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AND WAVE I'RONT PROPAGATION

FOR A CLASS OF REACTION-DIFFUSION EQUATIONS

S.C. Carmona ; N.I. Tanaka

Abstract

A Large Deviation Principle for a class of random processes depending on a small pa-
rameter £ > 0 is established. This class of processes arises from a random perturbation of a
dynamical system. Then, exponential estimates for events of the type "not very large devia-
tions” (deviations of order £*, 0 < Kk < % ) are obtained. Finally, the wave front propagation,
as £ | 0, of the solution of some initial-boundary value problems is analyzed; these problems
are formulated in terms of a reaction-diffusion equation whose diffusion coefficient is of order
% and the non linear term is of order ?]T]f; . The wave front is characterized in terms of the

action functional corresponding to the Large Deviation Principle initially obtained.

Keywords and phrases: Large devialion, action funclional, "not very large devialions”,

wave front propagalion.
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1. Introduction

This paper is concerned with a family of random processes (X§ : ¢ > 0) depending on a

small parameter £ > 0 and satislying the system of diflerential equations
(1.1) XS =6XE,YS), Xi=zeR?

where b(z,y) = (b'(2,9),---, 0%z, 1)), = € R, y € R', is bounded as well as are its first
and second derivatives. We define Y = Y: where (Y; : { > 0) is a random process whose

trajectories are continuous with probability one or have a finite number of descontinnities
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of first kind on any finite interval. These conditions are sufficient (see [10]) for system (1.1)
having a unique solution with probability one.

We assume that there exists a vector field b(z) in R? such that

T
(1.2) TEToo ;—}—‘]; b(z,Y,)ds = b(z), Vae R4,

uniformly in z, with probability one. Under (1.2) the trajectories of (Xf,t > 0) converge,

as € | 0, to the solution (Z; :¢ > 0) of
(1.3) i, = b(#), zo=2z¢€R"

The convergence is in the space (Cpo7)(R?);||-||) of the continuous functions on [0,77] with
values in R¢, with the supremum norm || -||.

As a consequence of the Averaging Principle,

(1.4) lilnnl P{|X¢=z] >6}=0, V¥é>0.

The event |

X® — z|| > 6] represents a "Large Deviation” (deviation of order 1) of X*¢
from & . Problems related with deviations of order 1 were extensively studied by Freidlin

(see [6]-[9]). Under some aditional conditions, he proved that (X{ : ¢ > 0)has a normalized

action functional in the space (Cloz1(R4);]| - ]]) which is given by
T .
L(ps; ) ds, a.c.
(1.5) Sor () = Io Llpsies) r . ;
oo, in the rest of Cppp)(R7);

the function L(z, ) is the Legendre transform of A(z, ) with
l T
(1.6) Mz,e)= lim =—InFEexp / <abz,Y)>dsp, =zap€cRY
T—+oc T 0

where E is the expectation corresponding to the distribution of (Y; : £ > 0). The normalized
coeflicient is % ;
According to the definition of action functional (see Freidlin [10]), Sar(y) satisfies the

following conditions:
(A.0) Compactness of the level sets: ¥s >0, Yo € R?,
B(s) = {p € Clom)(RY) : Sor(p) < s, o = 2}
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are compact sets.

(A.I) Lower bound: V6 >0, ¥y >0, Ve € Cjo)(R?), 3eo > 0 such that
PAUIXE = ¢ll < 8) > exp { =L [Sor() 411}, 0<e <o
(A.II) Upper bound: ¥8§ >0, ¥y >0, ¥s > 0, 355 > 0 such that
P {por (X, 8(:) 2 8) S exp { -1 =7}, 0<e<en

Under conditions (A.0)-(A.II), one says that Syp(-) is the normalized action functional for
1

the family of random processes (X§ : ¢ > 0) with normalizing coeficient - . Moreover, it
characterizes a Large Deviation Principle (LDP) for that family.

The functional (1.5) allows one to obtain exponential estimate for P{||X* —z || > §}.
Moreover, Freidlin, in many of his articles, considered a variety of applications of the Large
Deviation Principle characterized by (1.5).

Taking into account the smoothness of b(x,y) and assuming conditions of strong mixing
for (Y; : t > 0), Khas’minskii [13] proved that

r€ >
"‘I — Iy

(1.7) =S

converges weakly, as € | 0, to a Gaussian Markov process ¢ on [0,7]. The precise assump-
tions for the function b(z,y) and the process (Y; : t > 0) may be found in [13] or in Theorem

7.3.1 in [10]. The limit process satisfies the system of linear differential equations
(1.8) ¢ =W+ B¢, @G =0;

the process W? is Gaussian with independent increments, EW{ = 0, and correlation matrix

(R¥(1)) given by

t
RM(t) = EWMwW) = / Ari(z,) ds,
4]

with

' | fT g
(1.9) Api(z) = TEI-:-]N?/H ./n Api(z, s, 1) dsdt
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and
(1.10) Ari(z,5,t) = E[bF (=, Y,) = EbE (2, V,)][b (=, ) - Eb'(2, V).

The matrix B(z) is given by
(1.11 Bi(z) = ay( )=k 1[1'3" Y,)d

uniformly in z, with probability one, and Bi(z,y) = %;,—(:c,y) ;

The study of the normalized difference (1.7) was carried out by considering the norma-
lized linearized system obtained by linearization in the neighborhood of #; and then verifying
that the original system differs from the linearized one by an infinitely small quantity com-
pared with /. The weak convergence of (¢ to ({ characterizes the asymptotic behavior

of deviations of order /z:

(1.12) lim P{IX? ~ 2| > 6V&} = P{IIC’l| > 6}, V6> 0.

In this paper we are mainly interested in the asymptotic behavior of (Zf : t > 0), as

e | 0, where

E 1\’= _:F 1
(1.13) 7t = ts*‘ 2 O<k<g.
It turns out that , ¥6 > 0,
(1.14) liHJl P{||X -z || > é"} = 0.
€

Deviations of order €® of X® from & are called "not very large deviations ”. Baier &
Freidlin [3] and Freidlin [10] considered "not very large deviations” when the initial condition
is an equilibrium point of the system (1.3). They studied the stability of the solution of (1.1)
in a neighborhood of order &* of the equilibrium point, as ¢ | 0. In this case, if 0 is the

initial point, then b(0) = 0 and the process Z; becomes

(1.15) o



In [3] (or [10]) a LDP for the family of processes in (1.15) is enunciated and a suggestion
for the proof of the lower bound (A.I) and upper bound (A.II) in the definition of action

functional is given. Using this LDP, it was proved that
lim P{||X®|| > 6"} = 0.
|0 .

