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ABSTRACT

The interconnection delay is a dominant factor for achieving timing closure in nanoCMOS

circuits. During physical synthesis, placement aims to spread cells in the available area

while optimizing an objective function w.r.t. the design constraints. Therefore, it is a key

step to determine the total wirelength and hence to achieve timing closure. Incremental

placement techniques aim to improve the quality of a given solution. Two quadratic

approaches for incremental timing driven placement to mitigate late violations through

path smoothing and net load balancing are proposed in this work. Unlike previous works,

the proposed formulations include a delay model into the quadratic function. Quadratic

placement is applied incrementally through an operation called neutralization which helps

to keep the qualities of the initial placement solution. In both techniques, the quadratic

wirelength is pondered by cell’s drive strengths and pin criticalities. The final results

outperform the state-of-art by 9.4% and 7.6% on average for WNS and TNS, respectively.

Keywords: Timing optimization. Placement. Physical Design. Electronic Design

Automation. Microelectronics.





Uma nova formulação quadrática para posicionamento incremental guiado à

tempos de propagação

RESUMO

O tempo de propagação dos sinais nas interconexões é um fator dominante para atingir

a frequência de operação desejada em circuitos nanoCMOS. Durante a síntese física,

o posicionamento visa espalhar as células na área disponível enquanto otimiza uma

função custo obedecendo aos requisitos do projeto. Portanto, o posicionamento é uma

etapa chave na determinação do comprimento total dos fios e, consequentemente, na

obtenção da frequência de operação desejada. Técnicas de posicionamento incremental

visam melhorar a qualidade de uma dada solução. Neste trabalho, são propostas duas

abordagens para o posicionamento incremental guiado à tempos de propagação através de

suavização de caminhos e balanceamento de redes. Ao contrário dos trabalhos existentes

na literatura, a formulação proposta inclui um modelo de atraso na função quadrática.

Além disso, o posicionamento quadrático é aplicado incrementalmente através de uma

operação, chamada de neutralização, que ajuda a manter as qualidades da solução inicial.

Em ambas as técnicas, o comprimento quadrático de fios é ponderado pelo drive strength

das células e a criticalidade dos pinos. Os resultados obtidos superam o estado-da-arte em

média 9,4% e 7,6% com relação ao WNS e TNS, respectivamente.

Palavras-chave: Otimização de Timing. Posicionamento. Projeto Físico. Automação do

Projeto Eletrônico. Microeletrônica.
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1 INTRODUCTION

The feature sizes of integrated circuits have experienced an impressive and steadily

reduction since the first chips were released. However, from a speed point of view,

scaling does not benefit interconnections as it benefits transistors. As metal dimensions

shrink, the wire resistance increases due to reduced cross section and their capacitance

also increases due to reduced spacing and decreased thickness (ROSSUM, 2009). In

newer technology nodes, like 130nm and below, interconnections overcame gates internal

timing propagation and became the dominant factor in the total circuit delay (GARGINI,

2000).

Since placement is the main step defining the interconnection length, it is now a

central step to achieve timing closure. The classical placement objective – wirelength

minimization – continues to be the core goal of placement as optimizing the total

wirelength helps to achieve other objectives as routability and timing (YANG; CHOI;

SARRAFZADEH, 2002). However, timing optimization cannot be ignored during

placement and simply aiming timing indirectly via wirelength minimization is not

sufficient. Therefore timing optimization techniques need to be incorporated within

placement, creating the algorithms categorized as timing-driven placement. Timing-

driven techniques may be divided into Global and Incremental ones (ALPERT; MEHTA;

SAPATNEKAR, 2008).

Global techniques perform the placement of the entire circuit, not necessarily

respecting previous solutions. They usually apply net-weighting techniques (KONG,

2002; TSAY; KOEHL, 1991; BURSTEIN; YOUSSEF, 1985) to prioritize nets with high

violations or assign a max wirelength/delay for them. These techniques can deal with a

lot of violations at the same time, keeping a global view of the problem. However, while

these nets are optimized, other violations may show up and, thereby, new constraints need

to be created or the existing weights updated. This behavior may lead to oscillations and

convergence issues (VISWANATHAN et al., 2010).

Incremental techniques aim to improve an existing solution by moving just a

reduced number of cells, commonly through path-based techniques (VISWANATHAN et

al., 2010). The key idea is to reduce the critical paths lengths by smoothing it through

applying local search heuristics (BOCK et al., 2015; FLACH et al., 2016) or linear

programming (LUO; NEWMARK; PAN, 2006). One drawback of these techniques is

the loss of the global view of the problem since linear programming runtime may be



22

prohibitive for a large number of cells.

Algorithms may also combine placement with other techniques such as buffering

(HANI; SHAIKH-HUSIN, 2008), discrete gate sizing and Vth selection (FLACH et al.,

2014) to further optimize the solution (GARGINI, 2000). Large nets may be divided into

several smaller nets by hierarchical buffer insertion, which may reduce both the wire delay

and the signal degradation. Gate sizing and Vth selection may speed up signals to reduce

setup violations and slow down the signals presenting hold violations. Timing-driven

placement may reduce the load of critical nets, minimizing the need for these techniques

and mitigating the increase in power consumption.

This work addresses quadratic placement techniques which are commonly applied

to solve the wirelength-driven placement problem (VISWANATHAN; CHU, 2005; LIN

et al., 2013; KLEINHANS et al., 1991). In these techniques, circuit netlist is modeled as

a graphG = (V,E), where the cells, macros and primary inputs and outputs nodes are the

set of vertices V, and the nets are decomposed into a set of binary edges E. Placement is

thus solved as a spring system, where nets represent attraction forces between circuit

nodes and additional spreading forces are added to the system to spread cells in the

circuit area. This same approach can be applied to timing-driven placement as seen in

(MONTEIRO et al., 2015; VISWANATHAN et al., 2010). However, quadratic and other

force-directed works usually try to optimize timing by assigning higher weights to nets

proportionally to their timing violation, which roughly addresses timing.

The analytical techniques in literature deal with incremental timing driven

placement with two methodologies:

1. Only cells, nets and/or paths that are being optimized are considered movable, while

the rest of the circuit is considered fixed (LUO; NEWMARK; PAN, 2006; BOCK

et al., 2015; FLACH et al., 2016);

2. All nodes can be moved, however, the mathematical formulation that generates the

initial solution is known and thus additional weights/forces are added to the system

to optimize timing (SRINIVASAN; CHAUDHARY; KUH, 1991; RIESS; ETTELT,

1995).

In this work, an incremental quadratic approach is proposed. It relies on an

operation called neutralization – Given the current solution and the circuit netlist, the

classic spring system is constructed. The neutralization finds for each cell, an additional

force such that the equilibrium point in the spring system is the current position.
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This approach allows improving a given placement incrementally using the quadratic

formulation.

1.1 The design flow of integrated circuits

Most designs of Application-Specific Integrated Circuits (ASICs) are made

relying on standard-cell libraries. In this methodology, cells are previously characterized

and tested, providing more reliability and smaller time-to-market to the design (REIS et

al., 2000). Although the complete flow may have different features depending on the

development team, a general flow is depicted in Figure 1.1.

An initial modeling of the system is made using a hardware description language

(HDL) which allows different level of abstraction. During high-level synthesis, the system

description may be translated several times, starting from the algorithmic level to Register

Transfer Level (RTL) and Boolean equations (WANG; CHANG; CHENG, 2009).

The next stage is the logic synthesis, composed of three steps: Technology

independent optimization, technology mapping and technology dependent optimization.

The former aims to minimize the circuit’s logic applying Boolean and arithmetic

optimization techniques. In the technology mapping, logic functions are mapped to

standard-cells available in the library, e.g. NANDs, NORs and AOIs. The last

step, called technology dependent optimization, optimizes the circuit regarding the

electrical information of the standard-cells, like timing, area, Vth and power (WESTE;

ESHRAGHIAN, 1985).

In the physical synthesis, the logic representation is transformed into a geometric

representation, where the shapes represent the masks of materials that will be sent the

foundry for manufacturing. In the floorplanning step, it is identified the modules that

should be placed together and their respective placement, the IO interface and aspect

ratio of the chip w.r.t. the available area (WESTE; ESHRAGHIAN, 1985). After

the floorplanning, placement properly defines the exact location where each cell must

be placed in the die trying to optimize the total wirelength, timing, area and power

(HENTSCHKE, 2007). Once the cells locations are defined, the clock tree synthesis

performs the interconnection of the clock sources with sequential elements trying to

minimize the relative gap of time that the clock signal takes to reach each one (FLACH,

2010). In the last step, routing defines the exact route each signal will travel between the

driver pin and its sinks (JOHANN, 2001; REIMANN, 2013).



24

As the flow is being performed, the designers get a more precise idea of the final

solution. If any step fails to achieve a feasible solution, it is possible to go up in the

flow and reexecute the earlier steps using additional information obtained from later

steps. After the physical synthesis is successfully concluded, the circuit is ready to be

manufactured. However, the full set of design constraints is hardly respected in a single

iteration of the design flow. In fact, the flow needs to be restarted several times to achieve

the design closure (FLACH, 2015).

