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ABSTRACT

The advances in semiconductor industry over the last decades have been strongly based on

continuous scaling down of dimensions in manufactured CMOS devices. The use of CMOS

devices profoundly relies on AND/OR/Inverter logic. As the CMOS scaling is reaching its

physical limits, researchers increase the effort to prolong the CMOS life. Also, it is necessary

to investigate alternative devices, which in many cases implies the use of different basic logic

operations. As the commercial synthesis tools are not able to handle these technologies efficiently,

there is an opportunity to research alternative logic implementations better suited for these new

devices. This thesis focuses on presenting efficient algorithms to design circuits in both CMOS

and new technologies while integrating these algorithms into regular design flows. For this

task, we apply the functional composition technique, to efficiently synthesize both CMOS and

emerging technologies. The functional composition is a bottom-up synthesis approach, providing

flexibility to implement algorithms with optimal or suboptimal results for different technologies.

To investigate how the functional composition compares to the state-of-the-art synthesis methods,

we propose to apply this synthesis paradigm into six different scenarios. Two of them focus on

CMOS-based circuits, and other four are based on emerging technologies. Regarding CMOS-

based circuits, we investigate functional composition to investigate multi-output factorization in

a circuit resynthesis flow. Also, we manipulate approximate functions to synthesize approximate

triple modular redundancy (ATMR) modules. Concerning emerging technologies, we explore

functional composition over spin-diode circuits and other promising approaches based on differ-

ent logic implementations: threshold logic, majority logic, and implication logic. Results present

a considerable improvement over the state-of-the-art methods for both CMOS and emerging

technologies applications, demonstrating the ability to handle different technologies and showing

the possibility to improve technologies not explored yet.

Keywords: Functional Composition. Logic Synthesis. Emerging Technologies. Circuit Resyn-

thesis. Approximate Circuits. Threshold Logic. Majority Logic. Spin-diodes. Memristors.





Aplicações da Composição Funcional para CMOS e Tecnologias Emergentes

RESUMO

Os avanços da indústria de semicondutores nas últimas décadas foram baseados fortemente

na contínua redução de tamanho dos dispositivos CMOS fabricados. Os usos de dispositivos

CMOS dependem profundamente da lógica de portas E/OU/INV. À medida que os dispositivos

CMOS estão atingindo oslimites fisicos, pesquisadores aumento esforço para prolongar a vida

útil da tecnologia CMOS. Também é necessário investigar dispositivos alternativos, que em

muitos casos implicam no uso de operações lógicas básicas diferentes. Como as ferramentas

comerciais de síntese não são capazes de manipular eficientemente estas tecnologias Esta tese

de doutorado foca em produzir algoritmos eficientes para projeto de circuitos tanto em CMOS

quanto em novas tecnologias, integrando estes algorithmos em fluxos de projeto. Para esta tarefa,

aplicamos a técnica da composição functional, para sintetizar eficiente tanto em CMOS quanto

em tecnologias emergentes. A composição funcional é uma abordagem de síntese de baixo para

cima, provendo flexibilidade para implementar algoritmos com resultados ótimos ou sub-ótimos

para diferentes tecnologias. A fim de investigar como a composição funcional se compara

às abordagens de síntese estado-da-arte, propomos aplicar esse paradigma de síntese em seis

cenários diferentes. Dois deles se concentram em circuitos baseados em CMOS e outros quatro

em circuitos baseados em tecnologias emergentes. Em relação a circuitos baseados em CMOS,

investigamos a composição funcional para fatoração de funções multi-saídas, aplicadas em um

fluxo de resíntese. Também manipulamos funções aproximadas, a fim de sintetizar módulos

de redundância tripla aproximada. No que diz respeito as tecnologias emergentes, exploramos

a composição funcional através de diodos spintrônicos e outras abordagens promissoras com

base em diferentes implementações de lógica: a lógica de limiar, lógica majoritária e lógica de

implicação. Resultados apresentam uma melhoria considerável em relação aos métodos estado-

da-arte tanto para aplicações CMOS quanto aplicações de tecnologias emergentes, demonstrando

a capacidade de lidar com diferentes tecnologias e mostrando a possibilidade de melhorar

tecnologias ainda não exploradas.

Palavras-chave: Composição Funcional, Síntese Lógica, Tecnologias Emergentes, Resíntese de

Circuitos, Circuitos Aproximados, Lógica de Limiar, Lógica de Majoritárias, Diodos spintrônicos,

memristores.
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1 INTRODUCTION

The history of the electronics industry started with Jack Kilby’s invention of the first

integrated circuit (IC) in 1958, patented in 1963 (KILBY, 1963). Seven years later, Gordon

Moore observed that the number of transistors per square centimeter on integrated circuits (ICs)

doubled every year since the invention of the IC. His subsequent prediction that this doubling

would continue to occur at approximately 18-month intervals has become known as Moore’s

Law (MOORE, 1965). It is expected that this trend continues for the next 10 years or even longer,

mainly for digital circuits (ITRS, 2015).

As the microelectronics industry imposed Moore’s law as the ultimate goal, they also

needed to adapt to the upcoming challenges, since the design teams are also necessary to increase

proportionally to follow the associated complexities in the design of circuits. As this growth in

the number of engineers turns to be not feasible in some moment, the computer-aided design

(CAD) industry was created to automatize the process and reduce the number of human errors.

The scaling integration of devices achieved in the last decades due the heavy use of CAD tools

brought positive impact on several aspects. For instance, they allowed reduction of the circuit

power consumption per computation, increased the operation frequency and allowed larger

integration of devices in the same die. To continue the miniaturization trend (also referred as

scaling) of the devices, research on synthesis’ algorithms for digital systems are necessary.

The digital systems design flow on application-specific integrated circuit (ASIC) is usually

divided into two subgroups: logic synthesis, and physical synthesis. The logic synthesis is the

process of transforming an abstract form of desired circuit behavior into a design implementation

regarding logic components. The circuit behavior is usually expressed utilizing a Register

Transfer Level (RTL) description while the design implementation regarding logic components

is a logic gate netlist. Logic synthesis involves the abstraction, representation, manipulation,

transformation, analysis, and optimization of logic circuits (MICHELI, 1994). The physical

synthesis follows up after the end of the logic synthesis, transforming circuit representations

of the components into geometric representations of shapes with multiple layers of materials.

Physical synthesis steps include floorplanning, placement, routing, clock tree synthesis and

others (ALPERT; MEHTA; SAPATNEKAR, 2008). Since physical synthesis is beyond the scope

of this work, we will focus on logic synthesis methods.
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1.1 Motivation and Challenges

Since 2000, the International Technology Roadmap for Semiconductors (ITRS) is point-

ing directions for research and industry. Research efforts have been made to enable newer

technologies, to continue the advances both in Moore’s law and in Koomey’s law, which refers

the number of computations per joule of energy dissipated (KOOMEY et al., 2011). From all

working groups on ITRS, two are of main interest in this thesis: the “More Moore” and “Beyond

CMOS” groups. The former group is focused on the continued shrinking of CMOS, focusing

on the PPAC characteristics (Performance, Power, Area, Cost). Also, they are interested in

improving the reliability of the circuits. The latter investigates devices that are not CMOS based,

such as Quantic devices, spintronics, memristors, and others (ITRS, 2015). One of the main

objectives of the “More Moore” is extending the CMOS life for more 5-10 years while the

“Beyond CMOS” is trying to find one device that is more efficient/cheaper than actual CMOS

technology. However, extending CMOS life is a difficult task since scaling CMOS technology,

especially into the nanometric regime requires dealing with additional challenges, including not

only deep-submicron physical effects but also deep sub-wavelength, lithography limitations, and

others. These challenges reduce manufacturing yield, threatening the practicability of smaller

CMOS devices (CHOI et al., 2001; PACHA et al., 2006; YONEDA et al., 2008; BORKAR,

2009; KUHN, 2012; MARTINS et al., 2015).

In typical CMOS logic synthesis flows, Boolean expressions are usually written us-

ing the AND/OR/INV operators and logic synthesis algorithms aim to optimize such expres-

sions to obtain better circuit implementations in a technology independent manner. The usual

technology-independent CMOS logic optimizations can be done by minimizing literals in fac-

tored forms (BRAYTON, 1987), or more recently by reducing nodes in an And-Inverter Graph

(AIG) representation (MISHCHENKO; CHATTERJEE; BRAYTON, 2006) of a circuit. For in-

stance, optimizations based on literal minimization can be obtained through the minimization of

two-level expressions (e.g. sum-of-products - SOP) and the factorization of multi-level Boolean

expressions (SENTOVICH et al., 1992). Current state-of-the-art logic synthesis is based on

minimization of the logic depth and the total number of nodes of an AIG representation of the

circuit (Berkeley Logic Synthesis and Verification Group, 2013). Notice that these technology-

independent optimizations are based on a structure where the number of literals or the number

of AND2 nodes is minimized. The independence in the optimization is referred to the absence

of static pre-characterized CMOS library. However, these representations yet implicitly favor

CMOS technology because the nature of the structures is based on operations that can be easily
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implemented in CMOS.

Due to all inherent difficulties, new devices have been investigated as promising candi-

dates to replace MOS transistor while the scaling is not physically and/or economically unfeasible.

It is important to notice that the basic devices affect the way logic is implemented. The use

of CMOS devices relies profoundly on AND/OR/Inverter logic. The availability of alternative

devices many times implies the use of different basic logic operations, bringing the need to

research alternative logic implementations better suited for the new devices. One of the research

areas involve threshold logic which can be applied to resonant tunneling diodes (RTD) (PET-

TENGHI; AVEDILLO; QUINTANA, 2008) and spin transfer torque magnetic tunneling junction

(STT-MTJ) (PATIL et al., 2010) since primitive gates of both technologies are better implemented

using threshold gates. A subset of threshold logic is the majority logic, where quantum cellular

automata (QCA) (LENT et al., 1993), tunneling phase logic (TPL) (FAHMY; KIEHL, 1999)

and single electron tunneling (SET) (AVERIN; LIKHAREV, 1986) have the majority (and

minority) voter and inverter as primitive logic elements. Another research direction involves

the memristor device and associated logic. The memristor is a two-terminal passive device

first theorized by Chua (CHUA, 1971) as a basic circuit element in nonlinear circuit theory.

Finally, the magnetoresistive spin-diode has been proposed (FRIEDMAN et al., 2012a), and the

possibility to implement a logic family using only diodes has been demonstrated (FRIEDMAN

et al., 2012b). It is the first diode based logic family that does not require any transistors. This

new device is expected to improve the circuit operation frequency while reducing area and power

consumption.

All these technologies differ from CMOS design in which (N)AND, (N)OR, and INV

gates represent the primitive elements. For any emerging technology be successful, at least three

requirements are necessary. First, the technology by itself must present some characteristics

that represent improvements over traditional CMOS transistors. These can be related to higher

frequency operation, smaller power consumption, smaller area, and so on. Second, the knowledge

used in designing and fabricating CMOS circuits should be straightforwardly adapted to the new

technology to make the migration process easier. This is important to avoid a time-consuming

learning curve that would alienate potential users. Third, design tools that allow efficient use of

the new logic primitives are necessary to extract most benefits that these new technologies have

to offer.

One of the ways to improve CMOS and perform efficient synthesis in emerging tech-

nologies is applying the Functional Composition (FC) paradigm (MARTINS; RIBAS; REIS,

2012; MARTINS; RIBAS; REIS, 2012). It is a synthesis approach that performs a bottom-up
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association of Boolean functions, opposed to the top-down functional decomposition strategy.

By performing a bottom-up process, FC has a better control of the implementation cost of the

final function.

Functional composition is based on the following principles: (1) representation of logic

functions as a bonded pair of functional/structural representations; (2) it starts from a set of initial

functions; (3) simpler functions are associated to create more complex functions; (4) a partial

order that allows the use of dynamic programming; (5) a set of allowed functions is maintained

to reduce execution time/memory consumption.

The functional composition approach is flexible; i.e., it can be configured to provide new

alternatives to already known logic synthesis algorithms. FC can provide reduced costs (where

costs can be metrics as literals or number of gates) due to the use of a bottom-up approach, where

the implementation costs of all subfunctions generated during the synthesis process are known.

This method can be used for both CMOS circuits (which the minimization in the independent

technology step is the number of literals or logic depth, and the operations are usually AND/OR)

as emerging technologies (by composing functions using custom associations, representing basic

gates from these technologies).

1.2 Objective

The objective of this thesis is to apply the functional composition both to improve

CMOS circuits and synthesize the mentioned emerging technologies efficiently. In this thesis,

two FC applications are presented for CMOS. The first application performs a multi-output

factorization that is applied in a resynthesis flow which allows improving overall circuit area

after the technology mapping. The second algorithm generates approximate circuits, which are

used in the triple modular redundancy (TMR) strategy, which consists of triple the circuits to

improve reliability. Approximate circuits reduce considerably the overhead imposed by the TMR,

sacrificing some protection as a trade-off. Also, 4 FC applications for emerging technologies

are presented: synthesis of threshold logic for RTDs; majority logic for QCA, SET, and TPL;

spin-diodes and memristors. Due to the mentioned properties of the functional composition, it

is expected considerable improvement over previous methods, both for CMOS and emerging

technologies.
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1.3 Thesis Organization

The next chapters are organized as follows:

Chapter 2: CMOS and Beyond Overview — discusses some challenges on CMOS which

increased considerably in the new technology nodes. Also, the chapter presents a set of the

main emerging technologies that are threshold-logic and majority-logic based, spin-diodes

and memristors. For each technology, it is discussed the inherent challenges to perform

logic synthesis on them.

Chapter 3: Logic Synthesis Overview — provides a logic synthesis overview and concepts, that

are used are extensively used in Chapter 5 and Chapter 6.

Chapter 4: Functional Composition Overview — depicts an overview of the functional composi-

tion and its theory. This chapter discusses the principles that compose the FC methodology.

Also, it presents the concept of cost for FC and discusses the dynamic programming

concept, which plays a vital role in the FC idea and analyses similar approaches as genetic

programming.

Chapter 5: CMOS Applications Using Functional Composition — shows 2 applications of

FC to CMOS technology. The first is a multi-output factorization algorithm, which is

applied in a resynthesis flow, to reduce the area of a mapped circuit. The second algorithm

generates approximate functions, which can be used in the triple modular redundancy

(TMR) circuits to reduce the overhead area considerably, sacrificing some of the protection.

Chapter 6: Emerging Tech. Applications Using Functional Composition — proposes 4 appli-

cations using FC for emerging technologies. The first application treats threshold-logic

based circuits, which comprise mainly RTD and STT-MTJ technologies. The second one

synthesizes majority-logic based circuits, which includes QCA, SET, and TPL technolo-

gies. Finally, the third and fourth ones comprise synthesis of spin-diodes and memristors,

respectively.

Chapter 7: Conclusions — presents the main conclusions, and summarizes the contributions of

this work. Also it presents future works for new applications and optimization opportunities

in the presented algorithms.
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2 CMOS AND BEYOND OVERVIEW

Transistor scaling is a major contributor toward continuous improvement of circuit

performance. However, the reduction of transistor dimensions increases fabrication and design

challenges, including variations and power densities that threaten to impede CMOS scaling. As

a result, much effort has been put forth to develop new devices that may allow further progress

in computation capability (ITRS, 2015).

The possibility to utilize algorithms and methodologies employed in CMOS design is

desired for new technologies. However, existing algorithms designed for CMOS may not be

able to consider the particularities of each technology efficiently. Therefore, several works have

discussed algorithms and design strategies focusing on a particular technology.

In this chapter, we will present some challenges of CMOS in the next years, and we will

also do an overview of some promising emerging technologies and the respective logic designs.

Readers with knowledge of a presented technology can skip the sections without compromising

the understanding of the contents discussed in the next chapters.

2.1 CMOS Challenges

As the CMOS devices are smaller, many of the metric effects are becoming more severe

for each generation: yield is reducing considerably; the variability in the chip, within-chip, and

device-to-device is increasing; the transistors have more leakage among other effects (DEN-

NARD, 2015). In the high level, the logic synthesis’ tools need to handle multi-million gates,

trying to deliver a physical-aware netlist and the physical synthesis’ tools need to route kilometers

of wires in a small space, perform an efficient clock distribution (which is more and more difficult

due to the increase of registers). Also, electrical characteristics need to be taken into account,

due to a lot of effects as Negative and positive-bias temperature instability (NBTI/PBTI), time

dependent dielectric breakdown (TDDB) hot carrier injection (HCI) and electromigration (BERN-

STEIN et al., 2006). The device modeling is also having difficulties due short-channel effects,

such as drain-induced barrier, threshold voltage, increased leakage current and degradation of

Ion/Ioff (ZHAO; CAO, 2006). We will discuss more two of these problems, and some solutions

adopted: the wire length and reliability.

Wires remain a significant challenge in the design of digital IC. In the previous genera-

tions, improvements on the density were achieved by the scaling of the transistors. For memories

and caches, the delay present in the wires posed a significant obstacle for further optimization.
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Also, it is measured that the delay from the gates reduces and the delay from wires double for

each generation. One of the solutions is to use wider wires or repeaters (buffers/inverters). The

main problem is that both solutions provide a degradation in energy-per-bit and increases the

routing density, turning more difficult the routing task (CALHOUN et al., 2008). Another poten-

tial solution is to improve logic synthesis methods to reduce the area furthermore, increasing the

number of complex cells and reducing both the number of wires present and the wirelength in

the circuit (AMARU et al., 2015a; AMARU et al., 2015b).

Also, reliability will be one of the most significant challenges during the following

years (ITRS, 2015; GIELEN et al., 2008). The variability (BERNSTEIN et al., 2006) is one of

the most important factors for the yield reduction due to random and systematic errors in a circuit.

Also, single event effects (SEE) caused by ionizing particles are the primary source of soft errors

in space applications (BAUMANN, 2005). Ionizing particles induce single event transients

(SET) in combinational ICs, this may lead to loss of data or functionality. SETs become a larger

treat with scaling to the nanoscale technologies due to effects of single event multiple transients.

Solutions for the variability include post-fabrication calibration and performance monitors. The

TMR proposed by von Neumann (NEUMANN, 1956) remains the most popular fault tolerance

technique.

2.2 Emerging Technologies

In this section, we will present some of emerging technologies: RTD, STT-MTJ, QCA,

SET, TPL, spin-diodes, and memristors.

2.2.1 RTDs and STT-MTJ Devices

The resonant tunneling diode (RTD) can be considered the most mature type of quantum

devices, which are used in high-speed and low-power circuits (AVEDILLO; QUINTANA;

ROLDÁN, 2006; PETTENGHI; AVEDILLO; QUINTANA, 2008; CHOI et al., 2009). They

operate at room temperature and have a III–V large scale integration process (LITVINOV

et al., 2010). The incorporation of RTDs into transistor technologies offers the opportunity

to improve the speed and compactness of large scale integration. RTDs exhibit a negative

differential resistance (NDR) region in their current–voltage characteristics, which can be

exploited to increase the functionality implemented by a single gate significantly. It reduces the
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circuit complexity in comparison to conventional MOS technologies (AVEDILLO; QUINTANA;

ROLDÁN, 2006).

Figure 2.1 – TLG implemented using RTDs (SILVA, 2014).

Another interesting architecture is based on the integration of conventional MOSFETs

and a Spintronic device, known in the literature as Spin Transfer Torque - Magnetic Tunneling

Junction (STT-MTJ) device (NUKALA; KULKARNI; VRUDHULA, 2014). The novel feature

of this architecture is that the STT-MTJ device is intrinsically a primitive threshold device, i.e., it

changes its state when the magnitude of the current through the device exceeds some threshold

value. This simple property, when exploited, leads to a simple realization of a threshold gate.

Figure 2.2 – TLG implemented using STT-MTJ (SILVA, 2014).

Recent works discuss the usage of STT-MTJ in logic computation, such as (ZHAO;

BELHAIRE; CHAPPERT, 2007; PATIL et al., 2010; GANG et al., 2011). Logic operation

performance with STT-MTJ was compared to their traditional methods of computation with

separate logic and memory units in (PATIL et al., 2010). All previous works on STT-MTJ for

logic use it for storage (logic ‘0’ or ‘1’) or as resistive networks to perform single logic gates. In

contrast, the method described in (NUKALA; KULKARNI; VRUDHULA, 2014) employs a

single STT-MTJ device in conjunction with MOSFETs to build complex threshold function and

is illustrated in Figure 2.2.
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Both technologies (RTD and STT-MTJ) can implement logic using threshold gates. These

gates are a possible alternative to the Boolean approach. The threshold logic may make possible

a considerable economy in the number of gates and interconnections necessary per circuit.

Threshold gates are similar to Boolean gates in that their inputs and outputs are binary signals.

The threshold gate is thus seen to be a logic function that can “weigh” its various inputs, sum the

resultant weighted products, and the output evaluates ‘1’ or ‘0’ if this weighted sum is above or

below certain preset threshold values, respectively. This operating behavior can be expressed as

Equation (2.1).

f =


1

n∑
i=1

wixi ≥ T

0 , otherwise
(2.1)

Threshold logic is closely related to neural networks. Research on this topic dates back

sixty years ago. The pivotal year for the development of this area was in 1943 when the first

mathematical model of a neuron operating was developed; hence, the threshold logic gate was

invented (MCCULLOCH; PITTS, 1943). There were several implementations using CMOS or

alternative solutions (LERCH, 1973; BEIU; QUINTANA; AVEDILLO, 2003).

A threshold logic function (TLF), also called linearly separable function, is a Boolean

function that can be implemented into a single threshold logic gate (TLG). A TLF can be com-

pletely represented in a compact vector format such as [w1, w2, . . . , wn;T ], using Equation (2.1).

For instance, the function f = x1 · x2 + x1 · x3 can be represented as f = [2, 1, 1; 3].

A graphic representation of a TLG will be adopted, writing the threshold value inside

the node and the input weights at the edges, as illustrated in Figure 2.3 for the Boolean function

f = [2, 1, 1; 3].

Figure 2.3 – Representation of a threshold logic gate (TLG).

An important property in TLGs is the possibility to implement different Boolean functions

only changing the weight inputs and the threshold value. For instance, Figure 2.1 presents a
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TLG implemented using RTDs, where each RTD area corresponds to one input weight or

the threshold value. Suppose all the input weights be equal to 1 and the threshold value

equal to 5. It corresponds to the Boolean function f = a · b · c · d · e, the five input AND

(AVEDILLO; J.M., 2004). Decreasing the threshold value to 4, the gate implements the function

f = a · b · c · d + a · b · c · e + a · b · d · e + a · c · d · e + b · c · d · e. Table 2.1 shows different

functions can be implemented by keeping all input weights equal to 1 and just decreasing the

threshold value.

Table 2.1 – Different functions implemented using different threshold Values in the gate of Figure 2.1
Threshold Function

t=5 f = a · b · c · d · e
t=4 f = a · b · c · d+ a · b · c · e+ a · b · d · e+ a · c · d · e+ b · c · d · e
t=3 f = a · b · c+ a · b · d+ a · b · e+ a · c · d+ a · c · e+ a · d · e+ b · c · d+ b · c · e+ b · d · e+ c · d · e
t=2 f = a · b+ a · c+ a · d+ a · e+ b · c+ b · d+ b · e+ c · d+ c · e+ d · e
t=1 f = a+ b+ c+ d+ e

2.2.2 QCA, SET, and TPL

The electrostatic Quantum-dot Cellular Automata (QCA), proposed by (LENT et al.,

1993) employs arrays of quantum cells to implement Boolean functions. This technology has the

advantage of an extremely high packing density due the size of dots. In electrostatic QCA, binary

information is encoded by the configuration of electrical charges in a QCA cell. Computation is

realized via the Coloumbic nature, and current does not flow between cells. Moreover, power

dissipation in QCA circuits is considered low compared with conventional CMOS circuits. Also,

there are several variations of the QCA technology, as the magnetic QCA (BERNSTEIN et al.,

2005) and the molecular QCA (LENT; ISAKSEN; LIEBERMAN, 2003).

The quantum cell consists of four quantum dots located at the corners of the quantum cell

and two electrons that can tunnel between the dots. Electrostatic repulsion causes the electrons

occupy diagonally opposite sites. These two electron configurations can represent the ‘0’ and ‘1’

binary states. Figure 2.4 shows a QCA cell and its two electron configurations.

The basic QCA logic includes a QCA wire, a QCA inverter, and a QCA majority gate.

Figure 2.5 presents the basic QCA elements. A QCA wire (a) is just a line of QCA cells. The

information is propagated through a fixed/held polarization and cells in diagonal have reverse

polarization. This characteristic is used to implement an inverter (b). A QCA majority gate (c)
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Figure 2.4 – Possible polarizations in QCA cells.

is implemented putting QCA cells in a cross format, where three ends are inputs, and the last

one is the output. The logic function that represents a 3-input majority function is described by

Equation (2.2).

f = x1 · x2 + x1 · x3 + x2 · x3 (2.2)

If any of the inputs is set to ‘1’ (‘0’), the majority function implements the OR (AND)

logic function. Thus, the majority logic together with the inverter is functionally complete and

can realize any Boolean function.

Figure 2.5 – Basic gates in QCA technology.

Also, some technologies use the complement of a majority gate as the basic device. A

minority SET gate (AVERIN; LIKHAREV, 1986) is shown in Figure 2.6 (a). It consists of a

double-junction box (CL and two Cj junctions), three input capacitors, and an output capacitor.

Vd is the bias voltage. Three input voltages V1, V2 and V3, are applied to Node 1 through the

input capacitors. These capacitors form a voltage summing network and produce the mean of

their inputs at Node 1. The double-junction box produces the minority-logic output on Node

1 by the following rule. If the voltage at Node 1 exceeds a threshold, an electron will tunnel

from the ground to Node 1 via Node 2, and make the voltage at Node 1 negative. Otherwise,

the voltage at Node 1 will remain positive. Logic ‘1’ and ‘0’ are represented by a positive and

negative voltage of equal magnitude.

A basic minority gate in TPL (FAHMY; KIEHL, 1999) is shown in Figure 2.6 (b). It

uses two phases. TPL uses the phase of a waveform to represent logic values in digital circuits.
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Cj represents the tunneling junction capacitance. The operation of TPL is based on the phase

locking of single electron tunneling oscillations to a pump signal that is distributed throughout

the circuit. Because the pump frequency is set to twice the tunneling frequency, the electrical

phase of the locked oscillation can take on two different values, each representing a binary

encoding.

Figure 2.6 – (a) SET and (b) TPL minority gates.

The QCA, SET, and TPL have in common a majority (minority)-based logic. This

logic can be considered as a sub-area of the threshold logic synthesis, which dates back to

1960’s with the works of Akers (AKERS, 1962), Miller (MILLER; WINDER, 1962), and

Muroga (MUROGA, 1971).

2.2.3 Spin-Diodes

The spin-diode is a magnetoresistive p-n junction, i.e., a diode with a resistance that is

affected by the magnetic field. For instance, spin-diodes of the type shown in Figure 2.7 have

been fabricated by doping a III-V semiconductor heterojunction with an element that has a strong

interaction with a magnetic field (MAY; WESSELS, 2006; RANGARAJU; LI; WESSELS,

2009), such as Mn. The spin-diode acts as a conventional diode in the presence of zero or

low magnetic fields, with a high ratio of forward current to reverse current. However, when a

magnetic field is applied across the junction, spin-dependent conduction results in decreased

charge flow across the junction (PETERS et al., 2011).

