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ABSTRACT

The embedded processors operating in safety- or mission-critical systems are not allowed

to fail. Any failure in such applications could lead to unacceptable consequences as life

risk or significant damage to property or environment. Concerning faults originated by

the radiation-induced soft errors, the embedded systems operating in aerospace applica-

tions are particularly susceptible. However, the radiation effects can also be observed at

ground level. Soft errors affect processors by modifying values stored in memory ele-

ments, such as registers and data memory. These faults may lead the processor to execute

an application incorrectly, generating output errors or leading hangs and crashes in the

system. The recent advances in embedded systems concern the integration of hard-core

processors and FPGAs. Such devices, called All Programmable System-on-Chip (AP-

SoC), are also susceptible to radiation effects. Aiming to address this fault tolerance

problem this work presents a Dual-Core LockStep (DCLS) as a fault tolerance technique

to mitigate radiation-induced faults affecting processors embedded into APSoCs. Lock-

step is a method based on redundancy used to detect and correct soft errors. The pro-

posed DCLS is implemented in a hard-core ARM Cortex-A9 embedded into a Zynq-7000

APSoC. The approach efficiency was validated not only on applications running in bare-

metal but also on top of FreeRTOS systems. Heavy ions experiments and fault injection

emulation were performed to analyze the system susceptibility to bit-flips. The obtained

results show that the approach is able to decrease the system cross section with a high

rate of protection. The DCLS system successfully mitigated up to 78% of the injected

faults. Software optimizations were also evaluated to understand the trade-offs between

performance and reliability better. By the analysis of different software partitions, it was

observed that the execution time of an application block must to be much longer than

the verification time to achieve fewer performance penalties. The compiler optimizations

assessment demonstrate that using O3 level increases the application vulnerability to soft

errors. Because O3 handles more registers than other optimizations, the system is more

susceptible to faults. On the other hand, results from radiation experiments show that O3

level provides a higher Mean Workload Between Failures (MWBF). As the application

runs faster, more data are correctly computed before an error occurrence.

Keywords: Embedded Processors Reliability. Fault Tolerance. Lockstep. Soft Errors.

Radiation Experiments. Fault Injection.





Aplicando Dual-Core Lockstep em Processadores Embarcados para Mitigar Falhas

Transientes Induzidas por Radiação

RESUMO

Os processadores embarcados operando em sistemas de segurança ou de missão crítica

não podem falhar. Qualquer falha neste tipo de aplicação pode levar a consequências ina-

ceitáveis, como risco de vida ou danos à propriedade ou ao meio ambiente. Os sistemas

embarcados que operam em aplicações aeroespaciais são sucetíveis à falhas transientes

induzidas por radiação. Entretanto, os efeitos de radiação também podem ser observados

ao nível do solo. Falhas transientes afetam os processadores modificando os valores ar-

mazenados em elementos de memória, tais como registradores e memória de dados. Essas

falhas podem levar o processador a executar incorretamente a aplicação, provocando erros

na saída ou travamentos no sistema. Os avanços recentes em processadores embarcados

concistem na integração de processadores hard-core e FPGAs. Tais dispositivos, comu-

mente chamados de Sistemas-em-Chip Totalmente Programáveis (APSoCs), também são

sucetíveis aos efeitos de radiação. Com objetivo de minimizar esse problema de tolerân-

cia a falhas, este trabalho apresenta um Dual-Core LockStep (DCLS) como uma técnica

de tolerância para mitigar falhas induzidas por radiação que afetam processadores embar-

cados em APSoCs. Lockstep é um método baseado em redundância usado para detectar e

corrigir falhas transientes. O DCLS proposto é implementado em um processador ARM

Cortex-A9 hard-core embarcado no APSoC Zynq-7000. A eficiência da abordagem im-

plementada foi validada tanto em aplicações executando em bare-metal como no sistema

operacional FreeRTOS. Experimentos com íons pesados e emulação de falhas por injeção

foram executados para analisar a sucetibilidade do sistema a inversão de bits. Os resulta-

dos obtidos mostram que a abordagem é capaz de diminuir a seção de choque do sistema

com uma alta taxa de proteção. O sistema DCLS mitigou com sucesso até 78% das falhas

injetadas. Otimizações de software também foram avaliadas para uma melhor compre-

enção dos trade-offs entre desempenho e confiabilidade. Através da análise de diferentes

partições de software, observou-se que o tempo de execução de um bloco da aplicação

deve ser muito maior que o tempo de verificação para que se obtenha menor impacto em

desempenho. A avaliação de otimizações de compilador demonstrou que utilizar o nível

O3 aumenta a vulnerabilidade da aplicação à falhas transientes. Como o O3 requer o uso

de mais registradores que os otros níveis de otimização, o sistema se torna mais sucetí-



vel à falhas. Por outro lado, os resultados dos experimentos de radiação apontam que a

aplicação compilada com nível O3 obtém maior Carga de Trabalho Média Entre Falhas

(MWBF). Como a aplicação executa mais rápido, mais dados são computados correta-

mente antes da ocorrência de um erro.

Palavras-chave: Confiabilidade de processadores embarcados, Tolerância a falhas, Locks-

tep, Falhas Transientes, Experimentos de radiação, Injeção de Falhas.



LIST OF ABBREVIATIONS AND ACRONYMS

AES Advanced Encryption Standard

APSoC All Programmable System-on-Chip

BRAM Block RAM

CPU Central Processing Unit

CRT Chip-level Redundant Threading

CRTR Chip-level Redundantly Threaded multiprocessor with Recovery

COTS Commercial Off The Shelf

CFC Control Flow Checking

DCLS_BR_DDR DCLS accessing BRAM and DDR memories

DCLS_BR DCLS accessing BRAM memory only

DUT Device Under Test

DSP Digital Signal Processor

DCLS Dual-Core LockStep

DMR Dual Modular Redundancy

DWC Duplication With Comparison

DCC Dynamic Core Coupling

ESA European Space Agency

ECC Error Correction Code

EDAC Error Detection and Correction

EDC Error Detection Code

FPGA Field Programmable Gate Array

FSM Finite-State Machine

FF Flip-Flop

FPU Floating Point Unit



GPU Graphics Processing Unit

HDL Hardware Description Language

HPC High Performance Computing

HETA Hybrid Error-detection Technique using Assertions

IU Integer Unit

IP Intellectual Property

LAFN-USP Laboratório Aberto de Física Nuclear at Universidade de São Paulo

LET Linear Energy Transfer

LR Link Register

LANL Los Alamos National Laboratory

LUT Look-Up Table

MxM Matrix Multiplication

MWBF Mean Workload Between Failures

MBU Multiple Bit Upset

MPSoC Multiprocessor System-on-Chips

NMR N-modular redundancy

OCM On-Chip Memory

OS Operating Systems

PS Processing System

PC Program Counter

PL Programmable Logic

Rad-Hard Radiation Hardened

RTL Resistor-Transistor Logic

S-SETA Selective Software-only Error-detection Technique using Assertions

SDC Silent Data Corruption

SRT Simultaneous and Redundantly Threaded



SMT Simultaneous Multithreading

SRTR Simultaneously and Redundantly Threaded processors with Recovery

SBU Single Bit Upset

SEE Single Event Effect

SEFI Single Event Functional Interrupt

SEL Single Event Latch-up

SEU Single Event Upset

SET Single Event Transient

SRMT Software-based Redundant Multi-Threading

SIHFT Software-Implemented Hardware Fault Tolerance

SP Stack Pointer

SoC System-on-Chip

TLR Thread-Level Redundancy

TMR Triple Modular Redundancy

VP Verification Point





LIST OF FIGURES

Figure 2.1 Possible effects of soft errors in processors ..................................................30
Figure 2.2 Diagram of soft errors effects in processors .................................................32
Figure 2.3 Diagram of TMR with single Voter. .............................................................34
Figure 2.4 Diagram of TMR with triplicate Voters. .......................................................35

Figure 3.1 Zynq-7000 APSoC Overview .......................................................................44
Figure 3.2 Proposed lockstep architecture for dual-core ARM Cortex-A9 embed-

ded into Zynq-7000 APSoC. ..................................................................................45
Figure 3.3 Lockstep Functional Flow for ARM Cortex-A9 dual-core: (a) original

code, (b) code with lockstep technique running in both CPUs ..............................46
Figure 3.4 Checker module functional flow ...................................................................48
Figure 3.5 Dual-Core Lockstep execution overview ......................................................51

Figure 4.1 Fault injection experiment setup ...................................................................55
Figure 4.2 Fault injection procedure flow .......................................................................55
Figure 4.3 View of fault injection experiment setup ......................................................56
Figure 4.4 Radiation experiment setup ..........................................................................58
Figure 4.5 Perspective of radiation experiment setup performed at LAFN-USP: (a)

View inside of the chamber; (b) View of the laboratory.........................................59

Figure 5.1 Execution time in clock cycles (c.c.) for performing the AES block
partitions and the Verification Points .....................................................................72

Figure 5.2 Execution time in clock cycles (c.c.) for performing the Matrix Multi-
plication in different sizes and the Verification Points ...........................................72

Figure 5.3 Execution time in clock cycles (c.c.) for performing the Matrix Multi-
plication in different sizes and the Verification Points with signature ...................73

Figure 5.4 Percentage of errors classification for Test Case II experimental designs
with 40x40 Matrix Multiplication benchmark .......................................................77

Figure 5.5 Distribution of mitigated faults in DCLS designs for Test Case II with
40x40 Matrix Multiplication benchmark ...............................................................77

Figure 5.6 Percentage of errors classification for Test Case II experimental designs
with 60x60 Matrix Multiplication benchmark .......................................................78

Figure 5.7 Distribution of mitigated faults in DCLS designs for Test Case II with
60x60 Matrix Multiplication benchmark ...............................................................78

Figure 5.8 Percentage of errors classification for Test Case III experimental designs
with AES benchmark compiled with both optimizations ......................................81

Figure 5.9 Distribution of mitigated faults in DCLS designs for Test Case III with
AES benchmark compiled with both optimizations ..............................................81

Figure 5.10 Percentage of errors classification for Test Case III experimental de-
signs with 40x40 Matrix Multiplication benchmark compiled with both opti-
mizations ................................................................................................................82

Figure 5.11 Distribution of mitigated faults in DCLS designs for Test Case III with
40x40 Matrix Multiplication benchmark compiled with both optimizations ........82





LIST OF TABLES

Table 2.1 Overview of the techniques classification .......................................................39

Table 4.1 Error classification description........................................................................56
Table 4.2 Test Cases description .....................................................................................63

Table 5.1 Resource usage of each implemented design ..................................................67
Table 5.2 Description of used registers for each benchmark in different compiler

optimizations.............................................................................................................67
Table 5.3 Performance analysis for each design running different matrix sizes.............68
Table 5.4 Performance analysis for each design running bare-metal and on FreeRTOS 69
Table 5.5 Performance analysis for each design performing Matrix Multiplication

(40x40) and AES benchmarks compiled using O0 and O3 optimizations ...............70
Table 5.6 Fault injection analysis for each design running different matrix sizes for

Test Case I.................................................................................................................75
Table 5.7 Experimental results from the heavy ions test campaign in Zynq-7000

device for Test Case IV with Matrix Multiplication (40x40) ...................................84





CONTENTS

1 INTRODUCTION.......................................................................................................21
1.1 Main Objective and Contributions........................................................................23
1.2 Work Structure .......................................................................................................24
2 BACKGROUND AND STATE OF THE ART .........................................................25
2.1 Embedded Processors .............................................................................................25
2.2 Software Optimizations ..........................................................................................26
2.3 Embedded Operating Systems...............................................................................27
2.4 Radiation Effects.....................................................................................................27
2.4.1 Faults, Errors and Failures Concepts .....................................................................28
2.4.2 Single Event Upsets in Embedded Processors.......................................................29
2.5 All Programmable System-on-Chip Devices ........................................................32
2.6 Fault-Tolerance Techniques in Embedded Processors ........................................33
2.6.1 Hardware-based techniques ...................................................................................33
2.6.2 Software-based techniques.....................................................................................34
2.6.3 Hybrid-based techniques........................................................................................37
2.6.4 Summary ................................................................................................................38
2.7 Related Works about Lockstep Technique ...........................................................39
3 PROPOSED DUAL-CORE LOCKSTEP .................................................................43
3.1 Case Study ...............................................................................................................43
3.2 Architecture.............................................................................................................44
3.3 Implementation .......................................................................................................45
3.3.1 Checker Module.....................................................................................................47
3.3.2 Checkpoint and Rollback Methodology ................................................................49
3.4 DCLS approach overview ......................................................................................51
4 EXPERIMENTAL METHODOLOGY ....................................................................53
4.1 Fault Injection Experiments ..................................................................................54
4.2 Radiation Experiments...........................................................................................56
4.3 Evaluated Applications...........................................................................................60
4.3.1 Software Optimizations .........................................................................................60
4.3.1.1 Optimization in Software Partition .....................................................................60
4.3.1.2 Optimization in Software Compilation...............................................................61
4.3.2 Test Cases Overview..............................................................................................62
5 RESULTS.....................................................................................................................65
5.1 Implementation Analysis........................................................................................65
5.1.1 Area assessment .....................................................................................................65
5.1.2 Performance assessment ........................................................................................67
5.1.2.1 Test Case I Analysis............................................................................................68
5.1.2.2 Test Case II Analysis ..........................................................................................69
5.1.2.3 Test Case III Analysis .........................................................................................70
5.1.2.4 Software Partition Evaluation .............................................................................70
5.2 Fault Injection Experiments ..................................................................................74
5.2.1 Evaluation of Test Case I .......................................................................................74
5.2.2 Evaluation of Test Case II ......................................................................................75
5.2.3 Evaluation of Test Cases III ...................................................................................79
5.3 Radiation Experiments...........................................................................................83
5.3.1 Evaluation of Test Case IV ....................................................................................83
6 CONCLUSION ...........................................................................................................85
6.1 Future Work ............................................................................................................86



REFERENCES...............................................................................................................89
APPENDIX A — PUBLICATIONS.............................................................................95



21

1 INTRODUCTION

State-of-the-art computing systems rely on heterogeneous architectures to achieve

performance and energy consumption goals. Dependable and safety-critical systems are

no exception to this rule. In the last years, new embedded Systems-on-Chips (SoC)

based on heterogeneous architectures have been developed to address those requirements.

These SoCs, called All Programmable System-on-Chip (APSoC), combine a Field Pro-

grammable Gate Array (FPGA) layer with embedded processors. Frequently, commercial

APSoCs use SRAM-based FPGA solutions due to the high reconfiguration flexibility,

competitiveness costs, and capability of integrating complex systems on the same com-

ponent. Unfortunately, whilst being able to achieve high performance and energy con-

sumption with low cost, the APSoCs devices are subject to a plethora of issues that may

compromise their usage for safety-critical and dependable purposes.