By using the method suggested by Baier & Treidlin we established a LDP for the fa-
mily Z{ in (1.13) when the initial point is not necessarily an equilibrium point. From the

smoothness of b(x,y) we write
t t
Xi—& = ] (XS, Y )ds —/ b(z,)ds =
0 0
1 = t
(1.16) = [0 ve) = b s+ [ B, VXS - 2) dst
4] 0

t
+/ r*(Xf —z,)ds
0

where B(z,y) is given in (1.11) and »*(-) is the rest of Lagrange in the Taylor’s expansion
of b(z,y) in a neighborhood of ;.

Let us define

e 1 T — bz s=-1— fhf "£) ds
(1.17) m—ﬁlw%h)mmd_ﬁAMMML

Then Zf in (1.13) satisfies

r*(XE -7
% (Xf —2¢)

(1.18) 7§ = e37Nf + B(#, Y{) 2 =

, Zg=0.

1

Our first result is a LDP for the family of random processes ¢2~%pf. Let us assume the

following conditions:

Condition B-1. There exists a matrix A(z) = (A;j(2))ij=1,.. .4 nonnegative definite, sym-
metric, bounded, continuous in x , invertible, such that for any step functions «, ¢ : [0,T] —

R

-
lifg:s":"“ln Eexp{g—ll_—ﬁ/ < g, b, YS) > ds} -
£ 1]

(1.19)

i
:-]— / < Alhg )y, ay > ds.
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Condition B-2. 3y,0 < {y <1 and a function o(t) > 0 with o(t) — 0 as ¢ | 0 such that

1 h4-t K
In E exp WA b(Es, Y ) ds

1-2x e

F]"{]_l sup €
(.[.20) el ‘S‘Stfj

D<h<1—1t

= L}.m < +00.
Condition B-3. YA >1—2x, V6 > 0,

lime® In F‘{ sup
|0 0<t<T

E_x/n (B(&, Y) - B(&,))

(1.21)
/ al B f(z,, Vi) duds

0

)5} = —00.

Remark 1.1. Condition B-1 is equivalent to the existence of the limit in (1.19) for every
continuous functions a and 1.

In §3 we prove the following theorem:

Theorem 1. Under conditions B-1 and B-2 , the action functional for the family of random

¥ w5
processes €2~ "nj Is given by ;1_-%3;.5'5;.«(99), where

%fﬂT < Aul(fa)‘s’—:’n ps > ds, o a.c.
+09, in the rest of Cip 7j(R%)

(1.22)  Slr(e) = {

where A~!(2) is the inverse of A(z).

Theorem 1 is an extension of a result obtained by Girtner [11]. He considered a family
of random processes converging weakly, as € | 0, to a Wiener process in R.. He established
sufficient conditions for this family of random processes, conveniently rescaled, having the
same action functional of the limit process in the new scale. In Theorem 1 we extend Gartner’s
result in two ways: the space variable has dimension d > 1 and the family of random processes
nt converges weakly, as € | 0, to a Gaussian process W, introduced in (1.8) if we assume
the hypothesis for Khas’minskii’s result being valid. It is worth to observe that the weak

convergence above cited is not an hypothesis of Theorem 1. But if the matrix A(x) in (1.19)
satisfies (1.9) then the action functional for e2=*W? is ';%7;.961-(!,9) (for action functionals
for families of Gaussian processes see Freidlin & Wentzell [10]).

The main result in this paper is a LDP for the family (Zf :{ > 0) in (1.13). In §4 we

prove the following theorem:
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Theorem 2. If conditions B-1, B-2, and B-3 are satisfied then the action functional for

(25 :1>0) is given by 2z Sor(y) with

%fnT < A7) (s — I}(f’a )es), (¢s — B(E, Jes) > ds,
(1.23) Sor () = if ¢ is a.c.
400, in the rest of Cjorj(RY)

where B(z) satisfies (1.11).

Notice that (1.23) is also the normalized action functional for a Gaussian process (f

satisfying the linear system
(1.24) $f = B&) (G + e o(@) Wi, (5 =0,

where o(z)o"(x) = A(z) and W, is a Wiener process in R? starting at zero. This result
may be found in [10], Chapter 3.

Using Theorem 2 we prove (1.14) and we also obtain exponential estimates for probabi-
lities of "not very large deviations”. Theorem 2 may be interpreted as follows: probabilities
of deviations of order £ of X from #; have the same asymptotics as deviations of order
1 caused by the Gaussian process in (1.24). The asymptotics of probabilities of "not very
large deviations” are essentially different of the corresponding to ”large deviations”. As in
the case of "normal deviations”, the study of deviations ol order £" is reduced to the study
of deviations of the same order of the linearized system obtained from (1.16).

Now we sketch the proof of Theorem 2. Firstly we consider the linearized system
i 3 - = -
(1.25) Ty = b3, Y0) + B, YO TS, T5=0.

We prove that, if gﬁl-;Sor((p) is the action functional for E— then it is the action functional

for Z¢. Then we take a simplified linearized system
t P

(1.26) T, = b&, YE) + BE) 15, T5=0.

It turns out that, under Condition B-3, ;r—, and :L' have the same action functional. Finally,

using Theorem 1, we prove that ;E— has ;%;—Sg-;-(go) as its action functional.
In §5 we study the asymptotics of the solution for a class of reaction-diffusion equations
depending on a small parameter £ > 0, as € | 0. Using Theorem 1 and Theorem 2 we prove

that the solution converges to a function of the wave-type.

7



Solutions of wave-type for reaction-diffusion equations have been studied since 1930’s
by Kolmogorov, Petrovskii, Piskounov [14] (such equation is called KPP equation), Aronson
& Weinberger [2], by using classical methods and later, after 1970, by Freidlin, Girtner,
McKean, and others, via stochastic approach. Freidlin [7] introduced a small parameter
€ > 0 in the generalized KPP equation whose diffusion coefficient became small, of order €.
He described the wave front for the solution of certain class of problems, as £ | 0, by using
the Feynman-Kac formula and Large Deviations for some families of random processes.