An inverter, the simplest gate, is shown in Figure 2.8. The positive terminal of the

spin-diode is connected to power supply (VDD), and the negative terminal is connected to ground

through the output loop. The input current IA is routed alongside the diode and induces a

magnetic field proportional to this current. If IA is high enough (logic ‘1’), it creates a large
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Figure 2.7 – III-V/III-Mn-V heterojunction diode (FRIEDMAN et al., 2012b).

magnetic field that reduces the diode current IO to a value small enough (logic ‘0’). If IA is low

(logic ‘0’), the generated magnetic field is not strong enough to cause a decrease of the diode

current. Then, IO is high (logic ‘1’).

Figure 2.8 – Spin-diode inverter gate (FRIEDMAN et al., 2012b).

An NOR gate is implemented by adding second input current wire IB in the opposite

direction of IA, as shown in Figure 2.9a. In this arrangement, the presence of a current in either

one of the two inputs IA and IB results in a magnetic field through the diode. This magnetic

field activates the spin-diode magnetoresistance, forcing the diode into the high resistance state

and attenuating the current. In the case of high currents on both inputs, the output current is

doubly suppressed. Therefore, if at least one of the two inputs is a ‘1’, the output propagates a

‘0’. Otherwise, there is no magnetic field through the spin-diode, and the output is a ‘1’. The

NOR gate is functionally complete, allowing for the implementation of any Boolean function

with these spin-diodes.

The exclusive-NOR (XNOR) gate also requires only one diode. The difference between

the XNOR and NOR gates is the current directions in the wires. While the input currents have

opposite directions in a NOR gate, in an XNOR gate they flow in the same direction, as seen in

Figure 2.9b and the magnetic fields oppose each other. Therefore, if both inputs are ‘1’, there is

no net magnetic field through the diode, and a logic ‘1’ value is propagated.

An OR gate can be constructed by simply connecting two wires (wired-OR). As shown

in Figure 2.10, the output current IO is equal to the sum of the two input currents. Even though
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(a) (b)
Figure 2.9 – Spin-diode logic (a) NOR and (b) XNOR gate (FRIEDMAN et al., 2012b).

no diodes are required for the wired-OR implementation, this option has the drawback that the

input signals are lost. Therefore, it is only possible to use the wired-OR if the input signals are

not used elsewhere in the circuit. The same discussion is valid for OR gates with more inputs.

Figure 2.10 – Spin-diode inverter gate (FRIEDMAN et al., 2012b).

2.2.4 Memristors

The memristor can be seen as a two terminal devices with the terminals being separated

by a material that is part conducting and part insulator (RAJENDRAN et al., 2012). When the

voltages applied to both terminals are different, the electrical properties of the middle material

are modified, and the memristor resistance changes. When there is no voltage difference between

the terminals, the resistance is not affected. If a positive bias is applied, then the resistance tends

to decrease until it reaches a minimum value. Similarly, when a negative bias is applied, the

resistance increases until it reaches a maximum value. Figure 2.11a shows the electric symbol

for a memristor. Figure 2.11b illustrates the resistance switching for both positive and negative

bias.

There are different approaches implementing digital circuits using memristors. Mem-

ristors can be used together with traditional CMOS inverters to implement threshold logic

gates (RAJENDRAN et al., 2012). In this case, the memristors provide both the input weights

and the threshold value, and logic values are defined by voltages. Alternatively, the resistance



36

(a)

(b)
Figure 2.11 – Memristor: (a) electrical symbol and (b) resistance switching due to different bias.

can be exploited to represent logic values (BORGHETTI et al., 2010). In this way, memristors

can act both as memory and computing units. One of the main motivations to study this kind

of logic is the possible integration with a memristive crossbar memory to realize logic in mem-

ory (ZHU et al., 2013). Performing logic in memory can be advantageous since it potentially

reduces the number of memory access by the processor, which is a key factor limiting processor

performance (WULF; MCKEE, 1995).

The memristor, first idealized as a basic device by Chua (CHUA, 1971), is a two terminal

passive device that behaves like a resistor with memory. In (CHUA; KANG, 1976), the concept of

memristive devices is presented as an extension of the memristor concept. The terms memristor

and memristive devices have been used interchangeably. Even though memristive behavior has

been observed for two centuries (PRODROMAKIS; TOUMAZOU; CHUA, 2012), only in 2008

the link between theory and experimental results was made (STRUKOV et al., 2008).

The basic structure to perform implication based logic using memristors is depicted in

Figure 2.12, comprising two memristors (P and Q) and a resistor Rg. The state of P and Q are

given by p and q, respectively. The logic zero is represented by a memristor in a high resistance

state, and the logic one is defined by a memristor in a low resistance state. The memristors P

and Q are driven by voltages V p and V q, respectively, which can be generated by traditional

CMOS tri-state drivers.

V p and V q can assume three values: V set, V clear and V cond. Considering only a

memristor in series with Rg, V set forces the state of the memristor to change to a low resistance

state, V clear forces the state of the memristor to change to a high resistance state and V cond

does not change the state of the memristor.
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Figure 2.12 – Basic structure to perform implication logic using memristors.

Table 2.2 – Truth table generated by the circuit in Figure 2.12.

p q p→ q

0 0 1
0 1 1
1 0 0
1 1 1

In the case when the two memristors are placed in parallel, the voltages V p and V q can

interact. This interaction is what allows logic to be performed. Consider that V set is applied to

Q at the same time that V cond is applied to P . If P is in a high resistance state (p = 0), then V p

has negligible influence on the circuit and V set is able to set Q to a low resistance state (q = 1).

In spite, if p is in a low resistance state (p = 1), then V p increases the voltage across the resistor

Rg in such a way that the resulting voltage drop in Q is not enough to cause a change of state

and q is not altered. The truth table that represents the performed operation is shown in Table 2.2

and it corresponds to the truth table of the material implication function. Every time an operation

p→ q is executed, the result is stored in q.

In order to implement a NAND operation between P and Q a work memristor (M1) is

added, the state of M1 is given by m1 and M1 is driven by a voltage V m1. A NAND operation

requires three steps. The first step is to initialize R applying V clear to V m1. The second step is

to perform p→ m1, which is the same as m1 receives ¬p. The third step is to perform q → m1

which results in m1 = ¬p ∨ ¬q (BORGHETTI et al., 2010).

To perform any Boolean function, a second work memristor M2 must be added (LEHTO-

NEN; POIKONEN; LAIHO, 2010). M2 is driven by a voltage V m2 and its state is given by m2.

That way, for an arbitrary Boolean function with n inputs p1, p2, . . . , pn, n+ 2 memristors are

sufficient to compute the function. The circuit is shown in Figure 2.13. Memristors P1 to Pn

store the values of p1 to pn, M1 and M2 are the two working memristors. At any step, one of the

working memristors stores the partial result of the computation and the other acts as an auxiliary
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Figure 2.13 – Memristor based implication logic gate.

memristor. The operations allowed are resetting a memristor to a high resistance state and

performing a material implication operation between memristors. If the material implication is

performed between both working memristor, the roles of the working memristors are exchanged.

2.3 Summary between Emerging Technologies

Table 2.3 shows a summary of all addressed logic from emerging technologies and their

primitive gates. The use of CMOS algorithms will have deleterious effects as these algorithms

are not optimized for emerging technologies basic gates. We can take advantage of the functional

composition to efficiently implement logic for the mentioned emerging technologies. These

modifications consist of algorithms for synthesis of functions using corresponding primitive gates

that consider the characteristics of the each technology to generate efficient implementations.

Table 2.3 – Summary of technologies and their primitive gates

Technology Primitive Gates

RTD & STT-MTJ Threshold Gates
QCA, SET & TPL Maj/Min Gates

Spin-Diodes INV/ NOR/ XNOR / OR
Memristor Material Implication
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3 LOGIC SYNTHESIS OVERVIEW

In this chapter, we present an overview of the logic synthesis flow and some important

concepts and terminologies commonly used in logic synthesis algorithms. Readers with knowl-

edge in these fields can skip this chapter without compromising the understanding of the contents

discussed in the next chapters.

Logic synthesis is the transformation of a circuit behavior description (usually in an

abstract form) into a design implementation regarding logic components. This step of the IC

synthesis flow connects the high-level synthesis (which generates a register-transfer level from a

behavioral description) and physical design (which takes as input a logic gate netlist and provides

a placed and routed circuit). Logic synthesis involves the abstraction, transformation, analysis,

and optimization of logic circuits. All these operations take place in the transformation from

the RTL description to the gate level description (MICHELI, 1994). An important task of the

logic synthesis step is to perform automatic generation of logic gates netlists, such that timing

constraints imposed by the designer are respected, and the final logic gate netlist has minimized

area and power.

Figure 3.1 shows a possible flow for logic synthesis, which is usually divided into

technology-independent and technology-dependent steps (MICHELI, 1994). The initial RTL

description is parsed into a technology-independent description. The parsing step is considered

trivial, and few authors mention about it (MICHELI, 1994). Even so, this parsing is a crucial

phase, since few modifications can impact considerably the next steps (PUGGELLI et al., 2011).

The output of the parsing step can be a Boolean network 1. A Boolean network is a graph of

connected nodes, where each node represents a Boolean function and connects with other nodes,

implementing all combinational logic for the parsed circuit. Figure 3.2 illustrates a Boolean

network, where a, b, c, d and e are the primary inputs and G,H are the primary outputs.

The technology mapping (or technology binding) step transforms a logic-independent

network into library gates mapped circuit (ASIC) (DETJENS et al., 1987) or look-up tables

mapped FPGA (CONG; DING, 1994). In this text, we will focus on ASIC technology mapping.

It starts transforming optimized independent logic networks into a subject description, which

is a representation of a logic function using only pre-chosen elements (simple gates from a

cell library, usually NAND/NOR gates). Usually the subject description is a graph (KUKI-

MOTO; BRAYTON; SAWKAR, 1998), a tree or a forest of trees (KEUTZER, 1988) or choice

1We are considering, for the sake of simplicity, a Boolean network as the output of the parsing step, but it can be
any data structure that can represent a circuit, e.g. an And-Inverter Graph (AIG) (MISHCHENKO; CHATTERJEE;
BRAYTON, 2006) or an Abstract Syntax Tree (AST) (PUGGELLI et al., 2011).
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nodes (MISHCHENKO et al., 2005). A matching is applied in the subject description, which will

implement all nodes into cells. This matching can be using patterns (KEUTZER, 1988) in the

subject description or taking advantage of Boolean characteristics and properties (MAILHOT;

MICHELI, 1990). Finally, a covering step is executed; trying to identify the best matches (using

a cost function as area or delay) for the subject description and assuring that every node is

covered by a library cell at least once, maintaining the functionality (BRAYTON et al., 1987a;

BRAYTON et al., 1987b). One of the pioneering algorithms for technology mapping was the

tool DAGON, proposed by (KEUTZER, 1988). The algorithm does the partition of the Boolean

network into a forest of trees, applies a pattern matching (representing all library gates as trees)

and covers each tree optimally (using dynamic programming). The output is a gate netlist,

functionally equivalent to the original RTL description.

Finally, the dependent technology optimization is closely related to the technology

mapping, considering in the technology mapping other cost criteria beyond area, such as power

and delay (TSUI, 1998), considering timing and power constraints provided by the user. These

optimizations are done at same time of technology mapping. The output of this step is a gate

netlist attending the design constraints, which will be the input of the physical synthesis. In the

next subsections, some basic concepts in logic synthesis will be presented.

Figure 3.1 – A logic synthesis flow.
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Figure 3.2 – An example of Boolean network.

3.1 Functional Representation and Properties

In this section will be presented the truth table representation of a Boolean function and

its functional properties.

3.1.1 Boolean Functions

Let B = {0, 1}. A Boolean logic function f with n input variables [x1, x2, . . . , xn] and

one output variable, is a function:

f : Bn 7→ B (3.1)

where x = [x1, x2, . . . , xn] ∈ Bn is the input of f . This is a representation for a

completely specified Boolean function (CSF) taking values from B, i.e., all the values of the

input map into 0 or 1 for all components of f. For each function f , it can be defined as follows:

the on-set XON ⊆ Bn is the set of input values x such that f(x) = 1, and the off-set is the set of

XOFF ⊆ Bn input values x such that f(x) = 0.

3.1.2 Truth Tables

A truth table is one possible representation of a logic function. In this form, the value

of the function is specified for each possible combination of inputs. For instance, let f : x 7→

y | y ∈ B, where the values of [x1, x2, x3] is indicated in Table 3.1.

For this function, we have the on-set and off-set defined respectively by XON =

[0, 0, 0], [1, 0, 0], [1, 1, 0] and XOFF = {[0, 0, 1], [0, 1, 0], [0, 0, 1], [1, 0, 1], [1, 1, 1]}.
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Table 3.1 – Truth table for a logic function with 3 variables.

x1 x2 x3 y

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

3.1.3 Shannon Expansion and Cofactors

The Shannon expansion (or Shannon decomposition) is defined as (SHANNON et al.,

1949):

f(x1, . . . , xi, . . . , xn) = xi · f(x1, . . . , 1, . . . , xn) + xi · f(x1, . . . , 0, . . . , xn) (3.2)

Also, it can be represented in other 2 formats:

f(x1, . . . , xi, . . . , xn) = xi + f(x1, . . . , 0, . . . , xn) · xi + f(x1, . . . , 1, . . . , xn) (3.3)

and

f(x1, . . . , xi, . . . , xn) = xi · f(x1, . . . , 1, . . . , xn)⊕ xi · f(x1, . . . , 0, . . . , xn) (3.4)

The cofactor is a sub element of a Shannon expansion. The Shannon expansion is a

way to express a Boolean function by the sum (or product) of two subfunctions of the original.

Considering a function f with the input variables {x1, . . . , xi, . . . , xn}, the cofactor fxi is defined

as:

fxi = {f(x1, . . . , xi, . . . , xn)|xi = B, k ∈ B} (3.5)

The positive cofactor is defined when k = 1 and the negative cofactor is defined when

k = 0. For simplicity, let fxi=1
and fxi=0

represent positive and negative cofactors, respectively,

in the variable of the function f. A cube cofactor is obtained by setting more than one input

variable to specific values that can be zero or one (e.g. fx1=0,x2=1). The cube cofactors are

commutative operations.
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3.1.4 Unateness

Let f be a Boolean function. The variable xk in the function f is “don’t care” if

fxk=0 = fxk=1 . The variable xk in the function f is positive unate if fxk=0 + fxk=1 = fxk=1.

The function f is negative unate in the variable xk if fxk=0 + fxk=1 = fxk=0 . Otherwise, the

variable xk in the function f is binate. Let U(f, xk) denote the unateness detection function of a

variable xk in the function f , and auxiliary function i = fxk=0 + fxk=1, we have:

U(f, xk) =



positive unate (fxk=1 ≡ i) ∧ (fxk=1 6= fxk=0)

negative unate (fxk=0 ≡ i) ∧ (fxk=1 6= fxk=0))

don’t care fxk=1 ≡ fxk=0

binate (fxk=1 6= fxk=0) ∧ (fxk=1 6= i) ∧ (fxk=0 6= i)

3.1.5 Symmetry and Antisymmetry

Two or more variables are symmetric when they can be interchanged without modifying

the logic function. Two or more variables are antisymmetric if they can be inverted and exchanged

to each other without changing the logic function.

For a function f(x1, . . . , xi, . . . , xn) with n ≥ 2 , symmetry and antisymmetry of two

variables xi and xj can be detected comparing the cube cofactors of xi and xj . Let S(f, xi, xj)

denote the symmetry check of variables xi and xj in the function f .

S(f, xi, xj) =

symmetric fxi=1,xj=0 = fxi=0,xj=1

not symmetric otherwise

The antisymmetric property is similar, changing only the cube cofactors to be checked.

Let AS(f, xi, xj) denote the antisymmetry check of variables xi and xj in the function f .

AS(f, xi, xj) =

antisymmetric fxi=0,xj=0 = fxi=1,xj=1

not antisymmetric otherwise
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3.1.6 Self-Dual Functions

The dual of a function f(x1, x2, . . . , xn) is the function fd = f(x1, x2, . . . , xn). Notice

that the function fd is obtained first by replacing each xi with xi and then complementing the

function f . A self-dual function is a function such that f = fd. For instance, in Table 3.2 is

presented a self-dual function, called f , which implements the three-input majority function.

Table 3.2 – Truth table of self-dual function f .

Line x1 x2 x3 f

0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

The values in the line 0, 1, 2 and 3 have complemented values of the lines 7, 6, 5 and 4,

respectively. This characterizes a self-dual function.

3.1.7 Order

Two Boolean functions can be compared and classified according to their relative ordering,

which can be equal, larger, smaller, not-comparable or disjoint. Let O(f, g) denote the order of

f against g, and h be the auxiliary function h = f + g, we have:

O(f, g) =



equal f = g

smaller (h = g) ∧ (f 6= g)

larger (h = f)∧ = (f 6= g)

not comparable (f 6= g) ∧ (f 6= h) ∧ (g 6= h) ∧ (f · g 6= 0)

disjoint (f 6= g) ∧ (f 6= h) ∧ (g 6= h) ∧ (f · g = 0)

The order of two functions can be easily observed in a Karnaugh map, shown in Figure 3.3.

The shaded area represents the minterms of f projected in g.
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Figure 3.3 – Order visualized in the Karnaugh map.

3.1.8 Boolean Operations

Four basic Boolean operations are discussed in this section. These operations are illus-

trated in Figure 3.4 and the truth tables representing the operations are shown in Table 3.3.

The complement or negation (NOT, ¬) of a logic function f is the logic function f ,

where f on = foff and f off = fon.

The intersection or product (AND, ·) of two logic functions f and g, h = f · g is defined

to be the logic function h, where hon = fon ∩ gon.

The union or sum (OR, +) of two logic functions f and g, i = f + g is defined to be the

logic function i, where ion = fon ∪ gon.

The symmetric difference or exclusive sum (XOR, ⊕) of two logic functions f and g,

j = f + g is defined to be the logic function j, where jon = (fon ∪ gon) \ (fon ∩ gon).

Table 3.3 – Truth tables for the following operations: negation, product, sum and exclusive product
operations, respectively.

NOT(f ) AND(f, g) OR(f, g) XOR(f, g)
f g h f g i f g h

f f 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 1 0 1 1
1 0 1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0
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Figure 3.4 – Boolean operations: the grey area represents the result of each operation.

3.2 Boolean Equations

An algebraic representation of f is a Boolean expression that evaluates to 1 for all inputs

in XON and evaluates to 0 for all inputs in XOFF . An algebraic representation of f can be built

by inspection from the truth table of f . For instance, the algebraic representation of f can be

constructed as follows. Consider every row of the truth table that has a 1 in the output value.

Create a Boolean product (logical “and”, represented by operator · ) of the n input variables

[x1, x2, . . . , xn], the variable xj appears complemented if the corresponding value of the input

variable in the row of the truth table is 0 and direct if it is 1. This product evaluates to 1 for

the input combinations corresponding to the row of the truth table and 0 for all other input

combinations. Joining all products using a Boolean sum (OR) of all the product terms created,

an algebraic representation of f is found. Using the example given in Table 3.1, and applying

the rules above, the Equation (3.6) is obtained.

f = x1 · x2 · x3 + x1 · x2 · x3 + x1 · x2 · x3 (3.6)

3.2.1 Literals

A literal is either a variable or the negation of a variable within a Boolean logic expression.

For example, the expression represented by function f = (x1 + x2) · (x3 + x1 · x4) has 5 literals

and the variable set is [x1, x2, x3, x4, x5] , being x1 a positive literal and x2 a negative literal.
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3.2.2 Two Level Expressions

There are two ways to represent two level expressions. An expression called sum-of-

products (SOP) is an expression that uses product terms joined by a sum. Another way is using

expressions composed of sum terms joined by a product, being called product- of-sum (POS).

3.2.2.1 Minterms and Maxterms

For a Boolean function of n variables, a product term in which each of the n variables

appears once (in its complemented or direct form) is called a minterm. Thus, a minterm is a

logical expression of n variables that employs only the complement operator and the Boolean

sum operator.

There are up to 2n minterms for n variables since a variable in the minterm expression

can be either in its complemented form or direct form.

Maxterms are similar to minterms. For a Boolean function of n variables, a sum term

in which each of the n variables appears once (in its complemented or direct form) is called a

maxterm.

For example, consider a function with 3 variables with input assignment [x1, x2, x3]. The

indexes are the decimal representation of the binary value. Index 6 is the minterm x1 · x2 · x3
(maxterm x1 + x2 + x3), the input assignment is [1, 1, 0] and the minterm is denoted as m6

(maxterm as M6). Similarly, m5 is x1 ·x2 ·x3 (M5 is x1 +x2 +x3) with input assignment [1, 0, 1],

and m7 is x1 · x2 · x3 (M7 is x1 + x2 + x3 ) with input assignment [1, 1, 1].

3.2.2.2 Implicants, Prime Implicants and Essential Prime Implicants

In Boolean logic, an implicant is a covering (sum terms or product terms) of one or more

terms in a SOP (or maxterms in a POS) of a Boolean function. Implicants are also known as

cubes. Considering a SOP, a product term p is an implicant of the Boolean function f if p implies

f . The product term p implies f (and thus is an implicant of f ) if f is equal one whenever p is

equal one at the output. This concept can be extended to a POS.

A prime implicant pi of a function f is an implicant that cannot be covered by a more

reduced (meaning with fewer literals) implicant. A prime implicant of f is a minimal implicant.

The removal of any literal from pi results in a non-implicant for f . Essential prime implicants

are prime implicants that cover an output of the function that no combination of other prime

implicants can cover (WAGNER; REIS; RIBAS, 2006).
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The process of removing literals from a term is called expanding the term. Expanding

by one literal doubles the number of input combinations for which the term is true (in Boolean

algebra). The sum of all prime implicants of a Boolean function is called the complete sum of

that function.

For instance, in the function f(x1, x2, x3) = x1 · x3 + x1 · x3 + x1 · x2, the Karnaugh

map is shown in Figure 3.5.

Figure 3.5 – Karnaugh map of function f .

An irredundant sum-of-products (ISOP) is a SOP where each product is a prime implicant

and no product can be deleted or without changing the function. The irredundant product-of-sums

(IPOS) is a POS where each sum is a prime no sum can be deleted without changing the function.

3.2.3 Factored Expressions

Factoring is the process of deriving a parenthesized algebraic equation, multilevel expres-

sions, or factored form, representing a given logic function (BRAYTON, 1987).

An argument for factored forms is that they are a natural multilevel representation. A

factored form is isomorphic to a tree structure, where each internal node is an AND or OR

operator, each leaf is a literal, and the root node is the function output. This leads to a simple and

relatively efficient multilevel implementation of the function of the output node. For instance,

a function f can be expressed in a two level expression, represented by Equation (3.7). The

Equation (3.7) can be factored in a more compact, parenthesized representation represented by

Equation (3.8).

f = a · c+ b · c+ a · b · d (3.7)

f = (a+ b) · (c+ a · d) (3.8)

The logic tree of the two level expression and the factored expressions are shown in

Figure 3.6 and in Figure 3.7, respectively. Note that the logic tree of the factored expression has
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three levels of Boolean operations. The number of literals is also reduced, from 7 literals in the

SOP expression to 5 literals in the factored expression.

Figure 3.6 – L-cut of the two level expression representation of the expression a · c+ b · c+ a · b · d.

Figure 3.7 – Logic tree of the factored expression representation of the expression (a+ b) · (a · d+ c).

3.3 AIGs

An And-Inverter Graph (AIG) is a restricted type of a Directed Acyclic Graph (DAG),

where each node has either 0 incoming edges - the primary inputs (PI) - or 2 incoming edges -

the AND nodes. Each edge can be negated or not. Some nodes are marked as primary outputs

(PO). An example of AIG is depicted in Figure 3.8.
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Figure 3.8 – And-inverter graph (AIG) representing a circuit (MACHADO et al., 2013).
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3.3.1 K-cuts on AIGs

A cut of a node n in an AIG is a set of nodes c such that every path between a PI and n

contains a node in c. A cut is said to be irredundant if no subset of the cut is also a cut. A K-cut

of an AIG is an irredundant cut of up to k inputs. Let A and B to be two sets of cuts and let the

auxiliary operation ./ to be as described in Equation (3.9).

A ./ B ≡ {a ∪ b | a ∈ A, b ∈ B, | a ∪ b |< k} (3.9)

Notice that the ./ operation is commutative since the ∪ operation is also commutative.

Also, A ./ B is empty if either set is empty. Moreover, the ./ operation can remove the redundant

cuts by using signatures (MISHCHENKO; CHATTERJEE; BRAYTON, 2007).

3.3.2 KL-cuts on AIGs

To compute KL-cuts, it is necessary to compute initially the backward cuts or back-

cuts (MARTINELLO et al., 2010). The idea is similar to calculate K-cuts, but it is performed

backward, hence the name.

A backcut of a node n is a set of nodes c such every path between n and a PO contains

a node in c. A backcut is irredundant if no subset is a backcut. An L-feasible backcut is an

irredundant backcut containing l or lesser nodes.

Using a similar notation in Section 3.3.1, let define ./ni=m xi ≡ xm ./ . . . ./ xn. This

attribution can be made since ./ operation is commutative.

Let Φl(n) to be the set of L-feasible backuts of n and let ni to be the i-th node connected

to its output. Φl(n) is defined as:

ΦL(n) =

{n} n is a PO

{n} ∪ (./i ΦL(ni)) otherwhise
(3.10)

The KL-cut defines a sub-graph Gkl of G which has no more than k inputs and no more

than l outputs (MARTINELLO et al., 2010). The algorithm to compute KL-cuts is shown

in Algorithm 1. The algorithm involves computing all K-cuts and all L-cuts (line 3-4) and for

each l-cut, there is a combination of this L-cut for all K-cuts, and the primary inputs are used to

create a KL-cut (line 6-8). If the KL-cut is valid (line 9), the KL-cut is added to the solutions. The

algorithm returns all valid KL-cuts in the AIG. More details can be found in (MARTINELLO et
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al., 2010).

Algorithm 1 KL-cutS Algorithm
1: function COMPUTE_KLCUTS (k, l, aig)
2: klcuts← ∅
3: kcuts← COMPUTE_KCUTS (k, aig)
4: lcuts← COMPUTE_LCUTS (l, aig)
5: for each lcut ∈ lcuts do
6: p← COMBINE_KCUTS (lcut, kcuts)
7: for each pi ∈ p do
8: klcut← CREATE_KLCUT (pi, lcut)
9: if CHECK_FIX (klcut) then klcuts← klcuts ∪ klcut

10: return klcuts

To illustrate the differences between K- and KL-cuts, we present a combinational circuit

example composed of 8 inputs and 3 inputs, show in Figure 3.9. By enumerating the K-cuts with

k = 6, the values given in Table 3.4 are obtained. Considering an unbounded L, the three KL-cuts

found are shown with rectangles around the instances contained in each KL-cut (MACHADO et

al., forthcoming).
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Figure 3.9 – Combinational circuit example to demonstrate the K-cuts and KL-cuts computation.
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Table 3.4 – All K-cuts with k = 6 for all nodes of the combinational circuit example in Figure 3.9.

Node K-cuts

a {a}
b {b}
c {c}
d {d}
e {e}
f {f}
g {g}
h {h}

wire0 {a}
wire1 {wire1}, {d, a}
wire2 {a, b, c, d}, {a, b, c, wire1}, {wire2}
wire3 {wire3}, {e, f, g, h}

o0 {a, b, c, d}, {a, b, c, wire1}, {wire2}
o1 {o1}, {a, wire3}, {a, e, f, g, h}
o2 {o2}, {a, e, f, h}

{a, b, c, d}, {d, a}, {a, wire3},
all nodes {e, f, g, h}, {a, b, c, wire1},

{a, e, f, g, h}, {a, e, f, h}

3.4 Mapped circuits

A combinational mapped circuit C is a specific type of DAG with three types of nodes:

the PI nodes, the logic gate nodes, and the PO nodes. If a node of C has no incoming edges and

1 or more outgoing edges, it is a PI. If a node of C has up to m incoming edges, where m is an

integer value such that m ≥ 1 and 1 or more outgoing edges, it is a logic gate node. If a node

of C has 1 incoming edge and no outgoing edges, it is a PO. The main differences between the

AIG and mapped circuit descriptions are:

1. the number of incoming edges, which are not limited by two in the mapped circuit;

2. the existence of inverters and buffers instead of simply negated or direct edges.