The Safety- and mission-critical applications are not allowed to fail. Aerospace,

nuclear, medical and automotive are examples of such systems, where any failure could

lead to unacceptable consequences as life risk or significant damage to property or en-

vironment. Therefore, protection against faults that provoke errors is demanded. As

mentioned, the APSoCs can be suitable for such applications, but the system must be

protected with techniques to ensure high reliability.

Concerning faults originated by the radiation-induced soft errors, the embedded

systems operating in aerospace applications are particularly susceptible. However, the

radiation effects can also be observed at ground level due to interaction with neutron par-

ticles present in the atmosphere. Massive doses of radiation can cause several execution

problems (QUINN, 2014). With the reduction of the transistor size, modern processors

became more susceptible to Single Event Effects (SEE) (BAUMANN, 2005). The par-

ticles can interact with silicon, provoking transient pulses in some sensitive areas. Such

episodes might lead to Single Event Upset (SEU) – or bit flips – in the sequential logic that

could induce errors, generating wrong application’s results and other failures in the sys-

tem, like hangs and crashes (AZAMBUJA; KASTENSMIDT; BECKER, 2014). When

the radiation is high enough, it may flip data bits of memory cells, registers, latches,

and flip-flops that can lead to errors (DODD et al., 2003). Radiation effects also induce

faults in FPGAs. The ones that use SRAM-based technologies are very susceptible to soft

errors. As they are composed of millions of SRAM cells used to configure all the syn-

thesized logic, the embedded processors, Digital Signal Processors (DSP), and memories
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(SIEGLE et al., 2015). Because APSoCs are not architecturally fault tolerant, as they

can be composed of multiple processors cores, Graphics Processing Units (GPU) and a

programmable array that are all susceptible to radiation, safety-critical systems making

use of that hardware shall present fault tolerance mechanisms.

Several methods have been described in the literature to deal with those radiation-

caused errors (MAHMOOD; MCCLUSKEY, 1988; REINHARDT; MUKHERJEE, 2000;

GOLOUBEVA et al., 2006; MUKHERJEE; KONTZ; REINHARDT, 2002). Most of the

fault tolerance methods protect the system from Silent Data Corruptions (SDC), which are

errors in memory and final application output. Single Event Functional Interrupt (SEFI),

another important type of error that leads to hangs or crashes in the system, is typically

not targeted by the techniques. Nevertheless, SEFI is the most severe issue, as it impacts

the application execution and the user experience directly.

There are just a few techniques that are able to detect both SDC and SEFI. One of

them employs the lockstep principle, which is a hybrid solution based on redundancy used

to increase the dependability of embedded processors. This work makes use of Dual-core

Lockstep (DCLS) as a fault tolerance method capable of detecting and correcting soft

errors. The proposed DCLS runs the same application simultaneously in two identical

processors and monitors the application execution outputs, checking for inconsistencies.

The lockstep combines checkpoints and rollbacks (BOWEN; PRADHAM, 1993) at soft-

ware level to ensure processor reliability. Checkpoints are operations that store a fault-free

copy of the processor state in a safe memory. Whereas, a rollback consists of a recovery

method that restores the processor to a previous safe state.

Although the literature presents a plethora of lockstep implementations (ABATE;

STERPONE; VIOLANTE, 2008; VIOLANTE et al., 2011; GOMEZ-CORNEJO et al.,

2013; PHAM; PILLEMENT; PIESTRAK, 2013), most of them protect soft-core proces-

sors. As these cores have an open architecture and are implemented in FPGA logic, the

advantage is the designer can modify it if needed. However, the ones embedded into

SRAM-based FPGAs are susceptible to persistent soft errors in the configuration bit-

stream, which can affect the functionality, and performance of the processor. This work

focuses on protecting hard-core processors embedded into APSoCs. Therefore, the persis-

tent errors in the processors caused by bit-flips in the programmable configurable blocks

are avoided, differently as occurs with soft-core processors. Moreover, it is possible to

take advantages of the high-performance hard-core processor as well as the programmable

matrix.
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1.1 Main Objective and Contributions

This work aims to investigate a fault tolerant solution to soft-errors mitigation

concerning processors embedded into APSoCs. As previously discussed, heterogeneous

architectures can efficiently execute applications, achieving performance enhancement.

However, these devices are very susceptible to radiation effects been necessary to imple-

ment strategies to deal with it.

The main objective of this work is implementing an approach based on Dual-

Core LockStep (DCLS) as a fault tolerance technique to mitigate radiation-induced faults

affecting processors embedded into APSoCs. The method should be capable of detecting

and treating both SDC and SEFI errors before they can cause catastrophic issues.

The proposed DCLS architecture relies on two processors running with private

embedded BRAM memories to duplicate the application execution, and a checker module

to validate the processors’ output and, in case of failure, recover the system. The DCLS

technique is implemented to protect a dual-core ARM Cortex-A9 embedded into a Xilinx

Zynq-7000 APSoC. This APSoC is capable of serving a wide range of safety-critical

applications, such as avionics communications, missile control, and smart ammunition

control systems. The Zynq was chosen as test case due to its high presence on the market

and in the scientific literature. Although the implementation target is the ARM-A9 into

Zynq, the approach can be easily portable to another hard-core processor embedded into

APSoC, making just some architectural changes.

The main novelty lies in applying the DCLS to a hard-core ARM Cortex-A9 in

which, for the best of our knowledge, no other work focuses on this processor. Besides,

the use of an exclusive BRAM memory to each processor, in order to avoid a single

point of failures in the data memory, increasing the reliability. The implemented lockstep

approach does not require both processors work in the same clock, because of the verifi-

cation point strategy each processor can work with distinct clock. This work applies the

DCLS to applications running not only in bare-metal but also on the FreeRTOS, which is

an industry-leading real-time operating system. The FreeRTOS is used in a plethora of

applications, such as aerospace and safety-critical. Thus, the effectiveness evaluation of

fault-tolerant techniques applied to applications running on top of this systems is essen-

tial.

A complete evaluation of the performance impact in used the proposed DCLS in

the system is described. This work presents an analysis of how software optimizations
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can affect the DCLS approach fault coverage and performance penalties. Two types of

optimization are evaluated: software partition and compiler optimizations. The former is

directly related to the number of verification points, which is defined during the DCLS

design. The latter is related to compilation parameters used to boost performance.

To assess the system, two types of experiments were performed: radiation ex-

posure and fault injection. The radiation exposure consists of heavy ions experiments,

conducted at Laboratório Aberto de Física Nuclear at Universidade de São Paulo (LAFN-

USP), Brazil. To emulate faults in the processor a fault injection system was developed.

The injection is performed by a module in the FPGA layer of the APSoC that emulates

bit-flips on the processor’s register file in a non-intrusive manner. Thus, the resilience of

the embedded processor is evaluated.

The appendix A presents the list of publications resulting from this work efforts.

1.2 Work Structure

This dissertation is organized as follows. Chapter 2 presents the background

knowledge. The basics concepts of embedded processors, heterogeneous architectures

and radiation effects are introduced. Besides, an overview of fault tolerant techniques

used to improve the processor dependability is presented. Then, in chapter 3 is described

the implementation of the proposed DCLS technique. In sequence, chapter 4 details the

evaluation methodology used to assess the system. It describes the experiments performed

and test case applications used for achieving the results, which are discussed in chapter 5.

Finally, chapter 6 draws the final remarks and possible future works that can be done over

the presented DCLS.
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2 BACKGROUND AND STATE OF THE ART

This chapter first discusses embedded processors and how soft errors can influence

in their functionality. The system complexity and the area density increase the vulnera-

bility to soft errors. Devices with heterogeneous architectures, which integrate embedded

processors and FPGAs, are also described. These devices are extensively being used for

implementing mission-critical and reliable systems. Such applications demand fault toler-

ant techniques capable of protecting the system against soft errors. An overview of fault

tolerant techniques used to improve the processor dependability is presented, and their

advantages and disadvantages are discussed. Finally, the concepts of the lockstep method

and several related works are presented in the last section.

2.1 Embedded Processors

Considering the evolution of the architectures, the modern processors delivers

high-performance computing, power efficiency, and reduced cost, which are requirements

for almost all safety-critical applications. From the first Von Neumann machines up to

high-performance processors, the technology advances allowed to rise from sequential

execution of instructions to a high level of parallelism.

The architectures of embedded processors can be split into three types depending

on the number of Central Processing Units (CPU): single-, multi-, or many-cores. In the

former, there is only one CPU, while the multi-cores are usually composed by two, four,

six, or eight independent cores in the same silicon. The many-core system is defined when

ten or more CPUs are integrated. In single-core processors to run multiple programs, time

slices are assigned. In multi- and many-cores, multiple tasks that can be run in parallel at

the same time, boosting performance (JOHNSON; DINYO, 2015).

The embedded processors can be defined as hard- or soft-cores. The hard-cores

are processors designed physically in the chip, where all the components are integrated

and manufactured. Thus, the processor is hardwired in the die, like Power-PC and ARM

Cortex-A9. By contrast, the soft-cores are the ones implemented using reconfigurable

resources of FPGAs. These processors are Intellectual Property (IP) blocks developed

entirely in Hardware Description Language (HDL), like VHDL or Verilog. The MicroB-

laze, PicoBlaze, and Nios are examples of soft-core processors used in many applica-

tions. Moreover, there are those proposed by the open-source community, like LEON3
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and LEON4. The soft-cores main advantages concern to flexibility, simple integration,

device customization, reusability, and portability. However, the soft-cores usually are

slower than hard-cores. Besides, the soft-cores are not energy efficient, while hard-cores

possess power saving modes (MONDRAGON, 2012).

2.2 Software Optimizations

Aiming to achieve performance requirements, less memory occupation and de-

crease the power consumption, the program executing in a processor can be optimized

in some ways. Different levels can be optimization target, like assembly, compile, build,

source code, algorithms and data structures, and design level (LINS, 2017). Software op-

timizations can be characterized as architecture-independent and architecture-dependent

(DOMEIKA, 2008). The latter uses specific properties of the architecture, changing pa-

rameters depending on the underlying platform, like register allocation and instruction

scheduling. On the other hand, architecture-independent optimizations are more general

techniques that can be applied to different platforms, like loop-invariant code motion,

dead code elimination, and common-subexpression elimination.

The optimizing compiler applies some transformations to the program aiming to

get a more efficient code. The optimization must not affect the application results. How-

ever, it is allowed to change the program flow. Fundamentally, the compiler can optimize

the code by control and data flow analysis (HAGEN, 2006). To assess the control flow,

the compiler examines control constructs and loops to determine the paths of execution

that can be taken and simplify the code. The data flow analysis concerns the program

verification for the usage track of the variables, allowing to apply the optimizations.

Distinct compiler optimization levels can be applied to the code, with slightly

different set of options. Depending on the selected configuration, the focus can be perfor-

mance and/or code size improvement. The GCC optimization levels are described below

(STALLMAN; COMMUNITY, 2014).

• -O0: This is the primary level, in which no optimization is performed. The source

code is compiled without any rearrangement, and the executable instructions corre-

spond precisely to the program. The -O0 is default level in debug mode.

• -O1: This is the optimization level one, which has restricted optimizations. This

level focuses in to reduce code size and execution time, without compromise the
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compilation time.

• -O2: This is the default level in release mode. Almost all the optimizations are per-

formed by the compiler, less the space-speed tradeoff ones. The compiler attempt

to improve the performance at the expense of compilation time.

• -O3: This is the highest level, in which all the optimizations are enabled. The

compiler focuses on boosting performance over code size cost.

2.3 Embedded Operating Systems

Several embedded computing systems use Operating Systems (OS) due to effi-

ciency and software scalability. Differently from the OS for a desktop computer, the

embedded OS typically requires resource-efficiency and reliability. Also, the embedded

OSes have to be able to run with memory and processing power constraints. Due to the

wide variety of embedded applications, there are a large number of available OS options,

like Linux, FreeRTOS, and eCos.

For real-time systems, the FreeRTOS (BARRY, 2017) is the industry-leading op-

erating system. FreeRTOS is a light OS that has, as main advantage, the feasibility of

working with threads and pseudoparallelism on a single-core processor. Accordingly, the

main application can be split into individual tasks with assigned priorities to be performed

by the processor.

The main advantages in using embedded OS in the systems are the possibility to

customize the OS to precise application requirements, the efficiency improvement, and

the scalability. Despite these advantages, as the system complexity is increased, more

critical points of failure and susceptibility to errors are observed, which becomes a con-

cern for safety-critical applications (RODRIGUES; KASTENSMIDT, 2017). Thus, the

use of embedded OS in these applications requires the implementation of fault-tolerance

techniques.

2.4 Radiation Effects

The progress of the semiconductor industry made possible the development of

more complex systems, allowing architectures integration and increasing systems func-

tionalities. The new technologies provide transistors with reduced dimensions, enabling
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to add a high number of transistors per area unit. Besides, the advances lead to tightened

noise margins, and threshold voltages and node capacitances reduced. All these advances

made the devices more susceptible to the radiation effects (BAUMANN, 2005).

Embedded systems operating in aerospace applications are particularly suscepti-

ble to radiation-induced soft errors caused by ionized particles originated from the spa-

tial environment. The particles can interact with silicon, depositing enough charge that

can temporarily charge or discharge the transistors drain at off-state, provoking transient

pulses in the susceptible nodes. Such episodes might lead to bit-flips in the sequential

logic that later on can induce to errors and failures in the system (BAUMANN, 2005).

Systems in avionics and at ground level can also be affected by radiation effects due to in-

teraction with neutrons present in the atmosphere (NORMAND, 2001). Baumann (2005)

defines three primary mechanisms responsible for soft errors at terrestrial altitudes. The

first is the interaction between high-energy neutrons and silicon nucleus. The second is

when high concentrations of the dopant boron present in the device react with low-energy

neutrons. And the last one is the emission of alpha particles, composed of two neutrons

and two protons, from radioactive impurities in the materials.

The pulses of transient voltage caused by radiation disturbances are called as Sin-

gle Event Effects (SEE), which can be destructive or nondestructive (BAUMANN, 2005;

SIEGLE et al., 2015). Single Event Latch-up (SEL) is a destructive effect, as result of

a high operating current. The nondestructive ones can be classified as Single Event Up-

set (SEU), Single Event Functional Interrupt (SEFI) or Single Event Transient (SET).

SET is the transient pulse generated at a susceptible transistor node of design. This pulse

may propagate through the logic and be captured by a flip-flop, for instance. SET can

be logical, electrical, or latch window masked. A SEFI occurs when a soft error leads to

malfunction of the device. The SEU is described as a radiation effect that provokes charge

disturbance enough to reverse a data state of a memory element. When only one memory

bit is affected by the soft error, it is called Single Bit Upset (SBU). If two or more bits are

flipped in the same memory word, this event is defined as Multiple Bit Upset (MBU).

2.4.1 Faults, Errors and Failures Concepts

The definition of faults, errors and failures can present small differences in the

literature. This work adopts the same concepts described in (AVIZIENIS et al., 2004).