Figure 1.1: The design flow of digital integrated circuits.
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Source: Adapted from (FLACH, 2015).
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1.2 Contributions

The contributions of this work may be summarized in the following items:

• A review about the state-of-art of quadratic formulations applied to timing-driven

placement;

• Two approaches to integrate timing optimization into an incremental quadratic

placement modeling – One for path smoothing and other for load balancing;

• A flow integrating the quadratic formulation with the local search algorithms

previously proposed in (FLACH et al., 2016);

The dissertation is organized as follows: Chapter 2 presents the theoretical

foundation; Some previous works are presented in Chapter 3; Chapter 4 explores

the adopted methodology to apply quadratic placement incrementally; The quadratic

formulations for incremental placement are presented in Section 4.2 while the proposed

placement flow is presented in Section 4.3; Chapter 5 discusses the experimental results

and in Chapter 6 are given the final remarks.
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2 THEORETICAL FOUNDATION

In this chapter, some concepts are presented. Initially, an overview about

placement algorithms is provided in Section 2.1 and the mathematical formulation of

quadratic placement tools is further discussed in Section 2.2. The rest of the chapter

explains how the timing analysis was performed in this work.

2.1 Placement

Placement is an open challenge widely explored in industry and academia for

more than 50 years (ALPERT et al., 2012). Its solution has direct influence in the

final routing quality and, therefore, in the circuit performance. In the early stages of the

design, placement optimizes other metrics indirectly, by optimizing the total wirelength

w.r.t the density constraints. As it became possible to get a fair estimation of the final

routing, a more precise modeling is needed to cope with timing constraint and help on

achieving design closure. Placement may be also executed several times, dealing with

different constraints, as illustrated in Figure 2.1. An initial solution is produced by the first

iteration and then passes trough several kinds of analysis. New constraints are generated

and added to the system which tries to further optimize the solution incrementally. Each

placement iteration, initial or incremental, is traditionally composed of three steps: Global

Placement, legalization and detailed placement, as discussed in this section. The three

steps are depicted in Figure 2.2. This work proposes a global formulation for quadratic

placement.

Figure 2.1: Placement Flow

Pre-Placement
Constraints

Placement (Initial or Incremental)

Power
Analysis

Congestion
Analysis

Timing 
Analysis

Constraint generation

Source: Inspired by (ALPERT et al., 2012)



28

2.1.1 Global Placement

Global placement (Figure 2.2a) aims to spread cells through the chip area

while minimizing an objective function, like wirelength, w.r.t. some constraints like

area, congestion or timing. This step has been the target of a wide number of

research in the literature. The techniques for global placement may be divided into

three categories (WANG; CHANG; CHENG, 2009) – Partitioning, meta-heuristics and

analytical algorithms. Partitioning techniques solve the problem by applying graph

partitioning techniques in the netlist and subdividing the chip area recursively until the

search space becomes small enough to apply local search techniques. Some academic

tools like Capo (ROY et al., 2005) and FengShui (AGNIHOTRI; ONO; MADDEN,

2005) are examples of partitioning-based tools. Meta-heuristics for placement are

commonly based on Simulated Annealing (HADDOCK; MITTENTHAL, 1992), and

may also be applied on the flat netlist, like in TimberWolf (SECHEN; SANGIOVANNI-

VINCENTELLI, 1986) or applied in the latter stages of partitioning tools, like in

Dragon (WANG; YANG; SARRAFZADEH, 2000).

State-of-art algorithms usually model placement as an analytic function which

they solve by applying mathematical techniques. Analytical tools may be subdivided into

quadratic and non-quadratic ones according to their objective function. The quadratic

ones can be efficiently solved by minimizing a system of linear equations (SPINDLER;

JOHANNES, 2007) while non-linear methods may adopt more complex objective

functions at the cost of runtime. FastPlace (VISWANATHAN; CHU, 2005),

SimPL (KIM; LEE; MARKOV, 2013) and POLAR (LIN et al., 2013) are examples of

quadratic placement tools while Kraftwerk (SPINDLER; JOHANNES, 2007), ePlace (LU

et al., 2016) and NTUPlace (CHEN et al., 2007) are examples of non-quadratic tools.

2.1.2 Legalization

Due to the high complexity of modern netlists, global tools may not be aware

of overlap between cells or alignment to sites in rows, producing infeasible solutions.

Legalization (Figure 2.2b) algorithms like Tetris (HILL, 2002), Abacus (SPINDLER;

SCHLICHTMANN; JOHANNES, 2008) and Jezz (PUGET et al., 2015) fix these

violations by moving the cells to legal locations with minimum impact to the global

solution.



29

2.1.3 Detailed Placement

Many cells may be moved during legalization, impacting negatively on the quality

of the solution. To cope with this issue, detailed placement performs local refinement to

smooth the impact of the legalization and also to further optimize the solution. Unlike

the global placement, in this case, the legality constraints are observed. In the example

of Figure 2.2c, only the cells A and E are moved. Branch-and-Bound (BREUER, 1977;

CALDWELL; KAHNG; MARKOV, 1999), Domino (DOLL; JOHANNES; ANTREICH,

1994), FastDP (PAN; VISWANATHAN; CHU, 2005) and BraveDP (POPOVYCH et al.,

2014) are examples of algorithms for detailed placement.

Figure 2.2: Traditional placement steps.
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Source: The author.
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2.2 Quadratic placement

The quadratic placement formulation for general applications traces back to

Hall (HALL, 1970) and it was successfully applied to circuit design by GORDIAN

(KLEINHANS et al., 1991). Years later, FastPlace authors (VISWANATHAN; CHU,

2005) adapted the formulation to support VLSI circuits up to 10x faster than other

academic tools, making it widely applied to global placement in academy and industry,

until nowadays (LIN et al., 2013).

Quadratic placement can be physically interpreted as a spring system where the

cells, macros and IO pads are dimensionless dots and the nets are attraction forces among

them. However, this formulation only supports node-to-node connections. Therefore,

nets with more than 2 pins have to be decomposed into node-to-node connections. The

system can be solved independently for each axis, which is traditionally done.

The general objective function is shown in Equation 2.1 using matrix notation.

Φ(x) =
1

2
~x TA~x+ ~bx

T
~x+ constant (2.1)

where ~x represents the current cells positions for x axis, A is the Hessian matrix

from the objective function and ~bx represents the fixed forces for axis ~x.

2.2.1 Wirelength models

The quadratic function only supports 2-pin connections. Since the circuit netlist is

a hyper-graph and nets may connect more than 2 pins, these hyper-edges must be adapted

to fit the quadratic formulation. The main approaches in the literature are discussed bellow

using the 4-pin connection illustrated in Figure 2.3.

Figure 2.3: A multi-pin connection between pins o, i1, i2 and i3.

o

i1

i2

i3
Source: The author.
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One simple approach is to decompose the hyper-edge into n(n−1)/2 edges, where

n is the number of pins in the net. This approach is traditionally called Clique model, or

complete graph and is shown in Figure 2.4. Each new edge is commonly weighted by a

factor 1/(n− 1) in order to balance the forces in the system.

Figure 2.4: Clique model for the net presented in Fig. 2.3.

o

i1

i2

i3

Source: The author.

Alternatively, Figure 2.5 presents the star model, which creates a virtual node,

called Star. The Star is connected to the other nodes of the net by binary edges whose

weight factor commonly is n/(n− 1).

Figure 2.5: Star model for the net presented in Fig. 2.3.

o

i1

i2

i3

Star
 node

Source: The author.

The Clique model is efficient for small nets because does not create additional

variables to the system while the Star model has more null elements in the Hessian matrix,

which helps the solver convergence. Viswanathan et. al. (VISWANATHAN; CHU, 2005)

proved analytically that using the presented edge weighting approaches, both models

converge to the same result and, therefore, may be combined to achieve a good trade-

off between additional variables and the number of non-zero elements in the matrix. In

their empirical experiments, they concluded that using the Clique model for 2 and 3-pin

nets and star model for 4-pin nets and beyond the system solver runtime was 5 times faster

than using the clique model alone.
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Finally, a model called Bound2Bound (B2B) or Bounding-Box Net Model was

proposed by Spindler et. al. (SPINDLER; SCHLICHTMANN; JOHANNES, 2008). In

this model, the pins are ordered according to their current position in a given axis. An

edge between the boundary pins is created and 2 edges between each inner pin and the

boundary pins by a factor:

w =
1

(n− 1)|xi − xj|
(2.2)

where n is the number of pins of the net and xi and xj are the positions of the nodes being

connected.

Figure 2.6 presents a possible example, considering the net from Figure 2.3. This

model has two key advantages: The first is that the number of total edges is smaller than

in the Clique model without the addition of new variables to the system. The second is

that this model addresses the half perimeter of the nets more precisely than the former

models. The major drawbacks, however, is that a connection matrix is necessary for each

axis individually. Furthermore, these matrices need to be rebuilt after a certain number of

iterations since the boundary pins may change while solving the linear system.

Figure 2.6: B2B model for the net presented in Fig. 2.3.

o i1

i2

i3
x

Source: The author.

2.2.2 Building and solving the quadratic formulation

Consider the circuit presented in Figure 2.7(a), composed of 6 cells, 5 ports

and 9 nets. The first step to apply the quadratic formulation is to generate the

graph representation of the netlist, identifying and decomposing the multi-pin nets.

Figure 2.7(b) depicts a possible graph originated from the circuit using the hybrid net

model.



33

Figure 2.7: The graph representation of a netlist using hybrid net model. The 4-pin net

connecting N2, N3, N4 and N6 is replaced by a star node, called S.
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Source: The author.

Once the graph is known, one may build the Hessian matrix, which represents the

interconnections between nodes and its weight. The value for a given element Aij|i 6= j

is the negative weight of the edge connecting nodes i and j, the position is set as 0 if there

is no edge connecting the nodes. Note that only connections between movable nodes are

represented in the Hessian matrix. For diagonal positions, the value is set as the positive

value of the summation of all edge weights of the node, including connections with fixed

nodes. The Hessian matrix for the example circuit is presented in Equation 2.3. In the

proposed example, movable nodes are cells and fixed nodes are I/O pins, however, in real

VLSI circuits, some cells and IP blocks may have been fixed during the floorplaning.