3.4.1 K-cuts on mapped circuits

Let ΦK(n) to be the set of K-cuts of n ∈ C, and if n is a logic gate node, let n1, ..., ng

to be its inputs, where g is an integer value representing the number of inputs of n such that

m ≥ g ≥ 1. By using the same operation ./ described in Equation (3.9), ΦK(n) is defined
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recursively as described in Equation (3.11).

ΦK(n) =


{n}, n is a PI

ΦK(n1), 1 input cell

{n} ∪ {ΦK(n1) ./ ΦK(n2) ./ ... ./ ΦK(ng)}, otherwise

(3.11)

3.4.2 KL-cuts on mapped circuits

The KL-cuts in circuits are similar to the KL-cuts on top of AIGs (MACHADO et al.,

2012), and it can be applied to improve a cost function of the cuts and then replace them in the

original circuit. There are no KL-cuts formed by only one cell neither with k = 1 (e.g. inverter

or buffer chains). One way to increase the shared logic for a given set of inputs, the l is defined

as unbounded, not limiting the number of outputs and keeping track of all outputs that depend on

the same set of variables.

To enumerate the KL-cuts of a circuit, it is necessary a k value (number of KL-cut

inputs) and a mapped circuit. If the design has sequential elements, there is a need to treat

these sequential elements as PIs and POs to the combinational logic. The algorithm starts

by enumerating all K-cuts for all nodes of the circuit. The idea is similar to the presented in

Algorithm 1. One of the advantages of a K-cut is finding redundancies in the logic, allowing

further optimization. This is an important feature of K-cuts, in which the KL-cuts are based.

Nevertheless, a K-cut generates only one output, i.e. a K-cut does not cover all outputs it affects.

It is important to notice that KL-cuts provide a complete input-output interface for a sub-circuit

substitution. Additionally, KL-cuts minimize the support of the Boolean functions inside the

cut (MACHADO et al., 2012).

3.4.2.1 Polarity don’t cares

After identifying a KL-cut instances, inputs, and outputs, a further search is performed

on the inputs, identifying inverters and buffers. It is clear that the inverters and buffers used only

to in the KL-cut can be inserted itself. However, if the inverters and buffers are also applied

in other parts of the circuit, they cannot be inserted into the KL-cut, since it will generate a

duplication of these cells. In this sense, the inverters that are not inserted can be used to generate

a mapping flexibility: the polarity don’t cares (MACHADO et al., 2013). A similar approach can
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be performed on flip-flops that generate both polarities of a signal. For instance, a KL-cut found

in a commercial benchmark is shown in Figure 3.10. Notice that the KL-cut has two polarity

don’t cares (i9 = i0 and i12 = i1).

AND2

NOR2

NOR2

NAND2

NOR2

AOI22

AOI22

INV

INV

INV

NOR2

INV

INV

KL-CUT

MAPPED CIRCUIT

o0

o1

o2

o3

i9

i0

i4

i2
i1

i12

i3

POLARITY DON’T CARES

Figure 3.10 – Example of KL-cut found in a commercial benchmark with polarity don’t cares as-
signed (MACHADO et al., 2013).

3.5 Functions and Sub-functions

As seen in the logic synthesis flow, the steps presented manipulate algebraic and Boolean

representations to transform/manipulate the functions that represent the circuit. As the Boolean

functions increase exponentially in size (i.e. the size of a truth table is 22n , n being the number

of variables or the support of the function), functions with a large number of variables can be

cumbersome to manipulate. In this sense, subfunctions can have a significant role in algorithms

that manipulate Boolean functions. Sub-functions are functions that represent small logic parts

present in a target function.

Figure 3.11 – Implementation of logic function f .
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Table 3.5 – Truth table for a logic function with 4 variables.

m a b c d f

m0 0 0 0 0 0
m1 0 0 0 1 0
m2 0 0 1 0 0
m3 0 0 0 1 0
m4 0 1 0 0 0
m5 0 1 1 1 1
m6 0 1 0 0 1
m7 0 1 0 1 1
m8 1 0 1 0 0
m9 1 0 1 1 0

m10 1 0 0 0 1
m11 1 0 0 1 1
m12 1 1 1 0 0
m13 1 1 1 1 0
m14 1 1 0 0 1
m15 1 1 0 1 1

For instance, in the example of Table 3.5, the truth table represents the function f . This

function implements Equation (3.8) and is represented in Figure 3.11.

The function f can also be represented using two subfunctions, as illustrated in Fig-

ure 3.12, which the two functions are simpler than f since they have a support of 3 variables.

The implementation is represented in Figure 3.13.

Figure 3.12 – Two truth tables representing subfunctions of the logic function f .
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Figure 3.13 – Implementations of the two subfunctions of Figure 3.12.

3.5.1 Functional Decomposition

Functional decomposition is a method for combinational logic synthesis in which a

Boolean function is decomposed into a set of subfunctions. The functional decomposition

has been introduced by the pioneering works of Ashenhurst (ASHENHURST, 1957) and Cur-

tis (CURTIS, 1962). The results of this technique are in the functional domain, meaning that

it can produce non-trivial logic rewritings that are very suitable to overcome the structural

bias (CHATTERJEE et al., 2006). Functional decomposition has been extensively used in FPGA

mapping since it is easy to control the number of inputs at each sub-function (SASAO, 1993).

When the functional decomposition can decompose a target function, only one decomposition is

provided.

There are many related works on functional decomposition, such as disjoint support

decomposition (DSD) (BERTACCO; DAMIANI, 1997; SASAO; MATSUURA, 1998; MI-

NATO; MICHELI, 1998) and bidecomposition (YANG; CIESIELSKI, 2002; MISHCHENKO;

STEINBACH; PERKOWSKI, 2001; CHOUDHURY; MOHANRAM, 2010).

3.5.1.1 Disjoint Support Decomposition

The disjoint support decomposition of a Boolean function F (x1, . . . , xn) consists in

representing f by means of simpler component functions J and K, such that the inputs of J

and K do not share any input variable, and F = K(x1, . . . , xj−1, J(xj, . . . , xn)). This DSD is

shown in Figure 3.14. In general, a function has several disjoint support decompositions, which

can be superimposed to obtain decompositions with finer granularity. Moreover, it is possible

to search recursively for DSDs for functions J and K to produce even smaller components. At

the limit, f can be represented as a tree of functions, with the inputs xi being the leaves of the

tree. In the example of Figure 3.6, a DSD algorithm is not able to decompose f since in a DSD



57

function each variable appears only once and in the logic function presented, the variable a

appears twice.

Figure 3.14 – A disjoint support decomposition for F . (BERTACCO; DAMIANI, 1997)

3.5.1.2 Bi-Decomposition

The bi-decomposition is a functional decomposition where a function is recursively

decomposed into two smaller functions. Bi-decomposition algorithms generally apply multi-

level and, or, xor decompositions. These algorithms rely on the ability to split the given logic

function into two functions depending on fewer variables. One the most important steps in

bi-decomposition algorithms are to determine a good variable partition since it affects both

execution time and quality of results. The bi-decomposition can be classified in strong or weak

bi-decomposition. These classifications are based on the support of the decomposed functions.

The bi-decomposition is schematically represented in Figure 3.15, where the H represents the

gate that connects the functions F and G. The original support S is divided in three parts,

Sf , Sg and Sint. The variables in Sf are only presented in the function F , the variables in Sg

are only presented in the function G and the variables in Sint are presented in both. A weak

bi-decomposition is characterized when Sf and Sg is empty. Otherwise, is considered strong.

Figure 3.15 – Representation of a weak / strong bi-decomposition.

Considering the two decompositions presented, they have two critical drawbacks in this

context. First of all, they are a top-down approach, which decomposes the original function into
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smaller ones. Thus, the implementation cost of these functions is not necessarily known at the

time of decomposition. Secondly, the functional decomposition depends on costly operations for

one possible decomposition, relying on complex operations as count subfunctions extracted, test

inversions, and so on.

3.5.2 Factoring Algorithms by Division

In mathematics, factorization or factoring is the decomposition of an object (for instance

a polynomial) into a product of other objects, or factors, which when multiplied together give the

original. Algorithms that factorize Boolean expressions can be divided into two groups: those

who use algebraic techniques and those who use Boolean techniques.

The algebraic factoring or weak division (BRAYTON, 1987) is a factorization method

that treats a Boolean expression as a polynomial of real numbers. The basic concept is that given

the functions f and p, find functions q and r such that f = p · q + r, if such q and r exist. This

operation is called the division by p generating quotient q and the remainder r. The function

p is called a divisor of f ifr is not null, and a factor if r is null. The algebraic model does not

consider monotone laws as idempotence, absorption, annihilation, identity and distributive laws

and nonmonotone laws and complementation, double negation and De Morgan laws.

The input and divisor needs to be represented in two-level sum-of-products (SOP) forms.

A sum of products (SOP) is cube-free if no cubes (except ‘1’) are able to divide another SOP. For

instance, x1 · x2 + x3 is cube-free, whereas x1 · x2 + x1 · x3 is not cube-free, since x1 is common

to both cubes. A kernel is a cube-free quotient obtained by dividing a Boolean expression X by

a single cube c. This single cube c is called co-kernel of X . In the previous example, x2 + x3 is

a kernel and x1 is a co-kernel.

For a given division operation, the resulting q and r may depend on upon the particular

representation of f and p. Moreover, for any logic function, there are many factors and divisors.

This fact poses a problem in choosing a good factor and divisor. If the domain is restricted to a

particular subset of expressions, then the division operation is unique and much easier to carry

out. For instance, the Equation (3.12) is an algebraic product.

f = (x1 · x2 + x3) · (x4 + x5) (3.12)

Unlike algebraic factoring, Boolean factoring exploits Boolean identities and Boolean

properties to perform factoring (e.g. the annihilation property: a + 1 = 1), allowing products
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with variables in common. For instance, Equation (3.13) is an example of Boolean factorization.

g = (x1 · x2 + x3) · (x1 + x2 · x5) (3.13)

Note that Equation (3.12) and Equation (3.13) are different and Equation (3.13) allows

products that are not observed in algebraic factoring. If Equation (3.12) is expanded, the

Equation (3.14) is found:

g = x1 · x2 · x1 + x1 · x2 · x2 · x5 + x3 · x1 + x3 · x2 · x5 (3.14)

The first product can be eliminated by the complementation law ( x · x = 0) and the

second product can be simplified by idempotence law (x · x = x). The Equation (3.15) is the

Equation (3.12), considering the discussed simplifications.

g = x1 · x2 · x5 + x3 · x1 + x3 · x2 · x5 (3.15)

Algebraic factoring is very fast, but the quality of results is far from optimal. The Boolean

factoring usually achieves better results, but they can be very time and memory consuming.

Algebraic algorithms treat the Boolean expression as a polynomial, which reduces the execution

time, but the final result is strongly tied to the starting expression (i.e. the initial expression that

the algorithm uses as a basis to factorize). In the example presented in Figure 3.6, algebraic

algorithms are not able to find the minimal implementation (i.e. the result will be x1 ·x2 +x1 ·x3
whereas Boolean factoring algorithms are capable of finding the minimal implementation.

3.5.3 Functional Composition

The main idea functional composition is the opposite of the functional decomposition.

Instead of starting from a function with large support and breaking this function in subfunctions

with smaller support, functional composition starts from basic subfunctions (e.g. literals) and

composes them in more complex subfunctions until the target function is achieved. Figure 3.16

shows that functional composition is able to find the minimal solution for the logic function

presented in Figure 3.6. Each arrow represents a composition, and two simpler functions are

combined to compose a more complex function. For instance, a and b functions are combined by

an OR operation to compose the a+ b logic function.
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Figure 3.16 – Functional composition for the logic function of Figure 3.7

It is easy to see that the functional composition should not be restricted to AND, OR, XOR

operators. The composition operations can be non-trivial ones, as majority functions, material

implication functions, multiplexer functions, and others. These operations represent the logic im-

plemented in basic gates of a set of emerging technologies (LENT et al., 1993; FAHMY; KIEHL,

1999; AVERIN; LIKHAREV, 1986; CHUA, 1971; PRODROMAKIS; TOUMAZOU; CHUA,

2012; STRUKOV et al., 2008; ZHU et al., 2013; PERSHIN; VENTRA, 2012; FRIEDMAN et

al., 2012a; FRIEDMAN et al., 2012b).

In this sense, it is important to investigate the characteristics of functional composition

since there are few dedicated algorithms able to synthesize logic using gates different from basic

CMOS ones (AND, OR, XOR). The functional composition will be explored in the next chapter.



61

4 FUNCTIONAL COMPOSITION OVERVIEW

In this chapter, we present a more detailed explanation about the functional composition

(FC) and its five principles. These principles allow a systematic approach and turn easy different

implementations of this technique (MARTINS; RIBAS; REIS, 2012).

4.1 Principles

The principles used in FC include the use of bonded-pair representation, the use of initial

functions set, the association between simple functions to create more complex functions, the

control of costs achieved by using a partial order that enables dynamic programming, and the

restriction of allowed functions to reduce execution time/memory consumption. These general

principles are discussed in the following subsections.

4.1.1 Bonded-Pair Representation

FC uses bonded-pairs to represent logic functions. The bonded-pair is a data structure that

contains a functional and a structural representation of a Boolean function. The functional and

structural representation must be logically equivalent. The functional representation needs to be a

canonical representation, as a truth table or a reduced ordered binary decision diagram (ROBDD)

structure. The structural representation is related to the implementation desired and is used to

control costs in the final implementation. Since the functional part is canonical, there is no

necessity to have a canonical implementation, as costs may vary. We will denote a bonded-pair

by the following notation: 〈F, S〉, where F represents the functional part and S the structural

part. Figure 4.2 is illustrated an example of a bonded-pair representation with structural part

implemented as a logical expression and the functional part as a truth table represented as an

integer, considering the most significant bit the leftmost.

Figure 4.1 – Bonded-pair representation using a truth table and a expression as the functional and
structural part, respectively.
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4.1.2 Bonded-Pair Association

The bonded-pair association is a logic operation (e.g. logic XOR) being applied indepen-

dently to the functional and the structural parts. By applying the same operation in functional and

structural representations, the correspondence between the representations is still valid after such

operation. The conversion of functional representation into a structural representation, and vice-

versa may be challenging and inefficient. The main advantage of the bonded-pair association is

the operations occurring in the functional and structural domain in parallel, avoiding conversions.

The bonded-pair representation is used to maintain the control over the structural representation,

avoiding the inefficient structures and a lack of control of converting one type into another. The

bonded-pair association is not limited to binary operations. Actually, it can be performed with

n-ary operators. Figure 4.3 presents the association of bonded-pairs. The bonded-pair 〈F3, S3〉

is obtained from bonded-pairs 〈F1, S1〉 and 〈F2, S2〉. The computation of the functional part

(F3 = F1 + F2) is independent of the computation of the structural part (S3 = S1 + S2).

Figure 4.2 – Bonded-pair association. Notice that the operations occur independently in functional and
structural part.

4.1.3 Initial Bonded-Pairs

As seen previously, a way to computes new bonded-pairs is associating known bonded-

pairs. As a consequence, a set of initial bonded-pairs is necessary before starting the algorithm.

The set of initial bonded-pairs have two main characteristics: (1) the initial bonded-pairs are the

initial input of any algorithm based on FC; (2) the initial bonded-pair must have known imple-

mentations costs (preferable minimum costs) for each bonded-pair, allowing the computation of

the cost for derived functions. For instance, in Figure 4.3 is illustrated a possible set of initial

bonded-pair with two variables, using the bonded-pair representation shown in Figure 4.1.
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Figure 4.3 – Initial bonded-pairs, considering a 2-variable problem.

4.1.4 Dynamic Programming and Partial Order

The key concept of dynamic programming is solving a problem in which its optimal

solution is obtained by combining optimal sub-solutions. This concept can be applied to problems

that have optimal substructure. It starts by solving sub-problems and then combining the sub-

problem solutions to obtain a complete solution. In this sense, it is necessary that the problem

has an optimal sub-structure. One example of a problem with an optimal sub-structure is the

shortest path between two nodes in an unweighted graph. But not all problems have optimal

substructure, as the longest simple path in an unweighted graph. In this sense, the bonded-pair

representation allows applying the memoization concept. A memoized algorithm maintains

an entry in a table for the solution for each subproblem. The memoization occurs because the

bonded-pair representation stores the implementation of the functions. The intermediate bonded-

pairs functional part can be thought as the subproblems and the structural part as the subsolutions.

In functional composition, dynamic programming is used associated with the concept of partial

ordering. The partial ordering classifies elements according to some cost. This is done to ensure

that implementations (the structural elements in the bonded-pairs) with minimum costs are used

for the sub-problems. Different costs can be used depending on the target(s) to be minimized.

Using the concept of partial order, intermediate solutions of subproblems are classified into

‘buckets’ that sort them in an increasing order of costs of the structural element of the bonded-pair

representation. This concept is illustrated in Figure 4.4, where the number of literals was chosen

as the partial order criteria.

Figure 4.4 – A partial order considering the number of literals.
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4.1.5 Allowed subfunctions

The large number of subfunctions, created by exhaustive combination, can jeopardize

the FC approach. However, many optimizations can be done to make FC approach feasible and

more efficient. One of these optimizations is the use of the allowed functions. For performance

optimization, a hash table of allowed functions can be pre-computed before starting the algorithm.

Functions that are not present in the allowed functions table are discarded during the processing.

The use of the allowed functions hash table helps to control the execution time and memory

use of the algorithms. FC may (in some cases) achieve a better result by having more allowed

functions than with a reduced set of these. For other cases, solutions can be guaranteed optimal

even with a very limited set of allowed functions. Several effort levels can be implemented

for the trade-off memory/execution time versus quality. These effort levels can vary from a

limited set of functions to an exhaustive effort including all possible functions. An example of

allowed functions is shown in Figure 4.5, based on the example shown in Figure 4.4. A heuristic

algorithm discarded the function a · b, reducing the amount of functions inserted in the bucket.

Figure 4.5 – An heuristic can be applied to reduce the number of bonded-pairs in each bucket.

4.2 Relationship to Dynamic Programming

There are several problems in the logic synthesis that can take advantage of FC, but as

seen in Section 4.1.4, the dynamic programming takes an important role. Therefore, some steps

are necessary before.

The first step is to characterize the structure of an optimal solution. If the problem does

not have an optimal solution, composed by optimal subsolutions, the dynamic programming

will fail in its goal. The second step is recursively defining the value of the optimal solution.

This means that the problem needs to be broken in subproblems, each one implemented with

an optimal subsolution until reaching the initial input (i.e. the initial bonded-pairs). This is the

reason why the initial bonded-pairs must be implemented with a minimal cost structure.
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The third step is to compute the value of an optimal solution, typically in a bottom-up

fashion. This step represents the bonded-pair association, where the functional (subproblem) and

structural (subsolution) parts are combined. This solution will have an optimal implementation

since the subsolutions were also optimal. The last step is to construct an optimal solution from

the computed information. This step is important if we want to know the implementation of the

solution. If we do not store the computed information (implementation), we will only have the

cost of implementation, provided by the partial order.

As observed in the “allowed functions” principle, some functions can be discarded in

the process, reducing the solution space, but as a consequence, it may provide solutions that are

unboundedly below the optimal. This concept is called bounded dynamic programming.

4.2.1 Bounded Dynamic Programming

The main limitation of optimal approaches using dynamic programming is that the

number of solutions stored is sometimes prohibitive, resulting in huge memory requirements for

all but the simplest problems. To mitigate these requirements, some restrictions are applied to

ensure that these requirements (e.g. memory, execution time) are attended. One of the examples

of bounded dynamic programming is the beam search algorithm. The beam search is a heuristic

search algorithm that traverses a graph by expanding the most promising node in a limited

set. Beam search is an optimization of best-first search that reduces its memory requirements.

Best-first search is a graph search which orders all partial solutions (states) according to some

heuristic which attempts to predict how close a partial solution is to a complete solution (goal

state). However, in beam search, only a predetermined number of best partial solutions are kept

as candidates.

4.3 Relationship to Genetic Programming

In genetic programming (GP) we evolve a population of programs. That is, GP randomly

transforms populations of programs into new, hopefully, better populations of programs. Due to

GP randomness, it can never guarantee results. However, this can lead ways to escape minimum

locals that algorithms can be trapped into. The primary genetic operations that are used to create

new programs from the existing ones are crossover and mutation.

Crossover is a creation of a child program by combining randomly chosen parts from two
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selected parent programs. Mutation is a creation of a new child program by randomly altering a

chosen part of a selected parent program.

FC can be though as GP since there are exhaustive combinations from initial bonded-pairs

(crossover) that occur randomly (respecting the partial order concept). The mutation concept is

not applied since this would break the equivalence between the functional and structural parts in

a bonded-pair.

4.3.1 Costs in Functional Composition

The structural part in the bonded-pair most of the time has not a canonical form. To

compare different structures, it is necessary to adopt a figure of merit or cost. Cost is a quantity

used to characterize the structure, about its alternatives. A simple example of structural cost

can be the total area from the gates in a circuit. Also, each structure can contain multiple costs,

as the logic depth or the number of literals in a factored form. Usually, the minimization of

multiple costs can be conflicting. A classical problem is the area vs timing vs power optimization

in circuits, being very difficult (sometimes impossible) to optimize all 3 at the same time.

There are several strategies to optimize multiple implementation costs using FC. One of

them is the ranking strategy when the structures are selected optimizing the first cost (highest

ranking). When there is a tie, the second cost is used as tie-breaker, and so on. Another strategy

is using a weighted arithmetic mean. Each cost has attributed a weight, and the structure with

the smaller mean is selected. These strategies can provide very different results, depending on

the structure being optimized.

4.4 General Algorithm of Functional Composition

Algorithm 2 presents a generic version for the functional composition, which will be

used as the basis for all applications that will be introduced in the next chapters. The target

on the FC_SYNTHESIZE method can represent a function, a list of functions or the universe

of Boolean functions up to n inputs. The 〈initial, idx〉 list describe a tuple with the initial

bonded-pairs indicated by its initial structural cost. These initial bonded-pairs can be computed

internally or externally of the method, depending on the application. The allowed represent a

set of allowed functions, which also can be computed internally or externally. As the allowed

functions are optional, this set can be empty, indicating to the algorithm that there are no specific
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functions to be allowed or not (i.e. allowing all functions). The algorithm starts allocating all

initial bonded-pairs in their correct buckets (line 3-4). The NEXT method (line 5) will get the

index of the first bucket to be composed. The main loop (line 6-8) represents the partial order

and dynamic programming principles using bonded-pair associations, which will synthesize

intermediate functions until the target is achieved. The COMBINE_METHODS method (line

7) will use the previous buckets and the allowed functions set to generate the next bucket using

bonded-pair associations. After the target is achieved, the solution (or solutions) are returned

(line 9).

Algorithm 2 FC-SYNTHESIS Algorithm
1: function FC_GENERIC (target, 〈initial, idx〉, allowed)
2: B ← ∅
3: for each init ∈ initial with index ∈ idx do
4: B[idx]← init

5: i← NEXT (〈initial, idx〉)
6: while target is not achieved do
7: B[i]← COMBINE_BUCKETS(B, i, allowed)
8: i← i+ 1

9: return solution

4.5 Related Work

The use of a bottom-up approach for logic synthesis was already used by some authors,

including (JÓZWIAK; BIEGAŃSKI, 2008) and (HLAVIČKA; FIŠER, 2001).

The FC is different from the work of (JÓZWIAK; BIEGAŃSKI, 2008), because Joswiak

does bottom-up synthesis by using information theory (JÓŹWIAK, 1999), An information-driven

circuit synthesis approach relies on the analysis of the information flow structure and relationships

in the function to be implemented, as well as, in the circuit under construction, and usage of

the results of this analysis to control the circuit construction. Based on information theory, the

algorithm classifies subfunctions which will better contribute to cover a given function.

This process is directly performed into the primitives of a given implementation technol-

ogy (e.g. gates of a given technology library), while FC performs it by an extensive combination

of bonded-pairs, manipulating the functional and structural parts. Notice that using information

theory implies computing the information with a method that has to visit every minterm of a

function individually. So, information theory computation is more expensive than the bitwise
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operations with integers representing truth tables, which can be used in FC. The key enabler

of FC presented herein is the concept of bonded-pairs which was explained in this chapter, as

bonded-pair association guarantees that a fast computation of functions from subfunctions, which

enables to exploit more implementations.

The FC also differs from the work of (HLAVIČKA; FIŠER, 2001), because Hlavicka

relies on the bottom-up approach to compute only an incomplete set of prime implicants,

performing two-level minimization. The algorithm starts from a functional description and

has three phases. The three phases are coverage-directed search (generation of implicants);

implicant expansion (generation of prime implicants) and solution of the covering problem. The

coverage-directed search consists of a directed search for the most suitable literals that should be

added to some previously constructed term to convert it into an implicant of the given function.

Thus instead of increasing the dimension of an implicant starting from a 1-minterm (or any other

1-term given in the function definition), we reduce the n-dimensional cube by adding literals to

its term, until it becomes an implicant of the given function. These implicants generated during

this phase are not necessarily prime implicants.

In the implicant expansion, the cubes are expanded, which means by removing literals

(variables) from their terms. When no literal can be deleted from the term anymore, a prime

implicant is generated. Having found a sufficient set of prime implicants, the covering problem is

solved. The heuristics used correspond to the method suggested in (RUDELL; SANGIOVANNI-

VINCENTELLI, 1989; COUDERT, 1994). The algorithm is capable of dealing with functions

with several hundreds of input variables, competing with ESPRESSO. In FC approach, the

complete synthesis process is based on dynamic programming by the association of bonded-pairs.

The FC is a general method that can be applied to several applications instead of only prime

implicants computation.
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5 CMOS APPLICATIONS USING FUNCTIONAL COMPOSITION

In this chapter, it will be presented two applications using FC for CMOS technology. The

first application presents a multi-output factorization algorithm which is applied in a resynthesis

framework (MACHADO et al., 2012; MACHADO et al., 2013; MACHADO et al., forth-

coming). The second generates approximate functions that can be used to synthesize ATMR

circuits (GOMES et al., 2014; GOMES et al., 2015a; GOMES et al., 2015b). Both applications

are based on a Boolean factorization algorithm, which uses functional composition (MARTINS

et al., 2010). It is important to notice that even these applications were developed having the

CMOS as main technology, both concepts (multi-output factorization and approximate function

generation) can be applied to any technology with few modifications.
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5.1 Multi-output Factorization applied in Circuit Resynthesis

Factoring is an important procedure in logic synthesis tools. It consists in converting a

logic function into a logically equivalent parenthesized expression or factored form with the

goal of reducing the literal count. The factoring algorithms are usually divided into two-level

synthesis, used mainly in Programmable Logic Array (PLA), and multilevel synthesis. In the

two-level synthesis, there are tools as ESPRESSO (BRAYTON, 1987) that can find a minimum

or near-minimum sum of products form for a logic function.

