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ABSTRACT 

Embedded Multiprocessor systems are a reality, in both industry and academia 

sectors. Such devices offer parallel processing capabilities, aiming at covering the 

increasing requirements of complex applications. Underlying application workloads are 

susceptible to variation at runtime, which if not properly handled, may lead to the 

performance and power efficiency degradation. The continuous increase in the 

complexity of application workload and the size of emerging multiprocessor systems, 

calls for dynamic and distributed mapping solutions. The majority of the promoted 

mapping techniques are bespoke implementations, which consider an in-house operating 

system developed to a particular processor architecture. This practice restricts its adoption 

in other platforms, leading to extra design time, re-validation and, consequentially, a 

hidden cost that may well be quite high. In this scenario, this dissertation proposes a 

FreeRTOS extension that integrates the support to dynamic and distributed tasks mapping 

in multiprocessor systems. FreeRTOS is portable to more than 30 embedded processors 

architectures, increasing software portability and reducing development time. The 

proposed extension employs mapping techniques allowing FreeRTOS for handle high 

demands of application mapping in runtime. Another contribution of this work is the 

development of a framework, which enables the exploration of large systems while 

providing debugging facilities. The proposed framework provides the automatic 

generation of multiprocessor platforms, considering parameters of size, processor 

architecture, and an application set. The resulting platform description is high scalable 

while allows runtime data extraction and high debugging. These features allowed to 

validate the proposed FreeRTOS extension in more than one processor architecture from 

ARM Cortex-M family. Test cases were executed on large-scale platforms and at different 

levels of abstraction with cases of more than 120 applications incorporating more than 

600 tasks processed. The results show that the proposed extension presents better or equal 

results to the literature. 

 

Index Terms—Dynamic Mapping, Distributed Mapping, Embedded Kernel, 

Multiprocessor Systems, Multicore, Manycore, Modelling, and Simulation. 

 

  



 

 

Extensão do FreeRTOS para Suporte ao Mapeamento 

Dinâmico e Distribuído de Tarefas em Sistemas 

Multiprocessados 

RESUMO 

Sistemas de Multiprocessados Embarcados são uma realidade, tanto no setor da 

indústria e quanto no setor acadêmico. Esses dispositivos oferecem capacidades de 

processamento paralelo objetivando cobrir requisitos cada vez maiores de aplicações 

complexas. A carga de trabalho subjacente das aplicações é suscetível a variação em 

tempo de execução o que, se não for tratada adequadamente, pode levar a degradação de 

eficiência em desempenho e energia. O aumento contínuo da complexidade da carga de 

trabalho das aplicações, bem como do tamanho dos sistemas multiprocessados 

emergentes, requer soluções de mapeamento dinâmicas e distribuídas. A maioria das 

técnicas de mapeamento propostas são implementações personalizadas, considerando um 

sistema operacional interno desenvolvido para uma arquitetura de processador específica. 

Essa prática restringe sua aplicação em outras plataformas, levando a um design extra, 

revalidação e, consequentemente, um custo oculto que pode ser um tanto quanto alto. 

Neste cenário, esta dissertação propõe a extensão do FreeRTOS para suportar 

mapeamento dinâmico e distribuído de tarefas em sistemas multiprocessados. O 

FreeRTOS tem portabilidade para mais de 30 arquiteturas de processadores embarcados, 

aumentando a portabilidade de software e reduzindo o tempo de desenvolvimento. A 

extensão proposta utiliza técnicas de mapeamento que permitem ao FreeRTOS atender a 

altas demandas de mapeamento de aplicações em tempo de execução. Outra contribuição 

deste trabalho é o desenvolvimento de um framework que permite a exploração de 

grandes sistemas fornecendo, simultaneamente, resultados para depuração. O framework 

proposto possibilita a geração automática de plataformas multiprocessadas considerando 

seu tamanho, a arquitetura do processador e um conjunto de aplicações. A descrição da 

plataforma resultante é altamente escalável permitindo extração de dados em tempo de 

execução e alta depuração. Estas características permitiram validar a extensão do 

FreeRTOS proposta em mais de uma arquitetura de processador da família ARM Cortex-

M. Os casos de teste foram executados em plataformas de grande escala e em diferentes 

níveis de abstração com casos de mais de 120 aplicações incorporando mais de 600 tarefas 

processadas. Os resultados mostram que a extensão proposta apresenta resultados 

melhores ou iguais à literatura. 

 

Palavras chave - Mapeamento Dinâmico, Mapeamento Distribuído, Kernel 

Embarcado, Sistemas Multiprocessados, Multicore, Manycore, Modelagem e Simulação.  
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1 INTRODUCTION 

The evolution of the processors is directly related to the performance limitations of 

the semiconductor manufacturing technology (ITRS 2015). As shown in Figure 1.1, with 

the reduction of the size of the transistors, the frequency variation of the processors 

reached an average bound of 4GHz (Figure 1.1). The voltage has reduced significantly, 

from 5V to 1.25V (Figure 1.2), and the dissipated power has stabilized in 90W (Figure 

1.2). The tendency curves in Figures 1.1 and 1.2 show that the number of transistors and 

the number of cores will continue increasing, although frequency, voltage and dissipated 

power bounds tend to remain stable. In embedded systems, the power wall is the main 

challenge, and the average values are even lower for frequency (2GHz) and power (5W).  

Figure 1.1. Evolution of processors during the last decades comparing the number of cores 

with frequency and number of transistors. 
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Source: Adapted from ITRS 2015. 



16 

 

 

Figure 1.2. Evolution of processors during the last decades comparing the number of cores 

with power and voltage. 
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Source: Adapted from ITRS 2015. 

During the last decades, it was evident a change in the embedded processor 

architectures, from a single core to multicore and manycore processors (BURGIO et al., 

2014). The major trend in embedded SoC (System-on-Chip) is the design of MPSoCs 

(Multiprocessor Systems-on-Chip) to satisfy the ever-increasing computing demands 

while drawing less battery power (BAKLOUTI et al., 2017). Such systems, increase 

performance by using multiple, homogeneous or heterogeneous processing elements 

(PEs, i.e. single or multicore processors). 

MPSoCs have been explored to fill the ever-increasing demands of applications and 

performance while maintaining energy efficiency during the execution of multiple 

applications (CASTILHOS et al., 2016). While MPSoCs with up to 1000 processors 

already exists in the industry (BOHNENSTIEHL et al., 2017; MELLANOX 2016), 

MPSoCs with up to 100 processors have been employed in academia to explore different 

challenges and novel techniques that may be used to improve the efficiency of underlying 

systems (BUSSEUIL et al. 2013; MANDELLI et al., 2013). For example, 
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programmability is explored in (GARIBOTTI et al., 2013), task mapping approaches 

(MANDELLI et al., 2015a; DAS et al., 2016; CASTILHOS et al., 2016), among others 

(CASTILHOS et al., 2013; MARTINS et al., 2014; MANDELLI et al., 2015b). 

Challenges, in MPSoCs, are linked to the diversity of application workloads, which 

demand energy efficiency, performance scalability, and reliability (MANDELLI et al., 

2013). Given the vast variety of applications of multicore and multiprocessor systems 

(e.g., automobiles, smartphones, wearable devices and many other smart gadgets), both 

hardware and software architecture must provide some degree of flexibility and 

adaptability. Aiming to scale up the system performance, the workload of an application 

is divided among multiple threads or tasks (HOLT et al., 2009). The way such tasks are 

mapped onto the PEs has a significant impact on system performance, energy-efficiency, 

and reliability (HAGHBAYAN et al., 2016). With large scale platforms, already available 

in the embedded community, grows the demand for dynamic and distributed mapping 

techniques, capable of allocating multiple application tasks efficiently. 

Multiprocessor system management may include different functions such as 

monitoring, task mapping, and task migration. The system management may be either 

centralized or distributed. In centralized management, there is a single processor 

responsible for monitoring the system, which may be overloaded very quickly. However, 

distributed management shares the management functions, improving reliability and 

avoiding hot-spots around a central manager (CASTILHOS et al., 2013). Mapping 

techniques decisions may drastically influence the system performance, which has been 

investigated considering different optimization goals such as power consumption, 

workload distribution, communication, and latency (SINGH et al., 2013). The 

classification criteria of task-mapping approaches consider the moment at which a task is 

defined to be executed in a PE, whatever can be either static or dynamic (CARVALHO 

et al., 2010). While static mappings determine task allocation at design time, dynamic 

mappings handle task allocation requests at runtime, enabling the system to deal with 

high demands of applications. Most of such mapping techniques are customized 

implementations, which are developed based on an in-house OS. Even providing 

optimized and efficient mapping methods, in-house implementations are usually 

dependent on a particular processor. With the increasing complexity of the embedded 

applications, at some point, it will become necessary to port such in-house systems to a 

better performance processor architecture. The underlying porting process is likely to lead 

to extra design, re-validation and, consequentially a hidden cost that may be quite high. 
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Considering the constant shifts in both software and processors architecture, the 

operating system must address the management complexity of those platforms regularly. 

The architecture variations of an MPSoC concern the number of processors, the 

instruction set architecture (ISA) of the processors, the memory organization, and the 

communication between the resources. Most MPSoCs possess homogeneous 

architecture, where all cores have the same ISA, access to a shared memory and a bus 

(HOLMBACKA et al., 2014). Some processors integrate different ISAs aiming to achieve 

higher performance or DSPs to perform specific tasks such as image and video processing 

(e.g. big.LITTLE and MALI architectures, ARMTECH 2017). In both cases, shared 

memory complexity is related to the number of processors competing for access data to 

and the lack of data coherency (MADALOZZO et al., 2016). Regarding shared-busses, 

issues such as wire delay, cross-talk noise, and power dissipation, exposes the 

interconnect technology will be the limiting factor for achieving MPSoCs operational 

goals (BENINI and DE MICHELI 2002). Creating complex MPSoCs requires a modular, 

component-based approach to both hardware and software design. Based on these 

premises, the use of intra-chip networks (NoCs) performs scalability of multiprocessor 

systems while improving energy efficiency and reliability (MORAES et al., 2004). In 

NoC-based MPSoCs, each processor is connected to a NoC router, becoming 

independent, and having distributed memory. The communication through the NoC is 

abstracted to the user while the operating system manages the communication primitives. 

At the software level, the kernel and its integrated Application Programming 

Interfaces (APIs) are responsible for managing each resource of the platform. The 

software variations are related to the kernel type, memory management, task scheduling, 

and task mapping. In general, in-house kernels have APIs for specific applications which 

support a particular processor architecture, while commercial kernels have several 

integrated APIs that support multiple processor architectures. Memory management 

performs memory allocation for system data storage, which can be either static or 

dynamic. Static memory allocation, the system compilation defines both memory amount 

and addressing, which is simple but causes high fragmentation and unused memory as it 

is not deallocated. Dynamic memory allocation improves the scalability of the system 

according to demand, but the memory must be freed after being used to reduce memory 

fragmentation and memory leakage. Task scheduling defines the execution time of each 

task on a PE, which may match real-time priorities (RUARO et al., 2016; BARRY 2011) 

and allow multitasking execution on a single PE. Further, task mapping defines the 
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distribution of workload between PEs driving the system performance and energy-

efficiency. 

