
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

FILIPE MACIEL LINS

The Effects of the Compiler Optimizations
in Embedded Processors Reliability

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Microeletronics

Advisor: Prof. Dr. Paolo Rech

Porto Alegre
September 2017



CIP — CATALOGAÇÃO NA PUBLICAÇÃO

Lins, Filipe Maciel

The Effects of the Compiler Optimizations in Embedded Pro-
cessors Reliability / Filipe Maciel Lins. – Porto Alegre: PGMI-
CRO da UFRGS, 2017.

95 f.: il.

Dissertação (Mestrado) – Universidade Federal do Rio
Grande do Sul. Programa de Pós-Graduação em Microeletrônica,
Porto Alegre, BR–RS, 2017. Advisor: Paolo Rech.

1. Fault Injector. 2. Compiler Optimization. 3. Embedded
Processors. 4. Soft Errors. 5. COTS. I. Rech, Paolo. II. The
Effects of the ComThe Effects of the Compiler Optimizations in
Embedded Processors Reliability.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenadora do PGMICRO: Profa. Fernanda Lima Kastensmidt
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro



“If I have seen farther than others,

it is because I stood on the shoulders of giants.”

— SIR ISAAC NEWTON



ACKNOWLEDGMENTS

To UFRGS, Institute of Informatics, PGMICRO, and the Brazilian research agen-

cies CNPq for the financial support and for putting their facilities at my disposal so I could

develop my research.

To my advisor, Paolo Rech, for the confidence, lessons, and patience. Thank you

for pushing me forward and encouraging me in my academic and personal decisions.

To all my colleagues from laboratories 230 from UFRGS and others that are al-

ready in other rooms, cities, or countries.

To all of you, my sincere thanks.



ABSTRACT

The recent advances in the embedded processors increase the compilers complexity, and

the usage of heterogeneous resources such as Field Programmable Gate Array (FPGA)

and Graphics Processing Unit (GPU) integrated with the processors. Additionally, the

increase in the usage of Commercial off-the-shelf (COTS) instead of radiation hardened

chips in safety critical applications occurs because the COTS can be more flexible, in-

expensive, have a fast time-to market and a lower power consumption. However, even

with these advantages, it is still necessary to guarantee a high reliability in a system that

uses a COTS for safety critical applications because they are susceptible to failures. Ad-

ditionally, in the case of real time applications, the time requirements also need to be

respected. As a case of study, this work uses the Zynq which is a COTS device classified

as an All Programmable System-on-Chip (APSOC) and has an ARM Cortex-A9 as the

embedded processor. In this research, the impact of faults that affect the register file in the

embedded processors reliability was investigated. For that, fault-injection and heavy-ion

radiation experiments were performed. Moreover, an evaluation of how the different lev-

els of compiler optimization modify the usage and the failure probability of a processor

register file. A set of six representative benchmarks, each one compiled with three differ-

ent levels of compiler optimization. Exhaustive fault injection campaigns were performed

to measure the registers Architectural Vulnerability Factor (AVF) of each code and con-

figuration, identifying the registers that are more likely to generate Silent Data Corruption

(SDC) or Single Event Functional Interruption (SEFI). Moreover, the observed reliability

variations with register file utilization were correlated. Finally, two of the selected bench-

marks, each one compiled with two different levels of optimization were irradiated in the

heavy ions experiments. The results show that the best performance, the minor register

file usage, or the lowest AVF does not always bring the highest Mean Workload Between

Failures (MWBF). As an example, in the Matrix Multiplication (MxM) application, the

best performance is achieved in the highest compiler optimization. However, in the fault

injection, the higher reliability is obtained in the lower compiler optimization which has,

the lower AVFs and the lower register file usage. Results also show that the impact of op-

timizations is strongly related to the executed algorithm and how the compiler optimizes

them.

Keywords: Fault Injector. Optimization. Processor. Reliability. Soft Errors. COTS.



APSoC. MWBF. AVF.



RESUMO

O recente avanço tecnológico dos processadores embarcados aumentou a complexidade

dos compiladores e o uso de recursos heterogêneos, como Arranjo de Portas Programá-

veis em Campo (Field Programmable Gate Array - FPGA) e Unidade de Processamento

Gráfico (Graphics Processing Unit - GPU), integrado aos processadores. Além disso,

aumentou-se o uso de componentes de prateleira (Commercial off-the-shelf - COTS) em

aplicações críticas, ao invés de chips tolerantes a radiação, pois os COTS podem ser

mais baratos, flexíveis, terem uma rápida colocação no mercado e um menor consumo

de energia. No entanto, mesmo com essas vantagens, os COTS são suscetíveis a falha

sendo necessário garantir uma alta confiabilidade nos sistemas utilizados. Assim como,

no caso de aplicações em tempo real, também se precisa respeitar os requisitos determi-

nísticos. Como caso de estudo, este trabalho utiliza a Zynq que é um dispositivo COTS

do tipo Sistema em Chip Totalmente Programável (All Programmable System on Chip -

APSoC) no qual possui um processador ARM Cortex-A9 embarcado. Nesta pesquisa,

investigou-se o impacto das falhas que afetam o arquivo de registradores na confiabili-

dade dos processadores embarcados. Para tanto, experimentos de injeção de falhas e de

radiação de íons pesados foram realizados. Além do mais, avaliou-se como os diferentes

níveis de otimização do compilador modificam o uso e a probabilidade de falha do arquivo

de registradores do processador. Selecionou-se seis benchmarks representativos, cada um

compilado com três níveis diferentes de otimização. Realizamos campanhas exaustivas

de injeção de falhas para medir o Fator de Vulnerabilidade Arquitetural (Architectural

Vulnerability Factor - AVF) de cada código e configuração, identificando os registradores

que são mais propensos a gerar uma corrupção de dados silenciosos (Silent Data Cor-

ruption - SDC) ou uma interrupção funcional de evento único (Single Event Functional

Interruption - SEFI). Também foram correlacionadas as variações de confiabilidade ob-

servadas com a utilização do arquivo de registradores. Finalmente, irradiamos com íons

pesados dois dos benchmarks selecionados compilados com dois níveis de otimização.

Os resultados mostram que mesmo com o melhor desempenho, o menor uso do arquivo

de registradores ou o menor AVF não é garantido que as aplicações irão alcançar a maior

Carga de Trabalho Média Entre Falhas (Mean Workload Between Failure - MWBF). Por

exemplo, os resultados mostram que o melhor desempenho da aplicação Multiplicação



de Matrizes (Matrix Multiplication - MxM) é alcançado no nível de otimização mais alta.

No entanto, nos resultados dos experimentos de injeção de falhas, a maior confiabilidade

é alcançada no menor nível de otimização que possuem os menores AVFs e o menor uso

do arquivo de registradores. Os resultados também mostram que o impacto das otimi-

zações está fortemente relacionado com o algoritmo executado e como o compilador faz

esta otimização.

Palavras-chave: Injetor de Falhas, Otimizações, Confiabilidade, Processadores, COTS,

APSoC, MWBF, AVF.



LIST OF ABBREVIATIONS AND ACRONYMS

ACP Accelerator Coherency Port

ADC Analogue-to-digital Converter

AES Advanced Encryption Standard

AMBA ARM Advanced Microcontroller Bus Architecture

APSoC All Programmable System on Chip

APU Application Processing Unit

ARM Advanced Risc Machine

ASIC Application Specific Integrated Circuit

AXI Advanced eXtensible Interface

CAN Controller Area Network

CISC Complex Instruction Set Computing

CLB Configure Logic Block

COLE Compiler Optimization Level Exploration

COTS Commercial off-the-shelf

CPU Central Processing Unit

DAC Digital-to-analogue Converter

DCE Dead Code Elimination

DSP Digital Signal Processor

DUT Design Under Test

ECC Error Correcting Coding

EMIO Extended Multiplexed Input/Output

FF Flip Flop

FFT Fast Fourier Transform

FIFO First In First Out



FPGA Field Programmable Gate Array

FPU Floating Point Unit

GCC GNU Compiler Collection

GDB GNU Debugger

GPIO General Purpose Input/Output

IOBs Input/Output Blocks

IPC Instructions Per Cycle

JPEG Joint Photographic Experts Group

LUT Lookup Table

MIO Multiplexed Input/Output

MMU Memory Management Unit

MMU Memory Management Unit

MPE Media Processing Engine

MWTF Mean Work Time to Failure

MxM Matrix Multiplication

OCM On Chip Memory

PC Program Counter

PL Programmable Logic

PS Processing System

PSoC Programmable System on Chip

RAM Random Access Memory

RISC Reduced Instruction Set Computing

ROM Read Only Memory

SCU Snoop Control Unit

SIMD Single Instruction Multiple Data

SoC System on Chip



SPI Serial Peripheral Interface

TSMC Taiwan Semiconductor Manufacturing Company

UART Universal Asynchronous Receives Transmitter

USB Universal Serial Bus



LIST OF FIGURES

Figure 2.1 Radiation Sources in Space ...........................................................................20
Figure 2.2 Radiation effects ............................................................................................21
Figure 2.3 SEU and SET in circuits ................................................................................22

Figure 4.1 An example of APSOC: the Xilinx Zynq-7000.............................................31
Figure 4.2 Single Instruction Multiple Data processing in NEON .................................32
Figure 4.3 The PL structure of Zynq-7000 .....................................................................34
Figure 4.4 The Configurable Logic Block (CLB)...........................................................35

Figure 5.1 Heavy ion experiment setup mounted at the beam line of the LAFN-USP...47
Figure 5.2 View of the surface of a Zynq-7000 device ...................................................47
Figure 5.3 Fault Injector First Setup ...............................................................................49
Figure 5.4 Fault Injector flow chart.................................................................................50
Figure 5.5 Fault Injector Modifications of (OLIVEIRA; TAMBARA; KASTENS-

MIDT, 2017) .............................................................................................................51
Figure 5.6 Fault Injector Final Setup ..............................................................................52

Figure 6.1 Total Architectural Vulnerability Factor SDCs..............................................58
Figure 6.2 Total Architectural Vulnerability Factor SEFIs .............................................58
Figure 6.3 MxM Architectural Vulnerability Factor SDCs.............................................59
Figure 6.4 MxM Architectural Vulnerability Factor SEFIs ............................................59
Figure 6.5 AES Architectural Vulnerability Factor SDCs ..............................................60
Figure 6.6 AES Architectural Vulnerability Factor SEFIs..............................................60
Figure 6.7 AVF SDC MxM Double O3 ..........................................................................62
Figure 6.8 AVF SDC MxM Double O3 ..........................................................................62

Figure 7.1 AVF and Cross Section in MxM....................................................................67
Figure 7.2 Radiation and Fault Injection MWBFs in MxM............................................67
Figure 7.3 AVF x Cross Section in AES .........................................................................67
Figure 7.4 Radiation and Fault Injector MWBFs in AES...............................................68



LIST OF TABLES

Table 3.1 The main GCC optimizations and the levels at which they are enabled. ........26

Table 4.1 The Zynq Logic Fabric Resources ..................................................................34
Table 4.2 Compiler Optimization effects on code execution, resources utilization........40

Table 6.1 Compiler Optimization effects on code execution, resources utilization,
and reliability .........................................................................................................54

Table 6.2 Fault Injection Results.....................................................................................61
Table 6.3 Heavy Ions Experiment Results ......................................................................64
Table 6.4 Number of Reads and Writes in the main memory.........................................64

Table A.1 Results of Fault Injection MxM O0................................................................74
Table A.2 Results of Fault Injection MxM O2................................................................75
Table A.3 Results of Fault Injection MxM O3................................................................76
Table A.4 Results of Fault Injection AES O0 .................................................................77
Table A.5 Results of Fault Injection AES O2 .................................................................78
Table A.6 Results of Fault Injection AES O3 .................................................................79
Table A.7 Results of Fault Injection Quicksort O0.........................................................80
Table A.8 Results of Fault Injection Quicksort O2.........................................................81
Table A.9 Results of Fault Injection Quicksort O3.........................................................82
Table A.10 Results of Fault Injection FFT O0................................................................83
Table A.11 Results of Fault Injection FFT O2................................................................84
Table A.12 Results of Fault Injection FFT O3................................................................85
Table A.13 Results of Fault Injection Fibonnaci O0.......................................................86
Table A.14 Results of Fault Injection Fibonnaci O2.......................................................87
Table A.15 Results of Fault Injection Fibonnaci O3.......................................................88
Table A.16 Results of Fault Injection JPEG O0..............................................................89
Table A.17 Results of Fault Injection JPEG O2..............................................................90
Table A.18 Results of Fault Injection JPEG O3..............................................................91
Table A.19 Results of Fault Injection MxM Double O3.................................................92
Table A.20 Results of Fault Injection MxM Double O3 Continuation...........................93
Table A.21 Results of Fault Injection MxM Double O3+ ..............................................94
Table A.22 Results of Fault Injection MxM Double O3+ Continuation.........................95



CONTENTS

1 INTRODUCTION.......................................................................................................15
1.1 Objectives and Contributions ................................................................................16
1.2 Organization............................................................................................................16
2 BACKGROUND..........................................................................................................18
2.1 RISC Architecture ..................................................................................................18
2.2 Soft Errors Effects in Embedded Processors .......................................................20
3 CODE OPTIMIZATION EFFECTS ........................................................................24
3.1 Why optimizations? ................................................................................................24
3.2 What are the optimizations? ..................................................................................24
3.3 Optimizations effects in performance and energy consumption ........................28
3.4 State of the art .........................................................................................................29
4 CASE STUDY: THE EMBEDDED ARM A9 ..........................................................30
4.1 All Programmable System-on-Chip ......................................................................30
4.1.1 Processing System .................................................................................................30
4.1.2 Programmable Logic..............................................................................................33
4.1.3 The PS - PL Interfaces ...........................................................................................36
4.2 Algorithms ...............................................................................................................37
4.3 Setups .......................................................................................................................38
5 RELIABILITY EVALUATION METHODOLOGY...............................................43
5.1 Beam experiment vs fault injection .......................................................................43
5.2 Reliability Metrics...................................................................................................44
5.3 Heavy ion experiment .............................................................................................46
5.4 Fault injection framework......................................................................................48
6 RESULTS.....................................................................................................................53
6.1 Fault Injection Results............................................................................................53
6.1.1 General purpose Register Setup Results ................................................................54
6.1.2 NEON Setups Results ............................................................................................62
6.2 Heavy Ions Experiment Results.............................................................................63
6.3 An Analysis of the Dynamic Disassembly Code...................................................64
7 CONCLUDING REMARKS .....................................................................................66
7.1 Discussion ................................................................................................................66
7.2 Future Work ............................................................................................................69
REFERENCES...............................................................................................................70
APPENDIX A — TABLES............................................................................................74
A.1 MxM Tables ............................................................................................................74
A.2 AES..........................................................................................................................77
A.3 Quicksort.................................................................................................................80
A.4 FFT ..........................................................................................................................83
A.5 Fibonnaci ................................................................................................................86
A.6 JPEG .......................................................................................................................89
A.7 MxM Double...........................................................................................................92



15

1 INTRODUCTION

Commercial-Off-The-Shelf (COTS) systems are becoming attractive for safety-

critical applications, like biomedical implantable devices, automotive control systems,

aircraft or satellite stabilizers and control circuitry. The main reason for preferring a

COTS device to specifically designed rad hard chips is that the latter are typically very

expensive as they require unique circuit design and lithography to meet the reliability

requirements and the produced volumes are low. On the contrary, COTS components can

be low-cost, flexible, have fast time-to-market, low power consumption.

The CHREC Space Processor (CSPv1) is mainly formed around a Xilinx Zynq-

7020 Processor which is an example of COTS (RUDOLPH et al., 2014). Unfortunately,

COTS systems are very susceptible to radiation effects, particularly Single Event Effects

(SEEs). The single impinging particle can generate different types of effects on digital

systems. If the particles hit a storage element, such as Static Random Access Memory

(SRAM) structures, caches, and registers, it may cause a bit flip. Particles can also modify

the result of operations by generating Single Event Transients (SETs) in logic gates.

Reduced Instruction Set Computing (RISC) architectures became popular thanks

to the advances in compiler efficiency. In order to succeed in executing complex algo-

rithms using few, simple, and two-inputs instructions, the compiler needs to modify the

source code significantly. In recent years, compilers have allowed users to select different

levels of optimization to be applied to the code. Optimization is achieved by modifying

the number, the usage, and the reference of registers.

Most modern embedded processors are built with RISC architecture which allows

only a few basic instructions to be executed, and inputs can come only from the register

file. In other words, RISC is a load-store architecture: data in the main memory must be

loaded to the register file to be digested, and the data in the register file must be stored

in the main memory to be accessible to the user. Hence, the register file is a critical

resource for modern computing architectures. As any data to be processed will need to

pass through the register file, knowing the probability of an error in a register to propagate

to the output may be sufficient to characterize the vulnerability of an application.

Register files have been identified as the most critical resources in modern com-

puting systems (TAN et al., 2011; ISAZA-GONZÁLEZ et al., 2016). Unfortunately, reg-

isters cannot be easily protected. Unlikely Dynamic Random Access Memory (DRAM),

which can be protected with Error Correcting Codes (ECC), or caches, for which parity



16

protection is more common than ECC, register files are integrated into the circuitry of

processors, increasing the efforts and penalties of adding ECC (ASADI et al., 2005).

For these reasons, the focus of this research is the reliability impact of register file

errors in embedded System-on-Chip (SoC) devices. For our study, it was used the Zynq-

7000 device, which is equipped with dual-core ARM Cortex-A9 processors integrated

with 28nm Artix-7 based programmable logic. Using a homemade fault injection plat-

form, the criticality of each available general purpose register was identified by measuring

the probability of an injected fault to generate a SDC or a SEFI. A set of six benchmarks

applications were selected: MxM, Advanced Encryption Standard (AES), Quicksort, Fast

Fourier Transform (FFT), Fibonacci, and Joint Photographics Experts Group (JPEG).