Multilevel synthesis is still in research, being the main implementation strategy used in

the industry today. This section presents an algorithm that optimizes multi-output functions

using FC. The performed Boolean optimizations allow a more extensive use of complex gates in

the technology mapping step, reducing the area. To demonstrate the efficiency and applicability

of the proposed algorithm, it is necessary a collection of other algorithms and techniques. Also,

since FC performs a considerable number of Boolean operations, it may not be able to address

large circuits. Thus, it is necessary a method that extracts Boolean functions from circuits (K-cuts

or KL-cuts) (MACHADO et al., 2012) to divide the circuit into smaller parts. These smaller

parts can be now synthesized using FC. Thus, the circuit can be traversed (through cuts) and

optimized.

In this section, We start presenting a baseline single-output factoring algorithm. To reduce

the execution time, we apply heuristics in the baseline algorithm. The single-output heuristic

factoring algorithm is modified to handle multi-output functions, using the Boolean information

to find logic sharing between the outputs. To validate this technique, this algorithm is applied to

an iterative resynthesis flow, considering timing constraints. The resynthesis flow considers the

use of KL-cuts which minimize the support of the Boolean functions (through dominance rules).

The resynthesis flow also adopts a conservative approach, allowing only cut substitutions that

reduce area and do not negatively impact the timing constraints.

5.1.1 Single-output Factorization Algorithm

This subsection is a basic review the factoring algorithm presented in (MARTINS et al.,

2010) for the elaboration of the multi-output algorithm, which is based on the former. First, we

will present a baseline algorithm using FC for factorization, which we will insert a heuristic to

reduce the search space.
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5.1.1.1 Baseline Factoring Algorithm

The baseline factoring algorithm computes new functions from simpler expressions (i.e.,

with fewer literals) computed in prior steps, to find the target function optimizing its number of

literals. The starting point is the set of known sub-functions represented by single literals. The

computation of new functions can be as follows. Let L, M and N be positive integer numbers

with the following relations: L ≥ M and N = L + M . The procedure combines an L-literal

function with an M -literal function, creating an N -literal function by using logic operations.

An N -literal bucket is a set of N -literal functions. The operations among buckets combine

all functions in an L-literal bucket against all functions in an M -literal bucket, generating an

N -literal bucket (N > 1). The initial functions with 1-literal are inserted in the bucket with

N = 1. Thus, the generation of the N -literal bucket can be expressed in Equation (5.1).

|N2 |⋃
i=1

((Bi ·BN−1) ∪ (Bi +BN−1)) |N ≥ 2 (5.1)

Figure 5.1 – Generation of functions contained in the 5-literal bucket (MARTINS et al., 2010).

In Equation (5.1), BN represents the bucket and with index N . For example, in the

Figure 5.1, the bucket 5 is formed by bonded-pair associations of elements in bucket 1 and bucket

4, and also by the association of elements in bucket 2 and bucket 3.

An important structure is the “already looked set”. The “already looked set” stores the

functions already introduced. These functions have been produced with fewer or equal number

of literals and do not need to be introduced twice. This process speeds up the execution time,

decreasing the memory use.

The factorization process is iterative and stops when the target function is found. This

function generation technique makes the algorithm find the optimal result in number of literals

by construction.
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Theorem 5.1.1 The combination of the buckets using Equation (5.1) will result in a minimum

literal expression, considering FC principles.

Proof The 1-literal bucket contains all variables in both polarities, i.e., the positive and negative

literals. Functions expressed as 1-literal forms are minimal since it is not possible to represent

these functions with less than one literal. The 2-literal bucket contains all functions generated by

combining functions of the 1-literal bucket. The functions in the 2-literal bucket have exactly

2 literals. Since neither constant functions nor functions are already present in buckets with

smaller indexes are added (i.e. allocated in the memory), the newly added functions are known to

be in the optimal form (in number of literals). By induction, the n-bucket is formed by functions

with optimal form, generated using Equation (5.1). When the target function is found for the first

time in the n-bucket, the minimum literal form is guaranteed to have n literals. �

From a dynamic programming point-of-view, the algorithm has optimal substructure, as

an optimal factored form is always a product or a sum of optimal factored forms. This process is

iterative, stopping when the target function is found. However, the number of functions grows

exponentially, as there are Boolean expressions of n inputs. If the functions in each bucket are

not pruned, the algorithm becomes unfeasible in memory and computational time. In this sense,

a heuristic approach (MARTINS et al., 2010) will be presented. The heuristic approach allows a

limited set of functions because the functions that are not present in the allowed functions set are

discarded, decreasing memory use and execution time, but in some cases losing the optimality.

5.1.1.2 Heuristic Factoring Algorithm

In the heuristic algorithm (FC-FACTOR-HEUR) (MARTINS et al., 2010), we consider

only three types of functions: the smaller, larger and not comparable functions. The allowed

functions in FC-FACTOR-HEUR are a set of functions derived from the cofactors of the target

function. The initial step extracts all cofactors of the target function to associate them in the

next step. Not comparable cofactors are associated using AND/OR operations to generate new

not comparable/smaller/larger functions that are stored in allowed functions set. The second

association is among not comparable and smaller cofactors using OR operation, only storing

resulting larger functions. Similarly, there is the association among not comparable and larger

cofactors using AND operation, only storing resulting smaller functions. All these functions

(original cofactors and functions generated) are inserted in the “allowed functions set”. The set

comprising all cofactors and its associations of the target function is a very good set of functions

to compose the allowed functions set. The idea behind this concept is that it is possible to
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Table 5.1 – AND/OR/XOR operations considering function order.

# AND # OR # XOR

(1) SM · SM (11) SM + SM (21) SM ⊕ SM
(2) SM · LG (12) SM + LG (22) SM ⊕ LG
(3) SM ·NC (13) SM +NC (23) SM ⊕NC
(4) SM ·DJ (14) SM +DJ (24) SM ⊕DJ
(5) LG · LG (15) LG+ LG (25) LG⊕ LG
(6) LG ·NC (16) LG+NC (26) LG⊕NC
(7) LG ·DJ (17) LG+DJ (27) LG⊕DJ
(8) NC ·NC (18) NC +NC (28) NC ⊕NC
(9) NC ·DJ (19) NC +DJ (29) NC ⊕DJ

(10) DJ ·DJ (20) DJ +DJ (30) DJ ⊕DJ

obtain good sub-expressions of the formula, by setting variables to zero and one in an optimized

factored form.

Algorithm 3 shows the pseudo code for the FC-FACTOR-HEUR. The algorithm has as

inputs the target function (f ) and the initial functions in their right polarities (initial). The first

step is to test if the function is a constant (line 2). In this case, the solution is trivial. Also, if

the solution is a variable, the FACTORIZE method will return the solution (line 5). Else, the

algorithm starts computing the cofactors (line 6) and combining them (line 7), to compute the

allowed functions. The buckets now will be combined (line 8-11), until the solution is found. The

COMBINE_COFACTORS method separates the cofactors in smaller, larger and not comparable,

(line 15-18) and implement the combinations (5), (8), (11) and (18), listed on Table 5.1, as the

main combinations. The results of combinations (6) and (13) are conditional, to get functions

that will contribute to the solution and do not increase the search space significantly. Each

combination and its results is discussed in details in (MARTINS et al., 2012). The presented

combinations guarantee that the algorithms always find a solution because in the worst case the

presented combinations will generate a factored form based on the Shannon expansions observed

in Equation (3.2), Equation (3.3) and Equation (3.4)



74

Algorithm 3 FC-FACTOR-HEUR Algorithm
1: function FACTORIZE (f, initial, useXOR)
2: if IS_CONSTANT_FUNCTION (f) then return constant_value
3: B ← ∅
4: B[1]← initial
5: if CONTAINS (B[1], f) then return variable
6: cofactors← COMPUTE_COFACTORS (f)
7: allowed_functions← COMBINE_COFACTORS (cofactors, useXOR)
8: i← 2
9: while f is not found do

10: B[i]← COMBINE_BUCKETS(B, i, useXOR)
11: i← i+ 1

12: return solution
13:
14: function COMBINE_COFACTORS (cofactors, useXOR)
15: sm← GET_SMALLER (cofactors)
16: lg ← GET_LARGER (cofactors)
17: nc← GET_NOT_COMPARABLE (cofactors)
18: allowed_functions← ∅
19: for each cofactor c1, c2 ∈ sm do
20: allowed_functions← OR (c1, c2)

21: for each cofactor c1, c2 ∈ lg do
22: allowed_functions← AND (c1, c2)

23: for each cofactor c1, c2 ∈ nc do
24: allowed_functions← AND (c1, c2)
25: allowed_functions← OR (c1, c2)

26: for each cofactor c1 ∈ sm do
27: for each cofactor c2 ∈ nc do
28: f ← OR (c1, c2)
29: if ORDER (f) = LARGER then allowed_functions← f

30: for each cofactor c1 ∈ lg do
31: for each cofactor c2 ∈ nc do
32: f ← AND (c1, c2)
33: if ORDER (f) = SMALLER then allowed_functions← f

34: if useXOR then
35: for each cofactor c1 ∈ nc do
36: for each cofactor c2 ∈ nc do
37: allowed_functions← XOR (c1, c2)

38: return allowed_functions
39:
40: function COMBINE_BUCKETS (B, i, useXOR)
41: S ← ∅
42: for k ← 1, (i/2) do
43: l← i− k
44: S ← S ∪ COMBINE (B[k], B[l], useXOR)

45: return S
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5.1.1.3 XOR Support for FC-FACTOR-HEUR

The factoring with XOR is based on the FC-FACTOR-HEUR algorithm, appending the

XOR operation between functions. Thus, the generation of the N-literal bucket can be now

expressed as following:

|N2 |⋃
i=1

((Bi ·BN−1) ∪ (Bi +BN−1) (Bi ⊕BN−1)) |N ≥ 2 (5.2)

The algorithm remains almost the same, except for the addition of combination (28) in

the COMBINE_FUNCTIONS method. It is verified empirically that the XOR operation is only

useful when there are at least 2 binate variables. In this case, the XOR use can be efficiently

exploited if there are at least 2 binate variables. Otherwise, by using the XOR operator, only

functions that not contribute to the solution are generated. This is explained by the fact that

the XOR operator is binate since it carries both polarities of its input variables With the XOR

operation. If the use of XOR is allowed, The COMBINE_COFACTORS method will perform

the operation (28) in Table 5.1. Since the XOR operator has a physical implementation cost

higher than the AND/OR operators, the COMBINE_FUNCTIONS method needs to consider

different costs for AND/OR and XOR operations to choose the best implementation option.

5.1.2 Multi-output Factorization Algorithm

A heuristic multi-output factorization algorithm is proposed to synthesize multi-output

circuits present in KL-cuts. We implemented an improved version of the algorithm presented in

Section 5.1.1, considering the multi-output complexity. Let’s consider the following example,

already presented in the polarity don’t cares subsection. Equation (5.3) presents the factored

forms.

o0 = i0 + i3

o1 = (i3 · (i0 · i1 · i4 + i1 · i4 · i0)) + i2 · i3

o2 = i3 · (i1 · i4) + (i1 · i4)

o3 = i1 · i4 + i1 · i4

(5.3)

One interesting observation is multiple appearance of logic between the outputs. For
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instance, (i1 · i4) and (i1 · i4) appears in o1, o2, and o3. Moreover, all the implemented logic

in o3 appears in o2. Also, there is a possibility that o1 can be expressed using the Boolean

information in o2. In this sense, one strategy could be identify the variable set (support) of each

output function and considering that a output om has the possibility of be implemented using

another output on if and only if S(on) ⊂ S(om), where S(f) denotes the support of the Boolean

function f . With the presented strategy, we can derive the dependence D(f) of each output,

shown in Table 5.2:

Table 5.2 – Support and Dependence List of from outputs shown in Equation (5.3).

Output Support S(f) Dependence D(f)

o0 {i0, i3} ∅
o1 {i0, i1, i2, i3, i4} {o0, o2, o3}
o2 {i1, i3, i4} {o3}
o3 {i1, i4} ∅

Algorithm 4 FC-FACTOR-HEUR-MO Algorithm
1: function FACTORIZE_MO (outputs, inputs)
2: if outputs contains 1 output then return FACTORIZE (outputs, inputs)

3: solutions← ∅
4: i← 0
5: dep← ANALYZE_DEPENDENCIES (outputs)
6: for each output o ∈ outputs do
7: init← CREATE_INITIAL_FUNCTIONS (outputs, dep)
8: solutions[i]← FACTORIZE (outputs, init)
9: i← i+ 1

10: return solutions

Algorithm 4 shows the pseudo code for the FC-FACTOR-HEUR-MO. The algorithm

needs the circuits outputs (outputs) and primary inputs (inputs) as arguments. The first step

is to check if the circuit is single-output (line 2). In this case, the solution is the factorization

using FC-FACTOR-HEUR algorithm. The ANALYZE_DEPENDENCIES method (line 5) will

analyze all outputs and extract all dependencies (as presented in Table 5.2). The for loop (line

6-9) will factorize each output, creating a different initial set for each output (line 7). The

solutions will be stored and returned at the end of the algorithm.

Running the FC-FACTOR-HEUR-MO algorithm in the example and taking advantage

of the “polarity don’t care” inverters present in the example presented in Figure 3.10, we

have the following implementations, presented in Equation (5.4). These equations can be
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mapped using a DAGON-based technology mapping tool (KEUTZER, 1988) using the double

inverter heuristic (DETJENS et al., 1987). The comparison between the original circuit and

the resynthesized one is presented in Figure 5.2. The circuit area was reduced in 31% without

affecting the timing of the overall circuit. Notice the reduction in the number of the gates (10

to 4), using more complex cells. Also, the 2 inverters (i9 and i12) were used, reducing the

necessary logic in the circuit. One important detail is the cell SPI7F165, which implements the

logic function a · b + c · (d · e + f · g). This cell implements an unate function. Moreover, it

implements a fanout-free or read-once function (i.e. each variable appears only once, which

means that there is no logic reconvergence). With the both inverters previously mentioned, The

algorithm was able to find an XOR-like function inside a series-parallel function. The bold part

is implemented using i0 · i12 + i1 · i9, which is logically equivalent to i0 · i1 + i1 · i0.

o0 = i0 + i3

o1 = (i2 · i3) + o2 · (i0 · i1 + i0 · i1)

o2 = o3 · i3

o3 = i1 · i4 + i1 · i4

i9 = i0

i12 = i1

(5.4)

5.1.3 Possible Optimizations

The proposed multi-output algorithm requires intensive computation since the circuit can

have many cuts and each cut can contain a considerable number of outputs. In this sense, two

algorithms specialized in classes of functions are used to speed-up the results. One of them is a

synthesis for disjoint-support decomposable (DSD) functions (BERTACCO; DAMIANI, 1997;

CALLEGARO et al., 2015; CALLEGARO MAYLER GA MARTINS, 2015). The second one is

the synthesis of read-polarity-once (RPO) functions, where each polarity (positive or negative) of

a variable appears at most once in the minimum factored expression of an RPO function (ARO et

al., 2012; CALLEGARO et al., 2013a; CALLEGARO et al., 2013b; CALLEGARO et al., 2014).

These algorithms have two advantages compared to the heuristic factoring: (1) they are faster

since they compute only a subset of functions, and (2), they always provide minimal literal count
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(a)

(b)
Figure 5.2 – Circuit mapped using a Commercial Tool (a) and synthesized using our resynthesis tool (b).

implementations. In this sense, these algorithms can be used before the heuristic factoring. If

they fail to find a solution (i.e. the function is neither RPO or DSD), the heuristic factoring is

called upon. Also, the timing can be improved using logic depth or the minimum device chain

(MDC) (MARTINS et al., 2011; MARTINS et al., 2011) as second criteria. The MDC of a

logic function is related to the maximum number of switches in series in switch networks that

implement the given logic function (SCHNEIDER et al., 2005).
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5.1.4 Iterative remapping flow

To evaluate the quality of the proposed factorization algorithm, it is necessary an iterative

remapping flow. It is important that this flow can be used together with usual commercial flows.

After a logic synthesis process using a logic synthesis tool, the result is a gate-level netlist using

logic gates of a cell library. This netlist is used as the start point for the proposed iterative

remapping approach. On top of this mapped circuit, sub-circuits are found by enumerating

KL-cuts (MACHADO et al., 2012). The proposed remapping flow using KL-cuts is shown in

Figure 5.3. It is necessary to define the K, i.e. the maximum number of inputs of the sub-circuits

derived. The increase of K increases the complexity of the multi-output factorization algorithm,

but leads to better results, since more (and larger) sub-circuits are found, and more optimizations

can be made. However, the runtime would increase exponentially: more KL-cuts to be remapped

and replaced, and more time to factorize the cut is needed.

In this flow, the timing constraints are respected. In this sense, only the KL-cut substi-

tutions that do not impact negatively on the timing constraints are performed. A static timing

analysis (STA) tool was implemented to check these timing constraints.

All enumerated sub-circuits are remapped, using as primary cost the number of literals.

The factored expressions are applied in a technology mapping algorithm, presented in (COR-

REIA; REIS, 2004). All remapped sub-circuits are checked if the cost function was improved,

and sorted from the largest to the lowest gain. Using a greedy algorithm, the sub-circuits are

replaced back in the original circuit in such a way that they do not overlap, and the timing

constraints are still respected. This process is repeated while producing gains, or for a limited

number of iterations.A greedy selection is applied, presenting good results. Also, by performing

the remapping iteratively, there is a significant improvement in the quality of results (MACHADO

et al., 2013).

5.1.5 Experimental Results

To validate the iterative flow and the optimizations performed by the proposed multi-

output factorization algorithm, a subset of combinational circuits of IWLS 2005 benchmarks was

mapped with two commercial logic synthesis tools using different libraries (MACHADO et al.,

2013). The circuits were mapped with timing constraints, i.e. trying to obtain the best possible

area under the timing restrictions were given. The proposed iterative remapping approach was
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Figure 5.3 – Proposed KL-cut remapping flow (MACHADO et al., 2013).

applied, using a computer with a Core i5 processor and 4GB of RAM. Area is used as the cost

function in all the following experiments, with KL-cuts of up to 5 inputs. Two 40nm standard cell

libraries were used in the experiments: a base library and an extended library. The base library

contains 266 logic gates and a total of 49 different logic functions of combinational cells. The

extended library is composed of the base library cells plus all cells with up to three transistors in

series and up to three transistors in parallel. In the extended library, there are 132 more logic

functions than the base library and a total of 181 different logic functions of combinational cells.

The ITC’99 benchmarks were used in the experiment due to the bigger complexity

compared to ISCAS’85 and ISCAS’89 benchmarks. Table 5.3 shows the results obtained by

our tool remapping the ITC’99 mapped circuits by commercial tool A. All circuits had area

improvement with an average of 17% of combinational area reduced, and the best case of

34% for b19_1 circuit. Another important data is that the commercial tool A did not deliver

the mapped circuit with a timing clean, i.e. the delay was some picoseconds above the delay

constraint. Our tool was able to clean timing and improve area using KL-cut remapping. This

was a positive collateral effect of the local logic minimization, improving the area and sometimes

also improving delay since the number of logic gate stages was decreased.
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Table 5.3 – Results obtained with the remapping of commercial logic synthesis tool A mapped circuits,
for ITC’99 sequential benchmarks (MACHADO et al., 2013).

Delay Remapping of commercial tool A mapped circuits

Benchmark constraint Base Library Extended Library

(ns) Comb. Area Diff Area Diff Delay(ns) Comb. Area Diff Area Diff Delay(ns)

b01 0.4 -4.55% -2.02% 0.398 -4.55% -2.02% 0.398
b02 0.4 -10.87% -3.25% 0.388 -13.04% -3.90% 0.357
b03 0.8 -0.40% -0.09% 0.797 -0.40% -0.09% 0.797
b04 1.5 -29.15% -13.50% 1.461 -27.46% -12.71% 1.393
b05 1.5 -24.04% -15.15% 1.498 -25.90% -16.32% 1.487
b06 0.5 -21.30% -6.55% 0.46 -26.85% -8.26% 0.432
b07 1 -19.35% -8.31% 0.928 -21.25% -9.13% 0.925
b08 0.6 -2.31% -0.93% 0.598 -4.36% -1.77% 0.599
b09 1 -10.26% -2.72% 0.826 -10.26% -2.72% 0.826
b10 1 -2.56% -1.18% 0.899 -3.58% -1.65% 0.9
b11 0.6 -14.71% -9.99% 0.6 -12.26% -8.33% 0.599
b12 0.6 -10.79% -4.89% 0.6 -12.84% -5.82% 0.599
b13 1 -9.35% -2.72% 0.704 -9.52% -2.77% 0.806
b14 2 -21.09% -17.18% 1.999 -20.52% -16.71% 2

b14_1 2 -27.93% -21.06% 1.999 -29.04% -21.89% 1.999
b15 2 -18.37% -11.45% 1.998 -18.70% -11.66% 1.999

b15_1 2 -18.78% -11.70% 1.997 -19.21% -11.97% 1.999
b17 2 -18.02% -11.12% 2 -18.38% -11.34% 1.999

b17_1 2 -15.90% -9.77% 2 -17.95% -11.03% 2
b18 4 -27.53% -19.86% 4 -27.83% -20.07% 3.999

b18_1 4 -20.64% -15.04% 3.999 -31.15% -22.46% 4
b19 4 -32.77% -23.69% 4 -32.77% -23.69% 4

b19_1 4 -33.73% -24.41% 4 -34.87% -25.22% 4
b20 2 -11.13% -9.71% 2 -12.18% -10.63% 2

b20_1 2 -10.91% -9.44% 2 -11.52% -9.97% 2
b21 2 -8.98% -7.78% 2 -10.51% -9.11% 2

b21_1 2 -9.60% -8.29% 2.001 -10.27% -8.87% 2.002
b22 2 -11.44% -10.62% 2 -12.37% -11.43% 2

b22_1 2 -21.07% -18.26% 2 -22.08% -19.09% 2

Average - -16.12% -10.37% - -17.30% -11.06% -
Worst - -0.40% -0.09% - -0.40% -0.09% -
Best - -33.73% -24.41% - -34.87% -25.22% -
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5.2 Synthesis of Approximate Functions to Mask Transient Faults

Transient faults, such as Single Event Transients (SET), have become a major concern

for integrated circuits operating in high-reliability applications. Studies indicate that integrated

circuits will be increasingly susceptible to single-event effects (SEE) caused by energetic particles.

All these factors have increased the susceptibility of integrated circuits to soft errors (BAUMANN,

2005).

The TMR can mitigate SETs, but they impose a 200% area overhead cost. One strategy to

reduce the area overhead is using approximate circuits (SIERAWSKI; BHUVA; MASSENGILL,

2006; ENTRENA et al., 2012; VENKATARAMANI et al., 2012; GOMES et al., 2014). It is also

possible to replace three modules of the traditional TMR with approximate circuits, creating a

full-ATMR (FATMR) (GOMES et al., 2015a). Using ATMRs allows improvements over TMRs

(e.g. performance, power consumption, and area) at the expense of a reduced fault-masking

coverage in the presence of upsets.

This section presents an algorithm using FC to compute approximate functions (0-

approximate and 1-approximate) efficiently. Previous methods provide one pair of approximate

functions or a limited set. By applying functional composition, our approach provides a rich

set of approximate functions, which allows a better balance between area and fault coverage.

Also, it provides FATMR schemes to reduce the area furthermore, sacrificing a bit more of the

protection, whereas previous methods are not able.

The following two subsections present an overview of approximate function, SEE and

TMR. Next, we present the proposed FC-based algorithm to synthesize approximate functions.

In the sequence, we present the adopted methodology to compose either an ATMR or an FATMR

by selecting the most suitable set of functions among those generated by the algorithm in this

section. Finally, we present two case studies to certify the applicability of the proposed algorithm

together with the adopted methodology.

5.2.1 Approximate Functions

The approximate functions (can also be considered approximate circuits) refers to a class

of functions that relax the requirement of exact equivalence between two functions. The concept

of approximate functions is related to the order of two functions. Approximate logic functions

are defined as functions that may differ from each other in the number of minterms in a Hamming

code distance, and it is closely related to the concept of the order. There are two possible types
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of approximate functions. Considering G as the original function, one possible approximation

is using a smaller function F . The other approximation is considering H as a larger function,

compared to G. Figure 5.4 elucidates the F ⊆ G ⊆ H relationship.

Approximate circuits can be used in a TMR scheme, creating an approximate-TMR

(ATMR) scheme. However, this imposes a condition on the approximate circuits: only one of the

modules can differ from the original circuit at each input vector scenario, allowing the majority

voter to select two match outputs out of three for any input vectors. One way to use approximate

functions is using a F , G and H as inputs of a majority voter. Any minterm of G must be a

minterm of H , and any minterm of F must also be a minterm of G. This relationship ensures that

H only evaluates to 0 when G evaluates to 0 and makes F evaluates to 1 when G evaluates to 1.

Function H is said to be over-approximated or 0-approximation function. Function F is said to

be under approximate or 1-approximation function (SIERAWSKI; BHUVA; MASSENGILL,

2006; ENTRENA et al., 2012).

In Table 5.4 the vector 101 causes F 6= H , and G evaluates to 1, if an error occurs in F ,

causing it to change from 0 to 1, then F = G = H . The same idea works for function H , when

G evaluates to 0, any error in H will be masked.

U

H G

Figure 5.4 – Graphical representation of the relationship between function G, the original function, H ,
an over approximated (larger) function and F , an under approximated (smaller) function.

The advantage of using approximate circuit is the reduction of the size of the circuit.

Therefore, this decreases the overhead of the traditional TMR scheme. However, it may also

reduce the fault coverage because there are few of unprotected input vectors.

Also, in some cases, the G function can also be replaced by another F and H , creating a

Full ATMR (FATMR) scheme (GOMES et al., 2015a).The most important rule of the FATMR

scheme is that only one module may differ from the other two modules to be able to compute the

correct value through the majority voter when using spatial redundancy. Therefore, the voter
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Table 5.4 – TMR example: Truth table of the approximate circuits for the original function G, where F1

and H are approximate functions.

Input vectors G = A ∗ (B + C) F1 = A ∗B H = A Voter Output

000 0 0 0 0
001 0 0 0 0
010 0 0 0 0
011 0 0 0 0
100 0 0 1 0
101 1 0 1 1
110 1 1 1 1
111 1 1 1 1

will have two correct outputs against the one divergent output. For example, a FATMR can be

formed of F1, F2, and H . For instance, F1 and F2 are both under-approximate, but they diverge

from G in a different set of minterms. An FATMR cannot be composed of two functions of the

same type that differ from function G by the same set of input vectors. This would result in an

incorrect value of the majority voter output in the absence of faults. This further reduces the area

but sacrifices more the protection. An example of FATMR is shown in Table 5.5.

Table 5.5 – Truth table for a FATMR composed of F1, F2 and H1.

Input vectors G F1 F2 H1 Voter output

000 0 0 0 0 0
001 0 0 0 0 0
010 0 0 0 0 0
011 0 0 0 0 0
100 0 0 0 1 0
101 1 0 1 1 1
110 1 1 0 1 1
111 1 1 1 1 1

5.2.2 Single Event Effects Overview

Malfunctions can occur in integrated circuits due to radiation effects from high energy

as neutrons or alpha particles. The malfunction derived from radiation affect mainly aerospace

applications as satellites and probes, as well as airplane control and communication modules.

