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“Whether we are based on carbon or silicon makes no fundamental difference.

We should each be treated with appropriate respect.”

— ARTHUR C. CLARKE, 2010: ODYSSEY TWO
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DHyANA: a Digital Hierarchical Neuromorphic Architecture for Liquid

Computing

ABSTRACT

Neural Networks has been a subject of research for at least sixty years. From the effec-
tiveness in processing information to the amazing ability of tolerating faults, there are
countless processing mechanisms in the brain that fascinates us. Thereupon, it comes with
no surprise that as enabling technologies have become available, scientists and engineers
have raised the efforts to understand, simulate and mimic parts of it.
In a similar approach to that of the Human Genome Project, the quest for innovative
technologies within the field has given birth to billion dollar projects and global efforts,
what some call a global blossom of neuroscience research.
Advances in hardware have made the simulation of millions or even billions of neurons pos-
sible. However, existing approaches cannot yet provide the even more dense interconnect
for the massive number of neurons and synapses required.
In this regard, this work proposes DHyANA (Digital HierArchical Neuromorphic Ar-
chitecture), a new hardware architecture for a spiking neural network using hierarchical
network-on-chip communication. The architecture is optimized for Liquid State Machine
(LSM) implementations.
DHyANA was exhaustively tested in simulation platforms, as well as implemented in
an Altera Stratix IV FPGA. Furthermore, a logic synthesis analysis using 65-nm CMOS
technology was performed in order to evaluate and better compare the resulting system
with similar designs, achieving an area of 0.23mm2 and a power dissipation of 147mW for
a 256 neurons implementation.

Keywords: DHyANA, spiking neural network, hierarchical network-on-chip, biomimetic,

neuromorphic.



DHyANA: uma Arquitetura Digital Neuromórfica Hierárquica para Máquinas de

Estado Líquido

RESUMO

Redes Neurais têm sido um tema de pesquisas por pelo menos sessenta anos. Desde a
eficácia no processamento de informações à incrível capacidade de tolerar falhas, são
incontáveis os mecanismos no cérebro que nos fascinam. Assim, não é nenhuma surpresa
que, na medida que tecnologias facilitadoras tornam-se disponíveis, cientistas e engenheiros
têm aumentado os esforços para o compreender e simular.
Em uma abordagem semelhante à do Projeto Genoma Humano, a busca por tecnologias
inovadoras na área deu origem a projetos internacionais que custam bilhões de dólares, o
que alguns denominam o despertar global de pesquisa da neurociência.
Avanços em hardware fizeram a simulação de milhões ou até bilhões de neurônios possível.
No entanto, as abordagens existentes ainda não são capazes de fornecer a densidade de
conexões necessária ao enorme número de neurônios e sinapses.
Neste sentido, este trabalho propõe DHyANA (Arquitetura Digital Neuromórfica Hie-
rárquica), uma nova arquitetura em hardware para redes neurais pulsadas, a qual utiliza
comunicação em rede-em-chip hierárquica. A arquitetura é otimizada para implementações
de Máquinas de Estado Líquido.
A arquitetura DHyANA foi exaustivamente testada em plataformas de simulação, bem
como implementada em uma FPGA Stratix IV da Altera. Além disso, foi realizada a
síntese lógica em tecnologia 65nm, a fim de melhor avaliar e comparar o sistema resultante
com projetos similares, alcançando uma área de 0,23mm2 e potência de 147mW para uma
implementação de 256 neurônios.

Palavras-chave: DHyANA, rede neural pulsada, rede em chip hierárquica, biomimético,

neuromórfico.
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1 INTRODUCTION

The brain is an amazing and highly efficient three-pound machine, and definitely

one of the most complex and magnificent structures in the human body. It is formed by a

network of more than 100 billion single nerve cells interconnected in systems that construct

our perceptions of the world, fix our attention, and control the machinery of our actions

(KANDEL et al., 2013). Understanding how complex processes in the brain give rise to

complex behavior is one of the key scientific challenges in the twenty-first century, and a

grown effort is rising in a global scale.

Furthermore, for the last fifty years, Moore’s Law have powered tremendous

advances in computing, allowing supercomputers to reach petaflop information-processing

rates. Such a growth rate is by far the largest of any kind within the roughly 10,000 years

of human civilization, and have revolutionized science, technology and medicine to the

extent that it is now becoming feasible to simulate networks of neurons, brain regions and,

eventually, the whole brain.

One of the first brain-scale models ever developed was the thalamocortical model

by Izhikevich and Edelman, in which a million spiking neurons were simulated (IZHIKE-

VICH; EDELMAN, 2008). Interestingly, the model exhibited behavioral phenomena

similar to normal brain activity that were not previously built in, such as spontaneous

activity, sensitivity to changes in individual neurons and rhythms of spiking activity.

Around the same time, Henry Markram launched the highly publicized Blue Brain

Project, a partnership with IBM and the École Polytechnique Fédérale de Lausanne (EPFL).

Using the massive computing power of IBM’s Blue Gene supercomputer, the project aims

to simulate the brains of mammals with a high level of biological accuracy (MARKRAM,

2006).

From that on, a number of large-scale projects have risen. The multi-million

dollar brain research initiatives such as European Union’s HBP and NETT, Unites States

MindScope and BRAIN Initiative, Japan’s Brain/MINDS as well as the increasing number

of research facilities worldwide (See Figure 1.1) prove that we are at a historical moment

for the brain.

These researches can bring several benefits to the human kind. From the ability

to better understand and seek treatment for brain disorders to the expertise to model and

develop intelligent systems, the motivations for implementing brain models are countless.

The ability to develop Brain-Machine Interfaces (BMIs) and neuroprostheses, for instance,
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Figure 1.1: It Takes the World to Map the Brain.

Source: based on (SEGEV, 2016)

would help improve the quality of life of several people affected by neurological disorders,

such as Parkinsons’ and Alzheimer’s disease. As of 2016, cochlear implants are among

the most successful ones, and in about 30 years, more than 220.000 patients worldwide

now enjoy restored hearing because of such devices. Other research cases developed

brain-activated upper and lower limb prostheses for amputees and paralytics, as well as

retinal implants and even hippocampus emulation.

Still, to become possible, brain-scale models require yet more computational power.

And as the Moore’s law becomes less feasible, further computational optimizations have to

be researched in order to promote exascaling computing, for it is believed to be the order

of processing power of the human brain at neural level.
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1.1 Problem Formulation and Motivation

It is estimated that the brain is composed of approximately 1011 processing elements,

the neurons, which are extremely specialized cells. They generate electrical signals in

response to chemical agents or other inputs and disseminate them through its axons to other

cells (DAYAN; ABBOTT, 2005). The neuronal ionic mechanisms that generate the action

potentials are known today mostly due to the pioneering work developed by Hodgkin and

Huxley in 1952 (HODGKIN; HUXLEY, 1952). The neuron behavior is modeled by their

approach by using four differential equations to represent the membrane dynamics and the

non-linear conductances of three types of ion channels.

Since then, a lot of mathematical models were developed, such as the Integrate-and-

Fire and the Izhikevich models (IZHIKEVICH, 2004), whose networks were proven to be

computationally more powerful and yet consume lower power than the McCulloch–Pitts

and threshold gates based ones (MAASS, 1996; MAASS, 1997; ZHANG et al., 2015).

Consequently, there has been a lot of effort toward developing more biologically inspired

learning algorithms, network structures, and applications of Spiking Neural Networks

(SNNs).

Individual elements of information, however, are encoded in the brain by popula-

tions or clusters of interconnected neurons, rather than by single cells (POUGET; DAYAN;

ZEMEL, 2000). It is also accepted that it is the type and timing of these spike trains that

encodes communications between neurons within the brain. Consequently, there has been

a lot of effort toward developing more biologically inspired Spiking Neural Networks and

learning algorithms, thus aiming at the potential sources of cognition itself.

SNNs are essentially a population of spiking neurons, exchanging spikes to each

other via weighted connections, reflecting the way real neurons project to others and

interact through synapses (CAO; PIPA, 2010). Implementations of SNNs are largely

used, and can be applied in various areas, such as character recognition (KULKARNI;

BAGHINI, 2013; LIU; YUE, 2014), medical diagnosis and analysis (SUN et al., 2011;

ROY; SCHAFFER; LARAMEE, 2013), financial predictions (REID; HUSSAIN; TAWFIK,

2013) and robotics (HULEA; CARUNTU, 2014; KERR et al., 2012; WANG et al., 2010;

ALNAJJAR; MURASE, 2005), to name a few.

The development of SNNs in hardware has been a wide research area, since it

benefits from the intrinsic parallel nature of hardware implementations, allowing very large

speedups compared to software implementations in sequential machines. Several overview
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and survey publications on digital hardware implementations of neural networks have been

published (MAGUIRE et al., 2007; MISRA; SAHA, 2010; SCHÄFER et al., 2002).

Nevertheless, SNNs are difficult to train in a supervised fashion, mostly since all

simple spiking neuron models have hard thresholding, which makes the calculation of gra-

dients very prone to errors, deteriorating the learning rule’s performance (SCHRAUWEN

et al., 2008). One way to circumvent this drawback is by using fixed parameters, which

is what is embodied by the Liquid State Machine (LSM) concept, developed by Maass,

Natschläger and Markram (2002). Inspired by the fact that the neocortex processes a wide

spectrum of information by stereotypical neural microcircuitry, the LSM consists of a

reservoir receiving input spike trains and a group of readout neurons receiving signals from

the reservoir. The concept, in which a recurrent network of spiking neurons is constructed

in a way that the network parameters are fixed and randomly chosen, is similar to that of

Echo State Network (ESN) (JAEGER, 2001a), being both part of a new paradigm named

Reservoir Computing (RC) (VERSTRAETEN, 2009).

LSMs could benefit even more of hardware implementations, since for most of

its applications, quite large networks of spiking neurons need to be simulated with hard

real-time constraints (SCHRAUWEN et al., 2008). Furthermore, multiple outputs can

be generated from the same reservoir, which in turn allows the implementation of a

generic hardware reservoir component operating on different applications and with multiple

outputs.

Nevertheless, the ever increasing size of the networks poses a huge challenge

when it comes to its high inter-neuron connectivity requirements. If one would have

the need to simulate the interconnection topology of, say, a mammalian neocortex, the

number of synapses per neuron should be in average between 2 × 103 and 2 × 104

(JOHANSSON; LANSNER, 2007), which is a significant limiting factor in the suitability

of its implementation in hardware. In the context of a similar connectivity problem on

System-on-Chip (SoC) design, where interconnect scalability is paramount, the works from

Benini and Micheli (2002), Dally and Towles (2001), Hemani et al. (2000) and Jantsch

and Tenhunen (2003) introduced the concept of Network-on-Chip (NoC). Within such

concept, elements from traditional computer networking are employed in order to realize

the communication of the hardware structure.

There are already some efforts, both in academy and industry, in which the concept

of Networks-on-Chip were utilized in order to implement highly scalable large-scale

hardware neuromorphic systems. The magnitude of such projects has shown a large growth
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in the number of neurons and synapses over the past years, relatively to the study in

(MISRA; SAHA, 2010). Such a growth, although not yet near of reaching the human

brain scale, is very encouraging since the ever-increasing ability to emulate parts of the

brain makes it possible to understand its functioning. It also enables the improvement of

computing tasks that involve learning and autonomous decision making capabilities such

as autonomous robotics and assistive technologies.

However, there is still a huge ground to be covered, and the remaining challenges are

also fundamental issues. There is still no consensus within the literature as of appropriate

neuron models, interconnect and architectural issues, etc. There are also various design

choices that need to be explored, such as new combinations of hierarchical topologies and

the use of more complex neuron models within the systems. It is thus vitally important

that such trend of research keep its growth in order to address the remaining challenges, so

that the ambition to better understand the brain can be overcome.

The aim of this work is, consequently, to present DHyANA, a digital spiking

neural network architecture which is optimized for liquid computing and employs the NoC

concept for its inter-neuron communication. The system is intended to be as scalable,

complex and biologically-realistic as possible, so it can ultimately assist in the exploration

and understanding of neuroscience.

The main contributions of this work can be divided in two main parts: the devel-

opment of DHyANA, an architecture which employs hierarchical topology and network-

on-chip communication, intended to be used in later neuroscience and machine learning

research; and the design of the hierarchical infrastructure of the DHyANA, by implement-

ing a bus-based communication, used in the Cluster Level of the architecture, as well as

the control, assemblage and decryption of the Global Network-on-Chip Packets.

1.2 Text Organization

Chapter 2 presents the background theory and the challenges faced when imple-

menting each technology. Chapter 3 presents a review of the main current designs on

neuromorphic hardware, divided into three categories. The sessions thus introduce the

state-of-the art for non-scalable or special purpose works in FPGA, hardware implemen-

tations of LSMs and scalable and large scale general purpose SNNs in hardware (mostly

using NoCs). Chapter 4 describes the proposed architecture, exploring its building blocks

and design choices, as well as how they have been put together in order to become the



DHyANA architecture. Chapter 5 explores the Cluster Level, describing in deep detail its

architecture and how it fits within the whole system. Chapter 6 indicates the results and

comparison with the literature and industry state-of-the-art. Finally, Chapter 7 concludes

the work and points some directions for future research.
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2 BACKGROUND

In order to understand the constraints involved in neural networks modelling, the

beginning of this chapter will explore some neurobiological premises. With a focus on

the neurons, the first section offers a sufficient introduction to the phenomenological

level of the models to be presented, even though they are a simplification of the true

complexity of neurobiology. Next, the mathematical models that are used to simulate

neuronal cells and their respective waveforms are covered, as well as the main trade-offs

on their implementation. Then, a brief on information coding and networks of neurons

will be presented, introducing the key aspects of timing and learning.

Hereafter, the key features of Reservoir Computing will be covered. The Liquid

State Machines will be emphasized, for the aim of this work is to optimize the proposed

architecture for this specific kind of network.

Lastly, the concepts and technologies of Networks-on-Chip will also be reviewed.

Since it is a very important part of this project, NoCs will be carefully explained in the

third section, as well as some of the most important design premises necessary for its

implementation.

2.1 Spiking Neural Networks

2.1.1 Spiking Neurons: A Biological Perspective

A neuron is an extremely specialized cell, which generates electrical signals in

response to chemical agents or other inputs, and disseminate them through its axons

to other cells (DAYAN; ABBOTT, 2005). As observable in Figure 2.1, the neuron is

composed mainly by the cell body, or soma, the dendrites, and the axon, which may cross

large portions of the brain or even of the entire body.

The axon may divide itself in order to connect with the dendrites of many other

cells. In fact, the gray matter of the human brain contains a large amount of such axons, in

the order of 4 km in every cubic millimeter (MAASS, 2002). These connections, which can

be seen as some kind of chemical resistor, are called the synapses. The electrical potential

between the intra- and extracellular medium of a neuron, which under resting (polarized)

conditions is about -70mV, is the relevant signal to the nervous system (DAYAN; ABBOTT,

2005).
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Figure 2.1: Representation of a neuron

Source: The author

A typical neuron receives more than 10,000 inputs from other neurons through

their synapses (MAGUIRE et al., 2007), which produce electrical transmembrane currents

that change the membrane potential of the neuron. These changes are called postsynaptic

potentials (PSPs). Large currents may produce significant PSPs, which can be amplified by

the voltage-sensitive channels embedded in the neuronal membrane, and that can generate

an action potential or spike.

