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ABSTRACT

This dissertation presents two different defocus blur estimation methods for still
images. Both methods assume a Gaussian Point Spread Function (PSF) and explore
the ratio of gradient magnitudes of reblurred images computed at edge location with
different scales, which provides a closed form mathematical formulation for the local
blur assuming continuous-time signals. The first approach computes 1D profiles
along edge points orthogonal to the local contour, and evaluate the location of the
edge (maximum of the derivative) to adaptively select the number of reblurring
scales. Considering the time consumption of exploring 1D oriented edge profiles,
a second method was proposed based on 2D multiscale image gradients, and local
reblurring parameters were selected based on the agreement of an edge detector
computed at several scales.
Given an initial estimate of the blur scale at edge locations provided by either of these
two methods, a correction step that accounts for the discretization of the continuous
formulation is also proposed. A novel local filtering method that smooths the refined
estimates along the image contours is also proposed, and a fast joint domain filter is
explored to propagate blur information to the whole image to generate the full blur
map. Experimental results on synthetic and real images show that the proposed
methods have promising results for defocus blur estimation, with a good trade off
between running time and accuracy when compared to state-of-the art defocus blur
estimation methods.
To deal with blurry video sequences, temporal consistency was also included in the
proposed model. More precisely, Kalman Filters were applied to generate smooth
temporal estimates for each pixel when the local appearance of the video sequence
does not vary much, and allowing sharp transitions during drastic local appearance
changes, which might relate to occlusions/disocclusions.
Finally, this dissertation also shows applications of the proposed methods for image
and video blur estimation. A new image retargeting method is proposed for photos
taken by a shallow Depth of Field (DoF) camera. The method includes defocus blur
information with the seam carving framework aiming to preserve in-focus objects
with better visual quality. Assuming the in-focus pixels related to regions of interest
of a blurry image, the proposed retargeting method starts with a cropping method,
which removes the unimportant parts (blurry) of the image, then the seam carving



method is applied with a novel energy function that prioritizes in-focus regions.
Experimental results show that the proposed blur aware retargeting method works
better at preserving in-focus objects than other well known competitive retargeting
methods.
The dissertation also explores the proposed blur estimation method in the context
of image and video deblurring, and results were compared with several other blur
estimation methods. The obtained results show that metrics typically used to eval-
uate blur estimation methods (e.g. Mean Absolute Error) might not be correlated
with the quality of deblurred image metrics, such as Peak Signal to Noise Ratio.

Keywords: Spatially Varying Defocus. Defocus Blur Estimation. Image retarget-
ing. Image Deblurring. Video Deblurring.



Estimação de Borramento por Desfoco Espacialmente Variante e

Aplicações

RESUMO

Esta tese apresenta dois métodos diferentes de estimativa de desfocagem usando
uma única imagem. Ambos os métodos assumem uma função de espalhamento de
ponto (Point Spread Function - PSF) Gaussiana e exploram a razão de magnitudes
de gradientes de versões re-borradas da imagem original com escalas diferentes nas
bordas da imagem, o que fornece uma expressão matemática fechada para borra-
mento local. A primeira abordagem calcula perfis 1D ao longo de pontos de borda
ortogonais ao contorno local, e avalia a localização da borda (máximo da derivada
primeira) para selecionar adaptativamente o número de escalas no re-borramento.
Considerando o consumo de tempo de explorar perfis de aresta orientados 1D, um
segundo método foi proposto com base em gradientes de imagem diretamente no
domínio 2D, e os parâmetros de re-borramento locais foram selecionados com base
na concordância de um detector de bordas calculado em várias escalas.
Dada uma estimativa inicial da escala de desfocagem nas posições de borda pro-
porcionada por qualquer um destes dois métodos, é também proposto um passo de
correção que atenua os erros introduzidos pela discretização da formulação contínua.
Um novo método de filtragem local que suaviza as estimativas refinadas ao longo dos
contornos de imagem também é proposto, e um filtro de domínio conjunto (joint-
domain filter) rápido é explorado para propagar informações de desfocagem para
toda a imagem, gerando o mapa de desfocagem completo. Os resultados experimen-
tais em imagens sintéticas e reais mostram que os métodos propostos apresentam
resultados promissores para a estimativa de borramento por desfoco, com um bom
compromisso entre qualidade e tempo de execução quando comparados a técnicas
estado-da-arte.
Para lidar com sequências de vídeo desfocadas, a consistência temporal também foi
incluída no modelo proposto. Mais precisamente, Filtros de Kalman foram aplicados
para gerar estimativas temporais suaves para cada pixel quando a aparência local
da sequência de vídeo não varia muito, permitindo transições durante mudanças
drásticas da aparência local, que podem se relacionar com oclusões/desoclusões.
Finalmente, esta tese também mostra aplicações dos métodos propostos para a esti-



mativa de desfocagem de imagem e vídeo. Um novo método de redimensionamento
(retargeting) de imagens é proposto para fotos tiradas por câmera com baixa profun-
didade de campo. O método inclui informação de desfocamento local no contexto
do método seam carving, visando preservar objetos em foco com melhor qualidade
visual. Assumindo que os pixels em foco estejam relacionados às regiões de inte-
resse de uma imagem com desfocamento, o método de redimensionamento proposto
começa com um método de corte (cropping), o qual remove as partes sem impor-
tância (borradas) da imagem, e então o método seam carving é aplicado com uma
nova função de energia que prioriza as regiões em foco. Os resultados experimentais
mostram que o método proposto funciona melhor na preservação de objetos em foco
do que outras técnicas de redimensionamento de imagens.
A tese também explora o método de estimação de desfocagem proposto no contexto
de des-borramento de imagens e sequências de vídeo, e os resultados foram compa-
rados com vários outros métodos de estimação de desfocagem. Os resultados obtidos
mostram que as métricas tipicamente usadas para avaliar métodos de estimação de
desfocagem (por exemplo, erro absoluto médio) podem não estar correlacionadas
com a qualidade das métricas de imagem desfocada, como a Relação Sinal-Ruído de
Pico.

Palavras-chave: Estimação de borramento, Remapeamento de imagens, Desbor-
ramento.



LIST OF ABBREVIATIONS AND ACRONYMS

CEF Connected Edge Filter

CoC Circle of Confusion

ISC Improved Seam Carving

JNB Just Noticeable Blur

LSF Least Square Fitting

LBP Local Binary Pattern

MAE Mean Absolute Error

MSE Mean Square Error

OSS Optimized Scale and Stretch

PSNR Peak Signal to Noise Ratio

PSF Point Spread Function

SDD Symmetric Diagonally-Dominant

STD Structure-Texture Decomposition

WARP Nonhomogeneous Warping



LIST OF FIGURES

Figure 1.1 Blur types............................................................................................ 15
Figure 1.2 DOF in photography ........................................................................... 16
Figure 1.3 Typical defocus blur map .................................................................... 17
Figure 1.4 Circle of Confusion .............................................................................. 17

Figure 2.1 Blurry edge and corresponding 2nd order derivative response ............ 21
Figure 2.2 Defocus blur estimation result of (ELDER; ZUCKER, 1998) ............. 21
Figure 2.3 Defocus blur propagation example ...................................................... 22
Figure 2.4 The overview of the blur estimation approach of Zhuo & Sim............ 23
Figure 2.5 Experimental results of Zhuo & Sim ................................................... 23
Figure 2.6 The edge model for defocus map estimation ....................................... 24
Figure 2.7 Experimental results for a real image from (ZHANG; CHAM, 2012) . 25

Figure 3.1 Artificially blurred synthetic image ..................................................... 33
Figure 3.2 Blur estimation errors along the vertical left edge of Fig. 3.1 ............. 34
Figure 3.3 Preserved and neighbouring edge gradient profiles.............................. 36
Figure 3.4 Blur estimation errors along the left edge of the noisy version of

Fig. 3.1 using 1D adaptive scale selection method with comparisons to
fixed σ2 ......................................................................................................... 37

Figure 3.5 Overview of sparse defocus blur map estimation method based on
multi-scale image gradients .......................................................................... 38

Figure 3.6 Multi-scale edge map of the image depicted in Fig. 3.1 ...................... 39
Figure 3.7 Blur estimation errors along the left edge of the noisy version of

Fig. 3.1 using 2D multi-scale image gradients method with comparisons
to fixed σ2 ..................................................................................................... 40

Figure 3.8 Blur estimation errors along the left edge of the noisy version
(η = 1.275) of Fig. 3.1 using 1D and 2D scale selection methods with
Connected Edge Filtering............................................................................. 41

Figure 3.9 Comparison of Gaussian derivatives in continuous and discrete domain42
Figure 3.10 Blur estimation errors along the vertical left edge of Fig. 3.1 with

noisy level (η = 1.275) using 1D oriented profiles and 2D multi-scale
image gradients + CEF + refinement .......................................................... 43

Figure 3.11 Step by step full blur map estimation using our 1D adaptive scale
selection and 2D multi-scale image gradients methods................................. 46

Figure 4.1 Typical blurry video ............................................................................ 48
Figure 4.2 Estimated defocus blur scales at two reference points (depicted in

Fig. 4.1) along time ...................................................................................... 49
Figure 4.3 Blurry video frames for forward optic flow.......................................... 50
Figure 4.4 Blurry video frames for reverse optic flow........................................... 50
Figure 4.5 Blurry video frames for optic flow....................................................... 51
Figure 4.6 Kalman filtered of the blue reference point (in Fig. 4.1) along time ... 53

Figure 5.1 Artificially blurred edge stripe images................................................. 57
Figure 5.2 Blur estimation errors along the edge of the image depicted Fig. 5.1

with different noise levels ............................................................................. 58
Figure 5.3 Blur estimation errors along the vertical left edge of Fig. 3.1 for

different noise levels...................................................................................... 60
Figure 5.4 Naturally sharp images and corresponding artificially blurred images 62



Figure 5.5 Comparison of different blur estimation algorithms using the first
artificially blurred image .............................................................................. 63

Figure 5.6 Comparison of different blur estimation algorithms using the second
artificially blurred image .............................................................................. 63

Figure 5.7 Comparison of different blur estimation algorithms using the third
artificially blurred image .............................................................................. 64

Figure 5.8 Comparison of different blur estimation algorithms using the forth
artificially blurred image .............................................................................. 64

Figure 5.9 Comparison of different blur estimation algorithms using the fifth
artificially blurred image .............................................................................. 65

Figure 5.10 Comparison of different blur estimation algorithms using the sixth
artificially blurred image .............................................................................. 65

Figure 5.11 Comparison of different blur estimation algorithms using the images(1-
12) provided in (D’ANDRES et al., 2016).................................................... 70

Figure 5.12 Comparison of different blur estimation algorithms using the images(13-
22) provided in (D’ANDRES et al., 2016).................................................... 71

Figure 5.13 Disc to Gaussian blur scale conversion function ................................ 72
Figure 5.14 Artificially blurred images using spatially-invariant Gaussian PSFs

and corresponding disc blurry images. ......................................................... 73
Figure 5.15 MAEs of each artificially blurred image pair (Gaussian and disc

blurry) for different Gaussian and disc kernel levels..................................... 73
Figure 5.16 Artificially blurred natural image using spatially-invariant Gaus-

sian PSFs and corresponding disc blurry images. ......................................... 74
Figure 5.17 Artificially blurred natural image using spatially-invariant Gaus-

sian PSFs and corresponding disc blurry images. ......................................... 75
Figure 5.18 Artificially blurred natural image using spatially-invariant Gaus-

sian PSFs and corresponding disc blurry images. ......................................... 75
Figure 5.19 Artificially blurred natural image using spatially-invariant Gaus-

sian PSFs and corresponding disc blurry images. ......................................... 76
Figure 5.20 MAEs of each artificially blurred image pair (Gaussian and disc

blurry) for different Gaussian and disc kernel levels..................................... 76
Figure 5.21 Real blurryvideo sequence # 1 .......................................................... 77
Figure 5.22 Estimated blur values for all five control points for video #1 ........... 78
Figure 5.23 Real blurryvideo sequence # 2 .......................................................... 79
Figure 5.24 Estimated blur values for all five control points for video #2 ........... 80
Figure 5.25 Real blurryvideo sequence # 3 .......................................................... 82
Figure 5.26 Estimated blur values for all five control points for video #3 ........... 82
Figure 5.27 Real blurryvideo sequence # 2 .......................................................... 83
Figure 5.28 Estimated blur values for all five control points for video #4 ........... 83
Figure 5.29 Illustration of the minimal cropping region ....................................... 86
Figure 5.30 Seam using different energy map for image retargeting..................... 89
Figure 5.31 Image retargeting results using images from RetargetMe database (RU-

BINSTEIN et al., 2010)................................................................................ 90
Figure 5.32 Final retargeting results using our blur aware approach (cropping

+ seams) with different defocus blur estimation methods............................ 91
Figure 5.33 Comparison of deblurring results on images (1-12) of (D’ANDRES

et al., 2016)................................................................................................... 95
Figure 5.34 Comparison of deblurring results on images (13-22) of (D’ANDRES

et al., 2016)................................................................................................... 96
Figure 5.36 Video deblurring results for Video #1............................................... 99
Figure 5.37 Video deblurring results for Video #2............................................. 100



Figure 5.38 Video deblurring results for Video #3............................................. 101
Figure 5.39 Video deblurring results for Video #4............................................. 102



LIST OF TABLES

Table 3.1 Mean absolute errors computed at different edge regions ..................... 34
Table 3.2 Mean absolute errors computed along the left edge of the noisy ver-

sion of Fig. 3.1 using 1D adaptive scale selection method with compar-
isons to fixed σ2 ............................................................................................ 38

Table 3.3 Mean absolute errors along the left edge of the noisy version (η =
1.275) of Fig. 3.1 using 1D and 2D scale selection methods with Con-
nected Edge Filtering ................................................................................... 42

Table 3.4 Mean absolute errors along the left edge of the noisy version (η =
1.275) of Fig. 3.1 using 1D and 2D scale selection methods with Con-
nected Edge Filtering ................................................................................... 44

Table 5.1 Mean absolute errors comparisons of different noise levels ................... 58
Table 5.2 Mean absolute errors comparisons of different noise and edge mis-

licalization levels........................................................................................... 59
Table 5.3 Mean absolute errors along the left edge of the image depicted

Fig. 3.1 for different noise levels ................................................................... 61
Table 5.4 Mean absolute errors (MAE) for the artificially blurred image # 1 ..... 66
Table 5.5 Mean absolute errors (MAE) for the artificially blurred image # 2 ..... 66
Table 5.6 Mean absolute errors (MAE) for the artificially blurred image # 3 ..... 66
Table 5.7 Mean absolute errors (MAE) for the artificially blurred image # 4 ..... 66
Table 5.8 Mean absolute errors (MAE) for the artificially blurred image # 5 ..... 67
Table 5.9 Mean absolute errors (MAE) for the artificially blurred image # 6 ..... 67
Table 5.10 Mean absolute errors (MAE) for the images provided in (D’ANDRES

et al., 2016)................................................................................................... 69
Table 5.11 PNSRs for the deblurred images using the data provided in (D’ANDRES

et al., 2016)................................................................................................... 94



