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SoMMA – A Software-managed Memory Architecture for Multi-issue Processors 

 

RESUMO 

 

Processadores embarcados utilizam eficientemente o paralelismo a nível de instrução para 

atender as necessidades de desempenho e energia em aplicações atuais. Embora a melhoria de 

performance seja um dos principais objetivos em processadores em geral, ela pode levar a um 

impacto negativo no consumo de energia, uma restrição crítica para sistemas atuais. Nesta 

dissertação, apresentamos o SoMMA, uma arquitetura de memória gerenciada por software 

para processadores embarcados capaz de reduz consumo de energia e energy-delay product 

(EDP), enquanto ainda aumenta a banda de memória. A solução combina o uso de memórias 

gerenciadas por software com a cache de dados, de modo a reduzir o consumo de energia e 

EDP do sistema. SoMMA também melhora a performance do sistema, pois os acessos à 

memória podem ser realizados em paralelo, sem custo em portas de memória extra na cache de 

dados. Transformações de código do compilador auxiliam o programador a utilizar a arquitetura 

proposta. Resultados experimentais mostram que SoMMA é mais eficiente em termos de 

energia e desempenho tanto a nível de processador quanto a nível do sistema completo. A 

técnica apresenta speedups de 1.118x e 1.121x, consumindo 11% e 12.8% menos energia 

quando comparando processadores que utilizam e não utilizam SoMMA. Há ainda redução de 

até 41.5% em EDP do sistema, sempre mantendo a área dos processadores equivalentes. Por 

fim, SoMMA também reduz o número de cache misses quando comparado ao processador 

baseline. 

 

Palavras-chave: geração de código, paralelismo a nível de instrução, limite na banda de 

memória, processador de despacho múltiplo, memória gerenciado por software. 

 

 

 

 

 

 

 

 

 



 

 

 

SoMMA – A Software-managed Memory Architecture for Multi-issue Processors 

 

ABSTRACT 

 

Embedded processors rely on the efficient use of instruction-level parallelism to answer the 

performance and energy needs of modern applications. Though improving performance is the 

primary goal for processors in general, it might lead to a negative impact on energy 

consumption, a particularly critical constraint for current systems. In this dissertation, we 

present SoMMA, a software-managed memory architecture for embedded multi-issue 

processors that can reduce energy consumption and energy-delay product (EDP), while still 

providing an increase in memory bandwidth. We combine the use of software-managed 

memories (SMM) with the data cache, and leverage the lower energy access cost of SMMs to 

provide a processor with reduced energy consumption and EDP. SoMMA also provides a better 

overall performance, as memory accesses can be performed in parallel, with no cost in extra 

memory ports. Compiler-automated code transformations minimize the programmer’s effort to 

benefit from the proposed architecture. Our experimental results show that SoMMA is more 

energy- and performance-efficient not only for the processing cores, but also at full-system 

level. Comparisons were done using the VEX processor, a VLIW reconfigurable processor. 

The approach shows average speedups of 1.118x and 1.121x, while consuming up to 11% and 

12.8% less energy when comparing two modified processors and their baselines. SoMMA also 

shows reduction of up to 41.5% on full-system EDP, maintaining the same processor area as 

baseline processors. Lastly, even with SoMMA halving the data cache size, we still reduce the 

number of data cache misses in comparison to baselines. 

 

Keywords: code generation process, instruction-level parallelism, memory bandwidth 

limitation, multi-issue processors, software-managed memory 
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1 INTRODUCTION 

 

1.1 Memory Wall and Memory Hierarchies 

 

Technology scaling has allowed computer architects to exponentially increase the 

frequency of processors for many years. Due to power restrictions, however, the hardware 

industry was forced to switch to a multi-processor approach, demanding the usage of even 

higher memory bandwidth. On the contrary direction, memory manufacturers were primarily 

focused on increasing storage capacity and did not achieve the same order of speed 

improvement, becoming one of the bottlenecks for increasing the overall performance of a 

system. This adverse scenario led to an extensive concern on developing smart solutions to the 

limited memory bandwidth problem. Such solutions include the exploration of temporal and 

spatial locality through memory hierarchy, and instruction and data prefetching. Although 

improvements have been made, the gap between processor and memory performance is still 

significant. 

The concept of “Memory Wall” (WULF; MCKEE, 1995), which states that the rate of 

improvement in DRAM speed does not follow the improvement in processor speed, became a 

challenge for the community in general. Figure 1.1 illustrates performance improvements in 

single-core processors and dynamic random accesses memories (DRAM) from 1980 to 2010, 

showing that the memory wall has effectively increased in the past decades. Even with the 

performance stabilization in single-core performance from 2005 and to present days, due to 

restrictions in nanometer technology, there is a significant performance gap between processors 

and DRAM devices. 

The addition of on-chip cache in between main memory and processors’ registers has a 

major contribution in minimizing the existing gap between the memory system and processors. 

Caches were an important additional component to the system that leverage concepts of spatial 

and temporal locality to benefit processors. Spatial locality states that a system tends to reuse 

data that are close from one another, while temporal locality refers to the fact the values might 

also be used later, that way they should be kept near the processor.  

One of the main advantages of using caches comes from the genericity they give to the 

application. Although there are efficient ways for software to take advantage of them, their 

control is done at hardware-level, taking the burden away from the software. Data that remain 

in the cache are basically decided depending on a set of hardware components, such as cache 

size, number of sets, replacement algorithm and so on (HENNESSY; PATTERSON, 2011). 
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The long-lasting gap between memory bandwidth and processors was minimized when 

different levels of memories were introduced, creating a hierarchy of memory units. This 

hierarchy is not only composed of caches, but of several memories which exhibit different 

technologies, speed, and cost per byte. Three technologies are commonly used to build memory 

hierarchies. Memories closer to the processor, and therefore faster and more expensive, use 

static random access memory (SRAM) technology, while main memory is implemented with 

DRAM. The third technology used is either magnetic disks or flash memory and is considerably 

slower than SRAM or DRAM, however, it presents a much higher density which allows for a 

higher storage capacity than other technologies. 

The proximity of memory to the processor leads to a higher cost per byte, which explains 

why caches are more expensive and have smaller storage capacity than other technologies. The 

goal is to provide a memory system with cost per byte almost as low as the cheapest level of 

memory and speed almost as fast as the fastest level (HENNESSY; PATTERSON, 2011). For 

many cases, however, the access time of memory, even with caches, still bounds applications 

to improve performance and exploit instruction-level parallelism (ILP), as different levels of 

memories provide distinct latencies. 

 

 

Figure 1.1 – Processor and Memory Performance improvements over the years. The memory wall 

significantly increased since 1980, as memories focused efforts on storage capacity. Since 2005, 

single-core processors showed no performance improvements in favor of a multi-core approach. 

 

Source: HENNESSY and PATTERSON (2011) 
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1.2 Memory Bandwidth Limits, Memory Ports and their Impacts 

 

Memory bandwidth has long been a limiting factor in performance for many 

applications. Processors exploiting parallelism, either in instruction or thread level, may need 

to perform multiple accesses in a single clock cycle to maintain parallelism, and thus, memories 

with multiple ports could be used to achieve that goal. Even when exploiting access locality 

through cache memories to minimize this limitation, multi-ported memories are known to 

introduce significant costs. The study in (TATSUMI; MATTAUSCH, 1999) shows that the 

impact of increasing the number of ports in a memory system leads a quadratic increase for cell 

area. Additionally, extra memory ports would also implicate on higher dynamic and static 

energy consumption, which are especially undesirable for embedded systems, as they are often 

more power- and energy-constrained than general-purpose computing platforms.  

Figure 1.2 illustrates leakage current, access time, dynamic and static energy for 32 KB 

cache memories with 1, 2, 8, and 16 ports, in a 65nm technology obtained with the Cacti-p tool 

(LI, S. et al., 2011). We can observe how power and energy attributes escalate in multi-ported 

memories. For instance, the 16-port cache showed dynamic and static energy increases of more 

than 7x and 16x, respectively, and even when considering a 2-ported cache, an increase of 25% 

in static energy might be crucial for embedded processors. Moreover, an access time increase 

Figure 1.2 – 32 KB cache memories with different number of ports. Values were normalized over 

single port. Latency and energy attributes increase significantly in multi-ported caches. 

 

Source: author 
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of 15% in a 2-ported cache can possibly compromise energy consumption, as it may increase 

applications’ execution time. 

On the other hand, many applications still struggle with memory bandwidth and have 

their parallelism limited by the number of ports on the cache. The presence of extra ports can 

potentially improve instruction-level parallelism (ILP) on applications, and therefore, 

accelerate their execution. For instance, image and video processing applications usually offer 

high parallelism opportunities due to the sparse control-flow instructions. Figure 1.3 

demonstrates the speedup of some applications in a very-long instruction word (VLIW) 

processor when one uses extra cache ports. These results illustrate how the additional ports can 

have a huge impact on the performance of applications, with some applications being over 3x 

faster in a 16-ported system. 

Due to the end of Dennard scaling (DENNARD et al., 1974), concerns over energy 

consumption play a major role in processor design. Techniques to improve performance might 

have a negative impact on energy consumption, thus the energy-delay product (EDP) comes 

into play as a metric to evaluate the quality of a system, combining the influence of performance 

and energy. When considering EDP, the improvements in performance would not justify the 

high cost of energy consumption shown in Figure 1.2 for the set of applications in Figure 1.3. 

 

Figure 1.3 – Normalized Speedup on a VLIW processor. Some applications struggle with limited 

memory bandwidth. By increasing the number of memory ports, applications on multi-ported 

systems can perform considerably better than on single-ported. 

 

Source: author 
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1.3 Main Goals and Contributions 

 

In this dissertation, we present a new memory architecture based upon software-managed 

memories called SoMMA (Software-Managed Memory Architecture), that aims at reducing 

energy consumption and energy-delay product (EDP). SoMMA also provides an increase in 

memory bandwidth, without the use of multi-ported memories. Its main characteristic is the 

replacement of a larger cache by a combination of a smaller cache and a set of software-

managed memories (SMMs) in such a way that area remains equivalent in both processors with 

and without the SMMs. We use a compiler-based approach to manage the extra memories and 

accelerate the execution of applications. Previous works like (VERMA; WEHMEYER; 

MARWEDEL, 2004) and (STEINKE et al., 2002) proposed to use software-managed 

memories, also called software-controlled memories or scratchpads, as a replacement for caches 

aiming at reducing energy consumption; others (ANGIOLINI et al., 2004; AVISSAR; 

BARUA; STEWART, 2002) focus on boosting the performance of embedded processors due 

to the reduction of cache misses. 

A major advantage of SoMMA in comparison to previous strategies relies on the usage 

of multiple memories in parallel, inducing an increase on the total bandwidth available and 

creating new opportunities for ILP exploitation and energy savings. Other approaches mainly 

obtain gains in execution time due to avoidance of cache misses, while we also cover that, we 

go further by exploiting ILP through parallel accesses to memories. SoMMA also differs on 

how address spaces are treated. Scratchpads from previous works typically use the same address 

space of the memory hierarchy, i.e., a range of addresses is scratchpad-addressable, while others 

are dealt through the cache. On the other hand, our memories have unique address spaces, with 

no correlation among them whatsoever. In many cases the compiler can identify the address 

space being accessed by each instruction, allowing the parallelization of accesses performed to 

different spaces, which is crucial to the energy savings we can achieve. Furthermore, the total 

available bandwidth can be increased, creating new opportunities for ILP exploitation.   

Although our technique relies mostly on a complex compiler approach rather than at 

hardware-level, our compiler transformations are merely the means to our solution. We use a 

solution that incorporates changes in both hardware and software and can alleviate the limit of 

single-port systems, providing a higher throughput. We demonstrate the efficiency of our 

technique in a very long instruction word (VLIW) processor, even though our technique could 

be adapted to other ILP-capable architectures, such as superscalar processors. Our approach 

can be used for application-specific integrated circuits (ASIC) processors and those built on top 
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of field-programmable gate arrays (FPGA), as they show the same concerns regarding 

bandwidth limitation. Experimental results show performance improvements while maintaining 

the same area of the standard memory hierarchy. Moreover, we analyze the energy efficiency 

for our memory system, showing significant energy and energy-delay product (EDP) reductions 

for the data memory hierarchy in comparison to a regular processor. 

 

1.4 Outline 

 

This dissertation is organized as follows. Chapter 2 presents the main ideas behind 

software-managed memories, how they can be categorized and a comparison with caches; we 

also present the main concepts of compilers and an introduction to the Low-level Virtual 

Machine (LLVM) framework (LATTNER; ADVE, V., 2004), a powerful framework to build 

compilers on which our approach relied. Moreover, we briefly introduce two types of multi-

issue processors, superscalars and VLIW processors, since we can implement our technique in 

both. Chapter 3 presents previous works on software-managed memories and state their 

difference with our proposal. This chapter also covers previous techniques to design multi-

ported systems more efficiently, as they can help overcome the limiting bandwidth in the 

memory system. Our implementation is described in Chapter 4, in which we give the hardware 

and software requirements, explaining the hardware changes on the processor side and the main 

component of the architecture: the automated code generation for software-managed memories. 

The experimental results carried out in this dissertation are presented in Chapter 5. Conclusions 

drawn from this work are encountered in Chapter 6, as well as the future works envisioned from 

it.  
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2 BACKGROUND 

 

In this chapter, we will present the concepts that will be used during most part of this 

dissertation. We will discuss the main characteristics of scratchpads and multi-issue processors, 

both necessary herein. Even though the compiler is not the major contribution of our work, but 

rather the facilitator, a discussion on compiler theory and code generation is also presented, as 

well as an introduction to the LLVM Compiler Framework (LATTNER; ADVE, V., 2004), a 

powerful framework for building complex and advanced compilers and perform code 

optimizations. 

 

2.1 Software-managed Memories 

 

As presented in Chapter 1, the addition of memory ports in the system would collaborate 

to reduce the bandwidth gap between memories and processors, albeit with a high cost in area. 

Caches are the most common type of memory used in today’s system, due to their flexibility. 

