

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

GEANCARLO ABICH

Extending FreeRTOS to Support Dynamic and Distributed Task

Mapping in Multiprocessor Systems

Dissertation presented in partial fulfillment

of requirements for degree of Master in

Computer Science

Prof. Dr. Ricardo Augusto da Luz Reis

Advisor

Porto Alegre

May 2017

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

Abich, Geancarlo

Extending FreeRTOS to Support Dynamic and Distributed Task

Mapping in Multiprocessor Systems / Geancarlo Abich - 2017.

85 f.: il.

Advisor: Ricardo Augusto da Luz Reis

Dissertation (master) – Universidade Federal do Rio Grande do Sul.

Programa de Pós-Graduação em Computação. Porto Alegre, BR – RS,

2017.

1. Dynamic Mapping 2. Distributed Mapping 3. Embedded Kernel 4.

Multiprocessor Systems 5. Multicore 6. Manycore 7. Modelling 8.

Simulation

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Rui Vicente Oppermann

Vice-Reitor: Profª. Jane Fraga Tutikian

Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves

Diretor do Instituto de Informática: Profª. Carla Maria Dal Sasso Freitas

Coordenador do PPGC: Prof. João Luiz Dihl Comba

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Some will win, some will lose (…)

Don't stop believin

Hold on to that feelin”

Journey (Jonathan Cain, Steve Perry, Neal Schon)

AGRADECIMENTOS

Gostaria de agradecer a Deus em primeiro lugar por me acompanhar em todos os

momentos da vida, principalmente nos difíceis.

A família é a principal estrutura na vida de um grande homem e a minha está sempre

ao meu lado. Meus pais que desde o meu primeiro passo neste mundo me incentivam a

seguir em frente, apoiam todos os esforços para concretização deste trabalho e deixaram

de viver grandes momentos de sua vida para poder me proporcionar o estudo e tudo que

tenho hoje. Obrigado pai CARLOS ALBERTO DORNELLES ABICH, vulgo Dornellão,

e mãe ELANE ABICH, por me ensinar que com trabalho duro, respeito, dignidade e

caráter se atinge qualquer objetivo, seus nomes são a principal citação deste trabalho.

PAULA ANDRESSA FISCHER, tu que permaneceste disposta e atenciosa em todos

os momentos, compreendeste todo o tempo que foi dedicado aos estudos e

consequentemente o tempo que não estávamos juntos. Às viagens que fiz e não pude te

levar junto. Sei que você sempre me acompanha em qualquer caminho que decida traçar.

Obrigado por ser tão carinhosa comigo, este é apenas um passo na nossa trajetória de

sucesso. Essa conquista também é tua, muito obrigado por tudo.

Caros RICARDO AUGUSTO DA LUZ REIS e LUCIANO COPELLO OST, meus

professores e orientadores vocês dignificam ainda mais sua profissão. Obrigado pela

compreensão, paciência e pelos puxões de orelha. Talvez uma outra dissertação ou um

livro ainda seja pouco para expressar o quanto sou grato. Vocês estão sempre

incentivando seus alunos e lutando por eles diante de dificuldades financeiras e pessoais.

Não bastasse seu o trabalho árduo, vocês convivem com seus alunos como amigos

relatando suas experiências e criando um laço de confiança e amizade. Reis, obrigado

pelo exemplo que tu és diante da comunidade brasileira e internacional de pesquisa em

computação e microeletrônica. Ost, obrigado por trabalhar duro comigo, se dedicar em

me ajudar, por me incentivar todos os dias. É uma honra trabalhar com pessoas como

vocês, muito obrigado mesmo.

Agradeço também a todos os demais professores que de alguma forma contribuíram

para meu crescimento profissional, em especial ao Leandro Soares Indrusiak, Everton

Alceu Carara e ao Altamiro Amadeu Susin que avaliaram e incentivaram a elaboração

deste trabalho. À professora Fernanda Gusmão de Lima Kastensmidt e ao professor

Sergio Bambi, pelo exemplo que são e pelos conhecimentos passados nas disciplinas. Ao

professor Fernando Gehm Moraes pelo apoio e contribuição no desenvolvimento deste

trabalho. Ao Marcelo Grandi Mandelli, vai saber, por me ajudar a compreender seus

mapeamentos, certo. Ao Rafael Garibotti pelo apoio, incentivo e trabalho em conjunto.

Ao Jean Carlo Hamerski e ao professor Alexandre de Morais Amory por acreditar no meu

trabalho e pela colaboração na pesquisa. Ao Felipe Rocha da Rosa por sempre me ajudar,

tanto nas dúvidas sobre o trabalho e quanto no início do trabalho dentro da UFRGS. Ao

Bortolon e ao Vitor pelas diversas caronas e discussões sobre o dia a dia e trabalho. Aos

demais membros do laboratório, Alexandra, Calebe, Gracieli, Guilherme, Jucemar,

Mateus, Tânia, Tiago, Walter e Ygor, pelo apoio e incentivo em todas as horas.

Por fim, agradeço a todos os demais que de alguma forma contribuíram para este

trabalho, tanto os que apoiaram quanto os que dificultaram, pois sempre é um incentivo

para seguir em frente. Muito obrigado a todos.

ABSTRACT

Embedded Multiprocessor systems are a reality, in both industry and academia

sectors. Such devices offer parallel processing capabilities, aiming at covering the

increasing requirements of complex applications. Underlying application workloads are

susceptible to variation at runtime, which if not properly handled, may lead to the

performance and power efficiency degradation. The continuous increase in the

complexity of application workload and the size of emerging multiprocessor systems,

calls for dynamic and distributed mapping solutions. The majority of the promoted

mapping techniques are bespoke implementations, which consider an in-house operating

system developed to a particular processor architecture. This practice restricts its adoption

in other platforms, leading to extra design time, re-validation and, consequentially, a

hidden cost that may well be quite high. In this scenario, this dissertation proposes a

FreeRTOS extension that integrates the support to dynamic and distributed tasks mapping

in multiprocessor systems. FreeRTOS is portable to more than 30 embedded processors

architectures, increasing software portability and reducing development time. The

proposed extension employs mapping techniques allowing FreeRTOS for handle high

demands of application mapping in runtime. Another contribution of this work is the

development of a framework, which enables the exploration of large systems while

providing debugging facilities. The proposed framework provides the automatic

generation of multiprocessor platforms, considering parameters of size, processor

architecture, and an application set. The resulting platform description is high scalable

while allows runtime data extraction and high debugging. These features allowed to

validate the proposed FreeRTOS extension in more than one processor architecture from

ARM Cortex-M family. Test cases were executed on large-scale platforms and at different

levels of abstraction with cases of more than 120 applications incorporating more than

600 tasks processed. The results show that the proposed extension presents better or equal

results to the literature.

Index Terms—Dynamic Mapping, Distributed Mapping, Embedded Kernel,

Multiprocessor Systems, Multicore, Manycore, Modelling, and Simulation.

Extensão do FreeRTOS para Suporte ao Mapeamento

Dinâmico e Distribuído de Tarefas em Sistemas

Multiprocessados

RESUMO

Sistemas de Multiprocessados Embarcados são uma realidade, tanto no setor da

indústria e quanto no setor acadêmico. Esses dispositivos oferecem capacidades de

processamento paralelo objetivando cobrir requisitos cada vez maiores de aplicações

complexas. A carga de trabalho subjacente das aplicações é suscetível a variação em

tempo de execução o que, se não for tratada adequadamente, pode levar a degradação de

eficiência em desempenho e energia. O aumento contínuo da complexidade da carga de

trabalho das aplicações, bem como do tamanho dos sistemas multiprocessados

emergentes, requer soluções de mapeamento dinâmicas e distribuídas. A maioria das

técnicas de mapeamento propostas são implementações personalizadas, considerando um

sistema operacional interno desenvolvido para uma arquitetura de processador específica.

Essa prática restringe sua aplicação em outras plataformas, levando a um design extra,

revalidação e, consequentemente, um custo oculto que pode ser um tanto quanto alto.

Neste cenário, esta dissertação propõe a extensão do FreeRTOS para suportar

mapeamento dinâmico e distribuído de tarefas em sistemas multiprocessados. O

FreeRTOS tem portabilidade para mais de 30 arquiteturas de processadores embarcados,

aumentando a portabilidade de software e reduzindo o tempo de desenvolvimento. A

extensão proposta utiliza técnicas de mapeamento que permitem ao FreeRTOS atender a

altas demandas de mapeamento de aplicações em tempo de execução. Outra contribuição

deste trabalho é o desenvolvimento de um framework que permite a exploração de

grandes sistemas fornecendo, simultaneamente, resultados para depuração. O framework

proposto possibilita a geração automática de plataformas multiprocessadas considerando

seu tamanho, a arquitetura do processador e um conjunto de aplicações. A descrição da

plataforma resultante é altamente escalável permitindo extração de dados em tempo de

execução e alta depuração. Estas características permitiram validar a extensão do

FreeRTOS proposta em mais de uma arquitetura de processador da família ARM Cortex-

M. Os casos de teste foram executados em plataformas de grande escala e em diferentes

níveis de abstração com casos de mais de 120 aplicações incorporando mais de 600 tarefas

processadas. Os resultados mostram que a extensão proposta apresenta resultados

melhores ou iguais à literatura.

Palavras chave - Mapeamento Dinâmico, Mapeamento Distribuído, Kernel

Embarcado, Sistemas Multiprocessados, Multicore, Manycore, Modelagem e Simulação.

CONTENTS

LIST OF FIGURES .. 10

LIST OF TABLES .. 12

LIST OF ABBREVIATIONS AND ACRONYMS .. 13

1 INTRODUCTION ... 15

1.1 Goals, Objectives, and Contributions .. 19

1.2 Work Structure .. 20

2 STATE-OF-ART ... 21

2.1 Framework Infrastructures Used to the Exploration of Mapping Techniques

for Multiprocessor Systems ... 21

2.2 State-of-art in OS-based mapping techniques .. 25

3 PROPOSED DESIGN FRAMEWORK .. 29

3.1 Framework Infrastructure ... 29

3.2 Platform Overview .. 33

3.2.1 Processor Elements .. 34

3.2.2 NoC Model .. 38

3.3 Application Set ... 39

3.4 Resulted Information and Debugging ... 47

4 PROPOSED FREERTOS EXTENSION .. 50

4.1 FreeRTOS Source .. 50

4.2 System and Application Portability ... 54

4.3 Task Management and NoC Communication .. 57

4.4 Distributed Mapping ... 59

5 EXPERIMENTAL SETUPS AND RESULTS ... 65

5.1 System Validation Through Different Applications with Time-Varying

Workloads ... 65

5.2 System Validation Through Different Platform Organizations 68

5.3 Workload Distribution in Large-Scale MPSoCs .. 69

5.4 Integrating a Publisher-Subscriber Protocol into NoC-based MPSoCs 71

5.5 RTL System Validation ... 75

6 CONCLUSIONS .. 77

6.1 Future Works ... 78

REFERENCES ... 79

APPENDIX A – PUBLICATIONS OF THE AUTHOR ... 86

LIST OF FIGURES

Figure 1.1. Evolution of processors during the last decades comparing the number

of cores with frequency and number of transistors. .. 15

Figure 1.2. Evolution of processors during the last decades comparing the number

of cores with power and voltage. ... 16

Figure 2.1. Project abstraction levels accuracy, possibilities, and validation time. 21

Figure 3.1. Project organization with project files and folders overview. 30

Figure 3.2. Generation and organization of results folder. 31

Figure 3.3. Framework Infrastructure. .. 32

Figure 3.4. 3x3 NoC-based multiprocessor platform example. 34

Figure 3.5. PE Architecture. .. 35

Figure 3.6. ARM Cortex-M Family ISAs. .. 36

Figure 3.7. NoC router architecture. .. 39

Figure 3.8. Synthetic application graph. .. 40

Figure 3.9. Repository example. .. 41

Figure 3.10. Prod-Cons application graph. .. 42

Figure 3.11. MPEG4 application graph. .. 42

Figure 3.12. MPEG application graph. .. 43

Figure 3.13. VOPD application graph. ... 43

Figure 3.14. Fixed-base Test application graph. .. 44

Figure 3.15. MWD application graph. .. 45

Figure 3.16. Dijkstra application graph. .. 45

Figure 3.17. DTW application graphs with six (a) and ten (b) tasks. 46

Figure 3.18. Startup simulation screen of the Platform Debugger Tool,

communication analysis, and task mapping analysis. ... 49

Figure 4.1. OS processor architectures portability. .. 50

Figure 4.2. FreeRTOS scheduling in different perspectives of view. 52

Figure 4.3. Software portability under embedded system architecture abstraction

layers. ... 55

Figure 4.4. NoC communication packet and system call interface function. 56

Figure 4.5. MPI-like task communication. ... 58

Figure 4.6. Distributed mapping application execution in different perspectives of

view. ... 59

Figure 4.7. Centralized Management vs. Distributed Management. 60

Figure 4.8. Application and task management flow under distributed MPSoC..... 62

Figure 4.9. Runtime dynamic task mapping search heuristic. 63

Figure 5.1. Task mapping example in test case W3 when all resources are occupied.

 .. 71

Figure 5.2. The general scheme of a publish-subscribe system. 72

Figure 5.3. DTW task graph in (a) MPI and (b) PUB-SUB models. 72

Figure 5.4. DTW execution time using MPI and PUB-SUB. 74

Figure 5.5. MPI vs PUB-SUB time spent in System Calls and NIs. 74

LIST OF TABLES

Table I: State-of-art in multiprocessor kernels with task mapping heuristics. 27

Table II: Cortex-M memory model. ... 37

Table III: Test cases used to validate the proposed system extension with time-

varying application workloads. ... 66

Table IV: Extracted results from the proposed test cases in Table III. 67

Table V: Design space exploration and system scalability evaluation test cases. ... 68

Table VI: Extracted results from the proposed test cases in Table V. 69

Table VII: Experimental test cases to evaluate the distribution of high workload

application sets in large scale MPSoCs. .. 70

Table VIII: Extracted results from the proposed test cases in Table VII. 70

Table IX: Test cases to evaluate the FreeRTOS extension running under RTL

Cortex-M0 platform. .. 75

Table X: Comparison between the results extracted from the proposed test cases in

Table IX executed on OVPsim and RTL platforms. ... 76

Table XI: List of Publications related to this dissertation results. 86

LIST OF ABBREVIATIONS AND ACRONYMS

AHB Advanced High-Performance Bus

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

API Application Programing Interface

BSS Block Started by Symbol

CB Communication Buffer

CMSIS Cortex Microcontroller Software Interface Standard

DMA Direct Memory Access

DPR Dynamic Partial Reconfiguration

DSP Digital Signal Processor

DTW Dynamic Time Wrapping

FIFO First In First Out

FPGA Field Programmable Gate Array

GHz Giga Hertz

GM Global Manager

GMP Global Manager Processor

HeMPS Hermes Multiprocessor System-on-Chip

ID Identifier

ISA Instruction Set Architecture

KPN Kahn Process Network

LEC-DN Low Energy Communication - Dependencies Neighborhood

LM Local Manager

LMP Local Manager Processor

MCSoC Many-Core System-on-Chip

MHz Mega Hertz

MIPS Millions of Instructions Per Second

MPEG Moving Picture Expert Group

MPI Message Passing Interface

MPSoC Multiprocessor System on Chip

MWD Multi-Window Display

NI Network Interface

NN Nearest Neighbor

NoC Network on Chip

OS Operating System

OST OVPsim Simulation Test case

OVP Open Virtual Platforms

PE Processor Element

QoS Quality of Service

RAM Random Access Memory

ROM Read Only Memory

RTL Register Transfer Level

RTOS Real-Time Operating System

SoC System-on-Chip

SP Slave Processor

TLB Task Location Buffer

TM Task Manager

TMS Task Management Structure

UART Universal Asynchronous Receiver/Transmitter

UML Unified Modeling Language

VOPD Video Object Plane Decoder

15

1 INTRODUCTION

The evolution of the processors is directly related to the performance limitations of

the semiconductor manufacturing technology (ITRS 2015). As shown in Figure 1.1, with

the reduction of the size of the transistors, the frequency variation of the processors

reached an average bound of 4GHz (Figure 1.1). The voltage has reduced significantly,

from 5V to 1.25V (Figure 1.2), and the dissipated power has stabilized in 90W (Figure

1.2). The tendency curves in Figures 1.1 and 1.2 show that the number of transistors and

the number of cores will continue increasing, although frequency, voltage and dissipated

power bounds tend to remain stable. In embedded systems, the power wall is the main

challenge, and the average values are even lower for frequency (2GHz) and power (5W).