CONTENTS

1 INTRODUCTION .............................................................................15
1.1 Sources of Blur...............................................................................15
1.2 Degradation Model of the Blur ......................................................16
1.3 Motivation for This Work ..............................................................18
1.4 Goals ..............................................................................................19
2 RELATED WORK ............................................................................20
2.1 Edge-Based Methods......................................................................20
2.2 Patch-Based Methods.....................................................................26
2.3 Chapter Conclusion........................................................................28
3 DEFOCUS BLUR ESTIMATION FOR STILL IMAGES .................30
3.1 Initial Edge-Based Sparse Blur Estimation ....................................30
3.1.1 Theoretical foundations ............................................................................... 30
3.1.2 Mathematical Model of a Blurry Edge ........................................................ 31
3.1.3 Sparse Blur Map Estimation Using 1D Oriented Profiles............................ 35
3.1.4 Sparse Blur Map Estimation Using 2D Multi Scale Image Gradients ......... 38
3.2 Connected Edge Filter ...................................................................40
3.3 Sparse Blur Map Refinement .........................................................42
3.4 Defocus Blur Map Propagation......................................................44
4 DEFOCUS BLUR ESTIMATION ON VIDEO SEQUENCES ..........48
4.1 Kalman Filter for Temporal Coherence .........................................52
4.1.1 The Measurement Noise Variance ............................................................... 54
4.1.2 The Process Noise Variance......................................................................... 54
5 EXPERIMENTAL RESULTS AND APPLICATIONS .....................56
5.1 Evaluation of Blur Estimation Methods.........................................56
5.2 Defocus Blur Estimation Results ...................................................57
5.2.1 Sparse Defocus Blur Estimation.................................................................. 57
5.3 Full Defocus Blur Estimation .........................................................61
5.3.1 Natural Images with Artificial Blur Maps ................................................... 61
5.3.2 Naturally Blurred Images ............................................................................ 67
5.3.3 Effect of the Point Spread Function ............................................................ 72
5.4 Video Defocus Blur Estimation......................................................77
5.5 Blur-aware Image Retargeting .......................................................84
5.5.1 Blur-Aware Image Cropping ........................................................................ 85
5.5.2 Image Retargeting With Seam Removal...................................................... 87
5.5.3 Experimental Results of Blur-Aware Retargeting........................................ 89
5.6 Image and Video Deblurring ..........................................................92
5.6.1 Image Deblurring......................................................................................... 92
5.6.2 Video Deblurring ......................................................................................... 98
6 CONCLUSIONS ..............................................................................103
6.1 Future Work.................................................................................105
APPENDIX A - RESUMO EXPANDIDO.........................................107
REFERENCES ...................................................................................117



15

1 INTRODUCTION

Images are acquired to record or show useful information in many areas, such
as consumer photography, hyper-spectral imaging, microscopy, medical imaging, etc.
However, all these imaging systems have imperfections in their sensors and/or cir-
cuitry of the cameras. Hence, most of the recorded images represent some amount of
degradation of the real scene depending on camera settings and lighting conditions,
among other factors. One of the degradation types that can occur is blur, which
arises due to several factors.

1.1 Sources of Blur

Considering the blur sources, one can categorize the blur mainly into two
groups: defocus and motion blur (see examples in Fig. 1.1).

Figure 1.1: (a) Motion and (b) defocus blur effect on images. Source: <http:
//en.wikipedia.org/wiki/Blur> accessed in January, 2017

(a) (b)

Imaging systems create photos assuming that the sensor will capture only a
single instant of time. However, because of hardware constraints (or some artistic
reasons), the camera senses the scene over a period of time. Mostly, this exposure
period is short enough to capture an instantaneous moment of the scene, but this is
not always true. Due to the camera or object movement, which is amplified by long
exposure times, the image may present artifacts due to the motion and this artifact
is called motion blur (see example in Fig. 1.1(a)).

On the other hand, limited focal range of optical lenses results in defocus
blur, which is a phenomenon that can be encountered on a daily basis. Defocus blur
is often called as a defect, but differently from motion blur it is not just an unwanted

http://en.wikipedia.org/wiki/Blur
http://en.wikipedia.org/wiki/Blur
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inevitable degradation of an imaging system. In fact, defocus blur can be used on
purpose in photographs in order to increase the visual importance of a subject, to
attenuate the viewers’ attention from “unimportant” parts of the photograph, or
just because of artistic reasons. This phenomenon can be observed in Fig. 1.2. The
object of interest, which is the top of the fountain, can be immediately perceived
as the most relevant part of the image. In fact, this object is depicted in focus
(sharply), whereas all the other parts of the photograph are blurred.

Figure 1.2: A photograph as an example for DOF in photography. Source: <http:
//androidnewspad.com/tag/battle/> accessed in January, 2017

Apart from the diversity of occurrence of defocus blur on photographs, es-
timating defocus blur is a challenging task, mainly because the blur amount is
spatially varying and cannot be represented by a unique global descriptor. Most
of the existing methods for defocus blur identification estimate the Point Spread
Function (PSF) associated with the image acquisition system, where the PSF typi-
cally is spatially varying and basically described through a simple model (e.g. disc,
Gaussian), which is represented by a single parameter that shows its scale (radius,
standard deviation etc.). For a given image, a 2D map of the scale parameter is
called defocus blur map, which illustrates the local defocus blur amount at each
pixel location (see an example in Fig. 1.3).

1.2 Degradation Model of the Blur

Even though there are various kinds of blur types (as observed in Fig. 1.1),
blur can be modeled by similar degradation model. However, this dissertation will
tackle the defocus blur degradation model. A brief explanation of this model can be
as following: from a given camera setting, rays coming from scene points that lie on

http://androidnewspad.com/tag/battle/
http://androidnewspad.com/tag/battle/
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Figure 1.3: Original and its defocus blur map image (produces by the method
of (ZHUO; SIM, 2011))

the focal plane, which is located at a certain distance from the lens, will converge
exactly at the same point. However, rays coming from points that lie on farther or
closer distances away from the focal plane will not converge to the same point, but
to a patch on the sensor plane, called Circle of Confusion (CoC) (as can be seen in
Fig. 1.4). This latter regions are referred to as defocused (PENTLAND, 1987).

Figure 1.4: Circle of Confusion in thin lens model Source: <http://http.developer.
nvidia.com/GPUGems3/gpugems3_ch28.html> accessed January, 2017

A defocus image can be formulated as convolution of the image and defocus
function Point Spread Function (PSF) plus noise. Considering a spatially invariant
PSF, the model can be formulated as

Ib(x, y) = I(x, y) ∗ h(x, y) + η(x, y), (1.1)

where Ib(x, y) and I(x, y) represent the observed and the original images respectively,
h(x, y) is the PSF of blur and η is the noise parameter. In this model, h is the defocus
kernel, typically a Gaussian function with spread parameter σb, which is related to
the amount of blur. Therefore, the quality of blur parametrization is highly related
to the defocus function (or Point Spread Function).

The model given in Eq. 1.1 represents spatially constant blur, meaning that

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html
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each pixel has the same blur scale. However, as it can be observed in Fig. 1.4, the
spread parameter σb is related to the distance of the object. Therefore, different
regions should have different spread parameters. A more realistic formulation of
defocus blur is given by

Ib(x, y) = I(x, y) ∗ h(x, y;σ(x, y)) + η(x, y), (1.2)

where h(x, y;σ(x, y)) indexed PSF with a spatially varying scale parameter σ(x, y)
and η is the noise parameter.

Using a spatially varying Gaussian kernel to model blur degradation is more
realistic than to assume the blur kernel is fixed for whole image pixels. However, the
difference in spatially varying case is high and any kind of measurement strategy
needs some local assumptions, otherwise its model can be extremely complicated.

1.3 Motivation for This Work

Even though blurring causes the loss of image details and is often undesired,
estimating the spatially varying blur amount from a single image might provide sev-
eral additional cues about the scene captured by the camera. In particular, defocus
blur estimation has been studied by researchers in computer vision, computational
photography and computer graphics for variety of applications, such as

• Deblurring : it can be referred as the main application of the defocus blur and
it is basically retrieving back the sharpness of the blurry regions to generate
a partially or an all-focus image.

• Refocusing : it is a research topic related to computational photography
and basically is an image processing technique that magnifies existing defocus
from a given single photo in order to divert the importance of the object in
the scene.

• Retargeting : it a is relatively recent research area and basically related to
changing the size of the image for desired display that might include changing
the aspect ratio of the image while keeping the important objects with an
acceptable visual quality. Retargeting is proposed because the classical image
resizing operators (e.g. scaling, cropping) are inefficient to keep the content
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of an image, since these methods tent to cause distortions and/or remove
important information from the image. This dissertation presents a blur-aware
retargeting approach.

The aforementioned applications for defocus blur estimation show that it is
an important problem in vision and graphics. Although there are many existing
approaches for defocus blur estimation, the problem still presents many challenges
(some of these methods and challenges will be discussed in Chapter 2), particularly
in the context of blurry video sequences. In this dissertation we propose an edge-
based defocus blur estimation method for still images and also an extension for
video sequences aiming to remove temporal flickering. We also show applications
of the proposed blur estimation method, such as image and video deblurring, and
introduce a new blur-aware retargeting method.

1.4 Goals

The main goal of this dissertation is to develop an edge-based defocus blur
estimation method that tackles the most common problems for any edge-based de-
focus blur map estimation methods might face: noise, edge mislocalization and edge
interference. Although most of the existing edge-based methods use gradient mag-
nitude ratios of the original and/or reblurred versions of the image, there is no
discussion about adequate reblurring parameter(s) selection, which is a key issue for
any kind of edge-based defocus blur estimation methods. In this dissertation, we
aim to explore the selection of reblurring parameter for gradient magnitude calcu-
lation to cope the aforementioned problems. Moreover, we aim to propose the use
of a fast guided filter to propagate estimated blur amounts from edge location to
whole image.

Then, we want to extend the proposed method for video-related applications.
Since the use of defocus blur estimation methods in a frame by frame manner tends
to produce temporal artifacts, another goal of this dissertation is to enforce some
temporal coherence into the proposed framework. Finally, we aim to explore the es-
timated defocus blur maps in different applications, such as image/video deblurring,
and blur-aware image retargeting.
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2 RELATED WORK

The challenging problem of defocus blur estimation from a single image has
been studied before and several methods have been proposed in the past years.
Nevertheless, it is a long-standing problem since measuring the defocus level of
each pixel is not straightforward due to a variety of factors, such as noise, lack of
information in homogeneous regions, etc. Therefore, it is still an active research
area.

In (VU; PHAN; CHANDLER, 2012), the authors classify image blur/sharpness
estimation into three classes: edge-based, pixel-based and transform-based methods.
Since both pixel-based and transform-based methods explore local image patches, in
this dissertation we consider two main classes of defocus blur estimation methods:
edge-based and patch-based. The first class initially models and estimates defo-
cus blur along image edges (where blur is more noticeable), and then propagates
the information through the whole image. The second class estimates the full blur
map directly at all pixels, using mostly local patches/regions. Some defocus blur
estimation algorithms will be revised next.

2.1 Edge-Based Methods

One of the earliest attempts for estimating the defocus amount on images
is the work of (PENTLAND, 1987). In this method, a correlation was obtained
between the degree of blur and the depth by separating the characteristic of the
scene from the lens via analyzing the effect of sharp edges in the image data. The
method represents a blurry edge as a convolution of the image data with a Gaussian
(PSF), which is defined by h(r;σb), where r is the blur radius and σb is the measure of
spread (standard deviation). The author explored the Laplacian of this convolution,
given by

C(x, y) = ∇2(h(r;σb) ∗ I(x, y)), (2.1)

and used it at the point of zero crossings in order to estimate σb. One limitation
of this method is feature dependency, since the scene characteristic must be known
prior to evaluation. In the paper, the results are given qualitatively according to
the human visual perception.



21

Later, (ELDER; ZUCKER, 1998) described a simultaneous edge detection
and blur estimation method, that exploits the first and second order derivatives,
obtained using steerable Gaussian basis filters. In particular, they compute the
distance between extrema of inverse signs of the second derivative in the gradient
direction using steerable filters as depicted in Fig. 2.1. Then, these second order
derivatives are fitted to a step edge model in order estimate the exact location of
the blurry edge, and the distance parameter d is used to compute the unknown blur
amount of the blurry edge since extrema points are expected to occur at ±

√
σ′ + σ2

b ,
where σ′ is the reblurring parameter of steerable filters and σb is the unknown blur
value. Typical example from (ELDER; ZUCKER, 1998)’s work can be seen in
Fig. 2.2.

Figure 2.1: Blurry edge and and corresponding 2nd order derivative response.
Source: (ELDER; ZUCKER, 1998)

Figure 2.2: From left to right: the synthetic image, detected edge and estimated
versus actual blur scale along the edge (ELDER; ZUCKER, 1998).

(BAE; DURAND, 2007) extended (ELDER; ZUCKER, 1998)’s method in
order to magnify the existed defocus blur aiming to create an artistic photograph
which is called Defocus Magnification. (BAE; DURAND, 2007), instead of measuring
the distance between extrema, fit the actual pixel response to the multi-scale model
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of the second derivative by minimizing the error of fitting using Least Square Fitting
(LSF). Unlike (ELDER; ZUCKER, 1998)’s work, they propagate the defocus blur
amount to whole image since the usage of second order derivatives produces a sparse
blur map, in which blur scales are defined only at edge locations. Their propagation
is based on non-homogeneous optimization that uses color similarities along the
image (similar to (LEVIN; LISCHINSKI; WEISS, 2004)). A typical experimental
result for a real image from (ELDER; ZUCKER, 1998) can be seen in Fig. 2.3.

Figure 2.3: The input image and full defocus blur map (BAE; DURAND, 2007)

(TAI; BROWN, 2009) proposed another method for defocus blur map esti-
mation using the local contrast prior (LC), which presents a relationship between
local image gradients and local image contrasts. They discovered that for blurry
regions in images, gradient magnitudes are smaller than the local contrast because
of the smoothing effect of the blur; in other words, when the defocus blur increases,
the ratio between gradient magnitudes and local contrast increases. Using that in-
formation, they suggested a simple yet promising method for defocus blur estimation
without using filter-banks or frequency decompositions. However, computing LC for
each pixel is not obvious at the homogeneous regions and weak edges due to noise,
so that defocus blur will not be defined for each pixel. To tackle this problem (pro-
duce a full defocus blur map), they proposed a Markov Random Field propagation
scheme that extends the estimated blur amount into the pixels/regions where the
local contrast prior cannot be defined.

Later, this work was extended by (SHEN; HWANG; PEI, 2012). In their
spatially varying deblurring work, they remove the out-of-focus blur using the es-
timated defocus blur map. In their method, local contrast priors are used only at
edge location, and differently from (TAI; BROWN, 2009), a guided filter (HE; SUN;
TANG, 2010) is used for propagation.

(ZHUO; SIM, 2011) proposed a novel method that uses gradient magnitude
ratios to estimate the defocus blur amount. The blur estimates are computed at
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exact edge locations by taking the ratio of gradient magnitudes of the original image
and a re-blurred version of the image. The overview of this approach can be seen
in Fig. 2.4. Then, estimated blur scales at edge locations are propagated to whole
image using Alpha Laplacian Matting (LEVIN; LISCHINSKI; WEISS, 2004), which
is a semi-automatic technique for image colorization. Some experimental results can
be seen in Fig. 2.5.