During a spike, the synapses release a neurotransmitter that quickly diffuses to

the post-synaptic neuron. In the post-synaptic neuron, these neurotransmitters affect the

neuron’s membrane potential. Excitatory Postsynaptic Potentials (EPSPs) increase the

membrane potential (depolarize), while Inhibitory Postsynaptic Potentials (IPSPs) decrease

the membrane potential (hyperpolarization) (GRUNING; BOHTE, 2014).

In contrast to the spikes, which are all very similar, the size and shape of these

PSPs depends on the particular synapse that causes it. Actually, it will also depend

on the current "mood" and the recent "experiences" of the particular synapse, since the

postsynaptic potentials have different sizes, depending on the pattern of spikes that have

reached the synapse in the past, on the interaction of these spikes with the firing activity of
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Figure 2.2: Main parts of a synapse

Source: Bekolay (2011)

the postsynaptic neuron, and also on other signals that reach the synapse in the form of

various molecules (e.g. neurohormones) through the extracellular fluid (MAASS, 2002).

Furthermore, depending on the type or state of a neuron, or even the timing and type

of inputs it just received, the characteristics of the spike train will also change. Hence, there

are some different spiking modes, including but not limited to: phasic spiking, where a

single isolated spike is fired; tonic spiking, where single spikes are fired at regular intervals;

and tonic bursting, where small bursts of spikes are fired at regular intervals (THOMAS;

LUK, 2009). They can be seen in Figure 2.3.

2.1.2 Neuron Mathematical Models

There are many spiking neuron models, each varying in levels of complexity,

computational intensity and biological accuracy, and a good overview of them can be seen

in (IZHIKEVICH, 2004). The most biologically accurate and one of the most commonly

used mathematical models of the neuron is the one developed by Hodgkin and Huxley
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Figure 2.3: Summary of the neuro-computational properties of biological spiking neurons.

Source: Izhikevich (2004)
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(1952). By researching the behavior of giant squid neurons (whose size is 100 to 1000

times larger than those in the human brain), they developed a mathematical model which

can reproduce all kinds of neurons with a good precision in terms of shape of spikes

and complex firing activities (AMBROISE et al., 2013). Nevertheless, this model also

requires the estimation of a large number of parameters. Also, perhaps its major drawback

is that the mathematical model is very computer intensive, as it uses up to as much as ten

differential equations per neuron (FOX, 2013), which makes it even more problematic,

especially in FPGA implementations, if one considers its hardware limitations.

Since the work from Hodgkin and Huxley was introduced, numerous models have

been made in order to reduce its complexity. Nevertheless, none of the models is able

to reach such biophysical accuracy, as well as the number of neural behaviors that the

Hodgkin-Huxley model can reproduce. One of the simplest models is the Leaky Integrate-

and-Fire (LIF), which uses only one differential equation to model the behavior of a

neuron (FOX, 2013). It basically idealizes a neuron as having Ohmic leakage current

and a number of voltage-gated currents de-activated at rest (IZHIKEVICH, 2007). The

differential equation describes the voltage given by a capacitor charge, viewing the neuron

as an integrator that, at a certain threshold voltage, is said to fire. Unfortunately, such

simple mathematical model has flaws, in the sense that it is not as nearly biologically

plausible, and may even be a waste of time for a computational neuroscientist who would

want to simulate large-scale networks (IZHIKEVICH, 2007).

Another commonly used neuron mathematical model was proposed by Izhikevich

(2003), and stands in the middle ground between complexity and biological plausibility

scale, as observable in Figure 2.4. In fact, although not as simple as the integrate-and-fire,

the Izhikevich model can mimic various nonlinear responses of biological neurons, making

it almost as versatile as the Hodgkin-Huxley model at a fraction of its computational cost.

Note that, according to the metrics used by Izhikevich, the model proposed by

him stands in an attractive position of the graphics when it comes to the trade-off be-

tween the two axes. Therefore, the model proves itself an interesting choice for digital

implementations of neural networks, fact also confirmed by Table 2.1.
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Figure 2.4: Biological Plausibility versus Computational Complexity of Spiking Neuron
Models

Source: Izhikevich (2004)

Table 2.1: Comparison of the neuro-computational properties of spiking and bursting
models. The “BIO” field means whether the model is biophysically meaningful; “FLP” is
short for number of flops, an approximate number of floating point operations (addition,
multiplication, etc.) needed to simulate the model during a 1 ms time span.
Models BIO (A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L) (M) (N) (O) (P) (Q) (R) (S) (T) FLP

IF x x x 5

IF with adapt. x x x x x 10

IF-or-burst x x x x x x x x x x x 13

resonate-and-fire x x x x x x x x x x x 10

quadratic IF x x x x x x 7

Izhikevich x x x x x x x x x x x x x x x x x x x x 13

FitzHugh-Nagumo x x x x x x x x x x x x 72

Hindmarsh-Rose x x x x x x x x x x x x x x x x x x x x 120

Morris-Lecar x x x x x x x x x x x x x x x x 600

Wilson x x x x x x x x x x x x x x x x x x x x 180

Hodgkin-Huxley x x x x x x x x x x x x x x x x x x x x x 1200

Source: based on Fig 2 from Izhikevich (2004)

The neuron model idealized by Izhikevich is described by the following two coupled

differential equations.

dv

dt
= 0.04v2 + 5v + 140− u + IIzh (2.1)
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du

dt
= a(bu− v) (2.2)

The variable v denotes the membrane potential, and u represents membrane recovery

parameter. I is the synaptic input, and a, b are parameters controlling the dynamical

behavior of the neural model. There is also a reset condition, controlled by the parameters

c, d, and defined by equation (2.3).

v ≥ 30mV ⇒

v ← c

u← u + d
(2.3)

2.1.3 Networks and Information Coding

The aim of artificial spiking neural networks is to carry out neural computation. This

requires that meaning is given to neural spiking: the quantities relevant to the computation

have to be expressed in terms of the spikes that neurons communicate with (GRUNING;

BOHTE, 2014).

It is an accepted theory that individual elements of information are encoded in the

brain by populations or clusters of interconnected neurons. Furthermore, the type and

timing of these spike trains are essential for the encoding of communications between

neurons within the brain.

Hence it would be appropriate to compare the output of a network of neurons with

a piece of music played by an orchestra. To recognize such piece of music it is not enough

to know how often each note is played by each musician. Instead one has to know how the

notes of the musicians are embedded into the melody and into the pattern of notes played

by other musicians (MAASS, 2002).

From this point of view, SNNs behave as complex systems, with "emergent macro-

scopic-level properties resulting from the complex dynamic interactions between neurons,

but hard to understand just looking at the microscopic-level of each neuron process-

ing" (PAUGAM-MOISY; BOHTE, 2012). A way to visualize the temporal computation

processed by an SNN is by displaying a complete representation of the network activity on

a spike raster plot as in Figure 2.5, in which a small bar or dot is plotted each time that

a neuron fires a spike. Variations and frequencies of neuronal activity can be observed

in such diagrams, in the same way as natural neurons activities can be observed in spike
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raster plots drawn from multi-electrode recordings.

Figure 2.5: Example of a Spike Raster Plot. A small dot is plotted each time (in abscissa)
a neuron (numbered in ordinates) spikes.

Source: Ju et al. (2015)

Since the basic principle underlying SNNs is so radically different from McCul-

loch–Pitts’ first generation Neural Networks, it comes with no surprise that much of the

work on such networks, such as learning rules and theoretical results, had to be adapted, or

even fundamentally reconsidered.

Traditionally, neural networks have been applied to pattern recognition, in various

guises. For instance, multi-layer networks can perform highly accurate handwritten

character recognition, financial predictions, robotics, as well as function approximation,

or regression, by using classic learning rules, such as error-backpropagation, Hebbian

learning or distance based variants like Kohonen self-organizing maps.

Efforts have been made in the direction of adapting traditional learning methods to

spiking neural networks both by augmenting weights with delay lines and using temporal

coding. Among such methods are: SpikeProp, a method similar to traditional error back-

propagation proposed by Bohte, Poutre and Kok (2002); RProp a learning rate adjustment

technique, first adapted to SNNs by McKennoch, Liu and Bushnell (2006); and QuickProp,

where Newton’s method is used for minimizing the error-gradient, first adapted to SNNs

by Florian (2012); For more on the subject, the reader is referred to (BEKOLAY, 2011).

However, there has been another direction within the field, in which networks and

computational algorithms are exclusively developed for spiking neural networks (PAUGAM-
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MOISY; BOHTE, 2012). They use the temporal domain as well as the increased complexity

of SNNs to arrive at novel methods for temporal pattern detection with Spiking Neuron

Networks. Among the examples are: ReSuMe, a biologically inspired method in which the

result is obtained from a spike-timing dependent plasticity rule, proposed by Potjans, Morri-

son and Diesmann (2009); the Spike-Timing Dependent Plasticity (STDP) (MARKRAM et

al., 1997) rules; and the so-called Reservoir Computing, a new paradigm which was based

on the observation that as long as a randomly generated network possess certain properties,

it is not necessary to train it, and training only a recurrence-free linear readout is sufficient

for many tasks (LUKOSEVICIUS; JAEGER., 2007). The Reservoir Computing paradigm,

which recently triggered many practical applications of Recurrent Neural Networks and a

whole new stream of research, will be overviewed in the next section.

2.2 Reservoir Computing

The concept of Reservoir Computing was introduced by two independent publica-

tions, both of which, although using different approaches, presented the idea of a dynamic

recurrent reservoir of processing units left in a transient state, while only the output layer is

subject to a supervised learning. The first publication, by Jaeger (2001a), in which the Echo

State Networks were introduced, explored applications of randomly connected recurrent

networks of sigmoidal neurons to complex time series prediction tasks. The second one, by

Maass, Natschläger and Markram (2002), which is a more biologically oriented approach,

considered reservoirs of spiking neurons structured and functioning as inspired by the

properties of neocortical columns in the central nervous system of mammals.

Later on, the Backpropagation Decorrelation (BPDC) learning rule was also intro-

duced, along with a few other methods better described in (LUKOSEVICIUS; JAEGER.,

2007; LUKOSEVICIUS; JAEGER, 2009; SCHRAUWEN; VERSTRAETEN; CAMPEN-

HOUT, 2007). The fact that similar ideas were independently discovered several times

underlines the importance of such concept, which is why the group of Benjamin Schrauwen

proposed in (VERSTRAETEN et al., 2007) the unification of such ideas into a common

research stream, which they propose to call Reservoir Computing.

The intuitive motivation behind this concept can be explained by imagining the use

of a liquid (such as a glass of water) to perform computation, as explained by Cao and

Pipa (2010). From a dynamical system’s perspective, this does not make much sense since

the only stable state to which the liquid can converge after a perturbation (e.g a drop in the
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liquid) is a "dead" state where it is perfectly still. However, the idea of reservoir computing

is that the transient states of the liquid at given time still holds relevant information about

a perturbation that occurred at previous time. Providing that the liquid has the ability

to produce significantly different transient states under two different inputs, it is then

theoretically possible to extract information directly from measures on the state of the

liquid since it is supposed to hold information about the past (e.g. successive pictures of

the perturbed glass of water). (See Figure 2.6).

Figure 2.6: Structure of a RNN in the Framework of Reservoir Computing; Only Dotted
Synaptic Connectivities are Trained.

Source: the author

In fact, the study in (FERNANDO; SOJAKKA, 2003) actually took the “reser-

voir” and “liquid” concepts quite literally and successfully trained a readout multilayer

perceptron on several classification tasks by feeding input via mechanical actuators into a

reservoir full of water and recording the state of its surface optically.

Several successful applications of reservoir computing to both synthetic data and

real world engineering applications have been reported in the literature, including au-

tonomous sine generation (JAEGER, 2001a), dynamic pattern classification (JAEGER,

2001b) and wind speed forecasting (FERREIRA et al., 2008). RC systems were used

in robotics to control a simulated robot arm (JOSHI; MAASS, 2004), to model an exist-
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ing robot controller (BURGSTEINER, 2005), for action prediction (BARAGLIA; NA-

GAI; ASADA, 2013), and for localization and event detection (HERTZBERG; JAEGER;

SCHöNHERR, 2002; ANTONELO; SCHRAUWEN; STROOBANDT, 2008). Applica-

tions in the field of Digital Signal Processing (DSP) have also been reportedly successful.

Among those are speech recognition (VERSTRAETEN et al., 2005; GHANI et al., 2008),

facial expression recognition (GRZYB et al., 2009), noise modeling (JAEGER; HAAS,

2004) or even classification of music styles (JU; XU; VANDONGEN, 2010).

2.2.1 Liquid State Machine

LSMs were introduced by a research lab active in robotics and neuroscience in the

search for computational models that could help understanding the computations carried

out in a local circuit of neurons in the neocortex (e.g. in a “cortical column”). Since

it turned out to be quite successful, making it possible to carry out quite demanding

computations with circuits consisting of spiking neurons and dynamical synapses, this

approach will be the focus of this work.

The LSM was motivated by the hypothesis that the learning capability of an infor-

mation processing device is its most delicate aspect, and that the availability of sufficiently

many training examples is a primary bottleneck for goal-directed (i.e., supervised or

reward-based) learning (MAASS, 2011). Thus, its architecture is composed of two layers

(YAMAZAKI; TANAKA, 2007).

One layer is a reservoir of interacting spiking neurons showing recurrent topology

that maps inputs into a dynamical state by generating a spatiotemporal activity pattern

of neurons called a “liquid state”. The network has to generate different liquid states for

different input signals, because the performance of a liquid state machine mostly relies on

the quality of the activity patterns. The other layer consists of neurons called “readouts”,

which receive the liquid state and instruction signals, compare its output to a target output

in the training procedure and adapts its synaptic weights using a stateless learning rule.

Since all that needs to be trained is the readout module, instead of the recurrent

neural network itself, learning is made fast and robust. The bulk of the LSM (the “Liquid”)

thus serves as pre-processor for such readout neuron, which amplifies the range of possible

functions of the input streams u(t) that it can learn (MAASS, 2011). This also means that

the same Liquid can serve a large number of different readout neurons, and each one can

learn to extract a different “summary” of information from the same Liquid.
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Figure 2.7: Structure of a Liquid State Machine (LSM)

Source: Maass (2011)

Formally (CAO; PIPA, 2010), the liquid of neurons is a mapping from time-

dependent inputs u(·) = u{ui(·)}i ∈ (1..k) lying in a subset Uk of (RR)k onto a n-

dimensional dynamical liquid state x(t) in (RR)n:

LM : Uk → (RR)n (2.4)

u 7→ x(t) (2.5)

The second operation one needs to define is the readout function, mapping the

liquid state into an output at every time t:

fM : (RR)n → RR (2.6)

x(t) 7→ y(t) (2.7)

Thus, the liquid state machine is an operator, mapping time-varying functions onto

one or many functions of time. Readout maps are generally chosen memory-less because
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the liquid state x(t) should contain all the information about past inputs u(s), with s ≥ t,

that is required to construct the output y(t). Therefore, the readout function fM at time t

does not have to map previous liquid state x(s).

2.3 Networks-on-chip

The ever increasing complexity and transistor count of nanoscale devices, where

hundreds of IP cores are required to run multiple concurrent processes in a single chip, has

put tremendous pressure on the communication architecture of SoCs, changing its entire

design methodology to communication-based ones.