The foregoing context provides the motivation for this Dissertation, which aims at 

providing a version of FreeRTOS that supports a set of distributed and dynamic task 

mapping heuristics. These extensions can be easily employed by almost thirty different 

processor architectures as well as integrating a set of tools into a framework, allowing 

early performance analysis of different design alternatives of NoC-based MPSoCs. 

This dissertation was possible due to the collaboration between Academia and 

Industry, where the concepts high validated in academia were applied in a commercial 

attractive platform. The Universities involved in this project are the Pontifícia 

Universidade Catolica do Rio Grande do Sul (PUCRS), Universidade Federal do Rio 

Grande do Sul (UFRGS), Universidade de Brasília (UnB) and University of Leicester, 

which have been researching in MPSoC related areas over the last years. The work was 

validated under a commercial tool provided by a partnership with Imperas (IMPERAS 

2017) which have interest on the results generated in this work. 

1.1 Goals, Objectives, and Contributions 

The goal of this work is to provide a version of FreeRTOS that supports a set of 

distributed and dynamic task mapping heuristics, which can be easily employed by almost 

thirty different processor architectures. Due to the non-intrusive and flexible 

implementation, promoted extensions provide an efficient means not only to use and 

extend available heuristics but also to integrate new ones. The objective of this 

dissertation includes different targets regarding the acquired knowledge and the resultant 

work. The objectives are described as follows: 

• Research about issues in embedded MPSoCs area, what includes platform and PE 

architecture, Multiprocessor OS, resources management, task mapping 

techniques, workload distribution, and communication protocols; 

• Provide a robust and reliable commercial attractive MPSoC platform to explore 

different issues in future research. 

The main contributions of this work are the following: 

• Extend FreeRTOS to support large scale homogeneous NoC-based MPSoCs; 
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• Extend FreeRTOS to support NoC communication; 

• Extend FreeRTOS to support runtime dynamic and distributed task mapping; 

• Development of a framework based on OVPsim unifying software development, 

debugging capabilities as well as platform configuration and evaluation; 

• Extensive FreeRTOS extension evaluation by using several scenarios, including 

multiple real benchmarks and platform models; 

• RTL level validation under different PE architecture. 

1.2 Work Structure 

This dissertation exploits different technical aspects, contributions, and faced 

challenges during the development of the proposed FreeRTOS extension. The dissertation 

is organized as follows. Chapter 2 presents the state-of-the-art in OS-based task mapping 

techniques. Chapter 3 explain the developed framework with the platform, system, and 

application set generation, test case execution, and the data debugging extraction. Chapter 

4 introduces the FreeRTOS features, and task mapping algorithms. Then, it presents the 

proposed extension. Chapter 5 describes the extensive system validation through the 

different test cases and the results are evaluated. Chapter 5.5 draw this work conclusion 

and lists the future research to be exploited. 
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2 STATE-OF-ART 

This Chapter discusses the state-of-art related to the two main contributions of this 

dissertation. First, Section 2.1 presents some works underlying the modeling and 

validation of mapping techniques, including different modeling approaches and specific 

design goals. Section 2.2 first introduces about multiprocessor kernels, then, focuses on 

the state-of-art of kernels which employs task mapping techniques. 

2.1 Framework Infrastructures Used to the Exploration of 

Mapping Techniques for Multiprocessor Systems 

Figure 2.1. Project abstraction levels accuracy, possibilities, and validation time. 
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Source: Adapted from BUTKO et al., 2012. 

Researchers have been proposing and validating their mapping techniques considering 

different approaches and platform architectures. Following this direction, there are 
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different models validated in different abstraction levels which variation is about 

flexibility, accuracy, developing and execution time. Figure 2.1 shows this variation, 

where the lowest is the abstraction level, the more accurate is the system validation. 

However, the developing and execution time are hard constraints to be considered. In 

addition, high level platforms are flexible (white balls in Figure 2.1) for architectural 

modeling and parameter calibration based on low level models, improving design and 

development times. 

The literature presents several frameworks developed to validate MPSoC platforms at 

different abstraction levels, differing regarding accuracy, simulation cost and design 

flexibility (MANDELLI thesis 2015). Due to the time constraints and time to market, 

some approaches prefer to use the high abstraction models first, to evaluate and validate 

the mapping models. Some works rely on simplified high-level abstract models, which 

are effective means to propose and compare mapping techniques (KANGAS et al., 2006; 

VIDAL et al., 2010; INDRUSIAK et al., 2010; OST et al., 2011). Even, there are high-

level executable models that simulates the system behavioral. These models are 

instruction accurate (MANDELLI et al., 2015b; WEHNER et al., 2016; MADALOZZO 

et al., 2015), SystemC PE model with clock accuracy (OST et al., 2009; MANDELLI et 

al., 2015a; CASTILHOS et al., 2016; WEHNER et al., 2016). However, the real system 

behavioral validation with high accuracy is made by using RTL level models 

(CARVALHO and MORAES 2008; SINGH et al., 2010; BUSSEUIL et al., 2011). 

High abstraction level modeling simplifies the development and validation of 

complex MPSoCs to speed up the simulation and to have a high debugging capability 

(OST et al., 2009). Literature presents different high-level modeling approaches using 

Unified Modeling Language (UML) to validate their mapping techniques based on model 

assumptions. The application modeling as Kahn Process Network (KPN) is used to 

generate application profiles with UML to randomly or manually mapping those 

applications in a UML-based platform model (KANGAS et al., 2006). Also, the actor-

oriented modeling for application design allows to get preliminary performance 

estimations and to validate the mapping into different abstraction levels (INDRUSIAK et 

al., 2010). The unified modeling considers distinct steps to improve the design flow, such 

as application, mapping, and platform. These steps enables fast design space exploration 

while integrating dynamic mapping heuristics into a unified model of a NoC-based 

MPSoC (OST et al. 2011). There are co-design methodologies for reconfigurable 

platforms considering applications, platform, and task mapping to be executed on an 
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FPGA (VIDAL et al., 2010). Even with the modeling flexibility, most UML-based 

approaches are limited to static mapping. These models estimate the system behavioral 

before applying applications to platforms in different abstraction levels, such as FPGA 

and simulating models. However, they have no accuracy metrics when comparing with 

both executable virtual and real platforms. 

Virtual platforms emulate hardware behavior (e.g. CPU microarchitecture) as full 

system execution making software validation like it is running on a real physical hardware 

(MANDELLI et al., 2013). The literature presents some approaches using different 

accuracy models to improve high performance, high debuggability, and low-cost time in 

the simulation. Examples of such simulators are Simics (SIMICS 2017), MPTLsim 

(ZENG et al., 2009), gem5 (BINKERT et al., 2011), and OVPsim (IMPERAS 2017). 

Those simulators offer a set processor and memory models, which differ regarding 

simulation time, functionality, and can be instruction (MPTLsim and OVPsim) or quasi-

cycle (Simics and gem5) accurate. The OVPsim is an instruction-accurate virtual platform 

simulator which supports single, multi, and many core bus-based platforms with support 

to different processor architectures such as ARM, Imagination, Synopsys, Renesas, 

OpenCores, PowerPC, Altera, and Xilinx (OVP 2017). More recently some works 

(MANDELLI et al., 2013 and WEHNER et al., 2016) integrated NoC models to OVPsim, 

allowing to validate their mapping and design space exploration by large scale MPSoCs. 

The dynamic and distributed task mapping heuristics validated in this simulator platform 

are based on processors load and NoC communication volume (MANDELLI et al., 2015). 

There are static mappings to evaluate the performance of real-time scheduling models in 

different memory organizations (MADALOZZO et al., 2015). Also, integrating a 

dynamic partial reconfiguration (DPR) interfaces to OVPsim enabling the exchange of 

simulated IP cores and processor models by connecting the NoC with the reconfigurable 

regions (WEHNER et al., 2016). There are not many works using OVPsim to task 

mapping validation and design space exploration of NoC-based multiprocessors. But, all 

reviewed works are executing their proposed contribution in large scale scalable 

multiprocessors with low development and simulation time. Further, those proposed 

models are extensively validated even with metrics based on high-level modeling. 

Framework platforms with cycle-accuracy target microarchitecture exploration since 

specific modeling details as the pipeline implementation of processors, memory models, 

among others. However, these platforms are not scalable to a large number of processors, 

specifically when it comes to simulation speed and debugging usability. Even with the 
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increasing number of PEs, the platform distribution into cluster areas improves the 

workload distribution. The integration of dynamic task mapping to this distributed system 

management exploring the reclustering and task migration techniques reduces the 

communication hopes and improves system reliability (CASTILHOS et al., 2013). 

Furthermore, energy-aware runtime task mapping (MANDELLI et al., 2015) balances the 

temperature under MPSoC platforms based on the total energy spent (CASTILHOS et al., 

2015) monitoring the executed instructions and the NoC communication. Differing to the 

previous dynamic and distributed mapping approaches, static task mapping may be used 

to evaluate performance constraints such as real-time oriented task execution due to time 

response constraints (MADALOZZO et al., 2016). These works use the same SystemC-

based platform, which allowed the developers to employ different models such as energy, 

power, and instructions. However, the processor architecture and simulation are limited 

to a single architecture. 

Frameworks to design space exploration of synthesizable RTL platforms have the 

lowest abstraction level simulation before the final foundry project. These models 

simulate the full system behavioral in transactional level with high accuracy results as 

cycle-accuracy, area, and power. However, the main cost of this kind of platform is 

simulation time, scalability, and design time. Regarding frameworks to evaluate task 

mapping heuristics in RTL multiprocessor platforms, in (CARVALHO and MORAES 

2008) four congestion-aware dynamic task mapping heuristics based on the Nearest 

Neighbor (NN) PE were employed to evaluate the NoC congestion, load, and latency. 

Based on this modeling, (SINGH et al., 2010) executed communication aware dynamic 

task mappings with clustering on the same platform to evaluate the workload distribution. 

While these platforms consider dynamic mapping, the Open-Scale framework proposes 

to explore MPSoC scalability employing static mapping to evaluate the task migration 

fulfilling its RTOS constraints (BUSSEUIL et al., 2011). In this abstraction level, most 

frameworks exploit the platform characteristics like power and area. The mapping 

heuristics applies to little platforms aiming to performance optimizations and 

communication control. Therefore, these works do not explore platform size, high 

application workloads, and resources allocation. 

The reviewed works were presented according to the abstraction levels illustrated in 

Figure 2.1. Although, the timeline evidence the use of high-level execution models such 

as OVPsim are the solution to evaluate large-scale multiprocessor systems. The high 

abstraction level was UML which perform a high application mapping modeling and 
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validation. The lowest abstraction level performs a high accuracy system validation under 

an RTL hardware platforms. However, the UML has no accuracy metrics and the RTL 

demand high simulation time and low scalability. The cycle-accurate platforms validate 

various concepts around task mapping and monitoring models but are not too scalable 

regarding processor architectures and large-scale multiprocessors. The OVPsim modeling 

is an easily scalable and adaptable choice to perform the design space exploration of 

multiprocessor systems. Further, it can integrate some metrics evaluation as timing and 

energy models by high-level behavioral modeling based on data extraction from lower 

abstraction levels. 