Carmona [4] generalized Freidlin’s work in one direction by introducing a ”fast variable”

y of order 1 in some initial-boundary value problems for the equation

out(t,z,y) _ 1 &*u(t,z,y) | € Pu(t,x,y)
at T 2% Ay # 2&(3:, v) 8z2 T

1
+Ef(xlt|“£): 3ER! |yl<al 4 ) B

In §5 of this paper, we consider problems of the type

Aut ; 2. # E . He € "
Duillee) o LMD 4 L f(ena,y,ut) + 2k bR, y) 2Lm),

ot = 2 ay*
z € R4, y€ (-a,a),
us(0,z,y) = g(x)

du(t,x,
Ekyxy)/y=i:a =0

(1.27)

where 0 < & < %, b(z,y) satisfies the conditions specified in the introduction of this paper,
the initial function is nonnegative, and its support Go # R?, [(Go)] = [Go] where [A] is the

closure of A and (A) its interior. For each z, y, the nonlinear term f(z,y,u) belongs to

the class F; (see Freidlin [6]), i.e., f(z,y,-) € C', e(z,y) = f'(x,y,0) = sup "—‘f-uw >0,
0<u<l

and e(z,y,u) = Heyy)

To analyze the solution u({,z,y) of this type of problem we shall use the Feynman-
Kac formula and "not very large deviations” for families of random processes as in (1.1) or,
equivalently, large deviations for families of random processes as in (1.13) and (1.15). This

is done, roughly speaking, in the following way: To the differential operator

1 8°

B Iy (Y
T 2 Oy? gr e Erllgy

(1.28) Lf
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it is associated a random process (X7, Y)"; P;,) where
1 i
(1.29) Xi=z+ ETA b(e®XE,YE)ds, =€ RY,

(Y:; Py) is a Brownian motion on [—a,a] starting at y € (—a, a), with instantaneous reflec-
tion at +a, and Y = Y. . Notice that the diffusion coefficient of the variable y is of order

1

= so it is called "fast variable”.

The Feynman-Kac formula allow us to express the solution of (1.27) as

1 t
(1.30) u(t,z,y) = E;,9(X7)exp {s‘_".?_':] c(e™X:, Y ut(t — s, .,\’:,}';‘))ds} :
0

Using the action functional for certain families of random processes as in (1.13) and (1.15)

one can verify that u®(¢,2,y) converges, as ¢ | 0, to a step function u°(¢,z,y) given by

1, V(t,z)>0, |y <a
0, Vita)<0, lyl<a,

WOt z,y) = {
for some function V(i,2) which will be specified in §5.

2. Auxiliary Results

Proposition 2.1. If condition B-1 holds then Yz, o € RY,

i
lim 7% 'In Eexp {T'“[ <a,b(z,Y,) > ds} =
0

T—+o0

(2.1)

=é<A(m)a,a>.

Proof: Condition B-1 implies that, Yz, a € R4

4
lime'~** lnEexp{sll_ﬁ/ < a,b(z,Ye) > rf.s} =
0

|0

1
= §T < A(2)e, e > .



Then

T
Limsl—zx%ln!?exp{gl%/n < %,f‘;(.::,Y%) > dl} =

1. 4
9 T2

< Aln)a,a >

The result follows by changing variables in the last equality.

=B
The proof of the following proposition is similar to the one of Lemma 7.4.3 in [10] and

we omit it.

Proposition 2.2. Suppose that (Yy; Py) is a homogeneous Markov process with values in a
compact set D C R! and (2.1) holds uniformly in the initial point y € (D), where (D) is
the interior of D . Then Condition B-1 is satisfied.

Now we shall characterize a class of random processes (Y; : ¢ > 0) which satisfies

conditions B-1 and B-2.

Lemma 2.1. Let (Y:; P,) be a homogeneous Markov process on the phase space (D, B(D)),
D C R' compact, and B(D) the o-field of the Borel subsets of D in the topology inherited
from the Euclidean norm in R'. Assume conditions (L.1)-(L.5) in Theorem 2.2, [5]. Then

Clondition B-1 is satisfied.

Proof: Let us suppose that b(0) = 0. For each o € R? we introduce the semigroup of

operators
t
1210 = B exn{ [ < a0, > ds},
0

where f is a continuous numerical function on D.

From Theorem 2.2 in [5] we know that

T—+co

T
(2.2) lim %ln Ey exp {/ < o, b(0,Yy) > rls} = Ma),
0

where A(a) is the maximal eigenvalue of A%, the infinitesimal generator of T . 1t is
real and simple, the corresponding eigenvector ¢ is positive, and ||¢|| = 1. Moreover,

TEd(y) = eMe(y) .



From Theorem 7.1.8 in [10] we can wrile

‘)

d
Aa) =N (0 Z 3% 0)aia; + o(a?).

MI'—‘

Taking into account that 1 is the maximal eigenvalue of 7} for a = 0, we have A\(0) = 0.

On the other hand, from (2.2),
e 2
Ma) > Tli.r_}_lm?ﬂy-/n < a,b(0,Yy) > ds =
=< a, 11m __/ Eyb(0,Y;) ds >=< a, b(0) >

Since 5(0) = 0 we have A(a) >0, for all @ € R?. Therefore A\'(0) =0 and

d

} il
(2.3) Ma) = :]2 Z 3:(,;\ (0)aia; + o).

DJ

Now, the compactness of D impliesthat 3K > 0 such that 0 < K < d(y) <1, Vy e D.
Then,

"7 In K+ 5 (T ) (y) < O In(T ) () =
= 12At7 %) + 1 Vi g(y) < (T )().

Hence, using (2.3) we get

-)

2k~ L [ e
t_l}f:lmt In (T ) y) = 3 Z Baya; ——=—(0)aio; =

ij=1

< Aa, a0 >

Lol

which is Condition B-1 in the case b(0) = 0.
When the initial point in (1.3) is not an equilibrium point, the arguments are the same
as above il one recall that

L s
lim = b(z,Y)ds =0, VYreR® wp. |
0

t—s o0
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and then A(z,a) > 0, Vz,a. The matrix A(z) in Condition B-1 is given by

d

1 i)
(2.4) Alz) = 3 ‘Z St (z,0)aia;.

§i=1

Let o € C[D,T}(R.d) be a step function, constant in the intervals

[-’;_-T, L‘f_‘—lT] ,7=0,1,2,:--,r=1. Foreach a = (a',:-- ,a") € (RY)", define
1 r—=1 ) :
Y = Wi o Yad L gfl
(2.5) HY(a) er;‘ A(piz)adtt ol >

The function in (2.5) is convex, H¥(0) = 0, it is lower semicontinuous, H¥(a) < 400, Veor.

Let LY(3) be its Legendre transform:

LY(B) = sup {( a, 1> —H"’(n‘]} I

(26) " r—=1
=z) <A FH >, pe®Y.
j=n

The function in (2.6) is convex, lower semicontinuous, assuming values in (—oo,+00], and it
is not identically equal to +oco.

Define for each s > 0,

®"(s) = {Be (R : LY(B) <s} =
(2.7) Ll -
=<(pe (R_d)r ; 52 < fi_l(';"z.?.)ﬁj+’,y'i’+l S<s ).

j=0
The following proposition is similar to Theorem 5.1.1 in [10] and we omit its proof.

Proposition 2.3. V6 > 0,Vs >0, 3ay, -+ ,any € (RY)" such that

.INF
@"(s) C () {B:< i, B> —H" () < s} C Py(s),



where ®',4(s) = {8 : dist(8, %" (s)) < 6}.