1.1 Objectives and Contributions

The RISC processors, the increase in the compiler and the optimizations complex-

ity have made it harder to evaluate the fault tolerance of the hardware and their applica-

tions. The objective of this work is to understand better how to evaluate the reliability of

the hardware and the applications.

In order to achieve this objective, it was necessary to do a radiation experiment

and a fault injection in the tested benchmarks. The fault injector accesses the general pur-

pose and NEON registers in the ARM Cortex-A9 in the Zynq-7000 architecture to inject

faults. Finally, the APSoC device executing the MxM and AES applications compiled

with different compiler optimizations were irradiated with heavy ion particles. Therefore,

an evaluation of the effects of compiler optimization in the reliability of the device can be

done.

1.2 Organization

This dissertation is organized as follows:

• Chapter 2 - Background knowledge: introduces the RISC Architecture, and the soft

errors effects in embedded processors;

• Chapter 3 - Code optimization effects: presents a study about why the optimizations

are used, what are the optimizations, the optimization effects in the performance

and energy consumption, and the state of the art of the optimization effects in the



17

reliability;

• Chapter 4 - Case study: The embedded ARM A9: introduces the APSoCs archi-

tecture, Xilinx Zynq-7000 as an example of APSoC and the case study device, the

algorithms evaluated in this work, and the setups used in the experiments;

• Chapter 5 - Reliability evaluation methodology: presents the differences between

the beam experiment and the fault injection, the metrics used to evaluate the reli-

ability, and the methodology used in the heavy ion experiment and fault injection

framework;

• Chapter 6 - Results: presents and analyzes the results obtained in the fault injection,

and in the heavy ions experiments;

• Chapter 7 - Concluding remarks: presents the concluding remarks of this disserta-

tion, such as its a discussion about the obtained results and future works;



18

2 BACKGROUND

This chapter introduces the background knowledge for the understanding of the

dissertation. It is presented the RISC architecture and the sources of radiation and its

effects on circuits and embedded processors.

2.1 RISC Architecture

The Instruction Set Architecture (ISA) is an abstract model of a computer that

defines the external Input/Output (I/O) model, the native data types, the instruction set,

the memory architecture, the addressing modes, the registers, the interrupt modes, and the

exception handling. Based on architectural complexity, ISAs are commonly divided in the

Complex Instruction Set Computing (CISC) and the Reduced Instruction Set Computing

(RISC).

In the design of the first processors, memory was expensive and had a small ca-

pacity (DANDAMUDI, 2005). In order to develop programs which can run using these

limited resources, the designers developed the CISC instruction set, which consists of a

set of complex instructions so the total size of the program could be reduced and stored

in the memory.

The microprogramming in the CISC architectures facilitates the cost-effective im-

plementation of complex instructions by using microcode. The use of small and fast

memories is also required to store the microcode to reduce the memory access latency on

performance. Another advantage of using these complex instructions is the close in the

semantics of the high-level languages and the machine languages.

One of the reasons for first develop the CISC architecture was the fact of the

complex instructions were faster than an equivalent using simple instructions. However,

the measure of a single instruction is not the only measure of performance. The overall

system performance should be considered.

The first RISC processors were designed from IBM, Standford, and UC-Berkeley.

The Stanford MIPS, IBM 801, and Berkeley RISC 1 and RISC 2 were all designed with a

similar philosophy which utilizes a small, highly optimized set of instructions (ZARGHAM,

1996).

Computing devices based on RISC architecture allow only a limited set of simple

two-input operations to be executed. Additionally, data to be digested by the processor



19

must be loaded into registers. This load of the data in the register guarantees high per-

formance, as simple operations can be executed in few clock cycles as registers are fast.

In order to achieve the best performance, data must remain in the register files until they

are no longer necessary for any instruction. In fact, loading data from the main memory

or even from the cache is considered a time-consuming task that should be executed only

when necessary. An anticipated result of this work is that the increasing utilization of the

register file increases performance and reduces the code reliability.

RISC architectures became popular thanks to the advances in compiler efficiency.

Complex and efficient compilers are the key tool to take full advantage of RISC perfor-

mance successfully. The compiler rearranges the source code into a sequence of simple

instructions. Moreover, the compiler defines when data must be loaded into the registers

from the main memory and when data from registers can be stored in the main memory.

Several iterations are typically required for the compiler to produce an efficient assembly

code from the high-level source code.

The RISC design implements simple instructions that can be executed in one cycle.

As a consequence of it, the processor design is simplified. In this design there is no need

for microcode and operations can be hardwired.

Most of the CISC instruction set supports the register-to-memory, register-to-

register, and the memory-to-memory operations. The RISC architecture allows only spe-

cial load and store operations to access memory and the other operations work using the

register-to-register operations. This difference in the RISC simplifies the instruction set

design allowing the execution of one Instruction Per Cycle (IPC). Also, simplifies the

design of the control unit. Advances in Integrated Circuits (IC) technology dimensions

and the operating voltages has brought an increase in the high density, a decrease in the

power, and an increase in the sensitivity of the circuits to single event effects.

The usage of simple addressing modes in the RISC processors allows a fast address

computation of operands. Only the load and store instructions need a memory addressing

mode. The majority of the instructions use register-to-register operations. A larger regis-

ter set is needed in the RISC architecture, a consequence of it is the ample opportunities

of the compiler to optimize their usage and also, a decrease in the overhead associated

with procedure calls and returns.

The RISC architecture uses the fixed simple length instructions which are more

efficient than the variable length instructions. As mentioned before the RISC design also

use a simple instruction format allowing an efficient decoding and scheduling of instruc-



20

tions.

The first RISC processors had fewer instructions compared to the CISC. The new

RISC processors have hundreds of instructions, and some of them are complex such as

used in the CISC architecture. These new ones can be called a hybrid of the CISC and

RISC.

2.2 Soft Errors Effects in Embedded Processors

Advances in Integrated Circuits (IC) technology dimensions and the operating

voltages has brought an increase in high density, a decrease in power, and an increase

in radiation sensitivity of the circuits (BAUMANN, 2005).

Figure 2.1: Radiation Sources in Space

Source: NASA/JPL-Caltech/SwRI

The main sources of ionizing radiation come from solar flares, solar wind and

cosmic rays as showed in Figure 2.1. The Van Allen belts are a collection of charged

particles, gathered in place by Earth’s magnetic field and includes two electron belts and

one inner proton belt. The inner belt contains electrons whose energy is less than 5MeV .

The outer belt contains electrons whose energy may reach 7MeV (BOUDENOT, 2007).

The belts are located in the inner region of the Earth’s magnetosphere. Heavy ions may

also be trapped in the magnetosphere.

Cosmic rays are high-energy particles arriving from outer space. These particles



21

are mainly protons, nuclei of hydrogen, nuclei of helium and heavier nuclei. When they

arrive on Earth, they collide with the nuclei of atoms in the upper atmosphere producing

a shower of secondary particles: x-rays, muons, protons, alpha particles, pion, electrons,

and neutrons. Each kind of particle produces different effects on ICs.

Figure 2.2: Radiation effects

Source: (SIEGLE et al., 2015)

Figure 2.2 shows that the radiation effects can be divided into Total Ionization

Dose (TID) Effects, and Single Event Effects (SEEs).

The TID is a cumulative effect of ionizing radiation over the exposure time. In the

complementary metal oxide semiconductor transistors the exposure to high-energy ion-

izing radiation generates electron-hole pairs which causes a buildup of charge within the

oxide. This buildup of charge will change the threshold voltage, increase the leakage cur-

rent, and modify the timing of the CMOS transistor, leading to the parametric degradation

and/or functional failure of the electronic device.

SEEs happens when a single ionizing particle deposits sufficient energy to dis-

rupts the normal operation of a circuit. The SEEs can be divided in Destructive and

Nondestructive. Destructive SEE is represented by Single Event Latchup (SEL), which

triggers parasitic PNPN thyristor structures in a device, which can cause permanent dam-

age or if not permanently a power cycling of the circuit is needed. Nondestructive SEE

can be represented by the Single Event Upset (SEU) or Soft Error, the Single Event Func-

tional Interrupt (SEFI), and the Single Event Transient (SET). The SEU happens when an

ionizing radiation particle strikes a configuration memory cells, user memory, and regis-



22

ter changing the logic state of the element. The SEFI happens in complex devices like

modern memories, processors, Field-programmable gate array (FPGA) or Application

Specific Integrated Circuits (ASICs), and mixed-signal devices and the main effect is a

component reset, lock-up, or malfunction. The SET is an electrostatic discharge caused

by a single energetic particle strike whose the effect is a soft error.

Figure 2.3: SEU and SET in circuits

Source: (CHIELLE, 2016)

In Figure 2.3 is showed an example of an SEU and a SET. A particle hits a memory

element which causes an SEU and changes the stored value from 0 to 1. The SEU in

the example is masked by the NAND gate because the other NAND input is 0. On the

contrary, if the other NAND input is 1 the output of the NAND would be changed, and

the error would propagate.

Another particle in Figure 2.3 hits a NOR gate causing a SET in which temporarily

change the output from 1 to 0. The fault is not masked by any gate and propagates to the

memory element. In which the wrong value can be stored if the pulse hits a memory

element during a clock event.

Soft errors in embedded processors happen when a value stored in memory ele-

ments (i.e., register or data memory) is modified. This change in the memory elements

values can lead to executing incorrectly an application producing a wrong output or even

never finish the execution. They can affect the data-flow and the Control-flow of a running

application (CHIELLE, 2016).

The data-flow errors affect the program output. When a fault affects the data-flow,

the application runs normally, but the output is incorrect at the finish of the execution.

The data-flow errors are usually caused by wrong operation or incorrect data.

The control-flow errors happen when the program flow is incorrectly executed.



23

The possible causes of this type of error is a branch creation, a branch deletion, an incor-

rect branch decision, an incorrect target address, or a bit flip in the Program Counter (PC)

register.



24

3 CODE OPTIMIZATION EFFECTS

In this chapter, it will be explained the optimizations and their effects in perfor-

mance, energy consumption, and reliability in the applications.

3.1 Why optimizations?

Since the advent of the first computer, code optimizations have been a widely

used tool to perform all sort of code transformations. The objectives of the optimization

depend on the constraints of the application, like time or memory requirements in real

time applications in embedded systems or energy consumption in a spacial application

which the power is limited.

Optimizations can be applied at different levels like design level, algorithms and

data structures, source code, build, compile, and assembly. In general, the higher levels in

compiler optimizations provide a greater impact but requires significant changes or even

to completely rewrite the code. In some cases, the performance bottleneck is in the low

level of the code, and small variations in this state have a significant impact on the program

performance. In this work, a study of the effect of the global compiler optimization in the

code reliability is done.

In recent years, compilers have allowed users to select different levels of opti-

mization to be applied to the code. Optimization is achieved by modifying the number,

the usage, and the reference of registers. The optimized code can hugely increase the

performance of the applications but also increases the registers usage.

3.2 What are the optimizations?

In order to produce an optimized code, the compiler performs one or more trans-

formation in the source code. These transformations aim at modifying the original code

to a more efficient code preserving the meaning and the output of the code. The most

common optimizations that compilers can perform are: the control flow analysis, the data

flow analysis, the code motion, the common subexpression elimination, the constant fold-

ing, the if-conversion, the dead code elimination, the copy propagation transformations,

the inlining (HAGEN, 2011).



25

The Data Flow analysis identifies how and when variables are used in a program

and after that applies various set equations to these usage patterns to find optimization

opportunities. The Code Motion is an optimization technique which reduces the number

of common subexpressions relocating them to more optimal locations in an intermediate

representation of the code. Loops can be optimized using this technique decreasing, for

example, the number of instructions in an inner loop and increase the part of the code

outside that loop. The Common Subexpression Elimination is a standard optimization

mechanism, which avoids the recalculation of previously calculated values. Thus, reduc-

ing the number of instructions executed by a program to achieve the same result. The

Dead Code Elimination (DCE) is the optimization technique that removes variables and

statements in the code that does not do anything permanent or useful in the program. The

Constant Folding technique eliminates expressions, which can be calculated when the pro-

gram is compiled. The If-conversion is a technique where branch constructs are broken

into separate if statements to simplify generated code and eliminate jumps and branches

wherever possible. The Copy Propagation transformation is an optimization technique to

reduce or eliminate redundant computations eliminating cases in which values are copied

from one location or variable to another assigning their value to another variable. The

Inlining is an optimization technique where code performance can improve by replacing

complex constructs, and even function calls with an inline representation of the construct

or function call. The Control Flow analysis examines loops and other control constructs

to identify the execution paths and based on this analysis tries to make the execution path

more efficient (AHO et al., 2006).

The user manual for Linaro GNU Compiler Collection (GCC) 4.9-2014 mentions

that at least 160 code optimizations can be turned on or off individually. Users also can

specify more than 100 different values controlling the amount of, or determine the con-

text for, applying a particular optimization. Individually handling all these options would

not be practical for regular application development. Thus, GCC provides summary opti-

mization options named -O0, -O1, -O2, -O3, and -Os. The default level of optimization

in Release mode is O2. Table 3.1 reflects the most significant optimization flags in GCC

compiler that are enabled when the -O level is applied.

Higher optimization levels perform more global transformations on the program

and apply more expensive analysis algorithms to generate a faster and more compact code.

The price in compilation time and the resulting improvement in execution time depending

on the particular application and the hardware environment.



26

Table 3.1: The main GCC optimizations and the levels at which they are enabled.
Included in level

Optimization O0 O1 O2 Os O3
defer-pop X X X X
tree-dce X X X X

cprop-registers X X X X
loop-optimize X X X X

omit-frame-pointer X X X X
rename-register X X X X

align-loops X X X
align-jumps X X X
align-labels X X X

align-functions X X X
regmove X X X

optmize-strlen X X
schedule-insns X X

cse-follow-jumps X X X
cse-skip-blocks X X X

peephole2 X X X
inline-functions X

predictive-commoning X
tree-partial-pre X

Source: The Author

The GCC compiler enables a plethora of optimization to achieve better perfor-

mances. Some optimizations reduce the size of the resulting machine code, while others

try to create a faster code, potentially increasing its size (e.g., loop unrolling increases the

assembly code but reduces the execution time).

O0 is the level, which GCC does not perform any optimization and compiles the

source code in the most straightforward way possible. Each command in the source code

is converted directly to the corresponding instructions in the executable file, without re-

arrangement. The compiler’s goal is to reduce the cost of compilation and be able to set

breakpoints, examine variables, and then continue execution.

The O1 is the first level of optimization, which the compiler tries to minimize both

code size and execution time without a massive increase in the compilation time. Some

optimizations are enabled at this level as shown in Table 3.1. These optimizations are

described in the next paragraph.

The cprop-registers tries to reduce the number of the register copy operations.



27

The defer-pop accumulates function arguments on the stack. The tree-dce eliminates

dead code to reduce the application size. The omit-frame-pointer avoids instructions re-

quired to set up, save, and restore frame pointers decreasing the registers usage. The

loop-optimize moves constant expressions and simplifies test conditions for exit the loops

in other levels of optimization this flag performs strength reduction and unrolls loops.

The rename register is the GCC option that tries to use any unallocated registers to avoid

false dependencies in scheduled code is frequently used on systems with a large number

of registers.

The O2 level performs all O1 optimization flag and also other supported optimiza-

tions that do not involve a space-speed trade-off. Some of the main optimizations enabled

in O2 level are described in the following paragraph.

The four align optimizations, which make functions, labels, jumps, and loops are

aligned with the machine natural memory size boundaries avoiding no-op instructions and

making the code faster. The regmove makes the GCC reassign the registers to maximize

the number of registers used in the application. The optimize-strlen optimize standard

C string functions using fasting alternatives. The schedule-insns reorder instructions to

eliminate execution stalls when the data is unavailable.

The Os enables all O2 optimizations that do not typically increase code size. It

also performs further optimizations designed to reduce code size. The Os level disables

some of the O2 level optimizations like the optimize-strlen and the schedule-insns that

increment the size of the final code. This level also maintains some optimizations like the

cse-follow-jumps follows jumps that, which target is not unless reached. The cse-skip-

blocks follows jumps that conditionally skip blocks. The peephole2 tries to replace longer

set of instructions with shorter.

The O3 is the third and highest level enabled, which emphasizes speed over size.

This optimization includes all optimizations enabled at O2 and some other optimizations.

The inline-function integrates all functions into the routines that call them boosting per-

formance but also can drastically increase the size of the assembly code, which can have

severe effects on the code performance. Other optimizations are enabled in the O3 level

like the predictive-commoning reuse memory stores and loads performed in iterations

loop, and the tree-partial-pre makes an aggressive partial redundancy elimination.

Besides the level optimizations, the compiler has variously specific optimizations

that can be enabled manually. Many of these optimizations involve floating point op-

erations making significative performance improvements but changes the ISO and IEEE



28

specification for math functions.

It is worth noting that optimization efficiency strongly depends on the source code.

Some algorithms for which the control flow is data-dependent may be hard to be opti-

mized. In fact, the compiler can not statically predict the branches to be taken as data

is not yet available. The branch prediction can not happen, for instance, in sorting algo-

rithms which perform branch operations based on comparisons among data.

3.3 Optimizations effects in performance and energy consumption

One of the major effects of the compiler optimizations that affect the performance

is the decrease in the memory access time. This decrease is made by eliminating redun-

dant accesses to memory and replaces with shorter latency event like register copying and

value propagation through registers. As a consequence of it, the remaining accesses in

the application has a higher miss rate in the cache (DEMERTZI; ANNAVARAM; HALL,

2011).

The changes in control flow is another consequence of compiler optimizations

that affect the performance. A delay in branch resolution can stall the application un-

til the branch outcome is resolved. The branch misprediction is when a wrong branch

is called, the partially processed instructions in the pipeline need to be discarded, and

the pipeline has to start over at the correct branch. The optimized codes have fewer

committed branches and less branch misprediction than unoptimized code. The lower

number of overall branch instruction allows the processor to issue and execute long basic

blocks (DEMERTZI; ANNAVARAM; HALL, 2011).