As the transistor continue to shrink its dimensions, the supply voltage also reduces, increasing

the possibility of the circuit being affected by a particle strike. If a collision of an energetic

particle produces a transient channel between the junction and the substrate, a current pulse is
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generated. Figure 5.5 illustrates this collision. A single event effect (SEE) is when a particle

collision causes a momentary state change of a circuit node, first postulated by Wallmark and

Marcus (WALLMARK; MARCUS, 1962). If this event occurs in a memory cell, as a flip-flop or

a register, it can modify the original value. This change is usually called bit-flip and is considered

a single event upset (SEU). However, if this event occurs in a combinational cell, the effect

is called single event transient (SET) since a transient pulse can be generated and propagated

through the combinational logic, reaching into a sequential element (BAUMANN, 2005). Not

all SETs are fully propagated since the SET can be logically masked, electrically masked and

masked by the clock window. One of the ways to protect the combinational logic from SETs is

using the concept of the triple modular redundancy (TMR).
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Figure 5.5 – Ionization track caused by a particle strike.

5.2.2.1 Triple Modular Redundancy

The triple modular redundancy was a concept to increase reliability proposed by von

Neumann in 1956 (NEUMANN, 1956). The idea is triple the circuits and uses a majority-voting

system to decide the correct result. A TMR example is shown in Figure 5.6. This redundancy

allows one circuit to fail temporarily or permanently. A source of a temporary fail is a SET,

which will be fully masked by the majority voter. Two drawbacks for this scheme are the area

and power overhead of more than 200%.

Figure 5.6 – Example of a TMR system.
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5.2.3 Synthesis of Approximate Functions

The algorithm FC-FATMR described in Algorithm 5 computes the approximate functions

using functional composition, using a slightly modified version of FC-FACTOR-HEUR, already

presented in Algorithm 3. The main difference is that the after the function is factored (Gexp),

the solution also includes the list of factored smaller (Flist) and larger (Hlist) functions. Also,

it computes all possible FATMR combinations from the approximate functions, through the

COMPOSE method, which implements a majority function functionally. All 4 possible FATMR

schemes are covered: 3 F functions, 3 H functions, 2 F functions and 1 H function, and 2 H

functions and 1 F function. Another difference is the inclusion of the constant zero as a allowed

function (smaller) and the constant one (larger). These functions can be useful as candidates in

functions that have a small (large) number of minterms.

Algorithm 5 FC-FATMR Algorithm
1: function CREATE_APPROXIMATE_FUNCTIONS (G)
2: {Gexp, F list,Hlist} ← FACTORIZE_TMR (G)
3: FATMRlist← ∅
4:
5: for each function f1, f2, f3 ∈ Flist do
6: fatmr ← COMPOSE (f1, f2, f3)
7: if fatmr = G then FATMRlist← FATMRlist ∪ fatmr
8:
9: for each function h1, h2, h3 ∈ Hlist do

10: fatmr ← COMPOSE (h1, h2, h3)
11: if fatmr = G then FATMRlist← FATMRlist ∪ fatmr
12:
13: for each function f1, f2 ∈ Flist do
14: for each function h1 ∈ Hlist do
15: fatmr ← COMPOSE (f1, f2, h1)
16: if fatmr = G then FATMRlist← FATMRlist ∪ fatmr
17:
18: for each function h1, h2 ∈ Hlist do
19: for each function f1 ∈ Flist do
20: fatmr ← COMPOSE (h1, h2, f1)
21: if fatmr = G then FATMRlist← FATMRlist ∪ fatmr
22:
23: return {Gexp, F list,Hlist, FATMRlist}
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5.2.4 Approximate Circuits Methodology

The methodology used (GOMES et al., 2015a) selects the most suitable set of functions

F and H able to compose an ATMR or FATMR, generated by the FC-FATMR method. The

functions are mapped through an academic state-of-the-art logic synthesis tool (BRAYTON;

MISHCHENKO, 2010), in conjunction with a library, containing the following cells: INV,

NAND2-3-4, NOR2-3-4, OAI21, OAI22, AOI21 and AOI22, a subset from (ALBRECHT,

2005). Faults are injected in the circuits using a tool developed to generate a transistor level

description of the circuits (including the protection using ATMR or FATMR) and test the circuits

susceptibility to single event transients (SET) (GOMES et al., 2015a). A logic XOR between G

and the candidate function is performed to compute the Hamming distance between approximate

functions. In other words, the first criteria are the number of unprotected vectors that can be

used to estimate early the fault masking coverage and the number of literals that can be used to

estimate the area early.

An ATMR design tool is used to generate the transistor level circuit of each ATMR and

FATMR scheme composed(GOMES et al., 2015a). The tool receives a set of ATMR/FATMR

compositions, automatically map those schemes to a gate netlist and later generate a transistor

level description in Verilog, for each composition.

The evaluation of the fault masking capability of each ATMR and FATMR scheme is

performed through a fault injection tool (GOMES et al., 2015a). The sizing of the transistor,

electrical masking (signal is attenuated or eliminated by the electrical properties of gates), and

temporal masking (the erroneous pulse reaches a flip-flop, but it is not captured) are not evaluated

in this type of fault model. In this sense, each redundant module is simulated in SPICE to

evaluate how transistor sizing, electrical and temporal masking would affect the fault masking

coverage of the ATMR/FATMR scheme (GOMES; KASTENSMIDT et al., 2013).

The approximate synthesis method was applied in the methodology above presented, and

the quality of approximate functions was tested in two case studies, a simple 5 input function

with 10 literals and a 4-bit ripple carry adder. Each of the main functions was used to create

several different ATMR schemes. The approximate functions were synthesized using FC-FATMR

algorithm. The factored form was implemented in a Verilog file and mapped using the ABC

tool (Berkeley Logic Synthesis and Verification Group, 2013). The mapped netlists were tested

for SET using the ModelSim.
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5.2.5 Case-study Circuit 1: 5-input Boolean Function

The first case of study was created based on the 5 input function represented by Equa-

tion (5.5):

G = (a+ b) · ((c · b) + ((a+ e) · ((a · (c+ e)) + d))) (5.5)

Table 5.6 shows a list of selected approximate functions F and H for the case-study

circuit 1. Table 5.7 shows the characteristics of each ATMR and FATMR schemes composed of

different selected approximate functions regarding unprotected vectors, fault masking coverage,

and area overhead. The schemes in the table are ordered increasingly using the area overhead

as order criteria. Notice that each scheme has a different number of unprotected vectors and

unprotected junctions. The highest fault masking coverage is given by the schemes that present

the lowest number of unprotected vectors and junctions. The area is measured by the number of

transistors.

Table 5.6 – Functions F and H for the case-study circuit 1 (GOMES et al., 2015a).

Approximate functions

F1 a · b · c
F2 a · b · (d+ e)

F3 a · b · d+ a · e
F4 (a+ b) · (c · b+ d · e)
F5 (a+ b) · ((a+ e) · (a · (c+ e)) + d)

H1 a+ b

H2 b+ (a · (c+ e))

H3 a · b+ (a · (c+ e))

H4 a · b+ (a · (c+ e · d))

H5 d · e+ (a · b+ (c · a · b))
H6 d · a · e+ a · b+ c · a · b

Table 5.7 – Functions G, F and H for the full-adder and half adder (GOMES et al., 2015a).

Functions Full-adder Half-adder

Gsum a⊕ b⊕ Cin a⊕ b
Gcout (a · b) + (Cin · (a	 b)) a · b
Fsum a · b · Cin a+ b
Fcout a · b 0

Hsum a+ b+ Cin a · b
Hcout a+ b a
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Table 5.8 – Characteristics of the ATMR and FATMR schemes for the Case-study 1 (5 input, 10 literal’s
function) (GOMES et al., 2015a).

Different
Scheme

Implementations
of Circuit G

Compositions

#
Unprotected

vectors / Total
vectors

%
of

Protected
input

vectors

#
Unprotected

p-n Junctions /
# Total p-n
junctions

% of
Protected
Junctions
(Masking
Coverage)

# transistors
(Estimated

area)

Area
Overhead

Single-module G G/ - / - 32/32 0% 228/2048 88.86% 32 -
FATMR 1 F1/F5/H1 23/32 28.12% 209/2304 90.93% 36 13%
FATMR 2 F1/F5/H2 21/32 37.50% 199/2816 92.93% 44 38%
ATMR 1 G/F1/H1 20/32 34.37% 237/2816 91.58% 44 38%
FATMR 3 F1/F5/H3 19/32 40.62% 212/3072 93.10% 48 50%
ATMR 2 G/F2/H1 18/32 46.87% 171/3072 94.43% 48 50%
FATMR 4 F1/F5/H4 17/32 53.12% 201/3328 93.96% 52 63%
ATMR 3 G/F3/H1 16/32 43.75% 184/3584 94.87% 56 75%
FATMR 5 F1/F5/H5 16/32 56.25% 195/3712 94.75% 58 81%
FATMR 6 F1/F5/H6 14/32 50.00% 205/3840 94.66% 60 88%
ATMR 4 G/F4/H1 15/32 50.00% 223/3840 94.19% 60 88%
ATMR 5 G/F5/H1 13/32 59.37% 147/3840 96.17% 60 88%
ATMR 6 G/F5/H2 11/32 65.62% 139/4352 96.81% 68 113%
ATMR 7 G/F5/H3 9/32 71.87% 120/4608 97.40% 72 125%
ATMR 8 G/F5/H4 7/32 78.12% 91/4864 98.13% 76 138%
ATMR 9 G/F5/H5 6/32 81.25% 76/5248 98.55% 82 156%
ATMR 10 G/F5/H6 4/32 87.50% 60/5248 98.88% 84 163%
TMR G/G/G 0/32 100% 0/6144 100% 96 200%

One can observe that it is possible to maintain the maximum protected p-n junction ratio

of 98.88% (60 p-n junctions of 5248) with only 165% area overhead when using ATMR; and a

maximum of 94.66% protected p-n junction ratio (205 p-n junctions of 3840) with only an 88%

area when using FATMR.

5.2.6 Case-study Circuit 2: 4-bit Ripple Carry Adder

The second case of study is an ATMR design of a 4-bit adder. The 4-bit adder is composed

by one half-adder at bit 0 and other 3 full-adders. Table 5.7 shows the approximate logic functions

used for the Sum and Cout outputs for both cases.

The original full-adder (G) used has a size of 28 transistors (complex gate). The under-

approximate full-adder (F ) has a size of 12 transistors (2 NAND2 gates and 2 inverters). The

over-approximate full-adder (H) has a size of 12 transistors (2 NOR2 gates and 2 inverters).

The original half-adder (G) has a size of 16 transistors (1 XOR2, 1 AND2, and 1 inverter).

The under-approximate full-adder (F ) has a size of 6 transistors (1 NOR2 gate and 1 inverter).

The over-approximate full-adder (H) has a size of 4 transistors (1 NAND2 gate).
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Each ATMR scheme is composed of 12 different modules separated into 4 levels (bit 0

corresponds to level 1 and bit 3 corresponds to level 4). Each level has 3 modules (G, F , and H).

The sum bit is evaluated by voting Gsum, Fsum and Hsum of each level, as seen in Figure 5.7.

Moreover, the carry out is evaluated by voting Gcout, Fcout and Hcout of level 4.

Figure 5.7 – ATMR scheme for a 4-bit adder (GOMES et al., 2015a).

Table 5.9 shows how each of the tested ATMR schemes is composed regarding the

modules in each level of the design for sum and carry outputs The schemes in the table are

ordered increasingly by the number of transistors. One can observe that some of the ATMR

present a higher number of unprotected p-n junction compared to the single module circuit (the

adder with no TMR).

The trade-off between masking and area overhead is only attractive from designs ATMR5

to ATMR11, as they present a lower number of unprotected p-n junction compared to the single

module circuit (the adder with no TMR).

Also it is important to note that the best way to achieve a good trade-off between area

overhead and masking coverage is to use approximate modules by level, for example, both
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ATMR6 and ATMR7 have 152% of area overhead, and both uses 3 approximate modules, but

ATMR6 is better than ATMR7, the difference between them is how the approximate modules

are spread. ATMR6 uses two approximate module in level 4 and one in level 3 of the circuit,

ATMR7 allocates one module for each level, starting from level 2 to level 4. Something similar

can be seen when we compare ATMR6 to ATMR5, were ATMR5 has 4 approximate module,

two for level 3 and two for level 4, showing a trade-off when compared to ATMR6.
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Table 5.9 – Characteristics of the ATMR schemes for the Case-study 2 (4-bit ripple-carry adder) (GOMES
et al., 2015a).
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6 EMERGING TECH. APPLICATIONS USING FUNCTIONAL COMPOSITION

In this chapter, we explore the synthesis of emerging technologies using functional

composition. The first application presented in this chapter explores the synthesis of threshold

logic, which can be applied both for asynchronous approaches (MOREIRA et al., 2014), as

also for RTD and STT-MTJ devices (NEUTZLING et al., 2013b; NEUTZLING et al., 2013;

NEUTZLING et al., 2014; NEUTZLING et al., 2014; NEUTZLING et al., submitted). The

second application does a specialized threshold logic synthesis, focused on majority gates for

QCA, SET, TPL and other majority-based devices (MARTINS et al., 2014; MARTINS et al.,

2014). The third application proposes an automated flow for spin-diode circuits (MARTINS et

al., 2013; MARTINS et al., 2015a; MARTINS et al., 2015b) and the last application discusses

synthesis of factored forms for memristor sequential logic (MARRANGHELLO et al., 2014b;

MARRANGHELLO et al., 2014a; MARRANGHELLO et al., 2015b; MARRANGHELLO et

al., 2015a).
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6.1 Synthesis of Threshold Logic for Emerging Technologies

To exploit the advantages of threshold logic in new technologies, EDA tools that automate

the design of integrated circuits directly on this logical style are required. There is an extra

interest in the study of threshold circuits because networks constructed with threshold gates are

almost equivalent to standard feed forward neural networks models, as discussed in Section 2.2.1.

In this sense, most of the properties and characteristics of the circuits can be extended and applied

to neural networks (BEIU; QUINTANA; AVEDILLO, 2003; SUBIRATS; JEREZ; FRANCO,

2008).

In this section, FC will be used to synthesize threshold logic efficiently. Two algorithms

are proposed: One synthesize minimal threshold networks for functions up to 4 inputs, and the

other algorithm uses heuristics to synthesize functions up to 6 inputs, reducing the number of

threshold logic gates in a circuit furthermore.

6.1.1 Synthesis of Threshold Networks

To synthesize efficiently threshold networks, an effective AND/OR association of thresh-

old networks is necessary. In (NEUTZLING et al., 2014), it is presented an effective way to

associate two threshold networks, which is demonstrated in Figure 6.1.

To illustrate the association, let f1(x1, x2, x3) = x1 ·x2 +x1 ·x3 that is a TLF represented

by [2, 1, 1; 3]. Then, h1(x1, x2, x3, x4) = (x1 · x2 + x1 · x3) ∧ x4 is also TLF represented by

[2, 1, 1, 2; 5], since Th = 1 +
∑

(w1, w2, w3) = 5 and w4 = Th − Tf = 2.

Figure 6.1 – An efficient way to associate threshold networks (NEUTZLING et al., 2014).
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6.1.1.1 Optimal 4-input threshold network generation

Optimal TLG implementations containing all functions up to 4 inputs can be easily

generated with a straightforward procedure, using FC. The algorithm is presented in Algorithm 6.

This approach is attractive to a mapping point-of-view, since it is necessary only one execution

to generate a full library, and the results are stored for later reuse, avoiding the matching task.

The algorithm needs the set of all unate functions synthesized in 1 TLG (init) and the number

of variables (n). The algorithm combines the TLGs until all functions up to n inputs are

implemented.

The direct and negated variables are stored in bucket 0 (line 3), since they do not have

gate implementation costs. The next task is getting all functions that can be implemented as a

single TLG. All unate functions up to n variables (n ≥ 4) can be provided by the identification

algorithm to determine which function is TLF (NEUTZLING et al., 2013b; NEUTZLING et al.,

2013; NEUTZLING et al., 2013a) and inserted in Bucket 1 (line 4). The ASSOCIATE method

(line 10-16) performs all combinations, considering TLG count as the primary cost.

Algorithm 6 FC-TLG-EXACT Algorithm
1: function CREATE_ALL_FUNCTIONS_TLG (n, init)
2: i← 1
3: B[0]← CREATE_INITIAL_FUNCTIONS ()
4: B[1]← init
5: while any function is not synthesized do
6: B[i]← ASSOCIATE (B, i)
7: i← i+ 1

8: return B
9:

10: function ASSOCIATE (B, i)
11: S ← ∅
12: for k ← 0, (i/2) do
13: l← i− k
14: S ← S ∪ COMBINE (B[k], B[l], AND)
15: S ← S ∪ COMBINE (B[k], B[l], OR)

16: return S
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6.1.1.2 Threshold network synthesis up to 6 inputs

Unfortunately, the universe of 4-input functions is very limited in comparison to one of

the 6-input functions. Therefore, it is important to be available an algorithm that synthesizes,

even heuristically, functions with 5 and 6 inputs. In this sense, a heuristic threshold factoring

algorithm using FC is proposed. The algorithm FC-TLG-HEUR is presented in Algorithm 7.

The heuristic applied is based on the FC-FACTOR-HEUR, presented in Section 5.1.1.2.

Since a combination of two functions can originate a TLF, this will jeopardize the partial

order. In this sense, a modification in the method COMBINE_COFACTORS is necessary. Also,

if the function presents 4 inputs or less, the information from the Catalog comprising optimal

4-input threshold network can be accessed.

The first step for the synthesis of threshold network up to 6 inputs is to check if the target

function is TLF (line 2). If this condition is attained, the algorithm returns a TLG provided by the

identification algorithm (NEUTZLING et al., 2013b; NEUTZLING et al., 2013; NEUTZLING

et al., 2013a). The second step is checking if the support of the function is less than 5 inputs

(line 3). If the condition is satisfied, the algorithm uses the catalog and return the minimal

implementation. Another difference is the COMBINE_COFACTORS_TLG method (line 7),

which uses the catalog to check the result of each combination. If the support of the combined

function is in the catalog, the implementation is retrieved and inserted in the right Bucket. If no

implementation is found (i.e. the cofactor has support greater than 4), the identification algorithm

is executed. These modifications guarantee all minimum cost functions were identified before

the combination loop (line 9-11), avoiding a violation of the partial order. The AND and OR

associations are the same from Figure 6.1. Moreover, multiple cost functions using the threshold

parameters (gate count, logic depth, and number of interconnections) can be used to select the

best implementation.

6.1.2 Experimental Results

The experimental results evaluate the efficiency of the both methods for threshold network

synthesis. Figure 6.2 illustrates the synthesis flow for circuits. The platform used in the

experiments was an Intel Core i5 processor with 2 GB main memory. FC-TLG-EXACT and

FC-TLG-HEUR have the following cost function, in this order of priority: (1) threshold gate

count, (2) logic depth and (3) number of interconnections.
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Algorithm 7 FC-TLG-HEUR Algorithm
1: function SYNTHESIZE_TLG (f, Catalog)
2: if IDENTIFY (f) then return solution
3: if SUPPORT (f) ≤ 4 then return Catalog (f)

4: B ← ∅
5: B[1]← CREATE_INITIAL_FUNCTIONS (f)
6: cofactors← COMPUTE_COFACTORS (f)
7: allowed_functions← COMBINE_COFACTORS_TLG (cofactors, Catalog, B)
8: i← 2
9: while f is not found do

10: B[i]← COMBINE_BUCKETS(B, i)
11: i← i+ 1

12: return solution

Figure 6.2 – Function synthesis flow (NEUTZLING et al., 2014).

MCNC benchmark circuits (YANG, 1991) were decomposed and mapped to compare

our results to the ones presented in (ZHANG et al., 2005) and in (GOWDA et al., 2011).

Figure 6.2 shows the design flow applied to synthesize the circuits. To a fair comparison,

SIS tool (SENTOVICH et al., 1992) was used to decompose the circuits. Since Zhang et al.,

in (ZHANG et al., 2005), and Gowda et al., in (GOWDA et al., 2011), do not mention which SIS

scripts they applied to decompose the circuits, the scripts from (SUBIRATS; JEREZ; FRANCO,

2008) were chosen and adapted to generate networks with up to 6 inputs. We synthesized all

circuits listed in (ZHANG et al., 2005), and we were able to reduce the threshold gate count

in all MCNC benchmarks evaluated. However, for the sake of simplicity, we present only the

20 more relevant circuits, which were implemented using more than 70 threshold gates. The

decomposition results obtained using ABC tool (Berkeley Logic Synthesis and Verification

Group, 2013) were also omitted, although gains have been verified. Circuits synthesized using

ABC generated an increasing around 26.4% in the gate count, with a significant reduction in the

logic depth, of circa 50%.
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Figure 6.3 – Threshold logic circuit synthesis flow (NEUTZLING et al., 2014).

Table 6.1 and Table 6.2 shows the results of mapping threshold networks in MCNC

benchmarks and presents the gate count reduction in the evaluated circuits, demonstrating the

efficiency of the proposed method. The average gate count reduction is of circa 32%, reaching

up to 54%. Nevertheless, many circuits achieved some improvement in the three characteristics

simultaneously. We were also able to reduce or maintain the logic depth in the circuits presented

in Table I, except for the pair and des benchmarks. In average, the logic depth decreased 19.3%.

An increasing in the number of interconnection was expected since the method tries to use a

maximum fan-in always when it is possible. In general, this cost has also been improved due

to the multi-goal synthesis, prioritizing the threshold gate count, logic depth and number of

interconnections, in this order.

Figure 6.4 – Percentage gate count reduction in each approach, compared to the original netlist (ZHANG
et al., 2005).

The results presented by Gowda et al., in (GOWDA et al., 2011), show an improvement

in threshold gate count compared to the results provided in (ZHANG et al., 2005). However,

in (GOWDA et al., 2011), the authors only compare the gate count and present the results

for MCNC circuits grouped by number of inputs.Figure 6.4 shows the gate reduction of each
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Table 6.1 – Results presented in (NEUTZLING et al., 2014) using MCNC benchmarks with more than
25 inputs, compared to (ZHANG et al., 2005).

Benchmark Inputs Outputs G L I G% L% I%

i10 257 224 840 31 3072 53.77 11.43 47.87
des 256 245 1556 19 5210 18.96 -18.75 -0.58
i2 201 1 62 6 353 68.69 14.29 49.14
i7 199 67 197 3 925 35.20 40.00 -13.78
i4 192 6 70 9 256 5.41 -80.00 23.81
pair 173 137 563 17 2141 37.93 -41.67 27.82
i6 138 67 141 3 656 48.91 40.00 0.30
x3 135 99 280 7 1125 36.51 0.00 25.69
apex6 135 99 279 10 1098 29.55 16.67 6.07
i8 133 81 427 10 1330 25.09 0.00 25.70
i5 133 66 66 5 324 0.00 16.67 -24.62
i3 132 6 86 5 212 45.57 16.67 54.31
x4 94 71 152 5 522 19.58 37.50 7.12
i9 88 63 266 8 951 3.27 0.00 -16.40
example2 85 66 151 6 538 17.03 25.00 -10.02
dalu 75 16 371 11 1485 54.20 52.17 42.42
x1 51 35 107 5 427 47.29 28.57 41.59
apex7 49 37 78 7 322 33.90 22.22 11.54
cht 47 36 73 2 237 10.98 60.00 -17.33
unreg 36 16 48 2 176 4.00 60.00 -31.34
count 35 16 55 11 206 30.38 8.33 14.52
term1 34 10 60 7 245 73.45 30.00 64.13
my adder 33 17 71 10 247 26.04 44.44 18.75
comp 32 3 35 8 125 57.83 0.00 59.81
c8 28 18 58 5 196 31.76 28.57 14.04
frg1 28 3 36 8 154 38.98 11.11 33.91
pcler8 27 17 36 4 128 23.40 42.86 10.49
lal 26 19 32 4 142 40.74 42.86 15.48

TOTAL AVERAGE REDUCTION: 32.80 18.18 17.16
*G=gates, L=logic depth, I= #of interconnections, %G, %L, %I = reduction.

approach, compared to the original netlist (ZHANG et al., 2005), which uses only the traditional

OR and AND description.

The graphic shown in Figure 6.4 demonstrates that the reduction in gate count is larger

than the reduction presented in (ZHANG et al., 2005). However, in (GOWDA et al., 2011),

which has been considered in this work as the state-of-art threshold network synthesis approach.

The proposed method has provided an average reduction of 51.2% in comparison to the original

netlist, against a reduction of 23.3% and 34.8% obtained in (ZHANG et al., 2005). However,

in (GOWDA et al., 2011), respectively.
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Table 6.2 – Results presented in (NEUTZLING et al., 2014) using MCNC benchmarks with 25 inputs or
less, compared to (ZHANG et al., 2005).

Benchmark Inputs Outputs G L I G% L% I%

i1 25 16 14 4 49 39.13 20.00 22.22
ttt2 24 21 62 6 256 38.00 0.00 21.71
cordic 23 2 24 6 78 31.02 14.29 49.68
cc 21 20 23 3 71 34.29 50.00 21.98
cm150a 21 1 21 5 72 0.00 -25.00 6.49
pcle 19 9 27 4 104 22.86 33.33 4.59
sct 19 15 25 11 93 34.21 -120.00 19.13
tcon 17 16 16 2 40 50.00 33.33 28.57
parity 16 1 30 8 75 33.33 11.11 16.67
pm1 16 13 16 4 58 34.43 0.00 23.68
cm163a 16 5 15 5 56 40.00 16.67 33.33
cmb 16 4 13 4 62 51.85 33.33 12.68
alu4 14 8 275 22 1112 32.93 4.35 20.97
cu 14 11 17 3 66 29.17 25.00 13.16
cm162a 14 5 15 5 58 42.31 37.50 34.09
cm151a 12 2 11 5 35 8.33 0.00 22.22
cm152a 11 1 10 4 33 9.09 0.00 21.43
cm85a 11 3 8 3 44 42.86 40.00 38.89
alu2 10 6 134 18 307 31.98 28.00 29.09
x2 10 7 13 4 52 13.33 0.00 22.39
9symml 9 1 23 7 111 79.09 22.22 73.06
f51m 8 8 24 6 118 70.73 25.00 55.64
z4ml 7 4 12 4 51 36.84 20.00 20.31
decod 5 16 16 1 80 33.33 66.67 -53.85
cm82a 5 3 8 3 37 33.33 25.00 2.63
majority 5 1 1 1 5 0.00 50.00 0.00
cm42a 4 10 10 1 40 23.08 66.67 -17.65
b1 3 4 5 2 13 37.50 33.33 18.75

TOTAL AVERAGE REDUCTION: 33.89 18.24 20.07
*G=gates, L=logic depth, I= #of interconnections, %G, %L, %I = reduction.
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6.2 Synthesis of Majority Logic for Emerging Technologies

The direct transformation of AND and OR operations to a majority expression is not

optimal for majority technologies (ZHANG et al., 2004). For this reason, several works have

proposed specific methods to obtain better majority-based expressions and, consequently, opti-

mized circuit implementations (ZHANG et al., 2004; MOMENZADEH et al., 2005; KONG;

SHANG; LU, 2010; WANG et al., 2013).

In this section, we propose a method using FC able to synthesize majority logic for

QCA, SET, and TPL. Furthermore, we use a special AOI gate, which allows a considerable area

reduction for the QCA technology.

6.2.1 Related Work

The majority-based logic synthesis can be considered as a sub-area of the threshold logic

synthesis, which dates back to 1960’s with the pioneering works of Akers (AKERS, 1962),

Miller and Winder (MILLER; WINDER, 1962) and Muroga (MUROGA, 1971). However, these

works describe procedures that are only suitable to synthesize small circuits by hand.

In (ZHANG et al., 2004), Zhang et al. considered a set of 13 NPN classes for 3-input

functions. NPN class consists of functions that are not functional equivalent even doing inputs and

output negation and inputs permutation. The authors proposed a majority-based implementation

for each one of these classes, showing that the direct transformation does not lead to the optimal

solution.

