

RefFrameIDX 0.06 0.06 0.06 0.07 0.06

DepthColoc 0.07 0.05 0.04 0.03 0.05

∆CtxDepthCTU 0.07 0.05 0.03 0.02 0.05

CtxDepthCTU 0.07 0.05 0.03 0.02 0.05

SAD 0.07 0.05 0.03 0.01 0.04

CostRatioBEST,MSM 0.03 0.04 0.04 0.05 0.04

NormCostDiffBEST,MSM 0.03 0.04 0.04 0.05 0.04

SplitFlagCtx 0.12 0.02 0.00 0.00 0.03

Distortion 0.04 0.04 0.03 0.02 0.03

SplitFlagColoc 0.11 0.02 0.00 0.00 0.03

CostBest 0.05 0.04 0.03 0.02 0.03

CostMSM 0.04 0.03 0.03 0.02 0.03

CostParent 0.00 0.04 0.04 0.03 0.03

SkipFlag 0.07 0.03 0.00 0.00 0.03

CtxDepthCU 0.06 0.03 0.01 0.00 0.02

∆CtxDepthCU 0.06 0.03 0.01 0.00 0.02

PredMode 0.06 0.03 0.00 0.00 0.02

MVPIdx 0.06 0.02 0.00 0.00 0.02

CBF 0.05 0.02 0.00 0.00 0.02

|MVint| 0.02 0.02 0.02 0.02 0.02

Cost2Nx2N 0.04 0.02 0.01 0.00 0.02

SplitFlagUp 0.06 0.01 0.00 0.00 0.02

SplitFlagUpRight 0.06 0.01 0.00 0.00 0.02

SplitFlagLeft 0.06 0.01 0.00 0.00 0.02

SplitUpLeft 0.05 0.01 0.00 0.00 0.01

RQTDepth 0.04 0.01 0.00 0.00 0.01

NonZeroCoeffs 0.03 0.02 0.00 0.00 0.01

DepthUpLeft 0.04 0.02 0.00 0.00 0.01

DepthLeft 0.04 0.01 0.00 0.00 0.01

DepthUp 0.04 0.01 0.00 0.00 0.01

DepthUpRight 0.04 0.01 0.00 0.00 0.01

CostRatio2Nx2N,MSM 0.01 0.01 0.01 0.01 0.01

NormCostDiff2Nx2N,MSM 0.01 0.01 0.01 0.01 0.01

|∆MVfrac| 0.03 0.01 0.00 0.00 0.01

|MVpredint| 0.01 0.01 0.01 0.02 0.01

Bits 0.02 0.01 0.00 0.00 0.01



191

|∆MVint| 0.01 0.01 0.01 0.00 0.00

MSE 0.01 0.00 0.00 0.00 0.00

SSE 0.01 0.00 0.00 0.00 0.00

SideInfoBits 0.01 0.00 0.00 0.00 0.00

InterDIR 0.01 0.00 0.00 0.00 0.00

MergeFlag 0.01 0.00 0.00 0.00 0.00

∆QP 0.00 0.00 0.00 0.00 0.00

CostRatioBEST,Parent 0.00 0.00 0.00 0.00 0.00

NormCostDiffBEST,Parent 0.00 0.00 0.00 0.00 0.00

PUPart 0.00 0.00 0.00 0.00 0.00

Cost2NxN 0.00 0.00 0.00 0.00 0.00

Cost2Nx2N 0.00 0.00 0.00 0.00 0.00

EntropyBins 0.00 0.00 0.00 0.00 0.00

B.3 List of Features used in the Fast Transcoding Decisions

Feature Description Values

αBR

Quocient between target bitrate and HQ bi-

trate
0.1 - 0.9

cu size size of the CU in one dimension 8,16,32,64

pred mode prediction mode used to encode the CU SKIP, inter, intra

is skip Skip flag 0, 1

is intra Intra prediction flag 0, 1

merge flag Merge flag 0, 1

pu part PU partition mode
2Nx2N, 2NxN, Nx2N, NxN, 2NxnU,

2NxnD, nLx2N, nRx2N

rqt root cbf CBF of the RQT root node 0, 1

cu bits Amount of bits used in CU coding continuous

cbf luma Coding Block Flag of luma component 0, 1

cbf cb Coding Block Flag of the Cb component 0, 1

cbf cr Coding Block Flag of the Cr component 0, 1

transf size
Minimum transform size in the CU RQT in

one dimension
8, 16, 32

pred Sum of predicted block samples continuous

coeff Q Sum of quantized coefficients continuous

coeff IQ Sum of dequantized coefficients continuous

residue Sum of residue samples continuous

mv mod l0 Module of MV0 continuous

mv mod l1 Module of MV1 continuous
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Feature Description Values