The effect of the different level of compiler optimizations in the energy consumed

to execute the code is directly proportional to the number of instructions. As conse-

quence of it, optimizations that improve performance by increasing the parallelism in the

program increases the energy consumption. Optimizations that decreases the number of

instructions like common sub-expression elimination, induction variable elimination and

unrolling also decreases the energy consumed (VALLURI; JOHN, 2001).

The influence of the different level of compiler optimizations on power dissipation

is directly proportional to the number of instructions per cycle. An example of it is the

optimizations such as instruction scheduling, and loop unrolling that increase the perfor-

mance but also increases the IPC has a side effect which is the increases in the power

dissipation (VALLURI; JOHN, 2001).



29

A consequence of the compiler optimizations is the significant decrease in the

number of reads and writes in the main memory with the increase of the optimization

level (CHIBANI et al., 2014).

3.4 State of the art

In Recent years, several studies have addressed the issue of evaluating the influ-

ence of optimizations in applications reliability.

In Sangchoolie et al. (2014) the authors evaluate the compiler optimizations in-

jecting faults in the instruction set architecture registers and main memory locations. All

the 12 benchmarks presented in the paper has an increase in the performance, but the gain

varies significantly depends on the applications. The conclusion of this study is that the

compiler optimization has a minor effect on the reliability of the investigated benchmark

applications.

In Ferreira et al. (2013) the authors discuss how compiler optimizations influence

software reliability when the applications are compiled with a technique, which detects

and correct radiation control-flow errors. In order to increase the performance in the ten

benchmarks selected from the Mibench embedded benchmark suite, the author uses the

Compiler Optimization Level Exploration (COLE), which uses a population-based multi-

objective optimization algorithm to construct a Pareto optimal set of optimizations. In the

selected optimizations only 25% of the GCC optimizations appear in at most one Paretto.

In this work the author implemented a software fault-injector, using GDB to perform

the fault injections. The consequence of indiscriminately selecting the optimizations can

decrease the software vulnerability to unacceptable levels.

In Serrano-Cases and Isaza-González (2016) the authors use the NSGA-II algo-

rithm to choose the best optimization to reduce the code size, and execution time while

improving the reliability of the final application. In the experiment, the MSP430 archi-

tecture (NAGY, 2003) has been used to inject faults in an open-sourced simulator. The

method improves the fault coverage from 3% to 6% and the MWTF from 15% to 45%.

The compiler optimizations have a significant influence on the reliability of the ap-

plications. A better understanding of how to use them and how they affect the embedded

processors is an essential study in the use of COTS in space applications.



30

4 CASE STUDY: THE EMBEDDED ARM A9

This chapter introduces the All Programmable System-on-Chip (APSoC) archi-

tecture which in our case of study is the Zynq-7000. It is also presented the setups used

in the fault injection and the heavy ion experiments.

4.1 All Programmable System-on-Chip

The Application Specific Integrated Circuits (ASIC)s, which can include digital,

analog and radio-frequency components, together with mixed-signal blocks implementing

Analog-to-Digital Converters (ADC) and Digital-to-Analog Converters (DAC). A Sys-

tem On Chip (SoC) can combine all aspects of a digital system: processing, high-speed

logic, interfacing, memory, and so on. The SoC solution is lower cost, enables faster

and more secure data transfers between the various system elements, has higher overall

system speed, lower power consumption, smaller physical size, and better reliability. The

disadvantages of ASIC-based SoCs are development time and cost, and lack of flexibility.

The Programmable System-on-Chip (PSoC) is a SoC implemented in a programmable,

reconfigurable device like Field Programmable Gate Array (FPGA)s, which offers a flexi-

ble platform than ASICs for implementing SoCs. The APSoC integrates the software pro-

grammability of a processor with the hardware programmability of an FPGA (CROCK-

ETT et al., 2014).

The APSoCs is formed around a Processing System (PS) and a Programmable

Logic (PL). The PL section is used for high speed, arithmetic, and data flow subsystems.

The PS supports operating systems and software applications. As a consequence, the

system functionality can be partitioned between hardware and software.

4.1.1 Processing System

The present study is based on the COTS Zynq-7000 APSoC designed by Xilinx

in Taiwan Semiconductor Manufacturing Company (TSMC) 28nm technology node. The

Device Under Test (DUT), an XC7Z020-CLG484 part, is embedded in a commercially

available Zed-Board Development Board. The Zynq architecture is showed in Figure 4.1.

The PS is formed around a hard-core processor the dual-core ARM Cortex-A9



31

Figure 4.1: An example of APSOC: the Xilinx Zynq-7000

Source: Xilinx

processor, other associated processing resources forming the Application Processing Unit

(APU), and others peripheral interfaces, cache memory, memory interfaces, interconnect,

and clock generation circuitry.

The APU embraces the two processors core each one with his NEON Media Pro-

cessing Engine (MPE), Floating point Unit (FPU), a Memory Management Unit (MMU),

and a Level 1 cache memory. The APU also has an On Chip Memory (OCM), a Level 2

cache memory, and a Snoop Control Unit (SCU).

The ARM Cortex-A9 processor is a general purpose choice for low power, cost-

sensitive 32-bit devices, high-efficiency, dual-issue super scalar, out-of-order, and has a

dynamic length pipeline (8 - 11 stages). The processor in Zynq-7000 operates with a

clock frequency up to 667 MHz.

The ARM Cortex-A9 dual-core processor architecture has 56 physical 32-bit reg-

isters. Each core of the processor has 15 general purpose registers and one Program

Counter (PC) register. Also, the processor has five banked registers, 15 banked general-

purpose registers, and five status registers. In our Fault Injector, we inject faults in general

purpose registers of one core using bare-metal applications, representing 25% of total reg-

isters.



32

Figure 4.2: Single Instruction Multiple Data processing in NEON

Source: (CROCKETT et al., 2014)

The two cores in the ARM processor has a separate Level 1 caches of 32KB for

instructions and data being able to store the most used data and instructions to increase the

processor performance and decrease the data access time. Additionally, the cores share

a Level 2 cache of 512KB for instruction and data and also, have a 256KB OCM. The

Memory Management Unit (MMU) translates the virtual address to physical addresses.

The SCU interfaces the processors and the Level 1 and 2 cache memories being

responsible for maintaining memory coherency between the L1 data cache memories and

the Level 2 cache memory. Additionally, manages the transactions between the PS and

the PL via the Accelerator Coherency Port (ACP).

Some modern software, particularly media codecs and graphics accelerators, op-

erate on large amounts of data that is less than word-sized. The 16-bit data is common

in audio applications, and 8-bit data is standard in graphics and video. The implementa-

tion of the Advanced Single Instruction Multiple Data (SIMD) extension used in ARM

processors is called NEON, and this is the standard terminology used outside architecture

specifications.

The SIMD technology provides the use of a single instruction to perform the same

operation in parallel on multiple data elements of the same type and size. In Figure 4.2

two registers in which each one contains a set of N individual input vector are operated

using the same operation for all inputs producing a set of output vectors which are written

in the output register. The NEON engine in ARMv7-A/R including ARM cortex A9

supports these data types: unsigned and signed integers, single and half precision floating

point.

The NEON instructions are executed as part of the ARM or Thumb instruction



33

stream. The instructions provide memory accesses, data copying between NEON and

general purpose registers, data type conversion, and data processing. The NEON register

bank can be accessed as 64 registers in single precision or 32 registers in double precision

or 16 registers in quad precision. This register bank is implemented on all current ARM

Cortex-A series processors.

Developing for NEON can be done writing the code in assembly or writing the

code using the intrinsics functions defined by ARM or using the compiler auto-vectorization.

The intrinsics functions use the C or C++ high-level languages given direct access to

NEON instructions. As a consequence, the compiler can optimize the operations for per-

formance decreasing the work for the developer to consider the register allocation in the

code. The compiler also can perform an automatic vectorization in C or C++ source code

without writing assembly code or the developer using intrinsics functions. The advan-

tage of the automatic vectorization is the fast development and the code now is portable

between different tools and target platforms.

The FPU provides hardware acceleration of floating point operations following

the IEEE 754 standard support single and double precision formats. Also, supports half

precision and integer conversion.

The Figure 4.1 shows that the Zynq has a variety of interfaces between the PS

and external components. The Multiplexed Input/Output (MIO) is the primary commu-

nication interface and provides 54 pins of flexible connectivity. A Way to extend the

communication interfaces when is required it is using the Extended MIO (EMIO), which

passes through and shares the I/O resources of the PL. The Available I/O peripheral inter-

faces are two Serial Peripheral Interface (SPI), two I2C bus, two Controller Area Network

(CAN), two Universal Asynchronous Receiver Transmitter (UART), the General Purpose

Input/Output (GPIO), two SD card memory, two Universal Serial Bus (USB), and two

Ethernet MAC peripheral.

4.1.2 Programmable Logic

The PL is formed around an equivalent Xilinx Artix-7 FPGA logic fabric. The

available resources in the logic fabric are shown in Table 4.1. The FPGA is composed of

slices, Configurable Logic Blocks (CLBs), and Input/Output Blocks (IOBs) for interfac-

ing is showed in Figure 4.3.

The CLBs are a small, regular groupings of logic elements, which are organized



34

Figure 4.3: The PL structure of Zynq-7000

Source:(CROCKETT et al., 2014)

Table 4.1: The Zynq Logic Fabric Resources
Device Name Zynq-7020

Xilinx 7 Series Programmable Logic Equivalent Artix-7 FPGA

Programmable Logic Cells 85k

Look-up Tables (LUTs) 53,200

Flip Flops 106,400

Block RAM (# 36 KB Blocks) 4.9 Mb (140)

DSP Slices 220
Source: (XILINX, 2017)



35

in a two-dimensional array on the PL. They are connected with other resources via pro-

grammable interconnects and are positioned near a switch matrix and contains two logic

slices.

Figure 4.4: The Configurable Logic Block (CLB)

Source:(CROCKETT et al., 2014)

The Figure 4.4 shows that the CLBs are composed of slices, Lookup Table (LUT),

Flip Flops (FF), IOBs, and Carry Logic. The LUT is a flexible resource that can be used

for implementing a small Read-Only Memory (ROM), a small Random Access Memory

(RAM), a shift register, or a logic function of up to six inputs.

The Slice is a CLB sub-unit in which contain the resources for implement se-

quential and combinational logic circuits. They are composed of 4 Lookup Tables, 8

Flip-Flops, and other logic. The FF is a sequential circuit element with two stables states

and can be used to store information. The Switch Matrix makes connections between

elements within a CLB and from one CLB to other PL resources. The IOBs provides

the interface between the PL logic resources and the physical device pads to the external

circuit. The Carry Logic propagates the intermediate signals from the arithmetic circuits

to other slices.

Two special purpose components are integrated into the logic array in a column

arrangement the Block RAMs for dense memory requirements and the Digital Signal Pro-

cessor (DSP) DSP48E1 slices for high-speed arithmetic. The Block RAMs can implement



36

RAM, ROM, and First In First Out (FIFO) buffers and supports Error Correction Coding

(ECC).

The Block RAM can store up to 36Kb of information and also be configured as

two independent 18Kb RAMs or one 36Kb RAM. An additional setup is the word size of

the elements giving flexibility in a manner that a RAM can contain more, smaller elements

or fewer, longer elements. Two or more Block RAMs can be combined to make larger

capacity memories. In generally they can be clocked at the highest clock frequency by

the device.

The DSP is a suited choice for a variety of applications in signal processing and

other applications. The DSP uses the multiplex circuit to use the registers flexible and sup-

port dynamic alteration of the computation. Many computations can be done using one or

more arithmetic operators which are selected via an OPMODE input. These inputs con-

figure the internal multiplexers and determine the arithmetic functionality implemented.

Also, the DSP is capable of doing some short SIMD processing. Another way to use

the DSP is to perform logical functions like the fundamental boolean operations bit-wise,

NOT, AND, OR, NAND, NOR, XOR, and XNOR. Multiple DSPs can be used in a con-

nected way to solve complex arithmetic or to implement floating point arithmetic. The

low power consumption and the high-frequency operation makes the DSP very attractive

for implement arithmetic circuits.

4.1.3 The PS - PL Interfaces

The main link between the PS and the PL in Zynq parts are the Advanced eXtensi-

ble Interface (AXI) interconnects and interfaces. As mentioned before in subsection 4.1.2

the EMIO is also another type of connection between the PS and PL.

The AXI4 is the current version of AXI which is part of the ARM Advanced

Microcontroller Bus Architecture (AMBA) 3.0 open standard. The AXI buses are very

flexible and are used to connect the processor and other IP blocks in an embedded system.

There are three type of buses and choose one of them depends on the desired properties

of that connection. The AXI4 is used for memory-mapped links providing the highest

performance and supports burst. The AXI4-Lite is also used to memory-mapped but is a

simplified protocol only supporting one data transfer per connections and no burst. The

AXI4-Stream is used for high-speed streaming data, supports burst transfers of unlimited

size, and is suited to direct data flow between source and destination.



37

A set of nine interfaces with multiple channels is the primary interface between the

PS and PL. An interface is a point-to-point connection used to transfer data, addresses, and

handshake signals between the master and slave of the system. There are three different

types of PS-PL interfaces:(1) The General Purpose AXI is a 32-bit data bus used for low

and medium rate communications which have four General purpose interfaces divided in

two PS and two PL masters. (2) The Accelerator Coherency Port is a single asynchronous

connection between PL and the SCU with a bus width of 64 bits used to achieve coherency

between the APU caches and elements in the PL. The PL is the master of the only one

interface. (3) The High-Performance Ports is used to high rate communications between

the PL and the memory elements in PS and includes FIFO buffers to support burst read

and write behavior. The PL is master of all four interfaces.

4.2 Algorithms

A standardized benchmark suite for the reliability evaluation has not yet been es-

tablished. However, to evaluate the reliability of the microprocessor’s register file, it is re-

quired that the selected benchmarks stimulate different computational resources (QUINN

et al., 2015).

The proposed software benchmark includes a collection of algorithms that are real-

istic software codes based on standard software benchmarks. In this work, an interruption-

based fault injector and a heavy ion setup were used to evaluate the compiler optimization

effects on the register file reliability in the follow applications the MxM, Advanced En-

cryption Standard (AES), Quicksort, Fibonacci, JPEG, and FFT.

The MxM is an important algorithm for several applications such as signal and

control algorithm, weather forecasting, and finite element analysis (KRÜGER; WEST-

ERMANN, 2003; LIEPE et al., 2010). It is memory bounded and the main operations

used are the sum and multiplication. The MxM complexity to multiply two nXn matri-

ces is O(n3).

The (AES) is a specification for the encryption of electronic data. It is a symmetric-

key algorithm which means that the same key is used for encrypting and decrypting the

data. The design principle of AES is based in a substitution-permutation network and has

a fixed block size of 128 bits and a key size of 128, 192, or 256 bits. It is a compute-

bounded application, and the main operations are bitwise. AES complexity is O(n).

The Quicksort also called partition exchange sort is an efficient algorithm that



38

uses a divide and conquers strategy to sort efficiently. The algorithm is a comparison

sort which means that it can sort any items with a total order relation is defined. Another

characteristic of the algorithm is that can be operated in-place on an array and when

compared with the merge sort, and heapsort algorithms are up to three times faster than

the others. It is a compute-bounded application the main operation is bitwise, and the

algorithm is implemented recursively. Quicksort complexity best case performance is

O(n log n) and O(n2) in an exceptional worst case.

The Fibonacci is a sequence of numbers where each subsequent number is the

sum of the previous two. The Fibonacci numbers are used in various computer algorithms

like the Fibonacci search technique, the Fibonacci heap data structure, and the Fibonacci

cubes which are used for interconnecting parallel and distributed systems. It is a data

application, the main operation is the sum, and the algorithm is implemented recursively.

Fibonacci complexity is O(n).

The JPEG is a commonly used method of lossy compression for digital images,

particularly for those images produced by digital photography. The best usage for this

algorithm is for photographs and painting of realistic scenes. The JPEG has a selectable

trade off between storage size and image quality. The algorithm can achieve a 10:1 com-

pression with little loss in the quality of the image. The method for compression is based

on the Discrete Cosine Transform (DCT) which converts each image from the spatial do-

main into the frequency domain. It is a mix of compute-bounded and memory bounded

application because it uses a large amount of data. JPEG complexity is O(n).

The FFT is an algorithm that computes the discrete Fourier transform (DFT) of a

sequence. The DFT algorithm separates a sequence of values into components of different

frequencies the usage. Directly computing the Fourier transform using the FFT instead of

DFT increases the performance hugely especially for long data sets. Digital signal pro-

cessing, solving partial differential equations, and quick multiplication of larger integers

are some of the applications where the FFT is used. It is a memory bounded application

and the main operation used is bitwise. FFT complexity is O(n log n).

4.3 Setups

In this work to evaluate the previously described benchmarks, some metrics are

used. Table 4.2 shows that the metrics are separated in performance and area. The

performance metrics are the number of Instructions, the number of clock cycles, and the



39

execution time. The area metrics are the memory footprint and the register file usage.

ClockCycles = 2× (Tend − Tstart) (4.1)

The clock cycle metric represents the amount of time between two pulses in an

oscillator. The number of clock cycles in a bare metal environment in Zynq is calculated

using the Xtime library which uses the global timer in the Zynq whose counts the number

of ticks of the system. The Equation 4.1 shows how to calculate the number of the clock

cycles which is done subtracting the final number (Tend) by the initial number of clock

cycles (Tstart) and the result is multiplied per two because the global timer increases every

two clock cycles giving precise results.

ExecutionT ime =
(Tend − Tstart)

CountsperSecond× 10−6
[µs] (4.2)

The execution time represents the time to run an application in microseconds. In

the Zynq the execution time is calculated using the Equation 4.2 which is the subtraction

of the final number (Tend) by the initial number (Tstart) of clock cycles. The result is

divided by the number of counts per second multiplied by 10−6 to obtain the metric in µs.

The Open Virtual Platform (OVP) is used to generate the dynamic disassembly of

the application, which makes possible to obtain the total number of instructions.