Figure 1.1. Evolution of processors during the last decades comparing the number of cores

with frequency and number of transistors.

1

10

100

1.000

10.000

100.000

1.000.000

10.000.000

1 9 7 0 1 9 7 5 1 9 8 0 1 9 8 5 1 9 9 0 1 9 9 5 2 0 0 0 2 0 0 5 2 0 1 0 2 0 1 5 2 0 2 0

Frequency (MHz) # of Cores (K) Transistors

Exponential Exponential Exponential

 – nm – nm – µm

Source: Adapted from ITRS 2015.

16

Figure 1.2. Evolution of processors during the last decades comparing the number of cores

with power and voltage.

1

10

100

1.000

1 9 7 0 1 9 7 5 1 9 8 0 1 9 8 5 1 9 9 0 1 9 9 5 2 0 0 0 2 0 0 5 2 0 1 0 2 0 1 5 2 0 2 0

Power (w) # of Cores Max Voltage (v)

Exponential Exponential Exponential

 – nm – nm – µm

Source: Adapted from ITRS 2015.

During the last decades, it was evident a change in the embedded processor

architectures, from a single core to multicore and manycore processors (BURGIO et al.,

2014). The major trend in embedded SoC (System-on-Chip) is the design of MPSoCs

(Multiprocessor Systems-on-Chip) to satisfy the ever-increasing computing demands

while drawing less battery power (BAKLOUTI et al., 2017). Such systems, increase

performance by using multiple, homogeneous or heterogeneous processing elements

(PEs, i.e. single or multicore processors).

MPSoCs have been explored to fill the ever-increasing demands of applications and

performance while maintaining energy efficiency during the execution of multiple

applications (CASTILHOS et al., 2016). While MPSoCs with up to 1000 processors

already exists in the industry (BOHNENSTIEHL et al., 2017; MELLANOX 2016),

MPSoCs with up to 100 processors have been employed in academia to explore different

challenges and novel techniques that may be used to improve the efficiency of underlying

systems (BUSSEUIL et al. 2013; MANDELLI et al., 2013). For example,

17

programmability is explored in (GARIBOTTI et al., 2013), task mapping approaches

(MANDELLI et al., 2015a; DAS et al., 2016; CASTILHOS et al., 2016), among others

(CASTILHOS et al., 2013; MARTINS et al., 2014; MANDELLI et al., 2015b).

Challenges, in MPSoCs, are linked to the diversity of application workloads, which

demand energy efficiency, performance scalability, and reliability (MANDELLI et al.,

2013). Given the vast variety of applications of multicore and multiprocessor systems

(e.g., automobiles, smartphones, wearable devices and many other smart gadgets), both

hardware and software architecture must provide some degree of flexibility and

adaptability. Aiming to scale up the system performance, the workload of an application

is divided among multiple threads or tasks (HOLT et al., 2009). The way such tasks are

mapped onto the PEs has a significant impact on system performance, energy-efficiency,

and reliability (HAGHBAYAN et al., 2016). With large scale platforms, already available

in the embedded community, grows the demand for dynamic and distributed mapping

techniques, capable of allocating multiple application tasks efficiently.

Multiprocessor system management may include different functions such as

monitoring, task mapping, and task migration. The system management may be either

centralized or distributed. In centralized management, there is a single processor

responsible for monitoring the system, which may be overloaded very quickly. However,

distributed management shares the management functions, improving reliability and

avoiding hot-spots around a central manager (CASTILHOS et al., 2013). Mapping

techniques decisions may drastically influence the system performance, which has been

investigated considering different optimization goals such as power consumption,

workload distribution, communication, and latency (SINGH et al., 2013). The

classification criteria of task-mapping approaches consider the moment at which a task is

defined to be executed in a PE, whatever can be either static or dynamic (CARVALHO

et al., 2010). While static mappings determine task allocation at design time, dynamic

mappings handle task allocation requests at runtime, enabling the system to deal with

high demands of applications. Most of such mapping techniques are customized

implementations, which are developed based on an in-house OS. Even providing

optimized and efficient mapping methods, in-house implementations are usually

dependent on a particular processor. With the increasing complexity of the embedded

applications, at some point, it will become necessary to port such in-house systems to a

better performance processor architecture. The underlying porting process is likely to lead

to extra design, re-validation and, consequentially a hidden cost that may be quite high.

18

Considering the constant shifts in both software and processors architecture, the

operating system must address the management complexity of those platforms regularly.

The architecture variations of an MPSoC concern the number of processors, the

instruction set architecture (ISA) of the processors, the memory organization, and the

communication between the resources. Most MPSoCs possess homogeneous

architecture, where all cores have the same ISA, access to a shared memory and a bus

(HOLMBACKA et al., 2014). Some processors integrate different ISAs aiming to achieve

higher performance or DSPs to perform specific tasks such as image and video processing

(e.g. big.LITTLE and MALI architectures, ARMTECH 2017). In both cases, shared

memory complexity is related to the number of processors competing for access data to

and the lack of data coherency (MADALOZZO et al., 2016). Regarding shared-busses,

issues such as wire delay, cross-talk noise, and power dissipation, exposes the

interconnect technology will be the limiting factor for achieving MPSoCs operational

goals (BENINI and DE MICHELI 2002). Creating complex MPSoCs requires a modular,

component-based approach to both hardware and software design. Based on these

premises, the use of intra-chip networks (NoCs) performs scalability of multiprocessor

systems while improving energy efficiency and reliability (MORAES et al., 2004). In

NoC-based MPSoCs, each processor is connected to a NoC router, becoming

independent, and having distributed memory. The communication through the NoC is

abstracted to the user while the operating system manages the communication primitives.

At the software level, the kernel and its integrated Application Programming

Interfaces (APIs) are responsible for managing each resource of the platform. The

software variations are related to the kernel type, memory management, task scheduling,

and task mapping. In general, in-house kernels have APIs for specific applications which

support a particular processor architecture, while commercial kernels have several

integrated APIs that support multiple processor architectures. Memory management

performs memory allocation for system data storage, which can be either static or

dynamic. Static memory allocation, the system compilation defines both memory amount

and addressing, which is simple but causes high fragmentation and unused memory as it

is not deallocated. Dynamic memory allocation improves the scalability of the system

according to demand, but the memory must be freed after being used to reduce memory

fragmentation and memory leakage. Task scheduling defines the execution time of each

task on a PE, which may match real-time priorities (RUARO et al., 2016; BARRY 2011)

and allow multitasking execution on a single PE. Further, task mapping defines the

19

distribution of workload between PEs driving the system performance and energy-

efficiency.

The foregoing context provides the motivation for this Dissertation, which aims at

providing a version of FreeRTOS that supports a set of distributed and dynamic task

mapping heuristics. These extensions can be easily employed by almost thirty different

processor architectures as well as integrating a set of tools into a framework, allowing

early performance analysis of different design alternatives of NoC-based MPSoCs.

This dissertation was possible due to the collaboration between Academia and

Industry, where the concepts high validated in academia were applied in a commercial

attractive platform. The Universities involved in this project are the Pontifícia

Universidade Catolica do Rio Grande do Sul (PUCRS), Universidade Federal do Rio

Grande do Sul (UFRGS), Universidade de Brasília (UnB) and University of Leicester,

which have been researching in MPSoC related areas over the last years. The work was

validated under a commercial tool provided by a partnership with Imperas (IMPERAS

2017) which have interest on the results generated in this work.

1.1 Goals, Objectives, and Contributions

The goal of this work is to provide a version of FreeRTOS that supports a set of

distributed and dynamic task mapping heuristics, which can be easily employed by almost

thirty different processor architectures. Due to the non-intrusive and flexible

implementation, promoted extensions provide an efficient means not only to use and

extend available heuristics but also to integrate new ones. The objective of this

dissertation includes different targets regarding the acquired knowledge and the resultant

work. The objectives are described as follows:

• Research about issues in embedded MPSoCs area, what includes platform and PE

architecture, Multiprocessor OS, resources management, task mapping

techniques, workload distribution, and communication protocols;

• Provide a robust and reliable commercial attractive MPSoC platform to explore

different issues in future research.

The main contributions of this work are the following:

• Extend FreeRTOS to support large scale homogeneous NoC-based MPSoCs;

20

• Extend FreeRTOS to support NoC communication;

• Extend FreeRTOS to support runtime dynamic and distributed task mapping;

• Development of a framework based on OVPsim unifying software development,

debugging capabilities as well as platform configuration and evaluation;

• Extensive FreeRTOS extension evaluation by using several scenarios, including

multiple real benchmarks and platform models;

• RTL level validation under different PE architecture.

1.2 Work Structure

This dissertation exploits different technical aspects, contributions, and faced

challenges during the development of the proposed FreeRTOS extension. The dissertation

is organized as follows. Chapter 2 presents the state-of-the-art in OS-based task mapping

techniques. Chapter 3 explain the developed framework with the platform, system, and

application set generation, test case execution, and the data debugging extraction. Chapter

4 introduces the FreeRTOS features, and task mapping algorithms. Then, it presents the

proposed extension. Chapter 5 describes the extensive system validation through the

different test cases and the results are evaluated. Chapter 5.5 draw this work conclusion

and lists the future research to be exploited.

21

2 STATE-OF-ART

This Chapter discusses the state-of-art related to the two main contributions of this

dissertation. First, Section 2.1 presents some works underlying the modeling and

validation of mapping techniques, including different modeling approaches and specific

design goals. Section 2.2 first introduces about multiprocessor kernels, then, focuses on

the state-of-art of kernels which employs task mapping techniques.

2.1 Framework Infrastructures Used to the Exploration of

Mapping Techniques for Multiprocessor Systems

Figure 2.1. Project abstraction levels accuracy, possibilities, and validation time.

Design Space

Specification

A
b
st

ra
ct

io
n

A
cc

u
ra

cy

Instruction Accurate
Model

Model

Model

Estimation
Model

Cycle Accurate

RTL

High

Low

Low

High

PROJECT

VALIDATION

FLEXIBILITY

Source: Adapted from BUTKO et al., 2012.

Researchers have been proposing and validating their mapping techniques considering

different approaches and platform architectures. Following this direction, there are

22

different models validated in different abstraction levels which variation is about

flexibility, accuracy, developing and execution time. Figure 2.1 shows this variation,

where the lowest is the abstraction level, the more accurate is the system validation.

However, the developing and execution time are hard constraints to be considered. In

addition, high level platforms are flexible (white balls in Figure 2.1) for architectural

modeling and parameter calibration based on low level models, improving design and

development times.

The literature presents several frameworks developed to validate MPSoC platforms at

different abstraction levels, differing regarding accuracy, simulation cost and design

flexibility (MANDELLI thesis 2015). Due to the time constraints and time to market,

some approaches prefer to use the high abstraction models first, to evaluate and validate

the mapping models. Some works rely on simplified high-level abstract models, which

are effective means to propose and compare mapping techniques (KANGAS et al., 2006;

VIDAL et al., 2010; INDRUSIAK et al., 2010; OST et al., 2011). Even, there are high-

level executable models that simulates the system behavioral. These models are

instruction accurate (MANDELLI et al., 2015b; WEHNER et al., 2016; MADALOZZO

et al., 2015), SystemC PE model with clock accuracy (OST et al., 2009; MANDELLI et

al., 2015a; CASTILHOS et al., 2016; WEHNER et al., 2016). However, the real system

behavioral validation with high accuracy is made by using RTL level models

(CARVALHO and MORAES 2008; SINGH et al., 2010; BUSSEUIL et al., 2011).

High abstraction level modeling simplifies the development and validation of

complex MPSoCs to speed up the simulation and to have a high debugging capability

(OST et al., 2009). Literature presents different high-level modeling approaches using

Unified Modeling Language (UML) to validate their mapping techniques based on model

assumptions. The application modeling as Kahn Process Network (KPN) is used to

generate application profiles with UML to randomly or manually mapping those

applications in a UML-based platform model (KANGAS et al., 2006). Also, the actor-

oriented modeling for application design allows to get preliminary performance

estimations and to validate the mapping into different abstraction levels (INDRUSIAK et

al., 2010). The unified modeling considers distinct steps to improve the design flow, such

as application, mapping, and platform. These steps enables fast design space exploration

while integrating dynamic mapping heuristics into a unified model of a NoC-based

MPSoC (OST et al. 2011). There are co-design methodologies for reconfigurable

platforms considering applications, platform, and task mapping to be executed on an

23

FPGA (VIDAL et al., 2010). Even with the modeling flexibility, most UML-based

approaches are limited to static mapping. These models estimate the system behavioral

before applying applications to platforms in different abstraction levels, such as FPGA

and simulating models. However, they have no accuracy metrics when comparing with

both executable virtual and real platforms.

Virtual platforms emulate hardware behavior (e.g. CPU microarchitecture) as full

system execution making software validation like it is running on a real physical hardware

(MANDELLI et al., 2013). The literature presents some approaches using different

accuracy models to improve high performance, high debuggability, and low-cost time in

the simulation. Examples of such simulators are Simics (SIMICS 2017), MPTLsim

(ZENG et al., 2009), gem5 (BINKERT et al., 2011), and OVPsim (IMPERAS 2017).

Those simulators offer a set processor and memory models, which differ regarding

simulation time, functionality, and can be instruction (MPTLsim and OVPsim) or quasi-

cycle (Simics and gem5) accurate. The OVPsim is an instruction-accurate virtual platform

simulator which supports single, multi, and many core bus-based platforms with support

to different processor architectures such as ARM, Imagination, Synopsys, Renesas,

OpenCores, PowerPC, Altera, and Xilinx (OVP 2017). More recently some works

(MANDELLI et al., 2013 and WEHNER et al., 2016) integrated NoC models to OVPsim,

allowing to validate their mapping and design space exploration by large scale MPSoCs.

The dynamic and distributed task mapping heuristics validated in this simulator platform

are based on processors load and NoC communication volume (MANDELLI et al., 2015).

There are static mappings to evaluate the performance of real-time scheduling models in

different memory organizations (MADALOZZO et al., 2015). Also, integrating a

dynamic partial reconfiguration (DPR) interfaces to OVPsim enabling the exchange of

simulated IP cores and processor models by connecting the NoC with the reconfigurable

regions (WEHNER et al., 2016). There are not many works using OVPsim to task

mapping validation and design space exploration of NoC-based multiprocessors. But, all

reviewed works are executing their proposed contribution in large scale scalable

multiprocessors with low development and simulation time. Further, those proposed

models are extensively validated even with metrics based on high-level modeling.

Framework platforms with cycle-accuracy target microarchitecture exploration since

specific modeling details as the pipeline implementation of processors, memory models,

among others. However, these platforms are not scalable to a large number of processors,

specifically when it comes to simulation speed and debugging usability. Even with the

24

increasing number of PEs, the platform distribution into cluster areas improves the

workload distribution. The integration of dynamic task mapping to this distributed system

management exploring the reclustering and task migration techniques reduces the

communication hopes and improves system reliability (CASTILHOS et al., 2013).

Furthermore, energy-aware runtime task mapping (MANDELLI et al., 2015) balances the

temperature under MPSoC platforms based on the total energy spent (CASTILHOS et al.,

2015) monitoring the executed instructions and the NoC communication. Differing to the

previous dynamic and distributed mapping approaches, static task mapping may be used

to evaluate performance constraints such as real-time oriented task execution due to time

response constraints (MADALOZZO et al., 2016). These works use the same SystemC-

based platform, which allowed the developers to employ different models such as energy,

power, and instructions. However, the processor architecture and simulation are limited

to a single architecture.

Frameworks to design space exploration of synthesizable RTL platforms have the

lowest abstraction level simulation before the final foundry project. These models

simulate the full system behavioral in transactional level with high accuracy results as

cycle-accuracy, area, and power. However, the main cost of this kind of platform is

simulation time, scalability, and design time. Regarding frameworks to evaluate task

mapping heuristics in RTL multiprocessor platforms, in (CARVALHO and MORAES

2008) four congestion-aware dynamic task mapping heuristics based on the Nearest

Neighbor (NN) PE were employed to evaluate the NoC congestion, load, and latency.

Based on this modeling, (SINGH et al., 2010) executed communication aware dynamic

task mappings with clustering on the same platform to evaluate the workload distribution.