2.2 State-of-art in OS-based mapping techniques 

Given the increasing complexity of embedded applications, mapping techniques are 

likely to be implemented based on a kernel/OS to deal with time-varying workloads. 

Multiprocessor kernel approaches or processor architectures are abstracted, which may 

lead to a gap between what is proposed and its adoption in a real platform. Table I presents 

the state-of-art in OS based mapping techniques, targeting multiprocessor platforms. 

These works are ordered by publication year and classified according to different criteria. 

(BUSSEUIL et al., 2011) proposed the Open-Scale, a distributed memory NoC-based 

multiprocessor with SecretBlaze, a MicroBlaze-based processor, as a local processor. 

Each processor runs an in-house RTOS kernel which supports multi-tasking preemptive 

scheduler and MPI-like communication primitives. Tasks are statically mapped in design 

time but can be remapped (i.e. task migration) in runtime depending on the user 

requirements (e.g. computation time, energy consumption). Finally, Open Scale 

evaluation considers 6x6 scenarios with three different applications, one for each 

scenario, running in RTL level. 

(MANDELLI et al., 2013) proposed the HeMPS (Hermes Multiprocessor System on 

Chip) multilevel approach, where the simulation can be executed as a virtual platform 

(OVPsim), on the SystemC-based platform or in RTL level. HeMPS is a distributed 

memory NoC-based multiprocessor with an MIPS-like (Plasma) as a local processor. It 

uses a hierarchical/distributed management based on clustered approach which defines 

system features on design time. Each cluster has a Local Master Processor (LMP) 
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responsible for dynamic mapping and resources management, and the remaining are the 

Slave PEs responsible for tasks execution. One of the LMPs has an external memory 

interface called Application Repository which defines the LMP as Global Master 

Processor (GMP). Each processor executes a different kernel depending on its defined 

function (i.e. kernel master, kernel slave). Finally, HeMPS evaluation considers 16x16 

scenarios with at least ten applications running at each abstraction level. 

(MA et al., 2013) proposed the use of a highly portable commercial kernel (µC-OS 

II) considering each PE as a local cluster with four cores, which communicate through a 

native message passing interface (similar to MPI). The work is mainly devoted to 

researching the local task allocation, which is defined based on system workload and 

resource availability. The drawbacks of this work are: first, the mapping control is 

centralized and adopted heuristic is not efficient for large-scale systems; second, the 

evaluation scenario considers a 3x3 NoC-based platform that executes a single matrix 

multiplication on each PE. 

(AGUIAR et al., 2014) proposed a framework for design space exploration of 

Multiprocessor architectures. The platform can be bus or NoC based with shared memory 

and supports MIPS and RiscV as local processors. Each processor executes a HellfireOS 

(AGUIAR et al., 2010) which supports multi-tasking and task migration to remap tasks. 

The tasks are statically mapped at one PE. A task is migrated in runtime by three steps: 

initial mapping, characterization and optimized mapping. The evaluation scenarios 

consider a bus-based platform with 30 nodes of processors and 6x5 NoC-based platform, 

both with three applications. 

The works presented in (AGUIAR et al., 2014) and (BUSSEUIL et al., 2011) are the 

only ones to support static mapping which is defined at design time. In both works, tasks 

may be remapped based on a task migration technique, which employs different activities 

(e.g. context saving and restoring) that are not handled by the task mapping process. 

Excluding the works proposed by (AGUIAR et al., 2014) and (MA et al., 2013), the 

mapping control management is distributed, which is scalable since more than one 

processor is responsible for mapping the tasks. 

Beyond the proposed approach, only the work described in (MA et al., 2013) uses a 

highly portable commercial kernel. The majority of the reviewed works employ RTL 

platforms described either in VHDL (BUSSEUIL et al., 2011; MA et al., 2013; AGUIAR 

et al., 2014; MANDELLI et al., 2013) or SystemC (MANDELLI et al., 2013) to promote 

their mapping techniques. While VHDL-based platforms were validated through small 
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scenarios, for example, 6x6 platform executing three applications (BUSSEUIL et al., 

2011), (MANDELLI et al., 2013) employs a 16x16 NoC-based multiprocessor platform 

with up to 10 applications. The SystemC-based work validates distributed and dynamic 

mapping heuristics using two kernels: one for Mapper PEs and another to slave PEs. This 

approach leads to extra design efforts once different kernels need to be developed and 

maintained. 

Table I: State-of-art in multiprocessor kernels with task mapping heuristics. 

Author Kernel Footprint 
Mapping/ 

Management 

Validation 

Test cases 

Processor 

Architecture 

Abstraction 

Level 

Busseuil  

et al., 2011 
In-house ~60KB 

Static/ 

Distributed 

6x6 

3 applications 
SecretBlaze RTL 

Ma 

 et al., 2013 
µC-OS II ~24KB 

Dynamic/ 

Centralized 

3x3 

1 application 

>30 

architectures 
RTL 

Aguiar 

 et al., 2014 
In-house ~24KB 

Static/ 

Centralized 

6x5 

3 applications 
MIPS & RiscV RTL 

Mandelli 

 et al., 2015 
In-house ~25KB 

Dynamic/ 

Distributed 

16x16 

10 applications 
Plasma Multilevel 

This Work FreeRTOS ~16KB 
Dynamic/ 

Distributed 

20x20 

120 applications 

>30 

architectures 

OVPSim 

and RTL 

Source: Author. 

Multiprocessor embedded kernel and processor architecture are highly abstracted in 

task mapping literature, requiring a classification considering different systems criteria. 

In this context, this Dissertation classifies the kernels according to seven criteria: (i) the 

kernel origin; (ii) the kernel ROM footprint; (iii) the mapping approach; (iv) system 

management approach; (v) the validation scenario size; (vi) the amount of executed 

applications; (vii) the supported processor architectures; (viii) the abstraction level. The 

Table I presents the state-of-art in OS-based mapping techniques targeting multiprocessor 

platforms. These works are ordered by publication year and classified according to the 

previous criteria. 

The original contribution of this work is the inclusion of dynamic and distributed task 

mapping techniques in a market leading RTOS kernel, which eliminates system extra 

design and verification time. Different from the reviewed work, the proposed approach 

has been validated over different processor architectures (e.g. ARMv6-M and ARMv7-
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M) considering several and large scenarios. Further, each PE has the same kernel for 

Master and Slave. 

Therefore, this Dissertation proposes a FreeRTOS extension that differs from 

literature, and it includes all the following characteristics: 

• The development of a Framework to design space exploration and a real operating 

system validation under different OVPsim NoC-based platform models and sizes. 

• Integration of literature known runtime dynamic and distributed task mapping 

under a commercially attractive kernel (FreeRTOS) and processor models (ARM). 

• Multi-architecture system validation (ARMv6-M and ARMv7-M). 

• Validated in large scale Multiprocessors (10x10 size) with high workload 

execution (120 applications and more than 600 tasks).  
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3 PROPOSED DESIGN FRAMEWORK 

This chapter describes the proposed framework which enables the design space 

exploration of NoC-based MPSoCs. The framework has three main features: generation 

of the application set; platform generation; runtime data extraction and debugging. These 

features are described as follows. Section 3.1 describes the framework infrastructure and 

the parameters to the configuration of the platform characteristics in the system design 

and the study cases. Section 3.2 describes the platform architecture and generation. The 

following subsections present: the OVP PE architecture and memory organization (3.2.1), 

and the OVP NoC model (3.2.2). Section 3.3 describes the application repository and the 

application set used to validate the platform and the proposed extension (Chapter 4). 

Finally, Section 3.4 describes the resulted information metrics generated by the 

simulation and describes the system evaluation and analysis capabilities considering 

communication and workload distribution metrics. 

3.1 Framework Infrastructure 

Multiprocessor platforms have a set of requirements that must be considered to define 

both the hardware and the software architectures. The resulting range of options calls for 

frameworks that enable fast and efficient software validation while being easily portable 

to different processor architectures. Regarding OS validation in multiprocessor systems, 

most reviewed works propose frameworks to design space exploration of multiprocessor 

systems (BUSSEUIL et al., 2011; AGUIAR et al., 2014; MANDELLI et al., 2015). 

Although the OVPsim tool improves fast simulation, just one of these works improves 

system validation through OVPsim platform models (MANDELLI et al., 2015). 

The proposed OVPsim-based framework allows fast simulation and evaluation of 

MPSoC platforms. Figure 3.1 shows the developed framework source project, where the 

folder organization tree has directory depth of 4 folders, which means a simple project 

organization. The platform folder contains the OVPsim PE and NoC router description 

files. FreeRTOS and extension folders contain the OS source code and the proposed 

extension respectively. Thus, the FreeRTOS source updates and the developed extensions 
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are easily updatable in the project. Applications folder have the ported application set 

with their task codes, applications profiles, and make files. The Scripts folder has the 

framework bash script, which is used to generate the test case resources based on the 

OVPsim Simulation Test case (OST) description file. The OST description file is located 

inside the test cases folder, and it contains the following information: test case name, 

platform size, cluster size, task mapping algorithm, NoC buffer size, PE with repository 

interface, and application set. Finally, the debugger folder has the platform debugger tool, 

which allows evaluating the test case execution results. 

Figure 3.1. Project organization with project files and folders overview. 
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Source: Author. 

Once the first test case is generated and executed, the framework creates the results 

folder where the test cases files are stored. For each test case, the framework generates a 

folder to store all the generated files including OVPsim platform, system binaries, 

application repository, and execution log.  

Figure 3.2 shows an example test case resultant folder. The debug folder has the 

information to feed the platform debugger detailed below. The log folder has the system 

output information for each PE. The repository folder stores the repository file with the 

application set which will be executed in the test case. The remaining files are the 
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platform simulation log, the system disassembly, the platform executable file, the 

OVPsim NoC model, and the FreeRTOS binary. 

Figure 3.2. Generation and organization of results folder. 
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Source: Author. 

The features from OVPsim platform are based on the OST configuration file which 

defines hardware features such as processor architecture, multiprocessor size, and 

external repository connection. Also, the FreeRTOS extension features are the number of 

executing tasks, communication buffer size, task mapping heuristic, and clusters sizes. 

Finally, the set of applications which the system will map and execute. Consequently, 

these system features will define the amount of memory needed for each PE. 
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Figure 3.3. Framework Infrastructure. 
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Figure 3.3 shows the framework phases for platform generation, execution and 

debugging. Once the configuration file has the test case information (Step A), the first 

phase of the framework generates platform, FreeRTOS and application set. With the 

OVPsim platform, system binaries, and the repository binaries, the test case environment 

is done to be executed (Step B). In the next phase the system execution under the platform 

and the log generation by the PE and NoC router behavioral through the OVPsim models. 

Each PE loads the system on its memory; the NoC interconnections are made based on 

platform size and the execution starts (Step C). Finally, the debugging phase analyzing 

the log files, over the NoC interactions with communication volume and energy, and over 

the PEs with the workload distribution (Step D). 