A =



N1 N2 N3 N4 N5 N6 S

N1 3 −1
2
−1 0 0 0 0

N2 −1
2

10
3

0 0 0 −1
2
−4

3

N3 −1 0 10
3

0 −1 0 −4
3

N4 0 0 0 7
3
−1 0 −4

3

N5 0 0 −1 −1 3 0 0

N6 0 −1
2

0 0 0 10
3
−4

3

S 0 −4
3
−4

3
−4

3
0 −4

3
16
3


(2.3)

Vector ~bx represents the connection with fixed nodes. As it takes into account

the coordinates of fixed points, the vector must be build for each axis independently.

Considering the given example presented previously, let the x coordinates for the I/O pins

to be xp1 = xp2 = xp3 = 2 and xp4 = xp5 = 10. Each position of vector is the summation

of the weights of edges connecting the node to the fixed point multiplied by its position.
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The vector ~bx for the given example is shown in Equation 2.4.

~b =



N1 3

N2 2

N3 0

N4 0

N5 10

N6 10

S 0


(2.4)

The derivative ∇Φ(x) = A~x − ~bx = 0 is solved to find the optimal positions for

the cells (ALPERT et al., 1997). Solving the example, it is found the following values:

~x =



N1 3.44

N2 4.09

N3 5.29

N4 6.08

N5 7.12

N6 5.73

S 5.30


(2.5)

2.3 Static timing analysis

Timing is traditionally estimated through static timing analysis (STA). The delay

models used in STA depend on the information available and accuracy/runtime trade-off

required at each stage or optimization step of the design flow. During early stages, simpler

interconnection models are preferred like the linear delay and Elmore delay (ELMORE,

1948), as many changes are being performed and the exact routing is not defined

yet. On the other hand, more accurate models like Asymptotic Waveform Evaluation

(AWE) (PILLAGE; ROHRER, 1990) and Model Order Reduction (MOR) are preferred

during late stages of the design flow.
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2.3.1 Routing estimation

Routing wirelength can be estimated using several strategies as the bounding

box (CALDWELL et al., 1998), driver-to-sink, minimum spanning tree (ZHENG; LIM;

IYENGAR, 1996) and minimum Steiner tree (CHU, 2004). With the exception of the

bounding box, the other strategies also provide an estimate of the routing topology being

the Steiner tree the closer one related to the final routing. Regarding only the wirelength,

the bounding box matches exactly the wirelength of the minimum Steiner tree for nets

with 2 and 3 pins, which are the vast majority of nets in a design.

2.3.2 Elmore delay model

Elmore delay (ELMORE, 1948) presents a good trade-off between accuracy and

performance when compared to linear delay (fast) and AWE (precise) respectively. To

compute the Elmore delay of a net the wire is divided into segments and each segment is

modeled as a RC circuit, composing a RC tree. The value for the delay in each segment is

calculated propagating the delay from the driver to the current segment until it reaches a

sink. The general equation for a segment n is given by Equation 2.6, Figure 2.8 presents

an example of a RC tree and Equations 2.7-2.11 while the delay calculation for each wire

segment.

di = dup +Ri × Cdown (2.6)

where di is the delay in the node i; dup is the upstream delay; Ri is the wire resistance and

Cdown is the downstream capacitance.

Figure 2.8: Example of a RC tree for a 3-pin net.

Source: The author.
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d1 = R1 × (C1 + C2 + C3 + C4 + C5) (2.7)

d2 = d1 +R2 × (C2 + C3 + C4 + C5) (2.8)

d3 = d2 +R3 × (C3) (2.9)

d4 = d2 +R4 × (C4 + C5) (2.10)

d5 = d4 +R5 × (C5) (2.11)

Elmore may be applied applied to a simplified Π network with a parasitic Rwire

and Cwire, as shown in Figure 2.9 which delay is given by Equation 2.12.

Figure 2.9: Π model representation for a net.

Source: The author.

dwire =
Rwire × Cwire

2
+Rwire × Cload (2.12)

The first term is divided by 2 since only the second capacitor, Cwire/2, "sees" the

resistance Rwire. In the second term, Cload is the capacitance being loaded. The factors

Cwire and Rwire are calculated as follows:

Rwire = Runit × L (2.13)

Cwire = Cunit × L (2.14)

where Runit and Cunit are technology parameters and L is the estimated wirelength.
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2.3.3 Gate propagation delay and slew

The modern standard cell libraries provide Look-Up Tables (LUTs). The values

for cell delay and slew may be represented as a function of the input slew and output

capacitance, for instance. These values usually are obtained from experimental measures

or from simulations using complex models (BHASKER; CHADHA, 2009). An example

of a set of 3X4 delay tables for an inverter are shown in Figure 2.10 using Liberty

format (OPENSOURCE. . . , 2016).

Figure 2.10: Example of a LUT for an inverter using Liberty format.

Source: The author.
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Interpolation is commonly adopted to obtain intermediate values from the table,

using the following formulation (BHASKER; CHADHA, 2009):

d00 = x20 × y20 × d11 + x20 × y01 × d12+

x01 × y20 × d21 + x01 × y01 × d22
(2.15)

x01 =
x0 − x1
x2 − x1

(2.16) x01 =
x2 − x0
x2 − x1

(2.17)

y01 =
y0 − y1
y2 − y1

(2.18) y20 =
y2 − y0
y2 − y1

(2.19)

where d00 is the desired value of delay for a given value of input slew x0 and of an output

capacitance y0. The values x1 and x2 are the closest left and right neighbor in the table

regarding x0. The same stands for the ys. Finally, dij is an entry in the table for a pair

(xi, yj). An example of interpolation is depicted in Figure 2.11.

Figure 2.11: Assume an inverter from Figure 2.10 with an input slew of 1.6ps, driving a

capacitance of 75fF. The values x1, x2, y1, y2, d11, d12, d21 are d22 for the calculation of

cell falling transition are highlighted below.

0.00 1.00 2.00

5.00 14.064 21.864 27.204
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Source: The author.
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2.3.4 Path delay

Once is determined how to estimate the delay for nets and cells, one can calculate

the total propagation delay for a given signal in the circuit by traversing the timing graph

of the netlist. Timing graph is a directed graph where nodes represent the circuit pins and

the edges represent a path connecting these pins. The edges are commonly called timing

arcs. An example of a timing graph is depicted in Figure 2.12. The start point may be a

primary input of the chip while the endpoints may be a primary output of the chip or an

input pin from a sequential element.

Figure 2.12: An example of a timing graph.

D
Q

D
Q

Source: The author.

STA may be performed in two modes: early and late. In early mode, it is

considered the best case scenario, i.e. minimum propagation times, while late mode

considers the worst case, i.e. maximum propagation times.

The arrival time (ta) for an input pin (pi) is given by:

ta−late(pi) = d(wirenet) + max
p ∈ net

[ta(p)] (2.20)

ta−early(pi) = d(wirenet) + min
p ∈ net

[ta(p)] (2.21)

where d(wire) is the delay in the net driving the pin. The arrival time for an output pin is

given by:
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ta−late(po) = d(cell) + max
pi ∈ cell

[ta(pi)] (2.22)

ta−early(po) = d(cell) + min
pi ∈ cell

[ta(pi)] (2.23)

where ta is the arrival time for a pin and d(cell) is the cell internal propagation delay. The

LUTs specifies times for both rising and falling transitions w.r.t each input pin. Therefore,

it is to store both values for each pin.

2.3.5 Timing violations

The large majority of the modern circuits is synchronous, which means they are

subject to one or more clock domains. Figure 2.13 shows the general organization of these

circuits, divided into sequential and combinational logic. The synchronous elements,

mostly composed by registers are responsible for storing data for one or more clock

periods while the combinational elements perform operations on them.

Figure 2.13: Synchronous circuit organization.

Source: The author.

In order to be stored correctly, the data must remain stable within a certain time

range, determined by Equations 2.24 and 2.25.

T + tskew − tCk → Q − tcomb ≥ tsetup (2.24)

where T is the clock period, tCk → Q is the register internal delay; tcomb is the delay of

the worst path in the combinational logic; tsetup is the amount of time the data should be

stable before a clock edge arrives at the register and tskew is the difference of time the

clock signal arrives in the initial and the final registers.

tCk → D + tcomb ≥ thold + tskew (2.25)
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where tCk → D is the delay to the register begin storing the data after a clock edge; thold

is the time a data must remain stable after a clock edge and tskew is the difference of time

the clock signal arrives in the initial and the final registers.

Knowing the target operation makes possible to calculate the minimum (early) and

maximum (late) required arrival time that a signal must take to assure a correct storage.

The difference between the required arrival time (tr) and the actual arrival time (ta) is

called slack. If slack assumes a negative value for a pin, there is at least one path violating

the timing constraints passing through the pin. The calculation of early and late slack

are shown in Equations 2.26-2.27 and examples of path delay calculations are shown in

Figures 2.14 and 2.15.

slackearly = ta − tr−early (2.26)

slacklate = tr−late − ta (2.27)

Figure 2.14: Example of a path with early violation.
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Source: The author.

Henceforth, two important terms, called Worst Negative Slack (WNS) and Total

Negative Slack (TNS), are employed referring to the most negative slack and the

summation of all negative slacks at the endpoints of the circuit, respectively.
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Figure 2.15: Example of a path with late violation.
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3 RELATED WORKS

Timing-driven placement algorithms have been addressed by several works in the

literature. This chapter starts providing a short survey on timing optimization though

quadratic formulations, which are the main focus of this work, from section 3.1 to 3.5.

