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Resumo 1 

Diversos estudos teóricos, experimentais e observacionais têm demonstrado que as relações 2 

entre a biodiversidade e as funções ecossistêmicas (BEF) são determinadas pela estrutura 3 

funcional da comunidade (ou seja, pela distribuição dos atributos das suas espécies 4 

constituintes). Isso pode ocorrer por meio de dois mecanismos mutuamente não exclusivos: (1) 5 

a hipótese de dominância (também denominada de efeito de relação de massa), na qual os 6 

processos ecossistêmicos são influenciados pela média ponderada na comunidade de um dado 7 

atributo funcional  (CWM) considerado relevante; (2) a hipótese de complementaridade, na qual 8 

a maior variabilidade de um atributo funcional na comunidade (FD) é uma expressão da 9 

complementariedade de nicho, o que beneficia o desempenho dos processos ecossistêmicos. 10 

Embora ambos os mecanismos já tenham sido amplamente estudados em comunidades de 11 

plantas em pequenas escalas espaciais, análises globais considerando distintos biomas ainda são 12 

necessárias. Neste estudo, a relação entre biodiversidade e funcionamento dos ecossistemas foi 13 

avaliada com base na integração entre uma base de dados global de parcelas de vegetação 14 

(sPlot), uma base de dados de atributos de espécies de plantas (TRY) e dados do Índice de 15 

Vegetação por Diferença Normalizada (NDVI) obtidos por sensoriamento remoto. O objetivo foi 16 

verificar, simultaneamente, os efeitos de dominância e de complementaridade sobre a 17 

produção de biomassa vegetal em ecossistemas campestres em todo o mundo. Os dados sobre 18 

a estrutura funcional das comunidades (CWM e FD) foram obtidos a partir da base de dados 19 

sPLOT e TRY, utilizando para isso 18 atributos funcionais de plantas ecologicamente relevantes. 20 

O NDVI, considerado como aproximação da produtividade da vegetação, representa uma 21 

medida do funcionamento do ecossistema e foi obtido a partir do produto MOD13Q do sensor 22 

MODIS, com resolução espacial de 250m. Para garantir que as medidas de NDVI fossem 23 

derivadas apenas de ecossistemas campestres, sem a interferência de outras fisionomias 24 

vegetais, foram descartadas as parcelas do sPlot com presença de paisagens heterogêneas no 25 

seu entorno mediante consulta a um mapa global de cobertura e uso da terra (Globcover2009). 26 

Para quantificar os efeitos independentes da dominância e da complementariedade sobre as 27 

variações no NDVI , com controle das variáveis climáticas, foi utilizada uma análise de regressão 28 

múltipla do tipo commonality. Os resultados demonstraram que o principal preditor da variação 29 

no NDVI correspondeu a um conjunto de atributos funcionais das espécies dominantes 30 

relacionados com o espectro de economia da comunidade vegetal (atributos fast-slow), 31 

indicando a prevalência da hipótese de dominância (R2 ajustado = 0,65).  Os efeitos evidentes 32 

da dominância e os efeitos potenciais da complementariedade são discutidos no contexto da 33 

sua relação com os fatores abióticos, sendo que a precipitação pluviométrica, em particular, 34 
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parece ter maior influência tanto sobre a composição de atributos quanto sobre a 35 

produtividade. Apesar de algumas limitações metodológicas, a abordagem inovadora utilizada 36 

neste trabalho pode ajudar a esclarecer as relações entre biodiversidade e funções 37 

ecossistêmicas em escala global, dentro de uma perspectiva integradora e baseada em dados.  38 

Palavras-chave: atributos funcionais, ecologia funcional, biodiversidade e funções 39 

ecossistêmicas, sensoriamento remoto, sPlot, vegetação campestre, ecologia global.  40 
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Abstract 41 

Theoretical, experimental and observational studies show that biodiversity ecosystem 42 

functioning (BEF) relationships are determined by functional community structure (i.e. trait 43 

distributions in a community) through two mutually non-exclusive mechanisms: (1) The 44 

dominance hypothesis (a.k.a. mass ratio effect) links ecosystem processes to the community 45 

weighted mean (CWM) of a relevant effect trait. (2) The complementarity hypothesis states that 46 

higher variability of a trait value within a community (FD) reflects niche complementarity 47 

enhancing ecosystem processes. While both mechanisms have been extensively studied in plant 48 

communities at small spatial scales, there is a need for global analyses across biomes. Here, a 49 

data driven approach to the BEF question is presented integrating a global vegetation plot 50 

database with a trait database and remotely sensed NDVI. The objective of this study was to 51 

simultaneously evaluate dominance and complementarity effects in grassland systems 52 

worldwide. Data on functional community structure (CWM and FD) were obtained from the 53 

global vegetation plot database sPlot in combination with the plant trait database TRY using 18 54 

ecologically relevant plant traits. Ecosystem functioning at the selected sPlot sites (n = 2941) 55 

was measured as NDVI at a spatial resolution of 250m using the MODIS product MOD13Q 56 

(annual peak NDVI being a proxy of productivity). The landcover map Globcover2009 was used 57 

for characterization of landscape heterogeneity and landcover at each site, and plots in 58 

heterogeneous non-grassland pixels were discarded. Multiple regression commonality analysis 59 

was used to disentangle the contributions of complementarity and dominance effects to the 60 

variation in NDVI, while controlling for climate variables (adjusted R2 = 0.65). The results show 61 

that a plant community economics spectrum referring to the “fast-slow traits” of the dominant 62 

species in the community was the strongest predictor of the NDVI values in the grassland 63 

systems (dominance effect). Both, evident dominance and potential complementarity effects 64 

are discussed against the background of their interplay with abiotic factors and it is noted that 65 

especially precipitation seems to drive trait composition and productivity. Despite 66 

methodological shortcomings, the novel approach presented in this paper is considered a step 67 

towards a more integrative data-driven BEF debate at the global scale. 68 

Keywords: plant functional ecology, biodiversity ecosystem functioning, remote sensing, sPlot, 69 

grasslands, global ecology, plant community economics spectrum. 70 

71 
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Zusammenfassung 72 

Theoretische, experimentelle und beobachtende Studien zeigen, dass Beziehungen zwischen 73 

Biodiversität und Ökosystemfunktionen (BEF) von funktioneller Gemeinschaftsstruktur 74 

bestimmt sind und dass dabei zwei sich gegenseitig nicht ausschließende Mechanismen eine 75 

Rolle spielen: (1) Die Dominanzhypothese (Massenverhältniseffekt) stellt einen Zusammenhang 76 

zwischen den durch Artenabundanz gewichteten Mittelwert von Effektmerkmalen in der 77 

Gemeinschaft (CWM) und Ökosystemprozessen her. (2) Die Nischen-Komplementarität-78 

Hypothese beschreibt, dass eine höhere Variabilität eines Merkmals innerhalb einer 79 

Gemeinschaft (FD) komplementäre Nischen widerspiegelt, die zu einer effizienteren 80 

Ressourcennutzung führen and dadurch Ökosystemprozesse verbessern. Während beide 81 

Mechanismen in Pflanzengemeinschaften auf kleinen räumlichen Skalen umfassend untersucht 82 

wurden, besteht ein Bedarf an globalen Analysen über Biomgrenzen hinweg. Hier wird ein 83 

datengetriebener Ansatz für die BEF-Frage vorgestellt, der eine globale Vegetationsdatenbank 84 

mit einer Datenbank für Pflanzenmerkmale und Fernerkundung integriert. Ziel dieser Studie war 85 

es, Dominanz- und Komplementaritätseffekte in Grünlandsystemen weltweit zu bewerten. Die 86 