3.2 Platform Overview 

As previously explained, the OVPsim have various processor models available. Most 

of the reviewed frameworks use up to two processor architectures which have very limited 

and simple instruction set (e.g. MicroBlaze and MIPS). This work proposes to use a NoC-

based homogeneous multiprocessor based on different commercial processor 

architectures. The framework allows to select the processor architecture and generate 

large scale NoC-based multiprocessor systems automatically. Then, the resultant OVPsim 

platforms are high scalable, easily defined and improve a fast system validation by using 

hundreds of PEs.  

Figure 3.4 shows a 3x3 NoC-based multiprocessor platform, including routers, PEs 

and an external memory connection (application repository). The bottom left PE is the 

only processor that has access to the application repository. The following subsections 

detail the PE and NoC architectures. 
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Figure 3.4. 3x3 NoC-based multiprocessor platform example. 
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Source: Author. 

3.2.1 Processor Elements 

The adopted PE model has three main components: the processor model, the memory, 

and the network interface (NI). Eventually, one can use a direct memory access (DMA) 

module by implementing OVPsim register bank callbacks to reduce software 

development and to optimize the sending of data from memory to NI. Also, it is possible 

to use a universal asynchronous receiver/transmitter (UART). These components are 

connected by a local bus, and Figure 3.5 shows the PE organization. 
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Figure 3.5. PE Architecture. 
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Source: Author. 

One of the contributions of this work is the capability of generating and validating 

multiprocessor platforms with different processor architectures. In addition, to the 

literature and aiming to create a commercially attractive platform this work uses the ARM 

Cortex-M processors family (i.e. ARMv6-M and ARMv7-M) available in OVPsim tool. 

This processor family was selected due to following features: (i) FreeRTOS supporting, 

(ii) high use in the industry, (iii) availability of Cortex-M0 processor RTL description. 

These features does the Cortex-M family a good choice once the project can be validated 

with different processor architectures in both high level and RTL level simulation. Also, 

this family brings with the Cortex Microcontroller Software Interface Standard (CMSIS) 

which improves the software productivity and portability. The ARM CMSIS is a vendor-

independent hardware abstraction layer for the Cortex-M processor series and defines 

generic tool interfaces (ARMDEV 2017). Each processor model variant has different 

characteristics and capabilities, but the system portability is simple once the FreeRTOS 

already supports more than thirty (30) processor architectures, including that family. To 

exemplify the processor architecture variation, Figure 3.6 shows the instruction set for 

each ARM Cortex-M processor model. 
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Figure 3.6. ARM Cortex-M Family ISAs. 
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Further, memory size and management are important issues in embedded systems due 

to their impact on power consumption and area. In the proposed platform, each PE has its 

private random access memory (RAM) addressing to store the system and applications 

data. The memory size and its address are defined at design time. The Code/Flash memory 

address stores FreeRTOS kernel and SRAM address stores the remaining data and tasks. 

As previously mentioned, the FreeRTOS kernel with the proposed extension has about 

16KB size. Thus, this is the minimal size of the required flash memory. However, the 

minimal SRAM depends on the number of tasks executed in each PE, in general, 16KB 

is enough to execute multitasking (i.e., two tasks per PE). Although this work uses a small 

memory, Table II shows the Cortex-M memory model which supports up to 4 GB of 

memory addressing. 

Table II: Cortex-M memory model. 

Address Definition From To Range 

Code/Flash 0x00000000 0x1FFFFFFF 0.5 GB 

SRAM 0x20000000 0x3FFFFFFF 0.5 GB 

Peripheral 0x40000000 0x5FFFFFFF 0.5 GB 

External RAM 0x60000000 0x9FFFFFFF 1 GB 

External Device 0xA0000000 0xDFFFFFFF 0.5 GB 

Private Peripheral bus 0xE0000000 0xE00FFFFF 1 MB 

Vendor-Specific Memory 0xE01FFFFF 0xFFFFFFFF 511 MB 

Source: Adapted from ARMDEV 2017. 

The PE local bus controls the on-chip peripheral communication and memory 

addressing. ARM Cortex-M family processors implement the Advanced Microcontroller 

Bus Architecture (AMBA) which has the internal Advanced High-performance Bus 

(AHB) and Advanced Peripheral Bus (APB). Normally the communication peripherals 

are connected in the APB base system addressing (0x40000000), but aiming to make a 

trusty PE design reducing the latency by peripheral concurrency the NI is connected in 

the AHB base system addressing (0x40010000). The NI and DMA modules are made by 
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the OVP tool register callback functions which are executed on every read or write access 

to a defined address area. Also, the system uses the OVP callbacks to define the end of 

simulations. In this case, the OVP tool handles these defined addresses and calls functions 

responsible for executing the operations of the modules.  

The NI is responsible for sending and receiving messages from/to the NoC. To send 

messages, the OS creates the message and add it into the NI buffer. The header of this 

message has two flits size, and each flit is 32 bits wide. The header information is NoC 

router address (0xA00XXYY0) and the payload size (header size plus payload). If the 

DMA module is defined, it uses the payload size and its start memory address to feed the 

NI buffer. Else, it can be software made by feeding the NI buffer flit by flit. When a 

message comes from the NoC, the NI performs an interruption to the processor, and the 

system interruption handler treats the incoming message. 

3.2.2 NoC Model 

The OVPsim tool enables to generate bus-based and NoC-based multiprocessor 

platform models. This work provides inter-PE communication by the integration of a NoC 

model developed with OVPsim ppm and bhm APIs (MANDELLI et al., 2015). Figure 

3.7 shows the NoC router organization that has five bidirectional ports (input and output 

data ports), input buffers, and arbiter modules. The local port establishes communication 

between a router and a PE, and the remaining ports are used to connect a router to its 

neighbors. The framework generates all router connections which are implemented by 

using OVP Net ports.  

Packets are sent through the NoC divided by flits with 32 bit wide. The arriving flits 

in an input port trigger a callback arbiter function. The first flit contains the destination 

NoC address then the callback executes the XY NoC routing algorithm. The routing 

algorithm selects an output port to send the incoming flit, storing the selected port in the 

routing FIFO. The following flit has the payload size which defines the buffer allocation 

to store the message flits while all flits are sent through the selected output port. This 

OVP NoC module allows the buffers dynamic allocation and deallocation but preserving 

the wormhole packet switching mode. Also, each output port has an arbiter which adopts 

a round-robin algorithm to select an input port routing FIFO which has pending packets 
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to its output port. Finally, when the destination router receives an incoming packet, the 

local port triggers the NI callback which notifies the PE by generating an interruption. 

Figure 3.7. NoC router architecture. 
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Source: Adapted from MANDELLI et al., 2015. 

3.3 Application Set 

The system and platform validation was made by executing large scale test cases with 

different applications with multiple communicating tasks. Each application executes 

different algorithms based on real application models such as image and video processing, 

shortest graph path, and temporal sequences, or also synthetic applications just to provide 

inter-task communication. Applications are modeled as acyclic directed graphs as shown 

in Figure 3.8, where each node represents an application task, and each directed weighted 

edge represents a communication dependence. The polygons represent the initial tasks, 

and the circles represent the remaining tasks of one application. 
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 Each application has one profile with their information about the total number of 

tasks, the number and ID of initial tasks, tasks interdependency and its inter-task 

communication volume. Then, the application graph is modeled as GApp = (T, E), where 

tasks Ti ∈ T and edge Eij ∈ E represents the communication between Ti and Tj. The initial 

tasks initialize the application execution, as the nodes T1 and T2 in the figure below, and 

the remaining are the non-initial tasks. 

Figure 3.8. Synthetic application graph. 
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Source: Author. 

With the applications profile the framework generates the application set defined in 

the configuration file and make the application repository. The application set can have 

more than one instance of one application type then the repository information is 

organized as follows: 

• Total number of Application; 

• Application types; 

• Application addresses; 

• Application Header; 

• Task Header; 

• Application Task Codes. 
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The application repository has all the test case selected applications information 

divided by the application type to avoid redundant information. Each application type has 

one application header which has the information about the number of tasks, the 

application code size, and the initial tasks. Each task header has the information about the 

task ID, task code size, task uninitialized data size (BSS - Block Started by Symbol), task 

start address, and task dependencies. Figure 3.9 shows an example of the resultant 

repository generation from a set of applications with its header and the header of one task; 

the following information was suppressed. 

Figure 3.9. Repository example. 

_________________________________________ 
#ifndef __REPOSITORY_H__  
#define __REPOSITORY_H__  
 
#define NUMBER_OF_APPS 1 
#define application 0 
unsigned int appstype[] = {application}; 
unsigned int apps_addresses[] = { 0x00000000 }; 
unsigned int repository[] = {  
 0x00000006, //application id 0 
 0x00000C31, //application size 
 0x00000006, //initial tasks 
 0xffffffff, 
 0xffffffff, 
 0xffffffff, 
 0xffffffff, 
 0x00000000, //task_0 
 0x000001C4, //task size 
 0x00001054, //bss size 
 0x000000A7, //task initial address 
 0x00000006, // dependences 
 0x00000603, 
 0xffffffff, 
 0xffffffff, 
 ... 
 }; 
 
#endif  /*__REPOSITORY_H__*/ 
_________________________________________ 

REPOSITORY
Total Applications

Application 0

Application Addresses

Application Header

Task Headers

Task Object Code

 Application 0

 

Source: Author. 

The application types used to validate the proposed framework and extension are from 

the available HeMPS framework (HEMPS 2017) and are described below: 

• Prod-Cons (Producer and Consumer): a simple two (2) task applications with 

parametrizable communication workload. Figure 3.10 shows the application task 

graph. 
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Figure 3.10. Prod-Cons application graph. 
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Source: Author. 

• MPEG4: simulates a full MPEG digital sound and video decoder data iteration 

with twelve (12) application tasks. Tasks have high communication as shown in 

Figure 3.11. 

Figure 3.11. MPEG4 application graph. 
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Source: Author. 

• MPEG (Moving Picture Experts Group): a partial digital sound and video data 

decoder with five (5) communication tasks with a high workload, high 
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computational effort, and memory allocation (about 2KB in some tasks). Figure 

3.12 shows the application graph with the task communication ordering. 

Figure 3.12. MPEG application graph. 
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Source: Author. 

• VOPD (Video Object Plane Decoder): simulates the interactions between the 

hardware modules of a video decoder. Figure 3.13 shows the application graph 

which has twelve (12) application tasks with high communication workload. 

Figure 3.13. VOPD application graph. 
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Source: Author. 
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• Fixed-Base Test: compares the similarity of two images. This application has 

fourteen (14) application tasks with low communication workload but high 

computational effort. Figure 3.14 shows the application graph. 

Figure 3.14. Fixed-base Test application graph. 
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Source: Author. 

• MWD (Multi-Window Display): a multi-window application control with 

twelve (12) application tasks with high communication workload. Figure 3.15 

shows the application task graph. 
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Figure 3.15. MWD application graph. 
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Source: Author. 

• Dijkstra: an algorithm for finding the shortest paths between nodes in a graph. 

This application has six (6) tasks with high memory usage (about 4KB in some 

tasks), high computation cost and high communication workload. Figure 3.16 

shows the application graph. 

Figure 3.16. Dijkstra application graph. 
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Source: Author. 
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• DTW (Dynamic Time Wrapping): an algorithm for measuring the similarity 

between two temporal sequences which may vary in speed. This application is 

parametrizable, and this work presents two cases with six (6) and ten (10) tasks. 