In section 3.6, a set of local search algorithms proposed by Bock et. al. is discussed due

to their influence in our previous work presented in (FLACH et al., 2016). The former

proposes several timing-driven single-cell movements which are discussed in Section 3.7.

3.1 RITUAL

A two-phase timing-driven placement algorithm is presented in RITUAL

(SRINIVASAN; CHAUDHARY; KUH, 1991). The first phase is a continuous

optimization of the weighted quadratic wirelength through quadratic placement and the

latter is a discrete optimization using recursive partitioning and weighted assignment.

In both phases, the weight is obtained by modeling timing constraints in a Lagrangian

Relaxation formulation. The delays are estimated through Bakoglu (BAKOGLU, 1990)

timing model and star net topology.

3.2 SPEED

SPEED (RIESS; ETTELT, 1995) proposes a net weighting approach applied to

quadratic placement. Net delays are estimated using the Elmore delay model and a star

net topology. Initially, all weights of the circuit are set as the number of pins on the

net. The weights are updated dynamically. As mentioned before, when a critical net is

optimized, other may become critical. To avoid this kind of oscillation, the algorithm

keeps a track of net criticality in the last two iterations. Once a net is evaluated as critical,

the weight is increased. If the net stays non-critical for two iterations its weight is reduced

by half.
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3.3 APlace

In Kanhg et. al. (KAHNG; WANG, 2004), an extension of the wirelength-

driven analytical tool APlace is proposed to support both mixed-size placement and

timing-driven optimization. APlace performs global placement using a log-sum-exp

method (NAYLOR; DONELLY; SHA, 2001) to address the linear wirelength optimization

and a bell-shaped function to generate repulsion forces between cells in order to reduce

congestion. The work copes with mixed-size circuits adapting the bell-shaped function to

work with IP-blocks, which are much larger than cells.

The timing-driven methodology is shown in Figure 3.1. The output of the global

placement stage is routed using the industrial tool TrialRoute and a RC extraction is

performed on the final solution. Another tool, called Pearl, performs the STA. The

information about obtained critical paths is incorporated by the global algorithm as net

weights. Global placement is executed and these steps are repeated until the target value

of improvement is achieved.

Figure 3.1: APlace timing-driven flow.

APlace-TD

TrialRoute
ExtractRC

APlace-TD

Critical Paths
Min Cycle

LEF/DEF/GCF/SDC

Source: Adapted from (KAHNG; WANG, 2004)
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3.4 ITOP

ITOP (VISWANATHAN et al., 2010) is an incremental timing driven placement

algorithm whose objective is to optimize timing w.r.t initial solution in terms of total

wirelength and roteability. Figure 3.2 presents the proposed flow, which is divided

into three major stages: (I) Critical path optimization, (II) Congestion mitigation and

wirelength recovery and (III) slack histogram compression.

Figure 3.2: ITOP

Coarsely optimized design

Final placement

(I) Critical path optimization
-  Slack-based Critical Path Threading
- Incremental Critical Path Smoothing

- Incremental Timing Optimization

(II) Congestion Mitigation
And

Wirelength Recovery

y

n

(III) Slack Histogram Compression 

Timing 
Improvement?

Source: Adapted from (VISWANATHAN et al., 2010).

Stage I is subdivided into three steps. The first one is responsible for identifying

critical paths and to create virtual 2-pin connections between elements of the path aiming

to give higher priority to these paths in the global algorithm. In the second step, local

movements, whose goal is to reduce the total path length, are applied in critical cells. An

industrial static timer re-evaluates the solution. The last stage applies buffering and sizing

techniques to optimized remaining critical paths.
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Several locations of the chip may become congested due to the cell movements

on stage I. To mitigate the generated congestion, non-critical cells in critical regions

are identified and moved to the closest non-critical region. This strategy may degrade

the solution regarding total wirelength. The authors deal with this issue applying a

wirelength-driven detailed placement algorithm in the degraded solution.

Continuous movements on top critical paths may degrade timing of non-critical

paths. A slack histogram compression techniques are hence applied in Stage III for a

set of non-critical paths. This stage covers a large set of paths which also helps the flow

convergence.

3.5 PADe

The quadratic formulations discussed so far consider all cells to be movable and

thus may have a huge impact on the initial solution. During incremental flows may be

desired to keep the properties of the initial solution. Monteiro et. al. (MONTEIRO et al.,

2015) adapted the quadratic formulation to move only a reduced group of cells.

PADe starts by traversing the netlist and setting all registers as fixed elements. In

the following steps it is identified the most critical path in critical endpoints and it is set

its cells and topological neighbors as movable elements. The remaining cells are set as

fixed. Therefore, the quadratic formulation aims to find the optimal position only for cells

in the critical paths and its neighbors. In (FLACH et al., 2015), PADe is combined with

an algorithm that performs local movements in the registers targeting useful clock skew,

as shown in Figure 3.3, a legalization algorithm and a static timer.

Figure 3.3: PADe flow and infrastucture.

Source: (FLACH et al., 2015)
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3.6 Bock et. al. local-search algorithms

A set of local search algorithms is proposed in (BOCK et al., 2015). The first

technique focus on critical path straightening. For a given cell c, it is identified the most

critical upstream pin and the most critical downstream pin. The cell is placed in the middle

position between these two pins and timing is analyzed. Local movements are performed

moving the cell towards each pin. The position of minimum slack is always kept until

no further optimization is achieved. Another technique, called supergradient, assumes the

slack is a concave function f(x), where x is the current position of the cell. The value

of the slack gradient is computed shifting cells towards both positions horizontally and

vertically. This procedure is repeated until the cell reaches the optimum value position.

The authors also demonstrate empirically that single cell movements may lead

the algorithm to a local minima. A methodology for cell clustered based on slack and

netlist topology is hence proposed. Figure 3.4 shows the flow integrating the techniques.

Both path straightening and supergradient ascent are applied in single cells and clusters.

Finally, the authors highlight that the presented methodology is timing-model independent

and may be integrated with different STA tools.

Figure 3.4: (BOCK et al., 2015) flow.
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Source: The author.
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3.7 UFRGS analytical single-cell movement techniques

In a previous work (FLACH et al., 2016) a flow of techniques addressing both early

and late timing violations was proposed. To mitigate early violations useful clock skew,

iterative cell spreading, register swaps and register-to-register path fixing techniques are

presented. Late violations are addressed through clustered movement (based on (BOCK et

al., 2015)) and single cell movements aiming to reduce the load capacitance in the critical

nets and balance load based on the cells drive strength. The techniques were integrated

into the flow presented on Fig. 3.5 which presents the best known results for ICCAD 2015

CAD contest (KIM et al., 2015) on incremental timing-driven placement. The diamond

shape indicates that the steps run until the quality of the result is not improved while the

circle shape indicates that the quality of the result can degrade a certain number of times

before exiting. The best solution found is restored (FLACH et al., 2016).

Figure 3.5: The incremental timing driven placement flow proposed by Flach et.
al. (FLACH et al., 2016).
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Source: (FLACH et al., 2016).
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Clustered Movement

Bock et. al. (BOCK et al., 2015) demonstrated that single-cell movements may

lead the algorithms to a local minima. To cope with this issue, a clustered movement

approach is proposed. The clustering operation, based on Breadth-First Search (BFS), is

described in Algorithm 3.1. From a given cell, g, every neighbor within a topological

distance are traversed (lines 7-14). If the neighbor is critical, it is added to the list of cells,

which represents the cluster (lines 9-13). The operation is repeated until no further critical

neighbors are found (lines 4-15).

Algorithm 3.1: Cell clustering
Data: Initial cell g

Result: Cluster c

1 begin

2 c← ∅

3 neighbors← g

4 while neighbors 6= ∅ do

5 currCell← neighbors.top()

6 neighbors.pop()

7 if topological_distance(currCell, g) < γ then

8 cluster← cluster + currCell

9 for each neighbors v ∈ currCell.neighbors do

10 if criticality(v) > 0 then

11 neighbors← neighbors + v

12 end

13 end

14 end

15 end

16 return c

17 end
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The next step is to identify the critical neighbors of the cluster and calculate their

center of mass, pondered by the slacks of the pins connected to the cluster (Equation

3.1). Finally, every cell in the cluster is shifted towards the target position, as shown in

Equation 3.2. Figure 3.6 depicts a cluster of three cells in orange and the neighbor critical

cells in green. The target position is calculated as (42.5, 49), therefore, cells are shifted

towards the dashed positions.

target_pos =

∑P
i=0 pos(Pi)× slack(Pi)∑P

i=0 slackPi
. (3.1)

new_pos(cell) = pos(cell)− target_pos− centerOfMass(grupo) (3.2)

Figure 3.6: The target position for a cluster. For each neighbor node N a tuple (x, y, slack)

is specified and the target position for the cluster is calculated applying Equation 3.1.

N2

N1

N3N4

(50, 90, -25)

(20, 70, -10)

(20, 30, -50) (120, 30, -15)

(42.5, 49)

Source: (FLACH et al., 2016).

Buffer Balancing

Buffer insertion is a common practice during physical design which decomposes

large wires into smaller ones to avoid large parasitic capacitance and resistance, creating

large buffer chains. However, buffer insertion may not be aware of different drive

strengths and hence may restrict the optimization domain. The analytical formulation

proposed in this section determines the position for a given buffer where the delay

is minimum. The cells drive strength is taken into account, as well as, RC tree

interconnection modelling and Elmore delay (ELMORE, 1948). Two simplifications are
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made: Since only one buffer is moved at a time, it is considered that its driver and sink

will remain fixed. Moreover, there is only one driver and sink for each buffer. This idea

is applied iteratively to handle buffer chains. Experimental data showed that only a few

iterations are needed to achieve convergence.