Daten zur funktionellen Gemeinschaftsstruktur (CWM und FD) wurden aus der globalen 87 

Vegetationsdatenbank sPlot in Kombination mit der Merkmaldatenbank TRY mit 18 ökologisch 88 

relevanten Pflanzenmerkmalen gewonnen. Ökosystemfunktionen wurden an den ausgewählten 89 

sPlot-Standorten (n = 2941) bei einer räumlichen Körnung von 250 m als jährliches NDVI 90 

maximum mit dem MODIS-Produkt MOD13Q gemessen, das als Proxy für Produktivität gilt. Es 91 

wurde eine Kommunalitätsegressionsanalyse verwendet, um die Wirkungen von Dominanz- und 92 

Komplementaritätseffekten auf die Variation des NDVI bei Berücksichtigung von Klimafaktoren 93 

zu entwinden (adjusted R2 = 0.65). Die Ergebnisse zeigen, dass ein plant community economics 94 

spectrum, das die "schnell-langsam-Merkmale" der dominanten Arten in der Gemeinschaft 95 

beschreibt, der stärkste Prädiktor für die NDVI-Werte in den Grünland-Systemen war 96 

(Dominanz-Effekt). Sowohl offensichtliche Dominanz- als auch potenzielle 97 

Komplementaritätseffekte werden vor dem Hintergrund ihres Zusammenspiels mit abiotischen 98 

Faktoren diskutiert und es wird gezeigt, dass vor allem Niederschlag die Merkmalsverteilung und 99 

Produktivität zu bestimmen scheint. Trotz methodischer Mängel wird der neuartige Ansatz, der 100 

in hier vorgestellt wird, als ein Schritt zu einer integrativeren datengesteuerten BEF-Debatte auf 101 

globaler Ebene betrachtet. 102 

Schlüsselwörter: Funktionelle Pflanzenökologie, Ökosystemfunktionen, Fernerkundung, sPlot, 103 

Grünland, globale Ökologie, plant community economics spectrum.  104 
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Introduction 146 

The question of how biodiversity influences ecosystem functions, such as biomass production 147 

and biogeochemical cycling, has been a widely discussed topic for decades (Hooper et al. 2005), 148 

often referred to as the biodiversity ecosystem functioning (BEF) debate. In the face of an 149 

ongoing global biodiversity crisis (Ceballos et al. 2015; McGill et al. 2015), researchers have been 150 

trying to understand how changes in diversity and composition of biological communities 151 

(especially primary producers) affect ecosystem processes and services, and have provided 152 

strong evidence that productivity tends to increase with species richness (Cardinale et al. 2011). 153 

To understand the mechanistic basis of this relationship the focus of BEF research has moved on 154 

to investigating how functional characteristics of species in a system rather than species richness 155 

per se drive ecosystem processes (Díaz & Cabido 2001; Cadotte, Carscadden & Mirotchnick 156 

2011; Cadotte, Albert & Walker 2013; Dias et al. 2013; Lavorel 2013; Ebeling et al. 2014). Species 157 

traits have been recognised as the key to understanding both, the responses of species to 158 

environmental factors (response traits) and the effect they have on ecosystem processes (effect 159 

traits) (Lavorel & Garnier 2002). Trait-based approaches have offered two main hypotheses for 160 

a mechanistic explanation of how functional community structure (i.e. the distribution of trait 161 

values measured in a given community; Garnier, Navas & Grigulis 2016) influences ecosystem 162 

functioning: The dominance hypothesis (also “mass ratio hypothesis”) states that ecosystem 163 

processes are primarily determined by effect traits of the dominant species in a community 164 

(Grime 1998) which emphasizes the importance of the abundance weighted mean of the 165 

species’ effect traits (Garnier 2004). The complementarity hypothesis, in contrast, refers to the 166 

variation of a trait value within a community. It suggests that a higher range of trait values (i.e. 167 

functional diversity) reflects niche complementarity allowing for enhanced resource use and 168 

ecosystem functioning (Petchey & Gaston 2006). As these hypotheses are not mutually 169 

exclusive, their suggested mechanisms may act simultaneously. Both, experimental and 170 

observational studies on biomass production in plant communities tend to find dominance 171 

effects more frequently and with stronger evidence, than complementarity effects (Mokany, 172 

Ash & Roxburgh 2008; Mouillot et al. 2011; Lavorel 2013; Chollet et al. 2014). Especially, plant 173 

traits related to the trade-off between resource acquisition and conservation, which is known 174 

as the “leaf economics spectrum” (Wright et al. 2004), show strong links to productivity caused 175 

by the trait values of the most dominant species in the community (Diaz et al. 2004; Grigulis et 176 

al. 2013; Lavorel 2013). Recent studies, however, show that the combined contributions of both, 177 

functional diversity and mass ratio effects, are responsible for the simultaneous provisioning of 178 

multiple ecosystem functions and services, referred to as multifunctionality (Hector & Bagchi 179 
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2007; Mouillot et al. 2011; Valencia et al. 2015) as well as for biomass production outside of the 180 

high productivity season (Chollet et al. 2014). 181 

Methodological challenges to the clear separation of dominance and complementarity effects 182 

have been posed by a lack of independence between functional diversity metrics and 183 

community-weighted mean trait values (Ricotta & Moretti 2011) as well as by the many 184 

confounding factors and environmental covariates influencing ecosystem processes (Díaz et al. 185 

2007). These problems were addressed through the design of appropriate experimental layouts 186 

with controlled conditions (Dias et al. 2013; Eisenhauer et al. 2016) and adequate statistical 187 

methods in natural systems (Grace et al. 2007; Mokany, Ash & Roxburgh 2008). While traditional 188 

approaches have tried to keep abiotic factors constant, restricting themselves to small spatial 189 

and temporal scales, more recent approaches have specifically included or manipulated 190 

environmental variation such as climate and nutrient supply (Schumacher & Roscher 2009; 191 

Roscher et al. 2013; Chollet et al. 2014; Zhou et al. 2017). 192 

Regardless of these advances, there continues to be a lack of studies on large spatial scales 193 

across biomes (but see Cornwell et al. 2008; Musavi et al. 2015), and despite its vital role for 194 

ecosystem processes, plant functional community structure has only very poorly been 195 

implemented in earth system models (but see Van Bodegom, Douma & Verheijen 2014). While 196 

a global coordination and upscaling of the measurement of plant functional community 197 

structure and ecosystem process are logistically challenging using traditional approaches, 198 

modern ecology has entered the era of “big data” which offers powerful alternatives (Hampton 199 

et al. 2013): global initiatives compile community data and species characteristics into large 200 

databases (Kattge et al. 2011), and new ecosystem observation techniques like remote sensing 201 

and flux measurements offer novel approaches to the quantification of ecosystem processes 202 

(Baldocchi et al. 2001; Ustin et al. 2004; Houborg, Fisher & Skidmore 2015). In a conceptual 203 

paper on large scale BEF research, Musavi et al. (2015) present a data driven approach linking 204 

trait information to so called ecosystem functional properties (EFP) derived from eddy 205 

covariance (Reichstein et al. 2014). While their approach is highly quantitative and scalable from 206 

the leaf to the ecosystem level, there is still a mismatch between sites covered by flux 207 

measurements and available trait information (Musavi et al. 2017).  208 

Here, we present an approach using the world’s largest repository of plant community data sPlot 209 

coupled with the plant trait database TRY (Kattge et al. 2011) and the globally available 210 

normalized difference vegetation Index (NDVI) to tackle the biodiversity ecosystem functioning 211 

question at the planetary scale. The combination of NDVI and trait databases has been used 212 
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before to study the diversity-resilience relationship at a regional scale (Spasojevic et al. 2016). 213 