Figure 3.17 shows the application graph which has multiple task dependencies 

with high communication workload. 

Figure 3.17. DTW application graphs with six (a) and ten (b) tasks. 
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Source: Author. 

Aforementioned applications have very different profiles regarding communication 

workload, computation cost, the number of tasks, and task sizes. These characteristics are 

needed to evaluate the system performance under different workload situations. Once the 

framework generates the platform and the application set, the system simulation starts 

and the simulation results can be extracted as described below. 
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3.4 Resulted Information and Debugging 

The OVPsim tool model allows extracting data during the simulation improving 

debug and evaluation metrics. The metrics used to evaluate and validate the proposed 

extension are the communication volume through the NoC, the energy spent in task 

communication, the execution time for each processor, and the task mapping workload 

distribution. This framework integrates some high-level models to extract these metrics, 

which are described below. 

The extraction of the communication volume is made whenever one PE sent messages 

through the NoC, differing between the total communication and the inter-task 

communication. The total volume communication considers all the packets sent through 

the NoC while the task communication considers just inter-task communication services. 

Also, the energy spent in communication is characterized by the method proposed by HU 

et al., 2010 which considers the packet size and the number of hops to determine the total 

energy spent. The amount of energy spent for each flit was extracted by the ST/IBM 

CMOS 65 nm technology at 1.0V, considering clock gating and a 100 MHz clock 

frequency. The equation below presents the total communication energy spent in the NoC. 

𝑡𝑜𝑎𝑙𝑒𝑛𝑒𝑟𝑔𝑦 =  𝐸𝑓𝑙𝑖𝑡 ∗ ∑ 𝑓𝑙𝑖𝑡𝑠 ∗ ℎ𝑜𝑝𝑠 

The execution time for each processor is characterized by the model proposed by 

ROSA et al., 2013 based on experiments executed on STM32F4-Discovery board with 

an ARM Cortex-M4F processor. This model executes a watchdog which executes a 

callback for each executed instruction from a given processor. Then, defines a group for 

each similar behavioral instruction and estimate the required number of clock cycles to 

run. The average mismatch between OVPsim CPU timing model and the real board 

platform is below 5%. 

Regarding system debuggability and data extraction, this framework integrates the 

multiprocessor platform debugger tool developed by RUARO et al., 2014. The 

framework generates the input configuration files with the information about the 

platform, system services, and scheduling. With this information, the tool uses the 

extracted data from NoC and PE simulation events to generate the visual platform and the 

test case behavioral. Then, allowing to show the workload distribution by the task 

mapping, and both global and service communication volume.  
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Figure 3.18 shows a test case visualization example with the visualization of startup 

platform, task mapping, and communication volume. This test case has one DTW 

application running on a 4x4 platform distributed by 2x2 cluster where each PE can 

execute four (4) tasks. On the left of the figure, the startup view shows an animation with 

the inter-PE NoC communication. On right bottom of the figure, the task mapping 

overview of the ten (10) application tasks, where two (2) PEs executed four (4) tasks and 

one executed the two (2) remaining application tasks. The debugging shows each task 

information such as task name, ID, and state. On right top of the figure, the 

communication workload distribution where the information is the workload by percent 

value and by PE color from low (blue cold) to high (red hot). Also, there are the option 

to choose one service and its distribution in relation to all traffic, global and per router. 
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Figure 3.18. Startup simulation screen of the Platform Debugger Tool, communication analysis, and task mapping analysis. 
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Source: Adapted from RUARO et al., 2014. 
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4 PROPOSED FREERTOS EXTENSION 

This chapter presents the FreeRTOS real time operating system source kernel and then 

describes the proposed extension. First, Section 4.1 presents the FreeRTOS kernel and 

describes the default features and the API reference included in the source code. The 

following sections describe the proposed extension organization. Section 4.2 describes 

the architecture and application portability. Section 4.3 describes the developed MPI-like 

NoC communication control. Finally, Section 4.4 presents the distributed resource 

management and the integrated task mapping techniques. 

4.1 FreeRTOS Source 

FreeRTOS is an open-source real-time operating system, widely used and market 

leading in embedded system projects. FreeRTOS has an active development community 

in partnership with the world's leading chip companies and has been validated over more 

than 30 different processor architectures. Although its kernel footprint varies in the region 

of 6K to 12K bytes, the source project provides several API facilities and functions.  

Figure 4.1. OS processor architectures portability. 
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Figure 4.1 is a diagram which shows where FreeRTOS fits and the comparison with 

other operating systems applicability. The applicability axis considers from a non-

scheduling application to a full operating system, and processor power axis considers 

from a 4-bit microcontroller to a high-performance processor. FreeRTOS applicability 

covers from very simple microcontroller architectures with adequate RAM and simple 

scheduling to more powerful architectures and applications. Therefore, FreeRTOS have 

more applicability and portability in both software and hardware levels. 

Regarding the system features, the basic system execution includes interruption 

handlers, task scheduling, and memory management. The memory management includes 

five (5) sample memory allocation (i.e. static and dynamic) implementations which allow 

controlling allocation and deallocation of RAM regions. This work uses the FreeRTOS 

heap_4 memory allocation implementation which allows to allocate and deallocate 

memory; also it does combine adjacent free blocks to avoid fragmentation. The 

interruption handler controls the software and hardware interruptions by the interruption 

vector table. The interruption registers vary according to the processor architecture and 

can be configured due to the necessity. FreeRTOS execution needs some basic software 

interruptions such as system calls, context switching, hard fault, and reset. However, as a 

real-time operating system, FreeRTOS needs at least one timer interruption to apply its 

real-time scheduling constraints. 

FreeRTOS scheduler considers threads as tasks, allows to improve multitasking and 

have three (3) possible configurations: preemptive, cooperative, and hybrid. In 

multitasking scheduling, all available tasks appear to be executing in parallel, but only 

one task is executing at any time. Figure 4.2 illustrates the timelines to explain how does 

the scheduler appear to be working to the users and how it really works. First, the timeline 

shows the users view where all tasks seem to be executing at the same time. The second 

timeline shows the round-robin co-operative scheduling where each task will execute at 

any time, and the scheduler executes the context switching. The last timeline shows the 

preemptive priority-based scheduling where Task 1 have higher priority, and the 

remaining tasks have the same lower priority. In ‘1’ and ‘2’, the scheduler executes a 

normal context switching, note that Task 1 execution time is longer than others. In ‘3’, 

Task 3 tries to access an occupied processor peripheral, finding it locked it cannot 

continue, so it suspends itself and switches the context to Task 1. In ‘4’, the context is 

switching between Task 1 and Task 2 while Task 3 is suspended. In ‘5’, Task 1 ends, 



52 

 

 

releasing the processor peripheral requested by Task 3, then it resumes. Finally, Task 2 

and Task 3 have the same priority; then they have the same execution time. 

Figure 4.2. FreeRTOS scheduling in different perspectives of view. 
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Source: Adapted from FREERTOS 2017. 

The FreeRTOS set of API facilities are validated at single PE architectures and 

includes inter-task communication and queue control, semaphores, co-routines, timers, 

mutexes, trace macros, and also tick less low power features. The FreeRTOS defines and 

functions used to provide the proposed extension are described as follows: 

• xTaskCreate: creates a new task, allocates the stack size, and add it to the list of 

tasks that are ready to run; 

• vTaskSuspend: suspends a ready task removing it from the ready list and saving 

its context; 

• vTaskResume: resumes a suspended task restoring its context and adding it to 

ready list; 

• vTaskDelete: remove a task from the RTOS kernels management and deallocate 

the stack size; 



53 

 

 

• vTaskDelay: delay a task for a relative number of ticks; 

• vTaskDelayUntil: delay a task for an absolute number of ticks; 

• vTaskStartScheduler: starts the RTOS scheduler and the Idle control task which 

controls features such as memory deallocation, memory coalescence, and task 

context switching; 

• vTaskEndScheduler: finishes the scheduler and also the system execution; 

• pvPortMalloc: a FreeRTOS provided memory allocation function; 

• vPortFree: a FreeRTOS provided memory freeing function; 

• configSUPPORT_DYNAMIC_ALLOCATION: defined to ‘1’ allows to use 

dynamic memory allocation; 

• configTICK_RATE_HZ: sets the SYSTICK timer interruption rate (i.e. clock 

divider); 

• configUSE_PREEMPTION: defined to ‘1’ uses the real-time preemptive 

scheduler; 

• configMINIMAL_STACK_SIZE: defines the minimal stack size used to system 

default task such as Idle Task; 

• configTOTAL_HEAP_SIZE: defines the heap size, addressing the memory to be 

managed. 

Aiming at keeping FreeRTOS modularity and flexibility, its original structure was 

maintained and the promoted extensions were developed to operate in a non-intrusive 

manner. The proposed extension includes the FreeRTOS features regarding processor 

architecture portability, memory management, interruption handlers, scheduling and 

multitasking management. Note that this work uses the FreeRTOS preemptive real-time 

scheduling but does not objective the real-time performance exploration and analysis. 

Therefore, all those features and functionalities allow and justify the choice of using 

FreeRTOS in this work. Underlying extensions were developed targeting NoC-based 

multiprocessor architectures, and they are described in the following sections.  
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4.2 System and Application Portability 

Modern embedded OSs and processors support the interruption control. This feature 

allows handling high-priority interruptions during the system execution, improving 

software and hardware control and portability. As shown in Figure 3.1, the proposed non-

intrusive extension does not change the FreeRTOS source project. The developed 

extension has the same FreeRTOS folder and files organization model. Once the 

FreeRTOS supports multiple processor architectures, it provides the interface between 

hardware and software. There are a set of defines and functions to enable the system 

needed interruptions for each processor architecture, such as the CMSIS for ARM Cortex-

M family. The extension underlies the processor architecture portability by defining the 

interruption vector configuration. The system startup points to the processor interruption 

vector which has the default FreeRTOS functions and the extension API services. The 

extension project is organized as follows: 

• Startup: is the system startup file which has interruption vector configuration and 

the startup Reset function. This method enables interruptions, handlers, and then 

executes to the main function. 

• Main: has the main function which initializes the required data structures 

depending on the PE function on the MPSoC and then starts the FreeRTOS 

scheduler. 

• System_Call: implements the system call handler function which treats the system 

call interruption and then executes the API function required by the application 

task. 

• Network_Interface: has the NI handler function which treats incoming NoC 

packets and executes services required by any other PE. 

• Communication: has the developed MPI-like API with the send and receive 

primitive functions. 

• Mapping: has the integrated task mapping algorithms which are responsible for 

defining where the applications and the application tasks will be executed. 

• Distributed Management: has the implemented distributed resource and 

application management functions. 
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• Misc: any other miscellaneous auxiliary functions. 

Furthermore, there are two folders with the portable and the extension libraries. The 

portable folder (Figure 3.1) has the architecture specific libraries of the processors which 

the extensions are validated (i.e. ARMv6-M and ARMv7-M). For each processor 

architecture, there is a library folder, and future extensions libraries also can be included. 