RegUsage =
Nregused

Ntotal

(4.3)

The register file usage is the ratio of the number of the registers used in the applica-

tion divided by the number of registers in the processor core. The number of total registers

considered for this calculus is the number of general purpose registers except in the MxM

double whose is considered the NEON register plus the general purpose registers.

The memory footprint represents the amount of main memory used or referenced

while the application is running. The main memory considered here is the code segment,

data segment, heap memory, call stack, and any memory used to store additional data

structures such as symbol tables, debugging data structures, and others.

The benchmarks used to evaluate the general purpose registers in this work are

MxM, Quicksort, AES, Fibonacci, JPEG, and FFT. Each tested setup uses the O0, O2 and

O3 compiler optimizations as shown in Table 4.2.

The first columns of Table 4.2 list, for each selected code, the performance and

area usage of each of the three compiler optimizations considered. In most of the cases,



40

Table 4.2: Compiler Optimization effects on code execution, resources utilization
Performance Info Area Usage

App. Opt. # Inst. # Clock Cycles Exec. Time (µs) Mem. Footprint Reg. File Usage

MxM
O0 271473 40606 1.22× 10−4 94768 0.38
O2 73988 8010 2.40× 10−5 94332 0.85
O3 73515 7550 2.26× 10−5 94948 0.85

AES
O0 97782 17958 5.39× 10−5 110080 0.38
O2 33066 4402 1.32× 10−5 97972 0.31
O3 31757 3823 1.15× 10−5 101056 0.38

QuickSort
O0 330946 107882 1.62× 10−4 48504 0.31
O2 148302 38104 5.72× 10−5 48164 0.92
O3 166582 40264 6.05× 10−5 50492 0.85

FFT
O0 78931 14496 4.35× 10−4 94040 0.38
O2 46928 6782 2.03× 10−5 92604 1.00
O3 46870 6738 2.02× 10−5 92668 1.00

Fibonacci
O0 10577461 1131645 3.40× 10−3 46516 0.31
O2 4806704 705765 2.12× 10−3 46348 0.62
O3 4217336 433657 1.30× 10−3 47352 0.85

JPEG
O0 5008939 724533 2.17× 10−3 112432 1.00
O2 2687238 251634 7.56× 10−2 107764 1.00
O3 2452638 229917 6.90× 10−2 121692 1.00

MxM Double
O3 362370 54202 8.13× 10−5 46956 0.15
O3+ 336282 50300 7.56× 10−5 46956 0.70

Source: The Author

the execution time is improved when compiler optimizations are applied. In the best case

(i.e., MxM from 00 to 02), optimization can reduce 5× the execution time. However,

optimizations are not always beneficial. In fact, 03 only slightly impacts the execution

time of most of the codes. Quicksort shows a very peculiar behavior, as the 03 optimiza-

tion appears to be less efficient than 02. This less efficiency in the O3 optimization is not

surprising, as Quicksort has a data-dependent control flow. Hence, the compiler cannot

predict statically how the code will behave when executed.

In the MxM setup, the inputs used were 20x20 matrices, and the data type was an

integer. A decrease of 80.72% in the number of clock cycles was observed from O0 to

O2 optimization, the register file usage was increased, and the memory footprint usage

was decreased from O0 to O2 optimization. Additionally, it was observed a decrease of

81.41% in the number of clock cycles from O0 to O3 optimization, the register file usage

stills the same of the O2 optimization, and the memory footprint was increased above the

value in the O0 optimization.

In the AES Setup uses a 128 bits block size and 16 inputs the data type is an integer.

It was observed a decrease of 75.49% in the number of clock cycles and a decrease in the

register file usage and the memory footprint from O0 to O2 optimizations. Additionally,



41

there was a decrease of 78.72% in the number of clock cycles from O0 to O3. The register

file usage decreases from O0 to O2 and increases in the O3 optimization for the same of

O0. The memory footprint increases from O2 to O3 optimization but is lower than the O0

optimization.

In the Quicksort setup, a vector of 400 values was used as input, and the data types

were integers values. It was observed a decrease of 64.68% in the number of clock cycles

from O0 to O2 optimization, the register file was increased to almost the maximum, and

the memory footprint was decreased from O0 to O2 optimization. Additionally, there was

a decrease of 62.68% in the number of clock cycles from O0 to O3 which is worst than

O2 optimization. The register file usage was decreased from O2 to O3 optimization. The

memory footprint was increased in O3 optimization above the memory footprint of O0

optimization.

In the FFT setup, a sequence of a 512 float vector was used as input. It was

observed a decrease of 53.22% in the number of clock cycles from O0 to O2 optimization,

the usage of the register file was increased to the maximum, and the memory footprint was

decreased from O0 to O2 optimization. Additionally, there was a decrease of 53.52% in

the number of clock cycles from O0 to O3, the register file usage stills the same of the O2

optimization, and the memory footprint has an insignificant increase.

In The Fibonacci setup calculates the sequence up to the twenty-fifth number and

uses the integer data type. It was observed a decrease of 37.64% in the number of clock

cycles from O0 to O2 optimization, the register file usage doubles, and the memory foot-

print was decreased. Additionally, there was a decrease of 61.68% in the number of clock

cycles from O0 to O3 optimization, an increase in the register file usage above the O2

optimization, and an increase in memory footprint.

In the JPEG setup, it was used an image with 5207 pixels as input and uses the

integer as the data type. It was a decrease 65.27% in the number of clock cycles from O0

to O2 optimization, the register file usage is the maximum in all optimizations, and the

memory footprint decreases from O0 to O2. Additionally, there was a decrease of 68.27%

in the number of clock cycles from O0 to O3 optimization, and the memory footprint was

increased above the O0 optimization.

In order to evaluate the NEON register and the general-purpose registers together,

it was used the MxM matrix application with a 10x10 size matrices as input and the data

type used was the double. The setup was evaluated using the O3 compiler optimization,

and the O3+, which is the O3 compiler optimizations plus the manual optimization option



42

unroll all loops. This option decreases 7.55% the number of clock cycles and the register

usage increases as shown in Table 4.2 in MxM Double section. The register file usage

increases specifically in NEON registers and the memory footprint stills the same.

The memory footprint, which refers to the amount of main memory that a pro-

gram requires or references, is barely affected by optimizations meaning that the main

modifications induced by compiler optimization regard registers and not main memory

accesses.

The number of instructions and clock cycles decreases with the increase of opti-

mization level, except in the Quicksort application. Table 4.2 lists the utilization of the

register file to support this statement. When the optimization level is increased, in particu-

lar from O0 to O2, the percentage of the register file required by computation is increased

(if not yet saturated, as in the case of JPEG). From 02 to 03 the utilization of the register

is not always affected, and, as for QuickSort, at times is reduced. This increase in the

register file usage is code-dependent, as O3 is not always possible or easily implemented.

The compiler, then, tries to increase as much as possible the utilization of the register file

to improve performances.



43

5 RELIABILITY EVALUATION METHODOLOGY

In this chapter, it will be described two different methodologies to analyze the

reliability of microprocessors: the accelerated beam experiment and the fault injection.

The two distinct methods provide different insights, both of which are essential to evaluate

a system reliability fully. The fault injection is limited to a subset of available resources,

while the radiation experiments evaluate all the processor core. It is worth noting that

a one-to-one comparison between the two methodologies results is not feasible. Beam

experiment, in fact, is a sort of black box test in which the particle corruption is only

observed when it reaches the application output. As a result, while beam experiments

are the only way to gather the realistic error rate of modern computing devices and all

resources can be hit and corrupted, it is not possible to exactly identify what resource has

been affected. On the contrary fault, injection provides a detailed analysis, as injections

are controlled. However, the final result is not realistic as only some resources can be

corrupted the probability of injection is equal to all resources. In other words, beam

experiments are the only way to evaluate the realistic behavior and error rate of a device

or applications and fault injection is required to understand how faults propagate in the

circuit.

5.1 Beam experiment vs fault injection

The beam experiment and the fault injection can be characterized based on the

following properties: reachability, space controllability, time controllability, repeatability,

reproducibility, and non-intrusiveness (ARLAT et al., 2003) which will be discussed in

the next paragraphs.

The reachability property is the ability to reach possible fault locations in the ICs

that implement the target system. In the beam experiment, the radiation hits the physical

device that constitutes the irradiated circuit. In our fault injection, the faults are injected

in the register file and the NEON register. While the radiation experiments inject faults

by all the device.

The space controllability is the ability to control which of the reachable fault lo-

cations are corrupted. The beam experiment has a low space controllability. Faults can

be confined to specific blocks, if the rest of the circuit is shielded. In the fault injection,

the space controllability has a better control where the faults can be injected, but some



44

resources are inaccessible in the system.

The time controllability is the ability to control the instant when the fault is in-

jected. In the beam experiment, the time when the particle hits the device cannot be

controlled. In the fault injection, the exact clock cycle of the injection can be defined.

Repeatability is the property to repeat experiments with a high degree of accuracy.

In the beam experiment, this ability is non-existent due to the low level of control. In our

fault injection, the repeatability is high however, it is necessary to know the exact clock

cycle which the fault injection happens, the register where the fault was injected, and the

bit that was flipped.

The reproducibility is the property to reproduce results statistically for a given

setup. The beam experiment has a medium reproducibility level because it is hard to have

the same beam configuration. The fault injection has a high reproducibility because it is

easy to reproduce the same configuration.

The non-intrusiveness is the property to avoid the use of resources in which they

are being tested. The heavy ions experiment has a low non-intrusiveness since the target

IC is thinned changing some physical specifications like temperature. The fault injection

has a high intrusiveness since the application is interrupted to change the value of the

register.

As a consequence of these properties, a comparison between the results of the

beam experiment and the fault injection is not feasible. The metrics used to evaluate the

two methodologies are described in the next section.

5.2 Reliability Metrics

The cross section (σ) is the main metric to evaluate the sensitivity to radiation of

a device and can be measured using four general designs the static, semi-static, semi-

dynamic, and dynamic (QUINN, 2014). In this work, it was used the dynamic test where

the component is active during irradiation. The dynamic cross section for a particular

particle (proton, neutron, heavy-ion, and others) is calculated using the ratio between the

number of errors in the output of the system and the fluence of particles hitting the system

in conformance with Equation 5.1. The fluence represents the number of particles that hit

the device per unit area.



45

σ(dynamic) =
Nerrors

φparticles

[cm2] (5.1)

In higher abstraction levels such as fault injection, the Architectural Vulnerability

Factor (AVF) is the metric used to calculate the sensitivity to SEU. The AVF represents

the probability for a low-level corruption to propagate to the output (MUKHERJEE et al.,

2003). In this work, the AVF is calculated as the ratio of the number of errors detected

(Nerrors) in the output of the application and the number of the faults injected (Nfaults) in

the register file as shown in Equation 5.2.

AV F =
Nerrors

Nfaults

(5.2)

The cross section and the AVF metrics as mentioned before do not consider the

execution time and the workload of the applications but only the sensitivity of a resource.

To better evaluate the reliability of a system the authors in Rech et al. (2014) introduced

the MWBF metric for Graphics Processing Units (GPUs), and in Tambara et al. (2016)

the authors successfully applied the MWBF for APSoCs. In this work the MWBF was

calculate to have an overall evaluation of optimizations impact on performances and reli-

ability.

MTBF =
1

σdynamic.f lux
[h] (5.3)

In order to calculate the MWBF, it is necessary to consider the Mean Time Be-

tween Failures (MTBF) of a system. The MTBF in this work is considered as the average

time between two radiation-induced failures on the system continuously executing a given

application and is calculated using the Equation 5.3 which takes into account the flux of

hitting particles and the dynamic cross section (σdynamic). The cross section and MTBF

are inversely proportional which means a higher cross section implies in a shorter MTBF

considering a constant flux.

MEBF =
MTBF

texecution
[executions] (5.4)

Also, the Mean Execution Between Failures (MEBF) is considered to calculate

the MWBF. The MEBF is the number of corrected executions completed between two

radiation-induced output errors and is calculated using the Equation 5.4 which takes into

account the MTBF and the execution time (texecution) of the application. The cross section



46

and the MEBF depend on the employed resources and how efficiently they are used.

MWBF =MEBF.w =
w

σdynamic.f lux.texecution
data (5.5)

The MWBF, defined as the amount of data computed correctly before experiencing

an output error, evaluates the trade-off between performances and error rate (RECH et al.,

2014). Finally, the MWBF is calculated using the Equation 5.5 which takes into account

the MEBF and the Workload (w). A higher MWBF implies that more corrected data is

computed before a failure.

The MWBF also can be calculated using the AVF instead of the dynamic cross

section. This calculus can be done because the data must be loaded in registers to be

processed. As a result, the higher the AVF of a register, the higher the probability that a

corrupted data loaded from the cache of that register will generate an output error.

5.3 Heavy ion experiment

While extremely precise in evaluating the probability of injections to affect the

output, fault injection is still limited to a subset of available resources. In order to have

a realistic evaluation of the device reliability, it is necessary to perform radiation experi-

ments. By inducing failures in all the resources with realistic error probabilities, radiation

experiments provide a reasonable prediction of the error rate of the device in a real ap-

plication environment. The benchmarks evaluated under radiation are the MxM and the

AES with the O0 and O3 optimizations levels which run in the ARM Cortex-A9 as a bare

metal application.

Radiation experiments were carried out with heavy ions at Laboratório Aberto de

Física Nuclear at Universidade de São Paulo (LAFN-USP), Brazil (AGUIAR et al., 2014).

The ion beams were produced and accelerated by the São Paulo 8UD Pelletron Acceler-

ator. A standard Rutherford scattering setup was included using a gold foil to achieve a

very low particle flux in the range from 102 to 105 particles.cm−2.s−1, as recommended

by the European Space Agency (ESA) for SEU tests (TAMBARA et al., 2015). The ex-

periment was performed in the vacuum as shown in Figure 5.1. The SEU events were

observed using a 12C beam scattered by a 184 µg.cm2 gold target, with an energy of 35

MeV, which provides an efficient LET on the active region of 4.35 MeV.mg−1.cm−2 and

penetration in Si of 31 µm. In order to achieve the desired particle flow, the DUT was



47

Figure 5.1: Heavy ion experiment setup mounted at the beam line of the LAFN-USP

Source: (TAMBARA, 2017)

Figure 5.2: View of the surface of a Zynq-7000 device

Source: (TAMBARA, 2017)



48

positioned at a scattering angle of 90◦, which resulted in an average flux between 1.4x102

and 2.7x102 particles.cm−2.s−1. This configuration was chosen based on several trials

and was the most suitable concerning particle flux and number of errors. The package

of an XC7Z020-CLG484 device was thinned to allow irradiated particles to penetrate the

active region of the silicon as shown in Figure 5.2.

A host computer is used to monitor the experiments through a serial interface. Af-

ter each execution of the application if there were no mismatch between the golden copy

and the output of the application the Control DUT sent an alive signal to the computer.

On the contrary, if a mismatch happens the Zynq-7020 is reset. A watchdog circuit in the

Control DUT verifies if the system timeout. The host computer also has a watchdog to

monitor timeout occurrences in the Control DUT.

5.4 Fault injection framework

Fault injection can be performed at different levels of abstraction, from Register-

Transfer Level (RTL) to software level (SAGGESE et al., 2005). As the RTL level de-

scriptions of COTS devices are not publicly available, faults should then be injected in

user-accessible resources, like register files.

Several previous works studied the sensitivity and vulnerability of register files,

using fault injection or radiation experiments (ROMER; TROGER, 2011; YAN; ZHANG,

2005). Our fault injector differs from previous ones as it uses interruptions, which make

it fast and easily implemented in embedded processors. Our analysis improves the knowl-

edge on register file vulnerability by considering register criticality and by evaluating the

effect of compiler optimizations on register and code vulnerability using bare-metal ap-

plications.

In order to evaluate registers criticality on the available embedded RISC processor,

an interrupt-based fault injector platform able to modify the values stored in the ARM

internal registers was built. Injection is triggered by an interrupt service routine which

launches a dedicated procedure that modifies a randomly selected register value.

In the literature, several interesting fault injection approaches work at RTL level

(like Amuse (ENTRENA et al., 2012)), instruction level (like IVM (MANIATAKOS et

al., 2011)), or simulation (like gem5 (PARASYRIS et al., 2014)). Injecting faults in real

hardware have several advantages compared to instruction-level or RTL simulation injec-

tions. (1) The fault injection experiment is faster because the application under test is



49

Figure 5.3: Fault Injector First Setup

Source: The Author

executed on the hardware device itself. In our fault injection, only one interrupt service

routine is triggered and can inject approximately 1, 200 per hour (2) Fault injection at in-

struction level can be faster than low-level injection allowing the study of large workload

(KALIORAKIS et al., 2015; ROSA et al., 2015). However, results are related to software

or algorithm vulnerability, without considering the architecture in which the code is exe-

cuted (SRIDHARAN; KAELI, 2008). As a result, instruction level injection may not be

sufficiently precise. (3) Gate-level injections are extremely precise, but they require the

RTL level description of the circuit, which is hardly available for COTS systems. Finally,

even if the RTL level description is available, an exhaustive fault injection at gate level is

extremely time-consuming.

The authors in Carreira, Madeira and Silva (1998) investigated a system-level fail-

ure injection. They injected failures into the main internal processing units. The results of

the injection are exceptions detected, output errors, and program exit codes. The authors

in Arlat et al. (2003) compare three physical techniques and one software-implemented

technique, analyzing the impact of the fault injection techniques on the MARS architec-

ture. This analysis showed that the four fault injection techniques are complementary

generating different types of errors. Our work injects faults in the register file aiming to

analyze the results more deeply like the AVF for each register, the application execution

time, and the number of reads and writes in the memory.

Our first setup of the fault injector developed in this work is implemented at soft-

ware level as shown in Figure 5.3, and is based on the previous work of (VELAZCO;

REZGUI; ECOFFET, 2000). Several updates were done in this fault injector. The sys-

tem is composed of the following modules the Power Control, the System Controller, and

the Injector Module. The Power control is an electrical device responsible for the power



50

Figure 5.4: Fault Injector flow chart

Source: The Author

reset of the board. The System Controller is a software application which is responsible

for storing the logs and for managing the Power Control. The Injector module is part of

this setup is part of the application software which is implemented in the PS part of the

Zynq-7020 and is responsible for the fault injection in the registers.