Taking advantage of over a decade worth of vegetation surveys from around the globe, the 214 

combination of a global vegetation plot database with trait data and satellite retrievals is a novel 215 

approach to address diversity-productivity relationships at the global scale. In line with a long 216 

tradition of BEF research in grassland ecosystems (Tilman, Wedin & Knops 1996; Hector et al. 217 

1999; Hooper et al. 2005; Wu et al. 2015), grasslands were chosen as a model system for this 218 

analysis although the methodology could also be applied to other vegetation types. The specific 219 

objective of this study was to investigate the effect of plant functional community structure on 220 

NDVI in grasslands around the world. In accordance with the overwhelming evidence in the 221 

literature, it was hypothesised that dominance effects would be stronger than complementarity 222 

effects. 223 

Material and methods 224 

Datasets 225 

Being purely data driven, this study was based on the integration of data compiled from three 226 

global initiatives: (1) the global vegetation plot database sPlot (version 2.1) which provides 227 

georeferenced surveys of plant communities all over the world (see: 228 

https://www.idiv.de/?id=176&L=0), (2) the TRY database of species functional traits (Kattge et 229 

al. 2011) and (3) the MODIS product MOD13Q1 (Didan 2015) providing the vegetation index 230 

NDVI which was used as a proxy for ecosystem level primary productivity. The sPlot database 231 

contains information on plant community composition in over 1.1 million vegetation plots 232 

contributed by more than 100 vegetation plot databases. Here, sPlot was sampled to 233 

characterise functional structure in grassland communities around the globe by integrating the 234 

vegetation plot data with species trait data from TRY.  235 

At every location selected from sPlot, the satellite derived Normalized Difference Vegetation 236 

Index (NDVI) was calculated as the ratio between the difference and sum of near infrared and 237 

red surface reflectance. NDVI is a measure of surface greenness, closely related to vegetation 238 

dynamics (Rouse et al. 1974). Considered a proxy of primary productivity (Running 1990; Paruelo 239 

et al. 1997) and other ecosystem processes (Ustin et al. 2004), NDVI has been used in ecological 240 

studies to evaluate ecosystem responses to environmental changes (reviewed in Pettorelli et al., 241 

2005) and to derive ecosystem stability metrics (De Keersmaecker et al. 2014). The NDVI dataset 242 

used here was the MODIS product MOD13Q1, which has global coverage with a pixel size of 250 243 

m and a temporal resolution of 16 days. 244 
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Integrating vegetation plot data with remotely sensed NDVI comes along with scale issues as a 245 

MODIS pixel is 2 orders of magnitude larger than a typical vegetation plot. This scale 246 

incompatibility becomes problematic in cases where a plot is located within a NDVI pixel that is 247 

very heterogeneous with other cover types different from grassland (mixed pixel). 248 

Consequently, sPlot community data at the plot level might not appropriately represent the 249 

overall plant community at the scale of the NDVI pixel. To overcome this problem, the land cover 250 

map GlobCover 2009 (Arino et al. 2010) was used to identify and exclude vegetation plots that 251 

were located in NDVI pixels contaminated with non-grassland land uses (e.g. forest, agricultural 252 

land, urban areas).  253 

Further, for every plot location included in this study, mean annual temperature and annual 254 

precipitation values were retrieved from the CHELSA project which provides bioclimatic 255 

variables at a global scale at a resolution 30 arc sec (Karger et al. 2016). As climate is a major 256 

driver of biomass production and vegetation dynamics in grassland systems (Sala et al. 1988; 257 

Briggs & Knapp 1995; La Pierre et al. 2011; Chollet et al. 2014), these variables were included as 258 

covariates in the analysis.  259 

Sampling of sPlot  260 

sPlot was screened for observations from grassland communities. Any selected plot had to 261 

satisfy at least one of the following criteria: (1) The plot was marked as “grassland” by the 262 

vegetation survey that provided the sPlot entry. (2) At least 90 % of the plot was covered by 263 

species that were not trees or shrubs or that were shorter than 2 m in plant height (according 264 

to the TRY database). Furthermore, at least 50% of the relative vegetation cover in a plot had to 265 

consist of plant species represented in TRY. Excluded were plots that were labelled as “forest”, 266 

“shrubland” or “wetland”, as well as observations prior to the year 2000 (launch of the MODIS 267 

program). Further, excluded were plots with high location uncertainty (> 100m) and unprecise 268 

GPS coordinates (< 4 decimal places in decimal degrees). To filter out mixed NDVI pixels, all 269 

selected plots had to be located within a MODIS pixel whose land cover consisted to at least 95 270 

% of the GlobCover 2009 categories “mosaic grassland”, “closed to open herbaceous 271 

vegetation” and “sparse vegetation” in any relative composition, which was assumed to 272 

correspond to grasslands. 273 

NDVI time series  274 

Complete NDVI time series (MOD13Q1) were retrieved by using Google Earth engine (Google 275 

Earth Engine Team 2015) for each of the selected vegetation plots. From each time series, the 276 

maximum annual NDVI values were extracted for the year of the respective vegetation survey 277 
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as well as the respective following year. This peak NDVI value corresponds to yearly maximum 278 

photosynthetic activity of the vegetation and is an indicator for overall productivity and biomass 279 

(Pettorelli et al. 2005). The mean of the two annual maximum values was considered the NDVI 280 

response variable for a given plot. The consideration behind this approach was that averaging 281 

across two subsequent years is likely to reduce the effect of anomalies and noise in the NDVI 282 

measured by remote sensing, leading to more robust NDVI values. In cases where a NDVI pixel 283 

contained more than one vegetation plot, surveys from different years were treated as 284 

independent observations. For vegetation plots that were described in the same year in the 285 

same NDVI pixel, just one plot was drawn at random. 286 

Plant traits and their ecological importance 287 

Eighteen ecologically relevant plant traits were used to characterise the functional community 288 

structure at all selected plots. Species mean traits were retrieved from TRY (Kattge et al. 2011) 289 

and gap-filled using Bayesian Hierarchical Probabilistic Matrix Factorization (Schrodt et al. 2015). 290 

All trait values were log transformed. A detailed description of the gap filling procedure and 291 

matching between sPlot and TRY will be given by Bruelheide et al. (in press.), who provided these 292 

data for the sPlot initiative and this study. The gap-filled trait data were available for 88.7% of 293 

all species occurrences in sPlot.  294 

The traits included represent different ecological trade-offs and plant strategies: Specific leaf 295 

area (i.e. the one-sided leaf area divided by leaf mass), Leaf N, Leaf P, Leaf C per dry Mass, Leaf 296 

N per area and Leaf dry matter content are traits related to leaf-level carbon gain strategies or 297 

the so called “leaf economic spectrum” LES (Wright et al. 2004). The LES spans a trait axis ranging 298 

from “conservative” species with long-lived, physically robust leaves with low photosynthetic 299 

rate and poor litter quality to “acquisitive” species with short-lived leaves that exhibit high C 300 

assimilation rates and have a higher nutritive value (Chapin 1980; Reich, Walters & Ellsworth 301 