Then, the project loads both extension and FreeRTOS libraries compile the proposed 

embedded multiprocessor system. 

Figure 4.3. Software portability under embedded system architecture abstraction layers. 
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Source: Adapted from NOERGAARD 2012. 

Figure 4.3 shows the typical embedded systems architecture and the proposed 

embedded system architecture divided by layers. In general, the embedded systems are 

composed of application, system software, and hardware layers. Inside the proposed 

system software layer there is the kernel with the interruption vector (ISR VECTOR) 

where the interruptions are configured to point their function handlers. The proposed 

extension use two interruptions to provide the proposed system extension under NoC-

based multiprocessors: the system call and the NI interruption. The system call 

interruption is triggered by the system call instruction (i.e. svc in ARM Cortex-M) to 

perform the interface between the application tasks requests and the kernel APIs. The 

external NI interruption is triggered by incoming packets through the NoC to perform the 
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inter-PE communication. For each of those interruptions, there are specific functions to 

treat the task level (system call handler) and system level (NI handler) requests.  

Embedded systems normally implement the application portability by using shared 

libraries which make the applications depending on kernel and APIs addressing. That 

means that any kernel modification involves recompiling the entire kernel and all the 

applications. The proposed non-intrusive extension modifies the System Call Handler to 

treat the application level requests (e.g. send and receive) in a privileged mode, isolating 

privileged operations and system resources. The system call functions are: MPI send, MPI 

receive, Task Delete, and an output debug function. The MPI primitives implement the 

task communication requests, and the task delete finishes the task execution. Each System 

Call instruction carries an embedded number, which is associated with a given service, 

Figure 4.4 explains these services arguments stacked into registers r0-r3. These features 

make the kernel and applications compilation independent, reducing the software 

development time.  

Figure 4.4. NoC communication packet and system call interface function. 
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Source: Author. 

Inter-PE and inter-task communication is an issue in multiprocessor systems once it 

involves data dependency through different processor resources to continues task and 

system execution. The proposed extension integrates the NI interruption handler which 

treats the incoming packets as services. Figure 4.4 shows NoC packet mount details. In 

this work, a packet consists of a six 32 bits-wide flits header followed by the payload. 

The header contains the destination address, the payload size (header plus message size), 

the service request, and three flits to service parameters. The NI handler services are: 



57 

 

 

message request, message delivery, task finished, application finished, mapping request, 

task request, task allocation, application handler, update task location buffer, and sleep 

PE. The message request and delivery services treat task communication requests. The 

remaining services are related distributed mapping management. Following sections 

detail the task management and communication flow and the distributed management 

with the integrated task mapping algorithms. 

4.3 Task Management and NoC Communication 

On the proposed extension even the PEs have the same kernel they can assume two 

functions in the distributed organization: manager or slave. The manager processors are 

responsible for mapping and allocating application tasks. The slave processors allocate 

and execute the mapped application tasks. That involves memory allocation, task 

managing, and scheduling. To the management of the tasks allocation and 

communication, a Task Manager (TM) with a Task Management Structure (TMS), a 

Communication Buffer (CB), and a Task Location Buffer (TLB) were incorporated into 

the FreeRTOS kernel. The TMS contains for each task the local ID, the global application 

ID, the task relationship ID, and the CB. While CB stores the outgoing task messages, the 

TLB stores the PE physical address where application tasks are allocated. Whenever an 

application task is mapped in a slave processor, it allocates the required memory 

(pvPortMalloc) to store the TMS, CB, the application task code, and data. Then, calls the 

FreeRTOS function xTaskCreate to allocate the task stack and add it to the list of tasks 

that are ready to run. 

To enable data transfers between communicating tasks and PEs, an MPI-like API was 

developed. Underlying API includes two communication primitives: MPI Send and MPI 

Receive, which are used to transfer data and management control packets devoted to inter-

task communication and system management. Whenever a task has to communicate with 

another, a System Call instruction is invoked, in user mode, triggering the System Call 

Handler that executes the communication primitives. Once the outgoing messages do not 

prevent the task execution, the CB stores the message whenever an MPI Send is invoked, 

and it suspends the sender task when the CB overflows. However, on MPI Receive the 
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task needs the information to continue execution then suspends the task until the data are 

available. 

Figure 4.5. MPI-like task communication. 
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Source: Author. 

The TM determines the sender processor address by checking the tasks allocation. In 

this case, there are two possibilities: (i) the requested message originates from a task 

mapped into the same processor, thus the TM retrieves the message data from the local 

task CB and delivers it; (ii) the requested message needs to be fetched in another 

processor. Figure 4.5 shows how the task communication flow occurs through the NoC. 

An outgoing message first allocates a header descriptor, acquires the receiver physical 

address from the TLB, and configures the DMA module. This module uses the payload 

address to transfer the information between the local memory to the NI buffer. If the DMA 

module was not defined, the kernel feeds the NI buffer. 

Further, for each communication, the NI triggers the interruption handler, and the NI 

Handler manages the message request and delivery services. First, the requesting TM 

sends to the target TM a service message to fetch the message data (message request). 

The target TM identifies the requesting task ID and removes the message from the sender 

CB. Further, it resumes the task if it is suspended, then it allocates the header descriptor 

and configures the DMA module with the message to be sent. Then, the packet is 
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delivered (message delivery) and the requesting task is resumed. Note that MPI Receive 

is task blocking while MPI Send is task non-blocking unless no CB space is available. In 

both cases the system and any other tasks continues executing, thus they are scheduler 

non-blocking. During the tasks execution time, the kernel’s extensions provide the 

required functions to their communication and scheduling control. When a task finishes, 

it calls the system call delete which executes the FreeRTOS vTaskDelete function to 

remove it from scheduling list deallocating the task stack size, and also deallocate the task 

code and data required memory (vPortFree). Even the task has finished, the CB can 

contain any information and task finishing report will be sent only when the CB is empty. 

4.4 Distributed Mapping 

In distributed mapping, many parallel applications are executed at the same time 

independent of the location of the resources (CASTILHOS et al., 2013). Although 

mapping algorithms map applications in different resources and the system schedule 

different tasks for execution at any time, in users view all applications are executing in 

one MPSoC.  

Figure 4.6. Distributed mapping application execution in different perspectives of view. 
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Source: Author. 
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Aiming to improve gains of performance, reliability, and scalability, the proposed 

extension integrates distributed mapping techniques which share the MPSoC resources 

into cluster regions. Figure 4.6 shows the different perspectives of view during the 

application execution. For the user, once it requests the applications execution, all the 

applications execute at the same time (user view in Figure 4.6). The distributed mapping 

considers the information about the applications, the tasks, and the available resources 

while determining each PE will execute each task (mapping view in Figure 4.6). In each 

PE, the FreeRTOS scheduler is responsible for defining which task will be execute at any 

time (scheduler view in Figure 4.6). At the system startup, each PE assumes one of the 

following roles: 

• Local Manager (LM) - responsible for cluster control, executing functions such as 

task mapping within the cluster. 

• Global Manager (GM) - in addition to the local manager functions, is responsible 

for the overall system management, such as defining an application-to-cluster 

mapping and controlling external devices accesses (e.g. application repository). 

• Slave PE (SP) - responsible for executing user applications with the possibility of 

parametrization of a single task or multitasking. 

Figure 4.7. Centralized Management vs. Distributed Management. 
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Source: Adapted from CASTILHOS et al., 2013. 
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The developed extension is also parametrizable, being possible to define: the platform 

size, the GM position, the cluster size, the maximum number of tasks per PE, the CB size 

and the application set to execute. The CB size is also parametrizable, allowing to limit 

the amount of memory to be allocated for inter-task communication. The hardware and 

the software of all PEs are the same, and this enables to assign the management task to 

different PEs. Figure 4.7 shows the sequence diagram which compares the centralized 

and the distributed management. On centralized management, all the task requests are 

sent to the GM leading delay and overload of services. However, on distributed 

management, each LMs only handles the incoming task requests from their clusters. This 

feature increases the reliability of the system since faults in manager processors do not 

halt the system. 

At system startup, the distributed mapping structure is created according to pre-

defined parameters. The structure contains the hardware platform size, clusters sizes, their 

available resources and the manager’s addresses. At this time, all processors know the 

GM, the LM, and the cluster limit (all processors within a cluster have this information). 

The GM receives requests from the application repository to map new applications. This 

request contains the number of required resources to execute the application. If the 

available resources are smaller than the required by the application, the application is 

scheduled to execute later.  

Figure 4.8 illustrates a 4x4 NoC-based platform, with 2x2 clusters, the application 

path, and the tasks execution flow with message passing interface. It details the 

application and task management flow starting from the application request in the system 

startup and finishing at the end of the application execution. The application information 

is loaded to GM, at runtime, from the repository. The mapping begins with SearchCluster 

function, which analyses the application information and clusters available resources to 

send the application header to the destination cluster LM (Figure 4.8 a). The target LM 

receives the application header and executes a mapping heuristic for the initial tasks. After 

that, it sends an update TLB message to the selected PEs and the GM, then requests to 

the GM to send the task code to be allocated in destination SP (Figure 4.8 b). The 

destination PE receives the task code, and the function xTaskCreate creates a new task. 

Then the required RAM is automatically allocated from the FreeRTOS heap, while the 

underlying task is included in the list of tasks that are ready to run. During its execution, 

the initial tasks request to the local manager to map the remaining tasks (same task 
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mapping flow) (Figure 4.8 c). At the end of its execution, the task calls system call delete 

performing vTaskDelete, removes the task from the scheduler and frees the allocated 

space. The kernel only notifies the LM that the task is finished after the message buffer 

is empty. In turn, when the application is finished the LM reports the availability of new 

resources to GM (Figure 4.8 d). Finally, the GM maps other incoming applications or 

finishes system execution. 

Figure 4.8. Application and task management flow under distributed MPSoC. 
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The task mapping algorithms define where each application and application task will 

be executed. The heuristics algorithm represents the applications as task graphs based on 

its ID and characteristics (e.g. load, communication), then select the best resource to 

allocate the task based on its heuristics. This work deploys two task mapping heuristics: 

Nearest Neighbor (NN) and Low Energy Communication based on Dependencies 

Neighbor (LEC-DN) (MANDELLI et al., 2015). The initial task mapping evaluates all 

SPs inside the selected cluster, selecting the SP with the largest number of free SPs around 

it. In the NN heuristic, the requesting PE ID is the input parameter to define where the 

next task will be allocated. This heuristic is a simple dynamic task mapping and it does 

not consider the application tasks characteristics. Then, the algorithm only searches the 

nearest available resource to define the task allocation. Figure 4.9 shows the mapping 

heuristic and the search order. In this case, the PEs are represented as squares and the 

numbers defines its available resources. Also, the color represents the distance in hops 

between the map requesting and the targeting PE. The search algorithm tests all n-hop 

neighbors, n varying between 1 and the NoC limits in a spiral way, stopping when the 

first free PE is found. 