In order to access all the available registers, the assembly of the Board Support

Package (BSP) of Zynq-7000 was modified to store the system context when the interrupt

is triggered. The assembly has been changed to store all available registers when the

interrupt service routine was triggered. Additionally, to ease the access to the stored

registers for injection, the BSP also stores the address of R0 in the Double Data Rate

(DDR) memory. When the context is resumed (after injecting the bit flip in one of the

registers), the function in the assembly code retrieves all the registers that were stored

when the interrupt service routine was triggered. This technique allows injecting faults

in registers that are accessible by the application and memory. In the first setup, it is

not possible to inject faults in the Stack Pointer (SP), and Program counter (PC) registers

because the technique of fault injection is at the software level not being possible to detect

the faults.

The flowchart of our interruption-based fault injector is shown in Figure 5.4. The



51

main steps performed in order to inject faults and measure the register criticality are:

(1) Configure the timer: Set a random value for injection, which is the clock cycle

number at which the interrupt service routine is triggered.

(2) Execute the application and inject fault: A pre-computed input vector is sent to

ARM. Application execution is triggered, and at each clock cycle, the timer is decreased.

When the counter reaches 0, the interrupt service routine is triggered, which randomly

selects a register and one bit. The selected bit is flipped, the system restores the context

and proceeds with application execution. It is worth noting that, while not considered in

this paper, the adopted procedure allows to inject also multiple bits flips or to use other

error models.

(3) Error detection: When the application execution is completed, the output is

compared with a pre-computed golden copy stored in the main memory if they are equal

the result is an Unace. A mismatch between the two is identified as a Silent Data Corrup-

tion (SDC). Besides the corrupted and expected output value, it is generated a log which

contains the register where the fault was injected. Whenever ARM becomes unresponsive

or sends garbage through serial communication, an SEFI is detected by a watchdog in the

host PC, and the system is rebooted.

Figure 5.5: Fault Injector Modifications of (OLIVEIRA; TAMBARA; KASTENSMIDT,
2017)

Source: (OLIVEIRA; TAMBARA; KASTENSMIDT, 2017)

The random numbers in our fault injector are generated using the Xtime_GetTime

function of the Xtime library. The resulting random number is used to choose the instruc-

tion and the bit where the fault will be injected.

In Oliveira, Tambara and Kastensmidt (2017) the authors use the same approach

to inject faults in both cores of ARM cortex-A9 in the zynq, but part of the Fault Injector



52

now is on the PL part of zynq as shown in Figure 5.5. The PS part is still responsible for

the fault injection setup which chooses a random clock cycle. After that, a random register

where the fault will be injected, and a random bit of the register is chosen. The interruption

on the ARM core to change the value of the register chosen before in the setup, and stores

the pre-computed golden copy in a Block Random Access Memory (BRAM) before the

main application starts. The PL part is responsible for generating the interruption signal

to the ARM-core in the correct clock cycle of the application. To compare the results

between the golden copy in BRAM and the output of the application which is stored in

another BRAM, to send the logs to the host computer using the UART port, and to verify

using a watchdog timer when the application finishes the execution. Using this approach

the fault injection can be done in all general purpose registers because now the comparison

between the pre-computed data and the output of the application is made outside of the

ARM.

Figure 5.6: Fault Injector Final Setup

Source: The Author

Our final Fault Injector setup uses a modified version of the injector used in

Oliveira, Tambara and Kastensmidt (2017). Some changes were done in the design of

the Injector module to inject faults only in a single-core of the ARM Cortex-A9 as shown

in Figure 5.6. Now the metrics such as the register where the fault is injected, the bit where

the bit flip happens, and the clock cycle of the fault injection are sent via UART to the

host computer. In this final version, the fault injection can be done in all general-purpose

registers and all NEON registers.



53

6 RESULTS

In this chapter is presented and discussed the fault-injection and the heavy ions

experiments results. The following metrics are used to analyze the reliability: the Cross

Section, the AVF, and the MWBF. The fault injection and the heavy ions experiment

are the methodologies used to obtain the data to calculate the metrics. The analysis of

these results is of extreme importance to evaluate the reliability for each application and

configuration tested in this study.

6.1 Fault Injection Results

In this section, the data from two experiments is presented. In subsection 6.1.1 is

analyzed the effects of compiler optimization in the reliability of the application injecting

faults in the general purpose registers. The objective is to analyze the effect of the com-

piler optimization in the tested benchmarks and the different compiler optimizations. In

subsection 6.1.2 is analyzed the effects of compiler optimization in the reliability of the

application injecting faults in the NEON and the General purpose registers. The objec-

tive is to evaluate the effect of the NEON engine reliability of the tested benchmark with

different compiler optimizations.

To correlate the observed reliability variation caused by the compiler optimizations

a more detailed analysis is performed in the metrics of performance, register file usage,

and memory footprint. The methodology described in the Section 5.4 is applied. The

reports are showed in Table 6.1 in the Area and Performance metrics sections. These

reports was showed and explained in Table 4.2. Table 6.1, also reports the following

metrics the AVF, and the MWBF reliability explained in Section 5.1 for all the tested

codes and configurations. The best result column in Table 6.1 shows how many times the

best MWBF is better than the worst MWBF in the tested application.

The analysis of Table 6.1 was done evaluating how each compiler optimization

changes the metrics for each application tested. The MWBF is calculated using the met-

rics obtained for each compiler optimization. The highlighted numbers in the table rep-

resent the best values for each metric in the application. These numbers will be used

to analyze the correlation between these metrics and the best reliability optimization for

each application.

All the AVF graphs in this section are based on the tables shown in Appendix A.



54

Table 6.1: Compiler Optimization effects on code execution, resources utilization, and
reliability

Performance Info Area Usage Fault injection Reliability Metric

App. Opt. # Inst. # Clock Cycles Exec. Time (µs) Mem. Footprint Reg. File Usage AVF SDC AVF SEFI MWBF Best Result

MxM

O0 271473 40606 1.22× 10−4 94768 0.38 0.12 0.00 1083382141.45 83.65

O2 73988 8010 2.40× 10−5 94332 0.85 0.41 0.13 12951309.16

O3 73515 7550 2.26× 10-5 94948 0.85 0.36 0.07 16644578.35

AES

O0 97782 17958 5.39× 10−5 110080 0.38 0.12 0.03 1745984.62

O2 33066 4402 1.32× 10−5 97972 0.31 0.03 0.11 7098840.56 4.06

O3 31757 3823 1.15× 10-5 101056 0.38 0.04 0.19 6029469.18

QuickSort

O0 330946 107882 1.62× 10−4 48504 0.31 0.04 0.03 11735117.31

O2 148302 38104 5.72× 10-5 48164 0.92 0.35 0.03 18529570.01 1.57

O3 166582 40264 6.05× 10−5 50492 0.85 0.36 0.03 16749253.42

FFT

O0 78931 14496 4.35× 10−4 94040 0.38 0.06 0.03 16668641.13 1.65

O2 46928 6782 2.03× 10−5 92604 1.00 0.39 0.24 11046401.16

O3 46870 6738 2.02× 10-5 92668 1.00 0.36 0.23 12238299.75

Fibonacci

O0 10577461 1131645 3.40× 10−3 46516 0.31 0.08 0.03 18862.96

O2 4806704 705765 2.12× 10−3 46348 0.62 0.23 0.07 13112.55

O3 4217336 433657 1.30× 10-3 47352 0.85 0.12 0.07 22513.11 1.71

JPEG

O0 5008939 724533 2.17× 10−3 112432 1.00 0.11 0.06 4663876.02 96.11

O2 2687238 251634 7.56× 10−4 107764 1.00 0.40 0.13 54288.85

O3 2452638 229917 6.90× 10-4 121692 1.00 0.34 0.18 48522.93

MxM Double
O3 362370 54202 8.13× 10−5 46956 0.15 0.03 0.02 126155107.70 1.16

O3+ 336282 50300 7.56× 10-5 46956 0.70 0.06 0.02 108533441.87

Source: The Author

These tables show the data obtained from the fault injection for each optimization level

applied in the tested benchmarks.

6.1.1 General purpose Register Setup Results

In order to evaluate the general purpose registers, as mentioned in the Chapter 4

Section 4.3, the benchmarks used are the MxM, the AES, the Quicksort, the FFT, the

Fibonacci, and the JPEG applications and evaluate the O0, O2 and O3 optimizations

levels.

As shown in Table 6.1 the MxM application has the best performance for the O3

optimization level which is 5.37 times faster than O0. The register file usage increases

2.23 times from O0 to O2 and remains the same in O3 optimization. The results obtained

in the fault injection is shown using the AVF SDC metric which increases 3.41 times from

O0 to O2 and decreases 0.87 times from O2 to O3 optimization level which is still higher

than O0. Another metric obtained in the fault injection is the AVF SEFI metric which

increases 13 times from O0 to O2 and decreases 0.53 times from O2 to O3. The highest

MWBF is achieved with the O0 optimization which is 83.65 times more reliable than the



55

worst MWBF which is the O2 optimization.

While the highest MWBF for MxM is achieved with the O0 optimization, as

shown in the highlighted numbers in Table 6.1 the best performance is achieved with

the O3 optimization and the best memory footprint with the O2 optimization. As a con-

sequence of it this means that even if O3 provides higher performances and O2 a highly

optimized code, compiler optimizations are not sufficient to balance the error rate increase

they bring. However, the smaller value of the sum of the AVF SDC and SEFI metrics and

a lower usage of the register file is achieved in O0 optimization. The register file usage

metric does not directly affect the MWBF calculation.

In Table 6.1 the AES application has the best performance in the O3 optimization

level which is 4.69 times faster than the O0. The minor register usage is found in the

O2 optimization which is 1.22 times better than the O2 and O3 optimization level. The

best memory footprint is found in the O2 optimization which is 1.12 times better than O0

and 1.03 times better than O3 optimization. The AVF SDC metric decreases 0.75 times

from O0 to O2 optimization and increases 1.33 times from O2 to O3 optimization which

stills smaller than O0. The AVF SEFI metric which increases 3.66 times from O0 to O2

and increases 1.72 times from O2 to O3. The highest MWBF is achieved with the O2

optimization which is 4.02 times more reliable than the worst MWBF which is the O0

optimization.

While the highest MWBF for AES is achieved with the O2 optimization, as shown

in the highlighted numbers in Table 6.1 the best performance is achieved in the O3 opti-

mization. However, the O2 optimization has the best memory footprint, a smaller usage

of the register file, and a lower value in the result of the sum of the AVF SEFI and SDC.

It is worth noting that AES is a control-flow based algorithm that performs data

filtration. As such, AES is intrinsically less prone to experience SDCs than MxM is

supported by the fact that, for O2 and O3 implementations, the SDC AVF for AES is 10

times lower than the AVF of MxM. The peculiarity of being control-flow-based makes

AES prone to experience SEFIs. The SEFI AVF for AES compiled with O2 and O3 is

about 3.50 times the AVF for SDCs. This difference between the number of SDCs and

SEFIs may happen because the O0 implementation of AES is too naive to produce a

representative code. Eventually, this is due to high memory latency, which reduces SEFI

probability and increases SDC probability. In fact, while waiting for data the ARM is in

an idle state, and no operation is executed. So, data is exposed, and corruption may lead

to SDC, although unlikely to SEFI. There are rather fewer SDCs in AES, but this only



56

occurs because these are converted into SEFIs. So, in the end, the amount of AES errors

increases also with the growth of optimization level.

In Table 6.1 the Quicksort application has the best performance in the O2 opti-

mization level which is 2.83 times faster than the O0. The minor register usage is achieved

in the O0 optimization which increases 2.96 times from O0 to O2 optimization and de-

creases 0.92 times from O2 to O3 optimization which stills higher than O0. The AVF

SDC metric increases 8.75 times from O0 to O2 and increases 1.03 times from O2 to

O3 optimization level. The AVF SEFI metric is equal for all optimizations. The highest

MWBF is achieved with the O2 optimization which is 1.57 times more reliable than the

worst MWBF which is the O0 optimization.

While the highest MWBF for Quicksort application is achieved in the O2 opti-

mization, as shown in the highlighted numbers in Table 6.1 the minor register file usage,

and the sum of AVF SDC and SEFI is smaller in O0 than in the other optimizations. How-

ever, the O2 optimization has the best performance and the best memory footprint. The

compiler does not know apriori Quicksort is a control flow application, which is why O3

is not very efficient.

In Table 6.1 the FFT application has the best performance in the O3 optimization

level which is 2.15 times faster than the O0. The minor register usage is achieved in the

O0 optimization which increases 2.63 times from O0 to O2 and O3 optimizations. The

AVF SDC metric increases 6.5 times from O0 to O2 and decreases 0.92 times from O2 to

O3 optimization which stills higher than O0. The AVF SEFI metric increases 8.0 times

from O0 to O2 and decreases 0.96 times from O2 to O3 optimization which stills higher

than O0. The highest MWBF is achieved with the O0 optimization which is 1.65 times

more reliable than the worst MWBF which is the O2 optimization.

While the highest MWBF for FFT application is achieved in the O0 optimization,

as shown in the highlighted numbers in Table 6.1. The best memory footprint is achieved

in the O2 optimization, the minor register file usage is reached in O0 optimization, and

the sum of AVF SDC and SEFI is smaller in O0 than in the other optimizations. However,

the best performance is achieved in the O3 optimization which is almost the same of the

O2 optimization.

In Table 6.1 the Fibonacci application has the best performance in the O3 opti-

mization level which is 2.60 times faster than the O0. The minor register usage is achieved

in the O0 optimization which increases 2.00 times from O0 to O2 optimization and in-

creases 1.37 times from O2 to O3 optimization. The AVF SDC metric increases 2.87



57

times from O0 to O2 and decreases 0.52 times from O2 to O3 optimization level which

stills higher than O0. The AVF SEFI metric increases 2.3 times from O0 to O2 and stills

the same in the O3 optimization. The highest MWBF is achieved in the O3 optimization

which is 1.71 times better than the worst MWBF which is the O2 optimization.

While the highest MWBF for Fibonacci application is achieved in the O3 opti-

mization, as shown in the highlighted numbers in Table 6.1. The best memory footprint is

achieved in O2 optimization, the minor register file usage is reached in the O0 optimiza-

tion, and the sum of AVF SDC and SEFI is smaller in O0 than in the other optimizations.

However, the best performance is achieved in the O3 optimization.

In Table 6.1 the JPEG application has the best performance in the O3 optimization

level which is 3.15 times faster than the O0. The best memory footprint is achieved in

the O2 optimization which is 1.12 times better than O3 and 1.04 times better than O0

optimization. The register usage is equal for all optimizations. The AVF SDC metric

increases 3.63 times from O0 to O2 and decreases 0.85 times from O2 to O3 optimization

level which stills higher than O0. The AVF SEFI metric increases 2.16 times from O0 to

O2 and increases 1.38 times from O2 to O3 optimization. The highest MWBF is achieved

in the O0 optimization which is 96.11 times more reliable than the worst MWBF which

is the O3 optimization.

While the highest MWBF in the JPEG application is achieved in the O0 optimiza-

tion, as shown in the highlighted numbers in Table 6.1 the best performance is achieved

in the O3 optimization, and the best memory footprint is reached in O2 optimization.

However, the sum of AVF SDC and SEFI is smaller in the O0 optimization.

The best memory footprint for all analyzed applications is found in O2 optimiza-

tion, but the difference is less than 1.0015 times between the worst optimization making

this not so relevant except in the AES and JPEG applications where this difference is up

to 1.012 times.

Analyzing the Table 6.1 for all tested applications shows that there is a trade-off

between the AVF and the execution time. The configuration with the lowest AVF or

the lowest execution time does not always bring the highest MWBF. The last column of

Table 6.1 reports how much the MWBF is improved between the worst and the best case.

It was observed that a higher level of optimization does not necessarily imply a higher

MWBF. In fact, optimization increases the number of used registers and the exposed area.

In order to be beneficial, the performance improvements must be sufficient to compensate

the increased exposed area.



58

Figure 6.1: Total Architectural Vulnerability Factor SDCs

Source: The Author

Figure 6.2: Total Architectural Vulnerability Factor SEFIs

Source: The Author

Figures 6.1 and 6.2 show how the AVF SDC and SEFI change for each application

with the increase of the compiler optimization. The AVF for both SDCs and SEFIs of

most applications increases between O0 and O2. On the contrary, between O2 and O3 the

AVF is very similar, in most cases. It is worth noting that, as shown in Table 6.1, the ex-

ecution time, number of instructions, clock cycles, and resources utilization significantly

change with the application of the O2 optimization level instead of the O0. The difference

between O2 and O3 is slight which is again mainly caused by the fact that O3 optimiza-

tion level is not always practical and easy to be implemented. A first-order indication of

how much the optimization level modifies the executed code is the execution time and

resources utilization.

The Register Lifetime is the time when the data stored is still useful in the register

file. Any fault occurring to the register during this period corrupts data integrity. Con-

sequently, the higher the lifetime, the longer the register is prone to faults (RESTREPO-

CALLE et al., 2015; MONTESINOS; LIU; TORRELLAS, 2007). As shown in Table 6.1

in the execution time column the O0 optimization obtained the longest execution time for



59

all applications. However, the Figures 6.1 and 6.2 shows that there is an increase of the

AVF with the increase of the level of optimization. Thus, it can be concluded that the

increase in AVF is more related to the lifetime of variables than to the execution time of

the application. The lifetime and the execution time are not always directly proportional.

In order to better understand register criticality, it was measured the AVF for SDC

and SEFI of each register, for both MxM and AES. Then, it can not be only identified the

registers whose corruption is more likely to generate and SDC or an SEFI, but also if the

distribution regarding the critical registers number is affected by the optimization.