1997; Wilson, Thompson & Hodgson 1999; Wright et al. 2004; Garnier, Navas & Grigulis 2016). 302 

The LES is known to be a strong driver of ecosystem processes such as productivity and litter 303 

decomposition, with higher rates found in communities dominated by “acquisitive” species (Diaz 304 

et al. 2004; Grigulis et al. 2013; Lavorel 2013). The traits seed number of the reproductive unit, 305 

dispersal unit length, seed length and seed mass reflect a reproductive trade-off between seed 306 

competitive ability and survival on the one hand and dispersal rate and colonization on the other 307 

hand (Smith & Fretwell 1974; Moles & Westoby 2006). Although seed traits are not expected to 308 

have a strong direct influence on ecosystem productivity, they tend to covary with plant size and 309 

other life history traits that might have a stronger link with ecosystem processes (Thompson & 310 

Rabinowitz 1989; Rees & Venable 2007; Moles & Leishman 2008). The trait plant height is linked 311 
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to competitive ability of individual plants and light interception (Gaudet & Keddy 1988; Violle et 312 

al. 2009), hence it reflects carbon acquisition strategies at the individual level (King 1990; 313 

Westoby et al. 2002). Being an indicator of overall plant size, plant height is an important 314 

component of standing biomass in the community (Chave et al. 2005). Also, the trait leaf area is 315 

allometrically connected to plant stature and plant height (Niklas 1994; Ackerly & Donoghue 316 

1998). Furthermore, leaf area plays a crucial role in light interception and influences leaf energy 317 

and water balances as well as temperature (Farquhar, Buckley & Miller 2002). Both, leaf area 318 

and leaf fresh mass contribute to the LES via their ratio, specific leaf area. The trait stem density 319 

represents a trade-off between rapid growth and high turnover on one hand and slow growth, 320 

higher structural stability and survival on the other hand, which is conceptually similar to the 321 

LES (Chave et al. 2009; Freschet et al. 2010; Wright et al. 2010). Stem characteristics such as the 322 

traits wood vessel length and stem conduit density are also strong drivers of plant hydrology 323 

and thus influence evapotranspiration at the ecosystem level (Zanne et al. 2010). Although the 324 

latter are more commonly used for woody species (Chave et al. 2009), they have also been 325 

included in this study on grasslands to achieve a more holistic characterisation of the functional 326 

community structure that goes beyond the commonly measured leaf traits for herbal 327 

vegetation. The traits leaf N to P ratio and Leaf nitrogen isotope ratio (Leaf delta 15N) are 328 

connected to plant nutrient supply and status. N to P ratios give an indication of nutrient 329 

limitations in the system and exhibit a correlation with biomass production (Güsewell 2004). 330 

Leaf nitrogen isotope ratios are linked to different nitrogen sources and might give an idea of 331 

the relative importance of mycorrhizae and nodule derived nitrogen in the communities (Craine 332 

et al. 2015). 333 

Functional community structure 334 

Community weighted mean (CWM) and Rao’s quadratic entropy (Q) were chosen to characterise 335 

the functional community structure in every plot based on the 18 traits discussed above. CWM 336 

is an abundance weighted trait mean value of the community that represents the trait values of 337 

the most dominant species and is therefore linked to the mass ratio effect and dominance 338 

hypothesis (Garnier 2004). Rao’s quadratic entropy is a generalisation of the Simpson’s index 339 

(Rao 1982) that has been used to quantify functional diversity of communities using functional 340 

dissimilarity matrixes calculated for single or multiple species traits (Botta-Dukat 2005; Lepš et 341 

al. 2006). Together, Rao’s quadratic entropy and CWM have been applied in biodiversity 342 

ecosystem functioning research to disentangle dominance and complementarity effects as 343 

indicated by “mean” (i.e. CWM) and “dispersion” (i.e. Q) of traits, respectively (Ricotta & Moretti 344 

2011). Here, single trait CWM and Q were calculated as follows: 345 
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Eq. 1 

𝐶𝑊𝑀𝑙,𝑘 = ∑ 𝑝𝑖,𝑘𝑡𝑖,𝑙

𝑛𝑘

𝑖=1

  

 

where nk is the number of species in plot k, pi,k is the relative cover of species i in plot k, and ti,l 346 

is the mean value of species i for trait l. 347 

Eq. 2 

𝑄𝑙,𝑘 =  ∑ ∑ 𝑑𝑖,𝑗,𝑙𝑝𝑖,𝑘𝑝𝑗,𝑘

𝑛𝑘

𝑗=1

𝑛𝑘

𝑖=1

 

 

where nk is the number of species in plot k, pi,k and pj,k are the relative covers of species i and j 348 

in plot k, and di,j,l is the dissimilarity, in the range of 0–1, between species i and j based on trait 349 

l. The dissimilarity metric used was Gower’s distance (Podani 1999) and the computation of Q 350 

was performed in the R package SYNCSA (Debastiani & Pillar 2012).  351 

To reduce the functional trait space described by the 18 CWM variables, a principal component 352 

analysis (PCA) was performed on the CWM values in all selected communities (correlation-based 353 

using the R package FactoMineR). The PCA axes were considered as latent variables summarizing 354 

most of the variation in CWM across multiple traits. These latent variables are integrated 355 

measures characterising the dominant species in a community and are therefore linked to the 356 

dominance hypothesis (Chollet et al. 2014). The first two axes of variation (PCA.1 and PCA.2) 357 

were included in the multiple regression model for the NDVI response.  358 

Rao’s quadratic entropy was recalculated across multiple traits by averaging the single trait Ql,k 359 

values, which was possible because the distance matrix was standardised in the range of 0 to 1, 360 

respectively . This was done for all 182 – 1 possible combinations of the 18 traits, and for each 361 

combination a simple regression was performed using the corresponding Q as predictor of NDVI. 362 

The trait combination with the strongest effect size on NDVI was selected as the predictor 363 

variable for functional diversity, FD (Mokany, Ash & Roxburgh 2008). This was the case for the 364 

trait combination stem conduit density and stem density. 365 

Data analysis 366 

Multiple linear regression analysis was used to explore the role of biotic and abiotic factors on 367 

the response variable NDVI. The multiple regression model was specified in R using the function 368 

“lmp()” from the package “lmPerm” that allows permutation test for linear models (Wheeler & 369 

Torchiano 2016). This approach was adopted because of non-normality in the NDVI data. Next 370 
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to the variables of functional community structure (PCA.1, PCA.2, FD), the covariates annual 371 

mean temperature (Temp), annual precipitation (Prec) and absolute latitude (Lat) of the plot 372 

were included in the model. The latter three variables were centred and standardized before 373 

entering the model. The absolute value of the latitude was selected to achieve a more linear 374 

relationship with NDVI. The model was defined as follows: 375 

𝑁𝐷𝑉𝐼 ~ 𝑃𝐶𝐴. 1 + 𝑃𝐶𝐴. 2 + 𝐹𝐷 + 𝑃𝑟𝑒𝑐 + 𝑇𝑒𝑚𝑝 + 𝐿𝑎𝑡 376 

Instead of using stepwise or hierarchical regression approaches that - among other 377 

shortcomings - do not account for multicollinearity in the data (Graham 2003; Ray-Mukherjee 378 

et al. 2014), regression commonality analysis (CA) was applied to disentangle the effect of 379 

individual predictors (Newton & Spurrell 1967; Mood 1969, 1971). CA allows to decompose the 380 

variance explained by a multiple regression model into unique and common effects of individual 381 

predictors (Ray-Mukherjee et al. 2014) and has been used in BEF research before (Brooks et al. 382 