Figure 2.4: The overview of the blur estimation approach proposed in (ZHUO; SIM,
2011). Source : (ZHUO; SIM, 2011)

Figure 2.5: Experimental result of (ZHUO; SIM, 2011) for real images. (a)-(c)
original images and (b)-(d) are the corresponding defocus blur maps

(a) (b) (c) (d)

(ZHANG; CHAM, 2012) proposed an edge based defocus blur estimation
method for Refocusing and Defocusing. In their method, they modeled edges in a
different manner:

e(x; b, c, x0) = cu(x− x0) + b, (2.2)

where b denotes the edge basis and c represents the edge contrast. According
to this model, the representation of a typical blurry edge s(x; b, c, w, x0), which
can be obtained by convolving e(x; b, c, x0) with a 1-D Gaussian kernel g(x;w) =

1√
2πw2 exp

(
− x2

2w2

)
, will be as in Fig. 2.6(a),

s(x; b, c, w, x0) = b+ c

2

(
1 + erf

(x− x0

w
√

2
))
, (2.3)
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Figure 2.6: One dimensional parametric edge model from (ZHANG; CHAM, 2012)

(a) (b)

Then, the defocus blur amount is computed by convolving the blurry edge with a
known Gaussian derivative filter g′d(x;σd)1, using the assumption that the detected
peak lies at x = 0, which will result in

d(x; c, w;σd) = c√
2π(w2 + σ2

d)
exp

(
− (x− x0)2

2(w2 + σ2
d)

)
. (2.4)

Finally, three point samples d1, d2 and d3 are selected as shown in Fig. 2.6(b) in
order to determine all parameters, given by

c = d1

√
2πa2/ ln(l1)l

1
4a
2

w =
√
a2/ ln(l1)− σ2

d

x0 = 0.5a ln(l2)/ ln(l1)

b = s(x0)− c

2

(2.5)

where l1 = d2
1

d2d3
and l2 = d2/d3. The estimated blur amounts at edge locations w are

propagated to non-edge points using a similar approach proposed in (ZHUO; SIM,
2011). Experimental results using real images can be seen in Fig. 2.7.

(TANG; HOU; SONG, 2013) used a similar method as (ZHUO; SIM, 2011)
except exploring spectrum contrasts to estimate defocus blur amount at edges. In
particular, their method takes into account the chromatic aberration caused by
wavelength dependency. More recently, (CHEN; CHEN; CHANG, 2016) proposed
a fast defocus blur estimation method based on over-segmentation and transductive
inference in order to interpolate estimated blur amount from edge locations to the

1The author reports that [1, 3] is a reasonable range for setting σd
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Figure 2.7: Experimental results for a real image from (ZHANG; CHAM, 2012). (a)
the original image and (b) corresponding defocus blur map.

(a) (b)

whole image. (LIU; ZHOU; LIAO, 2016) reformulated the blurry edge considering
that the left and right sides of the edge can have different defocus blur amounts (i.e.
left σl and right σr), which is given by,

i(x) = bu(−x) ∗ g(x;σl) + (a+ b)u(x) ∗ g(x;σr), (2.6)

with
a =
|∑(x,y)∈RL i(x, y)−∑(x,y)∈RR i(x, y)|

rl
, (2.7)

b =
min{∑(x,y)∈RL i(x, y),∑(x,y)∈RR i(x, y)}

rl
(2.8)

where RL and RR denote small (r × l) size windows on each side of the edge point
along the gradient direction.

To compute unknown blur scales σl and σr, the image is reblurred by multi-
scale Gaussian functions, whose standard deviations σ1, σ2, ... , σN are known.
Then, using the gradient magnitude ratio approach similar to (ZHUO; SIM, 2011),
N − 1 estimates are computed for each edge point (σl1 , σl2 , ... , σlN−1 and σr1 , σr2 ,
... , σrN−1). Later, these estimates are combined by solving a linear system, which
produces a single value for each unknown σl and σr. Finally, (ZHUO; SIM, 2011)’s
approach is adopted to produce full blur map, by using a simplification version of the
original image (which is based on structure-texture decomposition (STD)), instead
of using the original image, which might produce visible edges on objects in the final
blur maps.
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2.2 Patch-Based Methods

The second class of defocus blur estimation methods typically explore image
patches to estimate the local blur amount. In particular, some of these methods
work in the frequency domain, exploring mostly the convolution theorem.

Chakrabarti et al. (CHAKRABARTI; ZICKLER; FREEMAN, 2010) pio-
neered the exploration of the convolution theorem for blur identification (both de-
focus and motion). Their work starts with a definition of localized frequency rep-
resentation assuming that the blur scales are constant in any local neighborhood:

fi[x] = Wi[x] exp(−2πj〈ωi, x〉) (2.9)

where Wi[x] ∈ {0, 1} is a symmetric window function with limited spatial support,
and ωi is the frequency defined in <2. Then, these filters are applied to an image
I which results in the corresponding responses Ii[x] = (I ∗ fi)[x], where the set of
values {Ii[x]}i are the Fourier decomposition of a window that centered at location
x. Then, using the assumption that hx (local blur scale) is constant in a local
neighborhood, it is derived

Ibi [x] = (I ∗ (hx ∗ fi))[x] + (η ∗ fi)[x] (2.10)

where η is the noise term as described in Eq 1.2.
Since estimation of blur kernels hx is under-determined from the blurry in-

put image Ib, the authors assume a Gaussian distribution of image gradients as a
statistical prior model for the latent sharp image I.

I∇[x] = (∇ ∗ I)[x] ∼ N (0, σ2
g). (2.11)

Since Eq. 2.10 is linear, I can be written as

I∇bi [x] = fi ∗ I∇bi = (hx ∗ I∇) ∗ fi + (∇ ∗ n) ∗ fi, (2.12)

Then, the blur kernels are estimated with a conjunction of MAP approach defined
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in (LEVIN et al., 2011).

P ({I∇bi [x]}i|hx) =
∏
i

N (I∇bi [x]|0, σ2
gσ

2
hxi + σ2

ni) (2.13)

where σ2
hxi is the blur spectrum and σ2

ni is the noise spectrum. However, even
though this formulation showed a good approximation for blur estimation, they
claimed that it is not useful for spatially varying case, and instead of choosing
a single Gaussian with variance σ2

g , they proposed to use a continuous range for
image gradient variances, tying together the scale parameters within each spatial
neighborhood. More precisely, they used

P ({I∇[x]}x∈η) =
∫
Ps(s)

∏
x∈η
N (I∇[x]|0, s)ds (2.14)

where η is a small spatial neighborhood, s is the scale parameter, Ps(s) is the
probability distribution on s, which is choosen as S = (0, smax). Then the optimal
conditional likelihood analogous to the simple Gaussian case (Eq. 2.13) is defined
as

P ({I∇bi [x]}i|hx) ∝ arg min
s∈S

∏
i

N (I∇bi [x]|0, sσ2
hxi + σ2

ni) (2.15)

Finally, the optimal value ŝ that maximize Eq. 2.15 is found iteratively using

ŝ =
(∑

i

ρi(ŝ)
)−1∑

i

ρi(ŝ)
|I∇bi [x]|2 − σ2

ni

σ2
hxi

(2.16)

where
ρi(ŝ) =

(
1 + σ2

ni

ŝσ2
hxi

)−2

(2.17)

Zhu et al. (ZHU et al., 2013) extended Chakrabarti et al. (CHAKRABARTI;
ZICKLER; FREEMAN, 2010)’s method claiming that in many cases the global
maximum point in Eq. 2.15 does not correspond to the latent hx. Therefore, they
proposed to use a fixed point iteration, calculating optimal hx and s iteratively with
the other variable fixed.

To do that, they generalize the system to handle any kind of blur kernel
model, fitting an exponential function of rb, which is the scale value in the given
blur domain σ2

hxi with relatively small interval ∆rb = 0.1 for rb ∈ [0, 8]. Then,
the optimal r̂b is generated by minimizing the following function using the gradient
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descent algorithm.

r̂b = arg min
rb

∑
i

(
|I∇bi [x]|2

sσ̂2
hxi

(rb) + σ2
ni

+ log(sσ̂2
hxi(rb) + σ2

ni)
)

(2.18)

Finally, in order to make a coherent blur map, an energy function is proposed which
includes the probability of blur scale estimates and smoothness constraints.

Later, D’Andres et al. (D’ANDRES et al., 2016) proposed a machine learning
approach to solve Eq. 2.13. More precisely, the authors proposed to use of Regression
Tree Fields (JANCSARY et al., 2012) for learning (and for testing) the blur scales
through a simple training data, which was produced manually by reblurring sharp
images with known disk kernels. Their work is seminal amongst the defocus blur
estimation methods since they produced a realistic ground truth data, which is
explained in Sec. 5.1.

In addition, Shi et. al. (SHI; XU; JIA, 2015) proposed a method to estimate
defocus blur amount at small regions that span 3-9 pixels (which is called just notice-
able blur) based on sparse representation and image decomposition. Their method
bases on understanding small image blur via sparse representation of an external
data. More precisely, they showed that decomposition of local image patches into
dictionary atoms in an additive manner shows quantitatively and as well as visually
different results on clear and JNB patches. In a related topic, Vu and colleagues (VU;
PHAN; CHANDLER, 2012) presented an approach for estimating the local sharp-
ness, combining spatial and spectral information in a patch-based approach as well.
(YI; ERAMIAN, 2016) proposed a Local Binary Pattern (LBP) based sharpness
region segmentation scheme using the observation that local blurry image patches
have fewer specific LBPs than sharp regions. Using this information, they estimate a
sharpness map adopting image matting from (LEVIN; LISCHINSKI; WEISS, 2004)
and multi-scale inference.

2.3 Chapter Conclusion

In this chapter, we investigated seminal and recent defocus blur estimation
methods. As for edge-based defocus blur estimation methods, mostly start with
sparse blur maps, where the corresponding defocus blur amount is defined only at
edge points or non-homogeneous regions. Then a full (dense) blur map is obtained
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via sparse blur maps by using a propagation algorithm (e.g. Markov Random Field
propagation or edge aware filtering). In patch-based defocus blur estimation meth-
ods, full blur maps are estimated directly through mostly exploring convolution
theorem (when working in the frequency domain) with a Bayesian estimation or a
machine learning approach.

In general, it is possible to obtain closed-form models for the blur parameter
at image edges, which makes edge-based methods an attractive choice. Among
those methods, a popular strategy is to reblur the input image with (one or more)
Gaussian kernels, but there is no such mathematical analysis or discussion on how
to select such kernels. Also, edge-based methods require interpolation schemes to
obtain the full blur map from the sparse one. Several existing approaches explore the
Laplacian matting (LEVIN; LISCHINSKI; WEISS, 2004) for that purpose, which is
computationally costly and produces artifacts in the blur map at image edges.

In this dissertation, we propose an edge-based method for defocus blur esti-
mation using multiple reblurred versions of the input image. We present an analysis
on the impact of the reblurring scale, and propose an adaptive scheme for locally
selecting the adequate scale. We also explore a fast guided filter to obtain the full
blur map, and extend our method to deal with video sequences, which are barely
explored in the literature. Although any defocus blur methods could be applied in a
frame-wise manner to a video sequences, this strategy tends to present inconsisten-
cies along time because temporal coherence is not addressed. In this dissertation,
we present a simple and fast approach for imposing temporal coherence to defocus
blur estimation in video sequences using Kalman Filters.
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3 DEFOCUS BLUR ESTIMATION FOR STILL IMAGES

Defocus blur is a natural result of the limitation of focal range of optical
lenses. Therefore, for a given camera setting, rays coming from scene points that
lie on the focal distance F will converge exactly at the same point on the focal
plane. However, rays coming from objects at other distances will not converge to
the same point, but to a patch on the sensor plane, referred to as Circle of Confusion
(CoC) (PENTLAND, 1987).

A defocus image can be formulated as convolution of the in-focus (sharp)
original image and defocus function (characterized by a Point Spread Function -
PSF) plus noise (as in Eq. 1.2), and the goal of blur estimation methods is to
estimate σ(x, y) for each pixel in the image, for a given PSF. In this dissertation, we
follow the traditional edge-based pipeline for blur estimation: assuming a Gaussian
PSF, we first estimate a sparse map at edge locations, and then propagate the blur
information to all pixels.

3.1 Initial Edge-Based Sparse Blur Estimation

3.1.1 Theoretical foundations

Let us consider a 1D signal f containing a sharp edge with amplitude a and
offset b at location x = 0:

f(x) = au(x) + b, (3.1)

where u is the unit step function.
Considering a uniform blur, characterized by a spatially - invariant Gaussian

PSF g(x;σb) with variance σ2
b , the blurred (observed) edge fb in a continuous-domain

signal is given by
fb(x) = f(x) ∗ g(x;σb), (3.2)

so that its derivative is given by

f ′b(x) = (f(x) ∗ g(x;σb))′ = f(x) ∗ g′(x;σb)

= g(x;σb) = a√
2πσ2

b

exp
(
− x2

2σ2
b

)
(3.3)



31

If fb1(x) is a re-blurred version of fb(x) with another Gaussian kernel g(x;σ1)
whose scale parameter σ1 is known, then the ratio Rg of the derivatives at the edge
location is given by

Rg = |f
′
b(0)|
|f ′b1(0)| =

√√√√σ2
1 + σ2

b

σ2
b

, (3.4)

so that the blur parameter σb of the observed image can be obtained as

σb = 1√
R2
g − 1

σ1. (3.5)

In fact, this approach was the core of (ZHUO; SIM, 2011)’s defocus blur
estimation method.

3.1.2 Mathematical Model of a Blurry Edge

The formulation presented so far allows the local blur estimation using one
reblurred version of the observed (blurry) signal fb(x). A simple extension involves
the use of two reblurred versions. More precisely, if fb1(x) and fb2(x) are reblurred
versions of fb using Gaussian kernels with variances σ2

1 and σ2
2, respectively, the ratio

Rg of the derivatives can be computed explicitly as

Rg(x) =
|f ′b1(x)|
|f ′b2(x)| =

√√√√σ2
b + σ2

2
σ2
b + σ2

1
exp

(
− (σ2

2 − σ2
1)x2

2(σ2
b + σ2

2)(σ2
b + σ2

1)

)
. (3.6)

If we evaluate Rg(x) at the exact edge location (i.e. at x = 0) and solve
Eq. 3.6 for σb, we obtain

σb =

√√√√σ2
2 −Rg(0)2σ2

1
Rg(0)2 − 1 , (3.7)

assuming that σ2 > σ1.
The formulation using one or more reblurred versions of fb was explored by

several methods, such as (ZHANG; CHAM, 2012; KRIENER; BINDER; WILLE,
2013; JIANG et al., 2013; ZHANG et al., 2016; MAHMOUDPOUR; KIM, 2016;
CHEN; CHEN; CHANG, 2016). Although the idea is simple and fast, it is important
to note that none of these papers provide guidelines on how to select the reblurring
parameter(s). It is worth noting that the validity/accuracy of Eq. 3.6 and Eq. 3.7
is affected mainly by three factors when dealing with natural images: i) noise, ii)
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accuracy of edge location, and iii) influence of neighboring edges, which might lead
to conflicting choices for sigma reblurring parameter. In this work, we first show
how σ1 and σ2 impact the estimation of the actual blur σb, and then present an
approach for selecting those parameters adaptively.

The first comment about Eq. 3.7 is that numerical instabilities might arise
when Rg(0) ≈ 1, since it yields small values in the denominator. Hence, selecting
σ2 � σ1 is a good choice, since it yields Rg(0)� 1.

In the typical image formation model presented in Eq. 1.2, there is also a
noise term η added to the blurred image/signal. For isolated edges with zero-mean
additive Gaussian noise, the use of larger reblur parameters σ1 and σ2 is capable
of removing stronger noise, since Gaussian kernels are low-pass filters for which the
cut-off frequency decreases as its variance increases.

Also, the formulation that leads to Eq. 3.7 assumes that both f ′b1(x) and f ′b2(x)
were evaluated at the correct edge location x = 0. In practice, they are evaluated
at the locations produced by an edge detector, which might not correspond to the
exact edge locations of the image. Hence, Eq. 3.7 holds only approximately, and
the error increases with the edge location imprecision. More precisely, the error is
smaller when the exponential constant (σ2

2−σ
2
1)x2

2(σ2
b
+σ2

2)(σ2
b
+σ2

1) is also smaller, which happens
when σ1 ≈ σ2 and/or both σ1 and σ2 are large.