cu qp
Quantization Parameter used to encode the

CU
continuous

B.4 Scores of the Features used in the Fast Transcoding Decisions

IGR MAX IGR MIN FSC MAX FSC MIN

DepthMAX 0.57 DepthMAX 0.43 DepthMAX 1.74 DepthAVG 1.08

DepthAVG 0.57 DepthMIN 0.40 DepthAVG 1.70 DepthMIN 1.02

DepthMIN 0.48 DepthAVG 0.40 DepthMIN 1.35 DepthMAX 0.85

CoeffSumMAX 0.28 BitsAVG 0.26 CBFMAX 0.54 CBFMAX 0.35

CBFMAX 0.28 SkipFlagMIN 0.23 SkipFlagMIN 0.33 SkipFlagMIN 0.28

CBFAVG 0.28 PredModeMIN 0.23 PredModeMIN 0.30 PredModeMIN 0.26

QCoeffSumMAX 0.28 SkipFlagAVG 0.23 CBFAVG 0.27 IntraFlagMAX 0.17

QCoeffSumAVG 0.28 PredModeAVG 0.23 IntraFlagMAX 0.25 PUMAX 0.16

CoeffSumAVG 0.28 CBFMAX 0.22 PUMAX 0.25 MergeFlagMAX 0.14

PredSumAVG 0.28 CBFAVG 0.22 CBF-CrMAX 0.24 CBF-CbMAX 0.13

PredSumMAX 0.28 QCoeffSumMAX 0.22 CBF-CbMAX 0.24 TrSizeMIN 0.13

ResidSumAVG 0.28 PredSumMAX 0.22 MergeFlagMAX 0.19 CBF-CrMAX 0.12

ResidSumMAX 0.28 CoeffSumAVG 0.22 CBF-YMAX 0.19 CBFAVG 0.12

QPMAX 0.24 QCoeffSumAVG 0.22 TrSizeMIN 0.16 CBF-YMAX 0.12

SkipFlagMIN 0.24 ResidSumMAX 0.22 SkipFlagAVG 0.15 SkipFlagAVG 0.08

PredModeMIN 0.24 PredSumAVG 0.22 MergeFlagMIN 0.11 MergeFlagMIN 0.07

SkipFlagAVG 0.24 ResidSumAVG 0.22 PredModeAVG 0.10 PredModeAVG 0.06

PredModeAVG 0.24 CoeffSumMAX 0.22 IntraFlagAVG 0.09 CoeffSumMAX 0.06

IntraFlagMAX 0.19 QPMAX 0.17 QPMIN 0.09 TrSizeAVG 0.06

IntraFlagAVG 0.19 IntraFlagMAX 0.15 QPAVG 0.09 CBF-YMIN 0.05

PUAVG 0.19 IntraFlagAVG 0.15 TrSizeAVG 0.08 IntraFlagAVG 0.05

PUMAX 0.19 PUMAX 0.14 BitsMAX 0.08 QPMIN 0.05

|MVL0|MAX 0.17 PUAVG 0.14 αBR 0.08 QPAVG 0.04

CBF-CrMAX 0.17 |MVL0|MAX 0.13 CoeffSumMAX 0.07 |MVL1|MAX 0.04

CBF-CrAVG 0.17 |MVL0|AVG 0.13 CBF-CrAVG 0.07 |MVL0|MAX 0.04

TrSizeMIN 0.16 TrSizeMIN 0.13 |MVL0|MAX 0.06 BitsMAX 0.04

BitsAVG 0.15 MergeFlagMAX 0.12 CBF-YMIN 0.06 PUMIN 0.04

CBF-CbMAX 0.15 MergeFlagAVG 0.12 |MVL1|MAX 0.05 PredModeMAX 0.04

CBF-CbAVG 0.15 PUMIN 0.11 PUMIN 0.05 αBR 0.04