2016). Although CA does not reveal causal relationships between variables, it provides an 383 

exploratory tool to partition variance and identify isolated effects as well as groups of covarying 384 

predictors. The CA was performed using the R package “yhat” (Nimon, Oswald & Roberts 2013). 385 

All analyses were performed in R (R Core team 2015).  386 
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Results 387 

2941 grassland plots fulfilled the selection criteria and were included in the analysis. The plots 388 

were very unevenly distributed across 9 biomes, with most of the plots located in the temperate 389 

midlatitudes (see Table 1). This distribution is a result of the uneven global coverage of sPlot 390 

where Europe is highly overrepresented.  391 

Table 1: Number of included plots per biome. 
Classifications according to definition by Schultz (2005) with an additional alpine biome 
following the approach by Körner et al. (2017): 

Biome Number of plots 

Alpine 147 

Boreal zone 186 

Dry midlatitudes 99 

Dry tropics and subtropics  264 

Polar and subpolar zone  45 

Subtropics with winter rain 40 

Subtrop. with year-round rain  5 

Temperate midlatitudes  2145 

Tropics with summer rain 10 

 

 

Bivariate relationships between single trait functional structure variables and NDVI 392 

The CWMs of most traits were significantly correlated with NDVI. This was tested using simple 393 

linear regression analysis with permutation tests. Only the CWMs of the traits Leaf C per mass 394 

and height did not have a significant bivariate effect on NDVI. The strongest effect (as R2) was 395 

observed in the simple regression model of the trait SLA, followed by Leaf.N and Stem.Dens 396 

(Figure 1). 397 

All the single trait functional diversity values positively correlated to each other (Supplementary 398 

material, Table 5) and showed a positive effect on NDVI, exhibiting R2 values in the range of 0.11 399 

to 0.21 with the strongest effects observed for the traits stem conduit density and stem density 400 

(Figure 2). 401 
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Figure 1: Scatterplots of community weighted mean (CWM) and NDVI for all 18 traits.  
Solid lines represent simple linear regression models. R2 values are given for every fit. Full trait names can be found 
in Table 2. Apart from the traits Leaf C per mass and height, all CWM had a significant simple regression effect on 
NDVI. 
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Figure 2: Scatterplots Rao´s quadratic entropy (Q) and NDVI for all 18 traits. 
Solid lines represents simple linear regression models. R2 values are given for every fit. Full trait names can be 
found in Table 2. All Q values had a significant simple regression effect on NDVI. 
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The CWM space and its effect on NDVI 402 

The first two PCA axes explained 27.42% (PCA.1) and 20.88% (PCA.2) of the variation in the CWM 403 

data. Subsequent axes explained 10.2%, 6.5%, 6.3%, 5.4%, 5.1%, 4.3%, 3.3%, 3.1%, 1.9%, 1.8%, 404 

1.4%, 0.9%, 0.5%, 0.4%, 0.2% and 0.2%, respectively. Communities that had negative scores on 405 

PCA.1 were dominated by species with high SLA that had increased leaf concentrations of 406 

nitrogen and phosphorous. Positive values on this axis were accompanied by higher LDMC and 407 

stem density. Communities with high scores on the second axis of variation were characterised 408 

as dominated by relatively tall species with both, large and heavy leaves and seeds, as well as 409 

long dispersal units (see Figure 3 and Table 2). Subsequent axes had relatively low factor 410 

loadings; the trait that had the highest correlation with the 3rd axis was dN15 (55,2%), which was 411 

in turn not correlated to the first two axes (Table 2). 412 

 

Figure 3: Correlation circle of the CWM PCA for the plane of PCA.1 vs. PCA.2. 
Arrows indicating strength and direction of correlation between trait variables and axes. This 
plane captures 48.3% of the inertia in the 18 CWM variables. Axis labels Dim 1 and Dim 2 refer 
to PCA.1 and PCA.2, respectively. 
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Simple regressions between the PCA axes PCA.1 and PCA.2 and NDVI were significant, 413 

respectively. While the first axis showed a relatively strong negative effect, explaining 43% of 414 

the variation in NDVI, the second axis had a much smaller but positive effect explaining ca. 2% 415 

of the variation (Figure 4). 416 

Table 2: Trait factor loadings on the first 2 PCA axes of the CWM space. 
 Shading: Red indicates negative correlation, green positive correlation. 

 

Trait Abbreviation 

Correlation with PCA axes 

PCA 1 PCA 2 

Specific leaf area SLA -0.88 0.10 

Leaf P concentration Leaf.P -0.82 0.06 

Leaf N concentration Leaf.N -0.73 0.27 

Leaf area Leaf.A -0.51 0.69 

Seed number of the reproductive unit Rel.seed.num -0.50 0.18 

Leaf fresh mass Leaf.fr.mass -0.37 0.73 

Stem conduit density Stem.cond.dens -0.2 -0.45 

Leaf delta 15N dN15 0.02 -0.06 

Plant height Height 0.22 0.68 

Dispersal unit length Disp.u.l 0.27 0.76 

Wood vessel length vessel.l 0.27 -0.42 

Seed length Seed.l 0.31 0.75 

Leaf C per dry Mass Leaf.Cpmass 0.4 -0.17 

Seed mass Seed.m 0.41 0.73 

Leaf N/P ratio NpP 0.57 0.26 

Leaf N per Area Leaf.NpA 0.6 0.08 

Leaf dry matter content LDMC 0.70 0.06 

Stem density Stem.Dens 0.70 0.01 
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Figure 4: Scatterplot of NDVI against PCA axes of CMW (PCA.1 and PCA.2).  
Solid line represents simple linear regression models. R square values are 0.43 and 0.02, 
respectively. Both models were highly significant as indicated by 5000 randomisations of the 
data (p<0.001, respectively). 

Multiple regression and commonality analysis 417 

The multiple regression model showed that all variables had a significant effect on NDVI, 418 

altogether explaining 64.87% of the variation (see Table 3). The commonality analysis revealed 419 

how individual predictor variables and sets of predictor variables contributed to this overall R2 420 

value. The commonality values in Table 3 should be interpreted as follows: The total effect of a 421 

variable is equivalent to its R2 value in a simple linear regression. In the commonality analysis, 422 

this value is partitioned into a unique and a common effect of that predictor. The common effect 423 

refers to the part of the variation that cannot clearly be attributed to the predictor alone but 424 

that is shared with other predictors (due to Multicollinearity). The unique effect, in contrast, is 425 

the proportion of the variance in the model that can exclusively be explained by a single 426 

predictor. The variable PCA.1 was found to have the highest total effect in the model, the largest 427 

part of which, however, was shared with other predictors (37.4%). The unambiguous effect of 428 

PCA.1 was 5.2 %. This was the second strongest unique effect of a predictor after the unique 429 

effect of precipitation (8.9%). Both, precipitation and latitude had relatively strong total effects 430 

with R2 values of 33.2 % and 25.2%, respectively. While the total effect of FD was 22.8%, only 431 

0.4% where a unique effect of this predictor; the rest was confounded by other covariates. Both, 432 

temperature and PCA.2 had relatively weak total effects. In the case of PCA.2, however, its 433 

unique effect was stronger than its total effect which suggests that this variable was suppressed 434 

by another covariate in the model. 435 
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Table 3: Summary of the multiple regression model for NDVI 
Unstandardized regression coefficient (B), standardized regression coefficient (β), the number 
of permutations (Rand); the permutation based p value (p) as well as each predictor’s unique, 
common and total variance in the regression equation. 
 