Finally, the core assumption used to obtain Eq. 3.7 is that the sharp under-
lying signal f contains a single edge. If f contains more than one edge, Gaussian
smoothing with a sufficiently large kernel will eventually cause edge merging ac-
cording to the well-known scale-space theory (WITKIN, 1983). More precisely, the
degradation caused by interfering edges depends on the combination of the origi-
nal blur with the reblur parameters, given by σ2

b + σ2
1, which is the variance of the

two successive convolutions with Gaussian kernels (g(x;σb) and g(x;σ1)). The same
analysis holds for the second reblur with σ2. In fact, results with synthetic images
shown in (ZHUO; SIM, 2011) report loss of accuracy as the distance from neighbor-
ing edges decreases, particularly when the original blur σb is larger. In that sense, it
is advisable to use a smaller value for σ1 and σ2 in order to minimize the influence
of neighboring edges.

Based on these mostly conflicting considerations, we can conclude that choos-
ing an adequate value for σ1 and σ2 globally is not possible: for isolated edges,
larger values better handle edge mis-localization issues and noise; on the other hand,
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smaller values should be chosen when nearby edges are present, to avoid edge inter-
ference.

In order to illustrate the impact of reblurring scales on edge-based defocus
blur estimation methods, let us consider the blurry synthetic image shown in Fig. 3.1,
which has vertically varying blur parameter σb (in Eq. 3.2) starting from top with
σb = 0.5 and increases linearly up to σb = 3 in the middle then drops back linearly
again to σb = 0.5. In the top and bottom of the image (highlighted with blue), the
edges are well separated, but in the middle (highlighted with red) the structure is
thin. We have also produced noisy versions of Fig. 3.1 using zero mean additive
Gaussian noise η = 1.2751 and η = 2.55.

Figure 3.1: Artificially blurred synthetic image.

For those three images, as in related papers that explore similar ideas with
two or more reblurrings (ZHUO; SIM, 2011; KRIENER; BINDER; WILLE, 2013;
MAHMOUDPOUR; KIM, 2016; CHEN; CHEN; CHANG, 2016), we conducted a set
of experiments while keeping σ1 = 1 fixed and focuses on a the impact of reblurring
parameter σ2. Then, we evaluated the Mean Absolute Error (MAE) of the blur
estimate along the top and bottom of the image (blue regions in Fig. 3.1), the
central portion (red region in Fig. 3.1) and along the whole left (vertical) edge,
using different (global) values for σ2. The results, shown in Table 3.1, indicate
that (as we stated before) choosing an adequate value for σ1 and σ2 globally is not
possible. It can also be observed that larger values for σ2 yield better results in
the blue regions, which contain little edge interference (and the difference increases
as more noise is added), while smaller values for σ2 are better in the red region

1From this point on, this symbol will denote the standard deviation of zero-mean additive
Gaussian noise.
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(stronger edge interference).

Table 3.1: MAE computed at different edge regions of Fig. 3.1 (Blue/Red/Overall)
using σ1 = 1 and different values for σ2 and varying noise contamination.

Noise Level

σ2 η = 0 η = 1.275 η = 2.55

1.5 0.065/0.224/0.103 0.065/0.266/0.122 0.081/0.270/0.150
2.0 0.064/0.299/0.124 0.061/0.312/0.129 0.067/0.315/0.145

2.5 0.063/0.399/0.153 0.059/0.404/0.153 0.060/0.412/0.165
3.0 0.063/0.521/0.191 0.057/0.524/0.189 0.056/0.533/0.199

Figure 3.2: (a) Blur estimation errors along the vertical left edge of Fig. 3.1 using
σ1 = 1 and different values for σ2. (b)-(c) Analogous result using noisy versions
(η = 1.275 and η = 2.55) of Fig. 3.1.
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In fact, Fig. 3.2 illustrates these behaviors more clearly, by showing the per-
pixel blur estimation error along the vertical edge (scanned from top to bottom).
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In this dissertation, we proposed two different methods for sparse blur es-
timation using adaptive scale selection. The first one explores the estimated edge
locations using 1D image profiles, whereas the second one uses image gradients di-
rectly.

3.1.3 Sparse Blur Map Estimation Using 1D Oriented Profiles

The first proposed method starts with an edge map of the input image Ib
computed with the well-known Canny edge detector (CANNY, 1986) (but other
edge detection algorithms could be used instead). We also compute the convolution
of Ib with 2D isotropic Gaussian kernels having scale parameters σ1 < σ2 < · · ·σN
(where σi = 0.75 + 0.25i for i = 1, 2, 3, .., ..., N = 9), obtaining the multi-scale
images Igi(x) and the corresponding smoothed gradient vectors ∇Igi(x). Given
the local edge orientation θ (extracted from gradient vectors of the first scale), we
extract multi-scale 1D profiles of ‖∇Igi(x)‖ along θ, centered at each edge point
using windows of size Wh = 11.

For an isolated edge, the scale-space location (WITKIN, 1983) of the edge
should be stable, meaning that the local maxima locations of ‖∇Igi(x)‖ should not
change as σ increases. On the other hand, if there are neighboring edges orthogonal
to the local contour orientation, they tend to be merged as σ increases. Figs. 3.3(a)
and 3.3(b) illustrate these two scenarios, and the corresponding multi-scale gradient
magnitudes along the profile are shown in Figs. 3.3(c) and 3.3(d), respectively. As
it can be observed, the local maxima positions of ‖∇Igi(x)‖ are not affected for the
isolated edge scenario, but they start to shift towards the neighboring edge in the
second scenario as σ increases, since the interfering edge start to get into the support
of the Gaussian kernels.

To find the exact edge location and its support in the scale-space (i.e., the
maximum σ value for which there is no interference), we first seek local minima
within a neighborhood of the estimated edge location2 of each different scale indi-
vidually. Then we find the global maximum between two local minima around the
edge (depicted with red points in Fig. 3.3), so that for each scale σ we have an edge
location xσ.

To determine how many scales are reliable enough for defocus blur computa-
2the estimated edge location is always at the center of the extracted 1D profile.



36

Figure 3.3: (a) A preserved edge profile and its gradient profile (c), (b) an edge
profile with neighboring edge interference and its gradient profile (d)
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tion without causing edge interference, we evaluate how xσ changes as σ increases.
A given scale σi is validated if the corresponding edge location xσi (i > 2) is closer
than a certain distance T from edge location at the smallest blur scale xσ1 , i.e., if
|xσi − xσ1| < T (we have set T = 2 based on experiments).

At the end of this process, we have for each estimated edge the maximum
number of scales Nmax < N , as well as the refined edge locations xσi , for i =
1, ..., Nmax. Although we could use any of these scales to estimate the original blur
σb using Eq. 3.7, we observe that any pair of re-blur parameters σi and σj can be
used. In fact, a simple extension of Eq. 3.6 leads to

Rgi,j = ‖∇Igi(xσi)‖
‖∇Igi(xσj)‖

=

√√√√σ2
b + σ2

j

σ2
b + σ2

i

, (3.8)

so that

σb =

√√√√σ2
j −R2

gi,j
σ2
i

R2
gi,j
− 1 . (3.9)
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Since we have Nmax re-blurs for a given edge pixel, we can get Nmax(Nmax −

1)/2 estimates for σb using Eq. 3.9. However, our experiments indicated that using
adjacent scales σi and σi+1 produces good results3, so that we actually obtain Nmax−

1 estimates for each edge pixel. Finally, we combine these estimates in a robust
manner by computing the α-trimmed mean, which consists of removing the first
and last elements of the sorted elements (which is possibly related to outliers), and
computing the mean value of the remaining samples. The estimated blur is given
by

σe = µα
i

(σib), (3.10)

where σib are the estimates using adjacent scales σi and σi+1.

Figure 3.4: Blur estimation errors along the left edge of the noisy version (η = 1.275)
of the image depicted in Fig. 3.1 using σ1 = 1 and different values for σ2 with
comparisons to our 1D adaptive scale selection method.
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Fig. 3.4 illustrates the effect of the adaptive 1D adaptive scale selection
scheme applied to the noisy version (η = 1.275) of the image depicted in Fig. 3.1,
as well as a comparison with other (fixed) values for σ2. As it can be observed from
Table 3.2, the proposed method present the smallest error. In fact, our defocus blur
estimation method was published in (KARAALI; JUNG, 2014). Despite the good
results obtained with this method, the process of estimating 1D oriented profiles for
each edge point (which might require interpolation depending on the orientation) is
rather time consuming. Aiming to reduce execution time, we also devised another
approach that works directly with image gradients.

3Please note that reblurring steps are far enough to each other to deal with aforementioned
numerical instabilities, besides that alpha-trimmed mean is capable of to eliminate outliers.
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Table 3.2: MAEs computed along the left edge of the noisy version (η = 1.275) of the
image depicted in Fig. 3.1 using σ1 = 1 and different values for σ2 with comparisons
to our 1D adaptive scale selection method.

σ2 Noise Level: η = 1.275

Adaptive 1D 0.116

1.5 0.122
2.0 0.129
2.5 0.153
3.0 0.189

3.1.4 Sparse Blur Map Estimation Using 2D Multi-scale Image Gradients

The core of the second proposed method is to obtain a multi-scale edge map,
which is used to adaptively select the local reblurring scale at each edge pixel and
obtain a sparse blur map. An overview of the proposed method is presented in
Fig. 3.5, and the steps are detailed next.

Figure 3.5: Overview of sparse defocus blur map estimation method based on multi-
scale image gradients.

Blurry Image Ib

Canny(Ib, σc1)

Canny(Ib, σc2)

Canny(Ib, σc3)

Canny(Ib, σcN )

σ2 scales

Edge map

Blur Computing∑N
i=1 Sparse Blur Map (S)At Edge Locations

The blur model presented so far applies to signal discontinuities, so the first
step is to obtain an edge map of the image, as in the previous method. Also,
since it involves convolving the signal with Gaussian kernels, the well-known Canny
edge detector (CANNY, 1986) seems a natural choice. The main idea is to identify
at which scales each edge is detected. For that purpose, our edge point selection
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algorithm starts with applying the Canny detector to the observed (blurred) image
Ib with known standard deviations σc1 < σc2 < · · · < σcN (where N is the number
of smoothing scales for Canny edge detector), obtaining the multiscale edge maps
Ebi(x) = Canny(Ib(x), σci).

Figure 3.6: Intersection of edge points along the Canny scales on the image depicted
in Fig. 3.1.

Isolated edges tend to persist for several scales, whereas nearby edges tend to
blend in coarser scales. This phenomenon can be seen in Fig. 3.6, which shows the
sum of edge points in all Canny scale (i.e. the number of overlapping scales for each
edge pixel). In the thin structure (middle), there are nearby interfering edges, so
that the overlap is smaller than the top and bottom of the image. The multi-scale
approach is used for two main purposes: selecting edge points and obtaining the local
reblurring scale for each edge point. To select the final edge map, we retrieve edge
points that were arisen in at least Nr adjacent Canny scales, to ensure some scale-
space stability. For each of those points, we also retrieve the largest Canny scale
σcmax for which it was considered an edge. In fact, this number provides an estimate
of edge proximity, since the location of nearby edges (according to maximum of first
derivatives or zero-crossings of second derivative) start to change progressively as
the Gaussian kernel at one edge affects the other, until they eventually merge.

In our experiments, we used N = 9 scales for the multi-scale edge detection
scheme, starting with σc1 = 1 up to σc9 = 5, with steps of 0.5. We also selected
Nr = 4, so that an edge is validated if it persists for at least ∆σ = 2 scales. Although
selecting σ2i = σcmaxi for each edge pixel i seems an intuitive choice (and it works well
for synthetic images), our experiments indicated that using σ2i = 0.5σcmaxi yields
considerably better results for natural images. Fig. 3.7 shows the mean absolute
errors using four different (global) reblurring parameters for σ2 and our adaptive
scheme computed along the whole edge. The MAE obtained using our 2D scheme
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Figure 3.7: Blur estimation errors along the left edge of the noisy version (η = 1.275)
of the image depicted in Fig. 3.1 using σ1 = 1 and different values for σ2 with
comparisons to our 2D multi-scale image gradients method.
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was 0.1163, which is very close to the MAE using the (more costly) version using
1D profiles (0.1162).

3.2 Connected Edge Filter

An initial blur map can be obtained using either 1D adaptive scale selection
method, described in Sec. 3.1.3, or the approach that explores multi-scale image
gradients directly, presented in Sec 3.1.4. In both of them, the initial blur value
is computed independently for each edge pixel. However, edges typically do not
appear isolated in natural images: they tend to form contours, which are related to
object boundaries. In this work, we assume that connected components in the edge
map relate to the same object, and that the blur value tends to vary smoothly along
the contour. Let us consider a connected component C that is formed by Nc pixels
p1, ..., pNc , and αj denotes the desired blur estimate at each pixel (i = 1, ..., Nc).
Given the initial blur estimates σbi provided by Eq. 3.7, our goal is to find the set of
regularized blur values α1, ..., αNc that minimize an error function E that accounts
for both the local individual error at each pixel and spatial continuity of neighboring
edges in C. The proposed energy E is given by

E =
Nc∑
i=1

ξi(αi − σbi)2 +
Nc∑
j=1

ψij(αi − αj)2

 (3.11)

where ξi is a confidence value for each estimated defocus blur σbi , so that when ξi is
large the refined estimate αi tends to be closer to the initial estimate σbi .

In general, isolated edges allow the selection of larger reblurring scales (for
both initial blur estimation methods), which better handles edge mis-localization
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and noise, and tends to produce more reliable estimates. Based on this fact, for
initial blur estimation method using 1D oriented profiles we used the selected number
of reblurring scales as ξi, and for the approach based on 2D Image Gradients, we
used ξi = cmaxi as the confidence parameter.

In Eq. 3.11, the weights ψij control the pairwise connections of pixels i and
j along the contour, so that choosing larger values for ψij yields more similarity
between αi and αj. The proposed connected edge filter (CEF) takes into account
edge proximity for enforcing smoothness, and we use

ψij =

 Ψ, if pi and pj are neighbors
0, otherwise

, (3.12)

considering an 8-connected neighborhood, where Ψ is a constant. Larger values for
Ψ yield more smoothing along the edge, whereas smaller values lead to a stronger
weight for the data fidelity term.

The minimization of E is straightforward, leading to a sparse, symmetric
diagonally-dominant (SDD) linear system (there are at most nine non-zero entries
in each line of the coefficients matrix), which can be solved efficiently. In fact, recent
methods (SPIELMAN; TENG, 2014) can solve such systems in nearly O(n log1/2 n)
time. Since the edge map is already very sparse, and n is the number of edge
pixels in a given connected component, this step has low computational complexity
(furthermore, each connected component can be solved in parallel).

Figure 3.8: Blur estimation errors using 1D adaptive scale selection and 2D multi-
scale image gradients methods along the left edge of the noisy version (η = 1.275)
of the image depicted in Fig. 3.1 and their corresponding Connected Edge Filtered
(CEF) versions.
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Fig. 3.8 illustrates the effect of coupling the CEF with the proposed adaptive
scale selection methods for the image illustrated in Fig. 3.1 with noise level η = 1.275.
It can be observed that Connected Edge Filtering smooths the estimated blur scales
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along the contour. If Ψ is too small, the filtered estimates would be very similar to
the initial ones. On the other hand, if Ψ is very large, the filtered blur estimates
would be smoother but with less fidelity to the original estimates. Choosing the
optimal value for Ψ is a difficult task, and in this dissertation we used Ψ = 10 in all
experiments. The MAE computed along the whole edge for the 1D adaptive scale
selection and 2D multi-scale gradients methods, and their corresponding filtered
versions can be seen in Table. 3.3.

Table 3.3: MAEs computed using 1D adaptive scale selection and 2D multi-scale
image gradients methods along the left edge of the noisy version (η = 1.275) of the
image depicted in Fig. 3.1 and their corresponding Connected Edge Filtered (CEF)
versions.