While these platforms consider dynamic mapping, the Open-Scale framework proposes

to explore MPSoC scalability employing static mapping to evaluate the task migration

fulfilling its RTOS constraints (BUSSEUIL et al., 2011). In this abstraction level, most

frameworks exploit the platform characteristics like power and area. The mapping

heuristics applies to little platforms aiming to performance optimizations and

communication control. Therefore, these works do not explore platform size, high

application workloads, and resources allocation.

The reviewed works were presented according to the abstraction levels illustrated in

Figure 2.1. Although, the timeline evidence the use of high-level execution models such

as OVPsim are the solution to evaluate large-scale multiprocessor systems. The high

abstraction level was UML which perform a high application mapping modeling and

25

validation. The lowest abstraction level performs a high accuracy system validation under

an RTL hardware platforms. However, the UML has no accuracy metrics and the RTL

demand high simulation time and low scalability. The cycle-accurate platforms validate

various concepts around task mapping and monitoring models but are not too scalable

regarding processor architectures and large-scale multiprocessors. The OVPsim modeling

is an easily scalable and adaptable choice to perform the design space exploration of

multiprocessor systems. Further, it can integrate some metrics evaluation as timing and

energy models by high-level behavioral modeling based on data extraction from lower

abstraction levels.

2.2 State-of-art in OS-based mapping techniques

Given the increasing complexity of embedded applications, mapping techniques are

likely to be implemented based on a kernel/OS to deal with time-varying workloads.

Multiprocessor kernel approaches or processor architectures are abstracted, which may

lead to a gap between what is proposed and its adoption in a real platform. Table I presents

the state-of-art in OS based mapping techniques, targeting multiprocessor platforms.

These works are ordered by publication year and classified according to different criteria.

(BUSSEUIL et al., 2011) proposed the Open-Scale, a distributed memory NoC-based

multiprocessor with SecretBlaze, a MicroBlaze-based processor, as a local processor.

Each processor runs an in-house RTOS kernel which supports multi-tasking preemptive

scheduler and MPI-like communication primitives. Tasks are statically mapped in design

time but can be remapped (i.e. task migration) in runtime depending on the user

requirements (e.g. computation time, energy consumption). Finally, Open Scale

evaluation considers 6x6 scenarios with three different applications, one for each

scenario, running in RTL level.

(MANDELLI et al., 2013) proposed the HeMPS (Hermes Multiprocessor System on

Chip) multilevel approach, where the simulation can be executed as a virtual platform

(OVPsim), on the SystemC-based platform or in RTL level. HeMPS is a distributed

memory NoC-based multiprocessor with an MIPS-like (Plasma) as a local processor. It

uses a hierarchical/distributed management based on clustered approach which defines

system features on design time. Each cluster has a Local Master Processor (LMP)

26

responsible for dynamic mapping and resources management, and the remaining are the

Slave PEs responsible for tasks execution. One of the LMPs has an external memory

interface called Application Repository which defines the LMP as Global Master

Processor (GMP). Each processor executes a different kernel depending on its defined

function (i.e. kernel master, kernel slave). Finally, HeMPS evaluation considers 16x16

scenarios with at least ten applications running at each abstraction level.

(MA et al., 2013) proposed the use of a highly portable commercial kernel (µC-OS

II) considering each PE as a local cluster with four cores, which communicate through a

native message passing interface (similar to MPI). The work is mainly devoted to

researching the local task allocation, which is defined based on system workload and

resource availability. The drawbacks of this work are: first, the mapping control is

centralized and adopted heuristic is not efficient for large-scale systems; second, the

evaluation scenario considers a 3x3 NoC-based platform that executes a single matrix

multiplication on each PE.

(AGUIAR et al., 2014) proposed a framework for design space exploration of

Multiprocessor architectures. The platform can be bus or NoC based with shared memory

and supports MIPS and RiscV as local processors. Each processor executes a HellfireOS

(AGUIAR et al., 2010) which supports multi-tasking and task migration to remap tasks.

The tasks are statically mapped at one PE. A task is migrated in runtime by three steps:

initial mapping, characterization and optimized mapping. The evaluation scenarios

consider a bus-based platform with 30 nodes of processors and 6x5 NoC-based platform,

both with three applications.

The works presented in (AGUIAR et al., 2014) and (BUSSEUIL et al., 2011) are the

only ones to support static mapping which is defined at design time. In both works, tasks

may be remapped based on a task migration technique, which employs different activities

(e.g. context saving and restoring) that are not handled by the task mapping process.

Excluding the works proposed by (AGUIAR et al., 2014) and (MA et al., 2013), the

mapping control management is distributed, which is scalable since more than one

processor is responsible for mapping the tasks.

Beyond the proposed approach, only the work described in (MA et al., 2013) uses a

highly portable commercial kernel. The majority of the reviewed works employ RTL

platforms described either in VHDL (BUSSEUIL et al., 2011; MA et al., 2013; AGUIAR

et al., 2014; MANDELLI et al., 2013) or SystemC (MANDELLI et al., 2013) to promote

their mapping techniques. While VHDL-based platforms were validated through small

27

scenarios, for example, 6x6 platform executing three applications (BUSSEUIL et al.,

2011), (MANDELLI et al., 2013) employs a 16x16 NoC-based multiprocessor platform

with up to 10 applications. The SystemC-based work validates distributed and dynamic

mapping heuristics using two kernels: one for Mapper PEs and another to slave PEs. This

approach leads to extra design efforts once different kernels need to be developed and

maintained.

Table I: State-of-art in multiprocessor kernels with task mapping heuristics.

Author Kernel Footprint
Mapping/

Management

Validation

Test cases

Processor

Architecture

Abstraction

Level

Busseuil

et al., 2011
In-house ~60KB

Static/

Distributed

6x6

3 applications
SecretBlaze RTL

Ma

 et al., 2013
µC-OS II ~24KB

Dynamic/

Centralized

3x3

1 application

>30

architectures
RTL

Aguiar

 et al., 2014
In-house ~24KB

Static/

Centralized

6x5

3 applications
MIPS & RiscV RTL

Mandelli

 et al., 2015
In-house ~25KB

Dynamic/

Distributed

16x16

10 applications
Plasma Multilevel

This Work FreeRTOS ~16KB
Dynamic/

Distributed

20x20

120 applications

>30

architectures

OVPSim

and RTL

Source: Author.

Multiprocessor embedded kernel and processor architecture are highly abstracted in

task mapping literature, requiring a classification considering different systems criteria.

In this context, this Dissertation classifies the kernels according to seven criteria: (i) the

kernel origin; (ii) the kernel ROM footprint; (iii) the mapping approach; (iv) system

management approach; (v) the validation scenario size; (vi) the amount of executed

applications; (vii) the supported processor architectures; (viii) the abstraction level. The

Table I presents the state-of-art in OS-based mapping techniques targeting multiprocessor

platforms. These works are ordered by publication year and classified according to the

previous criteria.

The original contribution of this work is the inclusion of dynamic and distributed task

mapping techniques in a market leading RTOS kernel, which eliminates system extra

design and verification time. Different from the reviewed work, the proposed approach

has been validated over different processor architectures (e.g. ARMv6-M and ARMv7-

28

M) considering several and large scenarios. Further, each PE has the same kernel for

Master and Slave.

Therefore, this Dissertation proposes a FreeRTOS extension that differs from

literature, and it includes all the following characteristics:

• The development of a Framework to design space exploration and a real operating

system validation under different OVPsim NoC-based platform models and sizes.

• Integration of literature known runtime dynamic and distributed task mapping

under a commercially attractive kernel (FreeRTOS) and processor models (ARM).

• Multi-architecture system validation (ARMv6-M and ARMv7-M).

• Validated in large scale Multiprocessors (10x10 size) with high workload

execution (120 applications and more than 600 tasks).

29

3 PROPOSED DESIGN FRAMEWORK

This chapter describes the proposed framework which enables the design space

exploration of NoC-based MPSoCs. The framework has three main features: generation

of the application set; platform generation; runtime data extraction and debugging. These

features are described as follows. Section 3.1 describes the framework infrastructure and

the parameters to the configuration of the platform characteristics in the system design

and the study cases. Section 3.2 describes the platform architecture and generation. The

following subsections present: the OVP PE architecture and memory organization (3.2.1),

and the OVP NoC model (3.2.2). Section 3.3 describes the application repository and the

application set used to validate the platform and the proposed extension (Chapter 4).

Finally, Section 3.4 describes the resulted information metrics generated by the

simulation and describes the system evaluation and analysis capabilities considering

communication and workload distribution metrics.

3.1 Framework Infrastructure

Multiprocessor platforms have a set of requirements that must be considered to define

both the hardware and the software architectures. The resulting range of options calls for

frameworks that enable fast and efficient software validation while being easily portable

to different processor architectures. Regarding OS validation in multiprocessor systems,

most reviewed works propose frameworks to design space exploration of multiprocessor

systems (BUSSEUIL et al., 2011; AGUIAR et al., 2014; MANDELLI et al., 2015).

Although the OVPsim tool improves fast simulation, just one of these works improves

system validation through OVPsim platform models (MANDELLI et al., 2015).

The proposed OVPsim-based framework allows fast simulation and evaluation of

MPSoC platforms. Figure 3.1 shows the developed framework source project, where the

folder organization tree has directory depth of 4 folders, which means a simple project

organization. The platform folder contains the OVPsim PE and NoC router description

files. FreeRTOS and extension folders contain the OS source code and the proposed

extension respectively. Thus, the FreeRTOS source updates and the developed extensions

30

are easily updatable in the project. Applications folder have the ported application set

with their task codes, applications profiles, and make files. The Scripts folder has the

framework bash script, which is used to generate the test case resources based on the

OVPsim Simulation Test case (OST) description file. The OST description file is located

inside the test cases folder, and it contains the following information: test case name,

platform size, cluster size, task mapping algorithm, NoC buffer size, PE with repository

interface, and application set. Finally, the debugger folder has the platform debugger tool,

which allows evaluating the test case execution results.

Figure 3.1. Project organization with project files and folders overview.

applications debugger extension FreeRTOS platform scripts testcases

dijkstra

dtw6

dtw10

fixed base

mpeg

mpeg4

mwd

prod cons

synthetic

vopd

exeexe
>_ platform

debugger
include

portable

C

C

C

C

C

C communication

main

mapping

misc

startup

system_call

include

portable

C

C

C

C

C

C

C croutine

event_groups

list

printf

queue

tasks

timers

makefile

router

C

C

C callbacks

platform

watchdog

merge_
log

ovp_
simulation

exeexe
>_

!#

exampleOST

C

network_interfaceC

application_management

Source: Author.

Once the first test case is generated and executed, the framework creates the results

folder where the test cases files are stored. For each test case, the framework generates a

folder to store all the generated files including OVPsim platform, system binaries,

application repository, and execution log.

Figure 3.2 shows an example test case resultant folder. The debug folder has the

information to feed the platform debugger detailed below. The log folder has the system

output information for each PE. The repository folder stores the repository file with the

application set which will be executed in the test case. The remaining files are the

31

platform simulation log, the system disassembly, the platform executable file, the

OVPsim NoC model, and the FreeRTOS binary.

Figure 3.2. Generation and organization of results folder.

applications

extension

FreeRTOS

platform

testcases

disassembly

FreeRTOS.PE_ARCH

FULL_SIMULATION

NoC

results

pse

log

elf

lst

Debugger

platform.ARCH

example

ovp_
simulation

!#

debug

log

repository

Source: Author.

The features from OVPsim platform are based on the OST configuration file which

defines hardware features such as processor architecture, multiprocessor size, and

external repository connection. Also, the FreeRTOS extension features are the number of

executing tasks, communication buffer size, task mapping heuristic, and clusters sizes.

Finally, the set of applications which the system will map and execute. Consequently,

these system features will define the amount of memory needed for each PE.

32

Figure 3.3. Framework Infrastructure.

App 0
App 1

2

3

4

5

6

7

Processor Architecture

MPSoC Size

Cluster Size

Mem Size

Task Number

Repository Interface

Platform
Generator

App N
8

GENERATION

MPSoC
Description OVP

Task 1.c
Task 2.c

Task N.c

configuration files

A
p

p
li

ca
ti

o
n

R
ep

o
si

to
ry

CORE

DMAN
e

tw
o

rk
In

te
rf

a
ce

ROUTER

PE

Tn

...

T1

T0

FreeRTOS

R
A

M

Simulation and Log Generation

Task 0 App 1 INIT XX
Task 1 App 2 INIT YY
Task 0 App 1 END ZZ
Scheduler IDLE

Packet XX
Packet YY
Packet ZZ

Log
1x0

Log
1x1

Log
0x0

Log
0x1

..
.

...

Scenario Results Evaluation

FreeRTOS

Master

App 0 Task 0 InitTime

App 0 Task 3 InitTime

App 0 Task 1 InitTime

App 0 Task 2 InitTime

App 0 Task 0 EndTime

App 0 Task 3 EndTime

App 0 Task 1 EndTime

App 0 Task 2 EndTime

App 4 Task 0 InitTime

App 4 Task 1 InitTime

App 4 Task 0 EndTime

App 4 Task 1 EndTime

N Flits
Cicles Activity
Com. Energy
Active Energy

Idle Energy

ROUTER

Application and Task Distribution

NoC Activity

4X4 MPSoC

2x2 Cluster

OVP NoC and CPU
- untimed simulation
+ smaller simulation time
+ higher debuggability
+ modeling flexibility

Phase 1
P

h
ase

 2

Phase 3

A
FreeRTOS

files

B

CD

Platform Configuration Platform Generation

SP SP

LM SP

SP

LM SP

SP SP

GM SP

SP SP

LM SP

Application Repository

C
L
U
S
T
E
R

SP

P
L
A
T
F
O
R
M

1 Project Name

Source: Author.

33

Figure 3.3 shows the framework phases for platform generation, execution and

debugging. Once the configuration file has the test case information (Step A), the first

phase of the framework generates platform, FreeRTOS and application set. With the

OVPsim platform, system binaries, and the repository binaries, the test case environment

is done to be executed (Step B). In the next phase the system execution under the platform

and the log generation by the PE and NoC router behavioral through the OVPsim models.

Each PE loads the system on its memory; the NoC interconnections are made based on

platform size and the execution starts (Step C). Finally, the debugging phase analyzing

the log files, over the NoC interactions with communication volume and energy, and over

the PEs with the workload distribution (Step D).

3.2 Platform Overview

As previously explained, the OVPsim have various processor models available. Most

of the reviewed frameworks use up to two processor architectures which have very limited

and simple instruction set (e.g. MicroBlaze and MIPS). This work proposes to use a NoC-

based homogeneous multiprocessor based on different commercial processor

architectures. The framework allows to select the processor architecture and generate

large scale NoC-based multiprocessor systems automatically. Then, the resultant OVPsim

platforms are high scalable, easily defined and improve a fast system validation by using

hundreds of PEs.

Figure 3.4 shows a 3x3 NoC-based multiprocessor platform, including routers, PEs

and an external memory connection (application repository). The bottom left PE is the

only processor that has access to the application repository. The following subsections

detail the PE and NoC architectures.

34

Figure 3.4. 3x3 NoC-based multiprocessor platform example.

PE PE

PE PE

Application Repository

ROUTER

ROUTER ROUTER

ROUTER

PE PE

PE

PE

PE

ROUTER ROUTER

ROUTER

ROUTER

ROUTER

Source: Author.

3.2.1 Processor Elements

The adopted PE model has three main components: the processor model, the memory,

and the network interface (NI). Eventually, one can use a direct memory access (DMA)

module by implementing OVPsim register bank callbacks to reduce software

development and to optimize the sending of data from memory to NI. Also, it is possible

to use a universal asynchronous receiver/transmitter (UART). These components are

connected by a local bus, and Figure 3.5 shows the PE organization.

35

Figure 3.5. PE Architecture.

PROCESSOR

DMA

PE

FreeRTOS

NIRAM

Source: Author.

One of the contributions of this work is the capability of generating and validating

multiprocessor platforms with different processor architectures. In addition, to the

literature and aiming to create a commercially attractive platform this work uses the ARM

Cortex-M processors family (i.e. ARMv6-M and ARMv7-M) available in OVPsim tool.

This processor family was selected due to following features: (i) FreeRTOS supporting,

(ii) high use in the industry, (iii) availability of Cortex-M0 processor RTL description.