Let us define, for each z, e € R4
1 1
(2.8) H(.’E,O’} = -2— < A(.’.lf){l’,ﬂ‘ = 5 Z Aij(;ﬂ)fy,-ﬂ'j_
ihj=1

This function is convex in the second argument and jointly continuous (by hypothesis A(x)

is continuous). Let L(z,3) be its Legendre transform:
(29) LB =swf<m > —Hza) =5 <A @F8>, peRt

This function is convex in @ and jointly lower semicontinuous in all variables (see the proof
of Lemma 4.1.7 in [10]).
Let us define

T
Ge(a)=InE, exp{f oy ffﬁf} =
0

(2.10)
_ 1 [T N
= In By exp —/ <o, K5, Y)> dth, @«:[0,T]— R
Ve Jo

The process n; was introduced in (1.17). Condition B-1 may be written, for ¥, = z,, as

2 ! %
(2.11) lime! %G, (-,—cr) = l/ < A(Z)ay, o > dt.
€ 0

|0 R 2

3. Proof of Theorem 1

The following theorem is an extension of results obtained by Gartner [11]. We shall use
the same approach for proving it.

It is well known (see [10]) that the level sets of the functional Sjp(-) in (1.22) are
compact sets. So condition (A.0) is verified. The following theorem gives us condition (A.T)

(the lower bound).

13



Theorem 3.1. If conditions B-1 and B-2 are satisfied then Yy > 0, Y6 > 0, Vp €
Clor)(R%), wo =0, 3e9 > 0 such that

(3.1) F’{||e:""“:r;E — || < 8} > exp{ = [S'OT(t,o) +q]} 0 <e¢ < ep,
where ni is the process introduced in (1.17).

Proof: For simplifying notation we assume T = 1. Let » > 0 be an integer and 7{ be

the random polygonal line with vertices at the points f; and 0% =95, 7 = 1=-r. Eet
n = n(e) = r[X] and 7 be the random polygonal line with vertices at ﬁ- with 75 =95,
j=1,-.+,n. Notice that 7§ =75, j=1,---,1

Let (Qm)m=1,2,... be asequency of sets in C[U‘I](R‘f) which will be defined later. Then

for any ¢ € Cpo,1)(R?) and § >0,
P{lle*~"n* — || < 8} >
6 - B "—Po 5 6
> P{lleb it =gl < S} - p{Jebmat —ebsgey > £ >

(3.2) > P{|le¥ =i — o|| 45 5 — P{e¥ " ¢ Quie))—

=

— P{lle3~"n" — 37| > 23 L EFTR € Quie) =
= Il i 12 — I3.

Since  is continuous, then for r sufficiently large and 0 < &’ < % we have
ke 6 -5 1
L=Plez™") — |l < 5 5 gnax |le* m — x|l <6

Let ¢ € Cpo)(RY) with SJ,() < +00 and @, be the polygonal line with step * such

that Gx = ¢@x, k=0,1,---,7. Then, ¢, is a step function. Let us define

(3.3) a(t, ) ﬁ;( &)

where L(z,) was introduced in (2.9). Then

(3.4) gﬁ(a a(t,z)) = @,

14



where H(z,a) is given in (2.8). Since @, is a step function then a(-,z) is also a step
function. Besides, a(t,) is bounded because the matrix A(z) and ¢, are bounded.

Now we apply Cramér’s method by introducing a new probability measure Pt defined

by

1
ﬁS(A) = EX4exp {fl—' / a(t, &) d?}f - (7 (%Qf{-, f!)) }
EF* Jy g

where G.(«) is given in (2.10). Hence,

e 1 1
o = i, z)dns
T ,Ilr‘}”‘ﬂl—v%lfd'}exp{ s‘a—xfn W=an
1
£13

2 1 . 1
= X ") - t,z)d £ — ¢
E Ilkzﬂ;_?_“_.rll‘*_"’ii}“‘”&”“'] escp{ g [fn a(t, @) d(n; 55_,;90:)]} %

1 : = - -25 1 7
xexp{-—ﬁ [./n oty &) g dt — €' 7 Ge (s§_x a(,m))]}

From Condition B-1 and (2.8) we have

1l

1 1
11ms‘-2"(_?£( - a(-,:T:_]) ;/ < A(F)al(t, &), a(t, #) > dt =
e|0 ggmN 2 0

1l

1
/ H(F4, alt, 7)) dt.
0
Then Yy > 0, o > 0 such that
! HG (1,5 dt — 1 <C(La(a})<
Elj,;‘ /ﬂ (T, e(t, 2) 3 Te Ll
1 . N & ¥
< H(ze,aft,z))dt+ |, 0<e<ep.
£%F |y 3
Since aft,z)@, — H(z,a(t,z)) = L(z,$,) and taking into account that

1 1
/L(i:;,é,)dtg/ L(Z,,¢¢) dL,
0 S0

15



the second exponential in (3.5) is greater than

1
exp{—% [] L(2¢, ) dt + 1]}1 0<e<eo.
€ ] 3

1

On the other hand, if , max l[ez=*n% — | < 8", 0 < 8 < & and & sulliciently

small, then we have
1
[ atzdet=ra - p) <1
0 '

because «(t, ;) is bounded. Hence, returning to (3.5), we obtain

1 1 : ;
I] 29}({) {—-m%}exp{-—ﬁ [/ L(fﬁ;,gﬂt)d'ﬂ - ‘;T;']}X
n L

x P* {kp;a}ﬁrllf*“‘ni - x|l < 6} 0 <e<eo.

(3.6)

Now we shall prove that

im Pt Lok ¢ "
- > 68 = .
tim P {, max 421, —pyll 2 6"} =0

For this, it is sufficient to show that for ¢ € {1, 2, ... £} the following relations are valid:
lim Pel{ed=*pif —3i —§" >0} =0, and
£

(3.7)

]ifrgl }55{-—5"5""???." +@i=6"20}=0, fori=1,-:,d.

From the Chebyshev’s exponential inequality we can write, for all ¥* > 0,

}"j: {el-—nn:.i _’,5: — & > 0} < Evs EX]J{ 7_2“ [E%—xnf.s’ —"P’r _5:;]} -

51

1

= E* exp{é_lzﬁ [e5 %" — @l - 6”]} X

1
xexn{,—]'"/ a(s,i's)rfni-Gc( = .a(-‘s.-.))} -
ez™" Jo gz

1
= - g i 3 5 =1 "
-/ﬂ {0‘(5, "M"S) + 7 ‘1[0.”8( ]} d?]" = el-2x [‘1’1 + 0 )_

16



where e(¥) is the component of order i of the canonical basis of R%. Hence

Ps{e% K !.I 55: i 2 0} S exp {_51;125 [ 1- ‘?nGz ( 1 (}'(-‘5:')) .
gd—*
(3.8)