An example is shown in Figure 3.7 and its delay (D) is described using Elmore

delay in Equation 3.3

Figure 3.7: Buffer balancing modeling.

Source: (FLACH, 2015)

D = R0 (C1 + d0Cw) + d0Rw

(
C1 +

d0Cw
2

)
+ p0

+R1 (C2 + d1Cw) + d1Rw

(
C2 +

d1Cw
2

)
+ p1

(3.3)

where R0 represents the resistance of the cell driving the buffer; C1 is the buffer input

capacitance; d0 is the interconnection length between the driver and the buffer; Rw is the

wire resistance per distance unit; Cw is the wire capacitance per distance unit; R1 is the

resistance of the buffer; d1 is the interconnection length from the buffer to the sink; C2

is the sink load capacitance of the sink, while p0 and p1 are the internal delays from the

driver and buffer, respectively.

The total distance between the buffer driver and the sink is given by, d = d0+a+d1

where a is the distance between input and output pins of the buffer. By setting ∂D
∂d0

= 0

one may find the minimum delay position for the buffer. The optimal distance between

the driver and the buffer is shown in Equation 3.4.

d0 =
Cw (R1 −R0) +Rw [C2 − C1 + Cw (d− a)]

2CwRw

(3.4)

The new position for the buffer is calculated as follows.

Pb = Pd +
d0
d
× (Ps − Pd) (3.5)
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where Pb is the new position for the buffer, Pd is the driver position and Ps is the position

of the sink.

Cell ballancing

The buffer balancing technique was extend do handle non-buffer cells and multi-

pin nets. An optimal cell position for every timing arc is computed and then combined

using a weighted arithmetic mean where, the weights are based on the negative slack

and number of critical paths passing through it. The calculation is also simplified by

restricting the cell movement to the closest Steiner point driving and sinking the cell,

henceforth called driver point and sink point. The modelling is shown in Figure 3.8.

Figure 3.8: Cell balancing modeling.

driver point

sink point

Source: (FLACH, 2015)

In the following equations, consider upstream resistance (Rup) as the summation

of every resistance from the driver cell up to the driver point, including the driver

resistance; The upstream delay (Dup) as the propagation delay from the driver cell

up to the driver point and the downstream capacitance Cdown as the summation of all

capacitances from the sink point to all sinks. The total delay from the driver point up to

the sink point may be represented as follows.

D = D0 +D1 (3.6)

where

D0 =Dup +Rup (C1 + Cwd0) + d0Rw

(
C1 +

d0Cw
2

)
+ p0 (3.7)
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is the delay from the driver to the input of the cell and

D1 = R1 [Cdown + d1Cw] + d1Rw

[
Cdown +

d1Cw
2

]
+ p1 (3.8)

is the delay from the cell up to the sink point, where C1 is the cell input capacitance; d0 is

the connection length between driver point and cell; d1 is the connection length from the

cell to the sink point; R1 is the gate resistance and p0 and p1 are the drive and cell internal

delay, respectively.

The Equation 3.4 may be rewritten to fit the new formulation, as follows.

d0 =
w1CwR1 − w0RwC1 + w1Rw [Cw(d− a) + Cdown)]

RwCw(w0 + w1)
− w0RupCw
RwCw(w0 + w1)

(3.9)

where w0 and w1 are the driver cell and sink cell critical relevance, respectively.

Load Optimization

Noncritical sinks may be easily addressed to mitigate timing violations in nets with

fan-out bigger than one by moving them closer to their driver. The main idea behind this

strategy is to reduce the total interconnection length and hence the wire load capacitance

and the resistance. Furthermore, by moving these sinks towards the driver reduce the

cumulative parasitics in the downstream nodes of the RC tree.

Skew Optimization

Early violations may be mitigated decreasing the clock latency on the endpoint

register. The simplest way to achieve that is moving the register towards the clock source,

as depicted in Figure 3.9.



54

Figure 3.9: Clock skew optimization by moving registers closer to LCBs.

LCB

(a) Initial

LCB

(b) Optimized

Source: (FLACH, 2015)

Iterative Spreading

This technique tentatively shifts a given cell with early violation up, down, left

and right – The best one is kept. A maximum displacement for the method is specified

by the user. In the beginning, cells are shifted only 10% of the total displacement value.

If there is no improvement, the search area is increased. Figure 3.10 depicts an example

of the process, where the diamond shape represents the maximum displacement for the

orange cell whose optimum position is found in the south.

Figure 3.10: Iterative Spreading

Source: (FLACH, 2015).
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Register Swap

By swapping the position of two or more register, the method tries to avoid the

side effect of clock latency present in clock skew optimization. Assuming that all the

registers have the same size and Vth, while swapping two registers being drived by a same

clock source, the clock tree will not change and hence, the latency on each endpoint may

be seen as a constant.

The register swap was modeled as an assignment problem which may optimally

solved in polynomial time using the Hungarian algorithm (KUHN, 1955). Again, the

idea is to mitigate in early paths is to reduce the clock latency at the endpoint registers.

Figure 3.11 illustrated an example, where a LCB drivers 8 registers. In this case each slot

is referred by a letter and it is desired to minimize the latency on the orange registers.

Therefore, the algorithm assign them positions closer to the LCB.

Figure 3.11: Register swap by optimal assignment.
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Register-to-Register Path Fix

In paths connecting directly two registers, the timing violation may be fixed by

just increasing the interconnection parasitic between them. The zero-slack delay between

two registers is given by:

dearlypath = llateo + thold − learlyi (3.10)

where learlyi and llateo are the early and late clock latency at the clock pin of start

and end point registers, respectively, dearlypath is the early delay among the registers and thold

is the hold time of the end point register.

When there is no combinational logic between the registers, the path delay is

composed only by the input register propagation delay and the wire parasitic delay. The

way to fix early violations in these paths regarding placement is to move the registers

apart. Assuming cell delay as its drive strength and wire delay as Elmore, Equation 3.10

may be rewritten as shown in Equation 3.11.

dearlypath = Ri (xCw + Co) + xRw

(
xCw

2
+ Co

)
(3.11)

where x is the optimum wirelength for the connection; Ri is the start point register driver

resistance and Co is the end point register input capacitance. Assuming that there is no

latency change while moving the registers and the hold timing is also a constant, Equation

3.11 may be solved as shown below:

x =

√
2CwRwd

early
path + Co

2Rw
2 + Cw

2Ri
2 − CoRw − CwRi

CwRw

(3.12)

Once x is computed, the input register is shifted away from the end point register

following the straight line formed by the two registers.
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Average Bin Utilization (ABU) reduction

A key challenge during timing-driven placement is to avoid congestion during

optimization. This technique ranks noncritical cells according to their positive slack inside

regions with a high density of cells. These regions are identified using the metric ABU

commonly adopted by placement tool (for more information about ABU, please refer to

Chapter 5). The cells are then moved to the nearest non-congested bin. After every move,

the Steiner trees are rebuilt and timing updated to assure no timing violation was created.

The movements are performed until all bins achieve a given target density.
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4 INCREMENTAL QUADRATIC PLACEMENT TECHNIQUES FOR PATH

SMOOTHING

For a better understanding, this chapter is divided into 3 sections. The former

presents a survey on how quadratic placement may be applied incrementally by the

addition of anchors to the linear system, in an operation called neutralization. Once

the system is neutralized, additional forces are added between the pins of critical paths.

The weight of these forces are modeled to address Elmore delay and drive strength, and

hence to optimize the delays of these paths. This methodology is further explained in

section 4.2. The latter shows the flow integrating the proposed techniques with our

previous work (FLACH et al., 2016), composed of single-cell movements and previously

discussed in chapter 3.

4.1 Incremental Quadratic Placement

A good global placement solution carries on several important properties as

reduced wirelength, overlap, congestion and timing. An incremental placement takes

such a solution and tries to further improve it while keeping the global properties of the

initial solution.

In order to make use of an initial solution in a quadratic placement formulation,

constant forces or anchors may be added to the linear system to hold movable elements

in their current position (HU; MAREK-SADOWSKA, 2005). We call this procedure

neutralization as the linear system is adjusted in such a way that its solution provides the

current element positions and all forces acting on the system cancel each other. After the

neutralization, the linear system is perturbed again so that a new solution is generated.

In this work the linear system is neutralized using anchors as they can be viewed

as a generalization of constant forces and are typically more stable (HU; MAREK-

SADOWSKA, 2005). Assume that the linear system presented in Equation (4.1) describes

a quadratic placement formulation. No assumption on net modeling (e.g. clique, star) is

made.

A~x = ~b (4.1)

where A is the Hessian matrix; ~x represents the cell’s current position and ~b represents

the connections with fixed nodes.
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A movable element is connected to a fixed element whenever the diagonal value

respective to that element is greater than the sum of the absolute values of the off-diagonal

elements. Therefore, to add an anchor to every cell, one needs to add a positive value to

the diagonal of the Hessian matrix as shown in Equation (4.2) where wi > 0 is the weight

associated to the ith anchor. Multiple fixed points are automatically merged into one. So

preexistent movable-to-fixed connections are seamlessly handled.

Ȧ = A+ diag(w1, w2, · · · , wn) (4.2)

To finally neutralize the system, the anchor positions need to be defined. This is

accomplished by setting the right-hand-side vector as in Equation (4.3) where ~x0 is the

current element positions.
~̇b = Ȧ ~x0 (4.3)

The neutralized system is shown in Equation (4.4). By construction, the system

solution is ~x = ~x0.