These features does the Cortex-M family a good choice once the project can be validated

with different processor architectures in both high level and RTL level simulation. Also,

this family brings with the Cortex Microcontroller Software Interface Standard (CMSIS)

which improves the software productivity and portability. The ARM CMSIS is a vendor-

independent hardware abstraction layer for the Cortex-M processor series and defines

generic tool interfaces (ARMDEV 2017). Each processor model variant has different

characteristics and capabilities, but the system portability is simple once the FreeRTOS

already supports more than thirty (30) processor architectures, including that family. To

exemplify the processor architecture variation, Figure 3.6 shows the instruction set for

each ARM Cortex-M processor model.

36

Figure 3.6. ARM Cortex-M Family ISAs.

ADC ADD ADR AND ASR B

BIC BKPT

DMB

BLX BX

CMP CPSCMN

BL

EOR

DSB

MSR

LDRB LDRH

ISB

MRS

LSL LSR

NOPMVNMULMOV

LDRSHLDRSB

LDM LDR

ORR POP PUSH REV

REV16 REVSH ROR RSB SBC SEV

STM

SVC

STMIA STR STRB STRH

SXTB SXTH

SUB

TST UXTB UXTH

WFE WFI YIELD

Cortex M0/M0+/M1

RBIT

ORR

MRC

MCRR

LDRSBT

LDREX

LDMA

CBNZ

DFC

ADC

CBZ

ADD

BFI

CMN

LDMDB

LDREXB

LDRSHT

MCR

MRRC

PLD

REV

ADR

BIC

CMP

LDR

LDREXH

LDRSH

MLA

MUL

PLDW

REV16

AND

CDP

DBG

LDRB

LDRH

LDRT

MLS

MVN

PLI

REVSH

ASR

CLREX

EOR

LDRBT

LDRHT

LSL

MOV

NOP

POP

ROR

B

CLZ

LDC

LDRD

LDRSB

LSR

MOVT

ORN

PUSH

RRX

SMULL

STMDB

STRBT

STREXB

STRHT

SXTB

TBH

UBFX

UMULL

UXTH

SSAT

STR

STRD

STREXH

STRT

SXTH

TEQ

UDIV

USAT

WFE

STC

STRB

STREX

STRH

SUB

TBB

TST

UMLAL

UXTB

WFI

YIELD

RSB SBC SBFX SDIV SEV SMLAL

IT

Cortex M3

SMLSD

SMLATT

SHADD8

QSUB

PKH

SMLSLD

SMLAD

SHASX

QSUB16

QADD

SMMLA

SMLALBB

SHSAX

QSUB8

QADD16

SMMLS

SMLALBT

SHSUB16

SADD16

QADD8

SMMUL

SMLALTB

SHSUB8

SADD8

QASX

SMUAD

SMLALD

SMLABB

SASX

QDADD

SMULBB

SMLAWB

SMLABT

SEL

QDSUB

SMULBT

SMLAWT

SMLATB

SHADD16

QSAX

UHADD16

UADD8

SXTB16

SXTAB16

SSUB8

UHADD8

UASX

UADD16

SXTAH

SXTAB

UQSAX

UQADD8

UMAAL

UHSUB16

UHASX

UQSUB16

UQASX

UQADD16

UHSUB8

UHSAX

UXTAB16

USUB8

USAX

USADA8

UQSUB8

UXTAH

UXTAB

USUB16

USAT16

USAD8

UXTB16

SMULTB SMULTT

SMULWT SMULWB

SMUSD SSAT16

SSAX SSUB16

Cortex M4/M7

VABS VADD VCMP VCMPE VCVT VCVTR VDIV VLDM

VMSR

VMRS

VMOV

VMLS

VMLA

VSTM

VSQRT

VPUSH

VPOP

VNMUL

VSUB

VSTR

VMUL

VNEG

VNMLA

VNMLS

VLDR

M4 FPU

VMAXNM

VCVTP

VCVTN

VCVTM

VCVTA

VRINTZ

VRINTX

VSEL

VMINNM

VRINTA

VRINTN

VRINTR

M7 FPU

ARMv6-M

ARMv7-M

32 BITS16 bits

Source: Adapted from ARMDEV 2017.

37

Further, memory size and management are important issues in embedded systems due

to their impact on power consumption and area. In the proposed platform, each PE has its

private random access memory (RAM) addressing to store the system and applications

data. The memory size and its address are defined at design time. The Code/Flash memory

address stores FreeRTOS kernel and SRAM address stores the remaining data and tasks.

As previously mentioned, the FreeRTOS kernel with the proposed extension has about

16KB size. Thus, this is the minimal size of the required flash memory. However, the

minimal SRAM depends on the number of tasks executed in each PE, in general, 16KB

is enough to execute multitasking (i.e., two tasks per PE). Although this work uses a small

memory, Table II shows the Cortex-M memory model which supports up to 4 GB of

memory addressing.

Table II: Cortex-M memory model.

Address Definition From To Range

Code/Flash 0x00000000 0x1FFFFFFF 0.5 GB

SRAM 0x20000000 0x3FFFFFFF 0.5 GB

Peripheral 0x40000000 0x5FFFFFFF 0.5 GB

External RAM 0x60000000 0x9FFFFFFF 1 GB

External Device 0xA0000000 0xDFFFFFFF 0.5 GB

Private Peripheral bus 0xE0000000 0xE00FFFFF 1 MB

Vendor-Specific Memory 0xE01FFFFF 0xFFFFFFFF 511 MB

Source: Adapted from ARMDEV 2017.

The PE local bus controls the on-chip peripheral communication and memory

addressing. ARM Cortex-M family processors implement the Advanced Microcontroller

Bus Architecture (AMBA) which has the internal Advanced High-performance Bus

(AHB) and Advanced Peripheral Bus (APB). Normally the communication peripherals

are connected in the APB base system addressing (0x40000000), but aiming to make a

trusty PE design reducing the latency by peripheral concurrency the NI is connected in

the AHB base system addressing (0x40010000). The NI and DMA modules are made by

38

the OVP tool register callback functions which are executed on every read or write access

to a defined address area. Also, the system uses the OVP callbacks to define the end of

simulations. In this case, the OVP tool handles these defined addresses and calls functions

responsible for executing the operations of the modules.

The NI is responsible for sending and receiving messages from/to the NoC. To send

messages, the OS creates the message and add it into the NI buffer. The header of this

message has two flits size, and each flit is 32 bits wide. The header information is NoC

router address (0xA00XXYY0) and the payload size (header size plus payload). If the

DMA module is defined, it uses the payload size and its start memory address to feed the

NI buffer. Else, it can be software made by feeding the NI buffer flit by flit. When a

message comes from the NoC, the NI performs an interruption to the processor, and the

system interruption handler treats the incoming message.

3.2.2 NoC Model

The OVPsim tool enables to generate bus-based and NoC-based multiprocessor

platform models. This work provides inter-PE communication by the integration of a NoC

model developed with OVPsim ppm and bhm APIs (MANDELLI et al., 2015). Figure

3.7 shows the NoC router organization that has five bidirectional ports (input and output

data ports), input buffers, and arbiter modules. The local port establishes communication

between a router and a PE, and the remaining ports are used to connect a router to its

neighbors. The framework generates all router connections which are implemented by

using OVP Net ports.

Packets are sent through the NoC divided by flits with 32 bit wide. The arriving flits

in an input port trigger a callback arbiter function. The first flit contains the destination

NoC address then the callback executes the XY NoC routing algorithm. The routing

algorithm selects an output port to send the incoming flit, storing the selected port in the

routing FIFO. The following flit has the payload size which defines the buffer allocation

to store the message flits while all flits are sent through the selected output port. This

OVP NoC module allows the buffers dynamic allocation and deallocation but preserving

the wormhole packet switching mode. Also, each output port has an arbiter which adopts

a round-robin algorithm to select an input port routing FIFO which has pending packets

39

to its output port. Finally, when the destination router receives an incoming packet, the

local port triggers the NI callback which notifies the PE by generating an interruption.

Figure 3.7. NoC router architecture.

ARBITER

ROUTER

FIFO

FIFO

FIFO

FIFO

BUFFER

In

Out

Out

In
O

u
t

In

InO
u

t

WEST EAST

SOUTH

NORTH

Source: Adapted from MANDELLI et al., 2015.

3.3 Application Set

The system and platform validation was made by executing large scale test cases with

different applications with multiple communicating tasks. Each application executes

different algorithms based on real application models such as image and video processing,

shortest graph path, and temporal sequences, or also synthetic applications just to provide

inter-task communication. Applications are modeled as acyclic directed graphs as shown

in Figure 3.8, where each node represents an application task, and each directed weighted

edge represents a communication dependence. The polygons represent the initial tasks,

and the circles represent the remaining tasks of one application.

40

 Each application has one profile with their information about the total number of

tasks, the number and ID of initial tasks, tasks interdependency and its inter-task

communication volume. Then, the application graph is modeled as GApp = (T, E), where

tasks Ti ∈ T and edge Eij ∈ E represents the communication between Ti and Tj. The initial

tasks initialize the application execution, as the nodes T1 and T2 in the figure below, and

the remaining are the non-initial tasks.

Figure 3.8. Synthetic application graph.

T3

T4

T7

T6

T5200 100

T2

T1

Initial Task Task

Source: Author.

With the applications profile the framework generates the application set defined in

the configuration file and make the application repository. The application set can have

more than one instance of one application type then the repository information is

organized as follows:

• Total number of Application;

• Application types;

• Application addresses;

• Application Header;

• Task Header;

• Application Task Codes.

41

The application repository has all the test case selected applications information

divided by the application type to avoid redundant information. Each application type has

one application header which has the information about the number of tasks, the

application code size, and the initial tasks. Each task header has the information about the

task ID, task code size, task uninitialized data size (BSS - Block Started by Symbol), task

start address, and task dependencies. Figure 3.9 shows an example of the resultant

repository generation from a set of applications with its header and the header of one task;

the following information was suppressed.

Figure 3.9. Repository example.

#ifndef __REPOSITORY_H__
#define __REPOSITORY_H__

#define NUMBER_OF_APPS 1
#define application 0
unsigned int appstype[] = {application};
unsigned int apps_addresses[] = { 0x00000000 };
unsigned int repository[] = {
 0x00000006, //application id 0
 0x00000C31, //application size
 0x00000006, //initial tasks
 0xffffffff,
 0xffffffff,
 0xffffffff,
 0xffffffff,
 0x00000000, //task_0
 0x000001C4, //task size
 0x00001054, //bss size
 0x000000A7, //task initial address
 0x00000006, // dependences
 0x00000603,
 0xffffffff,
 0xffffffff,
 ...
 };

#endif /*__REPOSITORY_H__*/

REPOSITORY
Total Applications

Application 0

Application Addresses

Application Header

Task Headers

Task Object Code

 Application 0

Source: Author.

The application types used to validate the proposed framework and extension are from

the available HeMPS framework (HEMPS 2017) and are described below:

• Prod-Cons (Producer and Consumer): a simple two (2) task applications with

parametrizable communication workload. Figure 3.10 shows the application task

graph.

42

Figure 3.10. Prod-Cons application graph.

PROD CONS2680

Source: Author.

• MPEG4: simulates a full MPEG digital sound and video decoder data iteration

with twelve (12) application tasks. Tasks have high communication as shown in

Figure 3.11.

Figure 3.11. MPEG4 application graph.

RISC

IDCT

UPSAMP

BAB

RAST

SDRAM SRAM1

AU

1340
3366

ADSP2680SRAM2

MCPUVU

Source: Author.

• MPEG (Moving Picture Experts Group): a partial digital sound and video data

decoder with five (5) communication tasks with a high workload, high

43

computational effort, and memory allocation (about 2KB in some tasks). Figure

3.12 shows the application graph with the task communication ordering.

Figure 3.12. MPEG application graph.

IVLC

IQUANT

IDCT

PRINTSTART

Source: Author.

• VOPD (Video Object Plane Decoder): simulates the interactions between the

hardware modules of a video decoder. Figure 3.13 shows the application graph

which has twelve (12) application tasks with high communication workload.

Figure 3.13. VOPD application graph.

VLD

RUN

ISCAN ACDC STRIPEM

22
7

1166 162

IQUANT

UPSAMPIDCT2ARM

1150

134

VOPME PAD1317

VOPREC

Source: Author.

44

• Fixed-Base Test: compares the similarity of two images. This application has

fourteen (14) application tasks with low communication workload but high

computational effort. Figure 3.14 shows the application graph.

Figure 3.14. Fixed-base Test application graph.

RMS XYZ1

LAB2

LAB1

WRMS

GFC

DXYZ

XYZ2

RGB1

RGB2

DLAB

9

9

DRGB

22

22

P1

P2

Source: Author.

• MWD (Multi-Window Display): a multi-window application control with

twelve (12) application tasks with high communication workload. Figure 3.15

shows the application task graph.

45

Figure 3.15. MWD application graph.

MEM1

JUG2

10
08

VS

JUG1

MEM3

10
08

670

SE

BLEND

670NR

MEM2

HVS

HS

IN

Source: Author.

• Dijkstra: an algorithm for finding the shortest paths between nodes in a graph.

This application has six (6) tasks with high memory usage (about 4KB in some

tasks), high computation cost and high communication workload. Figure 3.16

shows the application graph.

Figure 3.16. Dijkstra application graph.

DJK_1 DJK_2 DJK_3 DJK_4 DJK_5

1
7

19

DIVIDER

Source: Author.

46

• DTW (Dynamic Time Wrapping): an algorithm for measuring the similarity

between two temporal sequences which may vary in speed. This application is

parametrizable, and this work presents two cases with six (6) and ten (10) tasks.

Figure 3.17 shows the application graph which has multiple task dependencies

with high communication workload.

Figure 3.17. DTW application graphs with six (a) and ten (b) tasks.

 (a) (b)

P1

P2

P3

P4

RECOGNIZERBANK

P1

P2

P3

P4

P5

P6

P7

P8

BANK RECOGNIZER

Source: Author.

Aforementioned applications have very different profiles regarding communication

workload, computation cost, the number of tasks, and task sizes. These characteristics are

needed to evaluate the system performance under different workload situations. Once the

framework generates the platform and the application set, the system simulation starts

and the simulation results can be extracted as described below.

47

3.4 Resulted Information and Debugging

The OVPsim tool model allows extracting data during the simulation improving

debug and evaluation metrics. The metrics used to evaluate and validate the proposed

extension are the communication volume through the NoC, the energy spent in task

communication, the execution time for each processor, and the task mapping workload

distribution. This framework integrates some high-level models to extract these metrics,

which are described below.

The extraction of the communication volume is made whenever one PE sent messages

through the NoC, differing between the total communication and the inter-task

communication. The total volume communication considers all the packets sent through

the NoC while the task communication considers just inter-task communication services.

Also, the energy spent in communication is characterized by the method proposed by HU

et al., 2010 which considers the packet size and the number of hops to determine the total

energy spent. The amount of energy spent for each flit was extracted by the ST/IBM

CMOS 65 nm technology at 1.0V, considering clock gating and a 100 MHz clock

frequency. The equation below presents the total communication energy spent in the NoC.

𝑡𝑜𝑎𝑙𝑒𝑛𝑒𝑟𝑔𝑦 = 𝐸𝑓𝑙𝑖𝑡 ∗ ∑ 𝑓𝑙𝑖𝑡𝑠 ∗ ℎ𝑜𝑝𝑠

The execution time for each processor is characterized by the model proposed by

ROSA et al., 2013 based on experiments executed on STM32F4-Discovery board with

an ARM Cortex-M4F processor. This model executes a watchdog which executes a

callback for each executed instruction from a given processor. Then, defines a group for

each similar behavioral instruction and estimate the required number of clock cycles to

run. The average mismatch between OVPsim CPU timing model and the real board

platform is below 5%.

Regarding system debuggability and data extraction, this framework integrates the

multiprocessor platform debugger tool developed by RUARO et al., 2014. The

framework generates the input configuration files with the information about the

platform, system services, and scheduling. With this information, the tool uses the

extracted data from NoC and PE simulation events to generate the visual platform and the

test case behavioral. Then, allowing to show the workload distribution by the task

mapping, and both global and service communication volume.

48

Figure 3.18 shows a test case visualization example with the visualization of startup

platform, task mapping, and communication volume. This test case has one DTW

application running on a 4x4 platform distributed by 2x2 cluster where each PE can

execute four (4) tasks. On the left of the figure, the startup view shows an animation with

the inter-PE NoC communication. On right bottom of the figure, the task mapping

overview of the ten (10) application tasks, where two (2) PEs executed four (4) tasks and

one executed the two (2) remaining application tasks. The debugging shows each task

information such as task name, ID, and state. On right top of the figure, the

communication workload distribution where the information is the workload by percent

value and by PE color from low (blue cold) to high (red hot). Also, there are the option

to choose one service and its distribution in relation to all traffic, global and per router.