1 i i

From Condition B-1,

1
lime!~2*G, ( Ll_ a(-,i_]) = l/ < A(Z,)a(s, z,),a(s, &,) > ds.
el0 P 2 Ja

But

if s <t

. ; - ‘I_‘a +7-e(i"
(s, 2, T, { as, 2,)
(8:2a) + 7 Hoge ifs > ¢,

0’(31 Ts ) )
Then

1
/ < A(z,)(a(s, &,) + T"A’{g,ﬂc(')),(a(s,i,) +7" A% ﬂe( )) > dsi=
0

t d
] < A(Z,)a(s, #s),a(s,z,) > ds+2] Z"‘u ol (s,3,)y" ds+
0

1
-{-7“’/ Asi(2;) ds:
0

Hence, Condition B-1 implies that

1
lime! =2 @, ( T
e|o g2

K [a('l j-'] s 7'(1,[03]8“]]) -
1
= 5/ < A(Z,)a(s, 2,), as, B,) > ds+
0
t d 3 i L P
+T*[ Zzi;j(ﬁ,)a-J(s,é,)ds+ 57“’/ Aii(24) ds.
o5 0
i=1
Therefore, the expression in brackets in (3.8) converges, as € | 0, to

- / ZA”(J:,)QJ(S x,)ds——'r /‘:

Aii(Z,)ds + 47 (@} + 67) =
1]
(3.9)

=" [5"4-@, / J,(m_, of (s, 2,) ds — —/ A,,(:.-,)dsJ :

17



We should find ¥* > 0 such that the above expression be strictly positive. For such 4* we
get (3.7) from (3.8).
Notice that

OH 3 .
W(z, a) = Zt Aip(z) o'

and

0°H a 12 '
3&kaﬂf(z‘ ﬂ’) = 5—{;-;— [Z Aik(w) (_}"] — /lu,(;;;)_
i=1

From (3.4) we have

d
k(5,002 = 3 Au(w)a’t,) = 8.

i=1

Therefore the limit in (3.9) reduces to
v I
¥ [6” - = [ ,4;;(.17:,)d3] ;
2 - 0

From the hypothesis on A(z) we have f[:.fi;'.'(f,,)ds > 0. We choose v* > 0 such that

& — 3'2; ft: Au(z)ds > 0.
Now we can say that ¥4 > 0, dzq > 0 such that

o 1 P
P{ed=%g;" — g} — 6" > 0} <exp {_s_l-"" [‘r‘ﬁ” o 57‘“/ Aii(Z)ds — ﬁr] }
- 0
for all 0 < € < gg. Choose 0 < 7 < y*8” — %7‘3fﬂ‘ Aii(2,)ds and we get
e g : 1
Pe{et— it - gl -6 20} < exp{m-ﬁc}, 0<e<e,

for some C' > 0. Then, ¥6 > 0, 3o > 0 such that

P {k max ||e%_‘r]1 - x|l < 6”} >1-6, 0<e<eq.
=l1,r T r

But, for £ sufficiently small, 1—§ > exp {—5—,:}?] . Therefore, returning to (3.6), we conclude

that ¥y > 0, 3o > 0 such that

1.
I > exP{_ﬁ [5|l|:(‘9)+7]}= 0 <e < eo.

18



For estimating
I
I = P{eb" ¢ Queo}

we shall use arguments analogous to the ones in Girtner [11]. In what follows, we ontline
them.
For each number I > 0 there exists a monotonic function T'(¢) with T'(¢) | 0 as £ | 0

such that
; I'(t)
0{1:]%‘!5 rr(! )V/E

_'loo>[,

where 1y, lw, and o(1) come from Condition B-2 in (1.20). We choose r > 0 sufficiently

large such that (1) < ,, and 1 <tp.

Define
tafaleey k+j
(3.10) G ] [ {IEC{n,u(R“) : ”f( o )” <1 )}
Jj=1 k=0

Let n(¢) = r[ZX]. Then
[nto] n—j ; &
<y Y P{le oty - a2 1 b <

[nto] n—j j
Lok £, l_g El F(L)
< E P{}sa My — € I> i }

From the Chebyshev’s inequality we obtain

2 : 1 . (1)
IZ S dn (E) tﬂg'ﬂ\p{ E] — g I:U{f“!’:fna(f}\/_
i h+l :
— sup €' |[ln Eex _ f 0o
z(tfl_)t“ . €37 a'(t)
0<h<1—t
But n%(e) = (r[Z])?’< &, & :e‘(p{—*--;%} and £172%Ine — 0 as € | 0. Then, as in

Gartner [11], we may conclude that

1 2 1 y It I

!
S exp{—ﬁ}, 0<e S Eds
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For estimating

e —K = 6 —K ~£
I3 = P{“Sr E% ]I > § € Ui EQ,.(,;)},

as in Gartner [11], one can prove that YI > 0, Jeg > 0 such that
I I
3 < exp ~I=% [ 0 <e<ep.

Returning to (3.2) the result follows.

Now we shall prove the upper bound (A.II).

Theorem 3.2. V6 >0, Vy >0, Vs >0, 3eg > 0 such that

(3.11) P {pn’r (s%_"n_“@(s)) > 5} < exp {—%} 0<e<eo,

where

®(s) = {p € C[o,T](Rd) : Sor(e) £ 5, 0o = 0}
and Sip(yp) is defined in (1.22).
Proof: Again we take T'=1.
P {por (350", 0(s)) > 6} <

<P o (77 20) > }+f’{lls%"‘n_‘—s%-"r‘:.‘lls g} <
}+P{ % QQII{E)}

15%—,:7}_‘ € Qn(:]} =

OIS l\bl:n 2| on

”5% hni s E;—E £||

{
(3.12) < P{om (4t 009) >
+7{

=L+ L+ 13

where Qn() is defined in (3.10).



We see in the prooof of Theorem 3.1 that for all I > 0, there exists a sequence

{@m}m=1,2,.., anumber r, and g > 0 such that
I
(3.13) Ig+!;;<exp —El—_z; " 0(6550.
Now we shall estimate
Li=Plom (s%-*ﬁf (D(s]) et L
s ¥ 2

It is known that L(z, ) is jointly semicontinuous in all variables. Then, the functional

1 1 1

[ ttegds=5 [ < a7 @)en, g > ds
0 0

is lower semicontinuous in ¥ and . Let " — ¥ as n — +o00. Then, for ¢ fixed and

using [Fatou’s Lemma,

1 1 1
tim [ rig)ds> [ lim L@ ds> [ LGhigd ds
0 0

n—+ooJ0 =400

Then, VA > 0, 36 > 0 such that if ||z. — ¢|| < §,

1 1 1
(3.14) 5] < A7V, )@y, 05 > ds > %--/ < A7V (& s, s > ds — A,
0 0

We choose # as a step function with ¢; =&;, j =0,---,r— 1 satisfying ||z —¢|| <

and we define
| !
'I)"a("") = {‘P € C[n,l](Rd) i 5/ < AT W), 0 > dE < 5} .
0
Since ®¥(s — A) C ®(s) we have
P < por (5%“"37‘ ‘I’(s)) >6— < P<po (s%"‘ﬁ‘ (I""'(S—A)) > 2 =7P.
o 2 — . ¥ 2
Define