The difference between the implemented hardware and its functionality is called a defect
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or upset. Whereas, the logical abstraction of a physical defect, or imperfection, is defined

as a fault. However, if the defect is electrically masked the fault will not be observed. The

faults can be classified as permanent, transient or intermittent. The first are the ones that

are continuous in time and remain until the replacement (or reparation) of the component.

The second and third are temporary faults that are time limited. The transient ones occur

randomly and remain during a short period. A repetitive fault is classified as intermittent.

When a fault is manifested, it can lead to an error, which is a wrong value in

the output. In other words, an error is an inconsistency in the final result. If the error

propagates and affects the system externally, it is said that a failure occurs. Therefore,

an upset can be manifested as a fault that could lead to an error that may be propagated

generating a failure. It is important to notice that not all faults result in error, and not

every error produces a failure.

2.4.2 Single Event Upsets in Embedded Processors

Soft errors in processors may lead to executing an application incorrectly, gener-

ating data errors or system crashes. As Fig. 2.1 shows, SEUs can affect the data flow or

control flow of the processor (TAMBARA, 2017).

Upsets in the values stored in memory elements can lead to data flow errors, which

can be caused by incorrect operations or wrong data. The execution of an incorrect oper-

ation occurs when a bit-flip corrupts the program code, leading to a wrong instruction. If

the bit-flip affects a data used as input by an operation, the output from it certainly will

be incorrect. In both data flow errors, the program output is corrupted, leading to wrong

results in the final application that are classified as Silent Data Corruption (SDC).

When an SEU affects the control flow, the processor may execute the program

incorrectly, leading to SEFIs. In this case, the SEFI is caused by an application crash and

processor hang. Upsets in the control flow may lead to branch errors: creation or deletion

of a branch, or incorrect branch decision. The erroneous creation is due to a bit-flip that set

a non-branch instruction into a branch, leading the program flow to a wrong address. The

erroneous deletion occurs when a branch is not taken when it should be because the branch

instruction was converted into another instruction. A bit-flip in a conditional branch can

result in an incorrect decision, i.e. if the branch should be taken or not. Also, an SEU

can modify the register that contains the target address of a branch instruction, assigning

an incorrect address to the program execution. Finally, when the Program Counter (PC)
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Figure 2.1: Possible effects of soft errors in processors

Source: (TAMBARA, 2017).

register is affected by a soft error, the next instruction to be executed changes, which also

leads the program flow to a wrong address.

As presented, the SEUs may lead to different types of errors in the processors,

depending on the memory element affected. Velazco and Faure (2007) relate the resulted

error with the affected hardware unit, as described below:

• Register File: Upsets may corrupt data, provoking errors in the application outputs

(results inconsistency). If an SEU affects a control register, this can lead to errors

in the program execution flow and hangs in the system.

• Integer Unit (IU), Floating Point Unit (FPU): Due to the pipeline in the arithmetic

units, SEUs may result in incorrect computations.

• Bus Unit: Bit-flips in the embedded registers, which latches address and data, can

lead to incorrect read or write operations.

• Control Unit: SEUs in the circuitry, which implements complex algorithms, may

provoke exception generation or losses of sequence.

• Debug Unit: The special execution modes can be trigged by SEUs, which will lead

to errors in the execution flow of the program.

• Instruction Cache: Upsets may lead to corrupted outputs or processor hangs. The

instruction caches are usually divided into SRAM array to store fetched instructions

and tag array to validate or invalidate the fetched program. SEUs in the tag array can

invalidate an instruction to be executed, leading to a cache miss, which introduces a
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delay in the program execution as the instruction has to be fetched again. However,

if an SEU validates an incorrect code, the flow of the program will be crashed.

Besides, an upset can affect the SRAM array and corrupts an instruction. If the

tag array validates the corrupted code, a wrong instruction will be executed, or an

exception will be generated. The latter occurs when the corrupted instruction is

not anymore in the processor instruction set. On the other hand, if the corrupted

instruction is not validated by the tag array, the fault is masked, and no incorrect

behavior will be observed.

• Data cache: These units are split in tag array and data array, like instruction caches.

Bit-flips in the tag array may validate out-of-date data, leading to wrong outputs,

or invalidate data, introducing a delay in the application (cache miss). If an upset

affect the data array, this may lead to corrupted output. However, if the data is

out-of-date, the fault is masked, and no effects will be observed.

Fig. 2.2 shows a diagram that presents an overview of the possible effects of SEUs

in embedded processors. Concerning soft-core processors, they are even more vulnerable

to the radiation effects. The ones embedded in SRAM-based FPGAs are susceptible to

persistent soft errors in the configuration bitstream that may affect their functionality.

There are commercial solutions that provide Radiation Hardened (Rad-Hard) pro-

cessors, which features high tolerance to radiation effects. Such is the case of Microchip

(Atmel) Rad-Hard 32 bit SPARC V8 Processor (MICROCHIP, 2017) and VORAGO Rad-

Hard ARM R© Cortex R©-M0 MCU (VORAGO, 2017). These solutions usually integrate

Triple Modular Redundancy (TMR) on circuits and registers, and Error Detection and

Correction (EDAC) on memories. Although the Rad-Hard architectures provide high re-

liability, these processors do not achieve performances as high as modern Commercial

Off The Shelf (COTS) (AZAMBUJA; KASTENSMIDT; BECKER, 2014). Moreover,

other drawbacks include: excessive price; limited use; not widely available - as there are

only a few companies in the market; and the fabrication process uses older technologies

(GINOSAR, 2012).

The Rad-Hard processors are not the only solution to systems that availability or

high reliability are required. The COTS processors can be suitable for such applications

if fault-tolerance methods are applied. Further in this chapter, several techniques that can

be implemented to improve the dependability of embedded processors are presented.
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Figure 2.2: Diagram of soft errors effects in processors

Source: From the author.

2.5 All Programmable System-on-Chip Devices

Heterogeneous computing architectures, which combine embedded processors and

FPGAs, are increasingly being used for implementing mission-critical and reliable sys-

tems, such as High Performance Computing (HPC) servers, non tripulated vehicles, and

avionics systems. In these fields of application SRAM-based FPGA solutions are fre-

quently used due to the high reconfiguration flexibility, competitiveness costs, and capa-

bility of integrating complex systems on the same component.

The called All Programmable System on Chips (APSoC) are devices divided in

Processing System (PS), which contain dedicated embedded processor, and Programmable

Logic (PL), that is the FPGA customizable logic. The embedded processors used in such

systems can be based on soft- or hard-cores, in which the former are implemented in the

logic elements of the FPGA, and the latter are designed in dedicated silicon. Examples of

commercial APSoCs are Zynq-7000 from Xilinx (XILINX, 2016b) and Cyclone-V from

Altera (ALTERA, 2015), in which both present dual-core ARM Cortex-A9 processor

(ARM, 2010) on the PS and SRAM-based FPGA on the PL part.

The System-on-Chips (SoC) devices that integrate embedded multi-core proces-

sors and FPGAs are defined as Multiprocessor System-on-Chips (MPSoC). These SoCs

usually contain heterogeneous processors to performance enhancement. Applications

with high concurrency can be scheduled to be performed into throughput optimized cores,
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and the ones with fewer and complex threads can be programmed to latency optimized

cores. For instance, the Xilinx Zynq UltraScale+ MPSoC (XILINX, 2017b) is composed

of dual- and quad-core variants of the ARM v8-based Cortex-A53 combined with dual-

core ARM Cortex-R5 processor, besides the FPGA part.

Although modern SoCs devices offer a plethora of advantages, they present an

additional susceptibility to errors, since the FPGA is significantly affected by radioactive

environments (TAMBARA et al., 2016). The ones that use SRAM-based technologies are

very susceptible to soft errors caused by radiation effects, as they are composed of mil-

lions of SRAM cells used to configure all the synthesized logic, the embedded processors,

DSPs, and memories (SIEGLE et al., 2015). Soft errors affect FPGAs by modifying the

configuration bitstream, which can cause changes in the logic, functionality, and perfor-

mance of the device.

2.6 Fault-Tolerance Techniques in Embedded Processors

Fault-tolerance techniques to improve the dependability of embedded processors

galore are described in the literature. They can be classified as hardware-, software- and

hybrid-based techniques (AZAMBUJA; KASTENSMIDT; BECKER, 2014). The next

sections present an overview of the main techniques for each classification.

2.6.1 Hardware-based techniques

The Hardware-based techniques are implemented at physical level. Mainly based

on redundancy, these methods can provide two or more instances of a hardware compo-

nent, as processors, memories, buses or power supplies (DUBROVA, 2008). The spatial

redundancy techniques are effective for single fault models, in which a soft error affect

only one redundant module. If more modules are affected the effectiveness is not guaran-

teed (ROSSI et al., 2005).

The Duplication With Comparison (DWC) is a technique applied for error detec-

tion. As there are only two hardware copies with comparison, the method is not able to

recover the system. Thus, when a fault is detected, the system must be restarted to return

to a safe state. For error detection and correction, a Triple Modular Redundancy (TMR)

can be applied, as presented in Fig. 2.3. Three redundant modules and a voter for com-
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Figure 2.3: Diagram of TMR with single Voter.

Source: From the author.

parison are used to mask an error. However, as in DWC, the system must be restarted

to guarantee a safe state. In order to avoid single point of failures, the voter can also be

triplicated, as shown in Fig. 2.4.

Another type of hardware-based technique is the hardware monitors that can use

watchdogs, checkers, or IPs to monitor the system (AZAMBUJA; KASTENSMIDT;

BECKER, 2014). The most common, the watchdog processor (MAHMOOD; MCCLUSKEY,

1988) is a module that detects errors by verifying the control-flow and memory access of

the target processor. As advantages, less hardware is required compared to replication

techniques, and stuck-at errors can be identified. However, the error correction is not

supported by this approach.

As previously mentioned, there are commercial processors called Rad-Hard that

provide high dependability by applying hardware-based techniques in the internal archi-

tecture. Although these methods are efficient, they introduce significant overhead mainly

in area and power consumption.

2.6.2 Software-based techniques

The Software-Implemented Hardware Fault Tolerance (SIHFT) (GOLOUBEVA

et al., 2006) are techniques that deal with faults affecting the hardware by protecting only

the software, without hardware modification. These methods rely on adding redundancy

and comparison for error detection.
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Figure 2.4: Diagram of TMR with triplicate Voters.

Source: From the author.

The most common types of redundant techniques are the Dual Modular Redun-

dancy (DMR) and the TMR schemes. As mentioned, TMR can also be applied at hard-

ware level to provide fault-tolerance. There is also the N-modular redundancy (NMR),

which uses N application replicas. For instance, in multi-core systems, the N replicas can

run on different cores. These solutions offer high fault detection (and error masking, in

case of three or more redundant executions). However, they introduce a large area, perfor-

mance, and energy overhead, which can be unacceptable for some applications. Another

drawback is these methods only protect the system from SDCs. They are not able to

deal with SEFIs that are the most problematic type of error, as it impacts the application

execution and the user experience directly.

The redundant-based techniques usually adopt one of these strategies (OSINSKI;

LANGER; MOTTOK, 2017): information, temporal or spatial redundancy. The first con-

sists of adding extra information to all the program data, by using Error Detection Code

(EDC) or Error Correction Code (ECC) or even by replicating all data in different memory

spaces. The temporal redundancy means additional execution time, as the code protection

runs in distinct periods during the program execution on the same hardware. For instance,

if for NMR the N replies are executed sequentially in the same processor. Another tem-

poral redundancy is applying checkpoint and rollback operations for error recovery. The

execution of parallel redundancies in different cores is considered spatial redundancy,

likewise the use of additional components.

The presented redundant strategies can be applied at instruction and thread lev-

els to provide protection (OSINSKI; LANGER; MOTTOK, 2017). The approaches that
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operate at thread level are called Thread-Level Redundancy (TLR). The concept of ap-

plying Simultaneous Multithreading (SMT) to provide fault coverage was first intro-

duced in (REINHARDT; MUKHERJEE, 2000). The authors presented the Simulta-

neous and Redundantly Threaded (SRT) processor, which runs the program replies si-

multaneously in independent threads. From this, there was an evolution from single-

core to multi-core approaches. The following are examples of single-core implemen-

tations: SRT (REINHARDT; MUKHERJEE, 2000); Simultaneously and Redundantly

Threaded processors with Recovery (SRTR) (VIJAYKUMAR; POMERANZ; CHENG,

2002); and Software-based Redundant Multi-Threading (SRMT) (WANG et al., 2007).

To multi-cores is relevant to cite: Chip-level Redundant Threading (CRT) (MUKHER-

JEE; KONTZ; REINHARDT, 2002); Chip-level Redundantly Threaded multiprocessor

with Recovery (CRTR) (GOMAA et al., 2003); Reunion (SMOLENS et al., 2006); and

Dynamic Core Coupling (DCC) (LAFRIEDA et al., 2007).

The power consumption in redundant approaches has been a target of recent re-

searches (SALEHI et al., 2015; SALEHI; EJLALI; AL-HASHIMI, 2016). They study

energy efficiency of multi-core platforms that are protected by techniques with redundant

solutions. The state of the art of redundancy in multi-core relies on applying the con-

cepts of approximate computing (HAN; ORSHANSKY, 2013) to the N task replies as a

way to reduce the power consumption for the reliability improvement (BAHARVAND;

MIREMADI, 2017). Although this type of approach provides protection with lower en-

ergy overhead, the target application has to deal with inexact results that in most of the

safety-critical applications are not acceptable.

The Selective Software-only Error-detection Technique using Assertions (S-SETA)

technique (CHIELLE et al., 2015) can deal with control-flow faults that leads to SEFIs.

In case of faults, the approach puts the system in a fail-safe state and sighs the fault oc-

currence, allowing the designer to apply a recovery solution. Thus, this technique can

detect SEFI by control-flow analysis but does not correct the errors. However, SETA can

be combined with data-flow techniques to increase the reliability.

Considering the SEU susceptibility of embedded OSes, Rodrigues and Kastens-

midt (2017) evaluated the behavior of approximative applications running in bare-metal

and on top of FreeRTOS and Linux. The authors have concluded that the FreeRTOS has

less impact on the system susceptibility to errors than the Linux. However, the FreeRTOS

applications are much more prone to hangs than the Linux and bare metal counterparts.

Besides, for Linux executions, the segmentation fault errors are an issue, which is not
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present on FreeRTOS and bare-metal. In (FAYYAZ; VLADIMIROVA, 2014), an ap-

proach is proposed on fault tolerance for aerospatial FreeRTOS applications. The authors

have developed a technique that makes use of parallelism to provide safety. The method

consists of migrating tasks from a faulty processor to a healthy one. The problem with

this approach is that a high amount of assumptions must be taken beforehand by the de-

signer. Decisions like which tasks will be migrated to which nodes are made in the design

phase. Unfortunately, a programmer is not able to safely predict which processing nodes

will fail. Thus, a more general method to protect the system should be used that requires

no previous assumptions to be made by the designer. As further presented, the lockstep

technique can be applied to such systems, providing a high reliability.