Ȧ~x = ~̇b (4.4)

When the neutralization is done by the addition of anchors, their position ẋi, can

be retrieved by applying the Equation (4.5).

ẋi =
ḃi − bi
wi

(4.5)

Note that to neutralize the system using constant forces instead of anchors, simply

set wi = 0.

An example for a small circuit is depicted in Figure 4.1. The initial placement for

the given circuit is presented in Figure 4.1(a). When the quadratic placement formulation

is applied without neutralization, all the cells are moved to the position which the

quadratic wirelength is minimum, with no respect to the initial solution (Figure 4.1(b)).

In Figure 4.1(c), the neutralization process adds a new force connecting each cell to an

anchor such that the quadratic forces are nullified. Therefore, if the quadratic placement

is applied in the neutralized solution, the cells do not move, keeping the initial solution

(Figure 4.1(d)).



61

Figure 4.1: A comparison between applying quadratic placement before and after the
initial solution is neutralized.

Source: The author.

4.2 Net weighting techniques for timing-driven quadratic placement

Equation 4.6 is a second-degree function whose quadratic term is the length of

interconnection, Lij , multiplied by the resistance and capacitance per unit length of

interconnections, Rw and Cw, respectively. If we assume that each 2-pin connection

between cells in quadratic placement is a wire and its weight is gij = RwCw, then

minimize the quadratic placement function (Eq. 4.7) also should minimize the wire delay.

Since RwCw is a constant multiplying every term in the circuit, removing them from the

formulation do not change the results.

Dw(i, j) = RwCw(Lij)
2 + ClRw(Lij) (4.6)

W (~x, ~y) =
N∑
i

N∑
j

gij(Lij)
2 (4.7)

where W (~x, ~y) is the objective function; gij is the weight for a interconnection and Lij is
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the interconnection length.

However, minimizing the wires alone does not produce good results regarding the

delay. The local optimum solution for a buffer may not be the center position between its

driver and sink cells, as shown in Fig. 4.2, unless the buffer has the same drive strength as

its driver.

Figure 4.2: The optimum local position for a buffer may not be the center position

between its driver and sink cells. The position is correlated to driver and buffer strength.

Source: Adapted from (FLACH et al., 2016)

4.2.1 Driver-sink additional forces

This net weighting approach aims to perform critical path smoothing. The first

step is to traverse all nets in the circuit. For each net it is verified if the driver is critical,

i.e. there is at least one critical path passing through it. Consider the example illustrated

in Fig 4.3 – There is a net with a critical driver o and 3 sinks; 2 of them, i1 and i2 are

also critical. To give priority for both paths passing through this net, two extra edges are

added to the system, one between o and i1 (dashed red) and another between o and i2

(dotted green). The weight of those connections is also enhanced by a tunning factor α,

defined empirically, and the criticality of the sink. In this work, the criticality is a way to

estimate the importance of a pin or a cell w.r.t the circuit WNS. The criticality of a pin is

the negative slack of the pin divided by the worst negative slack found in the circuit while

the criticality of a cell is equal to the maximum criticality in the pins that belong to the

cell. Therefore, criticality is a real value in the range [0, 1]. The final weight of the new
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edges are:

gij = αRdrive(1 + critically(j)) (4.8)

where Rdrive is the driver resistance and criticality(j) is the sink criticality.

Figure 4.3: Driver-sink additional forces for timing critical edges.

Source: The author.

This approach is depicted in Figure 4.4, using the same circuit from the example

presented in Section 4.1. The initial placement (Figure 4.4a) is neutralized by the addition

of connections with anchors (Figure 4.4b). In Figure 4.4b, a critical path connecting 3

cells and 2 IO pins is drawn in red. Extra edges connecting all the pairs driver-sink of

the critical path are added. When performing the quadratic placement, the extra edges

approximate the cells from the critical path while the anchors prevent the topological

neighbor cells from moving away from the their initial position.

4.2.2 Drive strength aware clique net model

One may mitigate timing violations by properly balancing the load in the nets

composing critical paths. To address load balancing, critical nets were decomposed in

cliques as shown in Fig. 4.5. The weight of each edge is given by:

gij =
αRdrive(1 + criticality(i))

(k − 1)
(4.9)

where criticality(i) is the driver criticality and k is the number of pins of the net.
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Figure 4.4: An example of critical path (bold red) smoothing by the use of driver-sink
additional forces (dashed orange).

Source: The author.

Figure 4.5: Modeling load optimization of critical nets into clique net model.

Source: The author.
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An example of load balancing using drive strength aware clique is depiced in

Figure 4.6. The initial solution from Figure 4.6(a) is neutralized by the addition of anchors

in Figure 4.6(b). The critical path (bold red) is identified in Figure 4.6(c). Extra edges,

represented in dashed purple, are created between all elements of nets. Figure 4.6(d)

presents the final solution after applying the quadratic placement. The load balancing

approach does align the critical path as well as the previous formulation, depicted in

Figure 4.4, however, the load in critical nets is optmized due to the reduction in its

wirelength.

Figure 4.6: An example of the load balancing forces (dashed purple) by the use of driver
strength aware clique model.

Source: From author.

4.3 Proposed Incremental Timing-driven placement Flow

The proposed analytical formulations were integrated into the flow presented in

Fig. 4.7. It relies on three major stages: (I) Top critical paths smoothing, (II) iterative net

weighting and (III) the baseline flow. The baseline flow is a flow composed by local search
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techniques previously proposed by us (FLACH et al., 2016) and presented in Chapter 3. It

is important to notice that the implementation of the baseline methods made in this work

highly correlates with the original proposal in (FLACH et al., 2016) with results varying

less than 1% on average.

Top critical path smoothing consists of iterating through the circuit netlist finding

the nets whose driver has a criticality higher than a threshold β. In these nets, the edges

between the driver cell and their respective criticals sinks are strengthened following

the methodology driver-sink presented in Section 4.2.1. In the experiments performed,

the value of β was set automatically for each benchmark as the criticality of the third

most critical endpoint. This threshold estimation methodology proved to be efficient for

tested benchmarks. The path smoothing formulation is repeated until the solution stops

improving.

Iterative net weighting improves the current solution quality by assigning higher

weights to the cliques proportionally to their driver criticality following the technique

proposed in Section 4.2.2. At this stage, the goal is to reduce the load on the critical

nets and to further align the critical paths. As pointed on other timing-driven analytical

works, the net weighting technique may present oscillations before converging to the final

solution (VISWANATHAN et al., 2010).

Every time a new solution of the quadratic placement is accepted in stages (I) and

(II), it is applied one iteration of the cell balancing technique from our previous work.

Experiments showed that combining this technique helped to improve the gains from

the quadratic placement. The loop verifications are done before cell balancing execution

to assure that the gains come from quadratic placement, avoiding local minima – This

conjecture was also confirmed empirically.

The last stage is the baseline flow, composed by our 9 local search algorithms. For

more details, please refer to Section 3.7.
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Figure 4.7: Proposed timing-driven placement flow.

Initial Placement

Improvement?

Set β value

(III) Baseline

Optimized placement

Incremental quadratic 
placement

Improvement?

n

(I)
 T

op
 c

rit
ic

al
 p

at
hs

 s
m

oo
th

in
g

(II
) I

te
ra

tiv
e 

ne
t w

ei
gh

tin
g

Generate path weights

Solve quadratic 
placement

Neutralize solution

Neutralize solution

Generate net weights

Cell balancing

Cell balancing

y

n
y

Source: The author.



68



69

5 EXPERIMENTAL SETUP

This chapter presents the validation of the proposed flow. The implementation

was made using C++11 language and the tests performed on an Intel Core i7-4790K CPU

@ 4.00GHz × 8 CPU with 32GB running Ubuntu 14.04 LTS (64-bit). The experiments

were performed using the infrastructure of 2015 ICCAD CAD Contest in Incremental

Timing-Driven Placement (KIM et al., 2015) which is presented in Section 5.1.

Section 5.2 presents the results based on the infrastructure metrics and the

following sections present experiments for further understanding of the algorithm

behavior. Section 5.3 presents an analysis of the slack histogram in different placement

solutions while Section 5.4 presents the individual gains for each technique applied in the

flow. Finally, Section 5.5 shows an experiment evaluating the path smoothing.

5.1 ICCAD 2015 CAD Contest in Incremental Timing-Driven Placement

infrastructure

Although several works addressed timing-driven placement, it was difficult to

measure the real contribution of each one since they were validated by different metrics

and executed in different circuits. The ICCAD 2015 CAD Contest in Incremental

Timing-Driven Placement proposed a full framework to motivate the research in this

field and standard metrics do make easier to compare the results. It provides eight

mixed-size benchmark circuits, ranging from 700k to 2M components and derived from

industrial Application-Specific Integrated Circuit (ASIC) designs (KIM; HU, 2016).

More information about the benchmarks is given in Table 5.1.

Table 5.1: ICCAD 2015 CAD contest benchmarks.

Circuit
Number of nodes Max disp. (µm) Target

utilization
Target clock
period (ns)Movable Registers Fixed Short Long

superblue1 1,209,716 144,266 56,898 40 500 0.8 9
superblue3 1,213,253 167,923 58,970 40 400 0.87 10
superblue4 795,645 176,895 45,289 50 500 0.9 6
superblue5 1,086,888 114,103 76,676 30 400 0.85 9
superblue7 1,931,639 270,219 72,256 50 400 0.9 5.5
superblue10 1,876,103 241,267 101,837 20 400 0.87 10
superblue16 981,559 142,543 4,868 20 400 0.85 5.5
superblue18 768,068 103,544 27,099 30 400 0.85 7

Source: The author.
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An initial placement optimized for wirelength and routability for each circuit is

provided. One should minimize the timing violations w.r.t. the initial solution. The

metric to evaluate these changes in the quality of the solution is based on early and late

slack improvement and congestion. The timing evaluation is presented by Equation 5.1.