Af = (’\:9"' r":) =E%_x(ﬁt%!,i{7{ hﬂ‘%!ﬁ% _}_T‘i:'l“‘ i’_fE S '_?f‘%)'
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Notice that A¢ € (RY)". Fix a = (a', -+, a") € (RY)". Then,

2 2 1
lime'~2%In E exp {8—13 <a )X >} =

e—0
r L
N T, AN P K1 i " Fs v =
",hfll;g InFexp(e€ 2(&,[{; b(&, Y )dt > ) =
(3.15) = ‘
1
= lime'=** In Fexp {s*-‘/ < ay, b(#,, YF) > rH} =
|0 0
1 1
= 3] < A(ig)ﬂg,ﬂ'; > t’"-,
< Jo
where the last equality follows from Condition B-1 and o, = o/, -’—:-I- <t < -:'7, T I R
Now,

1
P< p{%f < A )i e > dt > s 43}.
0

From (2.6) and (2.7) we get
PSP{L¥Y(X)>s5-A} < P{A ¢ Q" (s—A)}.

Since ®"(s—2A) C ®"(s—A), dP"(s—A) = {f € (RY)" : LY(B) = s— A} is a compact
set, and ®"(s—2A)NIP"(s—A) =0, we have d = dist(¢"(s—2A),0P"(s—A)) > 0. Then,
from Proposition 2.3 and Chebyshev’s inequality, there exist ay,---,ay € (R4)" such that

P < PN €87 (s — A)} < P {p(A, &7 (s — 24)) > d} <

<P{XeUl{B:<aiB>-H"i)>s—-2A}}) <

N
1 5—2A
;P {exp {ngk g, A° > —H"’(tt.')]} > exp{m}} <

IA

(3.16) P

M=

exp{ﬂ}gexp{ 2 [( 0‘,‘,:\! > —Hw[ﬂ'i]}} =

: E]—L’r.'. 61—2&

1

=o {222} 5 e {150

=1

1 ’ 1
exp {&_l_h_ [5‘”?" In F exp {s—l_—z,c < @, Af >}J }
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From (3.15) we know that

- 1 1 s
Llﬂ')lg' 28 1n Eexp{'e,Tz; < ap, A° >} = 5/; < A(Z¢)ayi, o > dt,

where a;; = al, -7:—1 L f_'-, ¥ =100 4 Since %fol < A(Y)ag, ar > dl is lower
semicontinuous in ¥, we take the same step function ¢, (with ¢, =z;, j=0,---,r—1),
and we write for every v > 0,

= 1-2x 1 €

Ime " In Fexp{ — < a;, A\ > <

EIO EI*—‘ZS

] l
< E_/ < A(T,bg)ag,i,ﬂ'g‘,' > dl+A=
0

= H%(aq) + A < H¥ (o) + }

for A > 0 sufliciently small. Returning to (3.16) we get

N
s—2A HY (e 1 ;
P < exp{—m} E exp {-h;?_(%).}exp{ﬁ [H’J(n...)_i_-r]} =

=1

_ s 2A —_— I
_exp{-el—_z—‘}exp Py N exp F1-% <

3—1
2
gexp{ 51‘2"}’ 0 <e<ep.

and we can say that Vy > 0, 3gp > 0 such that

g
(3.17) Iy < exp {‘E:-ai}’ 0 <e<eop.

Therefore, by taking I =s—Z in (3.13), there exists €o > 0 such that

P{por ("0, ®(s)) > 86} < i+ L+ I3 <

1
Sexl‘{—‘_l_gx(-“—"{)}: O'(ESSU‘
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Remark 3.1. A(z) being Lipschitz continuous, there exists a matrix o(z) such that A(z) =
o(z)o*(z), = € RY. Define W = [ o(&,)dW, where W, is a d-dimensional Wiener
process starting at zero and #, is the function introduced in (1.3), W? is a Gaussian process

with independent increments, EW? = 0, and correlation matrix (Rij(t));_j=1.... d given by
4l F i !
AY{) = EI’V,G"MD'J :] Aij(Zs) ds.
0

It is known (see [10]) that the action functional for e3=*IV is given by —LmShp(¢)
where Sjr(¢) is given by (1.22). Then, from theorems 3.1 and 3.2 we conclude that €3 ~*n
and €2=*W? have the same action functional. Recall that under Khas’minskii’s conditions,

n§ converges weakly to W where A(z) satisfies (1.9).

Remark 3.2. When b(0) = 0, Theorem 1 gives the normalized action functional for

——n,} o ‘-ﬁ{iﬂds which 1s

1 (T i
Sé'r(ﬁ") _J3 fn < A7y, 0, > ds, tp a.c.
! +00, in the rest of Cpo 7(R%),

with normalizing coefficient :-f-:.'—ﬁ where A is the matrix in Condition B-1, It is easy to

verify that the action functional for the family of processes

fo Y‘) ds e R

is also given by ;17157551‘(5")- However, in this case, the level sets are

O(s) = {p € C'[gl;r'](n.d) : S{%T((p) < s o=z}

4. Proof of Theorem 2

Now we shall prove Theorem 2 in the most general situation, when the initial point is
not necessarily an equilibrium point for the system (1.3).

We consider X satisfying (1.1) with X§ = z € R? and &, the solution of (1.3). Then

i
(4.1) Xt=g4 / b(XE,YE) ds.

0

24



We define
: -
(4.2) e = f (XS, YE) = B(34)] ds.
0
The process Z§ in (1.13) can be written as

€

Z,‘:I‘—, 0<n<l.

ek 2
We define
a e - Ye
Zf = L and Z{ = L
er er

where T$ and T¢ were introduced in (1.25) and (1.26).
First we recall that the action functional for €¥=%7¢ with 7 given in (1.17) is

a5 Sp(p) with Sip given in (1.22). The contraction principle implies that the normalized
action functional for Z’f is Sor(g) in (1.23) with normalizing coefficient 15 . Now we shall

prove that Zf and Zf have the same action functional.

Proposition 4.1. If Condition B-3 in (1.21) holds then Z{ and Zf have the same action

functional.

Proof: Given v >0, 6§ >0, and ¢ € Cpp)(R?), 0 =2,

> FE 7€ 6 7€ 6
PANZS —oll < 8) 2 P{IZE - 20| < 5,112° ¢l < 5) 2

) > P(IZ: - pll < 5} - PUIZ - 2112 3)
=1 — I

Since E—,__L;-.-;Sgr(go) in (1.23) is the action functional for Zf , Jgo > 0 such that
1
Iy > exp ‘ET_‘:K[S“T(‘P) +7¢, 0<e<eo.