Figure 6.3: MxM Architectural Vulnerability Factor SDCs

Source: The Author

Figure 6.4: MxM Architectural Vulnerability Factor SEFIs

Source: The Author

The AVF SDCs for each register and how they change for each optimization in

the MxM application is shown in Figure 6.3. It is clear that O2 and O3 optimizations

increase the number of critical registers which is expected, as O2 and O3 try to use all

available registers to improve performances. The number of critical registers is 3 in the

O0 optimization, increases to 10 in 02 optimization, and 13 in O3 optimization. The AVF

is lower in O0 than in others optimization. However, 6 out of 10 registers (i.e., R0, R1,



60

R2, R4, R9, and R10) that are critical in both O2 and O3 have a much lower AVF in O3,

which is why SDC AVF for MxM is similar between O2 and O3.

The AVF SEFI for each register in MxM application is shown in Figure 6.4. In O2

and O3 optimizations a significant increase in the AVF SEFI can be seen in accordance

with data in Table 6.3. As for SDCs, O2 increases the AVF of some registers significantly,

while O3 distributes the AVF SEFI among most of the available registers. The number of

critical registers in O0 is 0 in O0 optimization and increases to 3 in O2 optimization and

5 in O3 optimization. The AVF is lower in O0 than in other optimizations.

Figure 6.5: AES Architectural Vulnerability Factor SDCs

Source: The Author

Figure 6.6: AES Architectural Vulnerability Factor SEFIs

Source: The Author

The AVF SDCs for each register and how they change in each optimization in

AES application is shown in Figure 6.5. The number of critical registers is 5 in the O0

optimization, decreases to 3 in 02 and O3 optimization. Interestingly, in contrast with

MxM, AES O2 and O3 reduce not only the number of critical registers but also their AVF.

As mentioned before the O0 optimization for AES can be too naive, eventually masking

the filter characteristic of the code.



61

The AVF SEFIs for each register in AES application is shown in Figure 6.6. The

number of critical registers is 4 for all optimizations in spite the registers change. The

AVF SEFI increases in O2 and O3 optimizations, and because the optimization does not

use all the available registers, the AVF is concentrating in fewer registers. As showed in

Table 6.1 the register usage also depends on the size of the application and their inputs.

Applications such as FFT, JPEG use all the registers in the lowest optimization levels.

Table 6.2: Fault Injection Results

Application Optimization Execution Time AVF SDC AVF SEFI MWBF SDC MWBF SEFI

MxM

O0 2.1 ms 0.12 0 6.32× 106 ∞

O2 0.8 ms 0.44 0.13 4.58× 106 1.57× 107

O3 0.6 ms 0.37 0.11 7.28× 106 2.54× 107

AES

O0 5.2 ms 0.12 0.03 2.63× 106 9.12× 106

O2 0.5 ms 0.03 0.11 9.23× 107 2.96× 107

O3 0.4 ms 0.04 0.19 9.09× 107 2.15× 107

In Table 6.2 it was analyzed the fault injection results measuring the MWBF SDC

and SEFI separately. The execution time used in this analysis starts with the power of

the board and finishes when the application finished, which is the same considered in the

radiation experiments. The AVFs in this table is the same of the Table 6.1 which was

analyzed in the previous paragraphs.

In the MxM application the execution time decreases 2.62 times from O0 to O2

optimization and decreases 1.33 times from O2 to O3 optimization. The best MWBF

SDC is found in the O3 optimization which is 1.59 times better than the worst MWBF

which is the O2 optimization. In the MWBF SEFI in O0 optimization is found a ∞

which symbols that no error was found in the injection. In the O2 and O3 optimization,

the highest MWBF is achieved in O3 which is 1.61 times better than O2. Considering the

sum of both MWBF SDC and SEFI the O2 optimization stills the highest MWBF for the

MxM application.

In the AES application, the execution time decreases 10.4 times from O0 to O2

optimization and decreases 1.25 times from O2 to O3 optimization. The highest MWBF

SDC is achieved in the O2 optimization which is 35.09 times better than the worst MWBF

SDC which is the O0 optimization. The highest MWBF SEFI is achieved in the O3

optimization which is 3.24 times better than the worst MWBF SEFI which is the O0

optimization. Considering the sum of both MWBF the O2 stills the best MWBF for AES



62

application.

6.1.2 NEON Setups Results

In order to evaluate the general-purpose registers and the NEON registers as men-

tioned before in the Chapter 4 Section 4.3 the benchmark tested in this experiment is the

MxM Double and the optimizations levels evaluated are the O3 and the O3+.

As shown in Table 6.1 the MxM Double application has the best performance in

the O3+ optimization level which is 1.08 times faster than O3. The register file usage in-

creases 4.66 times from O3 to O3+. The results obtained in the fault injection is evaluated

using the AVF SDC metric which increases 2.00 times from O3 to O3+ optimizations and

the AVF SEFI metric which is equal in both optimizations.

Figure 6.7: AVF SDC MxM Double O3

Source: The Author

Figure 6.8: AVF SDC MxM Double O3

Source: The Author

The AVF SDCs for each used register and how they change in each optimization

in MxM Double application is shown in Figures 6.7 and 6.8. It is clear that O3 and O3+

application increases the number of critical registers which is expected, as O3 and O3+

try to use all available registers to improve performances. The number of critical registers

is 10 in the O3 optimization and increases to 52 in the O3+ optimization.

While the highest MWBF in the MxM Double application is achieved in the O3,

as shown in the highlighted numbers in Table 6.1 the O3+ optimization has the best per-



63

formance, and the O2 optimization has the best memory footprint. However, the minor

register file usage, and the sum of AVF SDC and SEFI is smaller in the O3 optimization.

6.2 Heavy Ions Experiment Results

In order to evaluate the effect of the compiler optimizations in the whole system

under radiation, it was used as benchmarks the MxM and the AES applications and the

optimizations levels evaluated are the O0 and O3 optimizations levels. The methodology

employed in this experiment was explained in the Chapter 5 Section 5.3.

Although the increase of optimization level increases the SoC heavy ions cross

section, they are beneficial as they reduce the code execution time. As a result, while the

probability for one impinging particle to generate a noticeable error increase, the execu-

tion time is reduced, reducing the exposure time of the device. As reported in Table 6.3

in the MxM application the execution time decreases 3.5 times from O0 to O3 optimiza-

tion. The SDC cross section increases 2.25 times from O0 to O3 optimization. The SEFI

cross section is considered 0 which means the no SEFI errors happens the cause of this

may be the small number of events detected. The highest MWBF SDC is achieved in

O3 optimization which is 1.54 times better than O0. The MWBF SEFI is considered∞

which means the MWBF is not susceptible to SEFI errors or a lower number of events

was observed. The obtained data in the heavy ions experiments for the MxM application

is in accordance with fault injection.

As reported in Table 6.3 in the AES application the execution time decreases 13.00

times from O0 to O3 optimization. The SDC cross section increases 10.69 times from

O0 to O3 optimization. The SEFI cross section decreases 40.59 times from O0 to O3

optimization. The highest MWBF SDC is achieved in O3 optimization which is 1.39

times better than O0. The highest MWBF SEFI is achieved in O3 optimization which is

5.28 times better than O0. On the contrary of MxM application, AES shows the opposite

trend. This behavior may happen because the AES trend is biased by the small number of

events detected, caused by the intrinsic AES SDC reliability.



64

Table 6.3: Heavy Ions Experiment Results
Application Optimization Execution Time σ SDC σ SEFI MWBF SDC MWBF SEFI

MxM
O0 2.1 ms (1.16± 1.50)× 10−5 (0± 1.50)× 10−5 1.14× 1010 ∞

O3 0.6 ms (2.62± 3.14)× 10−5 (0± 3.14)× 10−5 1.76× 1010 ∞

AES
O0 5.2 ms (8.93± 13.4)× 10−7 (8.93± 13.4)× 10−7 5.96× 1010 5.96× 1010

O3 0.4 ms (8.35± 1.09)× 10−6 (2.20± 2.86)× 10−6 8.29× 1010 3.15× 1011

Source: The Author

6.3 An Analysis of the Dynamic Disassembly Code

The insights provided by our fault-injector on the vulnerability of registers could

be used to implement dedicated and efficient hardening strategies. By duplicating or

protecting only the registers that are found to be more likely to generate output errors it

may be possible to increase the code reliability without introducing useless overhead.

Table 6.4: Number of Reads and Writes in the main memory
Application Optimization # Read # Write

MxM

O0 241761 252813

O2 55900 56300

O3 55410 55927

AES

O0 105060 91512

O2 32894 29070

O3 30496 29510

Quicksort

O0 312871 265035

O2 126266 116831

O3 144746 132375
Source: The Author

Another two important parameters that help us to understand better the obtained

results are the numbers of reads and writes to the main memory according to the optimiza-

tion strategy. Such instructions are very time-consuming, being some of the instructions

most affected by the optimization strategies. For this analysis, it was selected the MxM,

AES, and QuickSort benchmarks. The obtained results are listed in Table 6.4. The code

length analysis and the number of reads and writes in the main memory were performed

using the Open Virtual Platform (OVP) analyzing the dynamic disassembly of the code

that was executed in ARM model. Confirming the results obtained in (CHIBANI et al.,

2014) and commented before in Chapter 3 Section 3.3.



65

Results show that, in general, the numbers of reads and writes in the main mem-

ory are significantly reduced with the increase in the optimization level. Such behavior is

explained noting that in O0 data is pre-fetched from the main memory just before the exe-

cution of the instruction that needs this data. In contrast, O2 and O3 focus on minimizing

memory access time by eliminating redundant accesses to memory to optimize the overall

application execution time. O2 and O3 eliminate memory accesses and replace them with

shorter latency events, such as register copying and value propagation through registers.

As a consequence, O2 and O3 make use of a higher number of registers, which increases

the criticality of the registers as well as the overall application sensitivity. However, the

reliability of an application does not depend only on its sensitive area. It also depends on

the time required to complete its computation correctly. Therefore, it is also mandatory

to evaluate the reliability of an application regarding MWBF.

The obtained results are in accordance with the ones obtained in (IBRAHIM;

RUPP; HABIB, 2009), although authors investigated the impact of compiler optimiza-

tions on power consumption and not on reliability. They observed that O3 decreases the

number of memory references by 94%, while the instructions per cycle are increased by

250% and the consumed power by 25%. The increase in the consumed power can be ex-

plicated by the fact that, with O2 and O3 the software loop pipelining is enabled which in

turn avoids most of the processor stall cycles, resulting in better execution time. Given that

processor stall cycles consume lower power than the normal instruction cycles, enhancing

the execution time in that way leads to considerable increase in the power consumption.

This chapter aims to analyze the effects of the compiler optimizations in the relia-

bility of the all tested applications and configurations in the ARM Cortex-A9.

From the analysis performed it can be seen that optimizations improve the reliabil-

ity of the register file, but this is not sufficient to improve the overall processor reliability.

However, data must be loaded in registers to be processed. As a result, the higher the AVF

of a register, the higher the probability that a corrupted data loaded from the cache of that

register will generate an output error.



66

7 CONCLUDING REMARKS

This work presented a study on the effects of the compiler optimizations in the

reliability of embedded microprocessors. As a case of study, this work uses the Zynq

APSOC with the embedded ARM Cortex-A9 which is a COTS device. In order to ana-

lyze these effects, two experiments methodologies explained before in the chapter 5 are

selected the fault injection and the heavy ions experiment. The next sections summarize

and discuss the results obtained in this work, and present future works.

7.1 Discussion

In modern devices, the radiation and the fault injection experiments are essential to

evaluate the reliability. The most realistic experiment is the radiation which irradiates the

overall system with similar particles to those found in harsh environments. In the heavy

ions experiments, the irradiated benchmarks are the MxM and the AES. Both tested with

the O0 and the O3 optimizations.

The experiment which has a more detailed evaluation of the effects of the compiler

optimization in the reliability is the fault injection. In this experiment, the six benchmarks

used are the MxM, AES, Quicksort, FFT, Fibonacci, JPEG with the O0, O2 and O3

optimizations. The faults are injected in the general-purpose registers.

Figures 7.1 and 7.3 shows the results in the fault injection, and in the radiation

experiment for the MxM and the AES applications. The AVF was the metric used in the

fault injection experiment which represents the sensitivity to SEU. The dynamic cross

section was the metric used in the radiation experiment which quantifies the sensitivity of

the design to any specific radiation source. The two metrics were separated in SDC and

SEFI.

Figures 7.2 and 7.4 shows the result in the fault injection, and in the radiation

experiment for the MxM and the AES applications. The MWBF is the metric used to

evaluate the impact of the optimizations in the performance and the reliability. In the fault

injection, the MWBF was calculated based on the AVF, and in the radiation experiment

in the cross section. The MWBF was separated in SDC and SEFI.

In Figure 7.1, the results for MxM shows that there was an increase of the AVF

SDC and SEFI in the fault injection experiment with the increase of the compiler op-

timization. In the radiation experiment, the Cross Section for SDC increases with the



67

Figure 7.1: AVF and Cross Section in MxM

Source: Author

compiler optimization, and no SEFI are found in the tested compiler optimizations.

Figure 7.2: Radiation and Fault Injection MWBFs in MxM

Source: The Author

In Figure 7.2 the results for MxM in the fault injection shows that the MWBF

SDC slightly change and there was an increase in the MWBF SEFI with the increase of

the compiler optimization. In the radiation experiment, the MWBF SDC increases with

the compiler optimization, and the MWBF SEFI does not appear in the graphic because

no SEFI errors are found in the radiation experiment.

Figure 7.3: AVF x Cross Section in AES

Source: The Author

In Figure 7.3, the results for AES shows that there was a decrease of the AVF SDC

and an increase of the AVF SEFI in the fault injection experiment with the increase of the

compiler optimization. In the radiation experiment, the Cross Section for SDC and SEFI

increases with the compiler optimization.

In Figure 7.4 the results for AES in the fault injection shows that there was an

increase in the MWBF SDC and SEFI with the increase of the compiler optimization. In



68

Figure 7.4: Radiation and Fault Injector MWBFs in AES

Source: The Author

the radiation experiment, the MWBF SDC slightly change, and there was an increase in

MWBF SEFI with the increase of the compiler optimization.

The analysis of the Figures 7.1 to 7.4 shows that the impact of optimizations is

strongly related to the executed algorithm. As shown in Figures 7.1 and 7.2, while O2

significantly impacts the probability of radiation-induced SDCs on MxM (O2 increases

SDC AVF for MxM of about 3.70 times), O2 and O3 have almost the same AVF ( the

difference is lower than 10%). Furthermore, the MxM AVF for SEFI also increases when

the O2 optimization is used and decreases between O2 and O3.

The fault injection experiments results show that the best performance, the minor

register file usage, or the lowest AVF does not always bring the highest MWBF. The best

performance changes the instructions used by the processor which can be faster but also

can have a lower reliability. In fact, optimization increases the number of used registers

and the exposed area. In order to be beneficial, the performance improvements must be

sufficient to compensate the increased exposed area.

To evaluate the NEON register plus the general-purpose registers it was used as

a benchmark is the MxM Double with the O3 and the O3+ compiler optimizations. The

NEON technology as mentioned before is an SIMD accelerator processor. This technol-

ogy is part of the ARM core and their highest benefits are the execution of operations with

vectors and perform floating point operations in parallel.

The fault injection in the NEON registers shows that with the increase in the opti-

mization a higher MWBF is achieved. In this case, the O3 optimization has a better per-

formance and compensates the increase in the register file usage and the AVF. The sum of

the NEON and the general purpose registers represents a total of 80 registers which means

there is a higher increase in area with compared with the applications that do not use the

NEON. In the newest arm architectures such as the ARMv8, the NEON technology is

better supported that was in the ARMv7 used in this work providing a support of more

data types, and a better increase in performance.



69

In this work, the effects compiler optimization was better understood in different

aspects. In the future, this may become a major problem due to the increase in compiler

complexity, and in the use of heterogeneous resources in processors. The results show

that for most applications the best MWBF is not achieved with the highest optimization

level. As mentioned before in chapter 6 this happens because optimizations reduce exe-

cution time but also an increase in the use of registers. Then, there is a trade-off between

the execution time and the register file usage. The comparison between the fault injec-

tion results and radiation data follow different trends which may occur because the fault

injection is limited to a subset of available resources.

7.2 Future Work

As a future work, it is interesting to analyze other applications that use the NEON

technology and compare the results. Also, a Heavy Ion experiment can be done to evaluate

how the NEON technology changes the overall system reliability.
Another work that can be done is use the tool developed in (PLOTNIKOV et al.,

2013) which allow to identify the compiler optimizations that most contribute to the im-
provement in performance for a given ARM A9 application and evaluate them for relia-
bility.



70

REFERENCES

AGUIAR, V. et al. Experimental setup for single event effects at the são paulo 8ud
pelletron accelerator. Nuclear Instruments and Methods in Physics Research Section
B: Beam Interactions with Materials and Atoms, Elsevier, v. 332, p. 397–400, 2014.

AHO, A. V. et al. Compilers: Principles, Techniques, and Tools (2nd Edition). Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2006. ISBN 0321486811.

ARLAT, J. et al. Comparison of physical and software-implemented fault injection
techniques. IEEE Transactions on Computers, IEEE, v. 52, n. 9, p. 1115–1133, 2003.

ASADI, G.-H. et al. Balancing performance and reliability in the memory hierarchy. In:
IEEE. Performance Analysis of Systems and Software, 2005. ISPASS 2005. IEEE
International Symposium on. [S.l.], 2005. p. 269–279.

BAUMANN, R. Radiation-induced soft errors in advanced semiconductor technologies.
Device and Materials Reliability, IEEE Transactions on, v. 5, n. 3, p. 305–316, Sept
2005. ISSN 1530-4388.

BOUDENOT, J.-C. Radiation space environment. In: Radiation Effects on Embedded
Systems. [S.l.]: Springer, 2007. p. 1–9.

CARREIRA, J.; MADEIRA, H.; SILVA, J. G. Xception: A technique for the
experimental evaluation of dependability in modern computers. IEEE Transactions on
Software Engineering, IEEE, v. 24, n. 2, p. 125–136, 1998.