2.6.3 Hybrid-based techniques

The hybrid techniques are the ones that uses a SIHFT method combined with

a hardware module that performs consistency checks in the processor. The work in

(CHIELLE et al., 2016) combines a set of SIHFT techniques with a Control Flow Check-

ing (CFC) module to monitor the trace port of the processor. Whereas Azambuja et al.

(2013) presents a Hybrid Error-detection Technique using Assertions (HETA), which is

a hybrid method that uses a watchdog module and assertions (or signatures) to deal with

control-flow errors.

Lockstep is a hybrid fault-tolerance technique based on software and hardware re-

dundancy for error detection and correction (ABATE; STERPONE; VIOLANTE, 2008;

VIOLANTE et al., 2011; GOMEZ-CORNEJO et al., 2013; PHAM; PILLEMENT; PIES-

TRAK, 2013). It uses the concepts of checkpoint combined with rollback mechanism at

software level, and processor duplication and checker circuits at hardware level. A typi-

cal lockstep works by executing the same application simultaneously and symmetrically

in two identical processors, which are initialized to the same state with identical inputs

(code, bus operations, and asynchronous events) during system start-up. Therefore, dur-

ing normal operation, the state of both processors is identical from clock to clock. In an

error-free execution, they are expected to perform the same operations allowing the mon-

itoring of the processor’s data, addressing, and controlling buses (BOWEN; PRADHAM,

1993). There is a checker module that monitors the CPUs and periodically compares the

outputs to check for inconsistencies. Points of verification must be inserted in the program

to indicate when the application execution must be locked and the outputs compared. If
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there is any discrepancy in the results, the lockstep system restores the processors to a

safe state through a rollback mechanism. Otherwise, the processors are assumed to be

fault-free and a checkpoint operation is performed.

The checkpoint consists in an operation that stores the processor’s context in a se-

cure memory, without errors. Memories can be protected by ECC to avoid memory data

corruption. ECC can detect and correct single-bit errors, and detect double-bit errors. The

processor’s context is defined as all data resources used in the application execution - i.e.,

registers, main memory - necessary to repair the system in case of errors. Rollback is a

recovery method that restores the fault-free copy of the processor’s context from mem-

ory. The processor then is recovered to a state without errors and restarts the application

execution from this point.

2.6.4 Summary

An overview of the techniques classification is presented in Table 2.1. The Hardware-

based consists of modifying the system’s architecture, adding checker modules and phys-

ical redundancy (e.g., processors or memory replication), which usually present a high

area overhead. The software solutions introduce extra instructions and redundant infor-

mation (e.g., replication of the entire program or parts of it) to be able to detect or correct

soft errors in the processor. This type of approach usually presents a high overheard in

the execution time. Finally, the hybrid ones integrate the hardware- with software-based

techniques in order to improve error detection and correction and to reduce area and time

overhead.

The main drawback of the presented methods is they only protect the system from

SDCs or SEFIs, individually, hardly both at the same time. Most of the described fault-

tolerant solutions based on redundancy are used to protect the processor against soft errors

that lead to SDCs, but no SEFI. Besides, the results verifications are mostly performed by

the own processors, which could increase the errors susceptibility and also false detections

if a fault affects the checker in the processor. Aiming to solve these topics a straightfor-

ward solution is to use an external module that compares the outputs and also controls

the processor operation as a way to detect a system crash and perform some recovery

mechanism. However, once heterogeneous architectures are considered, the techniques to

monitor and observe fault effects, track errors and perform recomputation are more chal-

lenging. In APSoCs, the system verification could be handled by a module centralized
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Table 2.1: Overview of the techniques classification
Technique

Classification Pros Cons

Hardware
- High fault detection
- Fast detection
- No software modification

- Most does not correct errors
- Mainly single fault model
- High area and power
overhead
- Implemented only in
physical level
- Can be expensive

Software

- High fault detection
- High flexibility
- No hardware modification
- Small area overhead
- Some can correct errors

- High performance overhead
- Mainly single fault model
- Focuses only on data or
control flow, but not both

Hybrid

- High fault detection
- High efficiency
- Can achieve small area overhead
- Some can detect both SDC
and SEFI
- Some can correct errors

- Can also achieve high
performance or area overhead
- Software and hardware
modification

or distributed, and the hybrid lockstep technique could be applied. The method imple-

mented in this work is based on lockstep and is capable of detecting both SDC and SEFI

errors before they lead to catastrophic issues. The next section presents an overview of

the lockstep related works.

2.7 Related Works about Lockstep Technique

There are processors, like ARM Cortex-R5 (ARM, 2011), that already provides

in the architecture support to lockstep mode, which can be configured to application re-

liability. The difference is the implemented technique is only hardware-based. The same

program runs on distinct lockstep cores, which allows error detection, for DMR version,

and error correction, for TMR version. However, for those processors that do not have

this functionality, the lockstep has to be implemented. Several approaches of lockstep

have been described in the literature to improve the system dependability in applications

that require high reliability.

The idea to combine the rollback recovery with checkpoints for hardening pro-

cessor cores inside FPGAs was introduced by Abate, Sterpone and Violante (2008). The

authors presented a lockstep architecture adopting a Virtex II-Pro target device which em-
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beds two hard-core PowerPC processors. The memory to save the context is assumed to

be immune to SEUs, which is an unrealistic scenario and the memory susceptibility also

have to be considered. By fault injection in the processor’s registers (user, special pur-

pose, and control registers), the authors concluded that the implemented approach was

able to correct up to 54% of the injected faults and 3% led to wrong results. The pro-

cessor verification is performed in every write cycle. Thus, all the information sending

to the memory or the peripheral devices is sanity checked. Although this is an efficient

verification method, this may lead to a huge performance overhead. Unfortunately, the

authors did not mention the implementing cost.

The lockstep approach presented in (VIOLANTE et al., 2011) aims to protect a

soft-core processor Leon2 implemented into a Xilinx Virtex. The work is an extension

from (REORDA et al., 2009). The authors take advantage of the register window mecha-

nism - a feature of the Leon processor - to apply the checkpoint and rollback in efficient

ways. Besides, the fault injection attacks the pipeline registers, which originates a deter-

ministic behavior with predictable results. Thus, the checker module implementation can

be adjusted to specific cases. Every memory access (both write and read cycles) is ana-

lyzed to verify the processor consistency. The execution time overhead reported ranges

from 17% to 54% depending on the amount of data. The experimental results show that

the technique could detect and correct 20% of soft errors injected in the processor’s regis-

ters and 79% of the faults were effectless. The authors irradiated the system for 24 hours

and observed 254 SEUs that resulted in rollback recovery and 13 SEUs led in device

reconfiguration.

The solution from (GOMEZ-CORNEJO et al., 2013) applies lockstep to an adapted

8-bit soft-core processor based on the PIC16 architecture. The design was implemented

in a Xilinx Virtex-5 FPGA. The architecture is composed of two processors, a lockstep

controller, four BRAMs memories (one for data; one for instructions; and two for context

backups), a DMR Comparator, and other IPs used to ECC and data mixer. The area over-

head is around 300%. To minimize the context saving and recovery latency, the authors

made several adaptations in the processor architecture. Consequently, this also leads to a

high fault recovery rate in the simulated experiments. For the fault injection emulated in

the board, upsets are injected in the registers of only one processor by connecting some of

the registers’ bits to an IP that generates error signals. However, it is not clear the target

registers and how many bits can be affected. To evaluate the correctness of the system

a serial transmission application sends to the computer a sequence of ASCII characters
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stored in the program memory. For these experiments, none of the injected faults affected

the received data on the computer. The authors did not present numbers showing how

many upsets were corrected by the implemented approach.

Pham, Pillement and Piestrak (2013) proposed an enhanced lockstep scheme us-

ing two soft-core MicroBlaze processors implemented in a Xilinx Virtex-5 FPGA. The

novelty of the work is the possibility of identifying the faulty core in case of error through

the use of a Configuration Engine, which is built using PicoBlaze cores. Differently from

most of the lockstep approaches, checkpoint and rollback mechanisms are not used to

recover the system from an upset. Instead, they use a combination of partial reconfigura-

tion with roll-forward recovery technique. The lockstep scheme area overhead is around

297% against 384% using the TMR approach, which is also evaluated in the work. A

fault injection in the configuration bits revealed that 8.6% bits of the MicroBlaze core

are sensitive, where 2.3% cause persistent errors. The average time duration to recover

the processor in the enhanced lockstep is 23us, meanwhile in the basic lockstep is about

516us.

The lockstep technique is extensively used in semiconductors companies for de-

vice enhancement. For instance, Texas Instrument proposes a delayed lockstep in a

dual-core architecture microcontroller (TROPPMANN; FUESSL, 2008). Different de-

lay stages are applied to the CPUs in lockstep in order to detect errors. Another example

is Freescale Semiconductor Inc. that in (MOYER; ROCHFORD; SANTO, 2012) presents

a multi-core data processing system where the processors operate in lockstep. In this ar-

chitecture, errors in the lockstep synchronization are prevented by forcing the cores to be

in the same state even when an internally generated exception is provoked by soft errors.

The main drawback of the lockstep technique is related to the context saving and

recovery process latency. For real-time applications, performance penalties are critical.

Nevertheless, for some applications, the overhead is acceptable given the improvement of

the system reliability.

The majority of lockstep approaches are implemented to protect soft-core proces-

sors (VIOLANTE et al., 2011; GOMEZ-CORNEJO et al., 2013; PHAM; PILLEMENT;

PIESTRAK, 2013). As main advantage, these cores have an open architecture, which the

designer can modify if needed. On the other hand, soft-cores embedded into SRAM-based

FPGAs are susceptible to persistent bit-flips in the configuration bitstream. Therefore, pe-

riodically reconfiguration (scrubbing) must be performed to correct the persistent errors.

The approach implemented in this work focuses in hard-core processors embedded into
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APSoCs. Thus, a high-performance processor is used, also taking advantage of the pro-

grammable logic. Therefore, persistent errors in the embedded processors caused by soft

errors in the programmable matrix are avoided, differently as occurs with soft-core pro-

cessors. Differently from others lockstep approaches that attach both processors to the

same memory (ABATE; STERPONE; VIOLANTE, 2008; VIOLANTE et al., 2011), in

this work each CPU is connected to its own private BRAM memory. Thus, single point of

failures in the memory data is avoided. Concurrency to shared memory resources is also

minimized. Another important aspect of this work is the possibility of the processors work

with distinct clocks, differently from a typical lockstep approach that both CPUs must be

in the same state clock to clock. Moreover, this work applies the lockstep approach to

applications running on top of FreeRTOS, which is an OS extensively used in industry. A

comparison of bare-metal and FreeRTOS fault mitigation performance is also presented,

which is not shown on previous works of this kind. Finally, a complete evaluation of the

impact in used the proposed lockstep in the system is presented, none of the past works

made this analysis.
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3 PROPOSED DUAL-CORE LOCKSTEP

This work explores Dual-Core LockStep (DCLS) as a fault tolerance technique to

mitigate radiation induced faults affecting hard-core processors embedded into APSoCs.

The DCLS architectures are based on redundancy to detect and correct errors that affect

the processor operation.

In a typical DCLS system, there are two identical processors executing the same

application, simultaneously. Both CPUs run the application symmetrically, allowing mon-

itoring the processors step by step. The DCLS technique assumes that a fault in either pro-

cessor will cause a difference between their states, which will eventually be manifested as

a discrepancy in the outputs. Thus, the outputs of both CPUs are periodically compared

by a checker module for error detection. The operations of checkpoint and rollback are

combined for error correction, restoring the system to a safe state. This chapter details the

implementation of the proposed DCLS applied to protect the embedded processor.

3.1 Case Study

The proposed DCLS technique was designed and implemented on the dual-core

ARM Cortex-A9 processor embedded into Zynq-7000 APSoC (XILINX, 2016b) from

Xilinx. This device combines a 28nm Programmable Logic (PL) layer with an embedded

ARM processor on Processing System (PS), as described on Fig. 3.1. This work uses a

Zedboard (AVNET, 2017) featuring an XC7Z020-CLG484 device, which is the Device

Under Test (DUT). The system package was thinned to allow the penetration of ions into

the active silicon region for the radiation experiments further presented.

The PL part of the DUT presents a 7-series SRAM-based FPGA with 4.9 Mb total

Block RAM (BRAM), 85 K logic cells, and 220 DSP slices, with a frequency of 100MHz.

The PS is composed of a 32-bit dual-core ARM processor running at 666 MHz, a 256 KB

dual-port SRAM On-Chip Memory (OCM) (available for both the CPU and the PL), and

several I/O peripherals and interfaces. Each CPU has an independent 32 KB level 1 (L1)

cache for data and instruction. A 512 KB level 2 (L2) cache is shared between both

processors. The board also counts with an external 512 MB DDR memory. Although

the proposed DCLS was implemented to the protect the ARM processor into Zynq, the

approach can be extended to different hard processors embedded into APSoCs with a few

adjustments.
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Figure 3.1: Zynq-7000 APSoC Overview

Source: (XILINX, 2016b).

3.2 Architecture

The DCLS system architecture is detailed in Fig. 3.2, which is composed of a

dual-core ARM (CPU0 and CPU1); two BRAM memories; an external DDR memory;

and a Checker module. In order to avoid single point of failures in the data memory and

to minimize both ARM CPUs to contending to shared memory resources, each processor

is connected to its own private dual-port 64KB BRAM memory. All the application data

and the processor’s context are stored in the BRAMs, and its size strongly depends on the

application, which shall be resized if needed. As the BRAMs are located in the PL part

of Zynq, the access to them is allowed through an AXI interconnect interface. Besides,

there is an AXI BRAM Controller responsible for controlling the communication.

The processors are also connected with an external shared DDR memory, which

stores both CPUs’ program instructions. Although both processors run the same appli-

cation, the program of each one is saved in distinct addresses of the DDR memory. Ad-

ditionally, the DDR is used as an alternative safe memory to store the checkpoint of the

system, as explained later. Finally, the Checker is a module responsible for verifying the

processors consistency. It is connected with both BRAMs memories to access the CPUs’

outputs. Besides, there is a Concat used for concatenating the interrupt signals.
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Figure 3.2: Proposed lockstep architecture for dual-core ARM Cortex-A9 embedded into
Zynq-7000 APSoC.

Source: (OLIVEIRA et al., 2017).

Considering the shared resources, the processors work in handshake mode to exe-

cute the application, where the CPU0 is the priority core. Although the processor provides

two embedded cache levels (L1 and L2), according to (TAMBARA et al., 2016), the use

of any cache memory affects the cross section of the ARM processor, which can highly

compromise the system reliability. Thus, all caches are disabled in this work.