σ2 Noise Level: η = 1.275

Adaptive 1D 0.1162
Adaptive 2D 0.1163

Adaptive 1D + CEF 0.0990

Adaptive 2D + CEF 0.1044

3.3 Sparse Blur Map Refinement

Another important issue in the original formulation presented in (ZHUO;
SIM, 2011) is that it is valid only in the continuous domain. For digital images,
the domain is discrete and the convolution result shown in Eq. 3.3 is valid only
asymptotically when σb → ∞, as shown in Fig. 3.9. As a consequence, the blur
estimation using Eq. 3.7 contains discretization errors, particularly when σb is small.

Figure 3.9: Comparison of the convolution of a (1D) step edge with the derivative
of a Gaussian in the continuous and discrete domains.
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In order to deal with the discretization issue, we introduce a correction factor
that accounts for the error in the discretization process. Given the estimate σe
obtained with Eq. 3.10, we can write

σe = σb + g
( 1
σb

)
, (3.13)

where g(x) is the correction factor such that g(x) ≈ 0 if x ≈ 0, i.e. the error
decreases as σb increases. Using a first order approximation of g, we can write

σe ≈ σb + β

σb
, (3.14)

where β is a constant. To find β, we used Least Square Fitting (LSF) based on a
synthetic image with a single edge with spatially varying blur (from 0 to 5). Since
discretization errors are very large for σb < 0.5 (see Figure 3.9), we only used blur
values in the range [0.5 5], obtaining β = 0.0832.

Finally, when Eq. 3.14 is solved with respect to σb, we obtain the final blur
estimate

σ′b =
σe +

√
σ2
e − 4β

2 . (3.15)

Figure 3.10: Blur estimation errors using 1D adaptive scale selection and 2D multi-
scale image gradients methods along the left edge of the noisy version (η = 1.275)
of the image depicted in Fig. 3.1 and their corresponding Connected Edge Filtered
(CEF) and Refined (Ref.) versions.
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Fig. 3.10 shows an analogous result to Fig. 3.8, but also adding the refinement
step to the pipeline. It can be observed that the inclusion of the refinement step lower
the errors along low blur regions of the image shown in Fig. 3.1, which correspond
to the leftmost and rightmost portions of the plot. The MAE computed along the
whole contour for the 1D adaptive scale selection and 2D multi-scale image gradients
methods, as well as their corresponding filtered and refined versions, can be seen in
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Table 3.4: MAEs computed using 1D adaptive scale selection and 2D multi-scale
image gradients methods along the left edge of the noisy version (η = 1.275) of the
image depicted in Fig. 3.1 and their corresponding Connected Edge Filtered (CEF)
and Refined (Ref.) versions.

σ2 Noise Level: η = 1.275

Adaptive 1D 0.1162
Adaptive 2D 0.1163

Adaptive 1D + CEF 0.0990
Adaptive 2D + CEF 0.1044

Adaptive 1D + CEF + Ref. 0.0897
Adaptive 2D + CEF + Ref. 0.0816

Table. 3.4.

3.4 Defocus Blur Map Propagation

The algorithms so far compute the defocus blur amount only at edge loca-
tions. However, the formation process affects the entire image, so that the estimated
defocus blur amounts should be propagated to the whole image.

In (ZHUO; SIM, 2011; PI et al., 2012; ZHANG; CHAM, 2012; TANG; HOU;
SONG, 2013; LIU; ZHOU; LIAO, 2016; ZHANG et al., 2016) the Laplacian-based
image colorization algorithm (LEVIN; LISCHINSKI; WEISS, 2004) was selected.
However, it is slow and the edges are visible in the blur map, even in regions with
uniform blur (see some results in Chapter 5). In this dissertation, we explore a very
fast guided filter (GASTAL; OLIVEIRA, 2011) to propagate the sparse blur map.

The presented sparse map estimation algorithms are based on a binary edge
image M , which is obtained with Canny or our adaptive Canny detector, and they
produce a sparse blur map S at the edge locations, such that S(x, y) is only defined
when M(x, y) = 1. If we consider the propagation scheme as a diffusion process
given by the heat equation

∂B

∂t
= γ∆B, (3.16)
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with initial conditions given by the sparse map

B(x, y, 0) =

 S(x, y), if M(x, y) = 1
0, otherwise

, (3.17)

the solution of Eq. 3.16 is the convolution with a Gaussian kernel for which the
variance increases with t. Since the Gaussian kernel is not an interpolating one,
the normalization B/M ′ is required, where M ′ is the diffusion of M with the heat
equation.

A clear drawback of the heat equation is that diffusion is isotropic, and the
stationary solution is a constant function. As noted in (PARIS; KORNPROBST;
TUMBLIN, 2009) and explored in (LANG et al., 2012a), when anisotropic diffusion
schemes (that prevent diffusion across edges) are used, the stationary solution in
the discrete case is asymptotically equivalent to an edge-aware guided filter.

Edge-aware guided filtering is basically a technique that smooths images
while preserving edges, and the idea of edge preserving while image smoothing
can be traced back to (AURICH; WEULE, 1995)’s work on Non-Linear Gaussian
Filters, which was named as Bilateral Filtering later by (TOMASI; MANDUCHI,
1998). Edge-aware filtering can be also used for sparse data up-sampling when
feature correspondences are defined sparsely in an image. Among the several exist-
ing edge-aware methods, the domain transform approach presented in (GASTAL;
OLIVEIRA, 2011) seems a good choice for our interpolation scheme. Its core is to
perform domain transforms in 1D signals based on color and spatial similarity (using
spatial and range parameters σsp and σra, as in traditional bilateral filters) such that
convolutions with a fixed filter in the transformed domain act as an edge-preserving
filter in the original signal. For images, the filter is applied iteratively (and in alter-
nation) in the rows and columns. When box filters are used, the approach leads to
a very fast implementation, regardless of the values for σsp or σra.

Let Df (J, I) denote the joint domain-filtered version of image J using image
I as reference (i.e., the content in I is used to propagate the information in image
J). We first filter the input blurry image by using the edge-aware filter itself,
i.e. we compute I ′b = Df (Ib, Ib), to remove fine textures that might compromise
information propagation. In fact, this simplification procedure has the same goal as
the structure-texture decomposition (STD) explored in (LIU; ZHOU; LIAO, 2016),
which is used in conjunction with the (costly) Laplacian-based image colorization
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algorithm (LEVIN; LISCHINSKI; WEISS, 2004) to generate the full blur map.
The simplified image I ′b is then used as a guide to generate the full blur map

through
B = Df (S, I ′b)

Df (M, I ′b)
, (3.18)

recalling thatM is the binary edge map and S is the sparse blur map, which contains
information only at non-zero entries of M .

Regarding parameter selection, we used σsp = 7 and σra = 0.5 to obtain
the simplified image I ′b (assuming pixels values in the range [0, 1] at each color
channel). For data propagation, we used σsp = min{R,C}/8, σra = 3.75, where
R and C are the dimensions of Ib (height and width). Both spatial and range
kernel sizes are larger when performing data interpolation than when simplifying
the reference image, since the goal of simplification is to perform local smoothing
(to remove fine texture/noise), whereas for data interpolation the sparse blur map
must be propagated to pixels far from the edges.

Figure 3.11: (a) A naturally blurry image from (D’ANDRES et al., 2016)’s dataset.
(b) Step by step full blur map estimation using our 1D adaptive scale selection
and 2D multi-scale image gradients methods. From left to right: Edge map, sparse
defocus blur map and full blur map of 1D adaptive scale selection method (for first
row) and 2D multi-scale image gradients method (for second row).

(a)

(b)

To illustrate the proposed method, we chose an image from (D’ANDRES
et al., 2016)’s dataset Fig. 3.11(a) and the intermediate results image using the
proposed approaches are shown in Fig. 3.11(b). The top row of shows the results of
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the 1D adaptive scale selection method, while the bottom row shows the 2D multi-
scale image gradients method. The edge maps are shown on the left, the sparse blur
maps on the middle, and the full (interpolated) blur map on the right. For more
images and comparisons please refer to Chapter 5.
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4 DEFOCUS BLUR ESTIMATION ON VIDEO SEQUENCES

With the proposed defocus blur estimation methods, we are able to generate
promising and visually coherent defocus blur maps for still images. However, if one
of our methods or any other ones that we revised in Chapter 2 are applied to a video
in a frame-by-frame manner, the resulting defocus map video may contain temporal
visual inconsistencies, since the defocus blur is estimated without any information
from previous or subsequent frames. Therefore, the inclusion of temporal coherence
is very important to obtain a smoother defocus blur map (in time), without jittering.

A typical example of blur flickering along time can be seen in Figs. 4.1 and 4.2.
Fig. 4.1 shows a few frames extracted from a video sequence in which the focal
plane changed in time along with two reference points, while Fig. 4.2 shows the blur
values in time for these two reference points computed by the proposed 2D gradient
scheme applied to each frame of the video sequence. It is important to point out
that although our algorithm produces visually coherent results on individual frames,
yet when we choose a pixel and investigate the blur amount along time, we observe
temporally incoherent blur variations (jitter), as illustrated in Fig. 4.2.

Figure 4.1: Video sequence acquired with a shallow DOF camera

t1 t25 t50

Temporal coherence in visual processing has a long history and has been ap-
plied to various applications such as optical flow (VOLZ et al., 2011; CHIN; KARL;
WILLSKY, 1994), disparity estimation using stereo cameras (YANG, 2014) and
scene flow (LV et al., 2016), among others. However, to the best of our knowledge
it has not been explored in the context of video defocus blur estimation.

Although temporal coherence arises in a variety of computer vision problems,
the goal is the same: when the same pixel/region is present in a set of frames, the
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Figure 4.2: Estimated defocus blur scales at two reference points (depicted in
Fig. 4.1) along time.
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desired information (flow, disparity, blur, etc.) tends to vary smoothly; on the other
hand, sharp temporal transitions should be allowed during occlusions/disocclusions.
In general, identifying the same pixel or region across a set of frames relates to
the problems of dense particle tracking or optical flow. In fact, Lang and col-
leagues (LANG et al., 2012b) presented a generic framework for imposing temporal
consistency in a variety of applications using optical flow. However, blurry regions
typically present weak textural information, which may compromise the quality of
tracking-based methods. To illustrate this behavior, we applied two well known
optical flow methods (BROX; MALIK, 2011; REVAUD et al., 2015) to some blurry
video sequences. More precisely, in one test we used a blurry video that presents a
moving object (a car) and also camera movement. We manually labeled some feature
points on the object, which is initially out-of-focus and then we tracked those points
by doing particle advection in the optical flow produced by (BROX; MALIK, 2011).
The first frame of the sequence, along with the initialized particles, are shown in
Fig. 4.3(a). The partial trajectories obtained by particle advection for other frames
of the video sequence are illustrated in Fig. 4.3(b) and Fig. 4.3(c), indicating that
points are not correctly tracked in time. In particular, the particle that was ini-
tialized close to the right headlight of the car (bottom right in Fig. 4.3) diverges
in time. A similar test is also conducted in the reverse temporal order to observe
the accuracy of tracking from in-focus to out-of-focus transition. In this test, the
initial particles are shown in Fig. 4.5(c), and the partial trajectories in Fig. 4.5(b)
and Fig. 4.5(a). Even particles that were initialized at good regions, such as the
corner of the headlights, diverge in time as focus level of the object changes.

In another experiment, we evaluated visually the results produced by (RE-
VAUD et al., 2015) when applied to a simple short sequence with no noticeable
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Figure 4.3: Blurry video frames and trajectory of the tracking points. (a) frame no
#1, (b) frame no #34 and (c) frame no #54. Source : a TV Series called UNDER
THE DOME©.

(a) (b)

(c)

Figure 4.4: Blurry video frames and trajectory of the tracking points in reverse
order. (a) frame no #54, (b) frame no #34 and (c) frame no #1. Source : a TV
Series called UNDER THE DOME©.

(a) (b)

(c)
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camera or object motion, only change in the focal plane. The optical flow should
produce low magnitude vectors, but because of the weak textural information due to
the blur, results were not as expected. The first row of Fig. 4.5 shows three chosen
frames from the blurry video and second row shows the corresponding optical flow
vector using Correspondence Visualization method1. As it can be observed from the
second row of Fig. 4.5, static scene shows some movement (as color for direction and
intensity level of the this color for magnitude), possibly caused by defocus blur.

Figure 4.5: Blurry video frames. From left to right : frame #2, frame #51 and frame
#80, and corresponding optic flow vectors. Source : a TV Series called UNDER
THE DOME©.

Based on the failure results obtained with well known optical flow methods,
we looked for other alternatives to impose temporal consistency for defocus blur
estimation in video sequences. Despite the existence of some attempts for blur
invariant feature extraction (SAAD; HIRAKAWA, 2016), there is no optical flow
method that takes blur information into account (according to our knowledge).

As investigated in Chapter 2, there are numerous defocus blur map estimation
approaches for still images, but as far as our literature review indicates, there are
no methods focused on video sequences. Next we present an approach to generate
temporally coherent defocus blur maps from video sequences using the Kalman
filter (HOEFFKEN; OBERHOFF; KOLESNIK, 2011), which has been used for a
long time in several vision and graphics problems, such as depth estimation from
video sequences (MATTHIES; KANADE; SZELISKI, 1989).

1<https://hci.iwr.uni-heidelberg.de/Correspondence_Visualization>

https://hci.iwr.uni-heidelberg.de/Correspondence_Visualization


52

4.1 Kalman Filter for Temporal Coherence

The main idea of the proposed temporal consistency approach is to initially
apply our blur estimation method to each frame independently, which are considered
observations of the actual blur. In a subsequent step, the blur values at each pixel
are filtered temporally such that when there are image cues suggesting that the
pixel belongs to the same object along several frames, the blur value should vary
smoothly. If the pixel under analysis belongs to more than one object within a
temporal window, then sharp transitions in the filtered blur value are allowed.

Based on these considerations, we explored Kalman filters to implement tem-
poral coherence, since they offer a closed-form solution to the Bayesian filtering
problem, allowing an adaptive selection of the compromise between data (obser-
vation) fidelity and smoothing. When applied to scalar values, the Kalman filter
involves a state transition model

x(t+ 1) = Ftx(t) + w(t), (4.1)

x(t) is the (unobserved) state at frame t, Ft is a constant that models the expected
state transition between times t and t + 1, and w(t) is the process noise. The
mathematical formulation of the Kalman filter also involves observation model given
by

y(t) = Htx(t) + v(t), (4.2)

where y(t) is the observation at time t, Ht relates the observation and the state,
and v(t) corresponds to measurement noise. Both process noise w(t) and the
measurement noise v(t) are assumed to be independent and normally distributed:
w ∼ N(0, Qt) and v ∼ N(0, Rt), where Qt and Rt are the corresponding variances.

In the context of temporally coherent blur estimation, x(t) is the desired blur
value of a given pixel along time, and y(t) is the output produced by the defocus blur
estimation method applied in a frame-wise manner. According to our assumption,
which is smooth blur scale transition along the frames for a DoF video sequence, the
state transition scalars are constant and equal to one, i.e. Ft = 1,∀t. Also, the best
guess for the unknown blur x(t) given only the frame-wise estimate is x(t) = y(t),
which means that Ht = 1,∀t in Eq. 4.2.