For estimating [» we recall that the processes T¢ and T§ satisfy the linear differential
equations
LE o -
T, — B(2:,Y7)T; = b(2,,Y), and

» &

T, - B(&,) T¢ = b(&,, Y¥),
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which implies that

t t 3
Tf = exp {/ B(f,,};:)ds}/ exp {-—-] B(.’Eu,}’t){hl} b(i‘,,}’f) ds
] 0 0

and

t t s
T =exp {/ B(i,)ds}/ exp {—/ B{:Eu)dﬂ}a(f,,}’:)ds.

Then,

t t
128 - 2¢| = f B(f,,Yf)Z,‘ds-—f B(&,)Z: ds| <
0 0

IA

1 i
[ B@ v Zids= [ Ba, o2 s+
1] 0

t
+ / B(&,,Y¢) Z‘dsw/ B(2,)2¢ ds| <
0

(B(&s,Y?) — B(%,)) T ds| =
0

t
51{] ]Zj—Zjlds+—l.-
0 £r

t
” K/ \Z¢ — 28| ds+
0

1

t K] i R -
+ Eix / (B(,,YE) — B(z,)) / oo BEIBE vy dudi
i} 0

for some K > 0. Using Lemma 2.1.1 in [10] we obtain

12 - 25| <
t £ puigi 5
SeK'El?? f (B(z,,Y) - B(a,)) f els PEI® G5, vE) duds).
0 0
Hence, Y6 > 0

Pz -212 5} <

L 5
f (B(&,,Y/) - B(& f eJ. BEOU he, Ve duds| >

B2 | O
——

- 1
< e!‘TP{ sup —
0<t<TE"

From Condition B-3 we have that YAf > 0, 354 > 0 such that

- " M
(4.4) ngP{”Zf—Z_‘llZ g} < exp {_El—ﬁn}’ 0<e<ep.
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Returning to (4.3) we get

- 1
P{IZ - oll < 6} 2 exp {2z (Sor() 47} 0<e <

which is the lower bound in (A.T).

The upper bound is easily obtained. Let s > 0 and
®(s) = {p € Cor(R%) : Sor(p) < 5, po = 2 € R4} .

Then
P {pn’r (Zf,fl)(s)) > 6} <

< P{or (2:,00) 2802 - 20 < 3+ P {12 - 2112 £} <
< P{or (20.00) 2 b+ P{1Z - 2012 3} <

1 v M
: ‘”‘"{‘gt—-e‘z (- ﬂ}“"l’{*ﬁ}

where the last inequality follows from (4.4) and the fact that Spr () is the normalized action

functional for Zf . By taking M = s,

P{por (2,00) 26} ser{-Lms-}, 0<esan

Proposition 4.2, If Sor(y) is the normalized action functional for ?:'f with normalizing

coefficient —Xz then it is the action functional for Z; with the same normalizing coefficient.

Proof: Given 6§ >0 and 7> 0,

Pz - el <82 P{12 - ZI < 5.2 - vl < 3} 2

45 " 5 o e B
(45) > Pz ol < 3} - P{iz - 212 5} =

EII—IQ.

L
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A lower bound for I is obtained from the hypothesis that 5—117507‘(&0) is the action

functional for Zf .

For estimating I, we introduce a new process

]

t t
Ve = f b(TE + 5., Ye)ds -/ Bz, )ds.
0
Then,
t t
Ve [(B@)ds= [ a(Tsea, v s
0 0
From the smoothness of b(x,y) we get
b(TE + 4, YE) = b(2,, V) + B(&s, YE) TS + 3T,
where r%(-) is the rest of Lagrange of order 2. Then,
L. t R t :
V= / b(i:,,Y,‘)ds+/ Bz, Y2) 1t ds+/ (1) ds
0 0 0
which implies that
t
Te =y _/ HO(F2) ds.
0
Therefore, taking into account (4.1) and (4.2),
£ 7€ 1 € e
|2t — Z;| = ;!T: - Tyl =

t t t
;1:/ b(-\’fﬂ’,‘)ds—/ b(T§+ia,Y,‘)ds+/ rA(Te)ds| <
0 0 0

¢ t
= El,: [ﬁ’f l~¥§—(Ti+f,)lds+/ |r“1(?§)yd3} =
0 0
1 ¢ 5 B
= [f\’[ 5 —Tj[ds+f |:-(=’)('r§)|ds] B
£ Jo 0

t t
=K/ !Z:—Z:|ds+lx-f [#(3(T%)| ds.
0 e Jo

From Lemma 2.1.1 in [10] we get

t
17 - 25 < ' [T ds
S0
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for some K > 0. Since the second order derivatives of b(z,y) are bounded, we get
[M(T)] < 1“1“12
for some M > 0. Therefore,

n 1 T 5
sup 125 = 21| < ¥ [ prO(F)lds <

0<t<T ex

1 KT M / e 2 1 KT [ 7e |12
—_— e | & - /
S"‘"e B) . I _,I ds 28 Me T”Z ”

IA

which implies that

- p{nz_f -z 2 %} {IIZ‘" = gf%} B

P> L[t
=PilZ7N 2 g\ o3 (-
On the other hand, for s > 0 ®(s) = {¢ : Sor(¢) < s, wo = 0} is compact. Moreover,

p=0¢€d(s), ¥s > 0 because Sor(0)=0. Let p = dist(0; 3®(s)). Notice that p > 0 since

d®(s) is compact. Besides, for € > 0 sufficiently small, «.(“5—?-;7}1:'%- > 2p. Then, Jeg > 0

such that

B < P{UIZ0 2 20} < P{por (2¢,9()) 2 5} <

gexp{—;l-—j—,v;;(s—g-)}, 0<e<ep.

The last inequality follows from the properties of the action functional. By choosing s =

(4.6)

Sor(¥) + v, we have
Bk I it 0<e<
2 2 5 €xXp —E,_—gx[un?(ﬁ?)*-E] , 0<e<e.
From (4.5) we get

P{IZ ol < 8) 2 exp { - [sir() + 3] } -

)

- %exp {-—r,; [Snfr(so)+ -]}

b2

I
zexp{ o= qfogpp)+7} 0<e<ey.
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The upper bound follows easily from (4.6): Vs >0, ¥6 > 0,

P{por (Z°,®(s)) 2 6} <
<Pl @ 0N 2 a0z - 2l < 3+ {iz - 202 5} <
< P{or (7,00) 2 3+ {1z - 212 3} <

1
gexp{—e—l-:é:[s—'y)}, 0<e<ep.

Remark 4.1. Assume 5(0) = 0. Let
t
7 :E‘z+/ b(Z¢,Ye)ds, =€ RE.
0

Then,
2 =MLY, B =Fs

It is not difficult to show that the action functional for -E{,‘L does not change if we start with

-
s =
5. Wave front Propagation

In this part we shall describe the wave front for the solution of the initial-boundary value
problem introduced in (1.27). The main results may be proved by using the same approach
as in Treidlin [6], Chapter VI, or in [7].