3.3 Implementation

The DCLS functional flow for each ARM CPU is described in Fig. 3.3. The un-

protected program behavior without lockstep is illustrated in (a). Whereas, (b) represents

the steps required for the implemented approach. The original application is divided into

execution blocks, and between each one there is a Verification Point (VP). There is also a

VP at the beginning and at the end of the execution. Thus, the number of VPs is equal to

the number of execution blocks plus one.

Owing to the fact that after the reset the ARM registers are undefined state and

they should be compared further, the processor’s registers are cleaned at the beginning

of the program execution. After the data initialization, the first VP is executed. At this

point, the application execution is stalled. The processor status, which is a signature that

represent the actual CPU state, is written on the respectively BRAM memory and the pro-

cessor remains locked waiting for the Checker approval. Then, the processor’s context is

accessed by the Checker.
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Figure 3.3: Lockstep Functional Flow for ARM Cortex-A9 dual-core: (a) original code,
(b) code with lockstep technique running in both CPUs

Source: (OLIVEIRA; TAMBARA; KASTENSMIDT, 2017b).

For the sake of this work, the processor’s context is assumed as the following

ARM CPU’s registers:

• General-purpose: R0 to R12;

• Specifics: Stack Pointer (SP); Link Register (LR); and Program Counter (PC).

The interrupt mechanism is used to access the processor’s context, as the interrup-

tion naturally stores the registers values on the stack, making simple their management.

When an interruption is processed by the CPU, the following actions are performed (TAY-

LOR, 2014):

1. The execution of the actual thread is stopped.

2. The processor’s registers are saved into the stack.
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3. The interruption routine is executed.

4. At the end of the interruption routine, the processor restores its context from the

stack.

5. Continues the execution of previous thread.

Therefore, at the VP, the Checker generates an interruption to access the proces-

sor’s registers. Then, the Checker compares the outputs and the register file of both CPUs

to find discrepancies. If the results match, it is assumed that the processors do not have

any errors and the current system state is consistent, which can be saved for future reuse.

Thereupon, a new interruption is launched to each CPU to perform a checkpoint opera-

tion. If any discrepancy between processors data is found, which implies in the occurrence

of errors, an interruption is generated to perform the rollback method, recovering the sys-

tem. At the end, the Checker writes a status on both BRAM memories to unlock the

processors. Once unlocked, the CPUs continue running the application until reach the

next verification point, and the cycle is repeated.

3.3.1 Checker Module

The Checker module is a customized Intellectual Property (IP), designed in Hard-

ware Description Language (HDL) and implemented as a Finite-State Machine (FSM) in

the PL of Zynq. It is responsible for verifying the processors consistency and controlling

the lockstep approach. To identify if there is an error in the system, the Checker com-

pares the outputs of both processors. This comparison can be performed in two ways:

accessing all the output data stored in the BRAM memories and comparing each posi-

tion, or previous applying a signature to the outputs and the Checker compares just the

signatures. In the first case, there is no additional code on the application and, on the ver-

ification point, the Checker verifies all the defined outputs positions from both BRAM0

and BRAM1. In the second case, a signature must be calculated on the application before

the verification point. Thus, the Checker compares just the position of the signature on

the memories. This signature could be implemented straightforwardly as a sum of all

elements, a xor mask, a typical checksum or even another method that summarizes the

processor’s results.

Fig. 3.4 presents an overview of the Checker behavior. First, it read the BRAMs

memories aiming access both processors status, which means the current CPUs state. If
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Figure 3.4: Checker module functional flow

Source: (OLIVEIRA; TAMBARA; KASTENSMIDT, 2017b).

the status indicates outputs ready, the Checker compares the data of both processors. To

make sure that the processors are in a correct state, besides the outputs verification, the

Checker compares the registers. If there is any mismatch in the results (outputs or register

file), an interruption is generated to both ARM CPUs indicating a rollback operation.

Otherwise, an interruption to perform a checkpoint is launched.

Regarding the verification of the processors’ registers, some characteristics are

required to be considered:

1. At the beginning of the program execution, the general-purpose registers have to be

clean.

2. Each CPU is connected to independent BRAM memories implemented in FPGA

logic and mapped to different addresses.

3. Although both CPUs run the same application, the program instructions of each one

are stored in distinct addresses of the DDR memory.

4. The architecture of the ARM processor (ARM, 2012) defines that general-purpose

registers (R0 to R12) can be used by the software when the CPU is in user mode, but

there are system modes that could access some of these registers to store instructions

or system information.

5. ARM deprecates the use of the specifics registers (SP, LR, and PC) for any purpose

other than as they are specified for; the incorrect handling of these registers could
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lead the system to unpredictable behavior.

Concerning all the presented points, the R0, R1, R11, R12, SP, LR and PC registers

could not be protected by the proposed solution, because these registers have distinct

values in the processors during a fault-free execution.

Besides the SDC detection, the Checker also verifies processor crashes. A watch-

dog timer is configured to twice the time required to run an application block. If a CPU

did not reach the verification point before the watchdog timer is over, it is considered a

system inconsistency and the Checker operates the rollback mechanism. Thus, the sys-

tem’s dependability is guaranteed.

3.3.2 Checkpoint and Rollback Methodology

A checkpoint is an operation that saves a consistent state of the processor in the

memory, and the rollback recovers the system from an error by restoring that previous

state. When the Checker verifies that the system is fault-free, it generates an interruption

request to each CPU, allowing to access and to save their context. Thus, when the check-

point interrupt routine is executed it accesses the processor’s stack and makes a copy of

the registers to the memory. On the other hand, when the Checker detects a mismatch

in the CPU’s data output, the interrupt is launched to perform a rollback. In the roll-

back interrupt routine the processor’s stack is overwritten with the registers stored in the

memory. When the processor restores the context from the stack, the system returns to a

consistent state.

In this work, there are two designs explored to perform a checkpoint and rollback,

as described below:

• DCLS accessing BRAM memory only (DCLS_BR): The processor’s context is

saved only in the respective BRAM memory. Besides, the BRAMs are responsible

for storing the application data, as explained before. When a rollback is performed,

the processors’ registers are overwritten with the corresponding values from the

BRAMs.

• DCLS accessing BRAM and DDR memories (DCLS_BR_DDR): At the check-

point, the context is stored in both the BRAMs and the external DDR memory.

Furthermore, all the application data saved in the BRAMs are copied to the DDR.

Although both memories present EDAC capability, MBUs can occur, affecting the
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stored data. The duplication is done to increase data reliability further. In the roll-

back operation, the context is read from the BRAMs. If after the block re-execution

a mismatch is still present in any results (outputs or register file), a new rollback is

performed, this time using the data stored in the DDR. In this case, all information

previously saved on the BRAMs are overwritten by the DDR data.

To deal with errors that could occur between the verification point and the context

storage the first checkpoint is saved in two different BRAM memory addresses. In which

the first is overwritten in every checkpoint and the other still unchanged. If two consec-

utive rollbacks are performed, without context storage between them, this indicates that

the actual checkpoint has an error. Therefore, the system is recovered to the first context

saved, returning to the beginning of the application. Although this approach has a per-

formance penalty, it avoids a hang in the system caused by infinite rollback to a wrong

context.

Four levels of rollbacks are implemented to recover the system. If a rollback is

performed and the system still presents an error, the next rollback level of the sequence is

executed. The levels are described below:

1. From BRAMs: The first rollback level read the context from the BRAMs memories

to recover the system.

2. From DDR: Only used in the DCLS_BR_DDR design. This rollback restores the

context from the DDR memory.

3. First context: After trying to recover the system with the most recent context saved,

without success, the first context is used.

4. Application reset: If the others levels do not have effect or if there is not even one

checkpoint, the application is re-started to recover the system.

If after applying all the rollback levels the DCLS does not recover the processor

successfully, this mean that a permanent fault or crash occurs. Thus, a soft reset is ex-

ecuted. This reset is performed through the control of the processor’s private watchdog

(XILINX, 2016b).
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3.4 DCLS approach overview

The DCLS approach works by executing the same application, partitioned in blocks,

in both ARM cores in parallel. Fig. 3.5 details the execution overview of both CPUs and

the Checker. Besides, there is the sequence flow of the verification point. As described in

3.3, there are VPs in the beginning, in the end, and between the execution blocks.

When the execution reaches a verification point, the processor status is written

to memory, and the execution is locked. After both CPUs status is written, the Checker

generates an interruption to access the processor’s registers. Thus, all the results (outputs

and registers) of both CPUs are compared by the Checker. If no difference is found, the

system is considered to be in a safe state, and another interruption is generated to each

CPU to operate a checkpoint. If any discrepancy between processors data is found, an

interruption is launched to recover the processors using the rollback mechanism. At the

end, the Checker writes a status on both BRAM memories to unlock the processors. This

cycle goes on until the end of the application.

The DCLS implementation is also detailed in the works (OLIVEIRA; TAMBARA;

KASTENSMIDT, 2017a) and (OLIVEIRA; TAMBARA; KASTENSMIDT, 2017b).

Figure 3.5: Dual-Core Lockstep execution overview

Source: From the author.



52



53

4 EXPERIMENTAL METHODOLOGY

The DCLS approach shall be evaluated on fault detection and mitigation. For that

propose, experiments that emulate realistic aerospace environment are required. Aiming

to validate the system dependability and behavior under faults, the proposed DCLS was

submitted to fault injection and radiation experiments.

The fault injection experiments are used to achieve detailed assessment of the

DUT. As this tests provide a high control of the affected area, the system vulnerability

and sensitivity can be appropriately analyzed. In the literature, there are several meth-

ods implemented to emulate faults in the system. Some approaches do FPGA emulation,

using reconfiguration mechanisms (NAZAR; CARRO, 2012) or hardware prototyping

(ENTRENA et al., 2012), to inject faults at Resistor-Transistor Logic (RTL) level. Oth-

ers inject faults at instruction level (MANIATAKOS et al., 2011) or in the processor’s

registers (RODRIGUES et al., 2017) by simulation, which can be a more accurate injec-

tion. Besides, there are the software-based techniques that can access sensitive areas of

the processor (as registers or memory) and inject bit-flips (VELAZCO; REZGUI; ECOF-

FET, 2000; LINS et al., 2017).

The closest to real radiation scenarios are radiation experiments, which expose

the system to an accelerated flux of particles. The target DUT is exposed to energized

particles that emulate the ones present in space. Heavy ions, protons, and neutrons can be

accelerated by a facility and thrown at the DUT package. In this case, the entire system is

affected by the radiation effects, making impossible identify the total affected area. There

are just a few radiation facilities around the world. As examples, the Los Alamos National

Laboratory (LANL) in the United States and Laboratório Aberto de Física Nuclear at

Universidade de São Paulo (LAFN-USP) in the Brazil conduce neutrons and heavy ions

tests, respectively. The main drawbacks of such experiments are the complexity, cost and

time to perform it.

For a realistic evaluation of the system, the radiation experiments are required. On

the other hand, the fault injection provides a better assessment than radiation. Therefore,

the efficiency of the proposed DCLS is validated in both fault injection and radiation

with the tests performed directly into Zynq. This chapter describes the methodology

used to reach the results. The following sections describe the procedure to perform the

experiments, the evaluated applications and the software optimizations applied to assess

the system.
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4.1 Fault Injection Experiments

A fault injection method was implemented to emulate faults in the dual-core ARM

processor (OLIVEIRA; TAMBARA; KASTENSMIDT, 2017b). Bit-flips are randomly

injected at the register file to simulate soft errors. The susceptible registers to upsets from

the fault injection are the same used in the processor’s context:

• General-purpose registers: R0 to R12;

• Specifics registers: SP; LR; and PC.

The injector is desired to be less intrusive as possible to the evaluated system.

Past works achieve fault injection with low algorithm intrusion (VELAZCO; REZGUI;

ECOFFET, 2000; LINS et al., 2017), making use of interruption mechanisms. This work

also uses this strategy. Moreover, as the target of the fault injection is the processor’s

registers, the interrupt mechanism is a straightforward way to access them.

The architecture of the fault injection method implemented is detailed in Fig. 4.1.

The system is composed of the following modules:

• Power Control: An electrical device responsible for powering up the board in each

injection cycle.

• System Controller: Software application located in a host computer that is in

charge of managing the Power Control and storing the fault injection logs received

by serial communication.

• Injector Module: A customized IP, implemented in the FPGA layer of Zynq and

designed in HDL, responsible for performing the fault injection procedure.

Fig. 4.2 shows the flow diagram of the fault injection proceeding. In the first step,

the Injector is configured with a random injection data, which contains the injection time

and the fault target location. The latter is defined as the CPU and register in which the

fault must be injected, besides the specific bit to be flipped. Due to the complexity of

generating random numbers in FPGA logic, the injection configuration is rendered by the

CPU0 before it starts the application and, in sequence, the Injector Module is set up. The

injection time is defined based on the execution time of the application, which means that

a fault could be inserted at any moment during the application time, as in real scenarios.

Once the Injector Module has been configured, it starts to count clock cycles until

it reaches the injection time. Then, the injector launches an interruption to the specific

CPU indicated by the configuration. In the injection interrupt routine, the target register
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Figure 4.1: Fault injection experiment setup

Source: From the author.

Figure 4.2: Fault injection procedure flow

Source: (OLIVEIRA; TAMBARA; KASTENSMIDT, 2017b).

is read from the stack, an XOR mask with the appropriated bit to flip is applied to its value

and, then, the register is overwritten.

After injecting a fault, the Injector Module starts a watchdog timer with twice the

value of the application time and remains to wait for the end of the application. If the ap-

plication does not finish before the watchdog timer is over, it is considered an occurrence

of a Hang, which is defined as a crash in the system or an infinite loop in the application.

In case of the application finished on time, the Injector Module verifies the results gen-

erated by both CPUs with the gold ones. If there is any mismatch, it is indicated that an

SDC occurred. The fault is classified as UNACE when the injected bit-flip does not affect

the system. Two others classifications are made for the DCLS design analysis: Masked

Faults and Mitigated Faults. The former occurs when a fault is detected only in the regis-

ter file, and it is successfully masked. In this case, the fault is corrected before lead to an

output error. The Mitigated Faults represent the errors or crashes detected and correctly

recovered by a rollback in the DCLS approach. This classification also represents the
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Table 4.1: Error classification description

Error
Classification

Description

UNACE Ineffective faults
Masked Faults Masked silent faults
Mitigated Faults Corrected by rollback or soft reset
SDC Output errors
Hang System crashes

Figure 4.3: View of fault injection experiment setup

ZedBoard

Zynq-7000
USB-TTL Converter

Power Control

Source: From the author.

faults that are mitigated by a soft reset. Table 4.1 summarizes the error classification.

Fig. 4.3 shows the fault injection experiment environment. The ZedBoard and

the Power Control are connected to the host computer, where is running the System Con-

troller. Besides, the USB-TTL Converter, responsible for transmitting the serial data, is

attached to the board and the computer.