CHIBANI, K. et al. Criticality evaluation of embedded software running on a pipelined
microprocessor and impact of compilation options. In: IEEE. Electronics, Circuits
and Systems (ICECS), 2014 21st IEEE International Conference on. [S.l.], 2014. p.
778–781.

CHIELLE, E. Selective Software-Implemented Hardware Fault Tolerance
Techniques to Detect Soft Errors in Processors with Reduced Overhead. 2016.

CROCKETT, L. H. et al. The Zynq Book: Embedded Processing with the Arm
Cortex-A9 on the Xilinx Zynq-7000 All Programmable Soc. [S.l.]: Strathclyde
Academic Media, 2014.

DANDAMUDI, S. P. Guide to RISC processors: for programmers and engineers.
[S.l.]: Springer Science & Business Media, 2005.

DEMERTZI, M.; ANNAVARAM, M.; HALL, M. Analyzing the effects of compiler
optimizations on application reliability. In: IEEE. Workload Characterization
(IISWC), 2011 IEEE International Symposium on. [S.l.], 2011. p. 184–193.

ENTRENA, L. et al. Soft error sensitivity evaluation of microprocessors by multilevel
emulation-based fault injection. IEEE Transactions on Computers, IEEE, v. 61, n. 3,
p. 313–322, 2012.

FERREIRA, R. R. et al. Compiler optimizations impact the reliability of the control-flow
of radiation-hardened software. Journal of Aerospace Technology and Management,
SciELO Brasil, v. 5, n. 3, p. 323–334, 2013.



71

HAGEN, W. V. The definitive guide to GCC. [S.l.]: Apress, 2011.

IBRAHIM, M. E.; RUPP, M.; HABIB, S.-D. Compiler-based optimizations impact on
embedded software power consumption. In: IEEE. Circuits and Systems and TAISA
Conference, 2009. NEWCAS-TAISA’09. Joint IEEE North-East Workshop on.
[S.l.], 2009. p. 1–4.

ISAZA-GONZÁLEZ, J. et al. Dependability evaluation of COTS microprocessors via
on-chip debugging facilities. In: IEEE. 2016 17th Latin-American Test Symposium
(LATS). [S.l.], 2016. p. 27–32.

KALIORAKIS, M. et al. Differential fault injection on microarchitectural simulators. In:
IEEE. Workload Characterization (IISWC), 2015 IEEE International Symposium
on. [S.l.], 2015. p. 172–182.

KRÜGER, J.; WESTERMANN, R. Linear algebra operators for gpu implementation of
numerical algorithms. In: ACM. ACM Transactions on Graphics (TOG). [S.l.], 2003.
v. 22, n. 3, p. 908–916.

LIEPE, J. et al. ABC-SysBio—approximate Bayesian computation in Python with GPU
support. Bioinformatics, Oxford Univ Press, v. 26, n. 14, p. 1797–1799, 2010.

MANIATAKOS, M. et al. Instruction-level impact analysis of low-level faults in a
modern microprocessor controller. IEEE Transactions on Computers, IEEE, v. 60,
n. 9, p. 1260–1273, 2011.

MONTESINOS, P.; LIU, W.; TORRELLAS, J. Using register lifetime predictions to
protect register files against soft errors. In: IEEE. Dependable Systems and Networks,
2007. DSN’07. 37th Annual IEEE/IFIP International Conference on. [S.l.], 2007. p.
286–296.

MUKHERJEE, S. S. et al. A systematic methodology to compute the architectural vul-
nerability factors for a high-performance microprocessor. In: IEEE. Microarchitecture,
2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM International Symposium
on. [S.l.], 2003. p. 29–40.

NAGY, C. Embedded systems design using the TI MSP430 series. [S.l.]: Elsevier,
2003.

OLIVEIRA, Á. B. de; TAMBARA, L. A.; KASTENSMIDT, F. L. Exploring performance
overhead versus soft error detection in lockstep dual-core arm cortex-a9 processor
embedded into xilinx zynq apsoc. In: . Applied Reconfigurable Computing: 13th
International Symposium, ARC 2017, Delft, The Netherlands, April 3-7, 2017,
Proceedings. Cham: Springer International Publishing, 2017. p. 189–201. ISBN 978-3-
319-56258-2. Available from Internet: <http://dx.doi.org/10.1007/978-3-319-56258-2_
17>.

PARASYRIS, K. et al. GemFI: A fault injection tool for studying the behavior of
applications on unreliable substrates. In: IEEE. 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. [S.l.], 2014. p.
622–629.

http://dx.doi.org/10.1007/978-3-319-56258-2_17
http://dx.doi.org/10.1007/978-3-319-56258-2_17


72

PLOTNIKOV, D. et al. Automatic tuning of compiler optimizations and analysis of their
impact. Procedia Computer Science, Elsevier, v. 18, p. 1312–1321, 2013.

QUINN, H. Challenges in testing complex systems. IEEE Transactions on Nuclear
Science, IEEE, v. 61, n. 2, p. 766–786, 2014.

QUINN, H. et al. Using Benchmarks for Radiation Testing of Microprocessors and
FPGAs. IEEE Transactions on Nuclear Science, v. 62, n. 6, p. 2547–2554, Dec 2015.
ISSN 0018-9499.

RECH, P. et al. Impact of gpus parallelism management on safety-critical and hpc
applications reliability. In: IEEE. Dependable Systems and Networks (DSN), 2014
44th Annual IEEE/IFIP International Conference on. [S.l.], 2014. p. 455–466.

RESTREPO-CALLE, F. et al. Application-based analysis of register file criticality for
reliability assessment in embedded microprocessors. Journal of Electronic Testing,
Springer, v. 31, n. 2, p. 139–150, 2015.

ROMER, P.; TROGER, P. Reliability implications of register utilization: An empirical
study. In: IEEE. Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE
Ninth International Conference on. [S.l.], 2011. p. 105–112.

ROSA, F. et al. A fast and scalable fault injection framework to evaluate multi/many-core
soft error reliability. In: IEEE. 2015 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFTS). [S.l.], 2015. p.
211–214.

RUDOLPH, D. et al. Csp: A multifaceted hybrid architecture for space computing. 28th

AIAA/USU Conference on Small Satellites, p. 1–7, 2014.

SAGGESE, G. P. et al. Microprocessor sensitivity to failures: control vs. execution
and combinational vs. sequential logic. In: IEEE. 2005 International Conference on
Dependable Systems and Networks (DSN’05). [S.l.], 2005. p. 760–769.

SANGCHOOLIE, B. et al. A study of the impact of bit-flip errors on programs compiled
with different optimization levels. In: IEEE. Dependable Computing Conference
(EDCC), 2014 Tenth European. [S.l.], 2014. p. 146–157.

SERRANO-CASES, A.; ISAZA-GONZÁLEZ, J. e. a. On the influence of compiler
optimizations in the fault tolerance of embedded systems. In: IEEE. On-Line Testing
and Robust System Design (IOLTS), 2016 IEEE 22nd International Symposium on.
[S.l.], 2016. p. 207–208.

SIEGLE, F. et al. Mitigation of radiation effects in sram-based fpgas for space
applications. ACM Computing Surveys (CSUR), ACM, v. 47, n. 2, p. 37, 2015.

SRIDHARAN, V.; KAELI, D. R. Quantifying software vulnerability. In: ACM.
Proceedings of the 2008 workshop on Radiation effects and fault tolerance in
nanometer technologies. [S.l.], 2008. p. 323–328.

TAMBARA, L. Analyzing the Impact of Radiation-induced Failures in All
Programmable System-on-Chip Devices. 2017.



73

TAMBARA, L. A. et al. Heavy Ions Induced Single Event Upsets Testing of the 28
nm Xilinx Zynq-7000 All Programmable SoC. In: IEEE. Radiation Effects Data
Workshop (REDW), 2015 IEEE. [S.l.], 2015. p. 1–6.

TAMBARA, L. A. et al. Analyzing the impact of radiation-induced failures in
programmable socs. IEEE Transactions on Nuclear Science, IEEE, v. 63, n. 4, p.
2217–2224, 2016.

TAN, J. et al. Analyzing soft-error vulnerability on GPGPU microarchitecture. In:
Workload Characterization (IISWC), 2011 IEEE International Symposium on.
[S.l.: s.n.], 2011. p. 226–235.

VALLURI, M.; JOHN, L. K. Is compiling for performance—compiling for power? In:
Interaction between compilers and computer architectures. [S.l.]: Springer, 2001. p.
101–115.

VELAZCO, R.; REZGUI, S.; ECOFFET, R. Predicting error rate for microprocessor-
based digital architectures through CEU (Code Emulating Upsets) injection. IEEE
Transactions on Nuclear Science, IEEE, v. 47, n. 6, p. 2405–2411, 2000.

XILINX. Zynq-7000 All Programmable SoC Data Sheet: Overview. 2017.

YAN, J.; ZHANG, W. Compiler-guided register reliability improvement against soft
errors. In: ACM. Proceedings of the 5th ACM international conference on Embedded
software. [S.l.], 2005. p. 203–209.

ZARGHAM, M. R. Computer architecture: single and parallel systems. [S.l.]:
Prentice-Hall, Inc., 1996.



74

APPENDIX A — TABLES

In this appendix, it will be shown the tables with the results of the fault injection

for each benchmark and their tested optimizations. Each table contains the register where

the fault was injected, the number of injections in that register, the number of unaces, the

number of SDCs, and the number of SEFIs. It also has the AVF Unace, SDC, and SEFI

of each register. Additionally, the last line of the table represents the metrics considering

all the tested registers.

A.1 MxM Tables

Table A.1: Results of Fault Injection MxM O0

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 6622 6619 0 3 1 0 0

r1 6127 3968 2149 10 0.65 0.35 0

r2 6500 5810 687 1 0.89 0.11 0

r3 6061 4162 1894 4 0.69 0.31 0

r4 7394 7394 0 0 1 0 0

r5 6038 6036 0 0 1 0 0

r6 6844 6844 0 0 1 0 0

r7 6045 6045 0 0 1 0 0

r8 6699 6699 0 0 1 0 0

r9 6016 6016 0 0 1 0 0

r10 6628 6628 0 0 1 0 0

r11 6185 6185 0 0 1 0 0

r12 6632 6632 0 0 1 0 0

Total 83791 79038 4730 18 0.94 0.06 0.00



75

Table A.2: Results of Fault Injection MxM O2

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 85 16 69 0 0.19 0.81 0.00

r1 243 19 221 3 0.08 0.91 0.01

r2 336 12 324 0 0.04 0.96 0.00

r3 240 56 17 168 0.23 0.07 0.70

r4 365 119 246 0 0.33 0.67 0.00

r5 250 153 87 10 0.61 0.35 0.04

r6 364 364 0 0 1.00 0.00 0.00

r7 227 225 2 0 0.99 0.01 0.00

r8 389 21 76 292 0.05 0.20 0.75

r9 260 27 233 0 0.10 0.90 0.00

r10 98 7 91 0 0.07 0.93 0.00

r11 223 223 0 0 1.00 0.00 0.00

r12 340 340 0 0 1.00 0.00 0.00

Total 3420 1582 1366 473 0.46 0.40 0.14



76

Table A.3: Results of Fault Injection MxM O3

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 528 343 185 0 0.65 0.35 0.00

r1 500 159 341 0 0.32 0.68 0.00

r2 485 93 383 9 0.19 0.79 0.02

r3 511 205 56 250 0.40 0.11 0.49

r4 492 198 101 193 0.40 0.21 0.39

r5 475 99 309 65 0.21 0.65 0.14

r6 458 422 36 0 0.92 0.08 0.00

r7 529 489 41 0 0.92 0.08 0.00

r8 465 26 439 0 0.06 0.94 0.00

r9 569 77 440 52 0.14 0.77 0.09

r10 488 195 31 262 0.40 0.06 0.54

r11 458 398 54 6 0.87 0.12 0.01

r12 503 453 50 0 0.90 0.10 0.00

Total 7465 3157 2466 837 0.42 0.33 0.11



77

A.2 AES

Table A.4: Results of Fault Injection AES O0

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 3018 2580 386 52 0.85 0.13 0.02

r1 2325 1635 550 140 0.70 0.24 0.06

r2 3048 1719 970 359 0.56 0.32 0.12

r3 2375 1122 764 489 0.47 0.32 0.21

r4 3070 2120 940 0 0.69 0.31 0.00

r5 2312 2312 0 0 1.00 0.00 0.00

r6 3244 3241 0 3 1.00 0.00 0.00

r7 2334 2334 0 0 1.00 0.00 0.00

r8 3110 3096 0 14 1.00 0.00 0.00

r9 2287 2287 0 0 1.00 0.00 0.00

r10 3382 3382 0 0 1.00 0.00 0.00

r11 2336 2336 0 0 1.00 0.00 0.00

r12 2976 2976 0 0 1.00 0.00 0.00

Total 35817 31140 3610 1057 0.87 0.10 0.03



78

Table A.5: Results of Fault Injection AES O2

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 741 741 0 0 1.00 0.00 0.00

r1 637 636 0 1 1.00 0.00 0.00

r2 712 711 0 1 1.00 0.00 0.00

r3 812 812 0 0 1.00 0.00 0.00

r4 688 688 0 0 1.00 0.00 0.00

r5 717 716 0 1 1.00 0.00 0.00

r6 739 739 0 0 1.00 0.00 0.00

r7 679 679 0 0 1.00 0.00 0.00

r8 652 522 8 122 0.80 0.01 0.19

r9 789 455 105 229 0.58 0.13 0.29

r10 695 244 16 435 0.35 0.02 0.63

r11 696 695 0 1 1.00 0.00 0.00

r12 747 647 0 100 0.87 0.00 0.13

Total 9304 8285 129 890 0.89 0.01 0.10



79

Table A.6: Results of Fault Injection AES O3

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 771 771 0 0 1.00 0.00 0.00

r1 1103 1103 0 0 1.00 0.00 0.00

r2 745 745 0 0 1.00 0.00 0.00

r3 1212 1212 0 0 1.00 0.00 0.00

r4 825 825 0 0 1.00 0.00 0.00

r5 1106 1106 0 0 1.00 0.00 0.00

r6 786 786 0 0 1.00 0.00 0.00

r7 1141 1141 0 0 1.00 0.00 0.00

r8 791 205 36 548 0.26 0.05 0.69

r9 1105 637 92 372 0.58 0.08 0.34

r10 785 719 34 32 0.92 0.04 0.04

r11 1141 0 0 1141 0.00 0.00 1.00

r12 765 765 0 0 1.00 0.00 0.00

Total 12276 10015 162 2093 0.82 0.01 0.17



80

A.3 Quicksort

Table A.7: Results of Fault Injection Quicksort O0

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 6816 6672 144 0 0,98 0,02 0,00

r1 6392 5952 327 113 0,93 0,05 0,02

r2 6881 6072 726 83 0,88 0,11 0,01

r3 6347 5810 440 97 0,92 0,07 0,02

r4 6865 6865 0 0 1,00 0,00 0,00

r5 6155 6155 0 0 1,00 0,00 0,00

r6 6926 6876 0 0 0,99 0,00 0,00

r7 6229 6229 0 0 1.00 0.00 0.00

r8 6933 6933 0 0 1.00 0.00 0.00

r9 6241 6241 0 0 1.00 0.00 0.00

r10 7388 7388 0 0 1.00 0.00 0.00

r11 6304 6304 0 0 1.00 0.00 0.00

r12 7525 7525 0 0 1.00 0.00 0.00

Total 87002 85022 1637 293 0.98 0.02 0.00



81

Table A.8: Results of Fault Injection Quicksort O2

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 2439 2305 134 0 0.95 0.05 0.05

r1 2841 2443 314 84 0.86 0.11 0.11

r2 2651 2572 58 21 0.97 0.02 0.02

r3 2816 2657 159 0 0.94 0.06 0.06

r4 2034 1510 436 88 0.74 0.21 0.21

r5 1852 415 1424 13 0.22 0.77 0.77

r6 2045 843 1201 1 0.41 0.59 0.59

r7 2873 602 2271 0 0.21 0.79 0.79

r8 2213 1058 876 279 0.48 0.40 0.40

r9 3024 394 2029 601 0.13 0.67 0.67

r10 2498 2175 323 0 0.87 0.13 0.13

r11 3124 140 2984 0 0.04 0.96 0.96

r12 2791 2791 0 0 1.00 0.00 0.00

Total 33201 19905 12209 1087 0.60 0.37 0.03



82

Table A.9: Results of Fault Injection Quicksort O3

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 573 553 18 2 0.97 0.03 0.00

r1 3792 3340 396 56 0.88 0.10 0.01

r2 646 623 21 2 0.96 0.03 0.00

r3 4565 4351 211 3 0.95 0.05 0.00

r4 512 399 93 20 0.78 0.18 0.04

r5 1560 202 1358 0 0.13 0.87 0.00

r6 651 527 121 3 0.81 0.19 0.00

r7 7919 4957 2962 0 0.63 0.37 0.00

r8 508 169 31 308 0.33 0.06 0.61

r9 1660 232 1318 110 0.14 0.79 0.07

r10 442 35 397 10 0.08 0.90 0.02

r11 3087 134 2900 53 0.04 0.94 0.02

r12 724 724 0 0 1.00 0.00 0.00

Total 26639 16246 9826 567 0.61 0.37 0.02



83

A.4 FFT

Table A.10: Results of Fault Injection FFT O0

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 2710 2594 114 2 0.96 0.04 0.00

r1 2763 2635 128 0 0.95 0.05 0.00

r2 2737 2267 345 125 0.83 0.13 0.05

r3 2841 1837 717 287 0.65 0.25 0.10

r4 2643 2643 0 0 1.00 0.00 0.00

r5 2783 2731 0 52 0.98 0.00 0.02

r6 2743 2743 0 0 1.00 0.00 0.00

r7 2766 2762 0 4 1.00 0.00 0.00

r8 2643 2643 0 0 1.00 0.00 0.00

r9 2888 2888 0 0 1.00 0.00 0.00

r10 2836 2836 0 0 1.00 0.00 0.00

r11 2637 1122 31 484 0.43 0.01 0.18

r12 2751 2751 0 0 1.00 0.00 0.00

Total 35741 32452 1335 954 0.91 0.04 0.03



84

Table A.11: Results of Fault Injection FFT O2

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 2669 1507 961 181 0.56 0.36 0.07