     Commonality analysis 

Variable B β Rand p Unique  Common Total 

PCA.1 -0.024 -0.297 5000 <2e-16 0.052 0.374 0.426 

PCA.2 0.019 0.200 5000 <2e-16 0.035 -0.015 0.021 

FD 0.140 0.081 5000 <2e-16 0.004 0.224 0.228 

Prec 0.061 0.337 5000 <2e-16 0.089 0.244 0.332 

Temp 0.043 0.238 5000 <2e-16 0.016 0.017 0.033 

Lat 0.008 0.472 5000 <2e-16 0.044 0.208 0.252 

Adjusted R2 = 0.6487; Intercept = 0.764 

 

Table 4 summarises the contribution of individual predictor sets ordered by effect size. The set 436 

of variables with the highest commonality coefficient was the predictor set “PCA.1, FD, Prec, and 437 

Lat” which can be attributed 14.2% of the total regression effect. The variable PCA.1 was part of 438 

6 out of the 8 most important predictor sets and shared most of its total effect with the 439 

covariates precipitation and latitude. Furthermore, PCA.1 had some shared model variation with 440 

the functional diversity value FD. 441 
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Table 4: Contribution of predictors and predictor sets on NDVI. 
The table shows commonality coefficients and % of total contribution of each predictor or 
predictor set to the regression effect in decreasing order. Sets with contributions below 2% 
were omitted in this table. 

Set of variables Coefficient % Total 

PCA.1, FD, Prec, and Lat 0.092 14.2 

Prec 0.089 13.66 

PCA.1, and Lat 0.08 12.25 

PCA.1, and Prec 0.056 8.57 

PCA.1 0.052 7.96 

Lat 0.044 6.84 

PCA.1, Prec, and Lat 0.044 6.76 

PCA.1, FD, and Lat 0.043 6.62 

PCA.2 0.035 5.41 

FD, and Lat 0.026 3.98 

FD, Prec, and Lat 0.021 3.19 

PCA.1, and Temp 0.021 3.17 

PCA.1, FD, Prec, and Temp 0.018 2.78 

PCA.1, Prec, and Temp 0.018 2.74 

Temp 0.016 2.47 

FD, and Prec 0.015 2.29 

…47 sets with contribution below 2 % omitted… 

Total 0.649 100 
 

442 
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Discussion 443 

The aim of the present study was to provide a global assessment of the role of dominance and 444 

complementarity effects for biodiversity – ecosystem functioning relationships in grasslands. 445 

Functional community structure was described by two components, functional diversity (FD) 446 

and community weighted mean (CWM), which were associated with complementarity and 447 

dominance effects, respectively. Prior to the discussion of the trait - functioning relationships 448 

which has been considered a “holy grail” in ecology (Lavorel & Garnier 2002), the associations 449 

among CWM of different traits will be discussed in the next section. At the end of this paper, 450 

some methodological considerations will be presented. 451 

The CWM space 452 

Although 18 different traits were used in this study, the PCA of the CWM revealed that there 453 

were in fact only two main axes that explained almost half of the variation in the CWM data and 454 

that many traits were tightly linked to. A full pairwise correlation matrix of the CWMs can be 455 

found in the Supplementary material (Table 5, Figure 6). In the following, interpretations of the 456 

first two PCA axes will be provided. 457 

From leaf economics to community economics 458 

PCA.1 combined traits that were associated to the leaf economics spectrum (Wright et al. 2004). 459 

Negative values on this axis can be interpreted as communities dominated by “acquisitive 460 

species” (high SLA, Leaf.P, Leaf.N), whereas positive scores indicate domination by “conservative 461 

species” (high LDMC). This axis PCA.1 is analogous to the well-known LES described by many 462 

studies (Chapin 1980; Reich, Walters & Ellsworth 1997; Wilson, Thompson & Hodgson 1999; 463 

Wright et al. 2004; Díaz et al. 2016). The fact that not only leaf traits, but also the trait stem 464 

density is strongly correlated to this axis supports the notion of a “Plant economics spectrum” 465 

beyond leaf traits (Freschet et al. 2010). This idea that traits are coordinated at the plant level 466 

between different organs (e.g. leaves, stem, roots) represents a paradigm shift that has gained 467 

more and more attention in recent years (Freschet et al. 2013; Laughlin 2014; Reich 2014). The 468 

results of this study support this idea suggesting that communities on the conservative side of 469 

the LES also exhibit higher stem densities: This represents two sides of the same coin which is a 470 

“fast-slow” plant economics spectrum (Reich 2014). Numerous studies found that such cross-471 

organ trait associations and trait-environment links are stronger when measured at the 472 

community level (as CWM) than at the species level (as species trait values) (Ackerly et al. 2002; 473 

Cingolani et al. 2007; Domínguez et al. 2012; de la Riva et al. 2016). This supports the theory 474 

that dominant species in a community are more strongly affected by environmental filters and 475 
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constraints than less abundant species (de la Riva et al. 2016). Furthermore, this finding has 476 

inspired the concept of a “plant community economics spectrum” as an extension of the “plant 477 

economics spectrum” (Pérez-Ramos et al. 2012) emphasising the community level trait variation 478 

and both, its responses to environmental filters and its effects on ecosystem processes 479 

(Domínguez et al. 2012; de la Riva et al. 2016; Jiang et al. 2017). The methodology adopted in 480 

this study followed the community level approach by performing the PCA on the CWM values 481 

as opposed to using trait values measured at the individual or species level. Hence, the axis 482 

PCA.1 should be interpreted as a community level resource acquisition–conservation trade-off 483 

following the logic of Pérez-Ramos et al. (2012). 484 

On leaves and seeds 485 

The second axis of variation PCA.2 summarizes variation in CWM of leaf size and weight, plant 486 

height and seed traits. Although, at species level, plant size and reproductive traits are expected 487 

to be independent according to the LHS scheme (Westoby 1998), at community level both trait 488 

groups load on the second PCA axis in this study. This is in accordance with other studies that 489 

provide evidence suggesting that large plants have larger seeds (Thompson & Rabinowitz 1989). 490 

However, it is arguable if the combination of leaf area and leaf fresh mass with the seed traits 491 

within this axis represent a true ecological spectrum or if this is rather a forced marriage caused 492 

by the ordination technique. The pairwise correlation between the traits seed mass and leaf 493 

area was with 0.29 (Pearson’s R) not exactly strong. As seen in Figure 3, both traits were at either 494 

side of the PCA.2 axis pulling it in opposite directions along the horizontal axis despite high 495 

individual loadings on PCA.2. Therefore, the mutual axis of leaf traits and seed traits does not 496 

necessarily represent a true ecological convergence but rather a weak allometric correlation 497 

that gets overrepresented due to the rotation of the CWM space by the PCA. The fact that the 498 

traits leaf fresh mass and leaf area also cross load on PCA.1 (see Figure 3) and that they are 499 

correlated with SLA seems to challenge the notion that SLA and leaf area are independent 500 

(Ackerly & Reich 1999; Fonseca et al. 2000). For instance, in the recently compiled “global 501 

spectrum of plant form and function”, leaf area and leaf mass per area (i.e. the inverse of SLA) 502 

form almost orthogonal axes in the 2 dimensional trait space (r2 = 0.01; Díaz et al. 2016). 503 