The main challenge in the formulation is how to define the state and observa-



53

tion noise variances Rt and Qt, which define the balance between the state transition
and the observation models. When Qt is small and Rt is large, the state transition
model imposes that x(t + 1) ≈ x(t), whereas x(t) might be far away from y(t) due
to high noise in the observation model. As a consequence, smoothing prevails over
data fidelity. On the other hand, the opposite is expected when Qt is large and Rt

is small: the observation model imposes that x(t) ≈ y(t), while x(t + 1) could be
far from x(t) due to high noise in the state transition model. In that case, data
fidelity prevails over smoothing. Clearly, those are only the extreme cases, and the
compromise between smoothing and data fidelity is highly related to the choices of
Rt and Qt. This compromise can be seen in Fig. 4.6: small process noise variance
Qt enforces higher temporal coherence if the reliability Rt is low (high measurement
noise). However, when the measurement noise variance Rt is high Kalman filter
results are less smooth.

Figure 4.6: The effect of the state and observation noise variances R and Q at the
blue reference point depicted in Fig 4.1
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Based on these observations, noise variances, Rt and Qt should be selected
based on the following guidelines:

• The measurement noise variance Rt should be small if the blur value at the
pixel of interest is obtained “reliably”.

• The process noise variance Qt, which enforces the temporal coherence, should
be small when the pixel appearance does not change in time.

The proposed method for choosing Rt and Qt adaptively based on the local
video content is presented next.
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4.1.1 The Measurement Noise Variance

As explored in Chapter 3, the reliability of the blur estimation results de-
pends highly on the edges, since such examples with an isolated edge (e.g. blue
regions of Fig. 3.1) yielded highly accurate results. In the Connected Edge Filter
defined in Section 3.2, spatial smoothing over the connected edge components was
performed by minimizing the energy function given in Eq. 3.11. That term includes
a compromise between data fidelity and smoothing, which is similar to the temporal
smoothing compromise provided by the Kalman Filter. In that step of our method,
the weight ξi of data fidelity in a given pixel i was chosen based on the agreement
of the multiscale blur estimates cmaxi , so that larger values for ξi yield more data
fidelity.

For temporal smoothing, a similar choice was done. However, in the Kalman
Filter formulation data fidelity increases as Rt gets closer to zero, so that Rt should
be a non-negative monotonically decreasing function of ξ (the pixel index i was omit-
ted). Although there are several possibilities for this function, we experimentally
defined

Rt = e−
ξt
χ (4.3)

where χ is a constant that controls the decay of the exponential (and it is set χ = 2
experimentally), and ξt is the data fidelity term in Eq. 3.11 for the pixel under
consideration at time t.

Clearly, ξt is only computed at edge locations, since it is defined as the num-
ber of scales for which the Canny detector produces an edge at the pixel under
consideration. To obtain a confidence value at all image pixels, we follow a similar
approach to the defocus blur interpolation presented in Section 3.4. More precisely,
we applied Eq. 3.18 to the sparse confidence map using the simplified image I ′b as a
guide.

4.1.2 The Process Noise Variance

For the process noise w ∼ N(0, Q(t)), which controls the smoothness, we use a
patch similarity measure between frames t and t+1 for a given pixel location. More
precisely, we initially determine the Mean Square Error (MSE) of a pixel around a
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small neighborhood of pixel (x, y) across consecutive frames to estimate Qt:

Qt = 1
WQ

∑
(m,n)∈WQ(x,y)

‖I tb(m,n)− I t+1
b (m,n)‖2, (4.4)

where WQ(x, y) is a NQ ×NQ neighborhood (which is set to 3 × 3 initially),
and I tb(m,n) is the the 3D vector with the RGB color values (in the range [0, 1]) of
the input blurry image at frame t and pixel (m,n). The formulation measures the
similarity of image points around a neighborhood between two consecutive frames.
Using a neighborhood in lieu of just a pixel point gives more reliable confidence
value to enforce the temporal coherence since similar image points (small MSE) will
be evaluated as there will not be a sharp blur transition between frames at that
point.
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5 EXPERIMENTAL RESULTS AND APPLICATIONS

In this chapter we present experimental results of the proposed deblurring
method applied to still images and also to video sequences. We also show applica-
tions that can benefit from the estimated blur maps, such as non-blind image de-
blurring and blur-aware image retargeting. For all methods used in the evaluation,
we used the (MATLAB) code and/or data provided by the authors except (ZHANG;
CHAM, 2012), and for the sake of fairness at running time comparisons, we have
also used a MATLAB version of our code. All experiments are conducted on a PC
with an Inter Core i7, 3.50GHz CPU and 16GB RAM machine and it is run on a
single thread without using parallelism.

5.1 Evaluation of Blur Estimation Methods

Quantitative evaluation of defocus blur estimation methods is a challenging
task. Most methods report their results on (non-standardized) synthetic images.
On one hand, the use of synthetic images allows the generation of fully controlled
experiments, in which all parameters (e.g. noise, ground truth blur amounts, PSF
type, edge location, etc.) are known and can be changed to reproduce specific situ-
ations. On the other hand, they are quite simple and do not reflect the complexity
of natural images (for instance, regarding noise, edge mis-localization and edge in-
terference, as it was mentioned in Chapter 3). For example (LIU; ZHOU; LIAO,
2016) proposed a validation strategy that consists of artificially blurring a natural
image (with known ground-truth PSF), computing the blur estimates for both im-
ages (natural and artificially blurred), and then comparing the difference with the
ground truth. Although the idea is interesting, one drawback of this approach is that
consistent errors in both estimations might cancel out when doing the subtraction.

In this dissertation, we initially evaluate the quality produced by the proposed
sparse blur estimation method. Since it is computed at image edges, we use only
synthetic images in this initial analysis, and compare our results with other edge-
based methods. Next, we evaluate the results of the full blur map estimation, which
accuracy is a combination of the sparse estimation with the data propagation scheme.
For that purpose, we use a set of natural sharp images that are synthetically blurred
(so that the ground truth blur map is known), and we also show comparative results
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using a database of naturally blurred images with “known” blur parameters, recently
presented by (D’ANDRES et al., 2016). In their database, images were acquired
using a Lythro lightfield camera, and the ground-truth blur was in fact estimated
from the multiple focal planes by matching reblurred patches of the sharp (all-in-
focus) image with the blurry version, and refining the blur map using a regularization
method.

5.2 Defocus Blur Estimation Results

5.2.1 Sparse Defocus Blur Estimation

The first test involves a synthetic image containing two vertical stripes with
linearly increasing blur amount from top (σb = 0.5) to bottom (σb = 3) and two
noisy versions (e.g. η = 1.275 and η = 2.55), as depicted in Fig. 5.11. The absolute
errors of blur estimates along the vertical contour (rastered from top to bottom) pro-
duced by our sparse methods are shown in Fig. 5.2, along with the results produced
by (ZHUO; SIM, 2011) and (ZHANG; CHAM, 2012). Those methods were chosen
for the comparison because they serve as basis for several other edge-based methods.
As it can be observed, the results produced by both of our approaches present lower
errors than the two other edge-based methods. More precisely, the MAE of the four
evaluated techniques is shown in Table 5.1, corroborating the visual results seen in
Fig. 5.2.

Figure 5.1: Artificially blurred edge stripe images with varying noise contaminations:
from left to right no noise, η = 1.255 and η = 2.55.

For the second experiment, we used same images shown in Fig. 5.1 but sim-
ulating the edge mis-localization problem. For that purpose, we artificially shifted

1Please note that, the image with noise level η = 1.275 cannot be differentiated visually
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Figure 5.2: Blur estimation errors along the edge of the image depicted Fig. 5.1 for
different noise level; (a) η = 0 (b) η = 1.275 (c) η = 2.55. CEF and Ref. stand for
Connected Component Filtering and refinement respectively.
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Table 5.1: Mean Absolute Errors along the edge of the image depicted Fig. 5.1 for
different noise levels. CEF and Ref. stand for Connected Component Filtering and
refinement respectively.

Noise Level

Method η = 0 η = 1.275 η = 2.55

Zhuo & Sim 0.0533 0.0860 0.0875
Zhang & Cham 0.0265 0.0395 0.0580
Adaptive 1D+CEF+Ref. 0.0020 0.0248 0.0492
Adaptive 2D+CEF+Ref. 0.0031 0.0261 0.0442

the edge map horizontally to simulate the effect of computing magnitude ratios not
exactly at edge locations. As summarized in Table 5.2, for different noise levels and
edge mis-localization shifts, the proposed 1D adaptive scale selection method does
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Table 5.2: Mean Absolute Errors along the edge of the image depicted Fig. 5.1 for
different noise and edge mis-localization levels. CEF and Ref. stand for Connected
Component Filtering and refinement respectively.

Noise Level

Edge Shift Method η = 0 η = 1.275 η = 2.55

1px

Zhuo & Sim 1.0461 1.0413 0.9839
Zhang & Cham 0.0263 0.0406 0.0690
Adaptive 1D+CEF+Ref. 0.0020 0.0246 0.0483

Adaptive 2D+CEF+Ref. 0.9321 0.9296 0.9301

2px

Zhuo & Sim 1.7515 1.6153 1.5030
Zhang & Cham 0.0259 0.0617 0.0888
Adaptive 1D+CEF+Ref. 0.0023 0.0245 0.0480

Adaptive 2D+CEF+Ref. 2.4509 2.4049 2.5883

not suffer from the edge mis-localization problem similar to in (ZHANG; CHAM,
2012). This behavior is expected since the 1D adaptive scale selection method ex-
plores local maxima to determine the exact edge location, which makes it robust
for small edge mis-localization conditions, similarly to (ZHANG; CHAM, 2012).
On the other hand, the method proposed by (ZHUO; SIM, 2011), as well as our
2D multi-scale image gradients approach, suffer more due to edge mis-localization
issue. This behavior is expected, since the mathematical formulation of both meth-
ods assume gradient magnitude ratios computed at edge locations. However, it is
important to point out that those results were obtained by artificially introducing
mis-localization errors, and the multi-scale edge detection used in our 2D version
keeps only scale-persistent edges, which tend to be more accurate.

For the final experiment, we used the image shown in Fig. 3.1, which presents
also the problem of interfering edges, very common in natural images. The MAE
along the left contour is shown in Fig. 5.3. Although other competitive methods
look smoother, both of the proposed methods present lower MAEs, since good es-
timates are preserved by the data fidelity term of our CEF. Clearly, increasing the
weight of the regularization term in the CEF will produce smoother results, but the
selected parameters were chosen based on a good compromise between smoothness
and error. In fact, this can be seen better in Table 5.3: both of the proposed meth-
ods are superior to other competitive methods, as well as the methods where a fixed
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reblurring parameter is used (see Table 3.1) at all noise levels.

Figure 5.3: Blur estimation errors along the vertical left edge of Fig. 3.1 for different
noise levels; (a) η = 0 (b) η = 1.275 (c) η = 2.55. CEF and Ref. stand for Connected
Component Filtering and refinement respectively.
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These results indicate that both methods for obtaining the initial sparse map
present lower errors than other methods. However, the method using 1D adaptive
scale selection method2 is significantly slower than the 2D multi-scale image gra-
dients method. Hence, the remaining results for full blur map evaluation (as well
as the applications) will be based on the 2D multi-scale image gradients with Con-
nected Edge Filtering and Refinement will be referred to as “Our Method” from this
point on.

2Running time of the 1D adaptive scale selection method is highly dependent on the number
of edge points, yet our experiments showed that it is 100 times slower than 2D multi-scale image
gradients method for 480× 640 images
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Table 5.3: Mean Absolute Errors along the left edge of the image depicted Fig. 3.1
for different noise levels. CEF and Ref. stand for Connected Component Filtering
and refinement respectively.

Noise Level

Method η = 0 η = 1.275 η = 2.55

Zhuo & Sim 0.1021 0.1096 0.1271
Zhang & Cham 0.1150 0.1165 0.1305
Adaptive 1D+CEF+Ref. 0.0677 0.0897 0.1147
Adaptive 2D+CEF+Ref. 0.0688 0.0816 0.0912

5.3 Full Defocus Blur Estimation

5.3.1 Natural Images with Artificial Blur Maps

Clearly, natural images present more challenges than the simple synthetic im-
ages used to test most defocus blur estimation methods, particularly due to the edge
content. In this part of the dissertation, we adopted a hybrid validation procedure:
we used a set of visually sharp (all objects in focus) images from (RUBINSTEIN et
al., 2010) and from (D’ANDRES et al., 2016), and produced blurred versions using
six different spatially varying Gaussian PSFs, so that ground truth is known and a
quantitative evaluation is possible. More precisely, we used the Marblehead Mass,
Umdan and Brick House images from (RUBINSTEIN et al., 2010), and Image 01,
Image 04 and Image 19 from (D’ANDRES et al., 2016). These images are shown in
the first column of Fig. 5.4, and the corresponding artificially blurred versions are
shown in the following columns.

The first column of Fig. 5.5 shows the six blur maps, called PSF1-PSF6, used
to create the blurry versions of Fig. 5.4. The remaining rows, from left to right, cor-
respond to the blur maps for the Marblehead Mass image obtained with (ZHUO;
SIM, 2011), (ZHANG; CHAM, 2012), (BAE; DURAND, 2007), (TANG; HOU;
SONG, 2013), (SHEN; HWANG; PEI, 2012), (CHEN; CHEN; CHANG, 2016) and
our method, respectively. Figs. 5.5-5.10 show analogous results for images Umdan,
Brick House, Image 01, Image 04 and Image 19, respectively. As it can be ob-
served, the results produced by our approach are visually more coherent with the
actual blur maps, not having sharp transition on edges or inconsistent blur scales.
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Figure 5.4: Left: full in-focus images. Remaining rows (left to right): artificially
blurred versions using known Gaussian PSFs, shown in Fig. 5.5. Source : (RUBIN-
STEIN et al., 2010) and (D’ANDRES et al., 2016).

An objective evaluation was then performed by computing MAE of the blur
maps estimated using our method and the competitive approaches evaluated in the
analysis, as summarized in Tables 5.4 to 5.9. It can be observed that the proposed
method produced better results than competitive approaches for all blur maps for
each of the analyzed images, corroborating the visual results shown in Figs. 5.5- to
5.10.
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Figure 5.5: Left column: blur maps used to generate the blurry images on the first
row of Fig. 5.4. Remaining columns (left to right): estimated blur maps produced
by (ZHUO; SIM, 2011), (ZHANG; CHAM, 2012), (BAE; DURAND, 2007), (TANG;
HOU; SONG, 2013), (SHEN; HWANG; PEI, 2012), (CHEN; CHEN; CHANG,
2016), and the proposed method, respectively.

Figure 5.6: Left column: blur maps used to generate the blurry images on the
second row of Fig. 5.4. Remaining columns (left to right): estimated blur maps
produced by (ZHUO; SIM, 2011), (ZHANG; CHAM, 2012), (BAE; DURAND,
2007), (TANG; HOU; SONG, 2013), (SHEN; HWANG; PEI, 2012), (CHEN; CHEN;
CHANG, 2016), and the proposed method, respectively.
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Figure 5.7: Left column: blur maps used to generate the blurry images on the third
row of Fig. 5.4. Remaining columns (left to right): estimated blur maps produced
by (ZHUO; SIM, 2011), (ZHANG; CHAM, 2012), (BAE; DURAND, 2007), (TANG;
HOU; SONG, 2013), (SHEN; HWANG; PEI, 2012), (CHEN; CHEN; CHANG,
2016), and the proposed method, respectively.

Figure 5.8: Left column: blur maps used to generate the blurry images on the forth
row of Fig. 5.4. Remaining columns (left to right): estimated blur maps produced
by (ZHUO; SIM, 2011), (ZHANG; CHAM, 2012), (BAE; DURAND, 2007), (TANG;
HOU; SONG, 2013), (SHEN; HWANG; PEI, 2012), (CHEN; CHEN; CHANG,
2016), and the proposed method, respectively.
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Figure 5.9: Left column: blur maps used to generate the blurry images on the fifth
row of Fig. 5.4. Remaining columns (left to right): estimated blur maps produced
by (ZHUO; SIM, 2011), (ZHANG; CHAM, 2012), (BAE; DURAND, 2007), (TANG;
HOU; SONG, 2013), (SHEN; HWANG; PEI, 2012), (CHEN; CHEN; CHANG,
2016), and the proposed method, respectively.