MergeFlagMAX 0.15 CBF-CrMAX 0.10 CBF-CbAVG 0.05 |MVL1|MIN 0.02

MergeFlagAVG 0.15 CBF-CrAVG 0.10 CBF-YAVG 0.05 CBF-CrAVG 0.02

PUMIN 0.14 PredModeMAX 0.10 |MVL1|MIN 0.04 CBF-CbAVG 0.02

CBF-YMAX 0.14 |MVL1|MAX 0.09 PredModeMAX 0.03 PredSumMIN 0.02

CBF-YAVG 0.14 CBF-CbMAX 0.09 CBF-CbMIN 0.02 TrSizeMAX 0.02
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IGR MAX IGR MIN FSC MAX FSC MIN

|MVL1|MAX 0.12 CBF-CbAVG 0.09 TrSizeMAX 0.02 CBF-YAVG 0.02

|MVL0|AVG 0.11 CBF-YMAX 0.09 PredSumMIN 0.02 CBF-CbMIN 0.02

|MVL1|MIN 0.11 CBF-YAVG 0.09 |MVL0|MIN 0.02 |MVL0|MIN 0.01

PredModeMAX 0.10 PredSumMIN 0.08 PredSumAVG 0.01 SkipFlagMAX 0.01

MergeFlagMIN 0.10 MergeFlagMIN 0.08 |MVL1|AVG 0.01 PredSumAVG 0.01

TrSizeAVG 0.10 |MVL1|AVG 0.08 CBFMIN 0.01 CBF-CrMIN 0.01

|MVL1|AVG 0.09 TrSizeAVG 0.07 CBF-CrMIN 0.01 QPMAX 0.01

TrSizeMAX 0.08 ResidSumMIN 0.07 SkipFlagMAX 0.01 |MVL1|AVG 0.01

PredSumMIN 0.07 |MVL1|MIN 0.06 PredSumMAX 0.01 IntraFlagMIN 0.01

ResidSumMIN 0.07 TrSizeMAX 0.05 QPMAX 0.01 QCoeffSumMAX 0.01

IntraFlagMIN 0.06 IntraFlagMIN 0.05 IntraFlagMIN 0.01 |MVL0|AVG 0.01

CBF-CbMIN 0.05 CBF-YMIN 0.04 |MVL0|AVG 0.01 CoeffSumAVG 0.01

QPMIN 0.05 QPMIN 0.04 QCoeffSumMAX 0.01 MergeFlagAVG 0.00

QPAVG 0.05 QPAVG 0.04 MergeFlagAVG 0.01 PredSumMAX 0.00

BitsMAX 0.05 BitsMAX 0.04 CoeffSumAVG 0.00 CBFMIN 0.00

αBR 0.05 |MVL0|MIN 0.04 ResidSumMAX 0.00 BitsMIN 0.00

|MVL0|MIN 0.05 CBF-CbMIN 0.04 BitsMIN 0.00 ResidSumMAX 0.00

CBF-YMIN 0.05 BitsMIN 0.04 ResidSumMIN 0.00 CoeffSumMIN 0.00

QCoeffSumMIN 0.04 QCoeffSumMIN 0.03 CoeffSumMIN 0.00 QCoeffSumMIN 0.00

CBF-CrMIN 0.04 CBF-CrMIN 0.03 QCoeffSumMIN 0.00 BitsAVG 0.00

CoeffSumMIN 0.03 CoeffSumMIN 0.02 BitsAVG 0.00 QCoeffSumAVG 0.00

BitsMIN 0.03 αBR 0.02 QCoeffSumAVG 0.00 PUAVG 0.00

CBFMIN 0.01 SkipFlagMAX 0.01 PUAVG 0.00 ResidSumMIN 0.00

SkipFlagMAX 0.01 CBFMIN 0.00 ResidSumAVG 0.00 ResidSumAVG 0.00
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