Two types of on-chip communication schemes have been traditionally used, namely,

point-to-point (P2P) and bus-based communication architectures (LEE et al., 2008). P2P

communication architectures can provide the utmost in communication performance at the

expense of dedicated channels among all the communicating IP pairs, while they suffer

from lack of scalability in terms of high complexity, cost, and design effort. On the other

hand, bus-based architectures can connect a few tens of IP cores in a cost-efficient manner

by reducing the design complexity and eliminating the dedicated wires required by P2P

communication architectures, although they still fail to provide scalability enough when it

comes to energy and performance.

The NoC-based approach represents a promising solution to the on-chip com-

munication problems, scaling very well in terms of area, performance, power/energy

consumption, and overall design effort. For this reason, scalability is said to be the utmost

benefit from using NoCs. Figure 4 shows the three mentioned communication structures in

a mobile phone.

Within its architecture, routing nodes are interconnected by P2P links, thus de-

scribing a network topology (NEDJAH; MOURELLE, 2014). The routing nodes are also

connected to the processing elements that constitute the system, via a network interface

(NI). Therefore, the information generated by a processing element, which may be divided

into smaller parts, or packets, is sent over the network through the router attached to it via

the NI (OGRAS; MARCULESCU, 2013). Then, the packet is stored at the input channels

and the router starts servicing it. After that, the packet moves to the next router on its

path and the process repeats until the packet arrives at its final destination. As a result, the

communication among various cores is achieved by generating, processing and forwarding

packets through the network infrastructure, rather than by routing global wires.
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Figure 2.8: On-chip communication structures

Source: Bjerregaard and Mahadevan (2006)

The ability of the network to efficiently disseminate information depends largely on

its topology, which have a paramount effect on the network bandwidth, latency, through-

put, overall area, fault-tolerance and power consumption, as well as an important role in

designing the routing strategy and mapping the IP cores to the network (OGRAS; MAR-

CULESCU, 2013). There have been various topologies for NoC architecture, including, but

not limited to, mesh, torus, ring, butterfly, octagon and irregular interconnection networks

(AGARWAL; SHANKAR, 2009). Figures 2.9 and 2.10 show examples of, respectively,

regular and irregular forms of topologies.

Figure 2.9: Regular Forms of Topologies Scale Predictably with Regard to Area and Power.
Examples are (a) 4-ary 2-cube mesh, (b) 4-ary 2-cube torus and (c) binary (2-ary) tree.

Source: Bjerregaard and Mahadevan (2006)
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Figure 2.10: Irregular Forms of Topologies are Derived by Altering the Connectivity of a
Regular Structure such as shown in (a) Where certain links from a mesh have been removed
or by mixing different topologies such as in (b) where a ring coexists with a mesh.

Source: Bjerregaard and Mahadevan (2006)

Due to its simplicity and regularity structure, the mesh topologies are very attractive

when it comes to timing closure improvement, reduction of dependency on interconnect

scalability and facility to use high performance circuits. Thus, regular topologies, both

one-dimensional (e.g. ring) and two-dimensional (e.g. mesh and torus) are the default

choices for NoC designers (OGRAS; MARCULESCU, 2013).

For some implementations, customization might be desirable. For instance, when

the size or shape of the cores varies widely, in which case regular topologies may waste

area. The communication requirements of the components can also vary widely for real

applications. Thus, designing the network to meet the requirements of highly communi-

cating cores results in underutilization of other components, while designing it for the

average case results in performance bottlenecks. Furthermore, a priori understanding of

the communication workload can be exploited to fully customize the network topology, in

case of application-specific implementations.

Generally speaking, the problem of optimal topology synthesis for a given appli-

cation does not have a known theoretical solution. Although the synthesis of customized

architectures is desirable, distorting the regular grid structure leads to various implementa-

tion issues such as complex floorplanning, uneven wire lengths, etc.

The design of the router is also a complex task in the implementation of a NoC,

since it has significant impact in terms of performance, power consumption and area

(OGRAS; MARCULESCU, 2013). The design involves determining the flow control
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techniques, number of virtual channels, buffer organization, switch design, pipelining

strategy while adhering to target clock frequency and power budgets.

The main focus in designing a router is to minimize the latency through it, while

meeting bandwidth requirements. The router protocol concerns the strategy of moving

data though the NoC (BJERREGAARD; MAHADEVAN, 2006). Figure 2.11 presents the

major components of any routing node that is, buffers, switch, routing and arbitration unit,

and link controller.

Figure 2.11: Generic Router Model. LC = link controller

Source: Bjerregaard and Mahadevan (2006)

The switch connects the input buffers to the output buffers, while the routing and

arbitration unit implements the algorithm that dictates these connections. Thus, switching

can be thought of as the mere transport of data, while routing can be defined as the intelli-

gence behind it, in which the path of the data transport is determined (BJERREGAARD;

MAHADEVAN, 2006).

The Routing algorithm determine the path between source and target switches for a



35

given packet (MELLO et al., 2004). It must prevent three situations: deadlock, livelock and

starvation. The first can be defined as a cyclic dependency among nodes requiring access

to a set of resources so that no forward progress can be made (MORAES et al., 2004). A

livelock refers to packets circulating the network without ever making any progress towards

their destination. And starvation is a condition in which a packet in a buffer requesting an

output channel is blocked because the output channel is always allocated to another packet.

There is a vast parameter space when it comes to the communication infrastructure

of the NoC. There may be concepts such as line and packet switching. Routing algorithms

can be divided into static and adaptive algorithms as well as minimal-path and non-

minimal-path ones (BLUME et al., 2008). Each of such choices might impact on all

network metrics, thus being a key task of modern NoC design to efficiently explore

the design space regarding all such aspects. Table 2.2 summarizes the most important

parameters for a NoC communication infrastructure.

Table 2.2: Parameters for a NoC Communication Infrastructure

Parameter Definition/Function

Topology Defines the arrangement of routers and links in the form of a graph.

Routing Determines how a message chooses a path in the graph.

Switching
Defines how and when a router input channel is connected to an

output channel selected by the routing algorithm.

Flux Control
Deals with the allocation of channels and buffers for a message that

traverses the graph.

Arbitration Determines which input channel router can use a given output channel.

Memorization Defines how and where messages blocked on a router will be stored.

Source: adapted from Zeferino (2003)

For detailed explanation of all the parameters, refer to the surveys in (BJERRE-

GAARD; MAHADEVAN, 2006) and (OGRAS; MARCULESCU, 2013). This work will

also present an exploration for all of its design choices in later sections.

The work in (NEDJAH; MOURELLE, 2014) suggests that, in general, NoCs are

developed to perform a specific application. There is a variety of examples of such sys-

tems in the literature, and surveys such as (BJERREGAARD; MAHADEVAN, 2006),

(MORAES et al., 2004) and (SALMINEN; KULMALA; HAMALAINEN, 2007) offer



comparison between their different design choices. Furthermore, some real CMOS appli-

cation implementations reported to date are worth mentioning (HOWARD et al., 2010;

VANGAL et al., 2007; CHEN et al., 2014).



37

3 STATE-OF-THE-ART

There is a wide range of SNNs found in the literature. Several of them were

developed using hardware, as the surveys from Maguire et al. (2007), Misra and Saha

(2010) and Cassidy, Georgiou and Andreou (2013) demonstrate. The next sections will

present a review of some specific types of SNNs, including their main aspects, results and

applications.

3.1 Non-scalable or Special Purpose Works in FPGA

The work made by Ambroise et al. (2013), for instance, developed a neural network

of 117 biorealistic neurons with one single computation core, which calculates each cell

in turns. Their work, which was one main point of the Brainbow European project, was

different in that it took into account biological real time. They implemented a Izhikevich

neuron model using very few resources of a Xilinx Virtex 4 SX55.

Another spiking neural network implementation was made by Imperial College

London (THOMAS; LUK, 2009). In their work, a 1024 neuron fully-connected network

was implemented using the Virtex-5 XC5VLX330T device. Their architecture was based

on re-usable interconnection for storing synapse weights and calculating thalamic input,

making use of the large number of available FPGA’s block-RAMs and fine-grain paral-

lelism. Having Izhikevich as the model of choice as well, their work was able to run at a

clock frequency of 133MHz, 16 times faster than a 3GHz Core2 CPU, and 1.1 times faster

than a single-precision 1.2GHz 30-core GPU.

The work realized by Cassidy and Andreou (2008), from the Johns Hopkins Univer-

sity, developed an array of dynamical digital silicon neurons implementing the Izhikevich

neuron model, as an extension of their previous works, which implemented a leaky

integrate-and-fire neural array. The neural array, which was implemented in a Xilinx

Spartan XC3S1500 FPGA, was composed of 32 physical neurons, each with 8 virtual

neurons in a single FPGA, for a total of 256 independent neurons in the system operating

at 80MHz. Recently, Cassidy, Georgiou and Andreou (2013) have very much incremented

their work. While the work was derived from the aforementioned implementation, the

synaptic weight RAM and the re-mapper RAM were both implemented in external SRAM

in order to have higher RAM capacity.

While all of the works previously analyzed implemented the Izhikevich neuron
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model, there are some worth mentioning neural networks that used the Hodgkin-Huxley

model. The work from Smaragdos et al. (2014), for example, chose to implement an

extended HH accelerator model, since their intention was to design a biophysically-

meaningful model of the Inferior Olive, a part of the olivocerebellar subsystem in the brain

responsible for motor coordination and learning. Using a Virtex 7 XC7VX485T FPGA,

their design was able to simulate a network of 96 neurons in real-time, a performance with

sufficient speedup for use in neuroscience experiments, which was more than x700 faster

than their original Matlab model and x12.5 faster than their C implementation.

Another one is the work from Bonabi et al. (2014), where the authors developed

a set of techniques for efficient implementation of the HH model in FPGA. In order to

accomplish such optimizations, they used computational techniques such as CORDIC

(Coordinate Rotation Digital Computer) algorithm and step-by-step integration in the

implementation of arithmetic circuits, whose equations were described using VHDL as

the hardware description language. They also used shared resources in order to preserve

details of the model, to increase the network size and to keep the network execution speed

close to real time while having high precision.

Perhaps the most relevant related work for this section is the one by Zamarreno-

Ramos et al. (2013). The publication, from the Instituto de Microelectrónica de Sevilla,

presented a modular, scalable method for assembling hierarchically structured neuromor-

phic AER systems. The approach, which can be accomplished by arranging modules in

a 2D mesh, was tested on single and multiple Virtex-6 FPGAs. Among the applications

tested are AER-based vision processing and character recognition based on convolutional

type neural networks.

3.2 Reservoir Computing in Hardware

In spite of all the advantages that a Liquid State Machine can bring to hardware

implementations, to the best of the author’s knowledge, there are few SNN architectures

with a focus on the subject to date. Perhaps this is due to the fact that this is a relatively

new field of research.

There are, however, some very interesting and worth mentioning projects, such as

the work in (SCHRAUWEN et al., 2008). The authors, from the Ghent University, are very

engaged researchers in Reservoir Computer, with a great number of publications in the field.

In the publication, they proposed an application oriented real-time, isolated digit speech
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recognition in FPGA using a Liquid State Machine. The neurons were designed using the

Leaky Integrate and Fire neuron model, but compensated their undeniable simplicity by

combining then with both Dirac and exponential synapse models. The results are very

promising, showing that real-time speech recognition is possible on very limited or even

faulty FPGAs using an LSM.

The work in (WANG; JIN; LI, 2015), from Texas A&M University, developed a

general-purpose Liquid State Machine based neuromorphic processor. It was shown that

the resulting implementation, which is composed by a generic pre-processor and one or

multiple task processors, efficiently reuses an optimized reservoir for different tasks. Such

an encouraging result was made possible by an efficient reservoir re-use by power gating,

in which a certain number of neurons are powered off to operate the reservoir with the

desired size.

3.3 Scalable and Large Scale General Purpose SNNs in Hardware

Among the wide range of SNNs found in the literature, the most relevant proposed

architectures for this work will be presented in this section. The focus of the strategic

studies was on recent highly scalable hardware neuromorphic efforts. Most of them

have implemented custom large-scale computing platforms and utilize network-on-chip

strategies as the main communication structure.

The Neurogrid (see the website in (NEUGRID, 2006)) is a mixed signal neuromor-

phic multi-chip system developed at Stanford University. It uses analog computation to

emulate neural dynamics, and a digital communication scheme to support synaptic con-

nections. The main building block is the Neurocore, a 162mm2 chip in a 180nm process

(BENJAMIN et al., 2014), which is composed of an array of 65,536 analog quadratic

integrate-and-fire neurons (CHOUDHARY et al., 2012). Altogether, a Neurogrid neuron

has 61 graded and 18 binary programmable parameters—common to all the neurons in

that Neurocore (for example, modeling a specific cell type in a layer of cortex). The

system is formed by a total of 16 chips, organized in a tree routing network, in which the

long-range connections are implemented using an FPGA daughterboard and a bank of

SRAMs. The neurons on any chip send messages asynchronously to synapses on other

chips via multicast communication (MEROLLA et al., 2014). In total, Neurogrid simulates

one million neurons in real-time for approximately 3.1W.

The BrainScaleS project (see the website in (BRAINSCALES, 2011)) at the Uni-
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versity of Heidelberg (which is the follow-on of the FACETS project (FACETS, 2005))

proposes a wafer-scale system called the Hybrid Multiscale Facility (HMF), composed

of analog neurons and a digital multi-layer bus communication scheme. Their main pro-

cessing building block is the High Input Count Analog Neural Network (HICANN) chip,

containing up to 512 adaptive exponential integrate-and-fire neuron models and 112.000

synapses in total. 352 HICANN chips are located on a single wafer, organized in reticles of

eight chips each, which makes a total of 4*107 synapses and up to 180k neurons in a 20cm

wafer. (SCHEMMEL et al., 2010). Furthermore, the wafer is not cut into separate chips,

but left uncut, and a communication layer connecting the chips is added via post-processing

(SCHMIDT, 2014). Larger systems can be built by interconnecting several wafer modules,

being the communication based on a 2D-torus topology, implemented on a FPGA. The

resulting system is said to operate at approximately up to 105 times faster than biological

neurons real-time, however, this comes at the expense of an estimated power consumption

of 1 kW per wafer in a 180nm technology.

The SpiNNaker is a project at University of Manchester (see the website in (SPIN-

NAKER, 2005)) whose goal is to provide a platform for high-performance massively par-

allel processing appropriate for the simulation of large-scale neural networks in real-time.

For that, a microprocessor-based system was developed, each node being a System-in-

Package (SiP) fabricated by UMC on a 130nm CMOS process, containing 18 ARM968

processor cores plus a 128Mbyte off-die SDRAM stacked on top of it (FURBER et al.,

2013). The nodes are packaged and mounted in a 48-node hexagonal array on a PCB

(Printed Circuit Board), the full system requiring 1,200 such boards. The interconnection

between each node is handled by an NoC using six links wrapped into a triangular lattice;

this lattice is then folded onto the surface of a toroid. In operation, the engine consumes at

most 90kW of electrical power for emulating 109 neurons and 1012 synapses, being 1W

per node.

The EMBRACE (HARKIN et al., 2009) is another ongoing project that aims to

enable future investigation of embedded neural network applications. The project from the

University of Ulster and the National University of Ireland is a mixed-signal approach to

NoC-based-embedded neural information hardware. The proposed architecture proposes a

scalable SNN based on a hierarchical array of NoC routers, based on a hybrid star-mesh

topology (CARRILLO et al., 2013). By doing so, the project exploits data locality by

creating clusters of neurons located at the bottom of the hierarchy. Unlike the SpiNNaker,

the EMBRACE architecture does not consider the use of multiprocessors to emulate
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the neurons but instead uses an analogue, Integrate-and-Fire neuron cell on hardware to

model spiking neurons. The synthesis results for the EMBRACE, based on 65-nm CMOS

technology, demonstrates a low-cost area utilization of 0.587mm2 and power consumption

of 13.16mW for a single cluster facility of 400 neurons (CARRILLO et al., 2012). The

project also offers a hardware acceleration relatively to the biological real-time, being able

to accommodate firing frequencies of up to 174kHz.