In (ZHANG; GUPTA; JHA, 2005), Zhang et al. proposed an algorithm for the majority-

based logic synthesis of 3-input functions. In short, the proposed algorithm searches for patterns

in Karnaugh map such that the target function can be represented by a majority function of

three patterns. This method relies on the fact that any 3-input function can be implemented with

at most 4 majority gates and two logic levels. As a consequence, this approach is not easily

extensible to functions of more than 3 inputs because more logic levels would be required.

In (KONG; SHANG; LU, 2010), Kong et al., in turn, proposed a synthesis method to

obtain optimal majority-based implementations of functions with at most 3 inputs. The algorithm

starts from a set of 40 primitive functions that are implemented with at most one majority gate.

To obtain the remaining 3-input functions, one majority gate is added. For each input of this

additional gate is assigned one of the 40 primitive functions. As in (ZHANG; GUPTA; JHA,

2005), this method also relies on the fact that any 3-input function can be implemented with
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two logic levels. This approach gives optimal results for 3-input functions. However, it is not

suitable for a larger number of inputs due to the huge number of required combinations. When

the number of inputs changes from 3 to 4, the number of primitive functions rises from 40 to 90.

Moreover, the maximum number of majority gates required to implement the Boolean function

changes from 4 to 9. That is the case when implementing the 4-input Exclusive-OR (XOR4)

function.

In (WANG et al., 2013), Wang et al. generated the majority-based implementations of all

functions with at most 4 inputs. The proposed method applies a bottom-up strategy in which

simpler functions are combined to obtain more complex ones. The results of such method are

optimal regarding number of majority gates. However, their method cannot be easily extended to

consider different gates rather than majority gates.

In (MOMENZADEH et al., 2005), Momenzadeh et al. proposed a QCA implementation

for an AND-OR-Inverter (AOI) gate. Even though the AOI is composed of 2 majority gates, its

final area is smaller than the area of 2 majority gates due to the physical layout optimization. This

particular implementation of AOI gate also includes negated inputs, which can be advantageous

regarding area reduction when compared to the circuitry implemented using only majority gates

and inverters.

The previous methods aim to generate all functions with a maximum number of inputs.

Nevertheless, since the number of functions increases exponentially with the number of inputs

(22n), these methods are not able to synthesize functions with five or more inputs. In this sense, a

different strategy to improve circuit design is to consider different gates as basic building blocks

rather than only majority gates.

In this sense, it is interesting a methodology to evaluate how cell libraries with different

composition impact the area of QCA designs and a novel cell library that exploits both majority

and AOI gates as basic elements. Previous works consider either majority or AOI functions but

not both. Even though the proposed library contains functions with at most 3 inputs, results have

shown significant circuit area reduction when compared to related already published data.

6.2.2 Properties of the Majority Function

The majority function is a three input function represented by the following expression:

maj(a, b, c) = a · b+ a · c+ b · c (6.1)
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The majority has 2 important properties. The first is the complete symmetry between its

inputs. The second property is the self-duality, allowing propagate the inverters without changing

the logic. Also, the majority function is symmetrical, i.e., any input permutation gives the same

function.

Moreover, the majority function is not functionally complete, because to implement

functions with negated literals the NOT operator (INV gate) must also be considered.

Typically, Boolean functions are represented as expressions using AND, OR and NOT

as operations. Any expression of such form is trivially transformed into an equivalent majority

expression (i.e., using the majority function as basic element) using the following relationships:

AND(a, b) = maj(a, b, 0)

OR(a, b) = maj(a, b, 1)
(6.2)

It is often desirable to represent functions using as few operators as needed. Despite its

simplicity, the trivial transformation method typically uses more operators than necessary. As

example, consider the following function:

f(a, b, c) = a · (b · c+ b · c (6.3)

One can transform all ANDs and ORs in the circuit into majority gates, but this strategy

will not harness the majority functionality in the circuit. Since the trivial transformation does not

guarantee optimal results, different methods have been proposed to obtain better implementa-

tions (ZHANG et al., 2004; ZHANG; GUPTA; JHA, 2005; KONG; SHANG; LU, 2010; WANG

et al., 2013).

The standard design flows usually divide the target circuit into small functional blocks that

have known implementation and design cost (possibly more than one cost). For this reason, works

discussing majority-based logic synthesis have focused on the synthesis of simple functions.

This way, traditional circuit synthesis flows can be applied to majority-based synthesis.

6.2.3 AOI Based Logic Synthesis

A natural way to extend the set of basic building blocks is to consider structures compris-

ing more than one majority gate as a basic building block. For instance, the implementation of

two majority gates connected in series can represent and AND-OR-Inverter gate, as expressed in
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the following:

AOI(a, b, c, d, e) = d · e+ (d+ e) · (a · (b+ c) + b · c) (6.4)

However, the utilization of different basic building blocks is only useful if such blocks

can be implemented in an optimized way when compared to the simple association of basic gates.

For example, in CMOS design, complex gates can be implemented without being an association

of NAND, NOR, and INV gates.

In (MOMENZADEH et al., 2005), Momenzadeh et al., proposed an optimized imple-

mentation for two series-connected majority gates, hereafter referred to as AOI gate. Due to the

performed layout optimizations, the final area of the proposed is 1.77 larger than the area of a

majority gate, instead of two times larger. Another interesting property of the gate proposed

in (MOMENZADEH et al., 2005) is that the inputs of the second majority gate are inverted,

changing the logic behavior from Equation (6.4) to Equation (6.5):

AOI(a, b, c, d, e) = d · e+ (d+ e) · (a · (b+ c) + b · c) (6.5)

The presence of negated inputs, without the explicit existence of an inverter gate, is an

attractive feature due to the cost of adding inverters in QCA designs. The inverter area in QCA

technology is 1.66 times greater than the majority gate area, which causes the inverter to be con-

sidered area expensive. Therefore, negated inputs with no area penalty have potential to reduce

the design area. The trivial implementation of Equation (6.5), using majority gates and inverters,

requires 2 majority gates and 2 inverters. Therefore, the normalized area of the straightforward

implementation of Equation (6.5) is 5.32. This means that such an implementation is 3 times

greater than the AOI gate proposed in (MOMENZADEH et al., 2005). It must be noticed that

when the AOI gate is used in a circuit, the negated inputs change from the second to the first

stage. Thus, Equation (6.5) is modified into Equation (6.6):

AOI(a, b, c, d, e) = d · e+ (d+ e) · (a · (b+ c) + b · c) (6.6)

Using the AOI gate as only basic primitive (no single majority gates are used), Momen-

zadeh et al. implemented the same set of 13 functions presented in (ZHANG et al., 2004).

Results have indicated that implementing circuits using only AOI gates can be advantageous

regarding area compared to circuit implementations using only majority gates and inverters (MO-

MENZADEH et al., 2005).
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6.2.4 Library Creation Methodology

The main idea of previous works considering majority-based logic synthesis is to imple-

ment large circuits using smaller gates (ZHANG et al., 2004; ZHANG; GUPTA; JHA, 2005;

KONG; SHANG; LU, 2010). In overall, all proposed methodologies consist of two main steps:

(1) decomposing the circuit in n-feasible functions, and (2) determining the implementation of

each n-feasible function. Existing methodologies simply use the well-known SIS tool (WANG

et al., 2013) to perform circuit decomposition. Thus, there is no significant difference between

the decomposition step used in each methodology besides different scripts that perform the task

of decomposition. In the second step, some works obtain the implementations by synthesizing

each n-feasible on-the-fly (ZHANG; GUPTA; JHA, 2005) whereas others pre-synthesize all

n-feasible functions and then use a look-up table to determine the implementation of a given

n-feasible function (ZHANG et al., 2004; KONG; SHANG; LU, 2010). In this sense, all previous

methodologies determine a set of functions (library), and they differ from each other on the value

used for n (3 or 4) as well as on the implementations used for each n-feasible function in the

library.

From the previous discussion, it is clear that the main difference of existing majority-

based synthesis methodologies is the implementation of the functions in the library. Therefore,

to perform a fair comparison among different synthesis approaches, it is interesting to have a

generic library generation methodology. Such methodology should be able to consider different

values for n as well as diverse basic building blocks.

The algorithm to synthesize majority gates is presented in Algorithm 8. The method

CREATE_INITIAL_FUNCTIONS (line 3) generates the set of all 0-cost functions. These

functions are input variables in both directed and complementary forms as well as constants

true and false, which are in optimal form. The method ASSOCIATE (line 9-21) represents

the partial order in FC. The method to synthesize majority gates is as follows (line 11-15).

GET_INDECES_MAJ (line 12) is implemented according to the cost function. The cost function

is chosen as the number of majority gates although any other cost function, such as logic depth

and number of interconnections, could be addressed similarly. The term k-cost function is used

hereafter to refer to a function with cost k, i.e., the implementation of f requires k majority

gates.

Since the majority function is symmetrical, there is no need to consider different ordering

for f1, f2 and f3. In order to generate k-cost functions, all (k-1)-cost functions must be already

known. When an implementation for a function f is first found with a cost c, the optimal
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implementation cost for f is c. In other words, f is a c-cost function. The general composing

rule is that when (C+1)-functions are generated, three functions f1, f2 and f3 are combined such

that the sum of their costs is C (line 14).

Algorithm 8 FC-EXACT-MAJ-AOI Algorithm
1: function CREATE_ALL_FUNCTIONS (n, useMAJ, useAOI)
2: i← 1
3: B[0]← CREATE_INITIAL_FUNCTIONS ()
4: while any function is not synthesized do
5: B[i]← ASSOCIATE (B, i, useAOI)
6: i← i+ 1

7: return B
8:
9: function ASSOCIATE (B, i, useMAJ, useAOI)

10: S ← ∅
11: if useMAJ then
12: indecesMaj ← GET_INDECES_MAJ (i)
13: for each idx ∈ indecesMaj do
14: 〈i, j, k〉 ← idx
15: S ← S ∪ COMBINE (B[i], B[j], B[k],MAJ)

16: if useAOI then
17: indecesAOI ← GET_INDECES_AOI (i)
18: for each idx ∈ indecesAOI do
19: 〈i, j, k, l,m〉 ← idx
20: S ← S ∪ COMBINE (B[i], B[j], B[k], B[l], B[m],MAJ)

21: return S

6.2.4.1 Example using Logic Depth Approach

The generation of a majority-gate library comprising 2-input functions is illustrated in

Figure 6.5. In the 0-depth bucket are allocated all variables in the positive and negative polarity

and the constants. In the 1-depth bucket, all functions can be synthesized with just one majority

gate. In the 2-depth bucket, the ‘light gray’ majority gates from the 1-depth (a · b, a · b) are

connected with the 0 constant in a majority gate to compose the a⊕ b function. In the same way,

the dark gray majority gates from the 1-depth (a · b, a · b) are connected with the 0 constant in a

majority gate to compose the a⊕ b function. All 2-variable functions are covered in the three

buckets. Considering all 16 possible functions of 2 inputs, 6 functions are in the 0-depth bucket,

8 functions are in the 1-depth bucket, and 2 functions are in the 2-depth bucket.
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Figure 6.5 – Generation of all functions up to 2 variables using majority gates.

6.2.4.2 Synthesis using the AOI gate

The procedure to generate functions considering AOI gate, represented by Figure 6.6 and

by Equation (6.6), is also described in Algorithm 8. To generate a function f , five functions are

needed. However, since not all inputs are symmetric in the AOI gate, different input orders must

be considered. This means that changing the order of inputs can change the gate functionality.

As an example, if a and e are permuted, the resulting Boolean function is not logically equivalent

to Equation (6.6). More specifically, there are two symmetric groups which are [d, e] and [a, c]

and one anti-symmetric group that is [b, {a, c}]. As the equation Equation (6.6) has 4 AND

operations, 4 OR operations and 4 negations, it is necessary 12 Boolean operations to synthesize

an AOI gate (line 16-20).

Figure 6.6 – Representation of logic gates used in this work. (a) majority gate. (b) AOI gate implemented
using 2 majority gates.

The generation of a mix (MAJ+AOI) library comprising 2-input functions is illustrated in

Figure 6.5. The main differences in the 1-bucket are almost all functions are implemented using
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an AOI gate, except the AND2 and OR2 function. The 2-bucket uses an AOI gate instead of 2

MAJ gates to implement the XOR/XNOR function.

Figure 6.7 – Generation of all functions up to 2 variables using majority and AOI gates.

Once a library is generated, the functions in the library can be used in the synthesis of

larger circuits. This is a common strategy also applied to traditional CMOS designs. That way, it

is possible to investigate the impact of different libraries on digital design using QCA technology.

6.2.5 Circuit Synthesis Methodology

As already mentioned, a common step in existing majority-based circuit synthesis is

to use SIS (SENTOVICH et al., 1992) to decompose the circuit in n-feasible functions. Even

though the possible utilization of well-known tools is desirable for emerging technologies, some

care must be taken when comparing the results. In short, even if all works rely on the same tool,

the way that such tool is utilized can bias the results. This is an issue because improved results

can be simply the consequence of better utilization of an already existing tool rather than the

consequence of a novel idea, which is the main focus of the work.

Arguably, if all scripts used are provided, the adequate utilization of an existing tool can

be considered part of the proposed circuit synthesis methodology. Even though providing the

scripts used is somehow essential to allow some reproducibility of results, comparison with

previous works should make clear what is the gain obtained due to better utilization of existing

tools. Moreover, it should be considered the impact of using a better script on previous works.

Another issue is the fact that there is no optimal script. In this sense, it is possible that if script

A is used then, methodology 1 is better than methodology 2. However, when script B is used,

methodology 2 could be better than methodology 1.
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In this work, a straightforward flow is proposed to synthesize circuits using QCA technol-

ogy. The aim of such flow is to reduce scripting bias that is present in related works (ZHANG

et al., 2004; ZHANG; GUPTA; JHA, 2005; KONG; SHANG; LU, 2010; WANG et al., 2013;

MARTINS et al., 2013). In this sense, it is not the goal of this work to obtain the best possible

design implementation for each circuit. Instead, it aims to provide a circuit synthesis flow in

which, for a given circuit, only the target library changes. This way, a fair comparison between

existing methodologies can be performed.

The proposed flow consists of three steps:

1. The circuit is loaded into ABC tool (Berkeley Logic Synthesis and Verification Group,

2013) and logic optimizations are performed. For this purpose, the“resyn” command is

executed three times. This command reduces both the logical depth and the number of

nodes in the circuit.

2. The circuit is decomposed in n-feasible functions using the command “if –K n –a”. This

command performs area driven technology mapping targeting FPGAs using LUTs of size

n. From such an implementation it is possible to extract how many times each n-feasible

function is instantiated. The value of n is properly chosen accordingly to the maximum

number of inputs in a cell library.

3. The QCA implementation cost of each n-feasible function considered in the circuit imple-

mentation is used to calculate the final circuit area.

6.2.6 Experimental Results

The libraries used in the experiments are described in Table 6.3. It is worth to mention

that Momenzadeh et al. (MOMENZADEH et al., 2005) proposed a handmade library with 13

functions using AOI gates. Analyzing the implementations of these standard functions, the

function f = a · b · c + a · b · c + a · b · c is implemented with 3 AOI gates. However, this

function can be implemented with only 2 AOI gates, as found by the proposed algorithm. The

implementations of this function are shown in Figure 6.9.

The first experiment is a comparison of the 13 standard functions implemented using

AOI (MOMENZADEH et al., 2005) with the MAJ+INV+AOI (MIX_LIB) implementation.

More than half functions have an area improvement since some AOIs in the implementation can

be replaced by a majority gate. The results are presented in Table 6.4.
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Table 6.3 – Libraries used in the experiments.

Lib. alias Max. inputs Basic gates Related work

MAJ3_LIB 3 MAJ, INV (KONG; SHANG; LU, 2010)
MAJ4_LIB 4 MAJ, INV (WANG et al., 2013)
AOI_LIB 3 AOI this work
MIX_LIB 3 AOI, MAJ, INV this work

Table 6.4 – MAJ+AOI+INV versus AOI implementation of 13 standard functions (MOMENZADEH et
al., 2005).

Number of AOI
(MOMENZADEH et al., 2005) Number of MAJ+AOI+INV (proposed approach)

Functions
Number
of AOI

Effective
Area Number of MAJ

Number
of AOI

Number
of INV

Effective
Area

Area
Improvement

(%)

f = a · b · c 1 1.771 0 1 0 1.771 0
f = a · b 1 1.771 1 0 0 1 43.5

f = a · (b⊕ c) 2 3.542 0 2 0 3.542 0
f = a · b · c+ a · b · b 3 5.313 1 2 0 4.542 14.5
f = a · b+ b · c 1 1.771 0 1 0 1.771 0
f = a · b+ a · b · c 2 3.452 0 2 0 3.542 0

f = ((b+ a) · (c+ (b · a)) · (c+ b+ a)) 3 5.313 0 2 0 3.542 33
f = a 1 1.771 1 0 0 1 43.5

f = a · (b+ c) + b · c 1 1.771 1 0 0 1 43.5
f = a · b+, b · c 2 3.542 1 1 0 2.771 21.7

f = a · b+ b · c+ a · b · c 3 5.313 1 2 0 4.542 14.5
f = a⊕ b 2 3.542 1 1 0 2.771 21.7

f = a⊕ b⊕ c 2 3.542 0 2 0 3.542 0
Average 1.85 3.27 0.54 1.15 0 2.58 21.1

Also, the applied approach synthesizes functions with 4-inputs minimally in logic depth.

The results are not guaranteed minimal for majority gate count. The “number of majority gates”

partial order approach was implemented to observe the difference. It was noted that the “number

of majority gates” partial order approach differs from “logic depth” partial approach by only 34

functions of a total of 65536 functions. These functions have a reduction of 3 majority gates

(from 11 to 8) at an increase of logic depth (from 3 to 4). One example of such case is the

function 166916, with two different implementations depicted in Figure 6.8.

The results presented in are the consequence of the technology mapping process instead

of LUT decomposition. In this sense, the library used in this paper (AOI_LIB) is different from

the one presented in (MOMENZADEH et al., 2005), since our implementations are optimal.

Table 6.5 summarizes the results over 40 MCNC benchmarks (YANG, 1991). The

MAJ3_LIB is used as the reference. Also, a positive number represents an increasing whereas a

negative number accounts for a reduction in area or logic depth regarding the reference library.

Comparing the MAJ4_LIB to MAJ3_LIB, there is a slight average improvement of 5% in

area and a significant average improvement of 15% in logic depth. Only a few benchmarks give

a worse logic depth, and a considerable number give a worse area overhead. This is related to the



111

Figure 6.8 – Different implementations for the function 166916.

Figure 6.9 – Implementation of function f = a · b · c+ a · b · c+ a · b · c using AOI gates.

decomposition step which minimized the total number of functions but generated a significant

number of 4-feasible functions compared to the K=3 decomposition.

Comparing the AOI_LIB to the MAJ3_LIB, there is a huge reduction (40%) of the area

and a good reduction in the logic depth (14%). This reduction is explained by the fact of the

computational power of the AOI gate, which contains 2 inverted gates, and eliminates the need

for inverters in the circuit since an inverter can be built upon an AOI gate. The MIX_LIB is

composed by implementations that use majority gates, inverters, and AOI gates, and reduce the

circuit area even more than the AOI_LIB (47%), maintaining the logic depth achieved by the

AOI_LIB. Interesting enough, the MIX_LIB provided an average area reduction of more than

42% compared to the MAJ4_LIB. This illustrates the importance of layout optimization in QCA

design.
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Table 6.5 – Results for MAJ/AOI synthesis over MCNC circuit benchmarks (MARTINS et al., 2014).
Benchmark MAJ3_LIB Cost MAJ3_LIB Depth MAJ4_LIB Cost MAJ4_LIB Depth AOI_LIB Cost AOI_LIB Depth MIX_LIB Cost MIX_LIB Depth

9symml 645.52 19 -24.9% -15.8% -44.6% -10.5% -51.1% -10.5%
alu2 849.14 41 -3.0% -22.0% -43.9% -17.1% -50.3% -17.1%
alu4 1565.65 42 -3.6% -19.0% -43.0% -19.0% -48.8% -16.7%
apex6 1188.43 21 9.8% -38.1% -34.6% -9.5% -42.1% -9.5%
apex7 324.94 17 -2.6% -23.5% -34.1% -17.6% -41.4% -17.6%
c8 252.28 11 2.0% -27.3% -43.8% -27.3% -48.4% -27.3%
cht 452.88 5 -46.9% -20.0% -56.6% 0.0% -56.8% 0.0%
comp 218.62 13 -10.1% 7.7% -40.9% -15.4% -46.2% -15.4%
cordic 115.31 12 10.7% -8.3% -46.2% -16.7% -51.6% -16.7%
count 293.27 20 2.8% -30.0% -39.0% -35.0% -51.6% -35.0%
cu 109.64 10 -2.7% -20.0% -50.0% -30.0% -53.5% -30.0%
dalu 2311.16 28 7.3% -25.0% -38.2% -21.4% -46.8% -21.4%
des 8724.43 22 -7.6% -9.1% -41.2% -9.1% -48.5% -9.1%
example2 456.91 11 10.7% -18.2% -29.1% -18.2% -37.0% -18.2%
f51m 176.62 10 18.3% -10.0% -48.9% -10.0% -52.9% -10.0%
frg1 244.94 20 4.5% -5.0% -41.4% -15.0% -49.9% -15.0%
i10 3939.48 47 -2.4% -21.3% -39.3% -27.7% -45.2% -27.7%
i2 534.87 15 4.5% -20.0% -51.7% 0.0% -56.1% 0.0%
i3 285.94 7 -55.9% -28.6% -22.0% 0.0% -34.9% 0.0%
i4 399.25 14 -38.4% 0.0% -21.0% -14.3% -37.3% -14.3%
i5 251.99 14 -5.7% 14.3% -12.9% -28.6% -15.6% -28.6%
i6 988.78 6 3.7% -16.7% -43.4% 0.0% -54.5% 0.0%
i7 1558.65 6 -37.9% -16.7% -47.3% 0.0% -50.9% 0.0%
i8 2259.48 19 -0.6% -31.6% -37.8% -10.5% -46.2% -10.5%
i9 1573.62 15 -10.8% -20.0% -48.5% 0.0% -52.9% 0.0%
k2 2739.08 20 5.1% -5.0% -34.5% -15.0% -44.7% -15.0%
lal 165.63 10 12.7% -20.0% -43.4% -10.0% -48.5% -10.0%
my 170.62 17 0.0% 0.0% -33.6% 0.0% -48.0% 0.0%
pair 3226.25 24 -7.5% -8.3% -41.1% -12.5% -49.2% -12.5%
pcle 96.32 10 24.2% -20.0% -32.0% -10.0% -44.0% -10.0%
pcler8 141.64 10 -16.5% 10.0% -25.0% 0.0% -38.6% 0.0%
sct 129.30 8 2.6% 0.0% -43.8% -12.5% -47.4% -12.5%
term1 214.29 12 -7.8% 0.0% -42.2% -25.0% -49.0% -25.0%
ttt2 330.92 11 2.4% -9.1% -45.4% -9.1% -50.3% -9.1%
unreg 203.62 7 -5.2% -28.6% -57.4% -42.9% -57.4% -42.9%
vda 1380.02 16 0.6% -6.3% -36.6% -12.5% -45.9% -12.5%
x1 627.86 14 -0.8% -28.6% -42.2% -21.4% -49.0% -21.4%
x2 105.31 7 -7.6% 0.0% -51.2% -14.3% -54.9% -14.3%
x3 1272.75 22 -1.2% -45.5% -33.1% -9.1% -43.5% -9.1%
x4 795.14 10 -12.4% -10.0% -45.5% -20.0% -51.0% -20.0%

Average 730.66 12.93 -4.8% -14.9% -40.2% -14.2% -47.3% -14.1%
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6.3 Synthesis of Spin-diodes circuits

In the spin-diode technology, being 2-input NOR and Exclusive-OR as basic gates,

current CMOS-driven logic synthesis tools and algorithms are not necessarily the most efficient

ones. The spin-diode logic family presents particularities that compromise the quality of results

for algorithms developed specifically for CMOS IC design. For instance, the AND2 gate

implemented using spin-diodes requires three diodes, which is expensive, compared to an NOR2

gate, which requires only one diode. Therefore, the use of CMOS algorithms has deleterious

effects, as these algorithms are not optimized to avoid AND and utilize XOR gates. In this sense

a more detailed analysis of the logic in spin-diodes is necessary.

In this section, we propose a set of algorithms that enable the efficient synthesis of circuits

using the spin-diode technology. This modification consists of specialized algorithms for the

synthesis of functions using diodes that consider the characteristics of the spin-diode technology

to generate efficient implementations. To evaluate the quality of these algorithms, we will use

these algorithms to transform a CMOS library into a spin-diode library.

6.3.1 Challenges of Spin-Diode Technology

In the remainder of this section, the following notation is used. The INV operation can

be represented as ! or bar. The NOR, XNOR, and OR operators are −, 	, and +, respectively.

Also, the representation of the INV/NOR/XNOR gates is depicted in Figure 6.10. The wired-OR

is a simple junction of wires.
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Figure 6.10 – Spin-diode schematic (a) INV (b) NOR (c) XNOR gate (FRIEDMAN et al., 2012b).
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6.3.1.1 Use of Wired-OR Gate

As discussed earlier, OR operations can be performed by simply connecting two wires.

However, when this operation is performed, the input signals are lost. If a wired-OR is used

incorrectly, circuit operation can be compromised. As an example, an alternative implementation

of the AND2 gate is considered. The AND2 function can be written as:

((A+B)	 A)	B (6.7)

Transforming Equation (6.7) directly into an equivalent diode network, the circuit shown

in Figure 6.11 (a) is obtained. One possible method for improving this implementation is to

replace the diode-OR with a wired-OR, aiming to obtain the circuit presented in Figure 6.11(b),

which utilizes one less diode than the implementation shown in Figure 6.11(a). However, when a

wired-OR is used, the actual implementation becomes as shown in Figure 6.11(c). As can be

seen, the values of both A and B inputs are replaced by the value of A+B. Hence, the function

implemented is:

A ·B = ((A+B)	 (A+B))	 (A+B)

= 1	 (A+B) (6.8)

= A+B

which is not the desired function. In some cases, the utilization of the wired-OR does

not cause a gate malfunction but can have an adverse impact on other gates. Though this gate

does implement the correct function, input ‘A’ is replaced with A + B throughout the circuit.

Consequently, if A is also used in another gate, this gate receives the value of A+B instead.

To ensure correct operation, a wired-OR is not used when: (1) any of the signals has

fan-out greater than one or (2) when any of the signals is a primary gate input.

6.3.2 Implementation of Unate Functions

There are two interesting behaviors in unate functions. These behaviors are discussed in

this section.
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Figure 6.11 – Second implementation of an AND2 function using Eq. 1 (a) with diode-OR (b) replacing
the diode-OR by a wired-OR (c) the final result using wired-OR.

B

VDD VDD

AND2(A,B)

Figure 6.12 – Third implementation of an AND2 gate, considering fanin 1 for the input A.

6.3.2.1 XNOR Gates in Unate Functions

An interesting feature of spin-diode technology is the XNOR primitive gate. Since the

XNOR is binate, the utilization of this gate in the optimal implementation of unate functions is

counterintuitive. In order to explain this interesting behavior, consider the implementation (using

spin-diodes) of the material implication function as:

IMP (A,B) = (A	B + A) (6.9)

If we expand Equation (6.9) in order to achieve a SOP:
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IMP (A,B) = (A ·B + A ·B) + A

= A ·B + A (6.10)

= B + A

Notice that the ‘A’ literal from the XNOR function, represented using a sum of products,

is eliminated from the final expression, because of the absorption law applied in second to the

last step.