Figure 4.9. Runtime dynamic task mapping search heuristic. 
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Source: Adapted from MANDELLI at al., 2015. 
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The LEC-DN heuristic also uses the same search order. However, it reduces the 

communication volume through the NoC by nearing communicating tasks that exchange 

a high communication volume. The heuristic evaluates the best resource by task 

interdependencies considering the communication and loads task profiles. Moreover, the 

heuristic task execution performance by reducing the hops between interdependent 

communicating tasks.  
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5 EXPERIMENTAL SETUPS AND RESULTS 

This chapter describes the test cases used to validate the proposed framework and the 

proposed FreeRTOS extension. The test cases vary regarding MPSoC size, clusters size, 

number of clusters, number of applications, tasks per PE, PE architecture, platform 

abstraction level, and task mapping techniques. All the experiments have been performed 

with the Imperas OVPsim version 20160323 on Intel i7-4790K 4.00 GHz machine, with 

32GB RAM, running Ubuntu 16.04 64 bits. The chapter is organized as follows: Section 

5.1 describes the validation of the proposed system extension by executing all the 

application types. Section 5.2 describes the proposed framework and system validation 

under test cases with different MPSoC sizes, cluster sizes, number of clusters and 

application sets. Section 5.3 describes the system extension evaluation by high different 

application workloads under large scale platforms. Section 5.5 shows the system 

validation under Cortex-M0-based RTL level hardware platform. Finally, section 5.4 

shows the system portability by using publisher-subscriber protocol. 

5.1 System Validation Through Different Applications with 

Time-Varying Workloads 

To validate the proposed FreeRTOS extension, the first test cases execute all the 

applications available in the proposed framework. Then, for each application type and 

task mapping heuristic, there is a test case to be executed. Also, to stress the system, there 

is one test case which executes all the application types. Thus, the FreeRTOS extension 

needs to deal with the different time-varying workloads of the applications.  

Table III shows the proposed test cases for validating the system extension with 

different application types and mapping heuristics. Due the different task number and 

different workloads, the test cases with single application types were executed in a 4x4 

MPSoC platform with defined multitasking of two (2) tasks per PE. Also, the test case 

with all the applications was executed in an 8x8 MPSoC size with 4x4 cluster size, also 

with multitasking. Both hardware platforms considered use Cortex-M4F processor 

architecture. 
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Table III: Test cases used to validate the proposed system extension with time-varying 

application workloads. 

Test Case Applications Application # Task # 

A Producer Consumer 1 2 

B MPEG 1 5 

C MPEG4 1 12 

D Fixed-Base Test 1 14 

E VOPD 1 12 

F MWD 1 12 

G DTW6 1 6 

H DTW10 1 10 

I Dijkstra 1 6 

J 
Producer Consumer, MPEG, MPEG4, Fixe-Base Test, 

VOPD, MWD, DTW6, DTW10, Dijkstra 
9 79 

Source: Author. 

Thus, Table IV shows the extracted results from the validation test cases. The results 

from the NoC communication are the volume in some flits and the energy spent in 

nanojoules extracted by the integrated energy model. The execution time in clock cycles 

was extracted from the integrated timing model. Finally, the simulation time and the 

simulated instructions were extracted from the OVPsim.  

The results show that the system extension provides all the required features to 

execute different workload applications in MPSoCs. In the test cases with one application 

type, the results show that the higher workload applications such as test cases C and H, 

and applications with high computing effort such as B, G, I, and H, have high execution 

and simulation time. For example, the applications in F and I have similar communication 

volume, but the execution time in 1K clock cycles is 4.24 times higher and the simulation 

time is 3.53 times higher. This shows that both characteristics, communication volume, 

and computing effort are important issues while considering workload distribution. 
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Table IV: Extracted results from the proposed test cases in Table III. 

Mapping 
Test 

case 

NoC Communication Execution Time 

(1K Clock Cycles) 

Simulation 

Time (s) 

Simulated 

Instructions Volume (flits) Energy(nJ) 

NN 

A 227 2.454 797,88 2.84 5559056 

B 5558 42.37 1663,34 5.63 11536640 

C 107800 393.817 9287,38 29.87 63953008 

D 8046 96.118 901,44 3.38 6509168 

E 8483 52.56 2059,39 7.05 14379904 

F 11212 61.021 1553,81 5.64 10889920 

G 8034 43.43 2741,81 8.67 18987280 

H 16039 80.399 2881,28 8.85 20017600 

I 11354 70.713 5595,35 17.41 38520400 

J 181832 1161.057 9221,59 180.44 256039680 

LEC-DN 

A 227 2.454 797,83 2.82 5559056 

B 5558 42.37 1676,59 5.62 11536640 

C 107800 392.209 9285,98 30.11 63953072 

D 8064 98.203 896,81 3.36 6494992 

E 7419 43.494 2057,43 6.92 14379904 

F 10120 59.22 1354,91 5.00 9532416 

G 8034 36.438 2741,44 8.54 18986592 

H 16039 78.601 2880,88 8.90 20017600 

I 11354 70.713 5595,09 17.66 38520400 

J 181630 1113.079 9217,92 175.16 256039680 

Source: Author. 

To evaluate the impact of the two task mapping heuristics in the workload distribution 

the better results are underlined. Regarding to the communication volume, only the test 

case D present the NN heuristics was better. This difference occurs when more 

communicating tasks are in different processors. The remaining experiments show the 

communication volume is equal in both heuristics or better in LEC-DN. Even if the 

communication volume is equal in some cases, the communication energy spent is lower 

in most test cases with LEC-DN heuristics. That occurs because the LEC-DN task 

mapping algorithm approximates communicating tasks and reduces the number of hops 

of task communication packets. Therefore, the reduction of hops and NoC 

communication increases the system performance which reflects on the applications 

execution time. 
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While the most test cases execute only one application in a single cluster, the test case 

J executes all the application types distributed by clusters. In this test case, the distributed 

task mapping needs to allocate all the different application tasks and deals with their 

workloads. Nevertheless, the results show that on LEC-DN the communication volume 

and also the communication energy was reduced. 

5.2 System Validation Through Different Platform 

Organizations 

The proposed framework allows the design space exploration by generating different 

test cases, varying regarding MPSoC size, cluster size, cluster number, and number of 

applications. Proposed FreeRTOS extension needs to be able to adapt to this variation 

and handle with the application workloads. Then, to validate the system adaptability 

under different platform sizes, cluster distribution and application number. Table V shows 

the test cases used to validate these features. All the test cases are executing with Cortex-

M4F processor architecture with the LEC-DN task mapping algorithm considering 

multitasking. The MPSoC sizes vary from 2x2 to 20x20 hardware platforms with up to 

four hundred PEs. Also, the clusters organization varies regarding size from 2x2 to 5x5 

and quantity from a single cluster to one hundred clusters.  

Table V: Design space exploration and system scalability evaluation test cases. 

Test case 
Size Number 

Application # Task # 
MPSoC Cluster PEs Clusters 

K 2x2 2x2 4 1 1 5 

L 3x3 3x3 9 1 1 5 

M 4x4 4x4 16 1 1 5 

N 4x4 2x2 16 4 4 20 

O 6x6 3x3 36 4 4 20 

P 8x8 4x4 64 4 4 20 

Q 8x8 2x2 64 16 16 80 

R 10x10 5x5 100 4 4 20 

S 10x10 2x2 100 25 25 125 

T 20x20 5x5 400 16 16 80 

U 20x20 2x2 400 100 100 500 

Source: Author 
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Table VI: Extracted results from the proposed test cases in Table V. 

Test case 
NoC Communication Simulated 

Instructions 
Simulation Time(s) 

Volume (flits) Energy(nJ) 

K 5486 23.877 2880396 1.21 

L 5516 33.215 6673743 3 

M 5558 42.37 11536640 5.55 

N 22676 164.903 11889360 5,72 

O 22796 238.214 26837208 15,2 

P 22964 312.312 47907200 34.11 

Q 91436 1214.8 48432704 34.47 

R 23180 390.285 75046200 61.17 

S 143006 2331.838 76211300 64.38 

T 93452 3019.824 383073600 569.91 

U 572756 18005.078 464039600 783.84 

Source: Author. 

The application set for each test case have a same number of clusters and applications 

just to guarantee that each cluster executes at least one application. Table VI shows the 

extracted results from the test cases execution. The results show that the system allows 

the design space exploration while it can handle all the variations in terms of MPSoC 

size, application set, and workload distribution. 

5.3 Workload Distribution in Large-Scale MPSoCs 

To validate the proposed work, the platform need to execute high workload test cases 

considering two tasks mapping heuristics under large scale hardware platforms. For this 

purpose, three applications with a high workload and also high computing effort are used 

as benchmarks: DTW, with ten tasks; MPEG, with five tasks; Dijkstra, with six tasks. 

Table II presents the six evaluated test cases. Such test cases use a 10x10 multiprocessor 

platform instance with a 5x5 cluster size and with different applications. For the evaluated 

test cases, was considered that a PE is executing two tasks at a time.  
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Table VII: Experimental test cases to evaluate the distribution of high workload 

application sets in large scale MPSoCs. 

Test case Applications Application # Task # 

W1 120 x MPEG 120 600 

W2 100 x DJK 100 600 

W3 15 x DTW, 35 x MPEG 50 325 

W4 65 x MPEG, 35 x DJK 100 535 

W5 10 x DTW, 25 x MPEG, 25 x DJK 60 375 

W6 15 x DTW, 5 x MPEG, 40 x DJK 60 415 

Source: Author. 

 

Table VIII: Extracted results from the proposed test cases in Table VII. 

Test case 
Communication Energy (µJ) Execution Time (1K clock cycles) 

NN LEC-DN NN LEC-DN 

W1 16.04 15.74 36493 36806 

W2 87.90 87.27 36554 37621 

W3 10.93 10.20 27875 27858 

W4 39.59 38.95 40036 35554 

W5 28.42 27.80 32117 31456 

W6 40.20 39.21 41857 39918 

Source: Author. 

Table VIII presents a comparison of the two evaluated heuristics, concerning two 

different metrics: communication energy, and execution time. The communication energy 

presents the cost to transfer the communication volume through the NoC. For this 

purpose, it considers the distance in hops between each pair of communicating tasks. 

LEC-DN reduces the communication energy for all scenarios compared to NN. This 

is explained since LEC-DN approximates all communicating tasks and NN approximates 

only pairs of communicating tasks. The execution time varies according to the scenario, 

depending on the communication volume, NoC contention, mapping algorithm 

computation and shared execution of tasks in the system. 
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Figure 5.1. Task mapping example in test case W3 when all resources are occupied. 
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Source: Author. 

Figure 5.1 illustrates an example of LEC-DN mapping (test case W3), where each 

color corresponds to a different application. Note the locality of the applications, where 

tasks belonging to the same application are mapped in the same region, with a small 

distance regarding a number of hops. 

5.4 Integrating a Publisher-Subscriber Protocol into NoC-

based MPSoCs 

Middleware is an abstraction layer generally used on embedded systems with two or 

more applications in order to provide flexibility, security, portability, connectivity, 

intercommunication, and/or interoperability mechanisms between applications 

(NOERGAARD 2012). This section describes a case study developed by a partner 

(HAMESRKY et al., 2017), which integrates a Publisher-subscriber protocol in the 

proposed FreeRTOS extension. The publish-subscribe (PUB-SUB) programming model 

has been used in middleware for highly distributed domains, such as: MQTT 1 (Message 
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Queuing Telemetry Transport) for sensors networks and mobile devices domains; DDS 2 

(Data Distribution Service) for real-time systems domains; and ROS 3 (Robot Operating 

System) for robotics domains. All these middlewares evolved to provide properties, such 

as reliability, security, low power consumption, and QoS. 