4.2 Radiation Experiments

The Experiments were conducted through heavy ions tests performed using the

8UD Pelletron accelerator at Laboratório Aberto de Física Nuclear at Universidade de

São Paulo (LAFN-USP), Brazil (AGUIAR et al., 2014). The used beam line (MEDINA

et al., 2016) achieves the requirements of European Space Agency (ESA) (ESA, 2005)

for radiation tests in electronic devices. The heavy ion beam has a high uniformity, low

intensity flux, and large area. These can be produced by scattering in a gold foil and de-

focusing technique (MEDINA et al., 2016).



57

In order to observe the SEU events, the DUT was irradiated in-vacuum using a 39

MeV 16O beam at 90◦. This beam produces a Linear Energy Transfer (LET) of about 5.5

MeV/mg/cm2 on the active region and penetration of around 24 µm in Si. The beam

flux has a uniformity of around 93% in 4.0 cm2 of beam area. For the experiments, the

regular beam flux was from 2.19 × 102 to 4.07 × 102 particles/cm2/s. By static tests,

these fluxes produce an average of 5 bit-flips/s in the PL part of Zynq. The beam flux

was experimentally defined to achieve the desired error rate without permanent damage to

the DUT. Previous works used similar beam flux (TAMBARA et al., 2016; TAMBARA

et al., 2015). Besides, this low flux is following the recommended by ESA for SEU tests:

flux ranging from 102 to 105 particles/cm2/s (ESA, 2005).

Fig. 4.4 details the experiment setup performed at LAFN-USP. The beam flux af-

fects just the Zynq XC7Z020-CLG484 package that was thinned to ensure the penetration

of ions in the active silicon region. The Zedboard, which is located inside of a vacuum

chamber, is connected to a control computer and the Power Control (same used in the

fault injection tests). Because the environment is not safe for humans being during the

experiments, there is a remote computer communicating with the control computer. The

perspective of the mounted setup is present in Fig. 4.5, where (a) shows the view inside

of the chamber and (b) outlooks the laboratory.

As the goal of the experiments is mainly to observe the soft errors affecting the

ARM processor, techniques were applied to reduce the SEFIs in the PL part. The 7 series

FPGA devices from Xilinx (XILINX, 2016a) includes a feature that combines continuous

readback of configuration data with Frame ECC for SEU detection and correction. Be-

sides enable this feature, a TMR was implemented to protect the Checker IP. Although

these techniques are useful, they are not enough to prevent that accumulated faults in the

DUT compromise the experiments. Thus, a periodical reset was configured to avoid that

bit-flips accumulate over time in the PL and the processor. Every one minute the board

was restarted. In that period, the average of accumulated bit-flips in the PL is around 300.

The cross section is used to evaluate the tested designs’ susceptibility to soft errors.

This standard metric represents the radiation-sensitive area of the DUT by the relation

between the number of errors and the total particles fluence, as defined in Eq. 4.1.

CrossSection =
#Errors

F luence
(4.1)
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Figure 4.4: Radiation experiment setup

Source: From the author.

Another metric used to compare the system reliability is the Mean Workload Be-

tween Failures (MWBF) (RECH et al., 2014; TAMBARA et al., 2016) defined as through

Eq. 4.2. The MWBF assess the workload computed correctly until an output error occurs.

MWBF =
Workload

CrossSection× Flux× ExecutionT ime
(4.2)
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Figure 4.5: Perspective of radiation experiment setup performed at LAFN-USP: (a) View
inside of the chamber; (b) View of the laboratory

(a) (b)

Source: From the author.
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4.3 Evaluated Applications

Matrix Multiplication and AES benchmarks were selected to assess the system.

Both are extensively used in the literature and well-representative of the general use of

the DUT. As software optimizations affects the system performance directly, in this work

the applications are also evaluated under distinct optimizations levels.

Different experiments were performed with the applications running in bare-metal,

as further detailed in Section 4.3.2. Aiming to evaluate the proposed DCLS efficiency on

applications running on top of Operating Systems (OS), the approach also was applied to

FreeRTOS systems.

The benchmarks main characteristics are presented below:

• Matrix Multiplication (MxM): In this case, the application is considered as a set of

matrix multiplications operations. Each full MxM execution is regarded a block,

and between each one there is a verification point. During the experiments distinct

array sizes were tested. Each operation multiplies different matrices inputs, which

contains data of 32 bits.

• Advanced Encryption Standard (AES): The application is designed to encrypt a

vector of 3,200 integers (12,800 bytes). As the maximum size supported by the

AES encryption is a vector of 32 integers per time, the total data was divided into

100 blocks of 32 positions. The input vector is set in a loop and the key used is also

a vector of 32 integers. Between the encryption of each block there is a verification

point, so, there are a total of 101 VPs.

4.3.1 Software Optimizations

To evaluate how the software optimizations impact in performance and error de-

tection and correction of the DCLS approach, the following optimizations are combined:

software partition and software compilation.

4.3.1.1 Optimization in Software Partition

To ensure the processor’s dependability and to minimize the fault latency, system

checks should be performed as often as possible during the application execution. How-

ever, the frequency of verifications directly impacts the system performance. The time
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required to detect a fault, recover the system to the last checkpoint saved and re-execute

the operations severely affects the system efficiency. In this work, the application is parti-

tioned into blocks, aiming to identify a tradeoff that minimizes the performance overhead

and error recovering execution time. Each block runs a part of the application, and at the

end of each one a VP is set, as detailed in Section 3.3. The number of blocks that the

original program is divided can be adjusted depending on the application requirements.

4.3.1.2 Optimization in Software Compilation

The compiler optimizations affect the ARM processor reliability directly, as demon-

strated in (LINS et al., 2017). Because the optimizations aim to boost performance, the

program code is changed to run efficiently. However, these changes usually concern in

use more resources, like registers, which increases the susceptibility to soft errors. Thus,

it is imperative to know how the optimizations in software compilation impacts in the

DCLS efficiency.

The ARM compiler (ARM, 2014) supports the following optimization levels: O0,

O1, O2, and O3. The O0 is the minimal one, where most of the optimizations are disabled.

Level O1 has restricted optimizations, producing a good correspondence between source

code and object code. The high optimization O2 is the default level in release mode.

Level O3 is the highest, and focuses on boosting performance at the expense of code size.

The optimizations has a high impact on performance, number of loops and in the program

flow execution.

In this work, only the O0 and O3 compiler optimizations were evaluated, consid-

ering they represent the levels that use more (O3) and fewer (O0) registers. Because the

O3 optimization affects the source code, it is applied only to the block partition. At the

verification point, there is a status control that is written just by the processor and read

only by the Checker IP. Dead code elimination is one of the code transformations applied

by the O3 optimization. Thus, in that case, the status control will be removed from the

execution. Compile the whole application with O3 level would interfere with the DCLS

approach.
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4.3.2 Test Cases Overview

To a complete assessment of the proposed DCLS, distinct test cases are evaluated

using Matrix Multiplication and AES benchmarks. Each test case aims to investigate a

system particularity and how it impacts in performance and fault mitigation of the DCLS

approach. As explained in Section 3.3.1, the Checker IP can verify the processors by

comparing all the outputs positions or just the signature. For the MxM test cases, the

signature approach is used by making a sum of all the matrix resulting elements before a

VP. For the AES, all the output positions are verified.

Table 4.2 presents an overview of the test cases description detailed below:

• Test case I: Aiming to investigate the effect of the block size and the number of

blocks in the application regarding soft error detection and correction the Matrix

Multiplication benchmark is used. Different matrix sizes (3x3, 10x10, and 20x20)

are selected to assess the block size. For the number of blocks analysis, two ap-

plication sizes are considered: short, which is a set of three execution blocks, and

long, with six blocks. Thus, the number of verification points is four and seven

for short and long application, respectively. All the VPs apply the signature. The

benchmark runs in bare-metal, compiled with O0 optimization. This test case is

evaluated through fault injection experiments.

• Test case II: A set of six blocks of matrix multiplication operations is executed

to evaluate the DCLS approach applied to FreeRTOS. Thus, there are seven verifi-

cation points with signature in the application. The benchmark running on top of

FreeRTOS is tested with 40x40 and 60x60 matrix sizes. Also, the bare-metal coun-

terparts are evaluated. For a fair comparison, the application is executed on a single

task in the FreeRTOS versions. For all variants, the program is compiled with O0

optimization. The results are gathered by fault injection.

• Test case III: In order to analyze the compiler optimizations influence in the de-

signs, an extensive fault injection campaign was performed for AES and Matrix

Multiplication applications running in bare-metal and compiled with O0 and O3

optimizations. The MxM is a set of six 40x40 operations, being the signature ap-

plied at the VPs. However, for the implemented AES, the signature is not applied

at the verification point. The AES application has a total of 101 VPs, as detailed in

the begging of this section, and the MxM has seven.
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Table 4.2: Test Cases description

Test case Bench. Opt.
# Number
of blocks

# Block size (bytes) VP sig. Version Experiment

I MxM O0 3 and 6
3x3 (36B),
10x10 (400B),
20x20 (1,600B)

Yes Bare-metal Fault Injection

II MxM O0 6
40x40 (6,400B),
60x60 (14,400B)

Yes
Bare-metal,
FreeRTOS

Fault Injection

III
AES

O0 / O3
100 32int. (128B) No

Bare-metal Fault Injection
MxM 6 40x40 (6,400B) Yes

IV MxM O0 / O3 6 40x40 (6,400B) Yes Bare-metal Radiation

• Test case IV: For a realistic evaluation of the DCLS system behavior, radiation

experiments were conducted for Matrix Multiplication benchmark. The application

is composed of six 40x40 operations running in bare-metal and compiled with both

O0 and O3 optimizations. There are seven VPs, and each one applies the signature.
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5 RESULTS

This chapter presents the many results of the fault injection and heavy ions ex-

periments performed on Zynq-7000. First, the assessment of the implemented DCLS

approach is made, where the results regarding area and performance are analyzed. After,

the results gathered by fault injection experiments for four distinct test cases are dis-

cussed. Finally, a realistic analysis of the proposed DCLS trough radiation experiments

is achieved.

To assess the proposed DCLS in the ARM-A9 processor a series of setups were

tested. The test cases, described in Section 4.3.2, are executed considering the designs

Unhardened and both DCLS versions. The Unhardened is unprotected against soft er-

rors and runs its application only on ARM CPU0, where the application data is saved

on BRAM0. The DCLS designs are the ones detailed in Section 3.3.2: DCLS_BR and

DCLS_BR_DDR. These designs use ARM CPU0 and CPU1, two BRAMs and a Checker

module implemented in the PL part, besides the DDR. For both Unhardened and DCLS

designs, the program instructions are stored in the external DDR memory.

5.1 Implementation Analysis

Aiming to analyze how the DCLS approach impacts in system performance and

area resources used, this section gives a complete discussion about the penalties that shall

be considered in applying the DCLS to improve the system reliability.

5.1.1 Area assessment

The used resources of each design are detailed on Table 5.1. The DCLS designs

use 3,130 Look-Up Tables (LUT) and 3,425 Flip-Flops (FF), which represents an over-

head of 275% for LUTs and 244% for FFs, comparing with the unhardened design. The

Checker IP requires only 1,298 LUTs (around 41% of the total used number) and 666 FFs

(19% of the total). The other resources are required by the AXI interconnect, and BRAM

controllers which are necessary to make the communication between the processors and

the BRAMs. Given that DCLS uses both processor cores, the overhead concerning the

CPUs and memories is 100%. The DCLS_BR and DCLS_BR_DDR designs differ only
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at software level, as detailed in Section 3.3.2. Because of that, the hardware is identical,

using both the same resources.

The Checker IP implementation does not depend on the processor to be protected.

Thus, the resource usage of the Checker IP is fixed. For instance, a typical configuration

of the soft-core MicroBlaze processor requires 2,109 LUTs and 1,726 FFs (XILINX,

2017a), which is much more than the resources needed by the Checker IP. Therefore, the

impact in use the Checker IP concerning the processor resource usage is low.

Comparing with the related works, the solution in (GOMEZ-CORNEJO et al.,

2013) presents an area overhead of 300%. The approach in (PHAM; PILLEMENT;

PIESTRAK, 2013) requires 1,104 of extra slices, resulting in 297% of slices usage. The

FPGA resources are needed by the following blocks: two MicroBlaze processors; a Voter;

three Configuration Engines; a Context Recovery Block: and a Comparator / Multiplexer

(COMP_MUX). Besides, it uses 112 KB BRAM memory. The work in (VIOLANTE et

al., 2011) uses 8,473 logic cells, which represent 210% of usage. This lockstep archi-

tecture uses two soft-core processors, a BRAM memory, and a Checker logic. Because

those approaches are implemented using soft-core processors, interconnect and BRAM

controllers to communicate the processors and the BRAMs are not required. Thus, there

are no extra resources for these blocks as it is demanded in our work. In (ABATE; STER-

PONE; VIOLANTE, 2008), which is the only related work that uses hard-core processors,

is required 5,869 LUTs to implement the lockstep while in our work it is necessary much

less. The FPGA blocks needed to implement the approach are a Program Code Controller

IP to error detection, two Interrupt IPs, and two interrupt controllers.

Concerning the ARM register file usage, Table 5.2 presents the used registers for

both Matrix Multiplication and AES benchmarks, compiled with O0 and O3 optimiza-

tions. The MxM with O0 requires a usage of 50% of the registers. On the other hand, this

benchmark compiled with O3 uses 25% more registers. For the AES, the version with

O3 uses all the registers to execute the application, and the O0 one requires 56% of the

register file. As expected, O3 optimization used much more registers, which significantly

reduces the execution time, but also increases the susceptibility to soft errors, as it will be

further explained. Regarding the DCLS approach, the verification point uses the R0 to R3

and R11 registers. Thus, the only affected version is AES compiled with O0 optimization,

which has an increase of 6% of the register file usage. The others application versions are

not affected by the proposed DCLS.
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Table 5.1: Resource usage of each implemented design

Design Area (LUTs/FFs) # CPUs # BRAMs
Unhardened 833 / 996 1 1
DCLS_BR 3,130 / 3,425 2 2

DCLS_BR_DDR 3,130 / 3,425 2 2

Table 5.2: Description of used registers for each benchmark in different compiler opti-
mizations

Benchmark Opt. Used registers % Reg. file usage

MxM
O0 R0 to R3, R11 / SP, LR, PC 50
O3 R0 to R7, R12 / SP, LR, PC 75

AES
O0 R0 to R4, R11 / SP, LR, PC 56
O3 R0 to R12 / SP, LR, PC 100

5.1.2 Performance assessment

The performance results are analyzed comparing the time to perform the applica-

tions running in unhardened and DCLS designs. All the obtained results for execution

time are expressed in clock cycles (c.c.) for a fault-free execution. In sequence, the spe-

cific analysis for each test case is presented.

Concerning the implementation characteristics of the DCLS approach detailed in

Section 3.3, the extra execution time in the protected designs is due to several factors, as

follows:

• The time required for both processors to execute the application in hand-shake: Due

to resource sharing, CPUs need to wait for some resources be available.