The TrueNorth, which is the achievement of the Defense Advanced Research

Projects Agency (DARPA) SyNAPSE project, is a chip from IBM and its university

partners composed of 4096 neurosynaptic cores tiled in a 2-D array, containing an aggregate

of 1 million digital neurons and 256 million synapses (AKOPYAN et al., 2015). The

TrueNorth architecture uses hierarchical communication, with a high-fanout crossbar

for local communication and a network-on-chip for long-distance communication, and

global system synchronization to ensure real-time operation. The chip, fabricated using

Samsung’s 28-nanometer process technology, operates at real-time with an impressive low

typical power consumption of 56mW. It also attains a peak computational performance of

58 giga-synaptic operations per second (GSOPS) and computational energy efficiency of

400 GSOPS per Watt (GSOPS/W).

The Reconfigurable On-line Learning Spiking Neuromorphic Processor (ROLLS

neuromorphic processor) is a full-custom mixed-signal VLSI device with learning circuits

that emulate the biophysics of real spiking neurons and dynamic synapses (QIAO et al.,

2015). Idealized by the Professor Giacomo Indiveri’s group at the Institute of Neuroinfor-

matics, University of Zurich and ETH Zurich, the chip was developed for exploring the

properties of computational neuroscience models and for building brain-inspired comput-

ing systems. Having approximately 12.2 million transistors, the chip was fabricated using

standard 180 nm Complementary Metal-Oxide-Semiconductor (CMOS) 1P6M process

occupies an area of 51.4 mm2.

By comparing all the above projects, the reader is able to identify some similarities

and major differences among them. The BrainScaleS, Neurogrid and EMBRACE projects

all implemented different adaptations of integrate-and-fire analog neuron models, while

both the TrueNorth and SpiNNaker preferred to work with digital neurons. All the designs

implemented some kinds of on and off-chip networks, although the topologies greatly

differ. Although those are examples of design choices that significantly affect the final

results, the similarities among some designs were not enough to produce similar design

specs, with even the quantity of neurons and synapses per chip being very different for
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have yet to be explored and combined to others in order to better understand their impacts

on the systems as well as to determine the optimal cases for each project.

Table 3.1 shows a summary of some relevant data from the aforementioned neuro-

morphic architectures. Note that although related, most measurements are not from the

same benchmark nor use the same technology, so they cannot be compared directly.

Table 3.1: Related Work synthesis data
Project

Name

Neuron

Model
A/D Neurons Power

Power/

Neuron

Size

mm2

Area/

Neuron

CMOS

Process

Synapses per

Neuron
Topology

SpiNNaker IF or IZHI DS 16x103 1W 6,25E-05 102 6,38E-03 130nm 1x103 Triangular Lattice∗

Neurogrid Quad. IF A 983,040 5W 5,08E-06 168 1,71E-04 180nm 6x109 Star

BrainScaleS Exp. IF A 512 1kW 1,95 430 8,40E-01 180nm 112x103 Hierarchical Buses∗∗

EMBRACE IF A 400 13.16mW 3,29E-05 0.587 1,47E-03 65nm 400 Hybrid (star-mesh)

TrueNorth - - 1x106 65mW 5,60E-08 430 4,30E-04 28nm 256 Mesh

ROLLS Exp. IF A 256 4mW 1,56E-05 51.4 2,01E-01 180nm 256 Programmable Switch-matrix

A = Analog, D = Digital, DS = Digital (Software), IF = Integrate-and-Fire, IZHI = Izhikevich. ∗folded into a toroid surface. ∗∗2D Torus (wafer).
SpiNNaker, BrainScaleS, TrueNorth data per chip; EMBRACE data per cluster.

Source: The author
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4 PROPOSED NEUROMORPHIC ARCHITECTURE

In common with most engineering projects, the development of the proposed neuro-

morphic architecture required a careful consideration of many trade-offs and compromises.

This chapter presents an overview of the Digital HierArchical Neuromorphic Architecture

(DHyANA), including the description of its main building blocks, a careful explanation of

the system’s behavior and a discussion about the main trade-offs and design choices that

made possible the realization of this project.

DHyANA is a Neural Network composed of a two-level hierarchical network-on-

chip. The processing elements, digital Izhikevich neuron models, as well as a Controller

are locally connected through a shared bus at the Cluster Level. The interface between the

two levels is achieved through a connection between the Controller and its corresponding

Router. Finally, at the Global level, a 2D Mesh NoC performs the connection between

clusters of neurons. A system’s view at the Global Level is available at Figure 4.1. It shows

the system prototype size for the global communication, a 4x4 mesh topology.

The motivation for choosing bus and mesh, two well-known topologies, as com-

munication levels of the hierarchy was driven by practicality, performance and energy

optimizations. Bus-based designs have been well architected for small multichip pro-

cessors, within the order of very few tens of IP cores, being quite simple and power

efficient. Nevertheless, as mentioned in section 2.3, such topology does not scale for larger

configurations. Thus, a bus-based topology was considered very well suited to support

local communication, while the choice for a planar, low complexity mesh topology was

considered appropriate for the global network.

The hybrid topology choice was also conducted in order to optimize the system

for locality in communication. In terms of chip multiprocessors, the concept of locality

was defined in (DAS et al., 2009) as “the percentage of packets injected by a node that

are satisfied by its immediate neighbors in the network”. Thus, applications with high

locality tend to have nearest neighbor communication pattern with high local traffic. In

neuronal biologic systems, the concept is somehow similar. On the scale of roughly a

cubic millimeter of cortex, containing about 100,000 neurons, the work by Mehring et al.

(2003) suggests that the connection probability decreases in a Gaussian fashion with the

distance between neurons. The idea of locality in such systems was also suggested in other

studies (KUMAR; ROTTER; AERTSEN, 2010; STROGATZ, 2001).

Based on the aforementioned locality premises, one can infer that the inter-cluster
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Figure 4.1: DHyANA Global Level. For the sake of visual clarity, the Cluster Level is
omitted, as if under the Controllers.

Source: The author

communication is supposed to have lower activity during execution compared with intra-

cluster communication, being the shared bus a convenient choice for such configuration.

However, these fewer messages demand high throughput to handle the burst of spikes,

and a mesh-based NoC can provide sufficient throughput, avoiding bottlenecks in an

unexpected inter-cluster communication, independently of message rate. In summary, the

choice for a hybrid topology allows exploration of faster local connections, while still

maintaining great scalability and reliability for the global level.

The following sections will describe the two levels of the hierarchy, as well as the

system’s processing elements.
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4.1 Global Level: The Mesh NoC Interface

The mesh NoC used for DHyANA’s Global Level was the System-on-Chip In-

terconnection Network (SoCIN) (REINBRECHT, 2012; ZEFERINO, 2003), a scalable

network based on a parametric router architecture for customized low cost NoCs. The

network, which is based on the XY routing algorithm, employs wormhole packet switching

and handshake flow control to assure the deadlock freedom at a low cost.

It is depicted at Figure 4.1, where the red boxes represent the Global Routers, while

the blue boxes represent the Cluster Controllers (which are interconnected to the bus at

the Cluster Level). The dotted traces in red between routers represent communication

links for its XY routing. The purple arcs represent the terminal link for connecting to the

corresponding Cluster Controllers. From the Router’s perspective, the purple terminal

links are denominated Local Ports, which constitute the interface between communication

levels.

The DHyANA Global link (seen in Figure 4.2) is composed of two simplex uni-

directional opposite channels, each one with its data, framing and flow control signals

(ZEFERINO; SUSIN, 2003).

Figure 4.2: Global Link

Source: Adapted from Zeferino and Susin (2003)

Each channel consists of n bits for data and two bits for packet framing, so the

value of the physical width of the channel (phit) is n + 2. In this work n = 8, thus the phit

is 10-bit wide. The two-bit sideband constitutes the bop (begin-of-packet), which is set
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only at the packet header; and the eop (end-of-packet), only set at the last payload word,

the packet tail. In addition, each channel includes a pair of signals required to control flow,

which are used to validate data at the channel (val) and to acknowledge the received data

(ack).

The network uses wormhole switching (DALLY; SEITZ, 1986), a model which

allows the building of small and fast routers, being the preferred switching approach in

interconnection networks for parallel computers and in NoCs. Each spike is sent by means

of a packet, which is composed by flits (flow control units). A flit, as explained more

didactically through Figure 4.3, is the smaller unit over which the flow control is performed.

In this work, a flit equals the physical channel word, which is the size of a phit (physical

unit), n + 2 bits.

Figure 4.3: Message Composition

Source: Adapted from Reinbrecht (2012)

The packets in the Global Level are composed by three flits: the Header; the Neuron

Address (NA); and the Tail (as seen in Figure 4.3). The Header is the first flit of the package

and includes the information needed to establish the path of the packet on the network.

The remaining flits include the information to be transferred by the package, and follow

the Header flit by the network in a pipelined fashion. The NA contains the spiking neuron

location within its Cluster. The Tail, the flit which sets the end of the package, is also used

to recover the address of the Global Router who originated the spike. Thus, as will be

further explained later in this work, by combining the Neuron Address and the Tail data,
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the destination Cluster Controller is able to decode the information needed for establishing

the synapses.

The packet format is described in more detail in Figure 4.4. As previously stated,

each flit is (n + 2)-bit wide, which, for this project, results in 8 + 2 = 10 bits. The (n)th

bit represents the bop marker and the (n + 1)th bit denotes the eop marker. The m least

significant bits of the Header flit are reserved to the Routing Information (RI) bits, which

includes the information needed for packet routing. It is composed of four fields: Xdir,

Xmod, Ydir and Ymod. The description of each field is included in Table 4.1.

Figure 4.4: Global Packet format and RI bits. In this work, n = m = 8 bits.

Source: Adapted from Zeferino and Susin (2003)

Table 4.1: Description of RI bits

Field Meaning

Xdir The packet must be routed in the East/West direction

Xmod Number of links remaining to be traversed on X (East/West) direction

Ydir The packet must be routed in the North/South direction

Ymod Number of links remaining to be traversed on Y (North/South) direction

Source: Adapted from Zeferino (2003)

The Global routing scheme is the XY-routing, a dimension-ordered approach in
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which a packet going from a source to a destination must first travel in the X direction

and, when it reaches the column of the destination, follow to the target terminal in the Y

direction (ZEFERINO; SUSIN, 2003). Consequently, at a router, after the schedule of an

output channel, the routing circuits must update the RI bits, by decrementing by one the

mod field related to the direction in which the packet is being routed (X or Y). When a

router receives a packet with X mod null, it means that the packet must be routed in the Y

direction (North or South, depending on Ydir value). However, if Y mod is also null, the

packet is delivered to the Cluster attached to the Local Port (purple arcs at Figure 4.1).

The routing is also deterministic and source-based, hence each Cluster Controller

must determine the path to be used by a packet and include the corresponding RI in the

packet header. Given the sender-receiver pair, the determinism implies that always the

same path will be used to the packets following from the sender to the receiver.

An example of the routing process is seen in Figure 4.5. A package, whose

destination is one or more neurons at Cluster 10, is injected into the network by the Cluster

Controller 4, connected to the Global Router 4. Note that the Clusters were suppressed

at the picture for visual simplicity. The connection to the Clusters is represented by the

diagonal lines. The routing information for the network in the packet at Router 4 is equal

to "0,2,1,1", which indicate that the packet should move two links East and then one link

South.

Figure 4.5: Packet Routing

Source: Adapted from Zeferino (2003)



49

The example of Figure 4.5 shows that, upon receiving a packet, the router evaluates

the Xmod field. Then, after identifying that Xmod is not null, it evaluates the Xdir field to

determine if the packet is forwarded to the East or the West. In the example, since Xdir is

0 at the source, Router 4, the packet is forwarded East and the Xmod field is decremented

from 2 to 1. In fact, it is repeatedly decremented while passing each Router, until it reaches

Router 6. Once Xmod reached zero, the packet will not be forwarded in the X direction

anymore. Consequently, as soon as it reaches the Router 6, it checks the value of Ymod,

which in the example is 1. Afterwards, the Router 6 evaluates Ydir and determines that

since this is 1, the packet is forwarded South right after the value of Ymod is decremented.

Finally, once Router 10 receives the packet, it verifies that both Xmod and Ymod are null.

Thus, the router delivers the packet to the Cluster connected to it, through the Local Port.

The architecture of the Global Router will be further described in the next subsec-

tion, as well as an overview on its Arbitration, Flow Control and Buffering.

4.1.1 The Global Router

The basic building block of the Global Level is the Router Architecture for Systems-

on-Chip (RASoC) proposed in (REINBRECHT, 2012; ZEFERINO, 2003), a soft-core

configurable in three dimensions: the width of the communication channels, the buffers

depth and the width of the routing information in the packet header. It contains up to five

bi-directional ports, all compatible with the link shown in Figure 4.2: four to connect to

the neighbor routers (North, East, South and West ports) and the Local port to connect to

the Cluster Controller (ZEFERINO; KREUTZ; SUSIN, 2004). Figure 4.6 shows a detailed

representation of its main components.

Each of the router’s input ports have First-in First-out (FIFO) buffers to handle

high throughput messages. The buffers implement partitions between the input channels to

store packet flits, which are read in the same order in which they are written.

Moreover, the network uses a dynamic and distributed approach for arbitration. By

using an exhaustive Round-Robin arbiter at each requested output channel of a router, it

ensures fairness and that no packet is permanently blocked for having lower priority on the

network (starvation).

The flow control is based on handshake, a simple and cheap strategy in which the

sender informs its intention to send data to the receiver via a validation line; and then

the receiver confirms the availability to receive data via an acknowledgment line. An
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Figure 4.6: Global Level: Router components.

Source: The author

acknowledgment is given under the condition that there is a validation in the channel and

the receiver input buffer is not full. Indeed, it has been shown in Figure 4.4 that the Global

link has two signals for control flow: val and ack. The two signals are connected to the

control circuits at each end of the channel so as to implement the handshake protocol,

which regulates the data flow in the channel. This very conservative mechanism ensures

that no flit is discarded, since the transmission is performed only after an agreement

between the sender and receiver.

The crossbar module is composed by a data crossbar and two control crossbar,

which perform the switching of data and internal flow control signals, respectively. Each
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crossbar is composed by five 4x1 switches as seen in Figure 4.7.

Figure 4.7: Global Router Interface and Crosspoint Matrix. (a) bi-directional ports (b)
alternative representation, representing the unidirectional channels

Source: Adapted from Zeferino (2003)

Note that the crosspoint matrix shown in Figure 4.7 does not implement the main

diagonal because a packet incoming the input channel of a port cannot be forwarded to the

output channel of the same port. For each column in the crosspoint matrix, there exists a

data switch in an output channel instance. For example, the first column is related with an

(n+2)-bit 4x1 data switch at Lout channel, which selects an input channel among Nin, Ein,

Sin, and Win.

As previously mentioned, the Local Port terminal link allows the connection of a

Global Router with its corresponding Cluster Controller, thus describing the communica-

tion between hierarchy levels. The Cluster Level will be introduced in the next section.