3

TimingImprov = 10× lTNSfinal
lTNSinitial

+ 2× eTNSfinal
eTNSinitial

+

5× lWNSfinal
lWNSinitial

+
eWNSfinal
eWNSinitial

(5.1)

where lWNS and lTNS are the worst and total negative slack for late mode respectively,

while eWNS and eTNS are the worst and total negative slack for early mode respectively.

The congestion penalty is given by the Average Bin Utilization (ABU) (KIM et

al., 2012), calculated as shown in Eq. 5.2.

Congestionpenalty =

∑φ(Kφ × Uφ)∑φKφ

(5.2)

where U is the summation of the cells area in a given region divided by the total available

area in the same region; Uφ is the average value of U for the φ% most congested regions; φ

is in the set of values {2%, 5%, 10%, 20%} and K2 = 10, K5 = 4, K10 = 2 and K20 = 1.

The quality of the solution is computed as shown in Equation 5.3.

QS = max(TimingImprov × (1− Congestionpenalty), 0) (5.3)

A soft constraints is implied by the QS metric: Maintain the same congestion

routing as well as pin density of the initial solution. However, some hard constraints are

also suggested. The first one refers to the legality of the solution – The optimization

techniques must assure the cells are aligned to sites in rows and do not have overlaps

among them, i. e., it is a feasible solution. To restrict the impact on initial placement,

two max displacement constraints cells are given for each benchmark, called short and

long displacement. The short displacement usually has a value of tens of micra restricting

techniques to perform only local movements while long displacement allows cells to move

hundreds of micra giving more room for global optimization.
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Finally, the infrastructure allows the algorithms to assign the registers to different

clock buffers other than the initial ones, under three rules:

• Every register must be assigned to one source of clock signals;

• A register cannot be driven by more than one clock source;

• For each circuit, a maximum fanout for the local clock buffers (LCBs) is

determined.

To provide an implementation-free comparison between different tools, an

evaluation script is provided. It reports timing, wirelength and hard-constraints violation

of a given placement solution. Note that a hard-constraint violation does not prevent a

solution to be evaluated and hence may be ignored, at the cost of a fair comparison with

other works.

5.2 Quality of solution evaluation

A comparison between the initial solution, 2015 ICCAD CAD Contest

winner (KIM et al., 2015), the baseline flow and the proposed flow is presented in

Table 5.2 regarding wirelength (StWL), congestion (ABU), timing (early and late),

runtime and quality of solution. Figures 5.2 and 5.3. The proposed flow produces the

best results, on average, regarding the late timing violations. For late WNS (lWNS),

it achieves a reduction from 5.8% to 32.3% and for late TNS (lTNS) a reduction from

15.54% to 36.29% w.r.t. the initial solution. Note that none of the compared techniques

presented gains for lWNS in superblue7. The reason is that the most critical paths in the

circuit are composed just by primary inputs, primary outputs and fixed nodes and thereby

this benchmark will be ignored in lWNS statistics.

The proposed flow also outperforms the contest winner in all benchmarks,

achieving 21.1% smaller lWNS in superblue4 and 35.2% smaller lTNS in superblue16.

The average improvement w.r.t. contest winner solutions were 12.7% for lWNS and

17.5% for lTNS. Note that the baseline flow (FLACH et al., 2016) was not able

to outperform the contest winner in timing metrics for superblue5. However, when

integrated with the proposed analytical techniques the resulting flow outperformed the

contest winner in 13.9% and 8% for lWNS and lTNS, respectively.
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When compared to the solutions of the baseline alone, the proposed flow improves

the lWNS on average by 8.2% and lTNS by 7.6%. However, it was not able to outperform

lTNS in superblue10 – Further investigation pointed that the gains on path smoothing

for this benchmark were lost in legalization due to the high congestion around the macro

blocks, as shown in Fig. 5.1, But the loss in lTNS is just 0.12%. The smaller gains in

superblue18 regarding the TNS were also investigated. It was noticed that the quadratic

placement moved groups of cell to suboptimal positions. The single-cell movements from

the baseline flow are greedy, and therefore, they failed to further optimize the delay of the

cells in these groups.

Although the proposed flow moves a great number of cells, the Steiner wirelength

(StWL) is only 0.2% higher compared to the baseline flow and 2.4% higher than contest

winner. The ABU metric was on average 2.8% higher than the baseline, but due to the

ABU reduction algorithm, it still is on average 73% smaller than the initial solution and

75% smaller than contest winner. Runtime was increased on average 56.2% w.r.t the

baseline, but its absolute value is not prohibitive – The worst case do not exceeds 10

minutes. The proposed flow also presented a slight increase in early total negative slack

(eTNS). However, this kind of violations will not be further discussed, since they may be

properly fixed (SRINIVASAN; CHAUDHARY; KUH, 1991) by several techniques, e.g.

gate sizing and buffering.

Figure 5.1: The critical path of the circuit superblue10 painted in red, surrounding a macro

block in black and standard-cells in blue/purple.

Source: The author.
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Table 5.2: Experimental results of our incremental timing-driven placement flow on

ICCAD 2015 contest benchmarks.

Benchmark Solution ABU

StWL Early (ps) Late (ps) Run- Quality
of

solution
(µm) WNS TNS WNS TNS time

×107 ×100 ×100 ×103 ×105 (min)

Initial 0.05 9.59 -9.34 -317.44 -4.98 -4.60 - -

superblue1
Contest winner 0.06 9.61 -16.65 -80.89 -4.57 -3.51 3.20 346.64

Baseline 0.01 9.88 -9.25 -36.70 -4.46 -3.40 2.33 512.57

Proposed flow 0.01 9.91 -9.25 -36.70 -4.21 -3.26 5.89 568.64

Initial 0.03 11.43 -78.36 -1458.78 -10.15 -15.03 - -

superblue3
Contest winner 0.03 11.46 -13.13 -214.03 -8.71 -11.60 2.70 551.74

Baseline 0.01 11.59 -10.72 -91.01 -8.30 -9.68 2.66 735.72

Proposed flow 0.01 11.61 -10.72 -91.01 -6.87 -8.10 9.78 915.24

Initial 0.04 7.15 -12.55 -519.39 -6.22 -34.77 - -

superblue4
Contest winner 0.05 7.16 -12.28 -53.84 -5.76 -24.65 1.86 507.31

Baseline 0.04 7.53 0.00 0.00 -5.51 -23.61 2.96 680.91

Proposed flow 0.04 7.55 0.00 0.00 -4.64 -22.93 5.25 770.34

Initial 0.02 10.75 -36.77 -591.42 -25.70 -69.65 - -

superblue5
Contest winner 0.02 10.78 -36.77 -618.27 -24.29 -58.42 2.53 179.53

Baseline 0.00 10.92 0.00 0.00 -24.42 -59.75 1.97 476.82

Proposed flow 0.00 11.02 0.00 0.00 -20.92 -53.71 6.65 634.89

Initial 0.03 14.01 -7.65 -1985.85 -15.22 -18.57 - -

superblue7
Contest winner 0.03 14.03 -6.75 -1958.34 -15.22 -15.11 5.31 200.72

Baseline 0.01 14.22 -7.53 -1976.58 -15.22 -13.61 3.13 275.64

Proposed flow 0.01 14.24 -7.53 -1978.27 -15.22 -11.55 8.63 389.19

Initial 0.04 20.53 -8.62 -620.95 -16.49 -331.53 - -

superblue10
Contest winner 0.04 20.55 -5.15 -373.75 -16.08 -315.18 3.74 181.33

Baseline 0.01 21.08 0.00 0.00 -15.54 -279.71 4.96 499.38

Proposed flow 0.01 21.08 0.00 0.00 -15.53 -280.03 7.35 498.80

Initial 0.03 9.33 -10.65 -113.75 -4.58 -7.76 - -

superblue16
Contest winner 0.04 9.37 -7.55 -37.64 -3.85 -2.66 2.24 894.76

Baseline 0.00 9.50 0.00 0.00 -3.48 -2.03 1.78 1196.97

Proposed flow 0.00 9.54 0.00 0.00 -3.11 -1.72 5.15 1279.93

Initial 0.04 5.77 -19.01 -283.00 -4.55 -10.35 - -

superblue18
Contest winner 0.05 5.78 -1.95 -6.86 -3.82 -7.76 1.59 613.07

Baseline 0.01 5.90 0.00 0.00 -3.74 -6.19 1.50 815.37

Proposed flow 0.01 5.90 0.00 0.00 -3.69 -6.38 2.82 801.98

Initial 73.08 -2.68 73.60 85.32 21.39 37.72 - -

Avg Change (%) Contest winner 75.05 -2.47 68.92 76.39 12.78 17.53 -133.34 97.56

Baseline -2.85 -0.25 0.00 -0.03 9.47 7.60 -156.26 16.18

Source: The author.
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Figure 5.2: A comparison between the contest winner, baseline and proposed flow in

terms of lWNS improvement w.r.t. initial solution.
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Figure 5.3: A comparison between the contest winner, baseline and proposed flow in

terms of lTNS improvement w.r.t. initial solution.
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5.3 Slack Histogram Analysis

One way to validate the timing improvement is through the analysis of a slack

histogram. The slack histogram is built regarding the slack in all endpoints of the circuit,

including the non-critical ones. In the experiments, the histograms were successfully

compressed towards positive values by the baseline and further compressed by the

proposed flow for all benchmarks. Figures 5.4-5.7 present the slack histogram for the

initial solution in red, baseline in blue and the proposed flow in green.