• The application size: This aspect impacts the time to perform a checkpoint in the

DCLS_BR_DDR designs directly. All the application data saved on the BRAMs is

replicated to the DDR. Thus, the time to execute the checkpoint increases propor-

tionally the amount of data stored. Because the BRAMs are the data memories, the

application size does not impact in the DCLS_BR designs.

• The output size: In each verification point the outputs of both processors are com-

pared. The amount of data verified directly affects the time to perform the VP.

• The number of verification points performed during the application: The software

partition must be defined in a way that the system reliability is assured with low

fault latency and the losses in performance are minimized.
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5.1.2.1 Test Case I Analysis

Table 5.3 reports the results regarding performance for Matrix Multiplication bench-

mark with signature running in bare-metal. Different matrix sizes are evaluated: 3x3,

10x10, and 20x20. The 30x30 and 40x40 matrix sizes that are not presented in Test Case

I are also evaluated.

Table 5.3: Performance analysis for each design running different matrix sizes

Design
App. size
(# MxM)

Matrix
sizes

Exec. Time
(c.c.)

Overhead
(%)

Unhardened

Short (3)

3x3 98,280 -
10x10 2,207,018 -
20x20 15,763,012 -
30x30 51,343,884 -
40x40 119,758,930 -

Long (6)

3x3 182,876 -
10x10 4,291,642 -
20x20 30,827,142 -
30x30 99,950,676 -
40x40 231,917,552 -

DCLS_BR

Short (3)

3x3 516,296 425.3
10x10 2,930,374 32.8
20x20 19,896,474 26.2
30x30 63,689,580 24.0
40x40 148,497,868 23.6

Long (6)

3x3 707,732 287.0
10x10 5,780,740 34.7
20x20 38,618,858 25.3
30x30 124,760,012 24.8
40x40 287,243,296 23.9

DCLS_BR_DDR

Short (3)

3x3 712,544 625.0
10x10 4,088,692 85.3
20x20 23,319,986 47.9
30x30 71,256,642 38.8
40x40 161,541,952 34.7

Long (6)

3x3 1,009,842 452.2
10x10 7,336,424 70.9
20x20 44,173,342 43.3
30x30 137,032,766 37.1
40x40 311,447,120 34.3
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As described in Table 5.3, the performance overhead is significantly higher, around

425% to DCLS_BR and 625% to DCLS_BR_DDR (short version of 3x3 matrix), when

the execution time of the benchmark is much smaller compared to the time to perform

a verification point. For large applications, the time overhead of DCLS_BR is less than

25%, which can be an acceptable cost for many applications that require high reliability

and availability. When considering the setup DCLS_BR_DDR the time overhead in all

versions is higher compared to DCLS_BR, as expected, owing to the time to access the

DDR memory.

The execution time overhead reported in (VIOLANTE et al., 2011) ranges from

17% to 54% depending on the amount of data saved on a checkpoint. The achieved DCLS

results show data close to this for the largest matrices. For sizes bigger the ones tested,

the performance overheads are expected to be lower.

5.1.2.2 Test Case II Analysis

The performance results for the Test Case II with the applications running on top of

FreeRTOS and in bare-metal are presented in Table 5.4. In the Test Case II, the benchmark

is a set of six Matrix Multiplication operations with 40x40 and 60x60 sizes evaluated.

Comparing the FreeRTOS versions with the bare-metal counterparts, one can notice that

the former has few impact in the performance. When using FreeRTOS, the system under

evaluation becomes more complex. The extra time is due to the OS task management,

in which more instructions are executed. For both the bare-metal and FreeRTOS series

of setups, the results show a variation of around 7% regarding performance overhead

between the DCLS_BR and DCLS_BR_DDR. This is due to the saving of data in the

DDR memory.

Table 5.4: Performance analysis for each design running bare-metal and on FreeRTOS

Version Design Matrix 40x40 Matrix 60x60
Exec. Time

(c.c.)
Overhead

(%)
Exec. Time

(c.c.)
Overhead

(%)

Bare-metal
Unhardened 233,013,420 - 773,865,026 -
DCLS_BR 299,233,218 28.41 990,731,336 28.02
DCLS_BR_DDR 312,527,578 34.11 1,048,091,310 35.43

FreeRTOS
Unhardened 234,217,175 - 774,615,876 -
DCLS_BR 303,571,104 29.61 996,395,350 28.63
DCLS_BR_DDR 325,504,854 35.98 1,050,843,464 35.65
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5.1.2.3 Test Case III Analysis

Table 5.5 presents the performance results of each design running the Matrix Mul-

tiplication (40x40) and AES benchmarks with O0 and O3 compiler optimizations in bare-

metal. For the ones that execute the applications compiled with the O0 optimization, the

overhead is close to the results achieved for Test Cases I and II previously presented. Be-

cause the benchmark with O3 runs faster than with O0, and the verification point is not

compiler optimized, the overhead for these applications is higher.

Concerning the DCLS_BR_DDR, the cost for O3 optimization cases is significant,

as the time to save all data in the DDR is far greater than execute the optimized block

partition. As one can notice, for O3 MxM DCLS_BR_DDR the overhead is enormous

(548%), while the O3 AES for the same design is about 78%. Because of the applications

structure, as detailed in Section 4.3, the MxM has a significant amount of data that must

be saved regarding the input matrices and results.

5.1.2.4 Software Partition Evaluation

Owing to the high performance overhead achieved in the test case results, an im-

pact evaluation of using the proposed DCLS is required. The main drawback of the DCLS

approach presented in this work is related to the processors verification and checkpoints

(context saving). For several applications, like the real-time ones, performance penalties

are critical. Nevertheless, for other applications, a low overhead is acceptable given the

system reliability improvement. The aiming is achieving the best tradeoff between an

acceptable overhead and system protection.

Table 5.5: Performance analysis for each design performing Matrix Multiplication
(40x40) and AES benchmarks compiled using O0 and O3 optimizations

Design Opt. MxM AES
Exec. Time

(c.c.)
Overhead

(%)
Exec. Time

(c.c.)
Overhead

(%)

Unhardened
O0 233,013,420 - 206,834,492 -
O3 4,881,780 - 62,361,916 -

DCLS_BR
O0 299,233,218 28.41 261,216,708 26.29
O3 7,191,982 47.32 79,636,072 27.70

DCLS_BR_DDR
O0 312,527,578 34.12 290,548,962 40.47
O3 31,647,168 548.27 110,903,870 77.84
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Figures 5.1, 5.2 and 5.3 present the relation between the execution time (in clock

cycles) to perform the benchmarks and the verification point, for a given amount of out-

puts data in bytes. The considered benchmarks are MxM and AES compiled in both O0

and O3 optimizations. The graphics show the execution time for performing the block

partition and the VP for DCLS_BR and DCLS_BR_DDR designs.

Fig. 5.1 presents the execution of AES with different block partitions: 1, 2, 4,

8, and 16 sequential encryptions of 32 integers, which represents 128, 256, 512, 1024,

and 2048 total bytes, respectively. From this figure, one can notice that for both DCLS

designs the time to perform the AES for all the block sizes tested in both optimizations

is greater than the execution time of the VPs. However, it does not guarantee a small

performance overhead. Regarding the block partitions with small size, it is notable that

the DCLS_BR_DDR has an execution time close to the benchmark, which leads to a

high overhead, as shown in Table 5.5. This extra time corresponds to the data saving in

the DDR and, also, the access to the DDR memory is slower than the BRAM. On the

other hand, the execution time of the VPs in DCLS_BR designs is much smaller than the

benchmark, which leads to an acceptable overhead. This graphic shows that increasing

the block partition size the VP execution overhead decreases.

The results concerning matrix multiplication are presented in Fig. 5.2. The assess-

ment is made for 10x10, 20x20, 30x30, 40x40, 50x50, and 60x60 matrix sizes. Analyzing

data size, the VP execution for the small matrices for both DCLS designs has a high im-

pact on performance. As the matrix size increases, for the O0 optimization, the VP time

in both DCLS cases affects less the performance, like in the AES. Regarding the O3

optimization, the DCLS_BR has the same behavior, but with more performance impact.

Because the O3 application is faster than the O0, and the optimization is not applied to

the VP, the execution time difference is still small. However, the tendency for this differ-

ence is to increase for bigger matrices, achieving better performance results. On the other

hand, this tendency does not appear in the DCLS_BR_DDR for the O3 optimization. In

this case, the execution time of the VP is always longer than the execution of the MxM.

Saving the VP data on the DDR severely affects the performance.
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Figure 5.1: Execution time in clock cycles (c.c.) for performing the AES block partitions
and the Verification Points

Source: From the author.

Figure 5.2: Execution time in clock cycles (c.c.) for performing the Matrix Multiplication
in different sizes and the Verification Points

Source: From the author.
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Another approach for the verification point implementation is based on signatures,

as presented in Section 3.3. Fig. 5.3 shows the execution time for matrix multiplication

and DCLS designs with signature. In the verification point, a signature is previously ap-

plied to the outputs. Thus, the Checker compares just one memory position correspond-

ing to the signature. Before the processor be locked on the VP, a sum of all elements of

the resulted matrix is performed, and instead of all output positions be compared by the

Checker, only the signature is compared. The sum of the elements is also performed in

both O0 and O3 optimizations, which directly affects the execution time of VP. For the

DCLS_BR_DDR, the results compared with Fig. 5.2 without the signature are almost

the same, as the time to save the amount of data on DDR is much larger than calculating

the signature. Analyzing the results for matrices 40x40 with O3 presented in Table 5.5,

it is noticed that using DCLS_BR_DDR produces a huge overhead in the final applica-

tion. Concerning the DCLS_BR designs, the overhead is acceptable, however applying

the signature affects more the performance.

Figure 5.3: Execution time in clock cycles (c.c.) for performing the Matrix Multiplication
in different sizes and the Verification Points with signature

Source: From the author.



74

5.2 Fault Injection Experiments

To assess the impact of soft errors in a dual-core ARM processor and to validate

the efficiency of the proposed DCLS approach, an extensive fault injection campaign was

performed in the Zedboard. The fault injection experimental methodology is presented

in Section 4.1. All the four presented test cases are evaluated in Unhardened and DCLS

designs.

5.2.1 Evaluation of Test Case I

In the Test Case I, Matrix Multiplication with signature in bare-metal is evaluated

for different block partitions. Table 5.6 shows the fault injection results for each design

running 3x3, 10x10 and 20x20 matrix sizes. For these experiments, there is no log distinc-

tion between the masked faults, mitigated faults and UNACE. Thus, the UNACE column

represents that the injected bit-flip did not affect the system or the fault was detected and

corrected by the DCLS approach.

For the Unhardened versions, up to 70% of the injected faults are classified as

UNACE. For the DCLS designs, this number increases to around 91% in the DCLS_BR

and 90.5% in DCLS_BR_DDR design. The injected faults that produce SDCs (wrong

outputs values) are up to 13% for Unhardened, while they are negligible for the DCLS

designs. Even so, the SDCs in the DCLS can be explained by bit-flips in the LR or PC

registers that can direct the program pointer to the end of the application. Thus, when the

outputs results are compared with the gold ones, they mismatch, and an SDC is indicated.

Even in the worst case, when is achieved 1.3% of SDCs in the DCLS_BR, the approach is

able to reduce almost 11% the errors. Therefore, the effectiveness of the proposed DCLS

in detecting and correcting errors is confirmed.

Up from 8% of the bit-flips that could not be recovered provoke hangs in the DCLS

system. This result can be explained by two facts. First, there are some registers that

could not be protected by the proposed DCLS, as detailed in the Section 3.3.1. Therefore,

during an execution block, a fault can upset one of those registers. For some reason, the

bit-flip effect can be masked, and it does not affect the outputs. However, the register still

has a wrong value. In the verification point, the Checker will not be able to detect this

fault, which leads to storing the actual wrong context as a safe state. Thus, the fault can

manifest itself in the next execution block leading a rollback operation that will restore the
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Table 5.6: Fault injection analysis for each design running different matrix sizes for Test
Case I

Setup Fault Injection

Version
App. size
(# MxM)

Matrix
sizes

UNACE
(%)

SDC
(%)

Hang
(%)

Unhardened

Short (3)
3x3 69.6 12.0 18.4

10x10 64.8 8.5 26.7
20x20 67.0 13.2 19.8

Long (6)
3x3 66.3 8.3 25.4

10x10 63.6 7.3 29.1
20x20 64.6 9.1 26.3

DCLS_BR

Short (3)
3x3 90.9 1.3 7.8

10x10 88.3 0.0 11.7
20x20 88.3 0.0 11.7

Long (6)

3x3 90.8 0.2 9.0
10x10 88.2 0.0 11.8
20x20 89.4 0.0 10.6

DCLS_BR_DDR

Short (3)
3x3 86.4 0.1 13.5

10x10 86.4 0.2 13.4
20x20 90.2 0.4 9.4

Long (6)
3x3 90.5 0.1 9.4

10x10 88.6 0.0 11.4
20x20 90.1 0.0 9.9

wrong context causing, then, an infinite loop in the system. Second, if a fault affects any

of the specific registers (SP, LR or PC), generating an illegal data or instruction value, the

processor will be directed to data or prefect abort leading to a system crash. The hang or

timeout can be identified, but only can be recovered by reset and, for these experiments,

the soft reset had not been implemented yet.

5.2.2 Evaluation of Test Case II

Aiming to evaluate the DCLS technique applied to FreeRTOS the Test Case II is

used. There are two versions of each design: bare-metal and FreeRTOS. The 40x40 and

60x60 sizes are evaluated for Matrix Multiplication benchmark with signature in the VP.

As detailed in Section 4.1, for the bare-metal cases a fault can be injected at any time

during the benchmark execution. In the FreeRTOS, a bit-flip can affect the system since
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the task configuration until the end of the task execution. The percentage of errors for

each experimental design is shown on Figures 5.4 and 5.6, for 40x40 and 60x60 matrix

sizes, respectively.

For the Unhardened versions, up to 75% of bit-flips does not affect the system

and are classified as UNACE. However, the unprotected designs are very susceptible to

SDCs and hangs. Comparing the unprotected FreeRTOS designs with the bare-metal

counterparts, one can observe that in the former the faults leads to more hangs than in

the latter. Due to the task management and OS control, the FreeRTOS is more complex

than bare-metal, and if a fault affects a register used for controlling the system, this may

lead to crash. These results also are achieved in (RODRIGUES; KASTENSMIDT, 2017)

that evaluated FreeRTOS applications under fault injection simulation and concluded that

benchmarks running on FreeRTOS are much more susceptible to hangs than their bare-

metal counterparts.

The results show that the DCLS applied to FreeRTOS system can protect, which

represents the sum of Masked and Mitigated Faults, against up to 68% of the injected

faults. For the bare-metal ones, this number increases to up to 71%. Besides, the quantity

of SDCs and hangs for DCLS designs in both versions are almost the same. Thus, using

FreeRTOS has a low impact on the DCLS functionality.