6.3.2.2 Logic Sharing in Read-Once Functions

The read-once functions (LEE; WANG, 2007) are very important in circuits, as they have

unique characteristics that play a central role in technology mapping and testability (KEUTZER,

1988). A read-once (RO) form is a factored form (using AND, OR, INV) where each variable

appears at most once. Therefore, a Boolean function is an RO function if it can be represented

by an RO form. For instance, the function F (A,B,C,D) = A · B + CḊ is a read-once

function because each variable of F in the factored form appears once. However, the function

G(A,B,C) = A · (B +C) +B ·C is not a read-once function, as the variables B and C appear

twice.

The read-once definition is based on Boolean basic operations (AND, OR, INV). As the

spin-diodes have different basic operations (XNOR, NOR, OR, INV), the classical definition

of read-once forms does not hold for spin-diode factored forms. CMOS factoring algorithms

minimize literals in the expression. This is equivalent to reducing the number of operators. For

the spin-diode technology, the relation is not direct. As the wired-OR has no implementation

cost, reducing the number of spin operators does not imply reducing the number of devices.

Moreover, factoring considers direct and negated variables with the same cost, whereas the

inverter on spin-diode translates directly into a device.

As read-once forms are minimal, there is no possibility for logic sharing in CMOS. In

spin-diode logic, there are read-once functions in which logic sharing occurs. For example, the

OR3 function can be implemented as shown in Figure 6.13. Notice that the result of NOR(C, B)

is used in both the INV and XNOR diodes, exemplifying the logic sharing.
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Figure 6.13 – Implementation of OR3 function using logic sharing.

6.3.3 Naive Implementation from Factored Forms

A common approach to design circuits using emerging technologies is to adapt estab-

lished algorithms for CMOS technology. In the context of digital circuits using spin-diodes, a

factorized CMOS expression, written using AND/OR and INV as basic operators can be directly

transformed into an equivalent diode network. However, due to the very different primitive gates,

achieving good results is not always possible. To illustrate this problem, consider the AOI22

function. The minimal factored form of AOI22 is:

AOI22(A,B,C,D) = (A+B) · (C +D) (6.11)

The direct transformation utilizes four inverters, one AND2 gate and a wired-OR. In this

particular case, a two diode implementation of the AND2 gate (Figure 6.12) can be used and six

diodes are required. This implementation has two more diodes than the minimal implementation

((B − C) + (A− C) + (A−D) + (B −D)). Another example is the majority gate, which is

represented by the minimal factored form as:

MAJ(A,B,C) = A · (B + C) +B · C (6.12)

To compute B + C a diode-OR is required. To perform A · (B + C), a 2-diode-AND

(Figure 6.12) can be used. The remaining B · C term needs a three-diode-AND (B − C). The

final OR can be implemented using a wired-OR. Hence, a total of seven diodes is required to

implement the majority gate. Clearly, the direct transformation is not efficient and more advanced

methods should be investigated.
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6.3.4 Fanout in Spin-Diode Technology

In a circuit, the same signal can be used by several different gates. In a traditional CMOS

implementation, all receiving gates can be placed in “parallel” as shown in Figure 6.14(a).

However, as the number of receiving gates increases the load capacitance of the driver gate also

increases. This leads to a slower signal transition that can prejudice the circuit timing and power

performances. Similarly, the number of transistors, as well as their size, controlled by the signal

in a single receiving gate also impacts the output capacitance of the driver gate. CMOS circuits

should be synthesized considering these factors.

If the spin-diode technology is targeted, the signal distribution is different. Since the

spin-diode logic family is current-based, the same signal can drive as many gates as required

without concern regarding the increased load capacitance (FRIEDMAN et al., 2012a). However,

receiving gates cannot be placed in parallel because the input current for each gate is reduced,

leads to a logical error (FRIEDMAN et al., 2012a). In the spin-diode logic family, the receiving

gates should be connected as shown in Figure 6.14(b).

Figure 6.14 – Fanout in CMOS (a) and in spin-diode technology (b).

In short, there are two main differences between CMOS and spin-diodes regarding

signal fan-out. Spin-diodes have a significant advantage in the fact that the delay of the gate is

insensitive to the fan-out and, consequently, there is no limit to the number of gates a gate can

drive. This fact should simplify logic synthesis. On the other hand, physical synthesis using

spin-diodes tends to become more difficult because routing algorithms have less freedom.
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6.3.5 Synthesis of Boolean Functions Using Spin-Diodes

As presented in Section 2.2.3, the basic logic gates using magnetoresistive spin-diodes,

hereafter referred simply as diodes, are the XNOR/NOR/INV gates. The OR is a special case,

where two wires are connected, avoiding the use of diodes. It is, therefore, important to develop

an algorithm that can synthesize Boolean functions using the basic gates of the spin-diode

technology, and use these synthesized functions as cells in a standard cell design flow. To

implement efficient algorithms able to synthesize spin-diode logic, we need to take advantage of

the functions implemented by the primitive gates (INV, XOR2, NOR2, OR).

The following algorithms to synthesize Boolean functions into spin-diodes using FC

will be proposed. The first one synthesizes all functions up to four inputs. This algorithm is

then improved with a logic sharing algorithm. The second algorithm is a modification of the

algorithm presented in (MARTINS et al., 2010), considering the spin-diode operators, being able

to treat functions up to eight inputs. The third algorithm traverses an AND/OR expression tree,

translating then in a spin-diode tree, considering the wired-OR and 2-diode AND.

6.3.5.1 Algorithm 1: Generate all functions up to 4-inputs Considering Logic Sharing

The algorithm FC-SPIN (MARTINS et al., 2013) can generate all minimal fanout-free

functions up to four variables, considering the set of operators INV, NOR, XNOR,OR, being the

OR optional.

Algorithm 9 shows the pseudo code for FC-SPIN. CREATE_ALL_FUNCTIONS is the

main method of the algorithm and will generate all minimum implementations up to n inputs. B

is a list of sets of bonded-pairs, which will contain all implementations, separated by the number

of diodes. First, all possible implementations containing zero diodes (i.e., variables in direct form)

will be stored in a set (line 3). The while loop (line 5-7) generates all possible implementations

in a crescent order, through the ASSOCIATE method. The main idea is to combine previous

implementations to generate new ones, with cost i. The procedure ASSOCIATE has the task of

creating all function with i diodes. This is performed inserting an inverter on top of all functions

implemented with i− 1 diodes (line 11), and combining two functions, using NOR and XNOR

diodes or the wired-OR (line 14-16), using the COMBINE method. The COMBINE method

simply does a Cartesian product between two sets, using the operator defined (OR, NOR, XNOR),

and if the resulting function is already synthesized, the implementation is discarded. Moreover,

in the traditional CMOS approach, the combination of two functions also increases the cost of

the resulting function, regardless of how the functions are combined. When using spin-diode
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logic, this observation no longer holds because the wired-OR operator has cost zero. Also, there

are restrictions on the utilization of the OR operator, as discussed in Section 6.3.1.1. Indeed,

the partial order chosen is the number of diodes implemented (differently from the number of

literals presented in Section 5.1.

Algorithm 9 FC-SPIN Algorithm
1: function CREATE_ALL_FUNCTIONS (n, useOR)
2: B ← ∅
3: B[0]← CREATE_INITIAL_FUNCTIONS (n)
4: i← 1
5: while any function is not synthesized do
6: B[i]← ASSOCIATE (B, i, useOR))
7: i← i+ 1

8: return B
9:

10: function ASSOCIATE (B, i, useOR)
11: S ← CREATE_INV (B[i− 1])
12: for k ← 0, (i/2)− 1 do
13: l← i− k − 1
14: S ← S ∪ COMBINE (B[k], B[l], NOR)
15: S ← S ∪ COMBINE (B[k], B[l], XNOR)
16: if useOR = true then S ← S ∪ COMBINE (B[k + 1], B[l + 1], OR)

17: return S

To further reduce the number of diodes implementing Boolean functions, a strategy

applying logic sharing can be considered. The logic sharing in our approach is divided into two

parts: the logic sharing algorithm for a spin-diode expression (called LSE) and the algorithm

to generate all four-input functions with logic sharing (called FC-SPIN-LS). The LSE is a

topological logic sharing, where the algorithm traverses the spin logic tree and looks for nodes

that implement the same function. This is very similar to the extraction algorithm (MICHELI,

1994), where a common subexpression can be extracted from a Boolean network. The two

main differences are that the extraction algorithm extracts common subexpressions from a

Boolean network, where the LSE algorithm extracts subfunctions only from the tree. The second

difference is that LSE algorithm can treat the wired-OR operation. For instance, suppose the

following spin-diode expression:

F (A,B,C) = C 	 ((A	 (C 	B)) + (C 	B)))

G(B,C) = (C 	B)
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F (A,C,G) = C 	 ((A	G) +G))

In this case, the cost of F initially is 5 diodes. The extraction of G allows the reduction

of one diode, allowing F to be implemented with 4 diodes. Suppose now the following case:

F (A,B,C) = C 	 ((A	 (C 	B)) + (C 	B)))

G(B,C) = (C 	B)

F (A,C,G) = C 	 ((A	G) +G))

The reason that G(B,C) can not be (C 	B) is because of destructive behavior of the

wired-OR operator, as discussed in Section 6.3.1.1. The LSE algorithm does not perform logic

sharing of the subfunctions directly connected to the wired-OR operator. In this case, F will be

implemented with five diodes.

The algorithm FC-SPIN-LS is a modified version of the algorithm presented in (MAR-

TINS et al., 2013), considering the LSE algorithm to count the number of diodes in a spin-diode

expression. Due to the logic sharing, the partial order does not work as expected when the

combinations are performed. For example, suppose the following pair of bonded-pairs to be

combined using an OR operator.

F = A− (C −D)

G = B − (C −D)

H = F +G = (A− (C −D)) + (B − (C −D))

Clearly, both F and G functions are implemented using 3 diodes (2 NORs and 1 INV),

but H is implemented using only 4 diodes, due the logic sharing ((C −D)). The H function

in can generate a cascade effect, where a higher cost (in number of diodes) I function could be

created previously using the H function, needing to be reimplemented as well.

The modifications from FC-SPIN to FC-SPIN-LS are as follows. The first step is to treat

the violations that occur due to the logic sharing, as presented earlier. The main idea is when

a violation happens in the ASSOCIATE method, store all costs of these functions. Select the

lowest cost c. The index i from CREATE_ALL_FUNCTIONS now must be c + 1, instead of

i+ 1. In other words, the algorithm will ‘reset’ to a position where it will redo all combinations

using these newer functions. There are two possible cases when a violation occurs: The function

does not exist yet, or it is already implemented with a higher number of diodes. If the function
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does not exist, the implementation is inserted in the right set. If the function already exists,

besides inserting the implementation in the right set, the old implementation must be deleted

(each function must have only one implementation).

6.3.5.2 Algorithm 2: Factorize a Function using a Heuristic Approach

To synthesize functions with more than four variables, a heuristic approach is proposed.

We implemented a modified idea of the Algorithm 3, adapting the heuristics for spin-diode logic.

Algorithm 10 shows the pseudo code for the FC-SPIN-HEUR. The algorithm starts testing if the

function is a constant or variable (line 2, 4). In this case, the solution is trivial. After this initial

checking, the function is decomposed, and all cofactors are extracted (line 6). These cofactors

are factored (line 7) by a recursive call to the main method (line 14). The CF variable (line 7)

stores all implementations of the cofactors.

These cofactors (and their implementations) are now separated by the order concept. Two

Boolean functions can be compared and classified according to their relative order, which can be:

equal, larger (LG), smaller (SM) and not-comparable (NC). It is said that F1 is larger (smaller)

than F2 when the on-set of F1 is a superset (subset) of the on-set of F2. Two functions are equal

when they have equal on-set and off-set. They are not-comparable when the on-sets are not con-

tained by each other. The rules of ASSOCIATE_COFACTORS and GENERATE_SOLUTIONS

(line 8-9) are described in Table 6.6. These rules are originated from a Boolean analysis of

associations that contribute to finding the target function f . The only difference between the

ASSOCIATE_COFACTORS and GENERATE_SOLUTIONS besides the different set of rules

are that new functions found in ASSOCIATE_COFACTORS are stored, whereas in GENER-

ATE_SOLUTIONS are not, since this method aims only implementations of f . This algorithm

can also take advantage from LSE algorithm, to reduce the number of diodes.

Table 6.6 – Association rules of FC-SPIN-HEUR.
RULES

ASSOCIATE_COFACTORS GENERATE_SOLUTIONS
SM + NC
SM 	 NC
SM 	 SM

SM + SM

LG - NC LG - LG
NC + NC
NC - NC
NC 	 NC

NC 	 NC
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Algorithm 10 FC-SPIN-HEUR Algorithm
1: function FACTORIZE (f )
2: if CONSTANT (f ) then
3: return SOLUTION_CONST
4: if VARIABLE (f ) then
5: return SOLUTION_V AR
6: COF ← GENERATE_ALL_COFACTORS (f )
7: CF ← FACTORIZE_COFACTORS (COF )
8: AF ← ASSOCIATE_COFACTORS (CF )
9: SOL← GENERATE_SOLUTIONS (AF )

10: return SOL
11:
12: function FACTORIZE_COFACTORS (COF )
13: for each g in COF do
14: CF ← CF ∪ FACTORIZE (g)
15: return CF

6.3.5.3 Algorithm 3: Transform a logic tree into a spin-diode network

The heuristic synthesis finds difficulties for functions with more than eight variables

since the number of cofactors and combinations increase exponentially. In this sense, another

approach is necessary to treat more than variables. The naive transformations as shown in

Section 6.3.3 can be improved, considering a set of transformations. Table 6.7 indicates the set

of rules developed for the LST (Logic tree to Spin tree Transformation) algorithm. The input

of this algorithm is a binary logic tree (preferably a factorized one). This set of rules explores

the following concepts: XOR symmetric and antisymmetric properties, DeMorgan Law and the

2-diode AND. The symmetric cases were omitted (L ◦R). The notation is as follows. L and R

represents the left and the right side of the logic tree operator, respectively. LS and RS represents

the transformed part as the spin tree of L and R, respectively. When in the original tree L and/or

R is inverted, LS (RS) has an inverter on top. LSINV
(RSINV

) represents LS (RS) without the

inverter.

Some rules cost zero diodes, as the LSINV
	R. This is because LSINV

is implemented

with less one diode than LS . Adding the cost of one diode through the XNOR operation, the

transformation does not add diodes. Nevertheless, the number of diodes in each operation

continues to be the sum of LS and RS . To count the total number of diodes, the LSE algorithm

can be used.
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Table 6.7 – Transformations applied to convert a logic tree into a spin tree.

Transformation
rules Logic tree Spin tree

Transformation
cost (# diodes)

AND
L ·R LS +RS 3

(LS +RS)	 LS 2

L ·R RS − LSINV
1

L ·R LSINV
−RSINV

1

OR

L+R
LS −RS 2
LS +RS 0

L+R
(RS 	 LSINV

) + LS 1
LS +RS 0

L+R LS +RS 0

XOR
L⊕R (LS 	RS) 2

L⊕R LSINV
	RS 0

L⊕R LSINV
	RSINV

0

6.3.6 Experimental Results

In this section, the quality of the proposed spin logic algorithms are evaluated (FC-SPIN,

FC-SPIN-LS, FC-SPIN-HEUR, and LST), in comparison to the FC-SPIN algorithm of (MAR-

TINS et al., 2013). Also, a technology mapping study using the standard cell methodology is

performed. Benchmarks circuits are mapped to spin-diode libraries using a commercial tool.

The platform used was an Intel Core i5 processor with 2GB main memory.

6.3.6.1 Algorithm Comparison

To analyze the proposed algorithms, we start evaluating the FC-SPIN algorithm, compared

to the state-of-the-art ABC (Berkeley Logic Synthesis and Verification Group, 2013) and a

commercial tool. The platform used was an Intel Core i5 processor with 2GB main memory.

The first step was the generation of an optimal fanout free spin-diode networks for all

functions with up to four inputs, stored in a look-up table (LUT). To analyze the impact of

considering the OR gate, two LUTs were generated. The first (FC-SPIN) considers the complete

set of operators INV, NOR, XNOR, OR, taking into account the OR gate electrical characteristics

in the network, as discussed in Section III, allowing OR gates only in internal nodes. The second

(FC-SPIN w/o OR) is synthesized using a partial set of operators INV, NOR, XNOR.

The execution time to generate each LUT was about one minute. The file with the LUT
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occupies less than 3 MB, and the LUT loaded in memory occupies less than 50 MB, so making it

feasible in a logic synthesis tool. It is worth to mention that all 4-input functions were synthesized

using at most nine spin-diodes when considering the OR gate, and ten gates when excluding the

OR gate.

To analyze the synthesis of spin-diode networks using two logic synthesis tools, ABC,

and a commercial tool was applied. These tools were used to perform the technology mapping

with a set of 3982 representative 4-input functions, grouped into permutation equivalent classes

(4-P set). The gates present in the library were: INV (1), AND (3), NAND2 (2), OR2 (2),

NOR2 (1), XOR2 (2), and XNOR2 (1). The gate cost is defined as the required number of

spin-diodes necessary to implement such gate, shown within the parenthesis. Since these tools

cannot evaluate when it is safe to use the OR operator, this gate is provided only in the version

NOR+INV to ensure a correct implementation. The scripts used in the ABC tool to perform

the technology mapping used AIGs primarily with the choice approach or a supergate library

approach, having area reduction as the main objective.

The results of the technology mapping performed in ABC and the commercial tool for

each function is compared with the FC-SPIN algorithm, and a histogram is shown in Figure 6.15.

Positive (negative) numbers indicate a worse (better) implementation based on spin-diode count,

compared to the algorithm disallowing the wired-OR. It is noted that the FC-SPIN only guarantees

a minimal fanout free network. In this sense, there are a few cases that these tools can exploit

logical sharing to generate a network with fewer spin-diodes.

Another important consideration is the impact of the OR gate in the diode count, gen-

erating an implementation overhead in some functions with up to three diodes. On the other

hand, the ABC and the commercial tools generate a considerable number of functions with more

than five diodes compared to the optimal implementation, representing 1250 (31.39%) and 2022

(50.78%) functions, respectively.

An analysis of the overall results of the algorithms is shown in Figure 6.16, which shows

the total diode count for the 4-P set. The FC-SPIN disallowing the wired-OR has an overhead

of 4.63% against the version using the wired-OR. To have a fair comparison, the ABC and the

commercial tools are compared to the FC-SPIN without the wired-OR, having an increase of

44.54% and 61.51% in diode count, respectively. These results demonstrate that logic synthesis

tools are very far from optimality, mainly when considering technologies that do not have

AND/OR/INV as basic gates. This considerable reduction allows generating very compact gates

that will reduce the final area of circuits.
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Figure 6.15 – Histogram of the differences from each algorithm compared to FC-SPIN using the
wired-OR (MARTINS et al., 2013).

Figure 6.16 – Overall spin-diode count for the 4-P set (MARTINS et al., 2013).

After a detailed analysis of the FC-SPIN, two analyses are made: the improvement of

logic sharing and the quality of the heuristics. The benchmarks used for both analyses are the

set of all functions of up to four inputs. For the evaluation of the transformation rules, two

factorized forms were used: all functions minimally factored up to four inputs, with or without

the XOR operator (MARTINS; RIBAS; REIS, 2012). Additionally, the naive implementations

were also synthesized using both sets of factorized forms. Also, synthesis with ABC (Berkeley

Logic Synthesis and Verification Group, 2013) and a commercial tool were also included, for all

functions of up to 4 inputs, with the same configuration and scripts used in (MARTINS et al.,

2013). Figure 6.17 presents the results. The red bar represents the reference algorithm; the green

bars represent the proposed algorithms, the orange bars the naive transformations and the blue

bars, logic synthesis tools.
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Figure 6.17 – Histogram of the differences from each algorithm compared to FC-SPIN (MARTINS et
al., 2015b).

As expected, the FC-SPIN-LS can further reduce the number of devices, compared

to FC-SPIN using the OR with a reduction of 3.3% in the total count. The set of improved

functions represents 18.0% of all functions synthesized. Each function of this set had an average

improvement of 16.4%, with a reduction of one or two diodes, due to logic sharing. The heuristic

algorithm FC-SPIN-HEUR increased the number of the diodes in almost 21% compared to

FC-SPIN. However, this algorithm can scale to eight variables, whereas both FC-SPIN and

FC-SPIN-LS are not.

For more than eight variables, it is necessary to use the LST algorithm. This algorithm is

heavily dependent on the input (a binary tree). Therefore, factored forms that included the XOR

operation yield better results, as the logic trees tend to have fewer operators. This is confirmed

by the results of LST using a factorized tree with and without XOR, increasing by 37.1% and

114.0%, respectively, when compared to FC-SPIN. The naive transformation of the factorized

tree consists of directly translating the AND, OR, and XOR operators. The AND translation can

be a two or three diode implementation (discussed in Section 6.3.3). The OR translation can be

a wired-OR or a two diode implementation(NOR+INV). Finally, the XOR translation is a two

diode implementation (XNOR+INV), and the INV translation is a one diode implementation.

This transformation leads to bad results, increasing the number of diodes using the factored
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forms with and without XOR, by 101.8% and 200.6%, respectively. The increase in the number

of diodes compared to LST with and without XOR is of 47.2% and 40.4%, respectively.

The execution time to synthesize all four input functions in FC-SPIN is 2 minutes, in

FC-SPIN-LS is 9 hours (due to the considerable number of rollbacks), in FC-SPIN-HEUR is

20 minutes, and in LST is less than 1 second. These results demonstrate that FC-SPIN-LS can

reduce the number of the diodes. The heuristic algorithms presented, FC-SPIN-HEUR and LST,

made a reasonable trade-off between quality and scalability. These algorithms will be applied in

a standard-cell flow.

6.3.6.2 Examples of Synthesized Logic Gates

One possible advantage of spin-diodes over traditional CMOS is the likely reduction of the

number of devices required to implement a Boolean function. Such a reduction is expected due to

both the simple XNOR gate and the wired-OR. Additionally, in spin-diode logic, complementary

devices are not needed. An example of the influence of the XNOR gate is a 3-input comparator

circuit COMP3 (F = A · B · C + A · B · C), the output of this gate is 1 iff all inputs have the

same value. The implementation of the COMP3 gate utilizes five diodes (two XNORs, two

inverters, and one NOR), as illustrated in Figure 6.18.
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Figure 6.18 – Spin-diode logic circuit for COMP3F = A ·B · C +A ·B · C.

An example of the importance of the wired-OR is the implementation of the AOI22

function (F (A,B,C,D) = A ·B + C ·D ), which schematic is illustrated in Figure 6.19. The

OR wire is applied to the output of the four diodes. Without the wired-OR, the cost of AOI22 is

seven diodes.
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Figure 6.19 – Spin-diode logic circuit for AOI22(A,B,C,D) = A ·B + C ·D.

Two other common gates in CMOS technology are the majority MAJ(A,B,C) =

A ·B + A · C +B · C and minority MIN(A,B,C) = A ·B + A · C +B · C voters. Each of

these gates is implemented using 3 diodes. Figure 6.20 shows the schematics for the majority

and minority voters.
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(b)
Figure 6.20 – Spin-diode logic circuit for a majority voter (a) and minority voter (b).

The full-adder and half-adder are basic building blocks for the design of arithmetic

circuits. The schematic of a half adder is depicted in Figure 6.21. In Figure 6.22, a full-adder

implementation using five spin-diodes is presented. The multiplexer is another common element

in the digital design, particularly in encoders and decoders. A 2-to-1 multiplexer can be designed

using three diodes as shown in Figure 6.23. Both the full-adder and multiplexer presented

in (FRIEDMAN et al., 2012b), utilize one more diode than the implementation proposed herein.

Sequential elements are also essential to digital design. An RS latch can be found

in (FRIEDMAN et al., 2012b). A possible implementation for a D latch, using six diodes, is

presented in Figure 6.24. Connecting two D latches in series, a positive edge, master-slave D

flip-flop is obtained. It is interesting to notice that, similarly to CMOS technology, logic sharing
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Figure 6.21 – Spin-diode logic circuit for a half adder.
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Figure 6.22 – Spin-diode logic circuit for a full adder.
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Figure 6.23 – Spin-diode logic circuit for a multiplexer.

can be used to reduce the number of diodes. Examples are both the half-adder (Figure 6.21) and

the D latch (Figure 6.24).

6.3.6.3 Standard Cell Mapping Approach

One of the main design methodologies used in CMOS technology is the approach based

on standard cells. In this work, a technology mapping study using the standard cell methodology

is performed. Benchmarks circuits are mapped to spin-diodes libraries using a commercial tool.

It must be noticed that the results presented herein focus on the number of required

devices to implement benchmark circuit. The area attribute of each gate is set to the number of

diodes used. Though timing and power vary throughout a circuit, our analysis assumes uniform

characteristics. This simplification is adopted due to the lack of a well-established electrical
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Figure 6.24 – Spin-diode logic circuit for a D latch.

model for the electrical characterization of spin-diodes gates. This is done by setting all entries

in timing and power tables to the same constant value for all cells. The attribute that controls the

maximum fan-out of a gate is set to a very high value. This is justifiable because a spin-diode

should be able to drive as many gates as needed. Finally, since current-based logic is not affected

by RC delay, wire delay is not considered.

Several sets of functions are considered. The MinLib library contains only the gates

that require a single diode to be implemented (XNOR2, INV, and NOR2) and the OR2 gate

implemented with two diodes. This library is referred to as MinLib. We also used a modified

version of a 65 nm commercial library. For the combinational cells, we only selected the

minimum drive strength cells. All functions were synthesized as follows. For cells having

functions up to four inputs, the spin-diode implementation comes from a lookup table with the

results of FC-SPIN-LS algorithm. Functions having from five to eight inputs are synthesized

by the FC-SPIN-HEUR method. Finally, cells containing functions with nine or more inputs

are translated using LST. We also removed all sequential cells, except for a D flip-flop (DFF),

a DFF with asynchronous set and a DFF with asynchronous reset. The implementation used

for the DFFs use a master-slave architecture. Moreover, we removed all tri-state and analog

cells. With this reduced cell library, we also removed the timing and power information also and

generated two versions, one with the original CMOS cell area (CMOSLib) and the other with

the correspondent diode count (DiodeLib).

Technology mapping over IWLS 2005 benchmarks (ALBRECHT, 2005) are shown in

Table 6.8. C. Area represents the combinational area of the benchmark; T. Area represents the

total Area of the benchmark (in number of diodes). C. Inv represents the equivalent inverter (area
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divided by the area of the smallest inverter) of the combinational part, and T. Inv represents the

equivalent inverter area of the whole circuit. It can be seen that the DiodeLib reduces considerably

the combinational area, compared to the MinLib. The reduction of the combinational area varies

from 26.7% of stepper to 51.1% of pci. The total area is impacted by the area of a DFF (11

diodes), but there are old DFF designs based on NORs (TAUB, 1977), which can reduce the total

number of spin-diodes, compared to a master-slave architecture. Nevertheless, the improvements

in the total area range from 7% to 34.7%.

If we compare DiodeLib with CMOSLib in the combinational part, we can observe that

the number of spin-diodes and equivalent inverters are almost the same for all circuits. Moreover,

considering that the inverter is implemented with two transistors and diodes are smaller than

transistors (i.e., a PN junction is smaller than an NPN junction), the area of a spin-diode circuit

tends to be smaller than the area of a CMOS circuit.