The complexity of caches, which include comparators and tag arrays, adds an extra layer of 

energy dissipation in the system. Applications recurrently use a memory access pattern that 

could be understood by software. This process would alleviate the use of comparators and tag 

arrays, and as a consequence, save energy on the access of the cache. This concept has already 

been explored with the use of software-managed memories, with the aim at reducing access to 

the cache and thus, minimizing energy and power consumption (VERMA; MARWEDEL, 

2006; VERMA; WEHMEYER; MARWEDEL, 2004). As many characteristics of an 

application cannot be decided in compile time, scratchpads are still limited to being used in 

situations where the pattern accesses are previously known.  

Figure 2.1  shows a comparison between a 32-KB 4-way associative cache with a block 

size of 64 bytes and 32-KB scratchpad using Cacti-P (LI, S. et al., 2011). We evaluated these 

memories in terms of area, access time, static power, dynamic read energy per access, and 

dynamic write energy per access. The scratchpad shows major reduction of 68% in access time, 

32% in dynamic read energy and 53% in dynamic write energy, while still reducing 15% and 

19% in static power and area, respectively. These results points towards the significant leverage 

that scratchpads have in comparison to caches. 

Another aspect of scratchpads which favors their usage is predictability. Real-time 

embedded systems usually are bounded by a maximum acceptable time for executing a given 

task. The Worst-Case Execution Time (WCET) constraint is deemed very important in such 
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systems, and software-managed memories show a predictability that is easily trackable. Caches, 

on the other hand, are frequently time-unpredictable, since it is difficult to know whether certain 

data are currently available for fast access. Scratchpads simplify WCET analysis, a type of 

compiler analysis which computes upper bounds for execution time. The knowledge of the 

maximum time consumption of all pieces of code and data is a prerequisite for analyzing the 

worst-case timing behavior of a real-time systems and for verifying its temporal correctness 

(PUSCHNER; BURNS, 2000).  

In the chapters that follow, we will be using the terms scratchpads and software-

managed memories interchangeably, as they all have the same features. 

 

2.1.1 Types of Scratchpad Memory 

 

 Software-controlled memories can be classified according to different characteristics. 

In terms of types of memories, they can be used as a replacement or as a complement to the 

data caches, instruction caches, or both at the same time. Because they use fewer resources than 

caches, as depicted in Figure 2.1, they can show improvements in performance, energy 

consumption and area, although without the same flexibility encountered on caches. 

 

Figure 2.1 – Constraints comparison between a 32KB Scratchpad and a 32KB Cache. We observe 

a major difference in terms of access time, dynamic read and write energies per access. 

 

Source: author 
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2.1.2 Types of Allocation  

 

Two main schemes for allocating data into software-managed memories exists: the static 

and overlay-based approach. In the static-based approach, data are loaded once at the beginning 

of the program and remain invariant during its entire execution. Despite its simplicity, this 

method limits the usability of the memories considerably. When one considers that applications 

may use data only for a small part of their execution time, a static approach will not be efficient 

for them. The latter, on the other hand, tackles most of the inefficiency of the static-based 

method. The content of the software-managed memory changes dynamically during the 

execution of the program. This approach offers a flexibility that is absent from the static 

counterpart, as different data can be stored in a same location depending on the program point.  

 

2.2 Compilation Process 

 

The process of translating high-level programming languages (HLL) like C, C++, 

among others, to machine code is one of the cornerstones for augmenting the complexity of 

systems. Compilers have become an indispensable tool for any computer system inasmuch as 

companies need to accelerate the time-to-market of their products in order to keep the 

competition with other companies. The ever-changing process of manufacturing processors 

have made possible to accommodate multiple specialized units in the same chip, leading to 

addition of functionalities that required a more demanding process of compilation that takes 

advantage of those units. 

As new paradigms and programming interfaces were created, such as OpenMP 

(CHANDRA, 2001), OpenACC (WOLFE, 2013), and OpenMPI (FORUM, 1994), compilers 

are now responsible not only for translating languages but also for understanding these 

paradigms making necessary changes in the code. For instance, OpenMP is an application 

programming interface (API) to construct parallel programs that relies on using of C/C++ 

pragma directives to instruct compilers to explore parallelism in the code. The compiler uses 

these directives to understand how the program should be parallelized, and infers calls to the 

runtime OpenMP library, which is responsible for creating and managing threads on the 

program (CHANDRA, 2001). Another example on the importance of the compiler in aiding 

programmers is commonly found in objected-oriented (OO) languages like C++. Whenever a 

class is user-defined without a constructor or destructor, the compiler needs to automatically 

generate code for such, saving time of programmers. It becomes mandatory to understand the 
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main aspects of the compilation, as it is a major part of our approach. In the next paragraphs, 

we will discuss a series of steps that compilers perform to generate machine code. 

 

2.2.1 The Structure of Compiler 

 

Compilers have a rather complex structure. There is a misconception among computer 

scientists and engineers in which part of the code generation compilers are responsible for. 

Figure 2.2(a) illustrates the simplest view of how a compiler works, and which is believed to 

be true by many programmers. From a source code written in a HLL, the compiler translates it 

into executable code. However, through a further look, the compilation process involves more 

than just the usage of the compiler. An assembler and linker are also necessary. 

The task of the compiler is, in a deeper level, represented in Figure 2.2b. Through a 

series of analysis and transformations, its task is to generate target assembly code from a source 

code written in a HLL. Next, from the assembly code, the assembler generates what is known 

as relocatable machine code or object file, where internal references and addresses are resolved. 

Later, the linker is responsible for uniting all object files into one executable file, resolving 

external references and addresses issues with static or dynamic libraries. At last, the operating 

Figure 2.2 – Two views on the Compilation Process 

(a) Simplest view (b) The correct set of tools used  

  

Source: author 
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system hands off the executable program to the loader, not depicted in the figure, which places 

the program into memory for execution.  

 Popular compilers, like GCC and Clang, seem to perform assembling and linking to 

programmers, however, they are redirected to system’s tools. In a linux-based OS, those tools 

are usually part of the binutils set of tools, and are named as (GNU Assembler), ld (GNU 

Linker). Because they are called directly by the compiler, programmers have the tendency to 

think that compilers do all the work, which is mistaken.  

Moreover, we will not be focusing on how assemblers or linkers work, we target at 

understanding the compilation process from source code to assembly code. This process can be 

divided in three parts. In a nutshell, the frontend transforms source code to a more abstract 

language form, the intermediate representation (IR). Next, the middle-end uses the IR to 

perform code optimizations in order to simplify and optimize the program to make it run faster. 

At last, the backend generates the assembly code for the program. The compilation process is 

illustrated in Figure 2.3, detailing what tasks each part performs.  

In the next paragraphs, we cover the basics of frontend, middle-end and backend through 

the perspective of LLVM, a powerful framework designed to explore code analysis and 

transformation at different level of abstractions during the lifetime of a program. 

 

Figure 2.3 – A three-parted compilation process. 

 

Source: author 
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2.2.2 LLVM 

 

LLVM is a well-known compiler framework and runtime environment consisting of a 

collection of modules to build, run and optimize programs (LATTNER; ADVE, V., 2004). The 

framework has been vastly used in academic research and the industry for many years. It has 

attracted interesting from Apple Inc., that acquired the rights to use LLVM and all its 

functionalities. Nowadays, the company uses LLVM to build programs for its mobile and 

desktop platforms (APPLE INC., [s.d.]). 

The main characteristic of LLVM is its modular design that provides a simple and 

effective way of creating code analysis and transformations. The framework is organized in a 

different collection of tools, each with its own functionalities. Figure 2.4 depicts an overview 

of the LLVM compilation process from source code to program binary. Except for “Program 

Source” and “Program binary” boxes, all others are standalone tools part of the LLVM 

Umbrella project. Some of the most important tools for compiling a source code is as follows: 

• clang is the official frontend for C, C++ and Objective-C applications. It inputs 

a source program and outputs the LLVM IR representation of that program, 

which will be processed by the LLVM IR Optimizer. It is a separate project from 

the LLVM Umbrella project, where developers may add new languages without 

interfering in the middle-end and backends as long as it generates correct LLVM 

IR language. 

• Opt is the IR Target-independent Optimizer where most of the optimizations 

take place. The tool works in the IR language, an intermediate representation 

proposed by the framework. The opt tool works in the middle-end. 

• llc is the LLVM backend tool. It is responsible for generating assembly code and 

every transformation that is executed during the backend phase (instruction 

selection, instruction scheduling, register allocation, among others). 

Figure 2.4 – LLVM Compilation Overview. 

 

Source: Lopes and Auler (2014) 
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LLVM has a very modular design, particularly the middle-end and backend that rely on 

the Pass Framework, an important part of the LLVM system that lets users build and test new 

functionalities into the platform very easily. In the next subsections, we present an overview of 

these three phases, as well as the Pass Framework Application Programming Interface (API). 

 

2.2.2.1 The frontend 

 

This phase is responsible for transforming the source code into an abstract target-

independent representation, also known as the intermediate representation (IR). The usage of 

IR is a middle point which frontends produce from an HLL, and backends input from. It 

simplifies the addition of extra languages in a compiler, as code generation for an architecture 

is not performed one-by-one, i.e., from one HLL to one architecture. It can be divided into three 

analysis process: the lexical, syntax and semantics analysis; and a process of IR code 

generation. 

The lexical analysis, also called scanning, is responsible for identifying the set of words 

that will make up the alphabet of our input language. The lexical analyzer reads the stream of 

characters in the source code and groups them into meaningful sequences called lexemes (AHO 

et al., 2006). In other words, it recognizes patterns in a text. The analyzer uses these lexemes 

to produce tokens, sets of characters that have meaning on the specific language. Tokens group 

information about their characteristics on the language, such as, name, value, and type of 

category.  

The syntax analysis, also called parsing, uses information produced from the lexical 

analysis to verify that the produced tokens can be generated by the grammar for the input 

language. Syntax analysis uses a grammatical structure in the form of a tree, known as syntax 

tree or parse tree, to examine the stream of tokens. Nodes of the tree represent operations and 

identifiers, while edges represent a dependence between them. The parse tree is built upon a 

grammar that defines our source language.  

The last analysis of the front-end verifies for the semantics of the code. It uses the 

information of the symbol table and the syntax tree in order to check their consistency with the 

language definition. It also gathers type information and saves it in either the syntax tree or the 

symbol table, for subsequent use during intermediate code generation (AHO et al., 2006).  

The last process is responsible for intermediate code (IR) generation, that is the input 

given to the middle-end phase. Intermediate code generators commonly use an assembly 
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representation of target-independent instructions in the form of three address code. This 

representation uses instructions with three operands (one destination and two sources), which 

is similar to assembly code in most architectures (AHO et al., 2006). The intermediate code 

generation aims at transforming the parse tree structures from the semantics analysis process 

into three address code IR.  

Clang is the official frontend of LLVM which outputs LLVM IR code from a high-level 

program description. Lexical, syntax and semantics analysis, and IR code generation are taken 

care in this tool. A major advantage of Clang over GCC is on diagnostic report messages. Clang 

claims to use reports in a more user friendly way, with messages that are more helpful and 

understandable, and therefore, it can present programmers a better comprehension on exactly 

what is wrong with their code. 

Let us illustrate through Figure 2.5. The example shows a class declaration followed by 

a structure declaration that misses a semi-colon, and an object instantiation of the created class. 

It is clear how Clang diagnostic error is more comprehensive than its counterpart. GCC does 

not fully understand the syntax error and reports a malformation misplaced. On the other hand, 

GCC supports languages that clang does not, such as Fortran, Ada, Go, many more targets. 

 

2.2.2.2 The middle-end 

 

The most important code optimizations in a compiler takes place in this phase. The 

compiler’s middle-end uses a series of control-flow analysis and data-flow transformations to 

make the code run faster. The choice of data structures plays an important role on efficiently 

Figure 2.5 – Clang diagnostic messages comparison with GCC 

 

Source: https://clang.llvm.org/diagnostics.html 
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optimizing code. For that reason, middle-ends usually rely on one complex data structure that 

efficiently offers great opportunities for optimizations: the static-single assignment (SSA) form 

(CYTRON et al., 1991), used to represent data-flow relationships of the program. 

SSA form is a type of intermediate representation, similar to assembly code that 

facilitates the use of code optimization. This form characterizes for presenting only single-

assigned variables, i.e., a variable cannot be assigned more than once. Figure 2.6 presented a 

simple example of SSA-form, showing that new versions of the same variable are created when 

the same variables is assigned more than once. 

SSA has been adopted in GCC and LLVM due to its characteristics and flexibility. Data-

flow can be easily represented, however, in order to represent control-flow, like branches and 

join nodes, we need to use a special form of assignment called a ϕ-node (PHI-node). Consider 

the snippet of C code in Figure 2.6, which shows how a PHI-node is used to handle control 

flow. The value of a can come either from the if statement or the else, depending on the 

condition. PHI-nodes are important to maintain the property of single assignment of every 

variable, since a variable’s values cannot often be known in compile time. 

LLVM defines an assembly-like IR language that can operate all kinds of data 

structures, from scalars to vectors. The language is as target-independent as possible, but it still 

requires some target-specific information. For instance, C libraries define the width of data 

types depending on the architecture they are compiled to. Integers are 16 bits long in a MSP430 

while are 32-bit long in a MIPS processor.  

The LLVM IR can be represented in three different forms: 

• An in-memory representation that is modeled through modules, functions, 

basic blocks and instruction classes; 

• An on-disk human-readable representation very similar to assembly-

readable form; 

• An on-disk representation encoded in an executable-like style. 

Figure 2.6 – C Code transformed into SSA-form. A PHI node is used to  

  if (...)

a = 0

else   

a = 2       

    /* Use a here /*

 if (...)

a_1 = 0

else   

a_2 = 2

                      a = PHI (a_1, a_2)  

Source: author 
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 The relationship between the middle-end (LLVM IR) and other components is 

illustrated in Figure 2.7. We see that the middle-end is centralized to communicate with the 

front-end, backends and most optimization passes, which makes it the cornerstone for 

performance improvements. 