The Cluster Controller will be further described in Chapter 5.
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4.2 Cluster Level: The Bus Interface

According to the Cambridge Dictionary, a cluster is “a group of similar things that

are close together, sometimes surrounding something” (CAMBRIDGE DICTIONARY,

2016). In a computational system, for (LENG et al., 2005), such groups must be organized

by computation complexity, communication requirement and functional relationship of IP

cores.

This work proposes a so-called Cluster Level as the lowest level of the DHyANA

communication hierarchy, following the premises of locality mentioned in the beginning of

this Chapter. The neurons are connected to each other by a shared bus, a low cost solution

which permits multicast messages (one neuron sends to many) and low latency.

Although the crossbar from the Hierarchical Crossbar-based Interconnection Topol-

ogy (HICIT) in (REINBRECHT, 2012) would also be a good choice, it would come with

a huge power penalty. Thus the choice for a bus in lieu of a crossbar is justified by its

high bandwidth, low latency and low power since the switching energy will be greatly

reduced, as explained in (DAS et al., 2009). However, such choice comes with the cost

of low Cluster scalability, thus if future applications require bigger Clusters, the Cluster

Level may change to the HICIT crossbar-based solution, or even a hybrid in which a new

Level of communication is incorporated.

As seen in Figure 4.8, the Cluster Level consists of three main parts: the Bus

system, the Cluster controller and the Neurons.

The Cluster Level is responsible for two very important tasks within the DHyANA

architecture: connecting the neurons within the same block, as well as building the packets

for communication between levels of hierarchy. It also has two critical, performance-

limiting steps which occurs during spike generation, when it performs two very memory

intense operations: 1) the Cluster Controller has to access a ROM in order to check

for inter-cluster connections; and 2) the synapses are verified by an access to a CAM

memory at each Neuron Cell. For being a critical implementation as well as the main

contribution of this work, a careful explanation of the Cluster Level will be realized in the

next chapter. However, before that, the next section will address the processing unit of the

neural network: the mathematical neuron model.
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Figure 4.8: DHyANA Cluster Level. For the sake of simplificy, only four neurons are
depicted.

Source: The author

4.3 Processing Element: The Neuron

DHyANA uses a digital, low latency Izhikevich Simple Model (ISM) on hardware,

proposed in (BANDEIRA et al., 2015), for the spiking neurons.

The choice for the neuron model proposed by Izhikevich was mostly due to the

fact that it stands in the middle ground between complexity and biological plausibility

(as seen in section 2.1.2). This choice, however, comes without loss of generality. Thus,

whenever another neuron model is found to be more suitable for a certain application, it

can be incorporated to the system.
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In order to make its implementation viable in terms of digital logic, some changes

in the ISM equations 2.1 to 2.3 were made, following the approach described in (CASSIDY;

ANDREOU, 2008). The new equations, which are ensured to have the same behavior as

the previous equations, are as follows:

h
dv

dt
=

1

32
v2 + 3.90625v + 109.375− u∗ + I∗ (4.1)

h
du∗

dt
= a∗(b∗u− v) (4.2)

v ≥ 30mV ⇒

v ← c

u∗ ← u∗ + d
(4.3)

where h = 0.78125, u∗ = hu, and I∗ = hI; the parameters a, b, and d are replaced by a*,

b*, and d*, respectively, each one also multiplied by h. The transformation is suggested in

(CASSIDY; ANDREOU, 2008) and (AMBROISE et al., 2013), although both disregard

the factor h.

The Euler’s Method was used to solve such equations, producing accurate results.

The approach outcomes were the following:

vn+1 = vn + ∆t

[
1

32
v2n + 3.90625vn + 109.375− u∗

n + I∗n

]
= vn + ∆t.kv (4.4)

u∗
n+1 = u∗

n + ∆t [a∗(b∗vn − u∗
n)] = u∗

n + ∆t.ku (4.5)

where ∆t is the time increment of the Euler’s Method.

Additionally, it was considered that 3.90625v ≈ 4v, as in (CASSIDY; ANDREOU,

2008). kv and ku are used further in the implementation and they represent the variation

for each iteration.

A single neuron is represented in Figure 4.9. Its circuitry was intended to be as

parallel as possible, optimized for latency rather than the area with no reuse of any adder

or multiplier.
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Figure 4.9: The Neuron Implementation

Source: The author

A 18-bit fixed point two’s complement representation was chosen, as it is a better

suited approach for digital implementations than floating point. Furthermore, as exposed

in (AMBROISE et al., 2013), the quantity of 18 bits is an efficient choice as it allows usage

of the available hardware without compromising the accuracy.

Figure 4.10 represents the computation for the new value of v, u*, as well as the

activity log. The next v and u* is calculated in two parallel operations, one for the case with

a spike and other without a spike. The selection between the two is performed afterwards.

Each neuron receives the parameters (a*, b*, c, d*) from a top module and stores

locally the initial values for v and u*. The initial values of v and u* are, respectively -70

mV and -15.63 mV. The time incremental is ∆t = h = 0.78125 ms (milliseconds). The

parameters and injected currents are displayed in Table 4.2.



Figure 4.10: The Neuron Schematic

Source: Bandeira et al. (2015)

Table 4.2: Parameters for each neurocomputational feature and injected current used in the
implementation

Neural Behaviour

Tonic Phasic Tonic Phasic Mixed Spike-frequency

spiking spiking bursting bursting mode adaptation

Input I* 10.9375 5 11.71875 4.6875 9.375 23.4375

Parameters

a* 0.015625 0.015625 0.015625 0.015625 0.015625 0.0078125

b* 0.15625 0.1953125 0.15625 0.1953125 0.1953125 0.1953125

c -65 -65 -50 -55 -55 -65

d* 4.6875 4.6875 1.56125 0.0390625 3.125 6.25

Source: Bandeira et al. (2015)

The parameters in Table 2.2 are adapted from the original publication (IZHIKE-

VICH, 2003) considering the factor h, and it depends on the type of the simulated neuron.
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5 CLUSTER LEVEL

This section presents the main contribution of this work, DHyANA’s Cluster Level.

The main building blocks are delineated, incorporating details regarding its implementation,

the circuit schematics and the explanation of its behavior.

The Cluster Level is mainly composed, as seen in Figures 4.8 and 5.1, of the Neuron

modules and the Cluster Controller. The interface with the Global Level is possible due to

the packet communication made between the Cluster Controller and the Global Router.

5.1 Neuron module

Besides the Izhikevich Simple Model (ISM) module, which was designed to run at

a lower clock speed then the rest of the system, each Neuron module is mainly composed

by an Address-Event (AE) Encoder module and two memories as the synapses, as observed

in Figure 5.1.

The ISM inputs indicated in Figure 4.10 are implemented as 18-bit constants,

with their values set offline. This is true for all except for the current I signal, which is

connected to the output of the RAM memory and will be explained later in this section.

The only relevant output for this implementation is the 1-bit spike signal, which indicates

the occurrence of a spike at the neuron.

After a spike happens, the AE module is responsible for sending the Neuron

Address to the shared bus. It uses the so-called Address Event Representation (AER)

approach (MAHOWALD, 1992; SIVILOTTI, 1991), in which an address is assigned

to each neuron cell in a chip, so that when a cell activity occurs it is broadcast to all

computational nodes within a defined region.

Such approach, which has been used for some time by the neuromorphic commu-

nity, solves real-time neuron communication requirements by making the event duration

short enough (approximately 1 microsecond) compared with the width of neural spikes

(approximately 1 microsecond), making it less likely for two events to overlap (DEISS

et al., 1998). Furthermore, even if events from several nodes did occur simultaneously,

the limited maximum firing rate and a manageable arrangement of close succession of

signals could bring the loss of information in rate coding to a minimum. Much cortical

action potential processing has a temporal resolution in the order of a millisecond or longer

(SINGER, 2008; SHADLEN; NEWSOME, 1994; DECHARMS; ZADOR, 2000), whereas
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Figure 5.1: Neurons at the Cluster Level

Source: The author

the maximum time-skew introduced by queuing of address events is much shorter — of

the order of 0.1 milliseconds (DEISS et al., 1998).

In order to further avoid loss of information, a simple handshake protocol was

implemented, in which the Bus Control module at the Cluster Controller handles the

permissions with a priority encoder. Using the input- and output enable signals, the module

controls the buffers at the Neuron modules, preventing simultaneous information to reach

the shared bus.

At the Neuron module, a simple FSM is also implemented in order to follow and

control the protocol at each module. Furthermore, as the ISM output spike signal comes

from a slower clock domain, the FSM is also important to guarantee that the spike flag

signal is correctly handled. The FSM at the Neuron module thus keeps track of each spike

from the ISM, assigns the address to each specific neuron according to its position within

the system, and also controls the status of the communication.
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For this work’s prototype network, the neuron address is defined by the following

premises: each neuron module is assigned an 8-bit address, in which the 4 least significant

bits represent the neuron position within each Cluster and the 4 most significant bits

represent the Cluster position within the system (see Figure 5.2). The Cluster addresses

at the system were assigned by VHDL generics mapped into Verilog parameters, as the

system was designed in a mixed-language approach.

Figure 5.2: Cluster Level Packet, containing the Neuron and Cluster Addresses.

Source: The author

The two memory cells at the Neuron module are a Content-Addressable Memory

(CAM) and a Random-Access Memory (RAM). Both memories were initially described

in Verilog by adapting the Altera’s Recommended HDL Coding Styles guide in order to

ensure optimal synthesis results for our target Altera FPGA device, as well as to have a

good testbench structure.

The two memories mainly differ in the type of information that is handled at the

input/output. At the RAM, the inputs are address locations of its contents and the outputs

are the contents of that addresses. The input of the CAM, oppositely, is a data to be

searched at the memory contents, so that when there is a match, its respective address will

be available at the output.

In order to provide such mechanism, the CAM memory has a dedicated comparison

circuitry, in which a fast lookup-table function is implemented. A simplified block diagram

of the CAM is shown in Figure 5.3.

The input of the system is the search word, which in this project is the address of

a neuron that spiked, the 8-bit word set according to Figure 5.2. Each stored word has a

matchline that indicates whether the search word has an identical stored word, configuring

a match case. The matchlines are then fed to an encoder, which generates a binary match

location corresponding to the matchline that is in the match state. Thus, in the occurrence

of a match case, two signals are output: the memory address that contains the matching

neuron connection data word, and a hit signal (not shown in the figure) is set, which is
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Figure 5.3: Conceptual view of a Content-Addressable Memory, containing w words. In
the example, the search word matches location (w-2) as indicated by the colored box. The
matchlines provide the row match results. The encoder outputs an encoded version of the
match location using log2w bits.

Source: Adapted from Pagiamtzis and Sheikholeslami (2006)

then used for preparing the Neuron module to receive the 18-bit data from the RAM.

The two memories, therefore, represent the synapses in the following manner: the

CAM memory tests connectivity of an AE being broadcast at the Bus; in positive cases,

it sends to the RAM the address at which is stored the synapse current x weight for that

particular connection, as visualized in Figure 5.4.

Figure 5.4: Memories at the Neuron Module. In the example, the AER (search word)
matches location 10 as indicated by the colored box at the CAM. The CAM then outputs
the address of the matching word, which points to the value of the synapse at the RAM.

Source: The author
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The initialization values and .mif files for the memories are randomly generated

offline by a program in Python, following the constraints imposed by the desired network

to be implemented.

The RAM output is connected to the 18-bit input signal I of the ISM. However,

the two entities were designed to have different clock domains (with the ISM being much

slower than the rest of the system). Thus in order to prevent data loss and metastability, a

two-stage shift register was implemented at the crossing of domains.

5.2 The Cluster Controller

As already mentioned, the Cluster Controller is a key block within the architecture.

It is composed of a ROM cell, a FIFO buffer, a Finite State Machine, a Decoder and a Bus

Controller, as shown in Figure 5.5.

Figure 5.5: Controller Detail at the Cluster Level

Source: The author
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The Bus Controller is a necessary asset, as already mentioned, since it annuls the

possibility of two neurons simultaneously sending their AE to the bus. For such, a priority

encoder was implemented, and the granting signals are given in the following order: a new

input from another Cluster has the highest priority, and the neurons from the same Cluster

have an ascending order priority.

The FIFO is yet another module implemented in order to handle high throughput

and prevent data loss. Thus, while the Cluster Controller is still in the process of sending

the previous packet to the Global Router, the new AE from a neuron is stored at the FIFO

and will be taken care of as soon as the FSM is ready. For 16 neurons within a single

Cluster, a depth of 4 was considered enough.

The ROM, as shown in Figure 5.6, contains the following data: a FLAG for each

neuron within a Cluster, containing the number of Clusters it connects with; and the RI

bits, data necessary to assemble the header of the Global packet.

Figure 5.6: ROM Data for one Neuron. In the example, the Neuron connects with 6
Clusters, namely the 0, 4, 7, 9, 11 and 14. Note that no information on Neuron connections
within said Clusters is necessary at the ROM.

Source: The author

The aforementioned values for the ROM are generated off-line by a Python program.

The program defines the connections and then assembles the RI for the Global packet

according to the premises described in section 4.1.
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The pseudocode for this task is shown in Figure 5.7. It also presents an example RI

formulation for a given packet, to be sent from Cluster 9 to Cluster 7.

Figure 5.7: Pseudo-code for Global Packet Header assembly

Source: The author

It is worth remembering that, as explained in Section 4.1, each Cluster Controller

determines the path to be used by a packet, by including the corresponding RI in the packet

header. The RI clearly expresses the pathway of each flit of the package in the following

way: The most significant bit, Xdir, represents the East/West direction to be routed; the next

three bits, Xmod, specify the number of links to be traversed on X (East/West) direction;

the next bit, Ydir, represents the North/South direction to be routed; and finally the three

least significant bits, Ymod, designate, as well, the number of links to be traversed, but

now in the Y (North/South) direction.

The Finite State Machine is the module that controls the communication between

the Cluster Controller and the Global Router. It assembles the Global packet and maintains

the timing controls for successful transmission of each flit.
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The FSM first reads the FIFO for the next Address-Event, as shown in Figure 5.8.

Then, it sets a ROM address corresponding to the neuron that originated the AE, and reads

its value. As previously stated, that specific first ROM address corresponds to a FLAG

value, which indicates the number of Clusters that are connected to the specific neuron that

spiked.

Figure 5.8: Cluster Controller FSM Logic

Source: The author

After reading the FLAG value at the ROM and storing it at a register, the FSM

repeats the following operations, until the value at the register becomes zero: the immedi-

ately next ROM address is set, and its value is read; then, the Global packet is prepared,

using the RI bits from the ROM, and sent to the Global Router; after sending the packet,

the value at the register is decremented, and, if its value is still non-zero, the last operations

are executed again.



The Decoder module, as the name indicates, decrypts the information received

from another Cluster in order to make it readable for the neurons at a given Cluster. It

takes advantage of the fact that the package Tail does not modify itself along the way (as

opposed to the Header, in which the module bits are modified at every new Router in order

to keep track of the path, as explained in section 4.1). Thus, when a new packet arrives

from the Global Router, the Neuron Address and the Tail flits goes to the Decoder, where

it recovers the original AE from the neuron that spiked.

Figure 5.9 presents the pseudo-code for this module. The Figure also shows, taking

the same example as the one in Figure 5.7, the recovery of the address (Cluster 9) at the

receiving side (Cluster 7).