Figure 5.10: Left column: blur maps used to generate the blurry images on the sixth
row of Fig. 5.4. Remaining columns (left to right): estimated blur maps produced
by (ZHUO; SIM, 2011), (ZHANG; CHAM, 2012), (BAE; DURAND, 2007), (TANG;
HOU; SONG, 2013), (SHEN; HWANG; PEI, 2012), (CHEN; CHEN; CHANG,
2016), and the proposed method, respectively.
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Table 5.4: MAE comparisons on artificially blurred images - PSF1
Image Name Zhuo&Sim Zhang&Cham Bae&Durand Tang et.al. Shen et.al. Chen et.al. OurM.

Marblehead Mass 0.4543 0.5085 0.4952 0.4065 0.3261 0.7208 0.2803

Umdan 0.2246 0.2895 0.5837 0.4441 0.5445 1.0339 0.0667

Brick House 0.3477 0.3797 0.9315 0.4085 0.6204 0.7905 0.2040

Image 01 0.3966 0.4198 0.6424 0.5772 0.5469 0.8024 0.1854

Image 04 0.2956 0.3403 0.6221 0.4653 0.5667 0.9068 0.1380

Image 19 0.2817 0.3096 0.5837 0.4317 0.6367 0.9432 0.1923

Table 5.5: MAE comparisons on artificially blurred images - PSF2
Image Name Zhuo&Sim Zhang&Cham Bae&Durand Tang et.al. Shen et.al. Chen et.al. OurM.

Marblehead Mass 0.3636 0.4376 0.9066 0.5007 0.3442 0.7718 0.2586

Umdan 0.2338 0.3006 0.7566 0.4386 0.5438 0.9806 0.1025

Brick House 0.3526 0.3928 0.9682 0.5521 0.5677 0.7499 0.2208

Image 01 0.3457 0.3716 0.6776 0.4421 0.5406 0.7944 0.1751

Image 04 0.2833 0.3231 0.7351 0.5895 0.5441 0.9342 0.1228

Image 19 0.2689 0.2916 0.6493 0.6430 0.6298 1.0092 0.1801

Table 5.6: MAE comparisons on artificially blurred images - PSF3
Image Name Zhuo&Sim Zhang&Cham Bae&Durand Tang et.al. Shen et.al. Chen et.al. OurM.

Marblehead Mass 0.3552 0.3983 0.6212 0.3747 0.3216 0.7403 0.2840

Umdan 0.2373 0.3112 0.6708 0.3831 0.5737 0.9290 0.1158

Brick House 0.3263 0.3553 1.0292 0.4515 0.6499 0.8132 0.2197

Image 01 0.3799 0.4395 0.5031 0.4830 0.5352 0.7152 0.2064

Image 04 0.3145 0.3507 0.6852 0.5104 0.5502 0.9049 0.1436

Image 19 0.1749 0.1867 0.5264 0.6272 0.6287 1.1311 0.1358

Table 5.7: MAE comparisons on artificially blurred images - PSF4
Image Name Zhuo&Sim Zhang&Cham Bae&Durand Tang et.al. Shen et.al. Chen et.al. OurM.

Marblehead Mass 0.4392 0.4433 0.7414 0.3221 0.3685 0.6838 0.2660

Umdan 0.2378 0.2642 0.6969 0.5641 0.5627 0.9954 0.0734

Brick House 0.4116 0.4046 0.9242 0.4083 0.6272 0.7587 0.1941

Image 01 0.2982 0.3377 0.7223 0.4271 0.5615 0.8292 0.2007

Image 04 0.2874 0.3483 0.6163 0.5072 0.5651 0.9262 0.1411

Image 19 0.3824 0.3917 0.6748 0.3030 0.7104 0.8776 0.2532
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Table 5.8: MAE comparisons on artificially blurred images - PSF5
Image Name Zhuo&Sim Zhang&Cham Bae&Durand Tang et.al. Shen et.al. Chen et.al. OurM.

Marblehead Mass 0.4519 0.5209 0.6665 0.4717 0.3402 0.6774 0.2941

Umdan 0.2563 0.3020 0.7610 0.6903 0.5324 0.9825 0.1106

Brick House 0.3528 0.4075 0.9906 0.4835 0.5759 0.8049 0.2102

Image 01 0.4322 0.4925 0.7834 0.4441 0.5096 0.6976 0.2630

Image 04 0.3589 0.4171 0.7566 0.3958 0.5275 0.8550 0.1829

Image 19 0.3336 0.3486 0.8019 0.7038 0.6298 0.9221 0.2057

Table 5.9: MAE comparisons on artificially blurred images - PSF6
Image Name Zhuo&Sim Zhang&Cham Bae&Durand Tang et.al. Shen et.al. Chen et.al. OurM.

Marblehead Mass 0.4247 0.4980 0.7761 0.6967 0.3476 0.7152 0.2870

Umdan 0.2783 0.3187 0.9198 0.7038 0.5210 0.9598 0.0922

Brick House 0.4309 0.4905 1.2210 0.4418 0.5975 0.6494 0.2667

Image 01 0.3979 0.4336 0.7473 0.8250 0.5305 0.7542 0.2030

Image 04 0.3562 0.4131 0.6948 0.4591 0.5377 0.8990 0.1571

Image 19 0.3050 0.3403 0.7550 0.6729 0.6010 0.9522 0.2014

5.3.2 Naturally Blurred Images

This section shows the full blur map estimation results of our method and
also competitive techniques for the database presented in (D’ANDRES et al., 2016).
Results were evaluated quantitatively through the Mean Absolute Error (MAE) and
qualitatively through visual inspection of the produced blur maps. However, it is
important to recall that the provided ground-truth blur values are represented as
disc PSF parameters (the radius of the disk, to be more precise). Considering that,
for methods that assume a Gaussian PSF (such as ours and several of the edge-based
methods that follow a similar formulation), a conversion function (kindly provided
by the authors of (D’ANDRES et al., 2016)) was used for comparison, and its effect
is going to be discussed in Subsection 5.3.3.

The MAE obtained with the edge-based methods (ZHUO; SIM, 2011; ZHANG;
CHAM, 2012; BAE; DURAND, 2007; TANG; HOU; SONG, 2013; SHEN; HWANG;
PEI, 2012; CHEN; CHEN; CHANG, 2016), the patch-based approach (D’ANDRES
et al., 2016) and our method for all the 22 images in the database are shown in
Table 5.10. Our method outperforms all competitive edge-based methods, being
inferior only to (D’ANDRES et al., 2016). In fact, edge-based methods tend to fail
when the blurry image does not present many edges, particularly when the local
blur changes, which is a natural limitation of any edge-based method. On the other
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hand, the method with the best result (D’ANDRES et al., 2016) is based on train-
ing a classifier using a discrete set of disc-blur parameters (more precisely, from 0.5
to 5 in steps of 0.25), which leads to a piece-wise constant blur map. Despite the
good results achieved by their method, it is prone to failure when the test image
contains blur values that were not present in the training step, as acknowledged by
the authors.

The blur maps produced by the methods used in the comparative study
for all the 22 images of the database are shown in Fig. 5.11 and Fig. 5.12. As
it can be observed, our approach presents visually coherent results (and similar
to (D’ANDRES et al., 2016)), with low and approximately constant blur values
along in-focus areas, and smoothly varying blur values when there are objects lying
progressively away from the focal plane. They also present sharp transitions at depth
discontinuities, but our method does not produce good results when the image does
not present many edges (as in ninth and eleventh rows of Fig. 5.11). In fact, the lack
of image edges is a natural limitation of edge-based methods. It is also worth noting
that the experiment on this database does not include the proposed refinement step.
The results were visually very similar, but the mean absolute error was 0.243.

The average running times for the analyzed methods using all the images
in the dataset are also shown in the bottom of Table 5.10. We do not have code
or running times for (D’ANDRES et al., 2016) (only the results, kindly provided
by the authors), but the regression tree fields used in their method, which is a
global image labeling approach, tends to be costlier (particularly for larger images).
The proposed approach was only slower than (CHEN; CHEN; CHANG, 2016), but
with considerably smaller MAEs. In fact, Table 5.10 indicates that our method
presents a very good compromise between MAE and running times when compared
to competitive approaches.
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Table 5.10: Mean Absolute Errors (MAE) for the images provided in (D’ANDRES
et al., 2016).
Image# Zhuo&Sim Zhang&Cham Bae&Durand Tang et.al. Shen et.al. Chen et.al. Andres et.al. OurM.

01 0.229 0.326 0.397 1.028 0.579 1.023 0.098 0.119
02 0.358 0.399 0.361 0.746 0.510 0.839 0.129 0.172
03 0.233 0.270 0.325 1.866 0.558 0.989 0.106 0.186
04 0.216 0.266 0.554 2.050 0.581 0.938 0.080 0.114
05 0.211 0.268 0.291 1.281 0.644 1.177 0.081 0.160
06 0.210 0.309 0.478 2.444 0.472 0.898 0.073 0.181
07 0.230 0.268 0.581 2.358 0.675 1.056 0.105 0.185
08 0.490 0.465 0.901 4.177 0.419 0.675 0.083 0.364
09 0.404 0.478 0.624 1.239 0.579 0.995 0.069 0.224
10 0.268 0.344 0.445 1.759 0.513 0.951 0.131 0.128
11 0.400 0.412 0.604 2.834 0.566 0.872 0.112 0.190
12 0.432 0.443 0.698 3.056 0.411 0.731 0.077 0.217
13 0.258 0.309 0.381 2.459 0.654 1.103 0.084 0.147
14 0.343 0.380 0.547 1.813 0.683 1.004 0.266 0.264
15 0.535 0.539 0.652 0.388 0.387 0.705 0.076 0.328
16 0.289 0.353 0.416 0.887 0.469 0.926 0.108 0.221
17 0.485 0.522 0.626 2.720 0.405 0.678 0.134 0.289
18 0.324 0.337 0.466 1.525 0.487 0.880 0.105 0.181
19 0.319 0.325 0.514 1.084 0.678 1.020 0.135 0.226
20 0.329 0.397 0.592 1.785 0.523 0.961 0.112 0.158
21 0.296 0.363 0.450 1.063 0.549 0.916 0.094 0.116
22 0.437 0.556 0.687 1.487 0.429 0.880 0.084 0.202

Av. MAE 0.332 0.379 0.527 1.821 0.535 0.919 0.106 0.199

Av. T ime(Sec) 9.42 22.58 7.63 11.84 2.72 0.81 n/a 1.44
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Figure 5.11: Comparison of different blur estimation algorithms using the images(1-
12) provided in (D’ANDRES et al., 2016) . Left column: original images. Remaining
columns, from left to right: ground truth and results produced by (ZHUO; SIM,
2011), (ZHANG; CHAM, 2012), (BAE; DURAND, 2007), (TANG; HOU; SONG,
2013), (SHEN; HWANG; PEI, 2012), (CHEN; CHEN; CHANG, 2016), (D’ANDRES
et al., 2016) and the proposed method, respectively.
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Figure 5.12: Comparison of different blur estimation algorithms using the images(13-
22) provided in (D’ANDRES et al., 2016). Left column: original images. Remaining
columns, from left to right: ground truth and results produced by (ZHUO; SIM,
2011), (ZHANG; CHAM, 2012), (BAE; DURAND, 2007), (TANG; HOU; SONG,
2013), (SHEN; HWANG; PEI, 2012), (CHEN; CHEN; CHANG, 2016), (D’ANDRES
et al., 2016) and the proposed method, respectively.
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5.3.3 Effect of the Point Spread Function

So far, methods (including our and other edge-based ones such as (ZHUO;
SIM, 2011; ZHANG; CHAM, 2012; BAE; DURAND, 2007; TANG; HOU; SONG,
2013; SHEN; HWANG; PEI, 2012; CHEN; CHEN; CHANG, 2016) etc.) that assume
naturally blurred images can be simulated with a Gaussian PSF followed a similar
formulation in order to compute the unknown blur amount. However, it is very
difficult to know the exact defocus blur PSF in natural images.

Recently, a patch-based method (D’ANDRES et al., 2016) is proposed with
a defocus blurry image dataset which includes the "known" ground truth blur scales
for each image, assuming a disc PSF parametrization. Then, the author computed
a conversion table to make a "fair" comparisons with methods that assume Gaus-
sian PSFs, by measuring the closest Mean Square Error fits around a blurry patch
centered on a single step edge using both disc and Gaussian PSFs. This conversion
function can be seen in Fig. 5.13.

Figure 5.13: Disc to Gaussian blur scale conversion function
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In order to observe the effect of the PSF, we conducted a set of experiments
starting with a synthetic single step edge image, which is artificially blurred by
spatially-invariant PSFs for different Gaussian blur levels and corresponding disc
levels (computed using the conversion function depicted in Fig. 5.13), and some
example images can be seen in Fig. 5.14. Then, we apply Eq. 3.7 using two fixed
reblurring parameters3 (i.e. σ1 = 1 and σ2 = 1.5) to estimate the blur scales at edge

3Since the goal is to observe only the effect of the chosen PSF model, we opted to use the plain
formulation to compute blur.
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points (sparse blur map) and we observe the Mean Absolute Errors along the edge
for each pair of artificially blurred image (Gaussian and corresponding disc blurry).

Figure 5.14: Artificially blurred images. First row using spatially-invariant Gaussian
PSFs (σb = 0.5, σb = 1.65 and σb = 3 from left to right, respectively) and second
row corresponding disc blurry images (rb = 0.75, rb = 3 and rb = 5.5 from left to
right, respectively).

Figure 5.15: Mean Absolute Errors of each artificially blurred image pair (Gaussian
and disc blurry) for different Gaussian and disc kernel levels.
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Fig. 5.15 shows the Mean Absolute Errors (vertical axis) of each artificially
blurry image pair (Gaussian and disc blurry) as a function of the blur scale (hor-
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izontal axes). As it can be observed from Fig. 5.15, the MAE when blurring the
image with a Gaussian PSF is small (blue curve). On the other hand, when the
image is blurred with a disc PSF, the error produced by our method is larger, and
it increases as the input blur amount grows.

A similar experiment is conducted using real images. For that purpose, we
chose some natural sharp images that we used before in Subsection 5.3.1 and Sub-
section 5.3.2. More precisely, the Brick House and Umdan images from (RUBIN-
STEIN et al., 2010), and Image 01 and Image 19 from (D’ANDRES et al., 2016).
These sharp images were artificially blurred by spatially-invariant PSFs for different
Gaussian blur levels and corresponding disc levels (which were computed using the
conversion function depicted in Fig. 5.13) and some of the results can be seen in
Fig. 5.16, Fig. 5.17, Fig. 5.18 and Fig. 5.16, and it can be observed that Gaussian
and corresponding disc blurry images are visually very similar.