49

Figure 3.18. Startup simulation screen of the Platform Debugger Tool, communication analysis, and task mapping analysis.

0x3 1x3 2x3 3x3

0x2 1x2 2x2 3x2

0x1 1x1 2x1 3x1

0x0 1x0 2x0 3x0

09,95%
00,00%

01,16%

00,00%

00,00%

00,00%
00,00%

00,92%

00,00%

09,95%

04,60%
00,34%

01,00%

00,00%

10,00%

00,87%
11,86%

00,00%

00,00%

06,68%

00,00%
00,00%

00,00%

00,00%

00,00%

00,00%
00,00%

00,00%

00,00%

00,00%

34,41%
00,00%

02,60%

07,70%

00,00%

01,80%
00,00%

00,00%

04,88%

35,58%

00,00%
00,00%

00,00%

00,00%

00,00%

00,00%
00,00%

00,00%

00,00%

00,00%

00,00%
00,00%

00,00%

00,00%

00,00%

00,00%
00,00%

00,00%

00,00%

00,00%

00,00%
00,00%

00,00%

00,00%

00,00%

00,00%
00,00%

00,00%

00,00%

00,00%

00,00%
00,00%

00,00%

00,00%

00,00%

00,00%
00,00%

00,00%

00,00%

00,00%

Simulation Control

>|| > STOP

Speed Control

||

0,86488 ms 86488 ticks

98
Back To

Time in Ticks

Go

Current Pack Information

Current

0x0 3x3 SLEEP 4

Target Service Size

11

 File Edit Tools Filters Help

X _

Global M 0x0 Slave 1x0 Cluster M 2x0 Slave 3x0

Slave 0x1 Slave 1x1 Slave 2x1 Slave 3x1

P8 9 TER

P7 8 TER

P6 7 TER

P5 6 TER

P4 5 TER

P3 4 TER

RECOGNIZER 10 TER

P2 3 TER

P1 2 TER

BANK 1 TER

 All Tasks Status Only Running Only Terminated W ithout Task ID

X _

UpdatingV

Global M 0x0

7,871%

flits

Slave 1x0

7,871%

flits

Cluster M 2x0

10,934%

flits

Slave 3x0

13,418%

flits

Slave 0x1

0,014%

flits

Slave 1x1

0,014%

flits

Slave 2x1

30,853%

flits

Slave 3x1

29,124%

flits

X _

Color Legend

Low High

Service Filter

MESSAGE_REQUEST

All Services
All TraficV
Global

Roter

Data Filter

VolumeV
bandwidth R. 3x3: 0,000%

Smaller %

Statistics

Bigger %

R. 2x1: 30,853%

Average %

6,250%

Source: Adapted from RUARO et al., 2014.

50

4 PROPOSED FREERTOS EXTENSION

This chapter presents the FreeRTOS real time operating system source kernel and then

describes the proposed extension. First, Section 4.1 presents the FreeRTOS kernel and

describes the default features and the API reference included in the source code. The

following sections describe the proposed extension organization. Section 4.2 describes

the architecture and application portability. Section 4.3 describes the developed MPI-like

NoC communication control. Finally, Section 4.4 presents the distributed resource

management and the integrated task mapping techniques.

4.1 FreeRTOS Source

FreeRTOS is an open-source real-time operating system, widely used and market

leading in embedded system projects. FreeRTOS has an active development community

in partnership with the world's leading chip companies and has been validated over more

than 30 different processor architectures. Although its kernel footprint varies in the region

of 6K to 12K bytes, the source project provides several API facilities and functions.

Figure 4.1. OS processor architectures portability.

No Scheduler

FreeRTOS

uC-OS, eCOS

Real Time Linux

A
p
p
lic

a
b
ili

ty

Processor Power

Source: Adapted from BARRY 2013.

51

Figure 4.1 is a diagram which shows where FreeRTOS fits and the comparison with

other operating systems applicability. The applicability axis considers from a non-

scheduling application to a full operating system, and processor power axis considers

from a 4-bit microcontroller to a high-performance processor. FreeRTOS applicability

covers from very simple microcontroller architectures with adequate RAM and simple

scheduling to more powerful architectures and applications. Therefore, FreeRTOS have

more applicability and portability in both software and hardware levels.

Regarding the system features, the basic system execution includes interruption

handlers, task scheduling, and memory management. The memory management includes

five (5) sample memory allocation (i.e. static and dynamic) implementations which allow

controlling allocation and deallocation of RAM regions. This work uses the FreeRTOS

heap_4 memory allocation implementation which allows to allocate and deallocate

memory; also it does combine adjacent free blocks to avoid fragmentation. The

interruption handler controls the software and hardware interruptions by the interruption

vector table. The interruption registers vary according to the processor architecture and

can be configured due to the necessity. FreeRTOS execution needs some basic software

interruptions such as system calls, context switching, hard fault, and reset. However, as a

real-time operating system, FreeRTOS needs at least one timer interruption to apply its

real-time scheduling constraints.

FreeRTOS scheduler considers threads as tasks, allows to improve multitasking and

have three (3) possible configurations: preemptive, cooperative, and hybrid. In

multitasking scheduling, all available tasks appear to be executing in parallel, but only

one task is executing at any time. Figure 4.2 illustrates the timelines to explain how does

the scheduler appear to be working to the users and how it really works. First, the timeline

shows the users view where all tasks seem to be executing at the same time. The second

timeline shows the round-robin co-operative scheduling where each task will execute at

any time, and the scheduler executes the context switching. The last timeline shows the

preemptive priority-based scheduling where Task 1 have higher priority, and the

remaining tasks have the same lower priority. In ‘1’ and ‘2’, the scheduler executes a

normal context switching, note that Task 1 execution time is longer than others. In ‘3’,

Task 3 tries to access an occupied processor peripheral, finding it locked it cannot

continue, so it suspends itself and switches the context to Task 1. In ‘4’, the context is

switching between Task 1 and Task 2 while Task 3 is suspended. In ‘5’, Task 1 ends,

52

releasing the processor peripheral requested by Task 3, then it resumes. Finally, Task 2

and Task 3 have the same priority; then they have the same execution time.

Figure 4.2. FreeRTOS scheduling in different perspectives of view.

Task 1 Task 2 Task 3

t1 t2 tn

1

2 3

4

5

t1 t2 tn

U
SE

R
 V

IE
W

R
O

U
N

D
 R

O
B

IN
R

EA
L-

TI
M

E

Source: Adapted from FREERTOS 2017.

The FreeRTOS set of API facilities are validated at single PE architectures and

includes inter-task communication and queue control, semaphores, co-routines, timers,

mutexes, trace macros, and also tick less low power features. The FreeRTOS defines and

functions used to provide the proposed extension are described as follows:

• xTaskCreate: creates a new task, allocates the stack size, and add it to the list of

tasks that are ready to run;

• vTaskSuspend: suspends a ready task removing it from the ready list and saving

its context;

• vTaskResume: resumes a suspended task restoring its context and adding it to

ready list;

• vTaskDelete: remove a task from the RTOS kernels management and deallocate

the stack size;

53

• vTaskDelay: delay a task for a relative number of ticks;

• vTaskDelayUntil: delay a task for an absolute number of ticks;

• vTaskStartScheduler: starts the RTOS scheduler and the Idle control task which

controls features such as memory deallocation, memory coalescence, and task

context switching;

• vTaskEndScheduler: finishes the scheduler and also the system execution;

• pvPortMalloc: a FreeRTOS provided memory allocation function;

• vPortFree: a FreeRTOS provided memory freeing function;

• configSUPPORT_DYNAMIC_ALLOCATION: defined to ‘1’ allows to use

dynamic memory allocation;

• configTICK_RATE_HZ: sets the SYSTICK timer interruption rate (i.e. clock

divider);

• configUSE_PREEMPTION: defined to ‘1’ uses the real-time preemptive

scheduler;

• configMINIMAL_STACK_SIZE: defines the minimal stack size used to system

default task such as Idle Task;

• configTOTAL_HEAP_SIZE: defines the heap size, addressing the memory to be

managed.

Aiming at keeping FreeRTOS modularity and flexibility, its original structure was

maintained and the promoted extensions were developed to operate in a non-intrusive

manner. The proposed extension includes the FreeRTOS features regarding processor

architecture portability, memory management, interruption handlers, scheduling and

multitasking management. Note that this work uses the FreeRTOS preemptive real-time

scheduling but does not objective the real-time performance exploration and analysis.

Therefore, all those features and functionalities allow and justify the choice of using

FreeRTOS in this work. Underlying extensions were developed targeting NoC-based

multiprocessor architectures, and they are described in the following sections.

54

4.2 System and Application Portability

Modern embedded OSs and processors support the interruption control. This feature

allows handling high-priority interruptions during the system execution, improving

software and hardware control and portability. As shown in Figure 3.1, the proposed non-

intrusive extension does not change the FreeRTOS source project. The developed

extension has the same FreeRTOS folder and files organization model. Once the

FreeRTOS supports multiple processor architectures, it provides the interface between

hardware and software. There are a set of defines and functions to enable the system

needed interruptions for each processor architecture, such as the CMSIS for ARM Cortex-

M family. The extension underlies the processor architecture portability by defining the

interruption vector configuration. The system startup points to the processor interruption

vector which has the default FreeRTOS functions and the extension API services. The

extension project is organized as follows:

• Startup: is the system startup file which has interruption vector configuration and

the startup Reset function. This method enables interruptions, handlers, and then

executes to the main function.

• Main: has the main function which initializes the required data structures

depending on the PE function on the MPSoC and then starts the FreeRTOS

scheduler.

• System_Call: implements the system call handler function which treats the system

call interruption and then executes the API function required by the application

task.

• Network_Interface: has the NI handler function which treats incoming NoC

packets and executes services required by any other PE.

• Communication: has the developed MPI-like API with the send and receive

primitive functions.

• Mapping: has the integrated task mapping algorithms which are responsible for

defining where the applications and the application tasks will be executed.

• Distributed Management: has the implemented distributed resource and

application management functions.

55

• Misc: any other miscellaneous auxiliary functions.

Furthermore, there are two folders with the portable and the extension libraries. The

portable folder (Figure 3.1) has the architecture specific libraries of the processors which

the extensions are validated (i.e. ARMv6-M and ARMv7-M). For each processor

architecture, there is a library folder, and future extensions libraries also can be included.

Then, the project loads both extension and FreeRTOS libraries compile the proposed

embedded multiprocessor system.

Figure 4.3. Software portability under embedded system architecture abstraction layers.

Task 1 Task nApplication ...

Embedded Systems Architecture Proposed System Architecture

Source: Adapted from NOERGAARD 2012.

Figure 4.3 shows the typical embedded systems architecture and the proposed

embedded system architecture divided by layers. In general, the embedded systems are

composed of application, system software, and hardware layers. Inside the proposed

system software layer there is the kernel with the interruption vector (ISR VECTOR)

where the interruptions are configured to point their function handlers. The proposed

extension use two interruptions to provide the proposed system extension under NoC-

based multiprocessors: the system call and the NI interruption. The system call

interruption is triggered by the system call instruction (i.e. svc in ARM Cortex-M) to

perform the interface between the application tasks requests and the kernel APIs. The

external NI interruption is triggered by incoming packets through the NoC to perform the

56

inter-PE communication. For each of those interruptions, there are specific functions to

treat the task level (system call handler) and system level (NI handler) requests.

Embedded systems normally implement the application portability by using shared

libraries which make the applications depending on kernel and APIs addressing. That

means that any kernel modification involves recompiling the entire kernel and all the

applications. The proposed non-intrusive extension modifies the System Call Handler to

treat the application level requests (e.g. send and receive) in a privileged mode, isolating

privileged operations and system resources. The system call functions are: MPI send, MPI

receive, Task Delete, and an output debug function. The MPI primitives implement the

task communication requests, and the task delete finishes the task execution. Each System

Call instruction carries an embedded number, which is associated with a given service,

Figure 4.4 explains these services arguments stacked into registers r0-r3. These features

make the kernel and applications compilation independent, reducing the software

development time.

Figure 4.4. NoC communication packet and system call interface function.

HEADER MESSAGE

PAYLOAD

SYSTEM CALLPACKET MOUNT

A
D

D
R

ES
S

FUNCTION (A,B,C,D)

mov r0, A

mov r1, B

mov r2, C

mov r3, D

SVC #

SE
R

V
IC

E
SI

ZE

32
 b

it
s

Source: Author.

Inter-PE and inter-task communication is an issue in multiprocessor systems once it

involves data dependency through different processor resources to continues task and

system execution. The proposed extension integrates the NI interruption handler which

treats the incoming packets as services. Figure 4.4 shows NoC packet mount details. In

this work, a packet consists of a six 32 bits-wide flits header followed by the payload.

The header contains the destination address, the payload size (header plus message size),

the service request, and three flits to service parameters. The NI handler services are:

57

message request, message delivery, task finished, application finished, mapping request,

task request, task allocation, application handler, update task location buffer, and sleep

PE. The message request and delivery services treat task communication requests. The

remaining services are related distributed mapping management. Following sections

detail the task management and communication flow and the distributed management

with the integrated task mapping algorithms.

4.3 Task Management and NoC Communication

On the proposed extension even the PEs have the same kernel they can assume two

functions in the distributed organization: manager or slave. The manager processors are

responsible for mapping and allocating application tasks. The slave processors allocate

and execute the mapped application tasks. That involves memory allocation, task

managing, and scheduling. To the management of the tasks allocation and

communication, a Task Manager (TM) with a Task Management Structure (TMS), a

Communication Buffer (CB), and a Task Location Buffer (TLB) were incorporated into

the FreeRTOS kernel. The TMS contains for each task the local ID, the global application

ID, the task relationship ID, and the CB. While CB stores the outgoing task messages, the

TLB stores the PE physical address where application tasks are allocated. Whenever an

application task is mapped in a slave processor, it allocates the required memory

(pvPortMalloc) to store the TMS, CB, the application task code, and data. Then, calls the

FreeRTOS function xTaskCreate to allocate the task stack and add it to the list of tasks

that are ready to run.

To enable data transfers between communicating tasks and PEs, an MPI-like API was

developed. Underlying API includes two communication primitives: MPI Send and MPI

Receive, which are used to transfer data and management control packets devoted to inter-

task communication and system management. Whenever a task has to communicate with

another, a System Call instruction is invoked, in user mode, triggering the System Call

Handler that executes the communication primitives. Once the outgoing messages do not

prevent the task execution, the CB stores the message whenever an MPI Send is invoked,

and it suspends the sender task when the CB overflows. However, on MPI Receive the

58

task needs the information to continue execution then suspends the task until the data are

available.

Figure 4.5. MPI-like task communication.

HEADER MESSAGE

PAYLOAD

NoC

FreeRTOS FreeRTOS

T3 - Ready

T1

T2 - Ready

NoC

T0 - Suspended - MPI Receive(&msg,T0);

packetpacket

FreeRTOS FreeRTOS

T3 - Suspended

T1 - Ready

T2 - Ready

T0 - Ready

MESSAGE REQUEST MESSAGE DELIVERY

CB

CB

CB

CB

CB

CB

CB

CB

Source: Author.

The TM determines the sender processor address by checking the tasks allocation. In

this case, there are two possibilities: (i) the requested message originates from a task

mapped into the same processor, thus the TM retrieves the message data from the local

task CB and delivers it; (ii) the requested message needs to be fetched in another

processor. Figure 4.5 shows how the task communication flow occurs through the NoC.

An outgoing message first allocates a header descriptor, acquires the receiver physical

address from the TLB, and configures the DMA module. This module uses the payload

address to transfer the information between the local memory to the NI buffer. If the DMA

module was not defined, the kernel feeds the NI buffer.

Further, for each communication, the NI triggers the interruption handler, and the NI

Handler manages the message request and delivery services. First, the requesting TM

sends to the target TM a service message to fetch the message data (message request).