The conditions under b(z,y), the initial function g(z), and the non-linear term
f(z,y,u) were specified in the introduction. We assume an aditional condition: b(0) = 0
where b(z) satisfies (1.2).

Using the Feynman-Kac formula, the solution u*(,z,y) of (1.27) satisfies the equality

(1.30). The properties of f(z,y,u) imply that

l i
(5.1) u(t,z,y) < Ez,a9(X¢)exp { T / e(e* X5, YrE) d.s‘}
£ 0
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u

where (X§)i>0 is the process in (1.29), ¢(z,y,u) = [Evw) and o(z,y) = sup elz,y,u).
0<u<1
Define

e B ¥ e L[
T; = ;]ﬁ C(E -\J,Y;]dsz 5:./[} C(Z:'Y:)ds

where

t
Zf =" X{ =¢z +/ b(ZE,YE)ds, =€ RY.
0

Notice that
Z8 = b(Z8,YF), ZE=¢"z.

Moreover, 1 [ b(z,Y,)ds L b(z) with probability 1. The Averaging Principle implies

that Z§ —15 zy =0 where Z, satisfies (1.3) with Z5 = 0. On the other hand, it is known that
£

there exists a function é(z) such that }f[: e(z, Y,)dst = &(z) with probability one, for all
— 400

z € R?. Since 5({]) =0 we conclude that

t t
(/ﬂ b(Z:,Y:]ds,/n c(Zj.Y,‘)ds) T (0,¢(0)t)

with probability one.

Define
fiti= (.:-: :c—l—f b(0,Y{ ) ds / (0, ‘)ds—E(ﬂ]t).

. - - - € -
According to Remark 4.1 and Theorem 1, the normalized action functional for 2t is

LT < 4710, &0)0) (@1, 1), (B0, 0) > dt,
(5.2) Sor(e,m) =9 g, nac.,
+00, in the rest of Cpp j(R¢ x R¥)

with normalizing coefficient - L, where A(0,2) is the matrix satisfying

< A0, 2)(e, B), (o, B) >=
1 T
= lim In £y exp {T "f < (a, ), (b(0,Y2),e(z,Y7) — €(0)t > di’.} :

T—+co Tl =25
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Using Theorem 2, we obtain the action functional for (. (T — El:E)—t) with initial point

£R

(z,0) which is given by —2zSor(p,n) where

Lo < ATH0,&0)2) (@6, i) — B0, &0)) (1, m0))
((pe, 1) = B(0,2(0)0) (e, me)) > d,

©, 1 a.c.

400, in the rest of C[g_T](R“' x RY).

(53) SDT{‘P:U) =

Let us define, for each £ > 0 and = € RY,

V(t,z) = sup {&(0)t — Sor(9, 1) : ¢, € Co,400)(R?), w0 = 7, 91 € Go, o =0} .

By using the properties of the action functional, one can prove, similarly to Lemma 6.2.1 in

[6], that

t
(5.4) 1ilr351-2*1ng;yg(x,f)exp{ 2 - / c(zg,y;)f:s} =V(t,z).
= 1]

g1-2
Using (5.1) and (5.4) we obtain

]iﬁj}u‘(t,z.y) =0 if V({,2)<0and |y| < a.
£

For proving that lillgm‘(t,m,y) = 1 in the region V(t,2) > 0 and |y| < a, we shall
[
assume that Condition (N) (see [6]) holds:

Condition (N): Y(,z) such that V(t,2) =0,

V(t,2) =sup {&(0)t — Soc(, 1) : (¢, 1) € Clo,400)(R* X RY), o = z,
w1 € Go, V(t—s,p5) <0 for s € (0,t), o =0}.

Similarly to the proof of Theorem 6.2.1 in [6] one can prove that, under Condition (N),

lifgl u(t,z,y) = 1 uniformly in any compact subset of {(¢,z,y): V({,2) >0, Jy| < a}.
£

The following examples show the form of the wave front in some particular cases of

problem (1.27).

Example 5.1 Assume b(z,y) = b(y) and f(z,y,u) = f(u). The differential operator in

(1.28) becomes

1 &2

1 5]
Je el '—‘f —
5 2e Ay? ¥ ex }(y)('):n
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and (X{ :1>0) in (1.29) is given by
1 t
Xe=z4 ?'3]“ B(YE) ds.

In this case, b(z) =b=0. Let ¢(u) = uf(u), é= f(0) = sup f—%l y 0.
0€u<l

Now,

ol 5 .
V(t,x) = sup {Ei = 5/ <A™ Py, 5 > ds i 9 € Clo geo)s Y0 = @, 1 € Ga}-
0

For simplifying this function we assume Gy = {z € R? : ||z|| < 0}. From the Euler-Lagrange

equation (see [1]) we obtain
o 1 -1 d
V(t,x):ct——§<r1 x>, x€ R

The set {({,2,y): 2t?¢ =< A™'z,z >} describes the position of the wave front, as ¢ | 0. If
x € R., the velocity of propagation is a* = \/2A4Z. It is not difficult to show that Condition
(N) is satisfied.

Example 5.2 Assume f = f(y,u), b = b(y). The operator L remains the same as in

u

Example 5.1 as well as the process (X : ¢ > 0). Define e(y, u) = Lyw) e(y) = sup ey, u).
0<u<l

We assume that ki, k> such that 0 < ki < e(y) < k2, Vy and E?m% foe(Y)ds=e>0.

According to Remark 3.1, the family of processes (Xf, tl, [f,: e(YE)ds — E!]} has the same

action functional as (EL, f(; b(YE)ds l[f; c(YE)ds — Et]) . The function V(t,z) becomes

1 gk

1 [t . mEme E
V(t,z) = sup {Et = 5/ < AN (@4, 14), (95, 75) > ds
0
(2, 1) € Cpo,4+00) (R X RY), 0 = 2,10 = 0,0, € Go} =

2 o —1
= ¢t —T:Enlgdﬂ < ATE YT

Let v* be the point of minimum. Then

V(t,2) = o= - < A7 (2, 7), (5 77) >
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Condition (N) is satisfied and the position of the wave front is

{(t,2,9): 26t =< A~ Y (z,7"),(=,7") >} .

Example 5.3: In (1.27) assume f = f(u). The differential operator is L® in (1.28) and
the process satisfies (1.29). The function V(¢,z) is given by

(
V(t,z) =sup {Et - %/ < A Y5 — Bip,), (s — Bp,) > ds :

0

‘P E C[ﬂr‘i'c’o)(nd)l (,9[] b J-:: fpt E G[’]} 3
where A is the matrix in Condition B-1 and B is given in Remark 4.1.
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