r1 2549 1296 713 537 0.51 0.28 0.21

r2 2621 1193 762 664 0.46 0.29 0.25

r3 2550 1202 726 622 0.47 0.28 0.24

r4 2522 463 1959 98 0.18 0.78 0.04

r5 2593 1144 1027 422 0.44 0.40 0.16

r6 2495 1147 1163 185 0.46 0.47 0.07

r7 2713 854 748 1096 0.31 0.28 0.40

r8 2623 324 617 1448 0.12 0.24 0.55

r9 2539 248 2284 7 0.10 0.90 0.00

r10 2509 215 1099 1192 0.09 0.44 0.48

r11 2563 355 480 1726 0.14 0.19 0.67

r12 2494 1847 273 374 0.74 0.11 0.15

Total 33440 11795 12812 8552 0.35 0.38 0.26



85

Table A.12: Results of Fault Injection FFT O3

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 2568 1507 921 140 0.59 0.36 0.05

r1 2540 1296 695 549 0.51 0.27 0.22

r2 2679 1193 783 703 0.45 0.29 0.26

r3 2471 1202 747 522 0.49 0.30 0.21

r4 1836 463 1300 73 0.25 0.71 0.04

r5 2260 1144 734 382 0.51 0.32 0.17

r6 2159 1147 823 189 0.53 0.38 0.09

r7 2370 854 523 993 0.36 0.22 0.42

r8 2147 324 593 1230 0.15 0.28 0.57

r9 1673 248 1402 23 0.15 0.84 0.01

r10 2198 215 1100 883 0.10 0.50 0.40

r11 2199 355 394 1450 0.16 0.18 0.66

r12 2363 1847 223 293 0.78 0.09 0.12

Total 29463 11795 10238 7430 0.40 0.35 0.25



86

A.5 Fibonnaci

Table A.13: Results of Fault Injection Fibonnaci O0

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 3288 3000 288 0 0.91 0.09 0.00

r1 3408 2952 343 113 0.87 0.10 0.03

r2 2857 2072 702 83 0.73 0.25 0.03

r3 3337 2810 430 97 0.84 0.13 0.03

r4 2865 2865 0 0 1.00 0.00 0.00

r5 2155 2155 0 0 1.00 0.00 0.00

r6 2876 2876 0 0 1.00 0.00 0.00

r7 2229 2229 0 0 1.00 0.00 0.00

r8 2933 2933 0 0 1.00 0.00 0.00

r9 2241 2241 0 0 1.00 0.00 0.00

r10 2387 2387 0 0 1.00 0.00 0.00

r11 2302 2302 0 0 1.00 0.00 0.00

r12 2524 2524 0 0 1.00 0.00 0.00

Total 35402 33346 1763 293 0.94 0.05 0.01



87

Table A.14: Results of Fault Injection Fibonnaci O2

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 1135 510 625 0 0.45 0.55 0.00

r1 1448 1241 103 104 0.86 0.07 0.07

r2 905 766 98 41 0.85 0.11 0.05

r3 918 795 123 0 0.87 0.13 0.00

r4 1111 210 822 79 0.19 0.74 0.07

r5 908 230 661 17 0.25 0.73 0.02

r6 854 42 811 1 0.05 0.95 0.00

r7 1289 1289 0 0 1.00 0.00 0.00

r8 1468 1128 0 340 0.77 0.00 0.23

r9 1563 1096 0 467 0.70 0.00 0.30

r10 1203 1203 0 0 1.00 0.00 0.00

r11 1161 1161 0 0 1.00 0.00 0.00

r12 1191 1191 0 0 1.00 0.00 0.00

Total 15154 10862 3243 1049 0.72 0.21 0.07



88

Table A.15: Results of Fault Injection Fibonnaci O3

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 972 833 130 9 0.86 0.13 0.01

r1 940 742 139 59 0.79 0.15 0.06

r2 823 716 99 8 0.87 0.12 0.01

r3 686 632 41 13 0.92 0.06 0.02

r4 955 863 72 20 0.90 0.08 0.02

r5 994 876 118 0 0.88 0.12 0.00

r6 884 774 103 7 0.88 0.12 0.01

r7 847 817 30 0 0.96 0.04 0.00

r8 1035 808 18 209 0.78 0.02 0.20

r9 1137 736 282 119 0.65 0.25 0.10

r10 1031 828 184 19 0.80 0.18 0.02

r11 816 751 16 49 0.92 0.02 0.06

r12 1023 1023 0 0 1.00 0.00 0.00

Total 12143 10399 1232 512 0.86 0.10 0.04



89

A.6 JPEG

Table A.16: Results of Fault Injection JPEG O0

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 579 513 55 11 0.89 0.09 0.02

r1 573 527 28 18 0.92 0.05 0.03

r2 592 470 111 11 0.79 0.19 0.02

r3 593 379 187 0 0.64 0.32 0.00

r4 586 480 78 28 0.82 0.13 0.05

r5 566 554 12 0 0.98 0.02 0.00

r6 562 553 9 0 0.98 0.02 0.00

r7 569 549 19 1 0.96 0.03 0.00

r8 576 565 11 0 0.98 0.02 0.00

r9 594 563 31 0 0.95 0.05 0.00

r10 586 574 12 0 0.98 0.02 0.00

r11 625 140 81 404 0.22 0.13 0.65

r12 579 556 20 3 0.96 0.03 0.01

Total 7580 6423 654 476 0.85 0.09 0.06



90

Table A.17: Results of Fault Injection JPEG O2

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 1759 915 637 207 0.52 0.36 0.12

r1 1724 970 594 160 0.56 0.34 0.09

r2 1734 1013 599 122 0.58 0.35 0.07

r3 1828 882 718 228 0.48 0.39 0.12

r4 1834 805 840 189 0.44 0.46 0.10

r5 1512 924 379 209 0.61 0.25 0.14

r6 1699 778 570 351 0.46 0.34 0.21

r7 1748 468 1009 271 0.27 0.58 0.16

r8 1752 540 777 213 0.31 0.44 0.12

r9 1694 624 944 115 0.37 0.56 0.07

r10 1781 774 292 667 0.43 0.16 0.37

r11 1739 374 1128 180 0.22 0.65 0.10

r12 1685 1270 386 29 0.75 0.23 0.02

Total 22489 10337 8873 2941 0.46 0.39 0.13



91

Table A.18: Results of Fault Injection JPEG O3

Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 2422 1363 876 183 0.56 0.36 0.08

r1 2434 1118 748 568 0.46 0.31 0.23

r2 2402 986 710 706 0.41 0.30 0.29

r3 2426 948 984 494 0.39 0.41 0.20

r4 2463 1508 617 338 0.61 0.25 0.14

r5 2545 1278 598 569 0.50 0.23 0.22

r6 2428 1318 831 279 0.54 0.34 0.11

r7 2506 1313 728 465 0.52 0.29 0.19

r8 2385 841 816 728 0.35 0.34 0.31

r9 2486 966 1024 496 0.39 0.41 0.20

r10 2544 1297 515 732 0.51 0.20 0.29

r11 2358 1137 959 362 0.48 0.41 0.15

r12 2448 1333 956 159 0.54 0.39 0.06

Total 31847 15406 10362 6079 0.48 0.33 0.19



92

A.7 MxM Double

Table A.19: Results of Fault Injection MxM Double O3
Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 845 776 69 0 0.92 0.08 0.00
r1 1908 1689 219 0 0.89 0.11 0.00
r2 930 865 65 0 0.93 0.07 0.00
r3 975 823 152 0 0.84 0.16 0.00
r4 810 810 0 0 1.00 0.00 0.00
r5 824 824 0 0 1.00 0.00 0.00
r6 879 879 0 0 1.00 0.00 0.00
r7 989 989 0 0 1.00 0.00 0.00
r8 855 855 0 0 1.00 0.00 0.00
r9 959 959 0 0 1.00 0.00 0.00

r10 950 950 0 0 1.00 0.00 0.00
r11 937 937 0 0 1.00 0.00 0.00
r12 927 927 0 0 1.00 0.00 0.00
sp 920 15 0 905 0.02 0.00 0.98
lr 874 4 0 870 0.00 0.00 1.00
s0 949 949 0 0 1.00 0.00 0.00
s1 872 872 0 0 1.00 0.00 0.00
s2 967 967 0 0 1.00 0.00 0.00
s3 957 957 0 0 1.00 0.00 0.00
s4 960 960 0 0 1.00 0.00 0.00
s5 895 895 0 0 1.00 0.00 0.00
s6 897 897 0 0 1.00 0.00 0.00
s7 894 894 0 0 1.00 0.00 0.00
s8 899 899 0 0 1.00 0.00 0.00
s9 905 905 0 0 1.00 0.00 0.00

s10 964 964 0 0 1.00 0.00 0.00
s11 964 964 0 0 1.00 0.00 0.00
s12 914 914 0 0 1.00 0.00 0.00
s13 838 838 0 0 1.00 0.00 0.00
s14 876 876 0 0 1.00 0.00 0.00
s15 841 841 0 0 1.00 0.00 0.00
s16 892 892 0 0 1.00 0.00 0.00
s17 877 877 0 0 1.00 0.00 0.00
s18 929 929 0 0 1.00 0.00 0.00
s19 930 930 0 0 1.00 0.00 0.00
s20 934 934 0 0 1.00 0.00 0.00
s21 867 867 0 0 1.00 0.00 0.00
s22 848 848 0 0 1.00 0.00 0.00



93

Table A.20: Results of Fault Injection MxM Double O3 Continuation
Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

s23 998 998 0 0 1.00 0.00 0.00

s24 835 835 0 0 1.00 0.00 0.00

s25 959 959 0 0 1.00 0.00 0.00

s26 914 914 0 0 1.00 0.00 0.00

s27 907 907 0 0 1.00 0.00 0.00

s28 933 933 0 0 1.00 0.00 0.00

s29 948 948 0 0 1.00 0.00 0.00

s30 835 835 0 0 1.00 0.00 0.00

s31 967 967 0 0 1.00 0.00 0.00

s32 893 500 393 0 0.56 0.44 0.00

s33 921 633 288 0 0.69 0.31 0.00

s34 900 611 289 0 0.68 0.32 0.00

s35 948 736 212 0 0.78 0.22 0.00

s36 945 757 188 0 0.80 0.20 0.00

s37 873 733 140 0 0.84 0.16 0.00

s38 899 899 0 0 1.00 0.00 0.00

s39 894 894 0 0 1.00 0.00 0.00

s40 845 845 0 0 1.00 0.00 0.00

s41 912 912 0 0 1.00 0.00 0.00

s42 867 867 0 0 1.00 0.00 0.00

s43 923 923 0 0 1.00 0.00 0.00

s44 993 993 0 0 1.00 0.00 0.00

s45 877 877 0 0 1.00 0.00 0.00

s46 904 904 0 0 1.00 0.00 0.00

s47 915 915 0 0 1.00 0.00 0.00

s48 949 949 0 0 1.00 0.00 0.00

s49 947 947 0 0 1.00 0.00 0.00

s50 992 992 0 0 1.00 0.00 0.00

s51 873 873 0 0 1.00 0.00 0.00

s52 991 991 0 0 1.00 0.00 0.00

s53 993 993 0 0 1.00 0.00 0.00

s54 958 958 0 0 1.00 0.00 0.00

s55 882 882 0 0 1.00 0.00 0.00

s56 973 973 0 0 1.00 0.00 0.00

s57 960 960 0 0 1.00 0.00 0.00

s58 984 984 0 0 1.00 0.00 0.00

s59 866 866 0 0 1.00 0.00 0.00

s60 874 874 0 0 1.00 0.00 0.00

s61 895 895 0 0 1.00 0.00 0.00

s62 879 879 0 0 1.00 0.00 0.00

s63 844 844 0 0 1.00 0.00 0.00

TOTAL 73116 69326 2015 1775 0.95 0.03 0.02



94

Table A.21: Results of Fault Injection MxM Double O3+
Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

r0 985 896 89 0 0.91 0.09 0.00

r1 887 887 0 0 1.00 0.00 0.00

r2 972 972 0 0 1.00 0.00 0.00

r3 996 729 267 0 0.73 0.27 0.00

r4 902 820 82 0 0.91 0.09 0.00

r5 910 837 73 0 0.92 0.08 0.00

r6 862 795 67 0 0.92 0.08 0.00

r7 998 998 0 0 1.00 0.00 0.00

r8 914 914 0 0 1.00 0.00 0.00

r9 884 884 0 0 1.00 0.00 0.00

r10 940 940 0 0 1.00 0.00 0.00

r11 895 895 0 0 1.00 0.00 0.00

r12 953 953 0 0 1.00 0.00 0.00

sp 935 25 0 910 0.03 0.00 0.97

lr 873 3 0 870 0.00 0.00 1.00

s0 890 801 89 0 0.90 0.10 0.00

s1 933 865 68 0 0.93 0.07 0.00

s2 961 893 68 0 0.93 0.07 0.00

s3 875 831 44 0 0.95 0.05 0.00

s4 985 901 84 0 0.91 0.09 0.00

s5 844 782 62 0 0.93 0.07 0.00

s6 843 761 82 0 0.90 0.10 0.00

s7 990 920 70 0 0.93 0.07 0.00

s8 981 869 112 0 0.89 0.11 0.00

s9 964 872 92 0 0.90 0.10 0.00

s10 860 712 148 0 0.83 0.17 0.00

s11 865 746 119 0 0.86 0.14 0.00

s12 965 879 86 0 0.91 0.09 0.00

s13 956 889 67 0 0.93 0.07 0.00

s14 900 818 82 0 0.91 0.09 0.00

s15 860 801 59 0 0.93 0.07 0.00

s16 886 886 0 0 1.00 0.00 0.00

s17 866 866 0 0 1.00 0.00 0.00

s18 963 963 0 0 1.00 0.00 0.00

s19 875 875 0 0 1.00 0.00 0.00

s20 916 916 0 0 1.00 0.00 0.00

s21 872 872 0 0 1.00 0.00 0.00

s22 830 830 0 0 1.00 0.00 0.00

s23 942 942 0 0 1.00 0.00 0.00

s24 996 996 0 0 1.00 0.00 0.00

s25 885 885 0 0 1.00 0.00 0.00



95

Table A.22: Results of Fault Injection MxM Double O3+ Continuation
Register # of Injections # of Unaces # of SDCs # of SEFIs AVF Unace AVF SDCs AVF SEFIs

s26 999 999 0 0 1.00 0.00 0.00

s27 906 906 0 0 1.00 0.00 0.00

s28 911 911 0 0 1.00 0.00 0.00

s29 882 882 0 0 1.00 0.00 0.00

s30 940 940 0 0 1.00 0.00 0.00

s31 971 971 0 0 1.00 0.00 0.00

s32 913 826 87 0 0.90 0.10 0.00

s33 945 879 66 0 0.93 0.07 0.00

s34 878 794 84 0 0.90 0.10 0.00

s35 975 897 78 0 0.92 0.08 0.00

s36 984 903 81 0 0.92 0.08 0.00

s37 953 880 73 0 0.92 0.08 0.00

s38 912 834 78 0 0.91 0.09 0.00

s39 903 832 71 0 0.92 0.08 0.00

s40 873 790 83 0 0.90 0.10 0.00

s41 902 833 69 0 0.92 0.08 0.00

s42 958 871 87 0 0.91 0.09 0.00

s43 894 819 75 0 0.92 0.08 0.00

s44 900 768 132 0 0.85 0.15 0.00

s45 879 766 113 0 0.87 0.13 0.00

s46 912 840 72 0 0.92 0.08 0.00

s47 917 854 63 0 0.93 0.07 0.00

s48 881 802 79 0 0.91 0.09 0.00

s49 986 914 72 0 0.93 0.07 0.00

s50 947 871 76 0 0.92 0.08 0.00

s51 851 789 62 0 0.93 0.07 0.00

s52 977 842 135 0 0.86 0.14 0.00

s53 921 795 126 0 0.86 0.14 0.00

s54 859 720 139 0 0.84 0.16 0.00

s55 882 774 108 0 0.88 0.12 0.00

s56 909 780 129 0 0.86 0.14 0.00

s57 957 840 117 0 0.88 0.12 0.00

s58 956 880 76 0 0.92 0.08 0.00

s59 920 853 67 0 0.93 0.07 0.00

s60 938 860 78 0 0.92 0.08 0.00

s61 947 882 65 0 0.93 0.07 0.00

s62 899 817 82 0 0.91 0.09 0.00

s63 832 765 67 0 0.92 0.08 0.00

TOTAL 72578 66098 4700 1780 0.92 0.06 0.02


	ACKNOWLEDGMENTS
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Objectives and Contributions
	1.2 Organization

	2 Background
	2.1 RISC Architecture
	2.2 Soft Errors Effects in Embedded Processors

	3 Code Optimization Effects
	3.1 Why optimizations?
	3.2 What are the optimizations?
	3.3 Optimizations effects in performance and energy consumption
	3.4 State of the art

	4 CASE STUDY: THE EMBEDDED ARM A9
	4.1 All Programmable System-on-Chip
	4.1.1 Processing System
	4.1.2 Programmable Logic
	4.1.3 The PS - PL Interfaces

	4.2 Algorithms
	4.3 Setups

	5 Reliability Evaluation Methodology
	5.1 Beam experiment vs fault injection
	5.2 Reliability Metrics
	5.3 Heavy ion experiment
	5.4 Fault injection framework

	6 Results
	6.1 Fault Injection Results
	6.1.1 General purpose Register Setup Results
	6.1.2 NEON Setups Results

	6.2 Heavy Ions Experiment Results
	6.3 An Analysis of the Dynamic Disassembly Code

	7 Concluding Remarks
	7.1 Discussion
	7.2 Future Work

	References
	Appendix A — Tables
	A.1 MxM Tables
	A.2 AES
	A.3 Quicksort
	A.4 FFT
	A.5 Fibonnaci
	A.6 JPEG
	A.7 MxM Double