 

2.2.2.3 The Backend 

 

The backend, also known as code generator, is the final phase on the compilation 

process. It is responsible for effectively translating the intermediate representation into target 

code, or assembly code. The code generator is divided into a series of steps, which may vary 

depending on the compiler framework, but consists mainly of instruction selection, instruction 

scheduling, register allocation, assembly printer. 

LLVM provides a modular way of building backends. It supports a wide range of 

targets, such as ARM, AArch64, Hexagon, MSP430, MIPS, SPARC, SystemZ, X86, etc. The 

backend must follow a series of steps in order to emit target code, depicted in Figure 2.8. Gray 

boxes represent the necessary phases for code generation inside the backend, while white boxes 

are strategically positioned so that backend developers can add specific transformation passes 

to their backends. A brief description of the gray-colored backend phases is as follows:  

• The Instruction Selection phase converts the in-memory LLVM IR 

representation to a direct acyclic graph (DAG) representation, internally called 

Figure 2.7 – Middle-end relationship overview 
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Source: adapted from Lopes and Auler (2014) 
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SelectionDAG, whereas nodes mainly represent instructions and operands, while 

edges represent dependency between them. Each DAG is associated with a 

single basic block. LLVM defines a non-legalized node as one that has no 

instruction correspondence in the target. Legalized nodes are the ones that have 

a target-specific instruction mapping. During this phase, the framework runs a 

process of DAG legalization, which aims at converting non-legalized into 

legalized nodes; 

• The next phase performs instruction scheduling prior to register allocation. 

Instructions use virtual registers to represent register-like operands. The 

scheduler rearranges instructions, trying to maximize parallelism and minimize 

hazards and delays; 

• After instruction scheduling, the register allocation transforms the set of 

unlimited virtual registers into target-specific registers, spilling to memory 

whenever is necessary. 

• The second instruction scheduling phases takes place after register allocation. 

Because physical registers are used at this point, this scheduler is deemed not as 

effective as its pre-register allocation counterpart. However, in case of very-long 

instruction word process, the decision of grouping instruction in bundles is, in a 

way, scheduling problem that runs at this stage in LLVM. 

• The last stage contemplates code emission. LLVM provides infrastructure to 

emit assembly and object code. Afterwards, a linker must be used to resolve 

external address references and generate the executable file. 

 

Figure 2.8 – Code generation Phase 

 

Source: Lopes and Auler (2014) 
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2.2.2.4 LLVM Pass API 

 

A LLVM Pass is a module written in C++ which can perform program analysis or 

transformation. Opt and llc tools extensively use passes to add functionalities to the framework. 

The Pass API defines a hierarchy of C++ Classes that allow developers to implement their own 

code. The main subclasses of the API are: 

• ModulePass: a pass that inherits this class uses an entire program as a unit, 

having access to functions, its basic blocks and instructions from the IR. It is 

usually used when a there is an interaction between functions. Optimizations that 

use it in LLVM are dead argument elimination, partial inlining, among others. 

• FunctionPass: uses a function as a unit for processing. The framework calls the 

pass that inherits from this class for every function in the program. LLVM uses 

this pass to optimizations such as dead code elimination, constant propagation, 

etc. 

• MachineFunctionPass: it works similarly with FunctionPass, with the difference 

that handles machine instructions instead of the IR. Therefore, passes from this 

type will run after instruction selection. 

• BasicBlockPass: uses the granularity of basic blocks, thus, a BasicBlockPass can 

only modified its instructions. 

This API is used for many of the optimizations that happen the middle end and backend 

 

2.3   Multi-issue processors 

 

Due to technology advances, the prominent use of multi-issue processors is becoming 

more common than ever. Multi-issue processors characterize by means of issuing more than 

one instructions at once, aiming at speeding up the execution of applications. Table 2.1 

illustrates how these processors can be categorized.  

According to the form of parallelism, this classification divides multi-issue processors 

on Instruction-Level Parallelism (ILP) versus Data-Level parallelism (DLP). ILP addresses the 

inherent parallelism found within programs, where multiple independent instructions can be 

executed in parallel. DLP is explored for situations in which no dependence is found within 

data and thus, they can be processed all together. Examples of ILP-like processors are Very-
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Long Instruction Word (VLIW) and Superscalars while Single Instruction Multiple Data 

(SIMD) type processors are DLP driven.  

The improvement in manufacturing process and transistor technology have allowed the 

yield of chips with multiprocessor capabilities, leading to a new direction in the above-

described categorization: thread-level parallelism (TLP). Even though Multiple Instructions 

Multiple Data (MIMD) architectures have been around for many years, they have been more-

recently exploited through TLP, which may incorporate characteristics of both ILP-based and 

DLP-based systems, bringing processing potential to the next level. TLP is not inherently 

exploited by processors, meaning it does not work “out-of-the-box”. It needs some deeper 

integration with processors by either operating systems, through scheduling multiple 

applications in parallel, or by the programmer, using multi-thread programming. Thus, TLP has 

not been used as a category in Table 2.1. 

According to how parallelism is discovered, multi-issue processors can be divided into 

two categories: static and dynamic discovered. Discovery of parallelism in static multi-issue 

processors is done at compile time, usually with the unveiling of parallelism in the code, while 

dynamic multi-issue processors find parallelism during runtime, when the program is executed. 

Examples of static-discovered parallelism processors are VLIW or SIMD processors, and 

superscalars are examples of processors where parallelism is discovered at runtime.  

The increase in the number of transistors packed within a single die have allowed 

processors to overlap this categorization. X86 processors, traditionally seen as superscalars, 

have included many instruction sets to handle DLP, such as, Streaming SIMD Extensions (SSE) 

and Advanced Vector Extensions (AVX). Patterson and Hennessy (2013) also divide graphics 

processing units (GPUs) according to how data-level parallelism is discovered. SIMD or Vector 

architectures discover DLP at compile time, while Tesla architectures require no vectorizing 

Table 2.1 – Categorization of Multi-issue Processors. 

 
Static: Discovered at 

Compile time 

Dynamic: Discovered at 

Runtime 

Instruction-Level 

parallelism (ILP) 
VLIW Superscalar 

Data-Level parallelism 

(DLP) 
SIMD Tesla Multiprocessor 

Source: Patterson and Henessy (2013) 
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compilers, since parallelism is discovered at runtime. NVIDIA Geforce 8800 is an example of 

a GPU that implements a Tesla architecture. 

In the next subsections, we will be covering the basics characteristics of multi-issue 

processors aimed at the exploitation of ILP, VLIW and superscalar processors, highlighting the 

main aspects of each. 

 

2.3.1  Very-long Instruction Word Processor 

 

VLIW is a type of multi-issue processor that generally consists of a simple 

microarchitecture structure that relies on a software abstraction unit to exploit parallelism in 

applications. The name, very-long instruction word (VLIW), makes a reference to the fact that 

parallelism must be explicitly generated by the software, and a long instruction packs more than 

one operation at a time. The compiler has a major role in these processors, as it is the responsible 

for generating the parallelism necessary to exploit the multi-issue capability through a static 

scheduling algorithm. 

Instructions that can executed in parallel are concatenated in bundles, which execute 

one at a time. Figure 2.9 shows examples of code for the Qualcomm Hexagon processor 

(CODRESCU, 2013) and the  ρVEX (WONG, Stephan; AS, VAN; BROWN, 2008), two 

examples of VLIW processors, the former being used in the industry as a DSP processor and 

the latter being a reconfigurable VLIW processor built on top of an FPGA. In the figure, bundles 

Figure 2.9 – Code examples for two VLIW processors  

(a) Qualcomm Hexagon DSP       (b) ρVEX Processor 

 

  { 

        p0 = cmp.rq(r0,#0) 

        if (!p0.new) r2 = memw(r0) 

        if (p0.new) jump:nt r31 

  } 

  { 

        r1 = add(r1,add(r2,#2)) 

        memw(r0) = r1.new 

        jumpr r31 

  } 

     

 

     c0 slct $r0.14 = $b0.3, $r0.14, $r0.20 

    c0 and $r0.15 = $r0.17, 32768 

    c0 and $r0.17 = $r0.16, 32768 

    c0 shl $r0.16 = $r0.16, $r0.2 

;; 

;; 

    c0 sth 0[$r0.13] = $r0.15 

    c0 slct $r0.14 = $b0.3, $r0.14, $r0.20 

    c0 and $r0.15 = $r0.17, 32768 

    c0 and $r0.17 = $r0.16, 32768 

    c0 shl $r0.16 = $r0.16, $r0.2 

;; 

    c0 xor $r0.18 = $r0.19, 4129 

    c0 cmpeq $b0.0 = $r0.15, 0 

;; 

    c0 slct $r0.15 = $b0.0, $r0.19, $r0.18 

;; 
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are delimited by curly brackets symbols, and double semi-collons are delimiters for the bundles 

in the assembly code in ρVEX. 

Due to its static nature for discovering parallelism in code, VLIW architectures may 

have to pay a high cost in terms of binary code compatibility. The generated code must make 

use of the ISA and microarchitecture characteristics, such as the number of functional units 

included and their latencies. With improvements in silicon technology, wider and more 

resourceful implementations of VLIW processors were allowed, which led to concern of how 

to execute legacy code in newer processors. Thus, solution concerning maintaining backward 

compatibility were also explored (BRANDON; WONG, S, 2013; DEHNERT, 2003).   

Examples of VLIW processors include the Itanium processor (EVANS; TRIMPER, 

2003) by Intel, the ρVEX (WONG, Stephan; AS, VAN; BROWN, 2008), and Qualcomm 

Hexagon DSP processor (CODRESCU, 2013). 

 

2.3.2 Superscalar Processor 

 

A superscalar processor is a dynamic-scheduled processor that issues multiple 

operations at time. Opposing to VLIWs, compilers do not provide the explicit parallelism in the 

application, although they usually try moving dependences apart in order to increase the issue 

rate. Superscalars are the most common type of processors used in industry nowadays, and are 

highly more complex than VLIWs.  

They are typically divided into two categories, in-order and out-of-order processors. In-

order superscalars issue instruction in the order defined by the compiler, and processor decides 

how many instructions will be executed in each clock cycle according to the dependences 

among instructions. To achieve good performance in in-order processors, compilers must 

schedule instructions moving dependences apart, so that the instruction issue rate can be 

maximized. Even though compiler plays a key role in these processors, similar to VLIWs, code 

is guaranteed to execute correctly regardless of the processor model, and no recompilation is 

necessary. 

 Out-of-order (O3) superscalars are processors capable of executing instructions out of 

the compiler-defined order.  The overall structure of this type of superscalars can be represented 

with three primary units: issue, execute and commit units. Figure 2.10 illustrates how these 

units interacts with one another.  
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The issue unit aims at fetching instructions, decoding and sending them to the 

appropriate units for execution. The operation decoded at the issue unit is handled at one or 

more of the execution units. Before reaching the specific functional units for execution, decoded 

operands and operations are passed to buffers, called reservation stations, inside the execution 

unit, which hold them until they are ready to execute. The calculated value is ready to go to the 

commit unit, and is also sent to any reservation stations that wait for its value, allowing them 

to execute. Commit unit holds calculated values in a reorder buffer until it is safe to send them 

back to the registers or memory. The behavior of the execution units defines what type of 

superscalar a processor is. In-order superscalars uses in-order executions, while out-of-order 

superscalars use execution units that may process instructions out of their order, which increases 

the instruction issue rate on the processor. Issue and commit units are always kept in-order for 

both types. 

Moreover, this text only provides a brief overview of superscalars, and it must not be 

considered a complete description of their functionally. For a deeper understanding and details, 

reader should refer to (HENNESSY; PATTERSON, 2011; PATTERSON; HENNESSY, 2013). 

  

Figure 2.10 – Three primary units of Out-Of-Order processors 

 

Source: Patterson and Hennessy (2013) 
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3 RELATED WORK 

 

Many related works involve the use of scratchpads as energy-efficient alternative for 

caches. Even though most of them were proposed more than ten years ago, some recent works 

have emerged, especially because energy is a major concern in computer systems. Caches have 

been around for many years; however, they may be found inappropriate to keep energy to an 

acceptable boundary. 

Modern FPGAs may include tens of megabytes of memory, that is, a considerably large 

amount of memory is available in the device. This significant capacity is spread across 

numerous small block RAMs (BRAMs), each with its own memory ports and address spaces, 

providing an enormous bandwidth to access these internal memories. As such, FPGAs’ inherent 

parallelism and high bandwidth are particularly beneficial when data is fetched from multiple 

uncorrelated BRAMs, i.e., there is no need for a unique address space. Nevertheless, from a 

software programmer’s point of view, memory is seen as a sizable storage with a unique address 

space. The traditional FPGA memory model is therefore not directly suited to meet software’s 

requirements. FPGAs’ flexibility allows the combination of multiple BRAMs with the purpose 

of providing a unified address space, with the downside of significantly increasing area and 

compromising memory bandwidth. 

In this section, we will cover major works proposed concerning the use of scratchpads, 

covering major works in the academia and industry usage. We will also present previous works 

that focus on the exploration and design of multi-ported memories for ASICs and FPGAs, since 

SoMMA can be employed in ASIC- and FPGA-based processors. Due to the high quantity of 

BRAMs in FPGAs, however, SoMMA is particularly interesting for the use in FPGA-based 

processors, as no additional price needs to be paid on memory storage. 

 

3.1 Scratchpads 

 

3.1.1 Academic use 

 

The employment of scratchpads in processors can be dated back to the 1970s with a 64-

byte scratchpad in the Fairchild F8 microprocessor (FAIRCHILD, 1975), allowing 

programmers to store any of the machine code instructions into it for fast access. In the 

academia, the concept started being explored in the later 90s. Panda, Dutt and Nicolau (1997) 
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was one of the first works to propose the use of scratchpads to partition applications’ data 

between memories aiming at minimizing execution time. Subsequent researches have proposed 

the use of scratchpads in many ways: data or code storage, for improving execution time and/or 

energy consumption, or to work with/be a replacement for caches. Next sections will give an 

overview of some of the major works in scratchpads employed for code-only, data-only, and 

hybrid code and data solutions. 