The target TM identifies the requesting task ID and removes the message from the sender

CB. Further, it resumes the task if it is suspended, then it allocates the header descriptor

and configures the DMA module with the message to be sent. Then, the packet is

59

delivered (message delivery) and the requesting task is resumed. Note that MPI Receive

is task blocking while MPI Send is task non-blocking unless no CB space is available. In

both cases the system and any other tasks continues executing, thus they are scheduler

non-blocking. During the tasks execution time, the kernel’s extensions provide the

required functions to their communication and scheduling control. When a task finishes,

it calls the system call delete which executes the FreeRTOS vTaskDelete function to

remove it from scheduling list deallocating the task stack size, and also deallocate the task

code and data required memory (vPortFree). Even the task has finished, the CB can

contain any information and task finishing report will be sent only when the CB is empty.

4.4 Distributed Mapping

In distributed mapping, many parallel applications are executed at the same time

independent of the location of the resources (CASTILHOS et al., 2013). Although

mapping algorithms map applications in different resources and the system schedule

different tasks for execution at any time, in users view all applications are executing in

one MPSoC.

Figure 4.6. Distributed mapping application execution in different perspectives of view.

Task 1 Task 2 Task 3

t1 t2 tn

SC
H

ED
U

LE
R

Resources

Application Appication

Task 0 Task 1 Task 2 Task 3 Task 0 Task 1 Task 2 Task 3 Task 4 Task 5

U
SE

R
 V

IE
WApplicaiton 0

Applicaiton 1

Applicaiton 2

M
A

P
P

IN
G

Source: Author.

60

Aiming to improve gains of performance, reliability, and scalability, the proposed

extension integrates distributed mapping techniques which share the MPSoC resources

into cluster regions. Figure 4.6 shows the different perspectives of view during the

application execution. For the user, once it requests the applications execution, all the

applications execute at the same time (user view in Figure 4.6). The distributed mapping

considers the information about the applications, the tasks, and the available resources

while determining each PE will execute each task (mapping view in Figure 4.6). In each

PE, the FreeRTOS scheduler is responsible for defining which task will be execute at any

time (scheduler view in Figure 4.6). At the system startup, each PE assumes one of the

following roles:

• Local Manager (LM) - responsible for cluster control, executing functions such as

task mapping within the cluster.

• Global Manager (GM) - in addition to the local manager functions, is responsible

for the overall system management, such as defining an application-to-cluster

mapping and controlling external devices accesses (e.g. application repository).

• Slave PE (SP) - responsible for executing user applications with the possibility of

parametrization of a single task or multitasking.

Figure 4.7. Centralized Management vs. Distributed Management.

GM LM LM1 2 LM nGM SP SP1 2 SPn

Waits
GM

CENTRALIZED MANAGEMENT DISTRIBUTED MANAGEMENT

Waits
GM

Source: Adapted from CASTILHOS et al., 2013.

61

The developed extension is also parametrizable, being possible to define: the platform

size, the GM position, the cluster size, the maximum number of tasks per PE, the CB size

and the application set to execute. The CB size is also parametrizable, allowing to limit

the amount of memory to be allocated for inter-task communication. The hardware and

the software of all PEs are the same, and this enables to assign the management task to

different PEs. Figure 4.7 shows the sequence diagram which compares the centralized

and the distributed management. On centralized management, all the task requests are

sent to the GM leading delay and overload of services. However, on distributed

management, each LMs only handles the incoming task requests from their clusters. This

feature increases the reliability of the system since faults in manager processors do not

halt the system.

At system startup, the distributed mapping structure is created according to pre-

defined parameters. The structure contains the hardware platform size, clusters sizes, their

available resources and the manager’s addresses. At this time, all processors know the

GM, the LM, and the cluster limit (all processors within a cluster have this information).

The GM receives requests from the application repository to map new applications. This

request contains the number of required resources to execute the application. If the

available resources are smaller than the required by the application, the application is

scheduled to execute later.

Figure 4.8 illustrates a 4x4 NoC-based platform, with 2x2 clusters, the application

path, and the tasks execution flow with message passing interface. It details the

application and task management flow starting from the application request in the system

startup and finishing at the end of the application execution. The application information

is loaded to GM, at runtime, from the repository. The mapping begins with SearchCluster

function, which analyses the application information and clusters available resources to

send the application header to the destination cluster LM (Figure 4.8 a). The target LM

receives the application header and executes a mapping heuristic for the initial tasks. After

that, it sends an update TLB message to the selected PEs and the GM, then requests to

the GM to send the task code to be allocated in destination SP (Figure 4.8 b). The

destination PE receives the task code, and the function xTaskCreate creates a new task.

Then the required RAM is automatically allocated from the FreeRTOS heap, while the

underlying task is included in the list of tasks that are ready to run. During its execution,

the initial tasks request to the local manager to map the remaining tasks (same task

62

mapping flow) (Figure 4.8 c). At the end of its execution, the task calls system call delete

performing vTaskDelete, removes the task from the scheduler and frees the allocated

space. The kernel only notifies the LM that the task is finished after the message buffer

is empty. In turn, when the application is finished the LM reports the availability of new

resources to GM (Figure 4.8 d). Finally, the GM maps other incoming applications or

finishes system execution.

Figure 4.8. Application and task management flow under distributed MPSoC.

SP SP

LM SP

SP

LM SP

SP SP

GM SP

SP SP

LM SP

Application Repository

SP

MAPPING

C
L
U
S
T
E
R

(a)

SP SP

LM SP

SP

LM SP

SP SP

GM SP

SP SP

LM SP

Application Repository

SP

MAPPING

C
L
U
S
T
E
R

(a)

SP SP

LM SP

SP

LM SP

SP SP

GM SP

SP SP

LM SP

Application Repository

SP

MAPPING

(b)

SP SP

LM SP

SP

LM SP

SP SP

GM SP

SP SP

LM SP

Application Repository

SP

MAPPING

(b)

SP SP

LM SP

SP

LM SP

SP SP

GM SP

SP SP

LM SP

Application Repository

SP

(d)

SP SP

LM SP

SP

LM SP

SP SP

GM SP

SP SP

LM SP

Application Repository

SP

(d)

SP SP

LM SP

SP

LM SP

SP SP

GM SP

SP SP

LM SP

Application Repository

SP

MAPPING

(c)

SP SP

LM SP

SP

LM SP

SP SP

GM SP

SP SP

LM SP

Application Repository

SP

MAPPING

(c)

Source: Author.

63

The task mapping algorithms define where each application and application task will

be executed. The heuristics algorithm represents the applications as task graphs based on

its ID and characteristics (e.g. load, communication), then select the best resource to

allocate the task based on its heuristics. This work deploys two task mapping heuristics:

Nearest Neighbor (NN) and Low Energy Communication based on Dependencies

Neighbor (LEC-DN) (MANDELLI et al., 2015). The initial task mapping evaluates all

SPs inside the selected cluster, selecting the SP with the largest number of free SPs around

it. In the NN heuristic, the requesting PE ID is the input parameter to define where the

next task will be allocated. This heuristic is a simple dynamic task mapping and it does

not consider the application tasks characteristics. Then, the algorithm only searches the

nearest available resource to define the task allocation. Figure 4.9 shows the mapping

heuristic and the search order. In this case, the PEs are represented as squares and the

numbers defines its available resources. Also, the color represents the distance in hops

between the map requesting and the targeting PE. The search algorithm tests all n-hop

neighbors, n varying between 1 and the NoC limits in a spiral way, stopping when the

first free PE is found.

Figure 4.9. Runtime dynamic task mapping search heuristic.

1

001

2 1 1 2 1

110

LM 1

Task 1

Source: Adapted from MANDELLI at al., 2015.

64

The LEC-DN heuristic also uses the same search order. However, it reduces the

communication volume through the NoC by nearing communicating tasks that exchange

a high communication volume. The heuristic evaluates the best resource by task

interdependencies considering the communication and loads task profiles. Moreover, the

heuristic task execution performance by reducing the hops between interdependent

communicating tasks.

65

5 EXPERIMENTAL SETUPS AND RESULTS

This chapter describes the test cases used to validate the proposed framework and the

proposed FreeRTOS extension. The test cases vary regarding MPSoC size, clusters size,

number of clusters, number of applications, tasks per PE, PE architecture, platform

abstraction level, and task mapping techniques. All the experiments have been performed

with the Imperas OVPsim version 20160323 on Intel i7-4790K 4.00 GHz machine, with

32GB RAM, running Ubuntu 16.04 64 bits. The chapter is organized as follows: Section

5.1 describes the validation of the proposed system extension by executing all the

application types. Section 5.2 describes the proposed framework and system validation

under test cases with different MPSoC sizes, cluster sizes, number of clusters and

application sets. Section 5.3 describes the system extension evaluation by high different

application workloads under large scale platforms. Section 5.5 shows the system

validation under Cortex-M0-based RTL level hardware platform. Finally, section 5.4

shows the system portability by using publisher-subscriber protocol.

5.1 System Validation Through Different Applications with

Time-Varying Workloads

To validate the proposed FreeRTOS extension, the first test cases execute all the

applications available in the proposed framework. Then, for each application type and

task mapping heuristic, there is a test case to be executed. Also, to stress the system, there

is one test case which executes all the application types. Thus, the FreeRTOS extension

needs to deal with the different time-varying workloads of the applications.

Table III shows the proposed test cases for validating the system extension with

different application types and mapping heuristics. Due the different task number and

different workloads, the test cases with single application types were executed in a 4x4

MPSoC platform with defined multitasking of two (2) tasks per PE. Also, the test case

with all the applications was executed in an 8x8 MPSoC size with 4x4 cluster size, also

with multitasking. Both hardware platforms considered use Cortex-M4F processor

architecture.

66

Table III: Test cases used to validate the proposed system extension with time-varying

application workloads.

Test Case Applications Application # Task #

A Producer Consumer 1 2

B MPEG 1 5

C MPEG4 1 12

D Fixed-Base Test 1 14

E VOPD 1 12

F MWD 1 12

G DTW6 1 6

H DTW10 1 10

I Dijkstra 1 6

J
Producer Consumer, MPEG, MPEG4, Fixe-Base Test,

VOPD, MWD, DTW6, DTW10, Dijkstra
9 79

Source: Author.

Thus, Table IV shows the extracted results from the validation test cases. The results

from the NoC communication are the volume in some flits and the energy spent in

nanojoules extracted by the integrated energy model. The execution time in clock cycles

was extracted from the integrated timing model. Finally, the simulation time and the

simulated instructions were extracted from the OVPsim.

The results show that the system extension provides all the required features to

execute different workload applications in MPSoCs. In the test cases with one application

type, the results show that the higher workload applications such as test cases C and H,

and applications with high computing effort such as B, G, I, and H, have high execution

and simulation time. For example, the applications in F and I have similar communication

volume, but the execution time in 1K clock cycles is 4.24 times higher and the simulation

time is 3.53 times higher. This shows that both characteristics, communication volume,

and computing effort are important issues while considering workload distribution.

67

Table IV: Extracted results from the proposed test cases in Table III.

Mapping
Test

case

NoC Communication Execution Time

(1K Clock Cycles)

Simulation

Time (s)

Simulated

Instructions Volume (flits) Energy(nJ)

NN

A 227 2.454 797,88 2.84 5559056

B 5558 42.37 1663,34 5.63 11536640

C 107800 393.817 9287,38 29.87 63953008

D 8046 96.118 901,44 3.38 6509168

E 8483 52.56 2059,39 7.05 14379904

F 11212 61.021 1553,81 5.64 10889920

G 8034 43.43 2741,81 8.67 18987280

H 16039 80.399 2881,28 8.85 20017600

I 11354 70.713 5595,35 17.41 38520400

J 181832 1161.057 9221,59 180.44 256039680

LEC-DN

A 227 2.454 797,83 2.82 5559056

B 5558 42.37 1676,59 5.62 11536640

C 107800 392.209 9285,98 30.11 63953072

D 8064 98.203 896,81 3.36 6494992

E 7419 43.494 2057,43 6.92 14379904

F 10120 59.22 1354,91 5.00 9532416

G 8034 36.438 2741,44 8.54 18986592

H 16039 78.601 2880,88 8.90 20017600

I 11354 70.713 5595,09 17.66 38520400

J 181630 1113.079 9217,92 175.16 256039680

Source: Author.

To evaluate the impact of the two task mapping heuristics in the workload distribution

the better results are underlined. Regarding to the communication volume, only the test

case D present the NN heuristics was better. This difference occurs when more

communicating tasks are in different processors. The remaining experiments show the

communication volume is equal in both heuristics or better in LEC-DN. Even if the

communication volume is equal in some cases, the communication energy spent is lower

in most test cases with LEC-DN heuristics. That occurs because the LEC-DN task

mapping algorithm approximates communicating tasks and reduces the number of hops

of task communication packets. Therefore, the reduction of hops and NoC

communication increases the system performance which reflects on the applications

execution time.

68

While the most test cases execute only one application in a single cluster, the test case

J executes all the application types distributed by clusters. In this test case, the distributed

task mapping needs to allocate all the different application tasks and deals with their

workloads. Nevertheless, the results show that on LEC-DN the communication volume

and also the communication energy was reduced.

5.2 System Validation Through Different Platform

Organizations

The proposed framework allows the design space exploration by generating different

test cases, varying regarding MPSoC size, cluster size, cluster number, and number of

applications. Proposed FreeRTOS extension needs to be able to adapt to this variation

and handle with the application workloads. Then, to validate the system adaptability

under different platform sizes, cluster distribution and application number. Table V shows

the test cases used to validate these features. All the test cases are executing with Cortex-

M4F processor architecture with the LEC-DN task mapping algorithm considering

multitasking. The MPSoC sizes vary from 2x2 to 20x20 hardware platforms with up to

four hundred PEs. Also, the clusters organization varies regarding size from 2x2 to 5x5

and quantity from a single cluster to one hundred clusters.

Table V: Design space exploration and system scalability evaluation test cases.

Test case
Size Number

Application # Task #
MPSoC Cluster PEs Clusters

K 2x2 2x2 4 1 1 5

L 3x3 3x3 9 1 1 5

M 4x4 4x4 16 1 1 5

N 4x4 2x2 16 4 4 20

O 6x6 3x3 36 4 4 20

P 8x8 4x4 64 4 4 20

Q 8x8 2x2 64 16 16 80

R 10x10 5x5 100 4 4 20

S 10x10 2x2 100 25 25 125

T 20x20 5x5 400 16 16 80

U 20x20 2x2 400 100 100 500

Source: Author

69

Table VI: Extracted results from the proposed test cases in Table V.

Test case
NoC Communication Simulated

Instructions
Simulation Time(s)

Volume (flits) Energy(nJ)

K 5486 23.877 2880396 1.21

L 5516 33.215 6673743 3

M 5558 42.37 11536640 5.55

N 22676 164.903 11889360 5,72

O 22796 238.214 26837208 15,2

P 22964 312.312 47907200 34.11

Q 91436 1214.8 48432704 34.47

R 23180 390.285 75046200 61.17

S 143006 2331.838 76211300 64.38

T 93452 3019.824 383073600 569.91

U 572756 18005.078 464039600 783.84

Source: Author.

The application set for each test case have a same number of clusters and applications

just to guarantee that each cluster executes at least one application. Table VI shows the

extracted results from the test cases execution. The results show that the system allows

the design space exploration while it can handle all the variations in terms of MPSoC

size, application set, and workload distribution.

5.3 Workload Distribution in Large-Scale MPSoCs

To validate the proposed work, the platform need to execute high workload test cases

considering two tasks mapping heuristics under large scale hardware platforms. For this

purpose, three applications with a high workload and also high computing effort are used

as benchmarks: DTW, with ten tasks; MPEG, with five tasks; Dijkstra, with six tasks.

Table II presents the six evaluated test cases. Such test cases use a 10x10 multiprocessor

platform instance with a 5x5 cluster size and with different applications. For the evaluated

test cases, was considered that a PE is executing two tasks at a time.

70

Table VII: Experimental test cases to evaluate the distribution of high workload

application sets in large scale MPSoCs.

Test case Applications Application # Task #

W1 120 x MPEG 120 600

W2 100 x DJK 100 600

W3 15 x DTW, 35 x MPEG 50 325

W4 65 x MPEG, 35 x DJK 100 535

W5 10 x DTW, 25 x MPEG, 25 x DJK 60 375

W6 15 x DTW, 5 x MPEG, 40 x DJK 60 415

Source: Author.

Table VIII: Extracted results from the proposed test cases in Table VII.

Test case
Communication Energy (µJ) Execution Time (1K clock cycles)

NN LEC-DN NN LEC-DN

W1 16.04 15.74 36493 36806

W2 87.90 87.27 36554 37621

W3 10.93 10.20 27875 27858

W4 39.59 38.95 40036 35554

W5 28.42 27.80 32117 31456

W6 40.20 39.21 41857 39918

Source: Author.