Figures 5.5 and 5.7 detail the distribution of the mitigated faults for 40x40 and

60x60 matrix sizes, respectively. The Mitigated Faults are split in: Mitigated SDC, which

are the outputs errors that are successfully corrected by rollback; Mitigated Hang, rep-

resents the crashes that are also corrected by rollback; and the Soft Reset, which are the

hangs that can only be corrected through a reset in the system. The results show that for

FreeRTOS versions the mitigated SDCs ranges from 28% to 55%. While for bare-metal

its ranges from 18% to 52%. For the FreeRTOS designs occur more system crashes that

lead to soft reset than the ones corrected by rollback. If a fault affects a control register, it

may crash the FreeRTOS and the only possible recovery is by reset.
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Figure 5.4: Percentage of errors classification for Test Case II experimental designs with
40x40 Matrix Multiplication benchmark

Source: From the author.

Figure 5.5: Distribution of mitigated faults in DCLS designs for Test Case II with 40x40
Matrix Multiplication benchmark

Source: From the author.
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Figure 5.6: Percentage of errors classification for Test Case II experimental designs with
60x60 Matrix Multiplication benchmark

Source: From the author.

Figure 5.7: Distribution of mitigated faults in DCLS designs for Test Case II with 60x60
Matrix Multiplication benchmark

Source: From the author.
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5.2.3 Evaluation of Test Cases III

Aiming to investigate the compiler optimization influence in the DCLS protection,

both AES and Matrix Multiplication (40x40) applications are evaluated. The benchmarks

run in bare-metal and are compiled with O0 and O3 optimizations. The fault injection

results are presented in Figures 5.8 and 5.10. Analyzing the results, one can notice that

the DCLS protects (sum of Masked and Mitigated Faults) against up to 78% and 62%

of the injected faults for MxM and AES, respectively. Even in the worst cases (69% for

MxM and 50% for AES), the DCLS provides high protection.

To better analyze the mitigated faults by the DCLS approach, Figures 5.9 and 5.11

present the distribution of the corrected errors for AES and MxM, respectively. As pre-

viously mentioned, the Mitigated Faults are divided in: Mitigated SDC; Mitigated Hang;

and the Soft Reset. The results show that for AES in all versions the mitigated SDCs are

around 45%, while for MxM this number ranges from 11% to 51%. The number of cor-

rected hangs for both benchmarks demonstrates that DCLS_BR_DDR is more susceptible

to hangs than the DCLS_BR version. Although using the DDR increases the data relia-

bility, this enhancement is not perceptible in the fault injection experiments. As the faults

only affect the processor’s register file, the data stored in the BRAMs are not suscepti-

ble to bit-flips. Because using the DDR increases the application execution time, these

designs are more vulnerable to errors than the DCLS_BR. However, in a real radiation

environment, the DCLS_BR_DDR designs are expected to be more reliable, because the

whole device would be exposed to errors.

When the rollback does not correct the system crash, a soft reset is performed. If

a bit-flip affects any of the specific registers, generating data or instruction illegal value,

it can cause a system crash that leads the ARM processor to stop handling interruptions.

Thus, the Checker identifies a hang and indicates the system to rollback, but only one

CPU can process that. Therefore, after successive fails rollbacks, the system is forced to

restart by a soft reset.

From the results in Fig. 5.10, one can observe the faults that lead to SDCs in the fi-

nal application are negligible in the MxM cases, as for the Test Cases I and II experiments

previously presented. However, for the AES DCLS_BR_DDR designs, they are consid-

erable, as shown Fig. 5.8. These SDCs may happen because of errors in the loop control

when the rollback is performed from the DDR: at the end of the application, even if the

data is correct, it can be saved in a wrong memory position, causing a mismatch during
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the checking phase. Moreover, the DCLS approach is not able to correct all crashes. The

injected fault can lead to persistent system hangs. A bit-flip can affect a critical register

leading the processor to a crash that is unrecoverable, even with a soft reset. For these

permanent faults, a hard reset is necessary.

The use of O3 optimization in AES benchmark affected the protection rate of the

DCLS designs. The most affected case is the AES DCLS_BR_DDR, having a protection

drop from 60% on O0 to 50% on O3. Analyzing the compiler optimization effects in

the Unhardened designs, the ones with O3 level appear as more susceptible to SDCs and

hangs, as expected. Because the O3 handles more registers than O0, as shown Table 5.2,

the applications with O3 optimization are more vulnerable to soft errors. Therefore, the

probability of injected faults leading to errors increases with optimizations.

Both (VIOLANTE et al., 2011) and (ABATE; STERPONE; VIOLANTE, 2008)

injected faults at processor’s registers. The results presented in (VIOLANTE et al., 2011)

show that their technique can detect and correct 20% of the injected bit-flips, 1% leads

to hang, and 79% of the faults are effectless. Because the faults are only injected in the

pipeline registers of the soft-core processor, it is straightforward the fault detection and

recovery implementations. In (ABATE; STERPONE; VIOLANTE, 2008), the authors

concluded that 97% of the faults do not cause application errors (where up to 54% are

corrected, and the others do not affect the system) and 3% provoked SDCs. In experi-

ments, they did not have hangs, which is a curious result as the faults are also injected

in the specific and control-flow registers. On this scenario, the authors did not imple-

ment a time-out watchdog monitor in the system. Differently, our work is capable of both

detecting and correcting hangs.
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Figure 5.8: Percentage of errors classification for Test Case III experimental designs with
AES benchmark compiled with both optimizations

Source: From the author.

Figure 5.9: Distribution of mitigated faults in DCLS designs for Test Case III with AES
benchmark compiled with both optimizations

Source: From the author.
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Figure 5.10: Percentage of errors classification for Test Case III experimental designs
with 40x40 Matrix Multiplication benchmark compiled with both optimizations

Source: From the author.

Figure 5.11: Distribution of mitigated faults in DCLS designs for Test Case III with 40x40
Matrix Multiplication benchmark compiled with both optimizations

Source: From the author.
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5.3 Radiation Experiments

For the radiation experiments, the Unhardened and DCLS_BR_DDR designs were

tested with Matrix Multiplication 40x40 compiled in O0 and O3 optimizations in bare-

metal (Test Case IV). The experimental methodology for the heavy ions tests is presented

in Section 4.2. As the limited time to execute the experiments at LAFN-USP Pelletron

accelerator, just the Test Case IV was evaluated under radiation.

5.3.1 Evaluation of Test Case IV

The results of the radiation experiments are shown in Table 5.7. Comparing the

DCLS with the Unhardened designs, one can notice that the DCLS technique reduces

the total cross section, which demonstrates the effectiveness of the approach. Due to the

implemented methods to decrease the accumulation of bit-flips in the device, the number

of SEFIs are negligible.

Analyzing the Mean Workload Between Failures (MWBF), which describes the

amount of data computed correctly before a failure occur, the DCLS approach achieves

an improvement of one order of magnitude for O0 optimization. A higher MWBF means

a more reliable system. Concerning the O3 optimization, the MWBF is almost the same

for both designs. Because the MWBF assesses the tradeoff between error rate and perfor-

mance, and the execution time to perform the DCLS_BR_DDR design with O3 is around

six times the Unhardened one (Table 5.5), the reliability improvement is masked in this

case. As demonstrated in Section 5.1.2, to increase the system’s reliability with mini-

mal performance losses it is necessary that the execution time of the application block be

much longer than the time to perform a verification point. Thus, other block partitions

must be analyzed for the O3 DCLS_BR_DDR design in order to increase the MWBF.

Although using O3 optimization in software compilation increases the register

susceptibility, this optimization leads to higher MWBF because the execution time is

drastically reduced. Comparing only the optimization effects in DCLS and Unhardened

designs, the ones with O3 increase the MWBF in one and two orders of magnitude, re-

spectively.
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Table 5.7: Experimental results from the heavy ions test campaign in Zynq-7000 device
for Test Case IV with Matrix Multiplication (40x40)

Design Opt. Fluence
(p/cm2)

Flux
(p/cm2/s)

Cross Section
(cm2)

MWBF
(data)

Unhardened
O0 5.04× 105 2.84× 102 7.15× 10−5 4.33× 107

O3 3.83× 105 2.19× 102 6.79× 10−5 2.82× 109

DCLS_BR_DDR
O0 1.44× 106 4.07× 102 5.54× 10−6 2.90× 108

O3 1.42× 106 3.93× 102 9.18× 10−6 1.79× 109
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6 CONCLUSION

This work explored the use of Dual-Core LockStep (DCLS) as a fault tolerance

solution to increase the dependability in hard-core processors embedded into APSoCs.

Lockstep is a hybrid technique based on redundancy capable of mitigating radiation-

induced soft errors. The method is able to detect and recover both SDC and SEFI errors

through the combination of outputs verification, and checkpoint and rollback operations.

As case study, the proposed DCLS was designed and implemented to protect a dual-core

ARM Cortex-A9 processor embedded into Zynq-7000 APSoC from Xilinx. Although the

implementation focuses on the ARM processor, the approach can be extended to different

hard processors embedded into APSoCs with a few adjustments.

The approach efficiency was validated through distinct test cases using Matrix

Multiplication and AES benchmarks. This work applies the DCLS to applications run-

ning not only in bare-metal but also on top of FreeRTOS. To assess the impact of using

the DCLS to the system two types of software optimizations were evaluated: software

partition and compiler optimization. In the former, different application block sizes were

evaluated in order to quantify the contribution of the verification points to the overall ap-

plication performance. For the latter, the O0 and O3 compiler optimizations, which are

the most representative levels, were performed to understand the different implications of

compiler optimization to the performance and error mitigation of the DCLS approach.

Additionally, to evaluate the fault detection and mitigation of the proposed DCLS,

fault injection emulation was performed. Bit-flips were randomly injected in the pro-

cessors’ registers to simulate soft errors. Results show the effectiveness of the proposed

DCLS in mitigating up to 78% of the injected faults in the bare-metal test cases. For the

FreeRTOS versions, the DCLS successfully corrected up to 68% of bit-flips, which im-

plies that using FreeRTOS has a low impact on the DCLS functionality. Thus, the DCLS

can also be applied to applications running on top of FreeRTOS without losing the ef-

fectiveness. Comparing with bare-metal counterparts, the FreeRTOS variants are more

susceptible to hangs than SDCs due to the operating system management.

Heavy ions experiments were performed for a realistic evaluation of the system.

The tests were conducted in the 8UD Pelletron accelerator at LAFN-USP. The obtained

results show that the DCLS approach is able to decrease the system cross section with a

high rate of protection. Moreover, the technique was able to increase the MWBF, which

demonstrates that the DCLS system is more reliable than the unprotected one.
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The performance analysis demonstrated that the execution time of the application

block must be much longer than the period to perform a verification point, increasing the

system reliability with fewer performance penalties. If the time to verify the processors

and perform a checkpoint is close to the block execution time, the impact in performance

is significantly high. However, for longer block period the cost can be accepted due to in-

creasing the system resilience to soft errors. Although the high overhead, the verification

point strategy brings the possibility of each processor works with a distinct clock. Be-

sides, the performance analysis revealed that applying outputs signature in the processor

impacts more than comparing all memory positions by the Checker IP.

The assessment of the compiler optimizations demonstrated that the application

compiled with O3 level is more susceptible to soft errors. The system is more vulnerable

to faults because the O3 optimization uses more registers than other levels. Although the

system vulnerability increases, the results from heavy ions experiments show a higher

MWBF for the O3 level. Because the application runs faster, more data are correctly

computed before an error occurrence.

The main conclusions are summarized below:

• Block partition size: The block execution time must be longer than the verification

point.

• Signature: Applying outputs signature impacts more the performance.

• Compiler Optimization: The application compiled with O3 level is more suscep-

tible to soft errors. However, it leads to higher MWBF.

• FreeRTOS: The FreeRTOS system is more susceptible to hangs than bare-metal.

• Protection: The DCLS approach is able to mitigate a high number of faults in both

bare-metal and FreeRTOS systems.

6.1 Future Work

The presented work demonstrated the radiation problem relevance and the ne-

cessity of applying techniques to improve the reliability of embedded systems in critical

applications. Although there are a plethora of methods in the literature to deal with the ra-

diation effects, most of them have drawbacks mainly concerning in performance, area, and

energy overhead. Even the proposed DCLS is not an exception. As the results showed, in

some cases a high impact in performance is presented. Therefore, this issue must be fur-
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ther investigated in order to find the best tradeoff that minimizes the performance losses

for verification and recovery time.

As future work, the DCLS approach can be applied to other case study applications

to assess the system better. Besides, the technique can be extended to other operating sys-

tems, such as Linux and eCos. Other optimizations in software partition and compilation

can also be explored. In this work, all the processor’s caches are disabled. However, this

is not the most realistic scenario, mainly concerning the applications performance goals.

Thus, an extension of the DCLS can be implemented to support the caches enabled. For

that, during the checkpoint, data cache must be saved in the memory as well, while in the

rollback operation the cache must be cleaned.

As the FPGA is particularly sensitive to soft errors, fault injection campaigns in

the PL part of Zynq can be performed to analyze the Checker IP susceptibility and how

it impacts in the DCLS effectiveness. Moreover, laser experiments can be conducted to

assess the real vulnerability of the processor. Differently of heavy ions experiments, in

which all the device is exposed, the laser is a controlled experiment. Regions of the DUT

can be defined to be affected. Thus, only the processor can be selected to be hit, making

possible evaluate the vulnerability without the FPGA interference.

The DCLS approach can be extended to protect heterogeneous multi-core pro-

cessors embedded into MPSoCs. The vulnerability, performance, and power properties

issues in heterogeneous multi-core processors can be explored. By the analysis of their

susceptibility to soft errors, new techniques based on lockstep, and task redundancy and

migration, can be developed to improve the system reliability. The cores in lockstep,

applying the checkpoint and rollback methods combined with an external module for op-

eration control is a robust solution to deal with both SDCs and SEFIs provoked by soft

errors. Versions of lockstep can be exploited by implementing the approach in proces-

sor pairs, or with three or more redundancies. The challenge concerning to the overhead

introduced by the technique mainly relates to performance and area. The interprocessor

communication latency and the number of system verifications affect the performance

directly. Furthermore, adding an extra module, besides the processor redundancy, can

increase the susceptibility to the radiation effects. Thus, a full evaluation must be made

to find the better lockstep version to improve the system resilience with minimal cost.

Some points shall be analyzed to find the best tradeoff:

• number of verifications performed during the application execution;

• number of lockstep-cores pairs;
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• task scheduling to achieve the best performance;

• applying lockstep only on the critical tasks;

• fault latency investigation.

Through studying the relation between the heterogeneous multi-core processor

vulnerability, task criticality, and execution time, an efficient solution to fault mitigation

with fewer penalties can be achieved. Therefore, future research can contribute to alle-

viating the dependability problem in embedded multi-core processors by offering a fault

tolerant solution with minimal drawbacks.
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