 

3.1.1.1 Scratchpad for Instructions 

 

Code placement in scratchpads were initially developed to minimize the number of I-

caches misses. Traces were generated to identify parts of code that execute the most for 

scratchpad mapping (PETTIS; HANSEN, 1990; TOMIYAMA; YASUURA, 1996). Verma, 

Wehmeyer and Marwedel (2004) was the first approach to propose the scratchpad working in 

synchrony with the I-cache. A generic algorithm called cache-aware Scratchpad Allocation 

(CASA) algorithm for storing instructions in scratchpads is presented. The algorithm looks for 

hotspots in the application in order to minimize the number of cache misses, and consequently, 

reduce energy consumption. The motivation to work only with code is due to instruction 

memory be accessed on every instruction fetch and the size of programs for mobile programs 

be smaller than their data. 

Using a different approach, the technique in Angiolini et al. (2004) requires no access 

to either the compiler or application source code. The approach automatically moves code 

sections to the scratchpad area through a post-compilation process, taking the burden from the 

compiler. Authors state that overlay approaches are more scalable when considering huge 

application, but also more fragile as excessive transfers of objects might decrease performance. 

While segments of data are usually larger and sparser, the justification for overlay approaches 

have a better claim for data replacement. 

Whitham and Audsley (2008) extend the work on instruction scratchpads by applying a 

post compilation analysis and generating the trace of the application. The focus of their work is 

to minimize the worst-case execution time (WCET) of the application, a very important factor 

for real-time systems (RTS). The instruction scratchpad is a trace scratchpad that respects 

constraints in WCET, depending on the information obtained from the trace.  

When analyzing these works, we notice how solutions proposed to tackle instruction 

reallocation to scratchpads as a resolution to minimizing energy consumption and/or increasing 
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performance, though with different methods. Subsequent works on scratchpad placement for 

instructions are a variation of these techniques, which sets as the standard to how utilize 

scratchpads for code. 

 

3.1.1.2 Scratchpads for Data 

 

Another form of utilization of scratchpads come for data placement. The work in 

(AVISSAR; BARUA; STEWART, 2002) proposed a strategy to automatically partition global 

and stack data among different heterogenous memory units in embedded systems that lack 

caching hardware. The allocation strategy uses a static fashion where data remain fixed and 

unchanged throughout program execution.  

A more recent work proposed by (WANG; GU; SHAO, 2015) shows an algorithm to 

minimize WCET and energy consumption in a system allowing data placement into scratchpad. 

The solution, however, simplifies the testing infrastructure with a simple in-order processor 

with no data cache and a perfect-hit instruction cache, which limits the usability of the technique 

in more complex processors.  

A generic solution for combining scratchpads and caches in CPU-GPU systems is 

proposed by (KOMURAVELLI et al., 2015). Stash is a memory organization that leverages 

scratchpads’ compact storage and lack of tag arrays, while also being globally-addressable and 

visible like a cache. The solution is applied to heterogeneous systems composed of CPUs and 

GPUs where the GPUs access both coherent caches and private scratchpads. Stash provides a 

global visibility for scratchpads that are located inside each GPU compute unit (CU), that way, 

GPU CUs can share data. 

 

3.1.1.3 Scratchpad Solutions for Code and Data 

 

More flexible techniques were also proposed to utilize scratchpads for both code and 

data. Verma and Mardwedel (2006) present an overlay-based method for dynamically copy 

both variables and code segments onto a scratchpad at runtime. The proposed solution is akin 

to the Global Register Allocation problem, in which the compiler attempts to make virtual 

register assignments to physical registers to a minimum, in order to prevent spills to memory.  

Udayakumaran, Domingues and Barua (2006) show one of the most complete schemes 

to dynamically allocate data and program code to scratchpads. Their contribution is particularly 
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interesting because the solution not only handles global variables, but stack data as well, 

including both segments of data and code at a unique scheme. It targets the placement of code 

and global and stack data to scratchpads with the purpose of reducing energy consumption. The 

proposed solution is a dynamic allocation methodology for both data and code, in which the 

content of scratchpad can change during the program execution. 

   

3.1.2 Usability in the industry 

 

Scratchpads’ importance has not emerged exclusively at the academia; industry has also 

played an important role to advance their use.  

The IBM cell processor (FLACHS et al., 2006), that powers Sony PlayStation 3 console, 

uses scratchpad memories inside its processing elements. The core features a multi-threaded 

POWER processing element and eight synergistic processing elements (SPE). The architecture 

aims at accelerating media and streaming workloads by reducing memory latency inside the 

SPE elements. As illustrated in Figure 3.1, each SPE is composed of processing core (SPU 

Core), a DMA unit that transfers data to and from the memory system, and a local storage unit, 

or scratchpad, that can be used to store local data or instructions. In order to execute code in the 

SPEs, the workloads are written in C/C++ using intrinsics for the SIMD data types and DMA 

Figure 3.1 – Synergistic processing element on the IBM cell processor. Scratchpads are referred as 

“Local Store” 

 

Source: Flachs et al. (2006) 
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transfers, which becomes a programmability barrier for programmer who wants to implement 

efficient code for this processor. Che and Chatha (2011), on the other hand, use the same IBM 

Cell processor to accelerate stream applications by placing their code into the scratchpad with 

an overlay-based method.  

Moreover, the work in (MOAZENI; BUI; SARRAFZADEH, 2009) presents a memory 

optimization scheme to minimize the usage of shared on-chip memory, also called scratchpad 

memory, in the NVIDIA G80 (KIRK, 2007) graphics processing unit (GPU). The paper states 

that scratchpad memories help alleviating the pressure on global memory bandwidth, and 

therefore, maximize performance on data-intensive applications that have high usage of shared 

memory. The optimization is particularly designed to work in an architecture which scratchpads 

are shared among many threads.  

 

3.2 Multi-ported systems 

 

The limiting bandwidth in the memory system might also be overcome with the addition 

of memory ports. Because multi-ported systems can be quite costly, previous works propose 

techniques to design multi-ported systems more efficiently. They have targeted either a solution 

for application-specific integrated circuits (ASIC) or field-programmable gate array (FPGA) 

devices, however, we have found no work with a common solution for both types of devices.  

Malazgirt et al. (2014) present an application-specific methodology that analyzes a 

sequential code, extracts parallelism and determines the number of read and writes ports 

necessary for such application.  

LaForest and Steffan (2010) introduce a new approach for creating multi-ported 

memories in FPGAs that efficiently combines BRAMs while achieving significant performance 

improvements over other methods. It replicates memories according to the number of read/write 

ports. An 8-read/4-write memory, for example, can be implemented using eight 2-read/1-write 

memories. It also uses live value tables (LVT) to identify where the most recent copy of the 

data is located. Although this approach is better than others, it still requires at least doubling 

the area to build multi-ported memories with more than two ports. 

The work in (BAJWA; CHEN, X., 2007) is applicable to application-specific integrated 

circuit (ASIC) devices and proposes an area and energy-efficient multi-port cache memory. 

Although able to minimize the costs of multiple ports, it is not able to completely mitigate them. 

Recent researches have provided various contributions on the use of BRAMs. Adler et 

al. (2011) propose Logic-based Environment for Application Programming (LEAP), an 
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automatic memory management tool for reconfigurable logic. The main idea is to use LEAP 

scratchpads to provide an easy way of managing memory on FPGAs. Thus, developers can 

primarily focus on developing their core algorithms and less on managing memory. 

Winterstein et al., (2015) and Yang et al. (2015) extend LEAP scratchpads to automate 

the construction of application-specific memory hierarchies. Therefore, every application has 

an optimized memory hierarchy that best fits the application’s characteristics. 

Weisz and Hoe (2015) provide a convenient approach for designing efficient complex 

data structures in memory without penalizing access performance. It uses an application-level 

interface that models data structures, such as multi-dimensional arrays, linked lists, and simple 

data patterns.  

Meng et al. (2015) propose a new memory partitioning algorithm for parallel data 

access. The strategy focuses on finding the access pattern for applications and choosing an 

optimal number of banks and offsets for each pattern data. The approach aims at maximizing 

bandwidth while providing simultaneous accesses to patterns for higher parallelism. This work 

is complementary to our own, as the authors focus on placement strategies for different memory 

access patterns in FPGA devices, while we focus on an architecture to provide improved 

performance for a given data placement and on how to automate code generation in a production 

compiler in either FPGAs or ASICs. 

In (BETKAOUI; THOMAS; LUK, 2010) the authors present a comparison of 

performance and energy consumption between FPGAs and graphics processing units (GPUs) 

and illustrate how memory bandwidth can have an impact on those results. Although these 

works help identifying weak spots over memory designs in FPGAs, they lack to propose new 

ways to improve performance and reduce energy consumption due to distinction among the 

benchmarks. 

 

3.3 Our approach x Other methods 

 

The contributions of this work are as follows:  

1) Reducing execution time and energy by avoiding unnecessary cache or Dynamic 

Random Access Memory (DRAM) accesses, since they are slower and more energy-

consuming. 

2) Allowing the usage of multiple single-ported software-managed memories in 

parallel for data placement and, consequently, providing a higher memory 

throughput than other methods. 



 

 

40 

While previous works also target (1), (2) is only provided by SoMMA in multi-issue 

processors. If one considers a multi-issue processor, like a VLIW, and the solutions presented 

in Figure 3.2, SoMMA leverages the usage of multiple memories by simulating a multi-ported 

system with multiple single-ported memories. In the figure, previous solutions are represented 

by the red-dotted connection between lane 0 and scratchpad (SPM), while the proposed solution 

is represented by the blue-dashed connection between software-managed memories (SMMs) 

and lanes. Our solution uses memories in parallel in order to leverage the multi-issue 

characteristic of the processor. We can load and store values in multiple memories at once. The 

figure also depicts how a vector structure could be potentially stored to benefit the multiple 

memories at once.  

Moreover, any attempt of numerically comparing our solution to others would result in 

unfair comparisons, since distinct sets of tools were used. Compiler toolset, instruction set 

architecture (ISA), transistor technology and benchmarks are dissimilar. Our experiments are 

not intended to show how our solution is more beneficial in terms of numbers, but to instigate 

the reader observe how our approach contemplates previous works and adds the possibility of 

using multiple scratchpads in parallel, bringing a new enhancement into picture. 

Figure 3.2 – A 4-issue VLIW processor example. Previous solutions are represented by the red-

dotted connection between lane 0 and scratchpad (SPM), while the proposed solution is represented 

by the blue-dashed connection between software-managed memories (SMMs) and lanes. Our 

solution uses memories in parallel in order to leverage the multi-issue characteristic of the 

processor. We can load and store values in multiple memories at once. 

 

Source : author 
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4 HARWARE AND SOFTWARE SUPPORT 

 

Memory bandwidth is the cornerstone of high-performance processors. The memory 

system should provide enough data such that functional units (FUs) are frequently occupied, as 

idle FUs also consume static energy while producing no useful values. The simplest solution to 

improve memory bandwidth comes from adding memory ports to the memory system. 

However, as presented in Figure 1.2, this solution has a deep impact in area, that cannot usually 

be paid in embedded systems. An alternative method for bandwidth increase relies on adding 

smaller and faster memory units (or scratchpads) that can benefit from data reuse. Scratchpads 

provide better performance and energy efficiency than caches because no tag array and 

replacement logic are necessary. The control of these memories is done at software level, so 

they are typically known as software-managed memories (SMMs) or software-controlled 

memories. SMMs are particularly beneficial when reuse can be guaranteed, i.e., one needs to 

assure that temporal and spatial locality are present in the program. 

Our main goal is to mitigate memory complexity in multi-issue processors by creating 

a memory architecture that explores the use of multiple memories in parallel. That way, single-

ported memories combine with the data cache to provide the system with a higher bandwidth 

without the overhead of adding new ports. We use a solution that incorporates changes in both 

hardware and software and can overcome the limit of single-port systems, providing a higher 

throughput. 

The rest of this section will focus on the hardware and software requirements to integrate 

the memory architecture in a system. We will also provide an example that illustrates how our 

technique is applied to an application and we will end this section with the main component of 

our approach: the automated code generation process that makes the necessary changes to the 

applications. 

 

4.1 Hardware 

 

We propose a method that requires minimum hardware changes to support our SMMs. 

By limiting most transformations to software, we remove the costs of complex hardware 

structures to manage SMMs. The main difference between SMMs and caches relies on who 

controls them. The former is controlled by software and requires no extra hardware for tag 

storage and checking while the latter is hardware-controlled and the programmer has little 

control over where data is placed in memory. 



 

 

42 

Figure 4.1 shows an example of how our SMMs are placed within a hypothetical 4-issue 

VLIW processor. A memory architecture is created with the placement of a software- managed 

memory within each parallel lane. With the exception of Lane0, which can also access the 

regular data memory hierarchy through the L1 data cache (MEM block in Figure 4.1), each lane 

can only access its own memory’s content. Because lanes can only operate in one memory, 

there is no need to specify which memory SMM instructions should access. Each lane only sees 

its own memory, and the address spaces are independent of one another. Thereby, we avoid the 

costs of having multi-ported memories, while still providing parallelism for the processor. 

SMM instructions operate in the same way as loads and stores: one register as the base register, 

an immediate offset that will be added to the base register, and a second register that will hold 

the value that must be stored to or was loaded from memory. 

 

4.2 Software 

 

Previous to our proposed code optimization that handles scratchpads, a series of code 

analysis and transformations help in the preparation to our solution. These optimizations affect 

the quality of the IR code produced, impacting the code generation process we have proposed. 

Subsection 4.2.4.3 will discussion some of these optimization in more detail. 

  

Figure 4.1 – Location of the memory architecture in a 4-issue VLIW processor. Each lane has 

access to an internal memory 

 

Source: author 
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4.2.1 SMM-specific instructions 

 

Software, either compiler or assembly writing, should be capable of generating code 

that can differentiate main memory from SMMs. For that matter, we propose the addition of a 

set of load and store instructions specifically for controlling those intralane memories. Each 

lane only accesses its own memory and their address spaces are independent from one another. 