Figure 5.9: Pseudo-code for Decoding the Global Packet. Note that the division and
modulo operations use constant data, and can be inferred as constant values and not
operations by the compiler.

destin_mod = destin_id % noc_width → 7%4=3
destin_div = destin_id // noc_width → 7//4=1
if (X_dir = 1):

DirX = destin_mod + X_mod
else:

DirX = destin_mod - X_mod → 3-2=1
if (Y_dir = 1):

DirY = destin_div – Y_mod
else:

DirY = destin_div + Y_mod → 1+1=2

AE(router) = DirX + DirY * noc_width → 1+2*4=9
AE(neuron) = Neuron_Address

At Controller 7:At Controller 7:

Tail:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Rout./Ctrlr. Addr:   1001

0  010    0  001
X_dir Y_dir

X_mod Y_mod

Source: The author
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6 RESULTS

Without loss of generality, a prototype 4 x 4 NoC with a varying number of neurons

in each cluster has been described in mixed-language, VHDL and Verilog HDL. The

validation of the proposed architecture was accomplished in two steps: functional hardware

evaluation through simulation and FPGA implementation for real-time performance analy-

sis. Moreover, a 65nm synthesis was performed for evaluation and comparison with similar

state-of-art projetcs. This chapter describes the experimentation environment, the datapath

traversed by an action potential after a neuron fires and the quantitative and qualitative

analysis of the proposed architecture.

6.1 Testbench Setup

The functional hardware evaluation of DHyANA was performed using Mentor

Graphics’ Modelsim SE 10.1c and Altera’s Quartus Prime 16.0. The validation was carried

out on different stages: first the communication between neurons by direct connection was

simulated; then, Clusters of different sizes were tested; afterwards the inter-level connec-

tion (Cluster Controller to Global Router) was established to verify the communication

protocols; lastly, Clusters with different sizes were connected each to a Global Router and

the whole architecture’s functionality as verified.

This section describes the datapath that a spike takes after leaving the neuron cell

until the moment it reaches other cells at different situations. Moreover, simulation images

are displayed in order to better describe some of the system’s functioning.

Figure 6.1 shows the voltage at two neurons after receiving input current stimulus.

The peaks in voltage correspond to the action potentials that were generated at the neuron.

When such spike occurs at a neuron cell, it first asks the Bus Control permission to

send data to the Bus. It then assembles the AE according to the neuron address within the

system, and after the permission is set, the AE is broadcast at the Bus, which connects the

Cluster Controller and all the other neuron modules.
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Figure 6.1: Two Neurons Spiking After Stimulation. Note the peaks in the V signals
(analog representation) and their corresponding digital signals "spike", which are the
output of the neurons.

Source: The author

As soon as it enters the Cluster Controller, the AE is stored at the FIFO buffer.

Afterward, when the FSM is ready, it takes the next AE in line and looks at its first ROM

position in order to check how many connections said neuron has with other Clusters. The

number of connections is determined by a FLAG signal. Then, for "FLAG times", the state

machine will prepare the packet, and wait for the router confirmation to initiate the next

connection. The whole FSM process was far explained in section 5.2, especially at Figure

5.8.

At Figure 6.2, the inter-Cluster pathway is indicated in red. For the situation shown

at the Figure, the spike originated from a neuron (eg, n = 18) at the Cluster 8, and will be

sent to one at Cluster 8 (eg, n = 38) as well as one or more neurons at the Cluster 2 (eg, n =

02 and n = 12).

Once a packet is intended to be transferred to the Global Router, a handshake

between the Cluster Controller and the Global Router happens. Using the signals ACK

and VAL, the packet is safely delivered to the Router (and from it to other Routers) and

stored at one of the Input FIFO Buffers. The Flow Control at the Router and the FSM at

the Controller coordinate such effort. Figure 6.3 shows the handshake signals as well as

the packet flits being exchanged among Routers at the Global Level.

Once at the Global Router, the Header flit is analyzed for the RI bits. Then,

the Routing Algorithm takes action in order to select an output channel A round-robin

algorithm is then run at the Arbiter in order to select one of the requests emitted by the

input channels. At the Crossbar, the signals are then transferred to the correct output

according to the routing algorithms.



68

Figure 6.2: Afferent Datapath of the Cluster Level. For the sake of visual clarity, note that
two red arrows were used to indicate the pathway from neuron 1 to the neuron 3 and to
the Cluster Controller. However, this only indicates that, after the neuron 1 fired, only the
neuron 3 had a CAM Hit, and the Controller will search for connections at other Clusters.

Source: The author

The mod field at the RI bits are decremented by one, related to the direction in

which the packet is being routed. Such operations will happen until the two mod fields are

null, meaning that the packet will finally be delivered to the Cluster. Figure 6.4 shows the

pathway followed by the example previously given.

At Figure 6.4 the spike, which occurred at the Cluster 8, is delivered to one or more

neurons at the Cluster 2. The image shows the update of the RI bits at each Global Router.

It also shows the representation of the Router. Note that, as it represents the Router 6,

the South Input and the North Output are marked red, since they are the ones used at the

example.

When a new data is received from the Router, it goes straight to the Decoder at the

Cluster Controller. Then, after the process illustrated in Figure 5.9, the AE is ready and the

Bus Control grants permission for the data to be broadcast to the Bus. Subsequently, all

the neurons connected to the Bus are then able to test for connectivity, through the CAM
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Figure 6.3: Routers Communication

Source: The author

Figure 6.4: Datapath of the Global Level.

Source: The author

memory.

When a CAM Hit is set at any particular Neuron, it means that said neuron is

connected to the Neuron who originated the spike. In that case, the address of such
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connection is sent to the output of the CAM memory, which is connected as input to the

RAM. At the given RAM address is stored the value of the synapse, ie, the multiplication

of the current times the weight representing the connection strength.

Finally, the value of the synapse, at the output of the RAM, is connected to the

input of the Izhikevich module, which will, through the equations shown in Section 4.3,

compute the voltage of the neuron and maybe fire a spike and then re-initiate the cycle.

At Figure 6.5, the explained pathway is indicated in red.

Figure 6.5: Efferent Datapath of the Cluster Level. Besides the DAT signal vectors, which
represent the flits, note the ACK and VAL signals, part of the handshake protocol in order
to certify the connection success.

Source: The author

6.2 FPGA Implementation

After a careful functional examination and testing of the proposed architecture, it

was implemented in an Altera Stratix IV EP4SGX230KF40C2 FPGA in order to verify the
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system’s real-time performance on a hardware platform.

The FPGA synthesis was realized using the Altera’s Quartus Prime 16.0 software.

Figure 6.6 shows the increase in synthesis time for different Cluster sizes. The graph

presented, as expected, a linear curve.

Figure 6.6: Cluster Size versus FPGA Logic Utilization. The X-axis represents the quantity
of neurons contained in each Cluster.

30%

38%

45%

52%

60%

67%

75%
80%

88%

95%
99%

110%

0%

20%

40%

60%

80%

100%

120%

3 4 5 6 7 8 9 10 11 12 13 14

Source: The author

The FPGA was able to admit up to 13 neurons per Cluster (99% Logic Utilization),

with a total of 208 neurons in the system. For comparison, the same FPGA chip can be

filled with up to 364 ISMs (BANDEIRA et al., 2015).

Such a number is considered good enough for some classification tasks, such

the spoken word recognition in (HOPFIELD; BRODY, 2001), and other benchmark

Liquid State Machine implementations, as the original paper from Maass, Natschläger and

Markram utilized 135 integrate-and-fire neurons for the liquid plus 51 read-out IF neurons

in order to implement such applications (MAASS; NATSCHLäGER; MARKRAM, 2002).

A similarly linear growth is expected for higher numbers. However, numbers higher

then 20 or 25 neurons per Cluster are expected to encounter timing issues, thus being

worth considering the use of other network topologies for the lower level, such as the

crossbar in (REINBRECHT, 2012), a star such as in (CARRILLO et al., 2013), a mesh

as suggested in (VAINBRAND; GINOSAR, 2011) or even the creation of another level

within the hierarchy.
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A similar result was obtained for the increase in synthesis time, shown in Figure

6.7. The graph proves that the FPGA synthesis time is a direct consequence of the total

FPGA logic utilized, which was also an expected result.

Figure 6.7: Cluster Size versus FPGA Synthesis Time Elapsed
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Source: The author

For the full FPGA capacity (13 neurons per Cluster), the maximum frequency was

determined to be 62.2 MHz for the communication clock. Additionally, even though the

maximum frequency allowed for the neuron was 97.45 MHz, it must have a tenth of the

communication frequency in order for the system to perform correctly.

6.3 Related Work Comparison and Final Remarks

A 65nm logic synthesis using Cadence Design Systems tools was performed for

256 neurons (4 x 4 mesh NoC with 16 neurons per Cluster), in order to evaluate and have

some kind of comparison with similar designs. For the stated configuration, the synthesis

established a power of 147mW for the system, and a chip area of 0.23mm2.

Table 6.1 summarizes some of the DHyANA features, as well as other state-of-the-

art large-scale neuromorphic platforms. It is worth mentioning, however, that although

related, most measurements are not from the same benchmark nor use the same technology,



so they cannot be compared directly.

Table 6.1: DHyANA compared to Related Works
Project

Name

Neuron

Model
A/D Neurons Power

Power/

Neuron

Size

mm2

Area/

Neuron

CMOS

Process

Synapses per

Neuron
Topology

SpiNNaker IF or IZHI DS 16x103 1W 6,25E-05 102 6,38E-03 130nm 1x103 Triangular Lattice∗

Neurogrid Quad. IF A 983,040 5W 5,08E-06 168 1,71E-04 180nm 6x109 Star

BrainScaleS Exp. IF A 512 1kW 1,95 430 8,40E-01 180nm 112x103 Hierarchical Buses∗∗

EMBRACE IF A 400 13.16mW 3,29E-05 0.587 1,47E-03 65nm 400 Hybrid (star-mesh)

TrueNorth - - 1x106 65mW 5,60E-08 430 4,30E-04 28nm 256 Mesh

ROLLS Exp. IF A 256 4mW 1,56E-05 51.4 2,01E-01 180nm 256 Programmable Switch-matrix

DHyANA IZHI D 256 147mW 5,74E-04 0.23 8,98E-04 65nm 256 Hybrid (bus-mesh)

A = Analog, D = Digital, DS = Digital (Software), IF = Integrate-and-Fire, IZHI = Izhikevich. ∗folded into a toroid surface. ∗∗2D Torus (wafer).
SpiNNaker, BrainScaleS, TrueNorth data per chip; EMBRACE data per cluster.

Source: The author

The results from Table 6.1 demonstrate, firstly, that DHyANA is comparatively

similar with other works, and does not represent any significant gain in terms of area or

power per neuron. This similarity in turn represents a major success of the work, taking

into account that most of the related works are being developed by larger teams and/or for

a larger period of time.

From a qualitative comparison with the designs reviewed in section 3.3, one can

notice that although the topologies greatly differ, it is a tendency to utilize on and off-chip

networks in order to not only improve communication but also to allow the necessary

scalability of the systems. Moreover, some forms of intra and inter-chip (or even inter-

wafer) hierarchy were found among the larger designs.

The neuron models utilized greatly vary, being the variations of the integrate-and-

fire model the most utilized. This can be explained by the facility in its implementations.

However, as shown in section 2.1.2, this comes at the expense of not being able to represent

various types of neuron waveforms, thus restricting the biological accuracy of the whole

simulation.
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7 CONCLUSIONS AND FUTURE WORK

In this work, the Digital HierArchical Neuromorphic Architecture (DHyANA) was

proposed. With a focus on Liquid State Machine Recurrent Neural Network implemen-

tations, the architecture utilizes hierarchical and network-on-chip approaches to improve

communication and system scalability.

To the best of the author’s knowledge, DHyANA is the first of its kind in that it

implements a scalable general-purpose SNN with a digital hardware Izhikevich neuron

model. The network implements a hybrid bus-mesh topology for communication. At

the Cluster level, a shared bus connects the neurons as well as the Cluster Controller,

used for controlling and for communication with the Global Level. At such level, the

communication packets are composed by Address Event Representations. At the higher

level, Routers communicate using XY routing, packet switching, and handshake flow

control.

Different system configurations were implemented, and experimental results showed

that FPGA logic utilization grew linearly with the number of neurons per Cluster. The

FPGA was able to comport up to 13 neurons per Cluster, 208 neurons in total. A configu-

ration of 256 neurons, 16 per Cluster, was also synthesized, achieving an area of 0.23mm2

and a power dissipation of 147mW.

Such number of neurons was considered enough for a prototype implementation,

since applications from speech recognition to other benchmark configurations were realized

with an even smaller number of neurons (MAASS; NATSCHLäGER; MARKRAM, 2002).

Additionally, although it did not find major improvements in area and power, the design

demonstrated great potential, to be explored in many different aspects in future research.

In order for the system to become more biorealistic, it is important to investigate

further improvements. For instance, the implementation of even more complex neuron

models, such as the Hodgkin-Huxley model, would bring further realism, although at the

expense of area and power. The modeling of synaptic plasticity and other details in neuron

mechanisms would also improve the system in this direction.

Additionally, some architectural changes would also bring some good advances

for the system. A strategic multicasting communication, such as in (ZAMARRENO-

RAMOS et al., 2013), at the Global Level would bring major improvements in timing,

but could only be implemented after careful examination of the system’s traffic. Also, as

already mentioned, the implementation of another layer of hierarchy might be good or



even necessary for expansions of the system. Further expansions might as well greatly

benefit from the implementation of a 3D mesh NoC, as in (MATOS et al., 2013; MATOS

et al., 2015) and (MARCON et al., 2014).

This work has also presented a great potential for future research, and among

the future directions are the development of applications in engineering and biology

for the system, including, but not limited to, BMI, neuroprosthesis, large vocabulary

speech recognition, self-driving cars, autonomous robot control, medical signal processing

as well as experiments and data analysis in neurophysiology. Moreover, as the brain

has an amazing hability to adapt to failure, future versions of DHyANA could include

fault tolerance features in communication, as well as adaptability and reconfigurability

proprieties. The development of CAD tools to assist the implementation of neurochips is

also encouraged, as it would facilitate the design, testing and further study of the physical

aspects of the system at deeper levels.
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APPENDIX A — RESUMO EM PORTUGUÊS

DHyANA: uma Arquitetura Digital Neuromórfica Hierárquica para Máquinas de
Estado Líquido.

A.1 Resumo

Redes Neurais têm sido um tema de pesquisas por pelo menos sessenta anos.
Desde a eficácia no processamento de informações à incrível capacidade de tolerar falhas,
são incontáveis os mecanismos no cérebro que nos fascinam. Assim, não é nenhuma
surpresa que, na medida que tecnologias facilitadoras tornam-se disponíveis, cientistas e
engenheiros têm aumentado os esforços para o compreender e simular.

Em uma abordagem semelhante à do Projeto Genoma Humano, a busca por tec-
nologias inovadoras na área deu origem a projetos internacionais que custam bilhões de
dólares, o que alguns denominam o despertar global de pesquisa da neurociência.

Avanços em hardware fizeram a simulação de milhões ou até bilhões de neurônios
possível. No entanto, as abordagens existentes ainda não são capazes de fornecer a
densidade de conexões necessária ao enorme número de neurônios e sinapses.