Table 6.8 – Results for IWLS 2005 benchmarks (MARTINS et al., 2015a).

Benchmark
MinLib

C. Area/T. Area
DiodeLib

C. Area/T. Area
CMOSLib

C. Inv/T. Inv.

aes_core 25792/32682 19411/26301 19328/22685
des_area 6004/6862 4212/5096 3983/4401
des_perf 88338/202842 68123/182627 71096.33/126880.3
pci 136/136 90/90 83.66/83.66
ss_pcm 456/1587 330/1461 334.33/885.33
stepper 147/472 116/441 121.66/280
tv80 7967/12634 5532/10199 5452.33/7726
usb_funct 15751/38241 10780/33296 11183.67/22146.67
usb_phy 563/1837 433/1707 403/1023.66
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6.4 Synthesis of Memristor Implication-based Logic

Memristors and MTJ have been applied to perform logic using material implication as

basic logic function (BORGHETTI et al., 2010; LEHTONEN; LAIHO, 2009; LEHTONEN;

POIKONEN; LAIHO, 2010; LAIHO; LEHTONEN, 2010; KIM; SHIN; KANG, 2011; KVATIN-

SKY et al., 2014; POIKONEN; LEHTONEN; LAIHO, 2012; TEODOROVIC; DAUTOVIC;

MALBASA, 2013; MAHMOUDI et al., 2013a; MAHMOUDI et al., 2013b). As a consequence,

several efforts have been made to propose new algorithms, or modifications of known algorithms,

that can take into account the particularities of a given technology.

In (LEHTONEN; POIKONEN; LAIHO, 2010), it is shown that an arbitrary Boolean

function of n inputs can be implemented using n+2 memristors. The implementation considered

in (LEHTONEN; POIKONEN; LAIHO, 2010) requires that the function is written in a recursive

form which implies that the computation is performed sequentially. Therefore, there is a direct

link between the number of material implications performed and the computation time. For this

reason, different approaches have been proposed to reduce the number of material implications

in the recursive formulations (POIKONEN; LEHTONEN; LAIHO, 2012; TEODOROVIC;

DAUTOVIC; MALBASA, 2013).

In this section, we present the concepts of the memristive implication logic, involving

the concept of multi-input memristor implication. This concept is used to propose algorithms

using FC to synthesize Boolean functions using memristive material implication synthesis. It is

important to notice that the minimization of the implications increases the overall speed of the

circuit, differently from the previous FC algorithms, which in general minimized an area cost

(literals, threshold and majority gates, spin-diodes).

6.4.1 Implication Logic

The notation in this section is as follows. The material implication operation can be de-

noted by→. Logical negation, conjunction, disjunction and exclusive disjunction are represented

by ¬, ∧, ∨ and ⊕ respectively. Alternatively, the notation p ∧ 0 = p → 0 = ¬p and p1 = p

are also used. A cube is a conjunction of literals, i.e., p1 ∧ p2 ∧ p4. Any Boolean function with

n inputs f : Bn →, B = 0, 1, can be written as (TEODOROVIC; DAUTOVIC; MALBASA,

2013):

f = ((. . . (παl
l ) ∨ πl−1)αl−1 . . . π2)

α2 ∨ π1)α1 (6.13)
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Table 6.9 – Positive product terms for n = 3.

p1 p2 p3 πk

0 0 0 π8 = 1
0 0 1 π7 = p3
0 1 0 π6 = p2
0 1 1 π5 = p2 → p3
1 0 0 π4 = p1
1 0 1 π3 = p1 → p3
1 1 0 π2 = p1 → p2
1 1 1 π1 = p1 → p2 → p3

where πk is a positive product term of the form πk == πk1 ∧ πk2 ∧ . . . ∧ πkh, each πkh is

in the support of f and l = 2n. Given a lexicographical ordering, the positive product terms can

be written as πl = p1, πl−1 = p2, . . . π1 = p1 ∧ . . . ∧ pn where p1, p2, . . . pn are the support of f .

Table 6.9 gives all positive product terms for n = 3(l = 8). The value of each αk is given by:

αk =

f(π1), k = 1

¬(f(πk)⊕ f(πk−1)), k 6= 1
(6.14)

Equation (6.13) can be written recursively as:

f = f ′ ∨ πi)αi (6.15)

where

f ′ =

π
αk
k

(f ′ ∨ πi)αi

(6.16)

Equation (6.15) can be written using the material implication operator as

f = ¬f ′ → πi)
αi (6.17)

A factored form, is written as:

f = f1 → f2 (6.18)

where f1 and f2 are written in the form Equation (6.17) or Equation (6.18).
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6.4.2 Material Implication Synthesis

The performance of the circuit is directed related to the number of material implications

operations that must be performed. Thus, if a Boolean function is written as a sequence of

material implication operations, it is desirable to have as few operations as needed. Different

approaches aim to obtain Boolean expressions with minimized number of material implication op-

erations (POIKONEN; LEHTONEN; LAIHO, 2012; TEODOROVIC; DAUTOVIC; MALBASA,

2013). An algorithm that resembles the Quine-McCluskey algorithm (MCCLUSKEY, 1956) is

presented in (POIKONEN; LEHTONEN; LAIHO, 2012). In (TEODOROVIC; DAUTOVIC;

MALBASA, 2013), better results are obtained using a graph-based approach.

Algorithm 11 presents an algorithm for memristor implication synthesis using FC, which

uses material implication as the basic operation. It is considered that multiple input implica-

tion can be used (POIKONEN; LEHTONEN; LAIHO, 2012; TEODOROVIC; DAUTOVIC;

MALBASA, 2013), which allows any πk to be computed in one single step. The false con-

stant and the πk, where 1 ≤ k < l have cost zero, which are created in the method CRE-

ATE_INITIAL_FUNCTIONS (line 4). It is not necessary to store πl because 1→ π = π and

π → 1 = 1.

FC-MEMRISTOR can generate both recursive or factored forms. For the recursive form,

the cost is C + 1, where the cost is the number of implications, a function f1 with cost C is

combined with a function f2 with cost zero. This is performed by the method ASSOCIATE_REC

(line 22-23).

For the factored form with cost C + 1, any two functions f1 and f2 can be combined as

long the sum of their costs is C. Since the material implication is not a symmetric operation, it is

necessary to combine the functions f1 and f2 in f1 → f2 as well as f2 → f1. This is performed

by the ASSOCIATE_FACTOR method (line 14-20).

6.4.2.1 Memristor Counting

To utilize factored forms, it is necessary to determine the number of working memristor

required. The approach proposed in this work consists of performing a tree traversal. A tree

representing a factored form is directly obtained considering that each operation p→ q generates

a node→ with left child p and right child q. Some additional nodes might be required to ensure

that there no operation overwrites the value of an input memristor. That is, expressions of the type

¬πi → ¬πj are replaced by ¬πi → ((¬πj → 0) → 0) if is not stored in a working memristor.
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Algorithm 11 FC-MEMRISTOR Algorithm
1: function CREATE_ALL_FUNCTIONS (n, factor)
2: B ← ∅
3: i← 1
4: B[0]← CREATE_INITIAL_FUNCTIONS ()
5: while any function is not synthesized do
6: if factor then
7: B[i]← ASSOCIATE_FACTOR (B, i)
8: else
9: B[i]← ASSOCIATE_REC (B, i)

10: i← i+ 1

11: return B
12:
13: function ASSOCIATE_FACTOR (B, i)
14: S ← ∅
15: for k ← 0, (i/2) do
16: l← i− k
17: S ← S ∪ COMBINE (B[k], B[l], IMPL)
18: S ← S ∪ COMBINE (B[l], B[k], IMPL)

19: return S
20:
21: function ASSOCIATE_REC (B, i)
22: S ← COMBINE (B[i− 1], B[0], IMPL)
23: return S

That way all ¬πj nodes are leaves and are to the left of a→ operator. All 0 nodes are leaves and

are to the right of a→ operator.

Algorithm 12 describes the factoring method and is divided into two submethods:

MEMRISTOR-COUNT and REC. The MEMRISTOR-COUNT method initializes variables

and starts the recursion, while rec traverses the tree. Two variables max and free are used (line

2 and 3). The variable max stores the maximum number of working memristors required and

the variable free stores the number of working memristors that are free to be used to store the

result of an operation. When a leaf node ¬πj is visited, the algorithm simply returns without

modifying neither free nor max values (line 8). When a leaf node containing the constant zero

is visited (line 9), the algorithm tests if there is a free memristor. If it is true, then the number

of free memristors is reduced (line 10). Otherwise, there are no free memristors, and one work

memristor must be added (line 11). When a material implication node is visited, the recursion is

called for both children (line 14 and 15). After the recursions, it is checked if the memristor in

the left can be reused. If this condition is true, the free variable is incremented and the recursion

return true, since always one memristor can be reused (lines 16 and 17, respectively). To ensure

the minimal number of memristor counting, different traversal orders must be considered.
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Algorithm 12 Memristor Counting algorithm
1: function MEMRISTOR-COUNT (noden)
2: free← 0
3: max← 0
4: REC(n,&max,&free)
5: return max
6:
7: function REC (noden,∗max,∗ free)
8: if n is PI then return false
9: else if n is 0 then

10: if ((∗free) > 0) then (∗free)← (∗free)− 1
11: else(∗max)←∗ max) + 1
12: return true
13: else
14: canReuse = REC(n.left,max, free);
15: REC(n.right,max, free);
16: if canReuse is true then ∗free←∗ free+ 1

17: return true

As example, the tree for the function described in Equation (6.19), which the factored form

using material implication is presented in Equation (6.20), is shown in Figure 6.25. Performing

a post-order traversal the first operation evaluated is ¬π2 → 0 which creates the first working

memristor (M1), incrementing max. Similarly, the second operation visited also creates a working

memristor (M2), incrementing both max and free since M1 can be used to store a different value.

The third operation ¬π1 → ((¬π2 → 0) → 0) directly uses M2 to store the result. The next

operation node visited computes ¬π4 → 0, which is located in the right side of the root node.

For this node, M1 is used to store the result, and free is decreased to zero. The next tree node

creates a work memristor M3 because there are no free memristors. The remaining operations

directly store the result on M3.

f = (c ∨ b) ∧ (¬b ∨ (¬c ∧ ¬a)) (6.19)

f = ((¬π1 → ¬π2)→ ((¬π1 → (¬π2 → ¬π4))→ 0)) (6.20)
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Figure 6.25 – Operator tree for Equation (6.20).

6.4.3 Results

All Boolean functions up to 4 inputs were synthesized using factored and recursive

formulas. Table III compares the results to those presented in (1) (POIKONEN; LEHTONEN;

LAIHO, 2012) and (2) (TEODOROVIC; DAUTOVIC; MALBASA, 2013) regarding the average

number of implications operations. As expected, the utilization of factored forms reduced the

number of implications operations.

Table 6.10 – Comparison of the average number of implications to implement all functions with at most
4 inputs (MARRANGHELLO et al., 2014a).

Methods Avg. # of implications Normalized average

This work (factored) 8.13 1.00
This work (recursive) 8.84 1.08

(1) (recursive) 8.91 1.10
(2) (recursive) 12.00 1.47

Table 6.11 presents the reduction in number of implications for all functions when the

factored forms are used instead of recursive forms. The average number of operations is reduced

in approximately 8%. Even though for some functions there is no gain using recursive forms,

this gain is significant for other functions. For instance, the following expressions represent the

same Boolean function:
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Table 6.11 – Reduction in the number of implications operations of factored forms over recursive
forms (MARRANGHELLO et al., 2014a).

Gain # Functions Gain # Functions

0 31,537 4 204
1 22,729 5 51
2 9,614 6 12
3 1,389 Total 65,536

f = ((¬π12 → ((¬π9 → ((¬π8 → ((¬π2 → ((¬π1 → ¬π4)→ 0))→ 0))→ 0))→ 0)→ 0

(6.21)

f = (¬π1 → ¬π4)→ (¬π2 → ¬π8)→ 0 (6.22)

Equation (6.21) is a recursive form which requires 10 operations whereas the factored

form is shown in Equation (6.22) requires only 4 operations. This represents the best case of 60%

reduction in the number of required operations. It was observed that considering functions with

at most 4 inputs, one extra memristor is required when using factored forms instead of recursive

forms.
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7 CONCLUSIONS

The main contribution of this thesis are 6 applications presented using functional com-

position (FC). FC is more straightforward to adapt to new technologies. It does require new

algorithms and composition rules, but they are easier to compose, than to be targeted in a decom-

position. All applications methods have been presented with promising results. The applications

are: (i) multi-output factorization; (ii) synthesis of approximate functions for ATMR schemes;

(iii) synthesis of threshold circuits; (iv) synthesis of majority circuits; (v) synthesis of spin-diode

circuits; and (vi) synthesis using memristors.

The first application is a multi-output factorization algorithm using FC applied in an

iterative remapping flow. This factorization algorithm can perform functional logic sharing and

synthesize multiple outputs. For the benchmark circuits analyzed, results show that the flow

can reduce combinational area up to 34% while still respecting the required timing. Also, the

experiments have shown that the use of complex logic gates is not well explored by commercial

tools since most of the optimizations performed by these tools are algebraic. The use of complex

gates is possible to the Boolean optimizations carried out by the factorization algorithm, showing

a higher quality of results with a larger amount of different combinational cells.

The second application proposed an approximation algorithm using FC to generate

approximate functions and Full-ATMR modules. The approximate functions allow choosing

a good balance between area overhead and fault coverage. The Full-ATMR allows a greater

reduction in overhead costs and still can maintain a good protection ratio. The synthesis of

approximate functions using FC allowed to find a balance between area and unprotected vectors

(XOR between the approximate and original function). It was possible to keep the protected

p-n junction ratio above 97% with only 125% area overhead. For the ATMR version of a 4-bit

ripple-carry adder, several implementations are proposed, ranging from 93%/136% to 96%/168%

of protected junctions and area overhead, respectively.

The third application explores FC on emerging technologies based on threshold logic,

as RTD and STT-MTJ. The proposed method can consider multiple costs such as the number

of threshold logic gate, logic depth, and number of interconnections. Experiments over MCNC

benchmark circuits have shown that the threshold gate count, logic depth, and interconnections

decreased 32%, 19.3% and 15.85% in average, respectively, compared to previous works.

The fourth application presented an algorithm was introduced for synthesizing circuits

using majority and inverter gates, using FC, for technologies as QCA, SET, and TPL. Also, it

presents the synthesis of AOI gates for the QCA technology. This algorithm generates an optimal
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structure composed of majority or AOI gates for a given a Boolean function. The algorithm was

applied to generate several libraries in an automated way: 4-input cell library; AOI library or an

MAJ+AOI+INV library; then these libraries were used in mapping experiments. The results over

MCNC benchmarks show that there is an average reduction up to 47% in area and 14% in logic

depth, compared to previous works.

The fifth application introduced a set of algorithms for synthesizing circuits using spin-

diodes using FC. The first algorithm generates an optimized spin-diode network considering logic

sharing of all functions of four inputs. The second algorithm is a heuristic that can synthesize

functions up to eight inputs. For functions with more than 9 inputs, a set of rules was developed

to efficiently translate a factored form into a spin-diode tree. To evaluate the quality of these

algorithms, they were used to transform a CMOS library into a spin-diode library. The results

over OpenCores contained in IWLS 2005 benchmarks show that there is a combinational area

reduction up to 50% in area and up to 30% in total area, compared to a minimal library composed

of spin-diode basic gates.

The last application proposed the synthesis of factored forms together with the concept of

multi-input implication in the logic synthesis for memristive IMPLY stateful logic using FC. As

a result, the average number of IMPLY operations to perform a function with at most four inputs

was reduced by 12% when compared to previous works, without requiring additional devices.

Moreover, implementations of approximately 67% of the Boolean functions considered have

been improved.

The proposed algorithms have been proved useful for optimization/synthesis, but there is

a large space for optimization in the proposed algorithms yet. For instance, in the multi-output

factorization method, an analysis to detect subfunctions can be implemented. For the generation

of ATMR circuits, the technique can be expanded to approximate libraries, probably generating

ATMR circuits with even less area. The threshold synthesis algorithm can be probably improved

trying a logic sharing between threshold logic gates. Improvements in majority synthesis include

considering MAJ5 gates, adopted in designs (NAVI et al., 2010). Future work for the spin-diode

synthesis includes the reduction of sequential structures implemented using spin-diodes and

expansion of the rules in the LST algorithm to be able to manipulate n-ary trees. Improvements

in memristor synthesis include heuristic algorithms to synthesize functions with more inputs.

Also, other applications can exploit the FC principles and generate better results than

known algorithms. An example is the double gate FinFET device, which is a promising de-

vice (CHANG et al., 2003; NOWAK et al., 2004). Preliminary synthesis’ results show a reduction

of 6% in number of devices, compared to (POSSANI et al., 2014).



143

REFERENCES

AKERS, S. B. Synthesis of combinational logic using three-input majority gates. In:
IEEE. SWITCHING CIRCUIT THEORY AND LOGICAL DESIGN, 1962. SWCT 1962.
PROCEEDINGS OF THE THIRD ANNUAL SYMPOSIUM ON. Proceedings... [S.l.], 1962. p.
149–158.

ALBRECHT, C. Iwls 2005 benchmarks. In: INTERNATIONAL WORKSHOP FOR LOGIC
SYNTHESIS. Proceedings... [S.l.: s.n.], 2005.

ALPERT, C. J.; MEHTA, D. P.; SAPATNEKAR, S. S. Handbook of algorithms for physical
design automation. [S.l.]: CRC press, 2008.

AMARU, L. et al. New logic synthesis as nanotechnology enabler. IEEE, 2015.

AMARU, L. et al. Multiple independent gate fets: How many gates do we need? In: IEEE.
DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2015 20TH ASIA AND SOUTH
PACIFIC. Proceedings... [S.l.], 2015. p. 243–248.

ARO, V. C. et al. Read-polarity-once functions. Logic & Synthesis, 21th International
Workshop on, Proceedings of IWLS, 2012.

ASHENHURST, R. L. The decomposition of switching functions. In: PROCEEDINGS OF
AN INTERNATIONAL SYMPOSIUM ON THE THEORY OF SWITCHING, APRIL 1957.
Proceedings... [S.l.: s.n.], 1957. p. 74–116.

AVEDILLO, M. J.; QUINTANA, J. M.; ROLDÁN, H. P. Increased logic functionality of clocked
series-connected rtds. Nanotechnology, IEEE Transactions on, IEEE, v. 5, n. 5, p. 606–611,
2006.

AVERIN, D.; LIKHAREV, K. Coulomb blockade of single-electron tunneling, and coherent
oscillations in small tunnel junctions. Journal of low temperature physics, Springer, v. 62,
n. 3-4, p. 345–373, 1986.

BAUMANN, R. C. Radiation-induced soft errors in advanced semiconductor technologies.
Device and Materials Reliability, IEEE Transactions on, IEEE, v. 5, n. 3, p. 305–316, 2005.

BEIU, V.; QUINTANA, J. M.; AVEDILLO, M. J. Vlsi implementations of threshold logic-a
comprehensive survey. Neural Networks, IEEE Transactions on, IEEE, v. 14, n. 5, p.
1217–1243, 2003.

Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential Synthesis and
Verification, Release 20130425. In: . [S.l.: s.n.], 2013.

BERNSTEIN, G. H. et al. Magnetic qca systems. Microelectronics Journal, Elsevier, v. 36,
n. 7, p. 619–624, 2005.

BERNSTEIN, K. et al. High-performance cmos variability in the 65-nm regime and beyond.
IBM journal of research and development, IBM, v. 50, n. 4.5, p. 433–449, 2006.

BERTACCO, V.; DAMIANI, M. The disjunctive decomposition of logic functions. In: IEEE
COMPUTER SOCIETY. PROCEEDINGS OF THE 1997 IEEE/ACM INTERNATIONAL
CONFERENCE ON COMPUTER-AIDED DESIGN. Proceedings... [S.l.], 1997. p. 78–82.



144

BORGHETTI, J. et al. Memristive switches enable ‘stateful’logic operations via material
implication. Nature, Nature Publishing Group, v. 464, n. 7290, p. 873–876, 2010.

BORKAR, S. Design perspectives on 22nm cmos and beyond. In: ACM. PROCEEDINGS OF
THE 46TH ANNUAL DESIGN AUTOMATION CONFERENCE. Proceedings... [S.l.], 2009.
p. 93–94.

BRAYTON, R.; MISHCHENKO, A. Abc: An academic industrial-strength verification tool. In:
SPRINGER. COMPUTER AIDED VERIFICATION. Proceedings... [S.l.], 2010. p. 24–40.

BRAYTON, R. K. Factoring logic functions. IBM Journal of Research and Development,
IBM, v. 31, n. 2, p. 187–198, 1987.

BRAYTON, R. K. et al. Mis: A multiple-level logic optimization system. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, IEEE, v. 6, n. 6, p.
1062–1081, 1987.

BRAYTON, R. K. et al. Multi-level logic optimization and the rectangular covering problem.
In: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTE AIDED
DESIGN. Proceedings... [S.l.: s.n.], 1987.

CALHOUN, B. B. H. et al. Digital circuit design challenges and opportunities in the era of
nanoscale cmos. Proceedings of the IEEE, IEEE, v. 96, n. 2, p. 343–365, 2008.

CALLEGARO MAYLER GA MARTINS, R. P. R. A. I. R. V. Dsd synthesis based on
variable intersection graphs. In: 30TH SOUTH SYMPOSIUM ON MICROELECTRONICS.
Proceedings... [S.l.: s.n.], 2015.

CALLEGARO, V. et al. Bottom-up disjoint-support decomposition based on cofactor
and boolean difference analysis. In: IEEE. COMPUTER DESIGN (ICCD), 2015 IEEE
INTERNATIONAL CONFERENCE ON. Proceedings... [S.l.], 2015.

CALLEGARO, V. et al. Read-polarity-once boolean functions. In: IEEE. INTEGRATED
CIRCUITS AND SYSTEMS DESIGN (SBCCI), 2013 26TH SYMPOSIUM ON. Proceedings...
[S.l.], 2013. p. 1–6.

CALLEGARO, V. et al. Read-polarity-once boolean functions revisited. In: PROCEEDINGS OF
IWLS. LOGIC & SYNTHESIS, 23TH INTERNATIONAL WORKSHOP ON. Proceedings...
[S.l.], 2013.

CALLEGARO, V. et al. A domain-transformation approach to synthesize read-polarity-once
boolean functions. Journal of Integrated Circuits and Systems, v. 9, n. 1, p. 60–69, 2014.

CHANG, L. et al. Extremely scaled silicon nano-cmos devices. Proceedings of the IEEE,
IEEE, v. 91, n. 11, p. 1860–1873, 2003.

CHATTERJEE, S. et al. Reducing structural bias in technology mapping. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, IEEE, v. 25, n. 12, p.
2894–2903, 2006.

CHOI, S. et al. A novel high-speed multiplexing ic based on resonant tunneling diodes.
Nanotechnology, IEEE Transactions on, IEEE, v. 8, n. 4, p. 482–486, 2009.



145

CHOI, Y.-K. et al. Sub-20nm cmos finfet technologies. IEEE, 2001.

CHOUDHURY, M.; MOHANRAM, K. Bi-decomposition of large boolean functions using
blocking edge graphs. In: IEEE PRESS. PROCEEDINGS OF THE INTERNATIONAL
CONFERENCE ON COMPUTER-AIDED DESIGN. Proceedings... [S.l.], 2010. p. 586–591.

CHUA, L. O. Memristor-the missing circuit element. Circuit Theory, IEEE Transactions on,
IEEE, v. 18, n. 5, p. 507–519, 1971.

CHUA, L. O.; KANG, S. M. Memristive devices and systems. Proceedings of the IEEE, IEEE,
v. 64, n. 2, p. 209–223, 1976.

CONG, J.; DING, Y. Flowmap: An optimal technology mapping algorithm for delay
optimization in lookup-table based fpga designs. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, IEEE, v. 13, n. 1, p. 1–12, 1994.

CORREIA, V.; REIS, A. Advanced technology mapping for standard-cell generators. In:
ACM. PROCEEDINGS OF THE 17TH SYMPOSIUM ON INTEGRATED CIRCUITS AND
SYSTEM DESIGN. Proceedings... [S.l.], 2004. p. 254–259.

COUDERT, O. Two-level logic minimization: an overview. Integration, the VLSI journal,
Elsevier, v. 17, n. 2, p. 97–140, 1994.

CURTIS, H. A. A new approach to the design of switching circuits. [S.l.]: van Nostrand,
1962.

DENNARD, R. H. Past progress and future challenges in lsi technology: From dram and scaling
to ultra-low-power cmos. Solid-State Circuits Magazine, IEEE, IEEE, v. 7, n. 2, p. 29–38,
2015.

DETJENS, E. et al. Technology mapping in mis. In: PROC. OF THE ICCAD. Proceedings...
[S.l.: s.n.], 1987. v. 87, p. 116–119.

ENTRENA, L. et al. Logic masking for set mitigation using approximate logic circuits. In:
IEEE. ON-LINE TESTING SYMPOSIUM (IOLTS), 2012 IEEE 18TH INTERNATIONAL.
Proceedings... [S.l.], 2012. p. 176–181.

FAHMY, H.; KIEHL, R. A. Complete logic family using tunnelingphase-logic devices. In:
CITESEER. PROC. INT. CONF. MICROELECTRON. Proceedings... [S.l.], 1999. p. 22–24.

FRIEDMAN, J. S. et al. Inmnas magnetoresistive spin-diode logic. In: ACM. PROCEEDINGS
OF THE GREAT LAKES SYMPOSIUM ON VLSI. Proceedings... [S.l.], 2012. p. 209–214.

FRIEDMAN, J. S. et al. A spin-diode logic family. IEEE Trans. Nanotechnol., IEEE, v. 11,
n. 5, p. 1026–1032, 2012.

GANG, Y. et al. A high-reliability, low-power magnetic full adder. Magnetics, IEEE
Transactions on, IEEE, v. 47, n. 11, p. 4611–4616, 2011.

GIELEN, G. et al. Emerging yield and reliability challenges in nanometer cmos technologies. In:
ACM. PROCEEDINGS OF THE CONFERENCE ON DESIGN, AUTOMATION AND TEST
IN EUROPE. Proceedings... [S.l.], 2008. p. 1322–1327.



146

GOMES, I.; KASTENSMIDT, F. G. et al. Reducing tmr overhead by combining approximate
circuit, transistor topology and input permutation approaches. In: IEEE. INTEGRATED
CIRCUITS AND SYSTEMS DESIGN (SBCCI), 2013 26TH SYMPOSIUM ON. Proceedings...
[S.l.], 2013. p. 1–6.

GOMES, I. et al. Methodology for achieving best trade-off of area and fault masking coverage in
atmr. In: IEEE. TEST WORKSHOP-LATW, 2014 15TH LATIN AMERICAN. Proceedings...
[S.l.], 2014. p. 1–6.

GOMES, I. et al. Using only redundant modules with approximate logic to reduce drastically
area overhead in tmr. In: IEEE. TEST SYMPOSIUM (LATS), 2015 16TH LATIN-AMERICAN.
Proceedings... [S.l.], 2015. p. 1–6.

GOMES, I. A. et al. Exploring the use of approximate tmr to mask transient faults in logic with
low area overhead. Microelectronics Reliability, Pergamon, 2015.

GOWDA, T. et al. Identification of threshold functions and synthesis of threshold networks.
Computer-aided design of integrated circuits and systems, IEEE transactions on, IEEE,
v. 30, n. 5, p. 665–677, 2011.
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