Thereby we avoid the costs of making multi-ported memories, while still providing enhanced 

bandwidth. Like most ordinary memory instructions, these special instructions have three 

operands: one register as the base register, an immediate offset that will be added to the base 

register, and a second register that will hold the value that must be stored to or loaded from 

memory. 

Figure 4.2 presents an example of the use of SMM-specific instructions on the 

hypothetical 4-issue VLIW processor of Figure 4.1. New instructions were added to the ISA in 

order to facilitate the use of SMMs. Memory instructions with the suffix ‘s’ represent software-

managed-memory instructions. There is no need to distinguish among which lane the 

instructions are, since each lane can only access one memory. 

Regular single-ported memory systems would require at least 4 cycles to load four 

values into registers (Rows 2 to 5). By using SMM instructions, we still need to load the values 

through the regular cache and plus to store them into SMMs (Row 6). From that moment on, 

the processor can load all the values in parallel. Thus, if sufficient temporal locality is found in 

the access to these data, the parallel re-fetches will pay off the costs of filling the SMMs and as 

consequence, accelerate the execution of the application.  

Figure 4.2 – Illustrative example for controlling SMMs 

Lane 0 Lane 1 Lane 2 Lane 3 

ldw r7 = 0[r5]       

ldw r8 = 4[r5]       

ldw r9 = 8[r5]       

ldw r10 = 12[r5]       

stws 0[r5] = r7 stws 0[r5] = r8 stws 0[r5] = r9 stws 0[r5] = r10 

Following Instructions 

ldws r7 = 0[r5] ldws r8 = 0[r5] ldws r9 = 0[r5] ldws r10 = 0[r5] 

Source: author 
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Figure 4.2 shows that it is the software’s entire responsibility to fill those memories with 

data and to know the position of each stored value for further references. Through the use of 

offsets and base registers, we are able to write code that dynamically changes the content of the 

SMMs during the execution of the program, i.e., our technique uses an overlay-based approach, 

improving performance even more. 

 

4.2.2 Preamble Code 

 

Most of the applications require a warm-up code implementation, also called preamble, 

to begin the insertion of new values on the uninitialized memories. This piece of code is 

responsible for fetching values that should reside in the SMMs from the regular memory 

hierarchy, i.e., through the L1 data cache. The unveiling of ILP relies on using multiple 

software-managed memories in parallel. Once data is loaded into the SMMs, it can be accessed 

with high bandwidth due to the multiple independent ports. So, the compiler’s goal is 

maximizing the usage of these memories while still reasoning about parallel operations. 

Hardware support is the first step to apply our technique to a processor. The second is the code 

generation process, where instructions that manipulate those memories are generated. Users can 

decide which variables are placed within the memories through simple code annotations. The 

code generation process detailed herein plays the main role in our approach. 

 

4.2.3 Example Application 

 

In order to explain how our technique works, an example application is provided. Figure 

4.3 shows a snippet of C-code for a matrix multiplication 7x7. Users can decide which variable 

Figure 4.3 – Snippet of 7x7 matrix multiplication 

  
for(i = 0; i < 7; i++){  
    for(j = 0; j < 7; j++){  
        var = 0; 
        for(k = 0; k < 7; k++){ 
           var += smm_a[i][k] * smm_b[k][j]; 
        } 
    res[i][j] = var; 
    } 
 } 

 

Source: author 
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is placed within the memories through a simple code annotation (variables beginning with 

smm_). We have chosen to place variables a and b (denoted as smm_a and smm_b) into the 

SMMs, that way, we can reason about the two different placements strategies for storing array 

variables in multiple memories. Placing variable a in the SMMs, for instance, does not improve 

performance, as the algorithm can keep all values from each row in registers and there is no 

need to re-fetch them later. The example is merely illustrative in that sense, as we can present 

both placement strategies adopted. 

We have compiled the application using the –O3 flags, which enables many target-

independent optimizations to run. Our algorithm works right before register allocation, when 

machine instructions are within the target architecture and virtual registers are used. Figure 4.4 

shows a reduced snippet of the assembly code for the application. Keep in mind the algorithm 

is not complete, due to space limitations. However, the idea can be extended for completion. 

The presented code loads values for variables smm_a (in BB#1) and smm_b (in BB#2) and 

multiplies values to compute a result per iteration (in #BB2). 

Figure 4.4 – Snippet of assembly code 

 
1   BB#0: 
2      %vreg20 = MOVi <ga:@smm_a>;  
3      %vreg23 = MOVi <ga:@smm_b>; 
4   BB#1: 
5    %vreg21 = ADDr %vreg19, %vreg18;  
6    %vreg22 = ADDr %vreg20, %vreg21;  
7    %vreg7 = LDW %vreg22, 20; 
8    %vreg6 = LDW %vreg22, 16; 
9    %vreg8 = LDW %vreg22, 24; 
10    %vreg5 = LDW %vreg22, 12; 
11    %vreg4 = LDW %vreg22, 8;  
12    %vreg3 = LDW %vreg22, 4;  
13    %vreg2 = LDW %vreg22, 0; 
14  BB#2: 
15    %vreg10 = PHI %vreg17, <BB#1>, %vreg11, <BB#2>;  
16    %vreg24 = ADDr %vreg23, %vreg10;  
17    %vreg25 = LDW %vreg24, 140; 
18    %vreg26 = LDW %vreg24, 168; 
19    %vreg27 = MPYLUr %vreg26, %vreg7; 
20    %vreg28 = MPYLUr %vreg25, %vreg6; 
21    %vreg29 = MPYHSr %vreg26, %vreg7; 
22    %vreg30 = MPYHSr %vreg25, %vreg6; 
23    %vreg31 = LDW %vreg24, 112; 
24    %vreg32 = MPYHSr %vreg31, %vreg5; 
25    %vreg33 = MPYLUr %vreg31, %vreg5; 
26    %vreg34 = ADDr %vreg28, %vreg30; 
27    %vreg59 = CMPNEBRegi %vreg11, 0; 
      .   
      .  
    .    
    50     STW %vreg58, %vreg9, 0; 
 

 

Source: author 
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Although programs are represented in a linear form at their last stage (assembly code), 

compilers can realize them as data-dependence graphs (DDG), whereas nodes represent 

instructions and edges represent the dependence between them (COOPER; TORCZON, 2011). 

An edge in the DDG is a relationship between a definition and its use. A definition represents 

an assignment of a variable, while a use represents its use as an operand. For instance, the 

definition of register %vreg23 (line 3) is within basic block BB#0, while its use is in BB#2 (line 

16). 

Our technique initiates by looking for mov instructions that use an SMM variable’s 

address as operand. Such mov instructions are named as def instructions, because they define a 

starting point for an SMM variable. Two def instructions are observed within the code (lines 2 

and 3), one for variable smm_a and another for smm_b. Registers used in def instructions are 

kept in a table of definitions and are used for searching memory instructions that are related to 

SMM variables. The algorithm will look for uses of such registers until it reaches a memory 

instruction. We say an instruction propagates an SMM variable if it reaches that variable 

through the definition-use relationship. For example, register %vreg23 defines a starting point 

for an SMM variable (line 3). Its use is at line 16, which then defines another value, %vreg24, 

that is used at lines 17, 18 and 23, reaching three memory instructions for variable smm_b. The 

same idea is applied to variable smm_a. Memory instructions from lines 7 to 13 come from it. 

Through definitions and uses, the algorithm finds all memory instructions related to SMM 

variables, in order to replace them later. 

Although it helps discovering memory instructions for SMM variables, the process 

above does not improve parallelism per se. The algorithm must also keep track of all offsets 

used for each variable. The more offsets within a basic block, the more memories can be used 

for the variable and the more parallelism can be exploited. The number of memories should be 

proportional to the number of offsets encountered per basic block, as same instructions should 

be used in different iterations of a loop. For this example, the inner loop was unrolled 7 times 

by LLVM optimizations. Thus, seven offsets are detected for variable smm_a in BB#1, and 

seven for smm_b in BB#2 (only three are displayed in Figure 4.4). In a processor with eight 

software-managed memories, the compiler would infer the use of seven memories for each 

variable. 

Moreover, we can also notice how the offset ranges differ between those variables. This 

happens because in one, smm_a, data is fetched in-row (distance between offsets is 4, because 

we are dealing with 4-byte integers), while in the other, smm_b, data is fetched in-column 

(distance is 28, 7 values of 4-byte integer per row). Two different placements strategies should 



 

 

47 

be adopted for maximizing parallelism, depending on the pattern of access. Figure 4.5 shows 

the placement strategy used for the variables according to the observation of offsets in the basic 

blocks. For smm_a, values are spread through the SMMs in a contiguous way (one row at a 

time), while for smm_b, values are spread in a non-contiguous way (one column at a time), but 

within a known interval. 

Finally, after gathering all information needed, the compiler generates code for the 

preambles and replaces memory instructions for SMM instructions. Instruction scheduling and 

bundling take place afterwards. During these steps, the SMM units on each lane give greater 

parallelism opportunities for the heuristics. In this example, load instructions in BB#2 and 

BB#3 will execute in different units, thus, parallelizing memory access. 

 

4.2.4 Code Generation Process 

 

Section 4.2.3 used a matrix application to exemplify how our approach analyzes code 

and performs modifications. This section presents an explanation of each step of the process, 

how they interact and their main characteristics. Our algorithm is divided into two main actions 

we call variable discovery and variable transformation. Variable discovery collects information 

about the variables for the software-managed memories while variable transformation makes 

the necessary code changes to use SMMs in case a variable is discovered in the previous 

process. We will discuss both actions in the next subsections, showing specific characteristics 

for each action and how they correlate. 

 

 

Figure 4.5 –  Offset address locations for a 7x7 matrix multiplication. The example shows how matrix smm_a 

(shortened to a) and smm_b (shortened to b) would be placed in the SMMs. First scheme, on the left, shows an 

allocation through column order, while the second, on the right, displays an allocation through row order 
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4.2.4.1 Variable discovery 

 

This is the process responsible for finding out which variables can be placed in the 

SMMs. The user can specify which variables may be stored in the memories through code 

annotations. Our algorithm currently works only with global variables and plans on extending 

the work to handle stack variables and heap-allocated variables are part of the future works. 

Figure 4.6 shows a high-level simplified version of our algorithm for variable discovery. 

The algorithm runs in all functions of the program, trying to find variables that are allowed to 

be on the SMMs. It starts by traversing the basic blocks in a breadth-first search (BFS) order 

(Line 1). The algorithm basically searches for def instructions and memory instructions 

according to the basic block order. It aims at finding instructions that define variables, and 

instructions that propagate the use of these variables through basic blocks (BBs). The core of 

the algorithm begins at line 4, where we iterate over all instructions in the basic block.  Line 6 

and 7 show a fast escape for call and branch instructions, since they do not need to be checked. 

The algorithm may execute four functions at lines 9, 12, 15 and 16 with the following purposes: 

• isSMMVariable (Line 9): this function checks for def instructions within basic 

blocks, looking for the code annotation given by the user. If the annotation is 

found, the instruction is inserted in the list of def instructions for that variable 

(Line 10), keeping track of its defined register. 

• PropagatesSMMVariable (Line 12): This function verifies if the current 

instruction propagates any SMM variable through the definition-use 

relationship, keeping track of definition registers. At line 16 of Figure 4.4, e.g., 

%vreg23 is propagated and a new definition is found (%vreg24). 

• InstrIsStoreOrLoad (Line 15): if the current instruction is a memory instruction, 

the algorithm should evaluate the offset and insert the instructions into a list of 

memory instructions for further replacement. 

• EvaluateOffset (Line 16): we aim at using software-managed memories 

primarily on vector and matrix variables inside loop statements, since they offer 

more possibility of parallelism. When a loop is unrolled, multiple iterations 

overlap and different offsets can be found in a single larger iteration. Offsets are 

important because they tell us exactly where the data is located in memory, and 

therefore, they will help us in the process of placing values properly on our 

memories. This function evaluates the offset for the current instruction. The 
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compiler builds a table for offset of variables for deciding on the number of 

SMMs necessary for each variable. 

We construct a list of all variables and its memory-related instructions (Line 13), 

preparing all necessary data structures for the variable transformation process. This process 

also keeps track of the location for each memory instruction added to the variable list (to which 

basic block it belongs). 

 

4.2.4.2 Variable Transformation 

 

After collecting the required information about SMM variables, we still need to perform 

code transformations in order to use them. We should analyze the information collected 

previously, and make decisions about whether code changes are necessary. Variable 

Transformation is where all the code changes take place. These changes go from code 

modification in memory instructions to new code insertion. 

 Some variables may require previous placement within the software-managed memories 

before their use. Others may not require that task since their values are firstly calculated and 

then inserted in the memories. The preamble code is only inserted when the first memory 

Figure 4.6 – High-level algorithm for Variable Discovery 

 
 
1 for each BB in BFS Order do 
2 begin 
3   
4  for each Instr in BB do 
5  begin 
6   if instr is Call or Branch 
7    continue; 
8 
9   if isSMMVariableDef(Instr) then 
10    add Instr to ListDefVar 
11   else 
12    if PropagatesSMMVariable(Instr) then 
13     track register on Var 
14      
15      if InstrIsStoreOrLoad(Instr) then 
16      EvaluateOffset(Instr) 
17      add Instr on Var 
18      end if 
16    end if 
17   end if 
18  end for 
19 end for 
 
 

Source: author 
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instruction spotted in the program that is related to the variable is a load. Otherwise, no 

preamble code is necessary, as we are already filling up our memories as the program executes. 

Moreover, this process substitutes regular memory instructions, that is, those that use the 

standard memory hierarchy, for software-managed memory references. We also have to 

guarantee that a single instruction can be used for iterating over multiple reference locations, 

independently of the executed iteration. 