Figure 5.2 shows a general scheme with two publishers, three subscribers, three 

topics, and one broker. A publisher can publish data in more than one topic. A subscriber 

can receive data about same or different topics from one or more publishers. 

Figure 5.2. The general scheme of a publish-subscribe system. 

 

Source: HAMERSKY et al., 2017. 

In MPSoC domain, publisher nodes are those which want to produce data, while 

subscribers are nodes that want to consume them. The topics represent atomic data shared 

among the nodes. As an example, Figure 5.3 shows the DTW application with ten tasks 

(Bank, P1-P8 workers, and Recognizer) represented through a task graph. A directed 

arrow between two tasks (blocks in Figure 5.2) means that the first task sends data to the 

second one. 

Figure 5.3. DTW task graph in (a) MPI and (b) PUB-SUB models. 
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Source: HAMERSKY et al., 2017. 

The PUB-SUB version replaces the MPI primitives by PUB-SUB primitives. The 

sender side must define a topic ID for the flow, register itself in the system as publisher 

of that topic and publish the data. The receiver side must register itself as a subscriber of 

that topic, setting a callback function to handle the incoming data. 

The middleware is integrated on FreeRTOS between the kernel and the application 

level. While system calls provide the PUB-SUB API primitives to the user application(s), 

the network interruptions (NIs) are used to manage the API services at the system level. 

The management structure remains itself with the incorporation of the PUB-SUB 

middleware, with PEs assuming new management functions. Both LM and GM assume 

the role of brokers, but they can also be publishers and subscribers. The SPs can only be 

publishers and/or subscribers. 

The experiments are based on the DTW application. This application has been chosen 

because it uses a communication pattern of 1:N and N:1 (N is the number of workers). 

This experiment uses eight workers. Three scenarios were analyzed: MPI-all, MPI-dem, 

and PUB-SUB. The first two scenarios use MPI primitives with all tasks mapped at the 

beginning of the execution (MPI-all), or tasks mapped on demand (MPI-dem), where only 

the initial tasks are mapped at the beginning of the execution and the other tasks are 

mapped as soon as there is communication among them. The PUB-SUB scenario uses the 

proposed publish-subscribe primitives and middleware, with all the tasks mapped at the 

beginning of the execution. All scenarios use a single-cluster 5x5 MPSoC, with each PE 

executing a single task to stimulate the NoC communication between the tasks and 

evaluate the middleware protocol. 

Figure 5.4 shows the results of the DTW application execution time, using a model 

that captures the executed instructions for each PE, generating an execution time of the 

total executed instructions. PUB-SUB reduces the execution time from 2.6% to 29.9% as 

the number of patterns is increased, respectively, from 16 to 256. Compared to MPI, the 

PUB-SUB model requires an initial setup time to advertise the topics. Besides, the PUB-

SUB application object code is lightly bigger, taking more time to finish the task mapping. 

Therefore, the MPI has an advantage for small communication volumes. However, the 

MPI model presents the drawback of generating more System Calls and NIs caused by 

the messages, as detailed next.  
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Figure 5.4. DTW execution time using MPI and PUB-SUB. 

 

Source: HAMERSKY et al., 2017. 

Figure 5.5. MPI vs PUB-SUB time spent in System Calls and NIs. 

 

Source: HAMERSKY et al., 2017. 

Figure 5.5 is a detailed view of the results obtained for 64 patterns, presented in Fig. 

5. The X axis represents the order of System Calls or NIs generated in the system, and 
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the Y axis represents the instant of time (timestamp) in which each one of them was 

executed. The figure also presents two lines representing the MPI and the PUB-SUB 

execution trace. Since both MPI-all and MPI-dem had the same behavior, only one is 

illustrated. The figure is divided into the three main phases of the DTW application: setup, 

data fork, and data join. 

5.5 RTL System Validation 

The OVPsim MPSoC platform provides high software development, high 

debuggability, high performance and low simulation. The high level platform can be 

calibrated from data extracted from different low-level models. However, to really 

validate the proposed FreeRTOS extension the system needs to be executed on an real 

RTL platform. In this case, a NoC-based RTL MPSoC platform with the Cortex-M0 

processor architecture was provided by a partner. The proposed FreeRTOS extension was 

executed in both OVPsim and RTL platforms to compare the simulation results. Table IX 

shows the proposed test cases comparing the proposed framework generating the OVPsim 

platform with the RTL platform. The test cases inculdes simple application sets with one 

and four applications just to validate the proposed system extension in different 

architectures and different abstration levels. The platform sizes varies from 4x4 to 8x8 

considering up to four clusters. 

Table IX: Test cases to evaluate the FreeRTOS extension running under RTL Cortex-M0 

platform. 

Test case 
Size 

Applications Application # Task # 
MPSoC Cluster 

R1 4x4 4x4 MPEG 1 5 

R2 4x4 4x4 DJK 1 6 

R3 4x4 4x4 DTW10 1 10 

R4 4x4 4x4 Fixed-base Test 1 12 

R5 8x8 4x4 MPEG x 4 4 20 

R6 8x8 4x4 DJK x 4 4 24 

R7 8x8 4x4 DTW10 x 4 4 40 

R8 8x8 4x4 Fixed-base Test x 4 4 48 

Source: Author. 
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Table X: Comparison between the results extracted from the proposed test cases in Table 

IX executed on OVPsim and RTL platforms. 

Test case 
Communication Simulation Time (s) 

Volume (flits) Energy (nJ) RTL OVP 

R1 9878 68.817 26745 5.3 

R2 13343 81.251 26082 9.05 

R3 16051 105.125 60221 6.97 

R4 7928 91.435 23985 3.27 

R5 40244 418.101 112112 31.77 

R6 54251 514.451 115878 53.19 

R7 65731 578.663 245350 42.65 

R8 33947 731.425 102480 19.77 

Source: Author. 

Table X shows the extracted results from both RTL and OVPsim platform models. 

The resultant information shows the OVPsim system validation under high level 

simulation can be easely applied to real platforms. Even the RTL having more accurance, 

the test case simulation time is much higher when compared with the OVPsim simulation. 

In addition, the data extracted from RTL platform description can be used to calibrate or 

create high level models allowing a more accurate simulation. Therefore, both approaches 

are important while reducing the design time of complex MPSoCs. 
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6 CONCLUSIONS 

This Dissertation proposes a non-intrusive FreeRTOS extension to support dynamic 

and distributed task mapping in Multiprocessor Systems. The extension enables 

FreeRTOS adoption in large-scale NoC-based MPSoC architectures with distributed-

memory organization together with runtime distributed mapping heuristics. A Framework 

was also proposed to design space exploration of high level MPSoC platforms. The 

framework allows to automatic generate large scale NoC-based MPSoCs with an 

application set to be executed into the OVPsim tool. 

The Framework and FreeRTOS extension were validated in several test cases with 

many variations regarding MPSoC size, clusters size, application number, task per PEs, 

PEs architecture, platform abstraction level and task mapping. All these features were 

executed in a RTL synthesizable platform with different processor architecture.  

Results showed the effectiveness of the included mapping heuristics, which allocated 

communicating tasks near to each other, reducing the NoC congestion and the 

communication energy. Additionally, the OVPsim is an efficient tool to validate software 

and the portability to different levels are also simple.  

The proposed extension also provided a case study using distributed systems 

publisher-subscriber middleware applied to MPSoCs. Results show that the proposed 

middleware is a worthwhile alternative to programming NoC-based multiprocessor 

platforms, with low footprint overhead, and lower execution time when compared with 

MPI-based FreeRTOS kernel implementation. 

All the proposed extensions and framework proves to be highly portable regarding 

software development and processor architectures. Therefore, the use of a largely used 

OS ported to different ISAs facilitates the system design and validation, reducing 

software design cost and time-to-market. The platform applicability can be extended to 

fault detection, system security, and IoT applications. 
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6.1 Future Works 

Considering the current technological scenario and the applications of MPSoCs in the 

literature, there are some important gaps which can be filled regarding multiple input and 

multiple output data, secure computing and encryption, and fault tolerance. As processors 

seek more resource efficiency, they increasingly need to target multiple goals at the same 

time, such as a level of performance, power consumption, and average utilization 

(POTHUKUCHI et al., 2016). With the concept of multiple inputs and multiple outputs 

the MPSoC needs to handle multiple workload inputs and balance through to its 

resources.  

At the same time, the system needs to be secure while receiving and transmitting 

information from and to external means. To ensure the input and output information are 

correct and true, the system must encrypt and decrypt it, which demands performance and 

computing time, both available in MPSoCs. The system must do a trade-off between 

application execution and security handling the information and allocating resources to 

handle these applications. This issue is directly related to the system reliability once the 

system handling unrequired information may induce the system to unrecoverable fault or 

leak private information. 

Concerning reliability in NoC-based systems, the literature presents some works 

proposing alternatives for multiprocessor systems: secure communication between the 

various devices of a SoC (LUCAS et al., 2009; COTA et al., 2012); Fault-tolerant routing 

(MARCON et al., 2013, LIU et al., 2013); Monitoring of chip aging (KERKHOFF et al., 

2014); Power management in large scale circuits using NoCs (BOKHARI et al., 2015; 

ZHAN et al., 2014); Failure tolerance in NoCs design (PARK et al., 2006; RADETZKI 

et al., 2013). However, these features are little explored at the embedded system level for 

large-scale multiprocessors targeting commercial kernels. Therefore, the contributions of 

this dissertation provide the required resources to explore those issues in the future works. 
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APPENDIX A – PUBLICATIONS OF THE AUTHOR 

The results presented in this dissertation were published in two conferences with 

international academic recognition. Table X presents the papers, with the respective 

conferences name and the year of publication. The first paper underlies the validation of 

the proposed FreeRTOS extension under large scale MPSoCs with the proposed 

framework (ABICH et al., 2016). The second exploits the Publisher-Subscriber protocol 

developed and validated with the proposed extension and framework (HAMERSKY et 

al., 2017). 

Table XI: List of Publications related to this dissertation results. 

 Title Description 

1 

Extending FreeRTOS to Support Dynamic and Distributed 

Mapping in Multiprocessor Systems. 

Abich, G., Mandelli, M. G., Rosa, F. R., Moraes, F., Ost, L. 

& Reis, R. 

In: IEEE International Conference on Electronics, Circuits 

and Systems (ICECS), 2016. (ABICH et al., 2016) 

Proposed Framework 

and FreeRTOS 

Extension presented in 

Chapters 3 and 4 

2 

Publish-Subscribe Programming for a NoC-based 

Multiprocessor System-on-Chip. 

Hamerski, J.C., Abich, G., Reis, R., Ost, L. & Amory, A. 

In: IEEE International Symposium on Circuits and Systems 

(ISCAS), 2017. (HAMERSKY et al., 2017) 

Integration of Publisher-

Subscriber Protocol 

presented in Chapter 5 

Section 5.4 
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