Table VIII presents a comparison of the two evaluated heuristics, concerning two

different metrics: communication energy, and execution time. The communication energy

presents the cost to transfer the communication volume through the NoC. For this

purpose, it considers the distance in hops between each pair of communicating tasks.

LEC-DN reduces the communication energy for all scenarios compared to NN. This

is explained since LEC-DN approximates all communicating tasks and NN approximates

only pairs of communicating tasks. The execution time varies according to the scenario,

depending on the communication volume, NoC contention, mapping algorithm

computation and shared execution of tasks in the system.

71

Figure 5.1. Task mapping example in test case W3 when all resources are occupied.

LM

GM

LM

LM

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

MPEG

DTW

DTW

DTW

DTW

MPEG

DTW

DTW

DTW

DTW

MPEG

MPEG

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

MPEG

DTW

MPEG

MPEG

MPEG

DTW

MPEG

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

MPEG

DTW

DTW

DTW

DTW

MPEG

MPEG

MPEG

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

DTW

MPEG

MPEG

MPEG

MPEG

DTW

DTW

DTW

DTW

DTW

DTW

MPEG

DTW

DTW

DTW

DTW

DTW

DTW

MPEG

DTW

DTW

DTW

DTW

DTW

MPEG

DTW

MPEG

MPEG

MPEG

MPEG

MPEG

MPEG

MPEG

MPEG

MPEG

MPEG

Source: Author.

Figure 5.1 illustrates an example of LEC-DN mapping (test case W3), where each

color corresponds to a different application. Note the locality of the applications, where

tasks belonging to the same application are mapped in the same region, with a small

distance regarding a number of hops.

5.4 Integrating a Publisher-Subscriber Protocol into NoC-

based MPSoCs

Middleware is an abstraction layer generally used on embedded systems with two or

more applications in order to provide flexibility, security, portability, connectivity,

intercommunication, and/or interoperability mechanisms between applications

(NOERGAARD 2012). This section describes a case study developed by a partner

(HAMESRKY et al., 2017), which integrates a Publisher-subscriber protocol in the

proposed FreeRTOS extension. The publish-subscribe (PUB-SUB) programming model

has been used in middleware for highly distributed domains, such as: MQTT 1 (Message

72

Queuing Telemetry Transport) for sensors networks and mobile devices domains; DDS 2

(Data Distribution Service) for real-time systems domains; and ROS 3 (Robot Operating

System) for robotics domains. All these middlewares evolved to provide properties, such

as reliability, security, low power consumption, and QoS.

Figure 5.2 shows a general scheme with two publishers, three subscribers, three

topics, and one broker. A publisher can publish data in more than one topic. A subscriber

can receive data about same or different topics from one or more publishers.

Figure 5.2. The general scheme of a publish-subscribe system.

Source: HAMERSKY et al., 2017.

In MPSoC domain, publisher nodes are those which want to produce data, while

subscribers are nodes that want to consume them. The topics represent atomic data shared

among the nodes. As an example, Figure 5.3 shows the DTW application with ten tasks

(Bank, P1-P8 workers, and Recognizer) represented through a task graph. A directed

arrow between two tasks (blocks in Figure 5.2) means that the first task sends data to the

second one.

Figure 5.3. DTW task graph in (a) MPI and (b) PUB-SUB models.

73

Source: HAMERSKY et al., 2017.

The PUB-SUB version replaces the MPI primitives by PUB-SUB primitives. The

sender side must define a topic ID for the flow, register itself in the system as publisher

of that topic and publish the data. The receiver side must register itself as a subscriber of

that topic, setting a callback function to handle the incoming data.

The middleware is integrated on FreeRTOS between the kernel and the application

level. While system calls provide the PUB-SUB API primitives to the user application(s),

the network interruptions (NIs) are used to manage the API services at the system level.

The management structure remains itself with the incorporation of the PUB-SUB

middleware, with PEs assuming new management functions. Both LM and GM assume

the role of brokers, but they can also be publishers and subscribers. The SPs can only be

publishers and/or subscribers.

The experiments are based on the DTW application. This application has been chosen

because it uses a communication pattern of 1:N and N:1 (N is the number of workers).

This experiment uses eight workers. Three scenarios were analyzed: MPI-all, MPI-dem,

and PUB-SUB. The first two scenarios use MPI primitives with all tasks mapped at the

beginning of the execution (MPI-all), or tasks mapped on demand (MPI-dem), where only

the initial tasks are mapped at the beginning of the execution and the other tasks are

mapped as soon as there is communication among them. The PUB-SUB scenario uses the

proposed publish-subscribe primitives and middleware, with all the tasks mapped at the

beginning of the execution. All scenarios use a single-cluster 5x5 MPSoC, with each PE

executing a single task to stimulate the NoC communication between the tasks and

evaluate the middleware protocol.

Figure 5.4 shows the results of the DTW application execution time, using a model

that captures the executed instructions for each PE, generating an execution time of the

total executed instructions. PUB-SUB reduces the execution time from 2.6% to 29.9% as

the number of patterns is increased, respectively, from 16 to 256. Compared to MPI, the

PUB-SUB model requires an initial setup time to advertise the topics. Besides, the PUB-

SUB application object code is lightly bigger, taking more time to finish the task mapping.

Therefore, the MPI has an advantage for small communication volumes. However, the

MPI model presents the drawback of generating more System Calls and NIs caused by

the messages, as detailed next.

74

Figure 5.4. DTW execution time using MPI and PUB-SUB.

Source: HAMERSKY et al., 2017.

Figure 5.5. MPI vs PUB-SUB time spent in System Calls and NIs.

Source: HAMERSKY et al., 2017.

Figure 5.5 is a detailed view of the results obtained for 64 patterns, presented in Fig.

5. The X axis represents the order of System Calls or NIs generated in the system, and

75

the Y axis represents the instant of time (timestamp) in which each one of them was

executed. The figure also presents two lines representing the MPI and the PUB-SUB

execution trace. Since both MPI-all and MPI-dem had the same behavior, only one is

illustrated. The figure is divided into the three main phases of the DTW application: setup,

data fork, and data join.

5.5 RTL System Validation

The OVPsim MPSoC platform provides high software development, high

debuggability, high performance and low simulation. The high level platform can be

calibrated from data extracted from different low-level models. However, to really

validate the proposed FreeRTOS extension the system needs to be executed on an real

RTL platform. In this case, a NoC-based RTL MPSoC platform with the Cortex-M0

processor architecture was provided by a partner. The proposed FreeRTOS extension was

executed in both OVPsim and RTL platforms to compare the simulation results. Table IX

shows the proposed test cases comparing the proposed framework generating the OVPsim

platform with the RTL platform. The test cases inculdes simple application sets with one

and four applications just to validate the proposed system extension in different

architectures and different abstration levels. The platform sizes varies from 4x4 to 8x8

considering up to four clusters.

Table IX: Test cases to evaluate the FreeRTOS extension running under RTL Cortex-M0

platform.

Test case
Size

Applications Application # Task #
MPSoC Cluster

R1 4x4 4x4 MPEG 1 5

R2 4x4 4x4 DJK 1 6

R3 4x4 4x4 DTW10 1 10

R4 4x4 4x4 Fixed-base Test 1 12

R5 8x8 4x4 MPEG x 4 4 20

R6 8x8 4x4 DJK x 4 4 24

R7 8x8 4x4 DTW10 x 4 4 40

R8 8x8 4x4 Fixed-base Test x 4 4 48

Source: Author.

76

Table X: Comparison between the results extracted from the proposed test cases in Table

IX executed on OVPsim and RTL platforms.

Test case
Communication Simulation Time (s)

Volume (flits) Energy (nJ) RTL OVP

R1 9878 68.817 26745 5.3

R2 13343 81.251 26082 9.05

R3 16051 105.125 60221 6.97

R4 7928 91.435 23985 3.27

R5 40244 418.101 112112 31.77

R6 54251 514.451 115878 53.19

R7 65731 578.663 245350 42.65

R8 33947 731.425 102480 19.77

Source: Author.

Table X shows the extracted results from both RTL and OVPsim platform models.

The resultant information shows the OVPsim system validation under high level

simulation can be easely applied to real platforms. Even the RTL having more accurance,

the test case simulation time is much higher when compared with the OVPsim simulation.

In addition, the data extracted from RTL platform description can be used to calibrate or

create high level models allowing a more accurate simulation. Therefore, both approaches

are important while reducing the design time of complex MPSoCs.

77

6 CONCLUSIONS

This Dissertation proposes a non-intrusive FreeRTOS extension to support dynamic

and distributed task mapping in Multiprocessor Systems. The extension enables

FreeRTOS adoption in large-scale NoC-based MPSoC architectures with distributed-

memory organization together with runtime distributed mapping heuristics. A Framework

was also proposed to design space exploration of high level MPSoC platforms. The

framework allows to automatic generate large scale NoC-based MPSoCs with an

application set to be executed into the OVPsim tool.

The Framework and FreeRTOS extension were validated in several test cases with

many variations regarding MPSoC size, clusters size, application number, task per PEs,

PEs architecture, platform abstraction level and task mapping. All these features were

executed in a RTL synthesizable platform with different processor architecture.

Results showed the effectiveness of the included mapping heuristics, which allocated

communicating tasks near to each other, reducing the NoC congestion and the

communication energy. Additionally, the OVPsim is an efficient tool to validate software

and the portability to different levels are also simple.

The proposed extension also provided a case study using distributed systems

publisher-subscriber middleware applied to MPSoCs. Results show that the proposed

middleware is a worthwhile alternative to programming NoC-based multiprocessor

platforms, with low footprint overhead, and lower execution time when compared with

MPI-based FreeRTOS kernel implementation.

All the proposed extensions and framework proves to be highly portable regarding

software development and processor architectures. Therefore, the use of a largely used

OS ported to different ISAs facilitates the system design and validation, reducing

software design cost and time-to-market. The platform applicability can be extended to

fault detection, system security, and IoT applications.

78

6.1 Future Works

Considering the current technological scenario and the applications of MPSoCs in the

literature, there are some important gaps which can be filled regarding multiple input and

multiple output data, secure computing and encryption, and fault tolerance. As processors

seek more resource efficiency, they increasingly need to target multiple goals at the same

time, such as a level of performance, power consumption, and average utilization

(POTHUKUCHI et al., 2016). With the concept of multiple inputs and multiple outputs

the MPSoC needs to handle multiple workload inputs and balance through to its

resources.

At the same time, the system needs to be secure while receiving and transmitting

information from and to external means. To ensure the input and output information are

correct and true, the system must encrypt and decrypt it, which demands performance and

computing time, both available in MPSoCs. The system must do a trade-off between

application execution and security handling the information and allocating resources to

handle these applications. This issue is directly related to the system reliability once the

system handling unrequired information may induce the system to unrecoverable fault or

leak private information.

Concerning reliability in NoC-based systems, the literature presents some works

proposing alternatives for multiprocessor systems: secure communication between the

various devices of a SoC (LUCAS et al., 2009; COTA et al., 2012); Fault-tolerant routing

(MARCON et al., 2013, LIU et al., 2013); Monitoring of chip aging (KERKHOFF et al.,

2014); Power management in large scale circuits using NoCs (BOKHARI et al., 2015;

ZHAN et al., 2014); Failure tolerance in NoCs design (PARK et al., 2006; RADETZKI

et al., 2013). However, these features are little explored at the embedded system level for

large-scale multiprocessors targeting commercial kernels. Therefore, the contributions of

this dissertation provide the required resources to explore those issues in the future works.

79

REFERENCES

ABICH, G., MANDELLI, M. G., ROSA, F. R., et al. “Extending FreeRTOS to Support

Dynamic and Distributed Mapping in Multiprocessor Systems.” In: 2016 IEEE

INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND

SYSTEMS (ICECS), Monte Carlo, December 2016. Proceedings... pp. 712-715.

Available in: <https://doi.org/10.1109/ICECS.2016.7841301>.

AGUIAR, A., SÉRGIO FILHO, J., MAGALHÃES, F. G., et al. “Hellfire: A design

framework for critical embedded systems' applications.” In: 2010 11th

INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED),

San Jose, CA, 2010. Proceedings... pp. 730-737. Available in:

<https://doi.org/10.1109/ISQED.2010.5450495>.

AGUIAR, A., JOHANN FILHO, S., MAGALHAES, F., et al. “On the design space

exploration through the Hellfire Framework.” In: Journal of Systems Architecture,

Volume 60, Issue 1, January 2014, pp 94-107, ISSN 1383-7621. Available in:

<https://doi.org/10.1016/j.sysarc.2013.10.011>.

(ARMDEV 2017) “ARM Developer Infocenter” Available in:

<http://infocenter.arm.com> Access: February 2017.

(ARMTECH 2017) “ARM the Architecture for the Digital World” Available:

<http://www.arm.com> Access: February 2017.

BAKLOUTI, M., KRICHENE, H., & ABID, M. “Synchronous Communication-Based

Many-Core SoC.” In: Arabian Journal for Science and Engineering, Volume 42, Issue

2, February 2017, pp 845–857, ISSN 2191-4281. Available in:

<https://doi.org/10.1007/s13369-016-2373-2>.

BENINI, L. & DE MICHELI, G. “Networks on Chip: A New SoC paradigm.” In: IEEE

Computer, vol. 35, no. 1, Jan 2002, pp. 70-78, ISSN 0018-9162. Available in:

<https://doi.org/10.1109/2.976921>.

BINKERT, N., SARDASHTI, S., SEN, R., SEWELL, K., et al. “The gem5 simulator.”

In: ACM SIGARCH Computer Architecture News, Volume 39, no. 2, pp. 1-7, 2011.

Available in: <https://doi.org/10.1145/2024716.2024718>.

BOHNENSTIEHL, B., STILLMAKER, A., PIMENTEL, J., et al. “A 5.8 pJ/Op 115

billion ops/sec, to 1.78 trillion ops/sec 32nm 1000-processor array.”. In: 2016 IEEE

SYMPOSIUM ON VLSI CIRCUITS (VLSI-CIRCUITS), Honolulu, HI, 2016.

Proceedings… pp. 1-2. Available in: <https://doi.org/10.1109/VLSIC.2016.7573511>.

BOHNENSTIEHL, B., STILLMAKER, A., PIMENTEL, J., et al. “KiloCore: A Fine-

Grained 1,000-Processor Array for Task-Parallel Applications.” In: IEEE Micro, March

2017, volume 37, no. 2, pp. 63-69, ISSN 0272-1732. Available in:

<https://doi.org/10.1109/MM.2017.34>.

80

BOKHARI, H., JAVAID, H., SHAFIQUE, M., et al. “Malleable NoC: dark silicon

inspired adaptable Network-On-Chip.” In: PROCEEDINGS OF THE 2015 DESIGN,

AUTOMATION & TEST IN EUROPE (DATE) Conference & Exhibition, Grenoble,

France. Proceedings... Publisher EDA Consortium, pp. 1245-1248.

BORKAR, S. "Microarchitecture and design challenges for gigascale integration." In:

37th INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, 2004.

Proceedings… Volume 37, 2004, pp. 3-3. Available in:

<https://doi.org/10.1109/MICRO.2004.24>.

BOSE, P. “Technical Perspective: Is Dark Silicon Real?” In: Communications of the

ACM, 2013, Volume 56, no. 2, pp. 92-92, ISSN 0001-0782. Available in:

<https://doi.org/10.1145/2408776.2408796>.

BURGIO, P., DANILO, R., MARONGIU, A., et al. “A tightly-coupled Hardware

Controller to improve scalability and programmability of shared-memory heterogeneous

clusters.” In: PROCEEDINGS OF THE CONFERENCE ON DESIGN, AUTOMATION

& TEST IN EUROPE (DATE), 2014. Proceedings... Publisher European Design and

Automation Association, pp. 25:1-25:4.

BUSSEUIL, R., BARTHE, L., ALMEIDA, G. M., et al. “Open-scale: A scalable, open-

source NoC-based MPSoC for design space exploration.” In: 2011 INTERNATIONAL

CONFERENCE ON RECONFIGURABLE COMPUTING AND FPGAs (ReConFig),

IEEE, November 2011. Proceedings... pp. 357-362. Available in:

<https://doi.org/10.1109/ReConFig.2011.66>.