 

4.2.4.2.1 Offset Calculation 

 

 Preamble insertion firstly needs to calculate the offset for each variable location. Single-

memory variables are easily calculated. Multi-memory variables, on the other hand, require 

extra calculations, since different addresses of one variable can live in different SMMs. Our 

technique uniformly assigns locations to the values depending on the number of SMMs 

calculated previously. Two different relocation strategies may occur:  

• 1-consecutive allocation: the next data value fetched within the basic block will have a 

one-unit distance from the previous value, and thus, we fetch data in a contiguous 

manner. Variable smm_a in Figure 4.4 uses this approach. 

• N-consecutive allocation: this scheme occurs when two data addresses within the basic 

block are far from one another, regarding their memory locations. This scheme deals 

with data that are non-contiguous in memory. N corresponds to the distance between 

two data offsets within a same basic block. Variable smm_b uses this approach. 

 

  Figure 4.5 illustrates both schemes in a practical example. Each column represents a 

software-managed memory, and each row represents a location within it. We use the same 7x7 

matrix multiplication algorithm to clarify the difference between these two schemes. Our 

algorithm infers the use of 7 SMMs for each variable. The allocation scheme on the left can be 

employed for variable smm_a which is accessed with successive addresses, i.e., 1-consecutive 

allocation is employed. Variable smm_b fetches data from different rows, and therefore, the N-

consecutive allocation is applied (where N is equal to 7 for this case). The allocation scheme 

depends on the distance between offsets within a basic block. 
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4.2.4.2.2 Preamble Insertion and number of software-managed memories  

 

 For those variables that require preamble, we insert new basic blocks in the program, 

before variables are accessed. The compiler inserts instructions to read from main memory and 

place values of the variable inside the software-managed memories, using the proper offset 

according to the information collected in the previous process. Preamble insertion adds some 

execution time for each variable placed in the SMMs, for that reason, it is important to choose 

variables that present a great data reuse.  

We analyze the variable and quantify how many software-managed memories are 

necessary depending on the number of offsets observed in the basic blocks. The number of 

offsets within a single basic block must be multiple of the number of SMMs available in the 

processor. For instance, a 7x7 matrix multiplication benchmark, shown in Figure 4.3, unrolls 

the inner loop by a factor of 7 in the compiler framework. After analyzing all basic blocks, we 

conclude that at most seven different offsets can be spotted in a single basic block. Therefore, 

our algorithm will infer 7 SMMs for smm_a and smm_b (suppose that we have a total of 8), 

enabling our processor to fetch multiple data in parallel.  

Moreover, when we cannot guarantee that data is accessed uniformly, our compiler 

detects that values cannot be spread out across multiple memories. A simple example would be 

calculating a sum of values in a vector that randomly selects a position. There is no way to 

assure where the value is located when using more than one SMM. In this case, our algorithm 

selects only one memory. We will call single-memory variables those that only use one SMM, 

and multi-memory variables the ones that use more than one SMM. The compiler is also aware 

of the processor’s characteristics, such as number of software-managed memories, arithmetic 

and logic units (ALUs) and number of ports to the main memory hierarchy. 

 

4.2.4.2.3 Instruction transformation 

 

After the assignment of variables to locations, the final step is code transformation. Here 

the compiler checks for all definitions and memory references found in the variable discovery 

process and assigns new offsets and addresses for them. Our algorithm computes lanes and 

offsets according to the allocation schemes described in the previous subsection and base 

addresses are known when preamble insertion is performed. 
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4.2.4.3 Additional optimizations 

 

Two traditional compiler optimizations have important synergy with our architecture. 

Namely, loop unrolling and tree height reduction provide important gains when coupled with 

it. 

 Loop unrolling transformation has proven to be very efficient to boosting performance 

on our software-managed memories. It attempts to optimize the program through the execution 

of multiple loop iterations at the same time. Loop unrolling needs to guarantee that addresses 

do not alias, that way, iterations may overlap and performance may increase through unrolling. 

This transformation helps improving performance by allowing multiple offsets at the same 

basic block. And, therefore, more software-managed memories can be used to provide parallel 

accesses more easily.  

 Algorithms, such as matrix multiplication, x264, and sum of absolute differences 

(SAD), are characterized by having a long addition tree after the computation of each iteration. 

When the loop is unrolled, the result of each operation is summed with the previous computed 

values, in an inefficient way.  This long chain of additions has little parallelism, limiting the 

performance gains of SoMMA. Therefore, we have also implemented a tree height reduction 

algorithm (KUCK, 1978), that efficiently computes and reduces the height of the addition tree 

for most of the algorithms.  

Figure 4.7 shows the code transformation performed by our compiler. This algorithm 

reduces the tree height from n to log2n, and therefore, a significant performance increase can 

Figure 4.7 – Tree height reduction algorithm 

 

Source: author 
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be observed as more parallelism is exposed. Bear in mind that both techniques were also applied 

to the baseline processor, as they also benefit processor with standard memory architectures. 
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5 EXPERIMENTAL SETUP AND RESULTS 

 

Our solution for maximizing ILP makes use of multi-issue processors, as the 

architecture demands multiple units operating at the same time. In this chapter, we present the 

set of tools, methodology and results of our experiments, focusing on the benefits of using 

SoMMA in a VLIW processor, and analyzing its impact in terms of energy, execution time and 

energy-delay product (EDP). 

 

5.1 Tools 

 

5.1.1 VLIW Example (VEX) architecture 

 

VEX is a 32-bit clustered VLIW architecture based on the Lx/ST200 (FARABOSCHI 

et al., 2000), a family of VLIW processors used to power embedded media devices. It features 

a symmetric clustered architecture that can provide scalability and customization of clusters 

and issue width, two characteristics that no existing architecture had at the time. 

The development of VEX consisted of three components: the VEX ISA, the VEX 

Compiler toolchain, and the VEX Simulation System (HEWLETT-PACKARD 

LABORATORIES, [s.d.]). The main purpose was the development of a VLIW architecture that 

could be introduced to undergraduate students, in order to teach concepts related to VLIWs, 

compiler-specific optimizations, such as loop unrolling, and an easy-to-use platform for testing. 

The VEX defines a 32-bit RISCV-like VLIW architecture that aims at accelerating 

audio, video, and signal processing applications. It is also characterized by having four clusters, 

each with its own set of functional units, latencies and register files. Clustering is a technique 

used to explore scalability in the VLIWs. Partitioning large issue-width VLIWs into a clustered 

fashioned help minimizing power and energy consumption in these processors (TERECHKO; 

S, [s.d.]), since the cost of adding extra ports to register files would escalate drastically in terms 

of area, energy consumption and latency (TATSUMI; MATTAUSCH, 1999). A 32-issue 

single-clustered VLIW, for example, would require 64 read and 32 write ports in a register file, 

while a 32-issue four-clustered VLIW would require the same 64 and 32 ports, spread in 4 

different register files (16 read and 8 write ports each), which are less energy consuming. 

VEX also provide a compiler toolchain based upon the Multiflow C Compiler 

(LOWNEY et al., 1993), a robust VLIW compiler that used a compiler optimization known as 
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trace scheduling, aiming at finding common paths on the code and rearranging machine 

instructions in order to improve parallelism and performance within multiple basic blocks 

(FISHER, J A, 1981). 

 

5.1.1.1 ρVEX Processors 

 

ρVEX (WONG, Stephan; AS, VAN; BROWN, 2008) is a VLIW processor that 

implements the VEX ISA and supports dynamic reconfiguration and different issues widths. 

The processor uses a five-stage pipeline structure very similar to the original MIPS processor 

(PATTERSON; HENNESSY, 2013).  

The processor can be reconfigured to run in 2-, 4- and 8-issue configuration. For our 

experiments, we have used the 8-issue ρVEX processor with eight ALUs, four multipliers, one 

branch unit and one memory unit. We have also included one SMM memory for each pipelane 

(or issue), totalizing eight internal memories, in a similar fashion to Figure 4.1. 

We have chosen to use the ρVEX for our test cases since its VHDL code is accessible 

to the academic community, and the background of the author in the ISA is strong, therefore, 

the technique could be easily integrated to the hardware. As it will be shown later, however, we 

have taken a different approach to accelerate the experimentation process. 

 

5.1.1.2 VEX Simulation Platform 

 

VEX also provides a simulation system that permits the execution of VEX code in the 

host machine for a fast execution of applications. The compiler can generate executable code 

for x86 machines by outputting a C-like application that emulates the execution of VEX 

instructions. It also includes callbacks to a built-in level-one cache library, allowing the 

emulation of cache requests and providing a complete infrastructure for executing VEX 

applications in host machines, and therefore, no specific VEX processor is required. 

Coupled with the simulator, HP provides a library where users are allowed to include 

new customized instructions to the simulator. Instructions that have no side effects in memory 

can be emulated easily. Our SMM-specific instructions, detailed in section 4.2.1, were added 

to this library and software-managed memories were defined as arrays of bytes, allowing the 

library to have access to them. An insertion of an SMM instruction leads to a callback to this 

library, in other words, whenever an SMM instruction needs executing, this library is called 
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and the specific SMM is selected to either load or store a value to/from specific local memory 

addresses. 

 

5.1.2 LLVM  

 

As discussed in Chapter 4, SoMMA uses a memory architecture that requires 

modifications in hardware and software. Perhaps the most important and complex aspect of 

SoMMA is its software layer, which employs LLVM as the compiler framework for its code 

transformations (see section 4.2 Software). Though our contribution mainly focuses on 

proposing a new memory architecture for multi-issue processors, the implementation of a new 

backend to support a single-clustered VEX architecture in the LLVM framework was a major 

part of our work, generating code for ρVEX of up to 16-issue (even though ρVEX is limited to 

having a maximum of 8 issues). and thus, we make no use of the default VEX Compiler 

toolchain for code generation. 

The code transformation described in section 4.2.4 was implemented as an LLVM pass 

in the compiler framework. The modularity of LLVM showed to be a perfect fit for our work, 

as the addition of new optimizations can easily be done through the LLVM Pass Infrastructure 

(see in 2.2.2.4). LLVM also provides easy-to-manipulate data structures and algorithms to 

instructions and basic blocks, helping programmers to focus on what really matters in their 

transformations or analysis.  

 

5.1.3 Cacti-p 

 

Cacti-p (LI, S. et al., 2011) is an architecture-level framework for measuring power, 

energy, area and time constraints of Static Random Access Memory (SRAM)-based 

components. It supports modeling of many power-specific characteristics, such as power 

gating, long channel devices, and Hi-k metal gate, which makes it suitable for a range of 

situations in which power-specific attributes are required. 

We have used Cacti-p to obtain energy consumption information for two components: 

the software-managed memories and caches. Dynamic Random Access Memory (DRAM), on 

the other hand, was modeled with DRAMPower, as shown below. Among other information, 

Cacti-p outputs values for the total static power and dynamic energy per read and write 

operation, allowing us to measure the total energy consumption for the SMMs and caches. 
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Moreover, authors claim the framework provides results of power, area, and timing with an 

average error around 15%, and an average error for leakage power between 5% and 14% when 

validating against industrial SRAM designs.   

 

5.1.4 DRAMPower 

 

DRAMPower (CHANDRASEKAR et al., [s.d.]) is an open source tool for fast and 

accurate DRAM power and energy estimation for DDR2/DDR3/DDR4 and 

LPDDR/LPDDR2/LPDDR3 memories based on JEDEC standards. It provides two levels of 

abstraction in order to facilitate integration with existing system design flows: command and 

transaction level. At command level, DRAMPower can be integrated to DRAM controllers of 

existing systems and simulate requests through commands. Users without memory controller 

access can interact with DRAMPower using the memory transactions at the transactional level. 

 According to (KARTHIK CHANDRASEKAR, 2014), DRAMPower provides an 

average accuracy of 97% when compared with real power measurements from hardware for 

different DRAM operations, with its model being validated against a circuit-level DRAM 

power model. 

 

5.2 Methodology 

 

This section presents the experimental setup for our tests, discussing the characteristics 

of processors, caches and DRAM. We also present the benchmarks for comparison and 

experimental results. 

 

5.2.1 Experimental Setup 

 

Experiments consist of measuring speedup, energy consumption and the energy-delay 

product (EDP) from different perspectives, which will be detailed in their correspondent 

subsections. All results consider two scenarios that aim at maintaining similar area between 

processors. The same amount of memory added with SMMs was subtracted from the L1 data 

cache, thereby maintaining the same total memory. The first scenario consists of a baseline 

processor with 8 KB of data cache, and a modified processor with 4 KB of data cache, and eight 

512 Bytes SMMs, for a total of 8 KB. In the second scenario, we extend the size of data storage 
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to a total of 32 KB. Thus, the baseline processor has 32 KB of data cache, and the modified 

processor has 16 KB of data cache, and eight 2 KB SMMs. These are conservative approaches 

as the extra memory locations on the cache require additional tag storage. ICache of 8 KB and 

32KB were used for each scenario, respectively, so that instructions and data memory have 

equivalent space. Furthermore, we consider systems with 2 GB of Low-power DDR2 

(LPDDR2) memory, as we target embedded systems. Processors that implement our technique 

are denoted as SoMMA processors, while those that make no use of software-managed 

memories are the baselines. 

Figure 5.1 illustrates the workflow diagram used for the experimental evaluation of 

SoMMA. We observe the key role of LLVM in the process, generating assembly code and 

performing the transformation required by SoMMA (for a better explanation of how LLVM 

works, refer to section 2.2.2). After the assembly code generation, a modified HP 

Compiler/Simulator is used to generate executable code for the x86 Host, as explained in 

5.1.1.2. The simulator instructs the host application to output statistics for the executed 

program, with information about cycle counter, cache accesses and misses, essential for 

performance, energy and EDP evaluation. 

Figure 5.1 – Workflow diagram for experiments. 

 

Source: author 
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5.2.2 Performance 

 

Performance was evaluated in terms of full-system configurations by taking into 

consideration instructions’ cycles and cache accesses and misses, emulating a system with 

processor, data memory hierarchy (composed of either data cache only, or data cache and 

SMMs), instruction cache, and DRAM memory (note that misses in the caches are equivalent 

to data fetching on the DRAM). 