However, as shown by Ackerly et al. (2002), this independence is only found at the species level. 504 

For CWM their findings show that “at the community level, the parallel shifts [along an 505 

environmental gradient] in mean leaf size and mean SLA led to a very strong correlation between 506 

the two” (Ackerly et al. 2002). The community based approach adopted here confirms these 507 

findings as there was moderate correlation between the CWMs of SLA and leaf area (Pearson’s 508 

R = 0.45). This indicates, that leaf area and SLA have a certain degree of convergence for the 509 
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dominant species in a plant community, which are most affected by environmental filters. In 510 

effect, the results suggest that leaf area might contribute to the “plant community economics 511 

spectrum” proposed by Pérez-Ramos et al. (2012). 512 

Effects on NDVI 513 

NDVI was used as a measure of ecosystem functioning in this study and a multiple regression 514 

analysis was applied to evaluate how it was affected by different components of plant functional 515 

community structure and abiotic factors. Ca. 65 % of the variation in NDVI was explained by the 516 

predictor variables, which represents a relatively high explanatory power of the global model 517 

given the relative “roughness” of the methodology applied and the neglection of potentially 518 

important covariates (see Methodological considerations). The fact that all predictor variables 519 

were statistically highly significant should not be overrated in this context, for this is a common 520 

occurrence with large sample sizes (Lantz 2013; Khalilzadeh & Tasci 2017). The following sections 521 

will consider the effects that were attributed to the individual predictor variables and discuss 522 

underlying mechanisms. 523 

Dominance vs. complementarity 524 

Whether biodiversity influences ecosystem processes through the traits of the most dominant 525 

species in a community or through non-additive complementarity effects has been a widely 526 

studied question for a range of different systems, taxa and ecosystem processes (Cornwell et al. 527 

2008; Lavorel 2013; Brooks et al. 2016). 528 

For plant communities, there is striking evidence that dominant species determine ecosystem-529 

level productivity through their traits of resource economics (Lavorel 2013). Also, the results of 530 

this study strongly support this theory: The latent variable PCA.1 which represents a “plant 531 

community economics spectrum” calculated from CWM trait values (Pérez-Ramos et al. 2012) 532 

had the highest overall effect on the NDVI response and shared 2/3 of the total explained 533 

variation in the model. Even its isolated effect was relatively strong compared to the other 534 

predictors. The importance of this variable can be explained by the “fast-slow continuum” that 535 

it describes. Communities that are dominated by acquisitive species are at the “fast” side of the 536 

spectrum because they generally exhibit fast growth and rapid C and N turnover. This entails 537 

high rates at the ecosystem level for instance in terms of biomass accumulation, decomposition 538 

and evapotranspiration (Reich 2014). Likewise, the NDVI metric was very responsive to this axis. 539 

This is not very surprising since the annual peak NDVI value which was used here represents the 540 

high productivity season with an expected maximum resource turnover (Pettorelli et al. 2005). 541 

The second PCA axis had a weak positive effect on NDVI. As discussed earlier, it lumped together 542 
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leaf and seed traits with height which did not all have a strong correlation between them 543 

(Supplementary material, Figure 6). It is striking that their single regression effects are in 544 

opposite directions, with leaf area showing a strong positive association and seed mass a weak 545 

negative association with NDVI (Figure 1). This emphasises the earlier notion that this set of 546 

traits is not converging. However, the NDVI gradient that is here referred to cannot be thought 547 

of as an environmental filter but rather describes an effect of the plant community on ecosystem 548 

processes (Pillar et al. 2009). As result of the lack of sound ecological meaning of the PCA.2 549 

variable, it does not make sense to consider its dominance effect on ecosystem functioning. Yet, 550 

one should note that the trait plant height, which was also correlated to this axis had no bivariate 551 

effect on NDVI (Figure 1). This suggests that the plant size axis of trait variation (Westoby 1998), 552 

is not relevant for productivity in the grassland systems under study. 553 

The effect of plant functional diversity on ecosystem processes is not consistent in the literature. 554 

Some studies found positive (Mouillot et al. 2011), some negative (Thompson et al. 2005), some 555 

no association (Chollet et al. 2014). The results of the present study show a tendency for a 556 

positive effect: The FD predictor variable had a moderate total effect on NDVI. Yet, almost no 557 

variation was explained by it alone. Notably, FD shared a large portion of its explanatory power 558 

with the dominance indicator PCA.1. This was not unexpected as the metrics CWM and FD are 559 

not independent of each other (Ricotta & Moretti 2011; Dias et al. 2013). Furthermore, high 560 

productivity systems are expectedly allowing for more diversity, which means that causality 561 

could also flow from NDVI to FD. As no causal modelling was applied here, one cannot identify 562 

a definite complementarity effect. It was remarkable, however, that all single trait Q values had 563 

consistently positive bivariate effects on NDVI, which suggests that the traits diverge equally 564 

along the NDVI gradient. The single trait Q variables with the highest effect on NDVI belonged 565 

to the traits stem density and stem conduit density (both were combined for the calculation of 566 

FD). Those traits play a crucial role in plant water conductivity and evapotranspiration (Zanne et 567 

al. 2010). Accordingly, a potential effect of FD could be explained by complementarity along the 568 

water resource axis. A positive effect of complementarity in water use strategies on biomass 569 

production in grasslands has been reported by Verheyen et al. (2008). As both, water and carbon 570 

fluxes are controlled by stomatal conductance, photosynthesis is tightly linked to transpiration 571 

and water use in plants (Jarvis & Davies 1998). This link is also manifested in the response 572 

variable NDVI which is an indicator of both, productivity and evapotranspiration at the 573 

ecosystem level (Chong, Mougin & Gastelluetchegorry 1993). To further explore the role of 574 

niche differentiation of water use, it would be helpful to have information on root traits which 575 

is currently still scarce in TRY (Kattge et al. 2011). While there was an indication for a potential 576 
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effect of complementarity, the results of this study strongly suggest that for the annual peak 577 

NDVI value dominance effects constitute the most important BEF mechanism in grasslands. As 578 

previous work shows that complementarity effects might be stronger outside of the high 579 

productivity season (Chollet et al. 2014), it is possible that FD is more important for NDVI values 580 

that do not correspond to the annual maximum.  581 

The role of covariates 582 

Ecosystem processes result from a complex interplay of abiotic and biotic factors and in return 583 

affect both, the environment and biological communities through global feedback loops (Chapin 584 

et al. 2000). As effect and response traits are tightly linked within a community (Lavorel & 585 

Garnier 2002), the influence of plant functional community structure on productivity should be 586 

discussed in the light of environmental factors if they are not experimentally controlled for. In 587 

grasslands, climate is one of the major drivers of productivity. La Pierre et al. (2011) found that 588 

during high productivity seasons precipitation was a strong predictor of aboveground biomass 589 

production in a mesic grassland. This finding was reproduced by the present study: Annual total 590 

precipitation had high predictive power for annual peak NDVI and exhibited the strongest 591 

isolated effect of all variables (Table 3). Notably, precipitation also shared considerable part of 592 

its contribution to the NDVI variation with PCA.1 and FD which suggests its effect could at least 593 

partly be mediated by the plant community (Figure 5). A negative correlation between 594 

precipitation and PCA.1 indicates that communities in locations with high precipitation tend to 595 

be dominated by “acquisitive species” entailing higher NDVI values through the dominance 596 

effect. This mechanism of mediation is plausible because the “slow-fast continuum” described 597 

by PCA.1 is known to be linked to drought tolerance strategies whereby slow/ conservative 598 

species show greater success under arid conditions (Reich 2014). Also at the community level, 599 

the plant economics spectrum was reported to converge along a gradient of soil water content 600 

(de la Riva et al. 2016). The second possible pathway of mediation is linked to the 601 

complementarity effect: At higher water availability levels (Prec), one can expect a wider niche 602 

space along the water resource axis and weaker environmental constraints which leads to higher 603 

differentiation of water use strategies (divergence) and complementarity effects as discussed 604 

above. Medium correlations between Prec, FD and NDVI support this theory (Figure 5). 605 
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Figure 5: Pairwise Pearson correlations between Prec, PCA.1, FD and NDVI. 
Potential underlying mechanisms are shown as arrows. Note that this is not a valid causal 
model but just an overview of resemblance between variables. 
 