The slack on the worst endpoint for some circuits, such as superblues 4 and 5, is

notably higher than the others. In these cases, the proposed flow successfully reduced

the WNS by 25.4% and 18.6%, overcoming the gains of techniques in the baseline by

15.7% and 14.3%. One may notice that the slack histogram produced by the proposed

flow for superblue18 presents more peaks, which may explain the increase in lTNS.

Finally, superblue16 which has a well distributed slack histogram is clearly compressed

by baseline alone, and further optimized by the proposed flow. The later one decreases

the number of peaks in the histogram.

Figure 5.4: The slack histogram comparison for Superblue3. The red curve stands for the

initial solution, the blue to the baseline flow and the green to the proposed flow.

0

3

6

9

−10000 −5000 0 5000 10000

Slack

F
re

q
u
e
n
c
y

Source: The author.



76

Figure 5.5: The slack histogram comparison for Superblue4. The red curve stands for the

initial solution, the blue to the baseline flow and the green to the proposed flow.
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Figure 5.6: The slack histogram comparison for Superblue16. The red curve stands for

the initial solution, the blue to the baseline flow and the green to the proposed flow.
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Figure 5.7: The slack histogram comparison for Superblue18.
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5.4 Individual gains analysis

To measure the efficiency of the proposed quadratic formulations and compare

with the baseline flow, the gains in the solution were summed and stored for each

benchmark after applying the techniques individually. Table 5.3 summarizes the average

share in the total gain for each technique.

The proposed path smoothing approach presents the major gains for lWNS and

lTNS while the net weighting technique presents more modest but still relevant gains.

Tests showed that, for some benchmarks, the net weighting technique was determining to

achieve the quality of results. The presented gains obtained with these techniques came

at the cost of a loss of quality in ABU and StWL.

Although early optimization is not the focus of this work, the gains of the

techniques that mitigate early violations were presented, since they may affect other

metrics. In these experiments, Register Swap and Register-to-Register did not present

significant changes in any metric. Skew Optimization and Iterative Spreading presented

slightly improvements in ABU and degraded StWL. Skew Optimization also slightly

degraded lWNS.
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Table 5.3: Average improvement obtained by each step after the flow execution for ABU,

StWL, lWNS and lTNS Positive values mean improvement.

Step
Average Improvement (%)

ABU StWL lWNS lTNS

QP - Path Smoothing -8.56 -6.48 52.92 38.81

QP - Net Weighting -5.84 -6.90 10.50 10.85

Skew Optimization 0.09 -0.46 N/A N/A

Iterative Spreading 0.05 -0.28 N/A N/A

Register Swap 0.00 0.00 N/A N/A

Reg-to-Reg Path Fix 0.00 0.00 N/A N/A

Clustered Move -0.24 -0.12 7.24 0.57

Buffer Balancing 0.03 -0.03 10.23 7.08

Cell Balancing 0.47 -0.22 10.81 8.95

Load Optmization -25.49 -57.87 8.35 21.27

ABU Reduction 139.47 -27.64 -0.03 -0.01

Source: The author.

The late optimization techniques presented similar gains for lWNS. The Load

Optimization was crucial for TNS, while Clustered movement did not show significative

gains. The techniques from the baseline flow did not present significant changes in ABU

and StWL with the one exception of the Load Optimization which significantly degraded

both metrics. Finally, ABU Reduction successfully reduced congestion in the benchmarks,

but at the cost of wirelength while the impact in lWNS and lTNS was negligible.

5.5 Critical path smoothing

Since the premise of this work is to optimize timing by means of critical path

smoothing, an experiment measuring the paths length before and after the execution of the

proposed flow was made. As discussed in Section 5.1, the contest infrastructure presents

a heterogeneous benchmark suite, with circuits varying from 700k up to 2M movable

elements. Furthermore, in Section 5.3 it was shown that the slack histogram of these

circuits presents different characteristics from each other. To obtain a fair comparison

between them, the following methodology was applied – For each circuit, it was identified

the most critical path of the 100 most critical endpoints on the initial solution. The next
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step was to apply the proposed flow and finally verify the changes in these paths length.

In the experiments, the paths length were calculated using the Manhattan distance since it

correlates more with the Steiner three wirelength used by the static timer.

The results are summarized in Table 5.4. The first two columns show the

summation of all the paths length before and after execution of the flow, respectively;

Column "Total" presents the relative improvement regarding the total length while

columns "Average", "Max" and "Min" highlight the average, maximum and minimum

value of improvement in the paths length individually. When comparing timing and

length results for the circuit superblue5 one may conclude that is possible to improve

timing while worsening the total paths length. This conjecture makes sense, because

while optimizing the most critical path, other critical or near-critical paths related to the

former may degrade.

However, the values regarding the maximum individual improvement highly

correlated with the timing results. The proposed flow failed to show significative

improvement in both timing and length for superblue10 and superblue18 while produced

good results for superblue5, superblue7 and superblue16. Figure 5.8 depicts the most

critical path of superblue5 being smoothed.

Table 5.4: Evaluation of critical path smoothing by the proposed flow.

Benchmark
Wirelength (m) Improvement (%)

Initial Final Total Average Max Min

superblue1 1.24 1.19 3.49 3.42 11.41 -0.3

superblue3 1.59 1.59 0.38 0.12 10.41 -1.13

superblue4 1.21 1.19 2.29 1.86 11.71 -0.39

superblue5 0.7 0.73 -4.29 -21.71 15.14 -42.04

superblue7 1.31 1.25 4.75 4.48 15.2 -0.35

superblue10 4.6 4.57 0.59 0.59 1.29 0.09

superblue16 1.31 1.25 4.75 4.48 15.2 -0.35

superblue18 1.21 1.21 -0.57 -0.39 1.49 -2.1
Source: The author.
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Figure 5.8: The critical path of circuit Superblue5, drawn in red, before (a) and after (b)

the proposed flow. Standard cells are drawn in blue/purple and macro-blocks in black.

(a) Initial

(b) Optimized

Source: The author.
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6 CONCLUSIONS

Achieving timing closure for modern nanoCMOS circuits demands huge effort

from designers and the use of high quality EDA tools. During the late stages of the design,

key steps like placement and routing should not only produce feasible solutions, but also

be able to optimize performance with no harm to other aspects like area and power. This

work focused on incremental timing-driven placement algorithms.

Quadratic techniques have been broadly applied for placement by academic

(VISWANATHAN; CHU, 2005; KIM; LEE; MARKOV, 2013) and commercial tools

(VISWANATHAN et al., 2010). However, most of these approaches concerning

performance present a huge impact on previous solutions, which is not desirable in late

stages stages of the design. To keep information from former solutions, an operation

called neutralization was proposed and applied to quadratic placement. It modifies the

quadratic system so that the zero-energy state is the current placement. Therefore, the

cells only if new forces are added to the system.

Two strategies to optimize timing are proposed with different objectives. The first

aims to reduce wires smoothing critical paths, and therefore mitigate violations, while the

later focus on balancing the load of critical nets. Both techniques are implemented by

the addition of extra edges in the quadratic formulation. They differ in the process that

generates the forces. While path smoothing adds new forces between elements composing

critical paths, the net weighting creates forces binding all nodes of critical nets.

The quadratic formulation was integrated into the previous proposed single-cell

movement techniques (FLACH et al., 2016) to provide a full placement flow and it was

evaluated using the infrastructure of ICCAD 2015 CAD Contest on incremental timing-

driven placement. Results show that the use of the quadratic formulation with the global

view of the problem produce good results alone, outperforming both the ICCAD winner

and the previous flow (FLACH et al., 2016) by more than 10% in WNS. The flow

integrating the quadratic techniques with the single-cell movements (FLACH et al., 2016)

outperforms the known state-of-art by up to 17.3% in WNS and up to 16.3% in TNS for

superblue3. Considering the ICCAD 2015 metric for measuring quality of result, this

work outperforms, on average, 16.1% the known state-of-art.

Three experiments were performed to investigate the proposed flow behavior.

The first one consisted in comparing the slack histogram of the initial solution, after

the execution of the baseline flow (FLACH et al., 2016) and after the execution of the
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proposed flow. The latter successfully compressed the slack histogram toward positive

values, which is the desired behavior of a timing-driven technique.

In the second experiment, it was computed how much each step of the proposed

flow contributed to the final results. The proposed path smoothing technique was

responsible for 52.9% of the gains regarding WNS and 38.8% of the gains regarding

TNS while the net weighting technique contributed to 10% of the gains regarding both

WNS and TNS.

Finally, the length of the most critical paths was estimated before and after

executing the proposed flow. It was observed that it is possible to optimize timing even

when the average path length was increased. On the other hand, the benchmarks with

good results regarding timing also presented at least one critical path whose length was

reduced by 10% or more.

6.1 Future works

Other techniques, like buffering, gate sizing and Vth selection, can be easily

integrated within the proposed flow to further optimize the solutions to address problems

that placement cannot solve alone, like cells driving large fan-outs. Besides, integrating

these techniques may help us to measure the real space for optimization existing in the

benchmarks.

Incremental flows from industrial tools also perform placement combined with

netlist restructuring. The implementation of these techniques will allow a fair comparison

with these tools. It is also intended to expand the infrastructure to support more realistic

features, e.g., hierarchical netlist and multiple clock domains.
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