 

5.2.3 Energy consumption 

 

We have considered two scenarios for the evaluation of energy consumption: dynamic 

energy in the data memory hierarchy, and a full-system evaluation. Dynamic energy 

consumption was measured considering the energy cost per access, shown in Table 5.1, and 

total number of access (reads and writes) to data cache and SMMs. Full-system energy 

comparison between processors respects the following equation: 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑝𝑟𝑜𝑐. + 𝐸𝐼𝐶𝑎𝑐ℎ𝑒 + 𝐸𝐷𝐶𝑎𝑐ℎ𝑒 + 𝐸𝐷𝑅𝐴𝑀 

 

where the energy is the sum of static and dynamic energy consumption.  

Cacti-p (LI, S. et al., 2011) was used to measure energy from cache and SMMs 

components, using a 65nm technology, as detailed in Section 5.1.3. DRAM energy information 

was obtained with  DRAMPower (CHANDRASEKAR et al., [s.d.]). Static energy is calculated 

by multiplying static power of the memory with the application’s execution time. Dynamic 

energy in all memories is calculated according to the energy cost per access and the number of 

reads and writes for the memory. The formulas used to calculate static and dynamic energy  

consumption are as follows:  

 Table 5.1 – Energy cost per access in Caches and SMMs 

 Read (pJ) Write (pJ) 

Cache 4KB 10.91 14.17 

Cache 8KB 16.79 19.83 

Cache 16KB 24.51 26.05 

Cache 32KB 41.97 38.10 

SMM 512B 1.34 4.98 

SMM 2KB 3.35 6.24 

Source: author 
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𝐸𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 ∗ 𝑡𝑒𝑥𝑒𝑐 

 

𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑁𝑢𝑚𝑟𝑒𝑎𝑑 ∗ 𝐸𝑅𝑒𝑎𝑑 + 𝑁𝑢𝑚𝑤𝑟𝑖𝑡𝑒 ∗ 𝐸𝑤𝑟𝑖𝑡𝑒 

 

where 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 represents the static power, 𝑁𝑢𝑚𝑟𝑒𝑎𝑑 is the total of reads (or loads), 𝐸𝑅𝑒𝑎𝑑 is the 

energy cost per read, 𝑁𝑢𝑚𝑤𝑟𝑖𝑡𝑒 is the total of writes (or stores), and 𝐸𝑤𝑟𝑖𝑡𝑒 represents the energy 

cost per write. 

For the processor core, we use energy consumption measurements from (SARTOR et 

al., 2017; SARTOR; WONG, S; BECK, A C S, 2016), obtained through Cadence Encounter 

RTL compiler, using a 65 nm CMOS cell library from STMicroeletronics. The switching 

activity of the circuitry was set to 30%, which is a traditional value for system level analysis of 

microprocessors (GEUSKENS; ROSE, 2012). The equations used to estimate static and 

dynamic energy consumptions in the processors are as follows: 

 

𝐸𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 ∗ 𝑡𝑒𝑥𝑒𝑐 

 

𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = ∑ 𝑃𝑑𝑦𝑛𝐿𝑎𝑛𝑒 𝑖
∗ 𝑡𝑒𝑥𝑒𝑐 − 𝑃𝑑𝑦𝑛𝐿𝑎𝑛𝑒 𝑖

∗ 𝑡𝑛𝑜𝑝𝑠𝐿𝑎𝑛𝑒 𝑖

7

𝑖=0

 

 

where  𝑃𝑑𝑦𝑛𝐿𝑎𝑛𝑒 𝑖
 represents the dynamic power for lane i, and 𝑡𝑛𝑜𝑝𝑠𝐿𝑎𝑛𝑒 𝑖

 is the execution time 

that occurs a sequence of two nop instructions in lane i. 

Note that static energy of the processor is calculated similarly to memories. On the other 

hand, dynamic energy is estimated using two switching activities: 30% (as shown above), and 

0%, i.e., idle mode. When a nop is executed after another nop, there is no switching activity in 

the lane1, and thus, we must discard these cases when evaluating dynamic energy. 

                                                 

1 Note that we are not taking into consideration instruction fetch and decode in the processor 

pipeline, for simplicity. 
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 In order to measure nop after nop sequences, we have extended LLVM to print nop for 

all lanes not used in the bundle. Figure 5.2 shows an assembly code where lane-specific nops 

are included (they are represented by the asm,10X instructions, where X is the lane number). 

They are implemented in the same fashion as SMM instructions, through the addition of 

customized instructions within HP Platform. In the example, lanes 5 to 7 have nop after nop 

sequences. The second step consisted in adding lane-specific nop counters to the VEX 

Simulator, for computing the total of sequences for each lane. For every execution of nop, a 

callback to a library occurs (alike in SMM instructions), and counters can be updated. The last 

instruction in bundles asm,116 $r0.0, $r0.0 guarantees that counters are updated in every cycle. 

 

5.2.4 Energy-delay Product (EDP) 

 

Techniques to improve performance might have a negative impact on energy 

consumption, thus EDP comes into play as a metric to evaluate the quality of a system. We 

have also evaluated full-system EDP for the selected benchmarks. These results are the product 

of performance (execution time) and energy consumption. 

   

 

 

Figure 5.2 – Compiler generates lane-specific nops when no instruction is executed. The example 

show that lanes 5, 6 and 7 have a nop after nop sequence 

 

Source: author 
 

 c0 ldw $r0.21 = -516[$r0.11] 
 c0 mpylu $r0.20 = $r0.18, $r0.14 
 c0 mpyhs $r0.14 = $r0.18, $r0.14 
 c0 mpyhs $r0.18 = $r0.19, $r0.17 
 c0 mpylu $r0.17 = $r0.19, $r0.17 
 c0 asm,105 $r0.0, $r0.0 
 c0 asm,106 $r0.0, $r0.0 
 c0 asm,107 $r0.0, $r0.0 
 c0 asm,116 $r0.0, $r0.0 
;; 
 c0 ldw $r0.19 = 0[$r0.11] 
 c0 add $r0.14 = $r0.20, $r0.14 
 c0 asm,102 $r0.0, $r0.0 
 c0 asm,103 $r0.0, $r0.0 
 c0 asm,104 $r0.0, $r0.0 
 c0 asm,105 $r0.0, $r0.0 
 c0 asm,106 $r0.0, $r0.0 
 c0 asm,107 $r0.0, $r0.0 
 c0 asm,116 $r0.0, $r0.0 
;; 
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5.2.5 Benchmark Selection 

 

For our experiments, we have selected 9 benchmarks: a discrete Fourier transform 

(DFT), an edge detection algorithm (edge), a Fourier inverse transform algorithm (itver2), three 

matrix multiplication benchmarks with different matrix sizes (m10x10, m16x16 and m32x32), 

the sum of absolute differences (SAD), the KMP string matching, and an x264 video encoder 

algorithm. These benchmarks provide data reuse and regular access patterns, which allow the 

use of our technique. The choice of using three matrix multiplication benchmarks comes from 

how our technique may change performance depending on the workload. LLVM generates 

different intermediate code for each benchmark, mainly due to different choices regarding loop 

unrolling. 

 

5.3 Experimental Results 

 

5.3.1 Performance 

 

Figure 5.3 shows the speedup of the modified processors normalized by their respective 

baseline counterparts. Benchmarks dft, x264 and itver2 can provide good parallelism even for 

a single-port system, thus SoMMA was not capable of significantly improving performance for 

those benchmarks. We observe an average speedup of 1.118x and 1.121x in 4KB vs. 8KB and 

16KB vs. 32 KB comparisons, respectively. 

Performance improvements in SoMMA stem from allowing parallel access to data by 

using SMM allocation, as depicted in Figure 3.2. However, one could point out that such 

improvements are not significant considering the use of eight SMMs in parallel in comparison 

to the baseline, where a single-ported memory system is employed. There are two elements that 

help explaining these results: 

• Preamble insertion: because SoMMA uses memories controlled by software, a 

previous placement of data inside SMMs needs to happen, as explained in 

Section 4.2.2. The impact of the preamble code within execution time of 

applications is illustrated in Table 5.2. We notice an average of 7.6% increase 

in execution time, with two applications standing out from the rest, m10x10 and 

x264, with increases of 22.2% and 18.4%, respectively. Benchmarks edge and 
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kmp require no preamble code. Nonetheless, preamble code must be inserted 

whenever needed for correct execution 

• Though data are fetched in parallel in SMMs, applications still use the single-

ported cache to access part of the applications’ data. Hence, we are still limited, 

at a smaller scale, to the single port, as applications process data that come from 

Figure 5.3 –  Normalized Speedup 

(a) SoMMA processor with 4KB of DCache x Baseline with 8KB of DCache 

 

(b) SoMMA processor with 16KB of DCache x Baseline with 32KB of DCache. 

 

Source: author 
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both types of memory. SMM leverages data reuse, storing data that can be reused 

later, while data cache will be used to fetch data that is not reused later. As an 

example, kmp stores in the SMMs two variables: the word to be searched, and 

the table used to backtrack the search when a mismatch happens, i.e., variables 

that are reused during the execution. The text, on the other hand, will be fetched 

through the data cache system since no data reuse occurs. 

 

5.3.2 Energy Consumption 

 

5.3.2.1 Dynamic energy consumption 

 

Figure 5.4 illustrates this comparison. SoMMA 4KB and SoMMA 16KB consume 

59.5% and 63.7% less energy in the data memory system compared to their baselines, 

respectively.  Energy gains stem from two main reasons: each SMM access consumes 

substantially less than L1 accesses; and the L1 size reduction allows L1 accesses to consume 

less as well. 

Figure 5.5 shows that, even though the total number of accesses to data memory 

hierarchy (either SMM or data cache) was increased in SoMMA, most accesses to the L1 were 

replaced by SMM accesses. Due to the differences in individual energy costs per access 

between caches and SMMs, depicted in Table 5.1, SoMMA can reduce dynamic energy in the 

data memory hierarchy significantly. 

 

Table 5.2  – Execution time increase when adding preamble code 

Benchmark Execution Time Increase  

dft 1,032 

edge 1,000 

itver2 1,033 

m10x10 1,222 

m16x16 1,045 

m32x32 1,097 

sad 1,119 

kmp 1,000 

x264 1,184 

Avg 1,076 

Source: author 
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5.3.2.2 Full-system comparison 

 

Figure 5.6 depicts the full-system energy reduction, showing the normalized energy 

consumption for each component of the system (DRAM, processor, ICache, and Data 

Figure 5.4 – Normalized dynamic energy comparison. Baselines have 8KB and 32KB of data cache 

when compared to SoMMA 4KB and SoMMA 16KB, respectively. 

 

Source: author 
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Memory). The Data memory (DMem) component consists of either DCache and SMMs (in 

SoMMA processors), or DCache (in baselines). 

Figure 5.6 – Normalized Energy in a full-system configuration 

(a) SoMMA processor with 4KB of DCache x Baseline with 8KB of DCache,  

 

(b) SoMMA processor with 16KB of DCache x Baseline with 32KB of DCache 

 

Source: author 
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We have reduced energy consumption for almost every component in the applications. 

The impact of the preamble code can also be seen in the ICache comparison. Its insertion 

increased ICache accesses and misses in SoMMA processors, though without having a 

significant impact on the overall energy consumption. We also note how little influence the 

DMem dynamic energy consumption has in the full-system comparison, accounting for less 

than 5% of the overall value of energy consumption. Nonetheless, SoMMA consumes less 

energy than baselines due to two factors: 

• Performance impacts the overall gains of SoMMA in energy consumption as it 

influences static energy on all types of memories and the processor.  

• Main memory accesses also collaborate for reducing energy consumption. 

Static energy was improved due to better execution time, and dynamic energy 

was improved due to reduction in cache misses, detailed in section 5.3.4. 

Results show an energy reduction of 11% when comparing a SoMMA processor with 

4KB of DCache (and 4KB of SMMs) and the baseline with 8KB of DCache, and 12.8% in the 

comparison of an SoMMA processor with 16KB of DCache (and 16KB of SMMs) and a 

baseline with 32KB of DCache. Moreover, we notice how most of the energy consumption 

stems from main memory and processors.  
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5.3.3 Energy-delay Product (EDP) 

 

Figure 5.7 presents the comparison between processors, showing that SoMMA is more 

effective when it comes to EDP, because we show better results for both performance and 

energy consumption. We have reduced EDP by a factor of 21.3% in our 4KB vs 8KB 

comparison, and 23% when comparing SoMMA processor with 16KB of DCache (and 16KB 

of SMMs) and a baseline with 32KB of DCache.  

 

 

Figure 5.7 – EDP reduction in a full-system configuration 

(a) SoMMA processor with 4KB of DCache x Baseline with 8KB of DCache 

 

(b) SoMMA processor with 16KB of DCache x Baseline with 32KB of DCache. 

 

Source: author 
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5.3.4 Data Cache Misses 

 

In order to explain results in energy consumption, we can analyze the number of data 

cache misses between SoMMA and baseline processors. Although we consider SoMMA 

processors with half the data cache size of baseline processors due to the presence of SMMs to 

maintain area equivalence, SoMMA leverages data reuse to reduce data cache misses in many 

of the benchmarks.  

Figure 5.8 illustrates the data cache miss comparison between processors. It is noticed 

how some benchmarks, namely m10x10, m16x16, sad, and x264, can accommodate all 

Figure 5.8 – Data cache miss reduction 

(a) SoMMA processor with 4KB of DCache x Baseline with 8KB of DCache. 

 

(b) SoMMA processor with 16KB of DCache x Baseline with 32KB of DCache 

 

Source: author 
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application data in cache, leading to the same number of data cache misses in all processors. 

Applications that have a larger working set have reduced data cache misses in SoMMA 

processors, as many of those requests are replaced by SMM accesses and there is no need to 

accommodate such data into the cache. In our 4KB vs. 8KB comparison, five out of nine 

benchmarks showed a reduction in cache misses. As caches get larger, the difference between 

SoMMA and baseline narrows to only three cases. These results show that our software-based 

managing of data can exploit locality that traditional caching algorithms miss, thereby reducing 

overall miss rates. 