The fact that the variable temperature only had a minor effect on NDVI seems to contradict 606 

widely accepted findings that attribute an important role to this factor (Briggs & Knapp 1995). 607 

Recent findings, however, show that timing is crucial for the effect of temperature in grasslands. 608 

While the temperature at the beginning of the growing season was reported to be most 609 

important for annual biomass production (Chollet et al. 2014; Guo et al. 2017), the temperature 610 

variable used here, does not account for this temporal variability: The annual mean temperature 611 

(calculated across many years) was not very important in the model. This suggest that 612 

microvariation in temperature might be much more important than global temperature 613 

gradients. As expected, temperature was strongly correlated to latitude (Pearson’s r = 0.80). 614 

Interestingly, latitude had a relatively strong effect on NDVI that was not common to 615 

temperature (Table 3). Thus, the latitudinal gradient of NDVI must be related to other variables 616 

changing with latitude such as solar radiation and seasonality.  617 

Methodological considerations 618 

The data-driven approach presented in this study is novel in the context of BEF research. Using 619 

a vegetation plot database has the striking advantage that a vast number data points can be 620 

included and that available ecological information is reused (the current version of sPlot holds 621 

more than 1.1 million plots). Consequently, one can increase both, spatial and temporal extent 622 

of the study far beyond what is feasible with new data collection. However, this approach also 623 

comes with a trade-off: As the information compiled in the databases was not collected to 624 

address the specific question of the study, the data might not be good enough to resolve the 625 

relevant ecological patterns and processes or - even worse - be extremely biased. While the aim 626 
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of this study was to investigate the role of plant functional community structure, the plant 627 

surveys that contribute to sPlot only report species composition. To overcome this limitation, 628 

the community matrix was matched with trait information from the trait database TRY. Hence, 629 

the functional community structure was approximated using trait mean values from plants 630 

collected by different botanists at potentially very different locations. Not only does this 631 

procedure neglect inherent intraspecific trait variation but also it does ignore the local 632 

environmental conditions and resources that individuals in a community respond to (phenotypic 633 

plasticity). Accordingly, it was found that trait databases only had a limited power to predict trait 634 

composition at the plot level in a European saltmarsh (Cordlandwehr et al. 2013). Yet, one can 635 

argue that if ecological patterns are strong enough they can nonetheless be resolved with a 636 

sufficient number of data points even if those are unprecise. Hortal et al. (2014) discuss the 637 

manifold shortcomings of big data in ecology. Pressing the scientific community to fill the 638 

extensive gaps in the data and carefully consider limitations, they close their review with the 639 

following quote by Daniel J. Boorstin (1983): “The greatest enemy of knowledge is not ignorance, 640 

it is the illusion of knowledge.” 641 

There is no doubt that the approach adopted in this study has some substantial limitations that 642 

surely introduce biases. Not only does the use of trait databases lead to a very rough 643 

approximation of functional community structure but also the vegetation plot database did have 644 

vast gaps in its global coverage. As shown in Table 1, almost ¾ of the plots included in this study 645 

are in the temperate midlatitudes (mainly Europe, partly Australia), which introduces a major 646 

bias. Especially, South America and Africa were underrepresented in this “global” compilation 647 

(see Supplementary material, Figure 7). Furthermore, there was a substantial scale 648 

incompatibility between the vegetation surveys and the NDVI measure: The MODIS product 649 

MOD13Q1 that was considered the best compromise in the trade-off between temporal 650 

coverage and spatial resolution is with its pixel size of 250 m roughly 2 orders of magnitude 651 

coarser than a typical vegetation plot. The use of the landcover map surely mitigates this 652 

problem to a certain degree but it does not represent a true scaling from plot to ecosystem level 653 

(Reichstein et al. 2014). For both, NDVI and climatic variables microvariation (e.g. temporal 654 

variability and microclimate) was neglected in this study. Furthermore, other crucial factors to 655 

grassland dynamics such as nutrient availability, soil properties and disturbances regimes (e.g 656 

grazing, fire and flooding) were ignored. Future efforts will have to be undertaken to face this 657 

ignorance by including more data, and more comprehensive analysis techniques will have to be 658 

applied to treat the uncertainty and biases of this study. 659 
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Are the results of this study a valid contribution to the BEF debate despite the methodological 660 

shortcomings? The model that was built here showed a relatively high overall fit of the data 661 

which suggests that at least some of the most important factors of grassland dynamics have 662 

been included. The total contribution of the dominance effect, for instance, was larger than the 663 

residual variation of the model, which strongly supports the mass ratio hypothesis suggesting 664 

that dominant trait values are driving a global productivity gradient across these grassland 665 

communities. Complementarity effects were rather subtle but the data show that especially in 666 

response to precipitation, niche differentiation along the water use axis might play a 667 

considerable role. These findings are neither surprising (as they are strongly echoing in the 668 

literature) nor do they have direct consequences for management (they are mainly theory 669 

driven). Hence, there is no major damage done in reporting them and discussing them in the 670 

face of their limitations. The novel approach discussed in this paper represents - along with other 671 

studies along these lines (e.g. Musavi et al. 2016, 2017; Spasojevic et al. 2016) a step forward 672 

towards more integrative data-driven biodiversity ecosystem functioning debate at the global 673 

scale. 674 
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Supplementary material 

 

 

Figure 6: Correlation network of all 18 CWM values. 
Width of line between two traits is proportional to their pairwise Pearson correlation 
coefficient. Green stands for positive, red stands for negative correlation. This graphic was 
produced using the R package “qgraph”. 
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Table 5: Pairwise Pearson correlation between traits. 
Shown are correlations among CWM (upper triangular matrix) and Q (lower triangular matrix) 
of all 18 trait. This legend defines the upper side of the matrix. 
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Figure 7: Locations of the 2941 observations included in the analysis. 
 

 

 

Table 6: Pairwise Pearson correlation between model variables. 

 NDVI PCA.1 PCA.2 FD Temp Prec Lat 

NDVI_max 1 -0.653 0.143 0.477 -0.182 0.576 0.502 

PCA.1 -0.653 1 0 -0.386 0.24 -0.404 -0.519 

PCA.2 0.143 0 1 -0.114 0.329 -0.017 -0.254 

FD 0.477 -0.386 -0.114 1 -0.234 0.362 0.504 

Temp -0.182 0.24 0.329 -0.234 1 -0.056 -0.798 

Prec 0.576 -0.404 -0.017 0.362 -0.056 1 0.226 

Lat 0.502 -0.519 -0.254 0.504 -0.798 0.226 1 
 

 