Neste sentido, este trabalho propõe DHyANA (Arquitetura Digital Neuromórfica
Hierárquica), uma nova arquitetura em hardware para redes neurais pulsadas, a qual utiliza
comunicação em rede-em-chip hierárquica. A arquitetura é otimizada para implementações
de Máquinas de Estado Líquido.

A arquitetura DHyANA foi exaustivamente testada em plataformas de simulação,
bem como implementada em uma FPGA Stratix IV da Altera. Além disso, foi realizada a
síntese lógica em tecnologia 65nm, a fim de melhor avaliar e comparar o sistema resultante
com projetos similares, alcançando uma área de 0,23mm2 e potência de 147mW para uma
implementação de 256 neurônios.

A.2 Introdução

A.2.1 Redes Neurais Pulsadas

Um neurônio é uma célula extremamente especializada, que gera sinais elétricos
em resposta a agentes químicos e elétricos, e dissemina-os através de seus axônios para
outras células (DAYAN; ABBOTT, 2005). Ele é composto principalmente pelo corpo
celular, ou soma, os dendritos e o axônio, o qual pode atravessar grandes porções do
cérebro ou mesmo de todo o corpo. Suas conexões, que podem ser vistas como um tipo de
resistor químico, são denominadas sinapses.

O potencial elétrico entre o meio intra- e extracelular de um neurônio, que em
condições de repouso (polarizadas) é de cerca de -70mV, é o sinal relevante para o sistema
nervoso. Este potencial é modificado por correntes elétricas inseridas através das mais de
10.000 entradas presentes em um neurônio comum. Tais alterações no potencial elétrico
transmembrana, denominadas Potenciais Pós-Sinápticos (PSP, do inglês postsynaptic
potential), podem ser grandes o bastante para, sob determinadas circunstâncias, serem
amplificadas pelos canais sensíveis a tensão embutidos na membrana neuronal, gerando



88

assim um potencial de ação ou espiga.
Existem diversos modelos de neurônios pulsados, cada um variando em níveis de

complexidade, intensidade computacional e precisão biológica, e uma boa visão geral
deles pode ser visto em (IZHIKEVICH, 2004). O mais biologicamente preciso e um
dos modelos matemáticos mais utilizados do neurônio é o desenvolvido por Hodgkin e
Huxley (1952). Ao pesquisar o comportamento de neurônios de lula (cujo tamanho é 100
a 1000 vezes maior do que aqueles no cérebro humano), eles desenvolveram um modelo
matemático que pode reproduzir todos os tipos de neurônios com boa precisão em termos
de forma de espiga e atividades de disparo complexas (AMBROISE et al., 2013).

Um dos modelos mais simples é o Integra-e-Dispara com Vazamento (LIF, do inglês
Leaky Integrate-and-Fire), o qual utiliza apenas uma equação diferencial para modelar o
comportamento de um neurônio. Este modelo basicamente idealiza um neurônio como
tendo corrente ôhmica de fuga e correntes reguladas por tensão desativadas quando em
repouso. Apesar dos benefícios relativos à simplificação, este modelo é falho ao não ser
tão biologicamente plausível.

Outro modelo matemático de neurônio comumente utilizado foi proposto por
Izhikevich (2003), o qual pode ser considerado um meio termo entre complexidade e
plausibilidade biológica. Apesar de não ser tão simples quanto o modelo LIF, modelo de
Izhikevich pode simular várias respostas não-lineares de neurônios biológicos, tornando-
o quase tão versátil quanto o modelo de Hodgkin-Huxley em uma fração de seu custo
computacional, sendo este, portanto, o modelo escolhido para este trabalho.

O modelo de neurônio idealizado por Izhikevich é descrito pelas duas equações
diferenciais acopladas a seguir.

dv

dt
= 0.04v2 + 5v + 140− u + IIzh (A.1)

du

dt
= a(bu− v) (A.2)

A variável v denota o potencial da membrana, enquanto u representa o parâmetro de
recuperação da membrana. I é a entrada sináptica, e a, b são parâmetros que controlam o
comportamento dinâmico do modelo neural. Há também uma condição de reset, controlada
pelos parâmetros c, d, e definida pela equação (A.3).

v ≥ 30mV ⇒

{
v ← c

u← u + d
(A.3)

A.2.2 Máquinas de Estado Líquido

O conceito de Computação por Reservatórios foi introduzido em duas publicações
independentes, as quais, embora usando abordagens diferentes, apresentaram a ideia de
um reservatório dinâmico recorrente de unidades de processamento em estado transitório,
enquanto a camada de saída está sujeita a um aprendizado supervisionado. A primeira
publicação, por Jaeger (2001a), as Redes com Estado de Eco foram introduzidas. O
estudo explorou aplicações de redes recorrentes de neurônios sigmoidais conectados
aleatoriamente a tarefas complexas de previsão de séries temporais. A segunda, por Maass,
Natschläger e Markram (2002), uma abordagem mais biologicamente orientada, considerou
reservatórios de neurônios pulsados estruturados e funcionando de uma forma inspirada
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pelas propriedades de colunas neocorticais do sistema nervoso central de mamíferos.
A motivação intuitiva por trás deste conceito pode ser explicada imaginando o uso

de um líquido (como um copo de água) para executar a computação, como explicado por
Cao e Pipa (2010). Do ponto de vista de um sistema dinâmico, isso não faz muito sentido,
pois o único estado estável ao qual o líquido pode convergir após uma perturbação (por
exemplo, uma queda no líquido) é um estado "morto" em que o líquido estará perfeitamente
imóvel. Entretanto, a ideia de Computação por Reservatórios é que os estados transitórios
do líquido em determinado momento ainda mantêm informações relevantes sobre uma
perturbação que ocorreu no momento anterior. Uma vez que o líquido tenha a capacidade
de produzir estados transitórios significativamente diferentes sob duas entradas diferentes,
é então teoricamente possível extrair informação diretamente de medidas sobre o estado
do líquido, uma vez que este pode armazenar informações sobre o passado (por exemplo,
imagens sucessivas de um copo de água previamente perturbado).

A Máquina de Estado Líquido de Maass, Natschläger e Markram (2002) permite
a realização de computações exigentes com circuitos de neurônios pulsados e sinapses
dinâmicas, e, por ser mais biologicamente orientada, foi escolhida como foco deste trabalho.
Ela foi motivada pela hipótese de que a capacidade de aprendizagem de um dispositivo de
processamento de informação é o seu aspecto mais delicado, e que a disponibilidade de
exemplos de treinamento suficientes é um gargalo primário para a aprendizagem orientada
por objetivos (isto é, supervisionado ou baseado em recompensas) (MAASS, 2011).

Sua arquitetura é composta por duas camadas. Uma camada é um reservatório
de neurônios pulsados interagindo em uma topologia recorrente que mapeia entradas em
um estado dinâmico, gerando um padrão de atividades espaço-temporais de neurônios
chamado "estado líquido". A rede tem de gerar estados líquidos diferentes para diferentes
sinais de entrada, uma vez que o desempenho de uma Máquina de Estado Líquido de-
pende principalmente da qualidade dos padrões de atividade. A outra camada consiste de
neurônios de "leitura", que recebem o estado líquido e os sinais de instrução, comparam sua
saída com uma saída alvo no procedimento de treinamento e adaptam seus pesos sinápticos
utilizando uma regra de aprendizado. Deste modo, uma vez que apenas a camada de leitura
precisa ser treinada, e não toda a rede neural recorrente, a aprendizagem é realizada de
forma rápida e robusta.

A.2.3 Redes em Chip

A crescente complexidade e quantidade de transistores em dispositivos microeletrôni-
cos, nos quais centenas de núcleos de processamento (IP cores) são necessários para exe-
cutar múltiplos processos simultâneos em um único chip, colocou tremenda pressão sobre
a arquitetura de comunicação em Sistemas em Chip (SoCs, do inglês Systems-on-Chip),
mudando toda sua metodologia de projetos, agora baseada em comunicação.

Os núcleos dos sistemas foram tradicionalmente interligados utilizando-se dois
diferentes esquemas de comunicação: canais multipontos compartilhados, ou barramentos,
e canais ponto-a-ponto (P2P) dedicados. As arquiteturas de comunicação P2P podem
fornecer o máximo em desempenho de comunicação, porém com o curso de utilização
de canais dedicados entre todos os pares de comunicação, o que gera alta complexidade,
custo e esforço de design em termos de escalabilidade. Por outro lado, as arquiteturas
baseadas em barramento podem conectar algumas dezenas de núcleos de forma econômica,
reduzindo a complexidade do projeto e eliminando os fios dedicados exigidos pelas
arquiteturas P2P. Entretanto, os barramentos não conseguem fornecer escalabilidade o
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suficiente para energia e desempenho dos sistemas.
A abordagem baseada em Redes-em-Chip (NoCs, do inglês Networks-on-Chip)

representa uma solução promissora para os problemas de comunicação intra-chip, sendo
melhor escaláveis em termos de área, desempenho, consumo de energia e esforço de
projeto global. Uma rede é constituída por roteadores, interconectados por enlaces (links)
ponto a ponto, formando assim sua topologia. Os roteadores estão ligados aos elementos
de processamento que constituem o sistema através de uma interface de rede (NI, do inglês
network interface). Assim, a informação gerada por um núcleo de processamento, que
pode ser dividida em partes menores, ou pacotes, é enviada pela rede através do roteador,
anexado ao núcleo por meio do NI (OGRAS; MARCULESCU, 2013).

A capacidade da rede para disseminar eficientemente as informações depende em
grande parte da sua topologia, a qual possui um efeito primordial na largura de banda
da rede, latência, throughput, área total, tolerância a falhas e consumo de energia, bem
como um papel importante na concepção da estratégia de roteamento e de mapeamento dos
núcleos da rede (OGRAS; MARCULESCU, 2013). Existe um vasto espaço de parâmetros
quando se trata da infra-estrutura de comunicação do NoC.

O design do roteador envolve a determinação das técnicas de controle de fluxo,
número de canais virtuais, organização de buffer, design de switch, estratégia de pipelining
enquanto aderindo à freqüência de clock de destino e orçamentos de energia. Cada
parâmetro afeta os sistemas em diferentes métricas, como desempenho, consumo de
energia e área, sendo assim tarefa fundamental no projeto de NoCs explorar eficientemente
o espaço de design em relação a todos esses aspectos. Para uma explicação detalhada
de todos os parâmetros importantes para uma infra-estrutura de rede-em-chip, o leitor é
indicado às pesquisas de Bjerregaard e Mahadevan (2006) e de Ogras e Marculescu (2013).

A.2.4 Estado da Arte

Existe uma vasta gama de Redes Neurais Pulsadas encontrada na literatura. Várias
destas redes foram desenvolvidos em hardware, como demonstram as pesquisas de Maguire
et al. (2007), de Misra e Saha (2010) e de Cassidy, Georgiou e Andreou (2013). As arquite-
turas propostas mais relevantes para este trabalho são os recentes esforços neuromórficos
altamente escaláveis, os quais foram implementados em hardware e utilizam estratégias de
rede em chip como principal estrutura de comunicação.

Os projetos Neurogrid da Universidade de Stanford (BENJAMIN et al., 2014), e
BrainScales da Universidade de Heidelberg (SCHEMMEL et al., 2010), são formados
por sistemas multi-chip neuromórficos de sinal misto. Ambos os projetos, embora difer-
entes em muitos aspectos, usam computação analógica para emular dinâmicas neurais e
comunicação digital para realizar as conexões sinápticas.

O projeto SpiNNaker, da Universidade de Manchester, tem como objetivo fornecer
uma plataforma para o processamento paralelo de alta performance, integrando um sistema
baseado em microprocessador, o qual contem 18 núcleos ARM968 em um único die
(FURBER et al., 2013). Cada nó do sistema consiste em um Sistema-em-Pacote, o qual
contém um processador de núcleos ARM e uma SDRAM off-die de 128Mbyte empilhada
em seu topo. Os nós do sistema, formados por Sistemas-em-Pacote, são interligados por
uma rede em chip contendo seis links, envolvidos em uma rede triangular.

O projeto EMBRACE da Universidade de Ulster e da Universidade Nacional da
Irlanda (HARKIN et al., 2009), e o processador neuromórfico ROLLS da Universidade
de Zurique e da ETH Zurique (QIAO et al., 2015) são abordagens de sinal misto de baixa
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potência. A arquitetura EMBRACE propõe RNPs baseadas em uma matriz hierárquica de
roteadores, com base em uma topologia híbrida malha-estrela. Já o processador ROLLS
usa circuitos de lógica digital assíncrono para configuração de diferentes configurações de
rede.

O projeto IBM SyNAPSE desenvolveu o chip TrueNorth, no qual 4096 núcleos
neurossinápticos formam uma matriz bidimensional, formando um sistema com 1 milhão de
neurônios digitais e 256 milhões de sinapses. Sua arquitetura também utiliza a comunicação
hierárquica, contendo um crossbar de alto fanout para comunicação local e uma rede em
chip para comunicação de longa distância. O sistema possui também sincronização global
do sistema para garantir a operação em tempo real.

A.3 Arquitetura Proposta

DHyANA é uma Rede Neural composta por uma rede em chip hierárquica em dois
níveis. Os núcleos de processamento, modelos de neurônio de Izhikevich digitais, bem
como um Controlador são conectados localmente através de um barramento compartilhado
no nível de Cluster. A interface entre os dois níveis é realizada através de uma conexão
entre o Controlador e seu Roteador correspondente. No nível Global, uma rede-em-
chip bidimensional do tipo grelha (malha, ou mesh) realiza a conexão entre Clusters de
neurônios.

A visão de um sistema no Nível Global está disponível na Figura A.1. Ele mostra o
tamanho do protótipo do sistema para a comunicação global, uma topologia de malha 4x4.

A motivação para a escolha de uma topologia híbrida foi impulsionada por alguns
pontos importantes: simplicidade, desempenho, otimizações de energia e, principalmente,
localidade. Em termos de chips multiprocessadores, o conceito de localidade foi definido
por Das et al. (2009) como "a porcentagem de pacotes injetados por um nó que são
satisfeitos por seus vizinhos imediatos na rede". Assim, aplicações com localidade alta
tendem a ter alto tráfego local no padrão de comunicação com vizinhos próximos. Em
sistemas biológicos neuronais, o conceito é semelhante. Na escala de aproximadamente um
milímetro cúbico de córtex, contendo cerca de 100.000 neurônios, o trabalho de Mehring
et al. (2003) sugere que a probabilidade de conexão diminui de uma forma Gaussiana com
a distância entre neurônios.

Assim, com base nas premissas de localidade supramencionadas, pode-se inferir
que a comunicação inter-cluster (global) possui menor atividade durante a execução em
comparação com a comunicação intra-cluster (local), sendo o barramento compartilhado
uma escolha conveniente para tal configuração, além de ser esta uma solução simples e
eficiente em termos de energia. Porém, estas poucas mensagens inter-cluster exigem um
alto throughput para lidar com rajadas de disparos dos neurônios, sendo então a topologia
de rede em grelha uma ótima opção para evitar estrangulamentos independentemente da
taxa de mensagem, além de ser uma opção viável em termos de escalabilidade.

A.3.1 Nível Global

A rede-em-chip em grelha utilizada para o Nível Global de DHyANA foi a System-
on-Chip Interconnection Network (SoCIN) (REINBRECHT, 2012; ZEFERINO, 2003),
uma rede escalável baseada em uma arquitetura de roteador parametrizável para NoCs
de baixo custo. A rede, baseada no algoritmo de roteamento XY, emprega chaveamento
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Figure A.1: Nível Global da DHyANA. Por questões de clareza visual, o Nível de Cluster
é omitido, como se estivesse sob os Controladores.