CASTILHOS, G., MANDELLI, M., MADALOZZO, G., et al. “Distributed resource

management in NoC-based MPSoCs with dynamic cluster sizes.” In: 2013 IEEE

COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI), Natal, 2013.

Proceedings... pp. 153-158. Available in:

<https://doi.org/10.1109/ISVLSI.2013.6654651>.

CASTILHOS, G., MANDELLI, M., OST, L., et al. “Hierarchical energy monitoring for

task mapping in many-core systems.” In: Journal of Systems Architecture, Volume 63,

February 2016, Pages 80-92, ISSN 1383-7621, Available in:

<https://doi.org/10.1016/j.sysarc.2016.01.005>.

COTA, E., AMORY, A., & LUBASZEWSKI, M. S. “Reliability, Availability and

Serviceability of Networks-on-chip.” In: Springer Science & Business Media, Publisher

Springer US, 2011, pp. 209. Available in: <https://doi.org/10.1007/978-1-4614-0791-1>.

DAS, A., KUMAR, A., & VEERAVALLI, B. “Reliability-driven task mapping for

lifetime extension of networks-on-chip based multiprocessor systems.” In:

PROCEEDINGS OF THE CONFERENCE ON DESIGN, AUTOMATION AND TEST

IN EUROPE (DATE), Grenoble, France. Proceedings... Publisher EDA Consortium,

2013, pp. 689-694.

DAS, A., KUMAR, A., & VEERAVALLI, B. “Temperature aware energy-reliability

trade-offs for mapping of throughput-constrained applications on multimedia MPSoCs.”

In: 2014 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE &

81

EXHIBITION (DATE), Dresden, 2014. Proceedings... pp. 1-6. Available in:

<https://doi.org/10.7873/DATE.2014.115>.

DAS, A., KUMAR, A., & VEERAVALLI, B. “Reliability and energy-aware mapping

and scheduling of multimedia applications on multiprocessor systems.” In: IEEE

Transactions on Parallel and Distributed Systems, March 2016, vol. 27, no. 3, pp. 869-

884, ISSN 1045-9219. Available in: <https://doi.org/10.1109/TPDS.2015.2412137>.

ESMAEILZADEH, H., BLEM, E., ST. AMANT, R., et al. “Dark silicon and the end of

multicore scaling.” In: Proceedings of the 38th ANNUAL INTERNATIONAL

SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA), 2011. Proceedings... Vol.

39, No. 3, pp. 365-376. Available in: <https://doi.org/10.1145/2000064.2000108>.

(FREERTOS 2017) “FreeRTOS - Real Time Operating System reference manual.”

In: 2017. Available in: <http://www.freertos.org/>. Access: February 2017.

GARIBOTTI, R., OST, L., BUSSEUIL, R., et al. “Simultaneous multithreading support

in embedded distributed memory MPSoCs.” In: 2013 50th ACM/EDAC/IEEE DESIGN

AUTOMATION CONFERENCE (DAC), Austin, TX, 2013. Proceedings... pp. 1-7.

Available in: <https://doi.org/10.1145/2463209.2488836>.

HAGHBAYAN, M. H., MIELE, A., RAHMANI, A. M., et al. "A lifetime-aware runtime

mapping approach for many-core systems in the dark silicon era." In: 2016 DESIGN,

AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE),

Dresden, 2016. Proceedings... pp. 854-857.

HAMERSKI, J.C., ABICH, G., REIS, R., et al. “Publish-Subscribe Programming for a

NoC-based Multiprocessor System-on-Chip.” In: 2017 INTERNATIONAL

SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), IEEE, 2017. Proceedings...

(Accepted Paper).

(HEMPS 2017) “HeMPS: Hermes Multiprocessor System on Chip.” Available in:

<http://www.inf.pucrs.br/hemps/>. Access: February 2017.

HOLT, J., AGARWAL, A., BREHMER, S., et al. "Software Standards for the Multicore

Era," in IEEE Micro, vol. 29, no. 3, pp. 40-51, May-June 2009. Available in:

<https://doi.org/10.1109/MM.2009.48>.

HU, W., TANG, X., XIE, B., et al. “An Efficient Power- Aware Optimization for Task

Scheduling on NoC-based Many-core System.” In: 2010 10th IEEE INTERNATIONAL

CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (CIT),

Bradford, 2010. Proceedings... pp. 171-178. Available in:

<https://doi.org/10.1109/CIT.2010.67>.

(IMPERAS 2017) “Imperas Revolutionizing Embedded Software Development.”

Available in: <http://www.imperas.com/>. Access: February 2017.

(ITRS 2015). “International Technology Roadmap for Semiconductors.” Available

in: <http://www.itrs2.net/> Access: February 2017.

KERKHOFF, H. G., WAN, J., & ZHAO, Y. “Linking aging measurements of health-

monitors and specifications for multi-processor SoCs.” In: 2014 9th IEEE

82

INTERNATIONAL CONFERENCE ON DESIGN & TECHNOLOGY OF

INTEGRATED SYSTEMS IN NANOSCALE ERA (DTIS), Santorini, 2014.

Proceedings... pp. 1-6. Available in: <https://doi.org/10.1109/DTIS.2014.6850656>.

LORENZON, A. F., CERA, M. C., & BECK, A. C. S. “Investigating different general-

purpose and embedded multicores to achieve optimal trade-offs between performance

and energy.” In: Journal of Parallel and Distributed Computing, Volume 95,

September 2016, pp. 107-123, ISSN 0743-7315. Available in:

<https://doi.org/10.1016/j.jpdc.2016.04.003>.

LUCAS, A. H., AMORY, A. M., & MORAES, F. G. “Crosstalk Fault Tolerant NoC:

Design and Evaluation.” In: 17th IFIP/IEEE INTERNATIONAL CONFERENCE ON

VERY LARGE-SCALE INTEGRATION-SYSTEM ON A CHIP (VLSI-SoC), Springer

Berlin Heidelberg, October 2009. Proceedings... pp. 81-93. Available in:

<https://doi.org/10.1007/978-3-642-23120-9_5>.

MA, J., FU, F., LIU, Z., et al. “µC-OS II-based Operating System design for cluster in

NoC-based MPSoC.” In: 2013 IEEE INTERNATIONAL CONFERENCE ON SIGNAL

PROCESSING, COMMUNICATION AND COMPUTING (ICSPCC), Kun Ming, 2013,

IEEE. Proceedings... pp. 1-5. Available in:

<https://doi.org/10.1109/ICSPCC.2013.6664028>.

MADALOZZO, G., DUENHA, L., AZEVEDO, R., et al. “Scalability evaluation in

many-core systems due to the memory organization.” In: 2016 IEEE INTERNATIONAL

CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS), Monte

Carlo, 2016. Proceedings... pp. 396-399. Available in:

<https://doi.org/10.1109/ICECS.2016.7841216>.

MAHESHWARI, A., BURLESON, W., & TESSIER, R. “Trading off transient fault

tolerance and power consumption in deep submicron (DSM) VLSI circuits.” In: IEEE

Transactions on Very Large-Scale Integration (VLSI) Systems, Volume 12, no. 3, pp.

299-311, March 2004. Available in: <https://doi.org/10.1109/TVLSI.2004.824302>.

MANDELLI, M. G., DA ROSA, F. R., OST, L., et al. “Multi-level MPSoC modeling for

reducing software development cycle.” In: 2013 IEEE 20th INTERNATIONAL

CONFERENCE ON ELECTRONICS, CIRCUITS, AND SYSTEMS (ICECS), Abu

Dhabi, 2013. Proceedings... pp. 489-492. Available in:

<https://doi.org/10.1109/ICECS.2013.6815460>.

MANDELLI, M., CASTILHOS, G., SASSATELLI, G., et al. “A Distributed Energy-

aware Task Mapping to Achieve Thermal Balancing and Improve Reliability of Many-

core Systems.” In: 2015 28th Symposium on Integrated Circuits and Systems Design

(SBCCI), Salvador, Brazil, 2015. Proceedings... no. 13, pp. 13:1-13:7. Available in:

<https://doi.org/10.1145/2800986.2800992>.

MANDELLI, M., OST, L., SASSATELLI, G., et al. “Trading-off system load and

communication in mapping heuristics for improving NoC-based MPSoCs reliability.” In:

16th INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN

(ISQED), Santa Clara, CA-USA, 2015. Proceedings... pp. 392-396. Available in:

<https://doi.org/10.1109/ISQED.2015.7085457>.

83

MANDELLI, M. G. “Exploration of Runtime Distributed Mapping Techniques for

Emerging Large Scale MPSoCs.” In: 2015, p. 134, Thesis (Doctorate), Faculdade de

Informática – PUCRS, July 13 2015. Available in:

<http://tede2.pucrs.br/tede2/handle/tede/6317>. Access: February 2017.

MARCON, C., AMORY, A., WEBBER, T., et al. “Phoenix NoC: A distributed fault

tolerant architecture.” In: 2013 IEEE 31st INTERNATIONAL CONFERENCE ON

COMPUTER DESIGN (ICCD), Asheville, NC-USA, 2013. Proceedings... pp. 7-12.

Available in: <https://doi.org/10.1109/ICCD.2013.6657018>.

MARTINS, A. L., SILVA, D. R., CASTILHOS, G. M., et al. “A method for NoC-based

MPSoC energy consumption estimation.” In: 2014 21st IEEE INTERNATIONAL

CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS), Marseille,

2014. Proceedings... pp. 427-430. Available in:

<https://doi.org/10.1109/ICECS.2014.7050013>.

MAYER-SCHÖNBERGER, V., & CUKIER, K. “Big data: A revolution that will

transform how we live, work, and think.” Publisher Houghton Mifflin Harcourt, Boston,

New York, 2013, p. 244. ISBN 978-0-544-00269-2.

(MELLANOX 2016) “Mellanox Multicore Processors.” Available in:

<http://www.mellanox.com/>. Access: February 2017.

MORAES, F., CALAZANS, N., MELLO, A., et al. “HERMES: an infrastructure for low

area overhead packet-switching networks on chip.” In: INTEGRATION, the VLSI

journal, Elsevier 2004, volume 38, no. 1, pp. 69-93.

https://doi.org/10.1016/j.vlsi.2004.03.003.

NOERGAARD, T. “Embedded systems architecture: a comprehensive guide for

engineers and programmers.” Publisher Elsevier (Newnes), Second Edition, Waltham,

MA-USA, 2013, p. 652, ISBN 978-0-12-382196-6.

(OVP 2017) “OVPsim Simulator 2017.” Available in: <http://www.ovpworld.org/>.

Access: February 2017.

PARK, D., NICOPOULOS, C., KIM, J., et al. “Exploring fault-tolerant network-on-chip

architectures.” In: INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS

AND NETWORKS (DSN), Philadelphia, PA, 2006. Proceedings... pp. 93-104.

Available in: <https://doi.org/10.1109/DSN.2006.35>.

POTHUKUCHI, R. P., ANSARI, A., VOULGARIS, P., et al. “Using multiple input,

multiple output formal control to maximize resource efficiency in architectures.” In: 2016

ACM/IEEE 43rd ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER

ARCHITECTURE (ISCA), Seoul, 2016. Proceedings... pp. 658-670. Available in:

<https://doi.org/10.1109/ISCA.2016.63>.

RADETZKI, M., FENG, C., ZHAO, X., et al. “Methods for fault tolerance in networks-

on-chip.” In: ACM Computing Surveys, July 2013, Volume 46, pp. 8:1-8:38, ISSN

0360-0300. Available in: <https://doi.org/10.1145/2522968.2522976>.

RUARO, M., CARARA, E. A., & MORAES, F. "Tool-set for NoC-based MPSoC

debugging - A protocol view perspective." In: 2014 IEEE INTERNATIONAL

84

SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), Melbourne VIC, 2014.

Proceedings... pp. 2531-2534. Available in:

<https://doi.org/10.1109/ISCAS.2014.6865688>.

RUARO, M., CHAMORRA, H., RUBIN, F., et al. "A data extraction and debugging

framework for large-scale MPSoCs." In: 2016 IEEE INTERNATIONAL

CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS), Monte

Carlo, 2016. Proceedings... pp. 616-619. Available in:

<https://doi.org/10.1109/ICECS.2016.7841277>.

SAHOO, S. S., KUMAR, A., & VEERAVALLI, B. "Design and evaluation of reliability-

oriented task re-mapping in MPSoCs using time-series analysis of intermittent faults." In:

2016 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE &

EXHIBITION (DATE), EDA Consortium, Dresden, Germany, 2016. Proceedings... pp.

798-803.

SHAFIQUE, M., GARG, S., HENKEL, J., et al. “The EDA Challenges in the Dark

Silicon Era: Temperature, Reliability, and Variability Perspectives.” In: PROCEEDINGS

OF THE 51st ANNUAL DESIGN AUTOMATION CONFERENCE (DAC), ACM, San

Francisco, CA-USA, 2014. Proceedings... pp. 185:1-185:6. Available in:

<https://doi.org/10.1145/2593069.2593229>.

(SIMICS 2017) “Simics Full System Simulator.” Available in:

<https://www.windriver.com/products/simics/>. Access: February 2017.

SINGH, A. K., SHAFIQUE, M., KUMAR, A., et al. “Mapping on multi/many-core

systems: survey of current and emerging trends.” In: PROCEEDINGS OF THE 50th

ANNUAL DESIGN AUTOMATION CONFERENCE(DAC), ACM, Austin, TX-USA,

2013. Proceedings... pp. 1:1-1:10. Available in:

<https://doi.org/10.1145/2463209.2488734>.

TAYLOR, M. B. “Is dark silicon useful? Harnessing the four horsemen of the coming

dark silicon apocalypse.” In: 2012 49th ACM/EDAC/IEEE DESIGN AUTOMATION

CONFERENCE (DAC), San Francisco, CA-USA, 2012. Proceedings... pp. 1131-1136.

ISSN 0738-100X.

ZENG, H., YOURST, M., GHOSE, K., et al. “MPTLsim: a cycle-accurate, full-system

simulator for x86-64 multicore architectures with coherent caches.” In: ACM SIGARCH

Computer Architecture News, 2009, volume 37, no. 2, pp. 2-9, ISSN 0163-5964.

Available in: <https://doi.org/10.1145/1577129.1577132>.

Zhan, J., Xie, Y., & Sun, G. “NoC-Sprinting: Interconnect for fine-grained sprinting in

the dark silicon era.” In: 2014 51st ACM/EDAC/IEEE DESIGN AUTOMATION

CONFERENCE (DAC), San Francisco, CA-USA, 2014. Proceedings... pp. 1-6.

Available in: <https://doi.org/10.1145/2593069.2593165>.

Zhang, Y., Peng, L., Fu, X., et al. “Lighting the dark silicon by exploiting heterogeneity

on future processors.” In: PROCEEDINGS OF THE 50th ANNUAL DESIGN

AUTOMATION CONFERENCE (DAC), ACM, Austin, TX-USA, 2013. Proceedings...

pp. 82:1-82:7. Available in: <https://doi.org/10.1145/2463209.2488835>.

85

(µC-OS 2017) “µC-OS II The Real-Time Operating System.” Available in:

<https://www.micrium.com/>. Access: February 2017.

86

APPENDIX A – PUBLICATIONS OF THE AUTHOR

The results presented in this dissertation were published in two conferences with

international academic recognition. Table X presents the papers, with the respective

conferences name and the year of publication. The first paper underlies the validation of

the proposed FreeRTOS extension under large scale MPSoCs with the proposed

framework (ABICH et al., 2016). The second exploits the Publisher-Subscriber protocol

developed and validated with the proposed extension and framework (HAMERSKY et

al., 2017).

Table XI: List of Publications related to this dissertation results.

 Title Description

1

Extending FreeRTOS to Support Dynamic and Distributed

Mapping in Multiprocessor Systems.

Abich, G., Mandelli, M. G., Rosa, F. R., Moraes, F., Ost, L.

& Reis, R.

In: IEEE International Conference on Electronics, Circuits

and Systems (ICECS), 2016. (ABICH et al., 2016)

Proposed Framework

and FreeRTOS

Extension presented in

Chapters 3 and 4

2

Publish-Subscribe Programming for a NoC-based

Multiprocessor System-on-Chip.

Hamerski, J.C., Abich, G., Reis, R., Ost, L. & Amory, A.

In: IEEE International Symposium on Circuits and Systems

(ISCAS), 2017. (HAMERSKY et al., 2017)

Integration of Publisher-

Subscriber Protocol

presented in Chapter 5

Section 5.4

Source: Author