 

5.3.5 DAG Analysis 

 

SoMMA has the advantage over other methods through the expansion of the usability 

of SMMs to handle data in parallel, allowing multi-issue processors to exploit a higher ILP. 

DAG analysis can be used to explain why SoMMA performs better than baselines when it 

comes to performance improvements. In these DAGs, vertices are instructions and edges 

indicate dependencies. Thus, the compiler’s scheduler must accommodate the instructions in 

the lanes respecting the dependencies and each lane’s capabilities. Once scheduled, the height 

of the DAG of a basic block indicates how many very long instruction words will have to be 

executed. When analyzing the height of the basic blocks, especially those that are part of the 

applications’ kernels, we observe how our approach compresses DAG heights, which permits 

a faster performance. 

Figure 5.9 shows the DAG heights of the most executed BB for every benchmark, which 

corresponds to nearly 90% of the applications’ execution times. The baseline and SoMMA 

processors were set to work in a 24-issue configuration (maximum supported by the framework) 

and with a very large register file (256 registers), in order to minimize in number of issues and 

registers. This experiment’s goal is to assess the proximity between our technique and the ideal 

processor with unlimited resources (i.e. maximum number of load/store units and any other 

operation) in comparison to the baseline. DAG heights are calculated according to the resources 

available for each processor, and the optimized height is calculated by setting up a processor 

with a number of resources of any kind to the maximum. 

We can see how applications compiled with SMMs generate DAGs with shorter heights, 

enabling more opportunities of parallelism. SoMMA beats the baseline in all situations, 

approaching the optimal average height. The average height for the baseline is 35, while 
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SoMMA provides an average DAG height of 24, with the optimal average DAG height of 17. 

Note that DAG height differences between baseline and SoMMA are not directly translated to 

performance improvements. Resource-limited processors can still reschedule instructions in 

order to minimize DAG heights. Nevertheless, SoMMA generates shorter DAGs that approach 

the minimum DAG heights possible. 

  

5.3.6 Potential for improvements: Finite Impulse Response (FIR) Filter Case 

 

The performance increase observed in SoMMA processors averaged around 12% over 

baselines, showing that combining software-managed memories and the data cache can open 

up new possibilities of parallelism. SoMMA provides a very simple approach to handle multiple 

memory locations at once, making it possible for users to handwrite their own kernel programs. 

We demonstrate through a finite impulse response (FIR) filter application how SoMMA can be 

used for manual code writing, showing that a fine-tuned compiler can potentially tackle other 

application domains. 

 

 

 

Figure 5.9 – DAG Heights for the main BBs with their optimized values 

 

Source: author 
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5.3.6.1 Algorithm and Data placement 

 

FIR is an extremely parallelizable application with few control-flow operations, a well-

known and vastly used DSP application, providing great possibilities of parallelism. Due to 

how data are consumed, however, FIR requires a more refined and complex data replacement 

strategy than the ones proposed in Figure 4.5, which is not yet available at compiler. Thus we 

detail a handwriting FIR code that uses SoMMA and is able to provide very high parallelism. 

Figure 5.10 shows a small snippet of C code for a filter application to calculate 256 

output values for a 15th -order filter. We observe how the inner loop can easily be unrolled to 

explore ILP by executing multiple iterations at the same time. Another important quality of 

filters is that the number of data needed for calculating one output value is proportional to its 

order. For our 15th order filter, we need 32 values to produce one output: 16 coefficients and 16 

input samples. Note, however, that only one datum, namely the latest input sample, was not 

used in the previous iteration of the outer loop. Due to data reusability, we can use SMMs to 

store both input and coefficient values for each outer loop iteration. 

Figure 5.11 shows the placement of inputs and coefficients on the SMMs for four 

distinct outer loop iterations. The four depicted cases represent four consecutive iterations of 

the outer filter loop, and are the only required cases for an 8-issue processor. Coefficients are 

stored in the first 4 SPMs, while input values are stored in the SPMs 4 through 7. Colors 

represent inner loop iterations with an unrolled factor of 4, i.e., positions with the same color 

are fetched in parallel. The fetched data can then be element-wise multiplied and accumulated. 

Considering the 15th order filter and an 8-issue processor, after four parallel data fetches and 

multiplication rounds (represented by the four colors in Figure 5.11), one output sample is 

produced. Figure 5.11 also depicts the register allocation method for the application. The same 

registers are used to multiply one another, e. g., r1 always multiplies r8, r2 multiplies r7, and 

Figure 5.10 – Small snippet of C-code for a FIR filter 

    
   // c[] = filter coefficients 
   // x[] = input values 
   // y[] = output values 
   for(int j = 0; j < 256; ++j) { 
      int s = 0;    // s = accumulator 
      for (int I = 0; I < 16; ++i) { 
         s += c[i] * x[i+j]; 
      } 
      Y[j] = s; 
   } 
 

Source: author 
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so on. That way, the logic of the convolution is satisfied. The preamble code, as described in a 

previous section, will fetch all coefficients and the input for the first iteration. Other iterations 

will only need to fetch one input value, since all other values are already in memory. 

Note that, for each case, there is always one position of each color in each lane, meaning 

that all elements can be fetched in parallel, and all SMMs are used. Four cases are required 

because the algorithm needs to emulate a shift on the input buffer. The difference between the 

current iteration and the previous is the presence of a new datum that replaces the previous 

oldest datum and that is multiplied by the first coefficient. We handle fetches from SMMs 

through a software-managed circular buffer that keeps track of which data should be fetched 

and where the next input datum should be placed on the memories. For example, iteration 0 

will use case 1. Iteration 1 will need to fetch one new value from memory and store in SMM 5 

in the position assigned at the circular buffer. Other iterations will follow these same 

procedures. Note that this approach is general for circular buffers, and can be used in any 

application that needs this kind of data structure. 

Moreover, the ILP improvement observed when compared to a regular single ported 

processor is noteworthy. Once the data is on the SMMs, all memory operations can be 

performed in parallel, since each internal memory is independent from one another. When using 

only a regular single-ported hierarchy, multiple load instructions would limit the ILP, 

preventing the possibility of performing parallel multiplications. 

 

 

Figure 5.11 – Data placement on the SMMs for FIR 

 

Source: author 

 

SPM 0 1 2 3 4 5 6 7 SPM 0 1 2 3 4 5 6 7

Case 1 Case 3

0 c0 (r1) c1 (r2) c2 (r3) c3 (r4) xi (r8) xi-15 (r5) xi-14 (r6) xi-13 (r7) 0 c0 (r1) c1 (r2) c2 (r3) c3 (r4) xi-2 (r6) xi-1 (r7) xi (r8) xi-15 (r5)

1 c4 (r1) c5 (r2) c6 (r3) c7 (r4) xi-12 (r8) xi-11 (r5) xi-10 (r6) xi-9 (r7) 1 c4 (r1) c5 (r2) c6 (r3) c7 (r4) xi-14 (r6) xi-13 (r7) xi-12 (r8) xi-11 (r5)

2 c8 (r1) c9 (r2) c10 (r3) c11 (r4) xi-8 (r8) xi-7 (r5) xi-6 (r6) xi-5 (r7) 2 c8 (r1) c9 (r2) c10 (r3) c11 (r4) xi-10 (r6) xi-9 (r7) xi-8 (r8) xi-7 (r5)

3 c12 (r1) c13 (r2) c14 (r3) c15 (r4) xi-4 (r8) xi-3 (r5) xi-2 (r6) xi-1 (r7) 3 c12 (r1) c13 (r2) c14 (r3) c15 (r4) xi-6 (r6) xi-5 (r7) xi-4 (r8) xi-3 (r5)

Case 2 Case 4

0 c0 (r1) c1 (r2) c2 (r3) c3 (r4) xi-1 (r7) xi (r8) xi-15 (r5) xi-14 (r6) 0 c0 (r1) c1 (r2) c2 (r3) c3 (r4) xi-3 (r5) xi-2 (r6) xi-1 (r7) xi (r8)

1 c4 (r1) c5 (r2) c6 (r3) c7 (r4) xi-13 (r7) xi-12 (r8) xi-11 (r5) xi-10 (r6) 1 c4 (r1) c5 (r2) c6 (r3) c7 (r4) xi-15 (r5) xi-14 (r6) xi-13 (r7) xi-12 (r8)

2 c8 (r1) c9 (r2) c10 (r3) c11 (r4) xi-9 (r7) xi-8 (r8) xi-7 (r5) xi-6 (r6) 2 c8 (r1) c9 (r2) c10 (r3) c11 (r4) xi-11 (r5) xi-10 (r6) xi-9 (r7) xi-8 (r8)

3 c12 (r1) c13 (r2) c14 (r3) c15 (r4) xi-5 (r7) xi-4 (r8) xi-3 (r5) xi-2 (r6) 3 c12 (r1) c13 (r2) c14 (r3) c15 (r4) xi-7 (r5) xi-6 (r6) xi-5 (r7) xi-4 (r8)
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5.3.6.2 Performance Results 

 

FIR was simulated with 256 input values and taps of 16 (FIR 16), 32 (FIR 32), 64 (FIR 

64), 128 (FIR 128), and 256 (FIR 256) values. Figure 5.12 illustrates the speedup comparison 

between SoMMA and the baseline processors. Due to the negligible performance difference 

between 4KB vs 8KB and 16KB vs. 32KB configuration, we only show the comparison from 

the latter. Results show that SoMMA has a speedup of 1.75x for large number of taps, achieving 

up to 2.15x for Tap 64. Small tap sizes do not take advantage of the technique in comparison 

with the baseline, because the number of taps is sufficiently small to always be stored in the 

register file, therefore, there is no need for fetching these values from memory at every iteration. 

The performance slow-down observed in Tap 16 and Tap 32 come from the preamble code 

needed to accommodate coefficients and input data.  

Moreover, the possibility of storing both input data and coefficients in SMMs and 

having only one datum to be fetched at every iteration source the performance improvements 

for large number of taps. We also notice that such behavior is different from previously 

analyzed benchmarks, that operated on both SMMs and data cache at a similar proportion. A 

fine-tuned compiler, that can understand and generate data placement for FIR-like benchmarks, 

is part of our future works enabling new possibilities of improvements to SoMMA. 

  

Figure 5.12 – Performance Speedup for a handwritten FIR in SoMMA 

 

Source: author 
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6 CONCLUSIONS AND FUTURE PERSPECTIVES 

 

In this dissertation, we have presented SoMMA, a software-managed memory 

architecture for embedded multi-issue processors that combines software-managed memories 

and the data cache. Its main goal is to help mitigating the ever-going struggle between memory 

bandwidth and processor performance, by creating a layer of memories that can provide a 

higher bandwidth in comparison to cache-only based systems. SoMMA leverages applications’ 

data reusability and the low cost of read/write operations of SMMs to avoid frequent access to 

data cache. It aims at providing reductions in energy end EDP while still offering a better ILP 

through the use of multiple software-managed memories in parallel. We have developed an 

LLVM-based backend for a VLIW processor that analyzes and transforms code to operate such 

memories in cooperation with the memory hierarchy. 

Through a series of experiments, SoMMA showed to provide better performance, 

energy and also EDP in comparison to cache-only processors. SoMMA processors best 

baselines in average speedups of 1.118x and 1.121x in a set of benchmarks for the ρVEX 

processor. Energy consumption was reduced to 89% and 87.2%, while EDP showed reductions 

of 21.3% and 23%, all within experiments of full-system configurations with equivalent area. 

When considering the dynamic energy consumption in the data memory hierarchy solely, 

SoMMA showed reductions of 59.5% and 63.7% within the same experiments. 

Moreover, data cache miss analysis shows that SoMMA can also reduce the number of 

cache misses even when halving cache size, demonstrating that SoMMA is effective when data 

reuse is presented in the application. Lastly, a DAG analysis experiment demonstrates that our 

solution bests DAG heights in baselines by a margin of 31.4%, and generates shorter DAG that 

approach the minimum DAG heights possible. 

 

6.1 Future works 

 

The work developed during this dissertation enlightens new possibilities for researchers.  

The algorithm for SoMMA currently works with global variables. Extending SoMMA to 

support stack and heap-allocated variables means widening the applicability of the architecture 

to new benchmarks, making SoMMA a more generic solution to reduce energy consumption 

and EDP in multi-issue processors.  

Additionally, we demonstrate how SoMMA can be used through a VLIW processor, 

though other ILP-capable processors could also be considered. The rapid emerging of RISC-V 
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ISA (WATERMAN et al., 2014), an open-source ISA for education, research and also industrial 

development, and its design to support extensive customization and specialization of new 

instructions in the ISA, would allow SoMMA to be expanded to RISC-V superscalar processors 

(ASANOVIC; PATTERSON; CELIO, 2015). Still in the category of ILP-capable processors, 

SoMMA could potentially be explored in SIMD processors or GPUs, as data can be placed at 

SMMs and accessed in a uniform fashion. 

 Section 5.3.6 also shows potential for improvements that can be exploited by tuning the 

compiler with new SMM data placements. We have seen the great performance improvements 

observed with a FIR benchmark when a more complex SMM placement can be performed. 

Future works on the compiler to generate new SMM data placements are envisioned by taking 

into consideration loop optimization techniques such as loop tiling, as well as exploring new 

instruction scheduling algorithms to make better use of SMMs. Additionally, SoMMA could 

potentially be combined with speculative execution and memory prefetching techniques for 

further improvements. 

 

6.2 Publications 

 

During the course of this dissertation, the following publications were accomplished by 

the author. 

 JOST, T.; NAZAR, G.; CARRO, L. Improving Performance in VLIW Soft-core 

Processors through Software-controlled ScratchPads. Embedded Computer Systems: 

Architectures, Modeling, and Simulation (SAMOS), 2016 International Conference on, 

2016  

JOST, T.; NAZAR, G.; CARRO, L. An Energy-Efficient Memory Hierarchy for Multi-

Issue Processors. Design, Automation & Test in Europe Conference & Exhibition (DATE), 

2017. 

JOST, T. T.; NAZAR, G. L.; CARRO, L. Scalable memory architecture for soft-core 

processors. The IEEE International Conference on Computer Design (ICCD), 2016. p. 

396–399.  
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