Fonte: A autora

por pacotes do tipo wormhole e controle de fluxo por handshake, arbitragem dinâmica
distribuída e memorização por FIFOs na entrada.

O enlace do Nível Global de DHyANA é composto por dois canais unidirecionais
simplex, cada um dos quais formado por n bits de dados e dois bits de banda lateral,
utilizados para indicar, respectivamente, o começo do pacote (bop - begin-of-packet) e
o fim do pacote (eop - end-of-packet). Um flit no sistema é formado pelo tamanho da
largura física do canal, possuindo assim n + 2 bits. Neste trabalho n = 8, portanto um flit
possui 10 bits de largura. Além disso, cada canal inclui um par de sinais necessários para
controlar o fluxo, que são utilizados para validar dados no canal (val) e para reconhecer os
dados recebidos (ack).

Os pacotes no nível global são compostos por três flits: o cabeçalho (header; o
endereço do neurônio (NA, do inglês neuron address); e o flit de término (cauda ou tail).
O cabeçalho é o primeiro flit do pacote e inclui as informações necessárias para estabelecer
o caminho do pacote na rede. O flit NA contém o endereço dos neurônios dentro de seu
respectivo Cluster. A cauda, flit que define o final do pacote, é utilizada para recuperar o
endereço do Cluster do neurônio que originou a espiga.

Além dos dois bits de banda lateral, o restante do flit de cabeçalho é reservado para



93

os bits de Informação de Rota (RI, do inglês Routing Information), contendo informações
necessárias para o roteamento do pacote. O RI é formado por quatro campos: Xdir, Xmod,
Ydir e Ymod. A descrição de cada campo está incluída na Tabela A.1.

Table A.1: Descrição dos bits RI

Campo Significado

Xdir O pacote deve ser encaminhado na direção Leste/Oeste

Xmod Número de enlaces restantes a serem percorridos na direção X (East/West)

Ydir O pacote deve ser encaminhado na direção Norte/Sul

Ymod Número de enlaces restantes a serem percorridos na direção Y (Norte/Sul)

Fonte: Adaptado de Zeferino (2003)

A.3.2 Nível Local

O Nível Local é responsável por duas tarefas muito importantes dentro da arquite-
tura DHyANA: conectar os neurônios dentro do mesmo cluster, além de construir os
pacotes para a comunicação entre os níveis na hierarquia. Ele é composto principalmente,
conforme mostrado na Figura A.2, pelos módulos Neurônio e Controlador Local.

Figure A.2: Nível Local da DHyANA.

Fonte: A autora
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O módulo Neurônio é formado pelo Izhikevich Simple Model (ISM), modelo de
neurônio utilizado neste trabalho, além de um Codificador de Endereço-Evento (AE, do
inglês Address-Event), e duas memórias que juntas simulam as sinapses.

Uma vez que um neurônio dispara, o Codificador AE é responsável por enviar o
endereço do neurônio para o barramento. O módulo utiliza a abordagem denominada
Representação de Endereço-Evento (AER, de Address Event Representation), na qual
um endereço é atribuído a cada célula de neurônio no chip, de modo que quando uma
espiga ocorre, seu endereço é transmitido para todos os determinados nós computacionais
(MAHOWALD, 1992; SIVILOTTI, 1991).

As duas células de memória no módulo Neuron são uma Memória Endereçável
por Conteúdo (CAM, do inglês Content Addressable Memory) e uma Memória de Acesso
Aleatório (RAM, do ingês Random Access Memory). As duas memórias representam as
sinapses da seguinte maneira: a memória CAM testa conectividade sobre um AE sendo
transmitido no barramento; em casos positivos, envia para a RAM o endereço no qual
está armazenado o valor daquela determinada sinapse (corrente vezes peso); Os valores
de inicialização e arquivos .mif para as memórias são gerados aleatoriamente de modo
offline por um programa em Python, seguindo as restrições impostas pela rede desejada a
ser implementada.

A saída de RAM é conectada ao sinal de entrada de 18 bits I do ISM. No entanto,
os dois módulos foram concebidos para ter domínios de relógio diferentes (com o ISM
sendo muito mais lento do que o resto do sistema). Assim, a fim de evitar perda de dados e
metaestabilidade, um registador de deslocamento de dois estágios foi implementado na
interface entre os dois módulos.

O Controlador Local é composto por uma memória ROM, um buffer FIFO, uma
Máquina de Estados Finitos, um Decodificador e um Controlador de Barramento.

O Controlador de Barramento é utilizado para anular a possibilidade de dois
neurônios enviarem seu AE simultaneamente para o barramento, através de um protocolo
handshake e um codificador de prioridade. Além disso uma FIFO, com profundidade 4
neste trabalho, foi implementada para lidar com alta taxa de transferência e evitar a perda
de dados.

A ROM contém os seguintes dados: um FLAG para cada neurônio dentro de um
Cluster, contendo o número de Clusters com que se conecta; e os bits RI, dados necessários
para montar o cabeçalho do pacote Global. Seus valores são gerados off-line por um
programa em Python, o qual define as conexões da rede e, em seguida, monta o RI para o
pacote Global de acordo com as premissas descritas na Tabela A.1.

A Máquina de Estados Finitos é o módulo que controla a comunicação entre o
Controlador Local e o Roteador Global. Ela monta o pacote Global e mantém os controles
de temporização e sincronismo para a transmissão de cada flit ser bem-sucedida.

O módulo Decodificador interpreta a informação recebida de outro Cluster para
torná-lo legível para os neurônios de um determinado Cluster. Para isto, aproveitou-se o
fato de que o flit de término não é modificado ao longo do caminho na rede, ao contrário
do flit de cabeçalho. Assim, quando um novo pacote chega através do Roteador Global, os
flits NA e tail vão para o Decodificador, o qual recupera o AE original do neurônio que
disparou e permitindo assim que este seja distribuído no barramento para que cada módulo
Neurônio teste sua conectividade.
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A.3.3 Núcleos de Processamento: Neurônios

Para DHyANA, foi utilizado o modelo de neurônio Izhikevich Simple Model (ISM)
implementado digitalmente em hardware, proposto em (BANDEIRA et al., 2015). A
escolha do modelo de Izhikevich deveu-se principalmente ao fato de sua implementação
se encontrar no meio-termo entre complexidade e plausibilidade biológica. Tal escolha,
porém, vem sem perda de generalidade. Assim, sempre que se verifique que um outro
modelo de neurônio é mais adequado para uma determinada aplicação, este pode ser
incorporado ao sistema.

Para sua implementação, foi escolhida uma representação de em ponto fixo e
complemento de dois, uma abordagem mais adequada para implementações digitais do
que ponto flutuante. Os sinais, inclusive de entrada e saída, possuem 18 bits, quantidade
adequada para permitir o uso do hardware disponível sem comprometer a precisão.

Cada neurônio recebe os parâmetros (a*, b*, c, d*), valor modificados das equações
originais de Izhikevich, de um módulo superior, e armazena localmente os valores para v
e u*. Os valores iniciais de v e u* são, respectivamente, -70 mV e -15.63 mV. O tempo
incremental é ∆t = h = 0.78125 ms (milissegundos). Os parâmetros e as correntes
injetadas são exibidos na Tabela A.2

Table A.2: Parâmetros para cada característica neurocomputacional e corrente injetada
utilizada na implementação.

Comportamento Neural

Spike Spike Rajada Rajada Modo Spike com Freq.

Tônico Fásico Tônico Fásico Misto Adaptativa

Entrada I* 10.9375 5 11.71875 4.6875 9.375 23.4375

Parametros

a* 0.015625 0.015625 0.015625 0.015625 0.015625 0.0078125

b* 0.15625 0.1953125 0.15625 0.1953125 0.1953125 0.1953125

c -65 -65 -50 -55 -55 -65

d* 4.6875 4.6875 1.56125 0.0390625 3.125 6.25

Fonte: Bandeira et al. (2015)

A.4 Resultados

Sem perda de generalidade, um protótipo de NoC 4 x 4 com um número variável de
neurônios em cada cluster foi descrito em linguagem mista, VHDL e Verilog. A validação
da arquitetura proposta foi realizada em duas etapas: avaliação funcional de hardware
através de simulação e implementação em FPGA para análise de desempenho em tempo
real. Ademais, foi realizada uma síntese lógica de 65 nm para avaliação e comparação com
projetos semelhantes do estado-da-arte.

A avaliação funcional da arquitetura DHyANA foi realizada utilizando-se o Mod-
elsim SE 10.1c da Mentor Graphics e o Quartus Prime 16.0 da Altera. A validação foi
realizada em diferentes estágios: primeiro a comunicação entre neurônios por conexão
direta foi simulada; então, foram testados Clusters de diferentes tamanhos; posteriormente
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foi estabelecida a conexão inter-nível (Controlador Local para Roteador Global) para
verificar os protocolos de comunicação; e por fim, Clusters com tamanhos diferentes foram
conectados a Roteadores Globais e a funcionalidade da arquitetura foi completamente
verificada.

Após o cuidadosos testes funcionais e avaliações da arquitetura proposta, a arquite-
tura DHyANA foi implementada em uma FPGA Altera Stratix IV EP4SGX230KF40C2,
a fim de se verificar o desempenho em tempo real do sistema em uma plataforma de
hardware. Foram analisadas diferentes configurações da arquitetura, tendo-se observado
um crescimento linear na utilização da FPGA com o aumento de um neurônio por Cluster.
A FPGA foi capaz de admitir até 13 neurônios por Cluster (99% de sua capacidade de
utilização lógica), um total de 208 neurônios no sistema. Para fins de comparação, o
mesmo chip FPGA pôde ser preenchido com até 364 ISMs em (BANDEIRA et al., 2015).

Tal número é considerado bom o suficiente para algumas tarefas de classificação,
como o reconhecimento da palavras faladas em (HOPFIELD; BRODY, 2001) e outras
implementações de Máquinas de Estado Líquido, uma vez que o artigo que marcou sua
origem implementou tais aplicações utilizando-se 135 neurônios Integra-e-Dispara para o
líquido e mais 51 neurônios de leitura.

Um crescimento linear semelhante é também esperado para configurações de
Clusters mais numerosos. Entretanto Clusters superiores a 20 ou 25 neurônios podem
vir a apresentar problemas de temporização, sendo assim vantajoso considerar-se o uso
de outras topologias de rede para o nível mais baixo da hierarquia, como o crossbar em
(REINBRECHT, 2012), a estrela como em (CARRILLO et al., 2013), a grelha como
sugerido em (VAINBRAND; GINOSAR, 2011) ou até a criação de um terceiro nível na
hierarquia.

Uma síntese lógica de 65nm foi também realizada, utilizando-se ferramentas da
Cadence Design Systems, para 256 neurônios, (rede em grelha 4 x 4 com 16 neurônios por
Cluster), a fim de se avaliar e ter meios de comparação com trabalhos similares. Para a
configuração estabelecida, a síntese estabeleceu uma potência de 147mW para o sistema, e
uma área de chip de 0.23mm2.

A tabela A.3 resume alguns dos recursos presentes na arquitetura DHyANA, bem
como dados de outras plataformas neuromórficas já citadas neste trabalho. Vale ressaltar,
no entanto, que, embora relacionadas, a maioria das medições não utilizam os mesmos
benchmarks nem utilizam a mesma tecnologia, portanto, não podem ser comparadas
diretamente.

Table A.3: DHyANA compada a Arquiteturas Relacionadas

Projeto
Modelo de

Neurônio
A/D Neurônios Potência

Potência/

Neurônio

Área

mm2

Área/

Neurônio

Processo

CMOS

Synapses por

Neurônio
Topologia

SpiNNaker IF or IZHI DS 16x103 1W 6,25E-05 102 6,38E-03 130nm 1x103 Treliça triangular∗

Neurogrid Quad. IF A 983,040 5W 5,08E-06 168 1,71E-04 180nm 6x109 Estrela

BrainScaleS Exp. IF A 512 1kW 1,95 430 8,40E-01 180nm 112x103 Barramentos hierárquicos∗∗

EMBRACE IF A 400 13.16mW 3,29E-05 0.587 1,47E-03 65nm 400 Híbrida (estrela-malha)

TrueNorth - - 1x106 65mW 5,60E-08 430 4,30E-04 28nm 256 Malha

ROLLS Exp. IF A 256 4mW 1,56E-05 51.4 2,01E-01 180nm 256 Matriz de comutação programável

DHyANA IZHI D 256 147mW 5,74E-04 0.23 8,98E-04 65nm 256 Híbrida (barramento-malha)

A = Analógico, D = Digital, DS = Digital (Software), IF = Integra-e-Dispara, IZHI = Izhikevich. ∗dobrado em uma superfície toroidal. ∗∗2D Toro (wafer).
SpiNNaker, BrainScaleS, TrueNorth dados por chip; EMBRACE data por cluster.

Fonte: A autora



A.5 Conclusão e Trabalhos Futuros

Neste trabalho foi proposta DHyANA, uma Arquitetura Digital Neuromórfica
Hierárquica. Com foco em implementações de Redes Neurais de Máquina de Estado
Líquido, a arquitetura utiliza uma abordagem de rede em chip hierárquica para melhorar a
escalabilidade da comunicação e do sistema.

Diferentes configurações do sistema foram implementadas, e os resultados exper-
imentais mostraram que a utilização da FPGA cresceu linearmente com o número de
neurônios por Cluster. A FPGA foi capaz de comportar até 13 neurônios por Cluster, 208
neurônios no total. Uma configuração de 256 neurônios, 16 por Cluster, foi sintetizada,
alcançando uma área de 0,23mm2 e uma dissipação de potência de 147mW.

Assim, embora não tenha alcançado grandes melhorias em termos de área e potência
em relação ao estado da arte o projeto demonstrou grande potencial, a ser explorado em
muitos aspectos diferentes em pesquisas futuras.

Para que o sistema se torne mais biologicamente realista, é importante investigar
melhorias futuras. Por exemplo, a implementação de modelos de neurônios ainda mais
complexos, como o modelo Hodgkin-Huxley, traria mais realismo, embora a custo de se
aumentar área e potência. A modelagem da plasticidade sináptica e outros detalhes nos
mecanismos dos neurônios também melhorariam o sistema nessa direção.

Além disso, algumas mudanças na arquitetura também trariam avanços para o
sistema. Uma comunicação multicasting para o Nível Global, como em (ZAMARRENO-
RAMOS et al., 2013), poderia trazer grandes melhorias na velocidade e throughput, mas
só poderia ser implementada após análise cuidadosa da viabilidade do novo tráfego do
sistema. Ademais, como já mencionado, a implementação de outra camada de hierarquia
pode ser vantajosa, ou até mesmo necessária, para expansões do sistema. Expansões
também poderiam se beneficiar da tecnologia de redes 3D, utilizando-se por exemplo a
topologia em grelha de (MATOS et al., 2013; MATOS et al., 2015) e de (MARCON et al.,
2014).

O desenvolvimento e futuras melhorias deste trabalho tem por objetivo abrir um
grande potencial para pesquisas futuras, por exemplo na utilização do sistema para desen-
volvimento de aplicações em engenharia e biologia, incluindo Interfaces Cérebro-Máquina,
neuropróteses, reconhecimento de voz com grandes vocabulários, veículos autodirigidos,
controle de robôs autônomos, processamento de sinais médicos, bem como experiências e
análises de dados em neurofisiologia.
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