Figure 5.16: Artificially blurred natural image (Brick House). First row using
spatially-invariant Gaussian PSFs (σb = 0.5, σb = 1.65 and σb = 3 respectively)
and second row corresponding disc blurry images (rb = 0.75, rb = 3 and rb = 5.5
respectively). Source : (RUBINSTEIN et al., 2010)

As in the experiment with the synthetic image, the MAE was computed as
a function of the blur amount using our 2D multi-scale image gradients method, as
shown in Fig. 5.20. Interestingly, the discrepancies when blurring with disc PSF
were smaller than those observed for the natural images, particularly for higher blur
amounts.
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Figure 5.17: Artificially blurred natural image (Umdan). First row using spatially-
invariant Gaussian PSFs (σb = 0.5, σb = 1.65 and σb = 3 respectively) and second
row corresponding disc blurry images (rb = 0.75, rb = 3 and rb = 5.5 respectively).
Source : (RUBINSTEIN et al., 2010)

Figure 5.18: Artificially blurred natural image (Image 01 ). First row using spatially-
invariant Gaussian PSFs (σb = 0.5, σb = 1.65 and σb = 3 respectively) and second
row corresponding disc blurry images (rb = 0.75, rb = 3 and rb = 5.5 respectively).
Source : (D’ANDRES et al., 2016)
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Figure 5.19: Artificially blurred natural image (Image 19 ). First row using spatially-
invariant Gaussian PSFs (σb = 0.5, σb = 1.65 and σb = 3 respectively) and second
row corresponding disc blurry images (rb = 0.75, rb = 3 and rb = 5.5 respectively).
Source : (D’ANDRES et al., 2016)

Figure 5.20: Mean Absolute Errors of each artificially blurred image pair (Gaussian
and disc blurry) for different Gaussian and disc kernel levels.
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5.4 Video Defocus Blur Estimation

This section shows the full blur map estimation results for video sequences
using our method and also competitive techniques applied in a frame-wise manner.
Since it is not to our knowledge the existence of publicly available databases to
evaluate defocus blur estimation of video sequences, the experimental validation
was performed using real videos extracted from a TV Series called UNDER THE
DOME© and a video that we recorded. Results are evaluated only qualitatively
through visual inspection of the produced blur map videos due to the lack of ground
truth data for video sequences.

The first experiment explores a short video sequence taken by a static camera
and without any noticeable object motion, only changes of the focal plane (see some
frames in Fig. 5.21). In order to show the estimated blur map results as well as our
Kalman filtered version of the blur map sequences, we choose five control points (red
points in Fig. 5.21) and evaluate the estimated blur scales at those points along time.
More precisely, points #1 and #5 lie on the most blurry regions of the sequence in
the beginning, then their blur level reduces. Points #3 and #4 belong to the same
object and are initially blurry, becoming in-focus after some time, while point #2
presents an opposite behavior, starting in-focus and then defocused.

Figure 5.21: Blurry video frames and chosen control points. (a) frame no #1, (b)
frame no #32 and (c) frame no #80

(a) (b) (c)

Fig. 5.22 shows the estimated blur values for all five control points ob-
tained with different methods, namely (ZHUO; SIM, 2011), (ZHANG; CHAM,
2012), (BAE; DURAND, 2007), (TANG; HOU; SONG, 2013), (SHEN; HWANG;
PEI, 2012) and (CHEN; CHEN; CHANG, 2016), as well our method with and
without temporal coherence. Since the spatially/temporally varying blurry video
has only focal change along time (frames), the estimated full blur maps should
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change smoothly. However, blur estimates in frame-by-frame manner (including our
method) creates temporal inconsistencies due to the fact that none of the meth-
ods uses temporal information. On the other hand, the proposed temporal scheme
presents a smooth temporal variation in time.

Figure 5.22: Estimated blur values for all five control points obtained with different
methods as well our method with and without temporal coherence for the video
sequence depicted in Fig. 5.21. (a) point #1, (b) point #2, (c) point #3, (d) point
#4 and (e) point #5
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The second experiment is conducted on a more challenging video sequence,
which contains moving objects (see three chosen frames in Fig. 5.23). Blur val-
ues of some control points (see Fig. 5.23) along time can be seen in Fig. 5.24.
Point #1 initially is out-of-focus then turn in-focus. Point #2 relates to an occlu-
sion/disocclusion, starting in-focus, then changing to out-of-focus and finally getting
in-focus again. Point #3 is in-focus in the beginning of the video, then becomes
out-of-focus; finally, points #4 and #5 belong to out-of-focus regions initially, then
become in-focus points. As in the previous experiment, all methods applied in a
frame-wise manner introduced temporal inconsistencies between frames, whereas
the temporal approach produced smooth trajectories (see blur values of the chosen
point along time in Fig. 5.24), while sharp transitions due to occlusions/disocclusions
are maintained. However it is worth to note that, even though point #2 is initially
in-focus, the obtained blur value has additional blur caused by the light reflection of
the hairless head of the actor, which is called ’shading effect’ (ELDER; ZUCKER,
1998) and it is a natural limitation for all kind of defocus blur estimation methods.

Figure 5.23: Blurry video frames and chosen control points. (a) frame no #1, (b)
frame no #32 and (c) frame no #80

(a) (b) (c)
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Figure 5.24: Estimated blur values for all five control points obtained with different
methods as well our method with and without temporal coherence for the video
sequence depicted in Fig. 5.23. (a) point #1, (b) point #2, (c) point #3, (d) point
#4 and (e) point #5
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A third (and even more challenging) sequence, which contains object and
camera motion, was also used to test the proposed method. Some frames of this
sequence are shown in Fig. 5.25, along with control points. The movements (camera
or object) create sudden changes between frames, especially for point #1, as shown
in Fig. 5.26(a). On the other hand, due to changes in the camera focus, points #2
and #3 become gradually in-focus, while points #4 and #5 present the opposite
behavior. As in the previous examples, the Kalman filtered version presents a good
compromise between smoothness and transition lag.

The last experiment relates to a video taken from a DoF camera containing
an in-focus object that moves in front of a defocused background, aiming to illustrate
how the Kalman filter deals with occlusions/disocclusions. The focal plane of the
camera was kept fixed during the sequence, so that the defocus level of each object is
still due to their distance to the camera. As in the previous experiments, some frames
along with control points were selected, as shown in Fig. 5.27. Control point #1
alternates from in-focus and defocused regions, since it belongs to different regions in
time: hand, background, face and background again. Point #2 is initially in-focus,
placed on the hat of the doll, then becomes out-of-focus. The plots of the estimated
defocus blur using different methods are shown in Figs. 5.27(a) and 5.27(c), while
Figs. 5.27(b) and 5.27(d) focus on the comparison of the proposed approach with and
without temporal coherence. It can be observed that the Kalman filtered provides
good compromise between smoothness and transition lag, especially around frames
45 and 85 for point #1. On the other hand, point #2 is constantly on a blurry
region after doing a sharp transition from the hat of the doll around frame 10.

Although the plots shown in this section indicate that the temporal ap-
proach reduces jittering, a better visual analysis can be performed by evaluat-
ing the processed video sequences. For that, please refer our web-page <https:
//sites.google.com/site/axkaraali/dissertationvideos>.

https://sites.google.com/site/axkaraali/dissertationvideos
https://sites.google.com/site/axkaraali/dissertationvideos
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Figure 5.25: Blurry video frames and chosen important points. (a) frame no #1,
(b) frame no #32 and (c) frame no #80

(a) (b) (c)

Figure 5.26: Estimated blur values for all five control points obtained with different
methods as well our method with and without temporal coherence for the video
sequence depicted in Fig. 5.25. (a) point #1, (b) point #2, (c) point #3, (d) point
#4 and (e) point #5
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Figure 5.27: Blurry video frames and chosen control points. (a) frame no #1, (b)
frame no #31, (c) frame no #50 and (d) frame no #100

(a) (b)

(c) (d)

Figure 5.28: Estimated blur values for two control points obtained with different
methods as well our method with and without temporal coherence for the video
sequence depicted in Fig. 5.25. (a)-(c) point #1 and point #2 for all methods, (b)-
(d) point #1 and point #2 for our method with and without temporal coherence
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5.5 Blur-aware Image Retargeting

Existing cameras and display devices present a wide range of resolutions
and aspect ratios. Such diversity introduced a new problem: content-aware image
retargeting, which aims to adjust the content of a digital image to a specific display,
maintaining a pleasant visual quality and keeping relevant objects of the image.
Clearly, one key issue in content-aware image retargeting is to identify the relevant
components in a photograph, which is very application dependent. Different types of
importance measures were proposed in the literature, and they are used to determine
which pixels or regions will be removed, kept or modified. Therefore, the first step
of a content-aware retargeting application is to produce an importance map, which
typically includes low and/or high level feature extraction, and occasionally some
additional constraints such as line/structure/object detection. Then, a retargeting
operator itself is applied to the image combining the importance map and additional
constraints (if any) in order to create the final image.

Image retargeting is a relatively new field in the area of computational pho-
tography, but various algorithms have been proposed for this problem, including
comprehensive reviews of recent methods (VAQUERO et al., 2010; RUBINSTEIN
et al., 2010). In a nutshell, existing methods can be classified basically into two
categories: discrete and continuous methods.

Discrete image retargeting methods typically remove pixels (or patches) while
preserving the important parts of the image, and content-aware cropping can be
given as one of the earliest example of these methods. The work of Suh et al. (SUH
et al., 2003), which provides an algorithm that crops images before generating a
thumbnail image automatically, can be cited as one of the pioneers. This algorithm
calculates a saliency map and seeks a cropping window that maximizes the percent-
age of salient points within the window, using a greedy approach. Another typical
example of a discrete retargeting operator is seam carving (AVIDAN; SHAMIR,
2007). The idea behind seam carving is to iteratively remove continuous pixel
chains, namely seams, while preserving the content as much as possible. Count-
less improvements were proposed over the original seam carving paper during the
last two decades. One of the most notable ones was proposed by Rubinstein et
al. (RUBINSTEIN; SHAMIR; AVIDAN, 2008), which suggests a new approach to
handle the fact that seam removal may add more energy into the energy map. For
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that purpose, a new forward energy function that measures the effect of seam carv-
ing on the retarget image was introduced. Continuous methods for retargeting are
based on warping, which deals mostly with images. Liu and Gleicher (LIU; GLE-
ICHER, 2005), for example, proposed to use a fisheye-view warping function in
order to amplify the region-of-interest (ROI), while de-emphasizing less important
regions. However, the method assumes that the image has only one ROI, meaning
that it cannot handle images with multiple objects.

As it can be observed, the main obstacle of retargeting algorithms is to choose
the most important parts (according the observers) in the image to create visually
plausible results. Existing algorithms try to handle the difficulty of choosing the
right parts of the image using some kind of additional information, such as saliency
detectors, faces, edge maps, etc. Blur information has been used for saliency de-
tection before (JIANG et al., 2013), but it is not to our knowledge its use in the
context of image retargeting. Hence, we propose a retargeting scheme that accounts
for blur information as an additional contribution to this dissertation, which was
published in (KARAALI; JUNG, 2016).

Let us consider an input image with dimensions R × C, and the desired
dimension of the output image is r × c, with r ≤ R and c ≤ C. The core of
our approach is to identify and preserve in-focus regions in a photograph. For that
purpose, we initially compute a dense blur map of the image, and classify as in-focus
regions those that present low blur. Then, we remove the boundaries of the image
taking into account the in-focus regions, since cropping tends to produce good visual
results (MA et al., 2012). If just cropping is not enough to achieve the desired image
dimension, seam carving is applied using a novel blur-aware energy function.

5.5.1 Blur-Aware Image Cropping

In-focus objects clearly are those that present low blur values, so that they can
be detected by using a threshold Tσ. Even though "acceptable" sharpness depends
on several aspects (such as image resolution, size of the objects of interest, viewing
resolution, etc), which impacts the choice of the threshold, we used a fixed value
Tσ = 1 as suggested in (ZHUO; SIM, 2011) in order to find in-focus regions in our
defocus blur map.

Since the blur estimation process may contain errors (particularly in homo-
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geneous textureless areas), the blur value of in-focus objects may vary. As a con-
sequence, the thresholding process may separate one object into two or more. To
alleviate this problem, we apply a morphological opening operator on top of the full
blur map B(x, y), obtaining B′(x, y) = s(x, y)·B(x, y) = (s(x, y)	B(x, y))⊕s(x, y),
where ⊕ and 	 denote dilation and erosion, respectively, using a circular structuring
element s(x, y) with dimension Ns×Ns, where Ns = 0.015 min{R,C} (i.e., a fraction
of the smallest dimension of the input image). In fact, the morphological opening
tends to connect small gaps between darker regions, which relates to propagating
in-focus regions in our context.

Even after the morphological opening, the blur-based thresholding procedure
may produce several small regions, some of them probably irrelevant. Our criterion
to select relevant in-focus regions in based on the area of the objects. After binarizing
the blur map, we identify the N connected components and compute the largest area,
called Amax. Then, a given connected component is kept if its area A is larger than
a fraction 0 < TA < 1 of the largest object. In this work, we used TA = 0.5, so that
objects less than 50% of the largest are discarded.

Given the objects of interest, we compute the minimum distance of the bound-
ing box containing these objects to the left, right, top and bottom image boundaries.
Let dl, dr, dt and db denote such distances, and let εl, εr, εt and εb denote the min-
imum desired distances from the objects of interest in the cropped image (so that
ideally no object touches the boundaries of the retargeted image).

The goal of image cropping is to find a rectangular cropping region R with
dimensions r′×c′, with r′ = max{r, R−dt−db+εt+εb} and c′ = max{c, C−dl−dr+
εl + εr}, so that it is able to keep all the objects of interest, and also the boundary
tolerances εi, as shown in Fig. 5.29. If the target image dimensions r and c are large

Figure 5.29: Illustration of the minimal cropping region.
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enough, there are several possible cropping windows that satisfy the desired criteria
(i.e. keep all objects with some boundary tolerance). Since our goal is to prioritize
in-focus regions, the optimal crop is based on the preservation of low-blur pixels.
More precisely, if R(x, y) denotes a rectangular region with dimensions r′× c′ which
top-right position is given by (x, y), the location (x∗, y∗) of the optimal cropping
window is given by

(x∗, y∗) = argmin(x,y)
∑

(m,n)∈R(x,y)
B′(m,n), (5.1)

where B′ is the processed blur map. In our implementations, we make use of integral
images (or summed area tables), so that each summation over a rectangular region
in Eq. 5.1 is performed at constant time.

5.5.2 Image Retargeting With Seam Removal

If r = r′ and c = c′, only cropping is enough to produce the retargeted
image at the desired resolution. Otherwise, an additional step based on seam carv-
ing (RUBINSTEIN; SHAMIR; AVIDAN, 2008) is applied. However, instead of using
the traditional gradient-based energy to guide the seam removal process, we propose
a new strategy that takes the defocus blur of the images also into account in order
to compute the importance map, aiming to preserve in-focus regions. As such, the
new energy function should present higher costs at in-focus regions (i.e. low blur
regions) to prevent seams from crossing them.

Given the morphologically processed blur map B′(x, y), we build a "sharp-
ness" map Eb using a sigmoid transducer function inspired on (VU; PHAN; CHAN-
DLER, 2012):

Eb(x, y) = 1− 1
1 + eα1(B′(x,y)−α2) , (5.2)

where α1 and α2 are the constants that control the shape of the transducer. Ex-
perimentally, we have set α1 = −4 and α2 = 2, which generates a monotonically
decreasing function that is roughly flat for small blur values B′ and decays smoothly.

The blur energy Eb is then combined with a directional gradient-based en-
ergy, and the seam extraction process is applied using the forward energy approach
similarly to the Improved Seam Carving (ISC) method (RUBINSTEIN; SHAMIR;
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AVIDAN, 2008), in which the optimal seam is computed using a dynamic program-
ming approach using an 8-connectedness neighborhood for each pixel looking for a
seam which removal inserts the minimum amount of energy into the retargeted im-
age. In such approach, the gradient-based cost CT is computed differently for paths
coming from the left, up or right of the pixel under analysis (assuming a vertical
seam, from top to bottom):

CL(x, y) = |I(x, y + 1)− I(x, y − 1)|

+ |I(x− 1, y)− I(x, y − 1)|

CU(x, y) = |I(x, y + 1)− I(x, y − 1)|

CR(x, y) = |I(x, y + 1)− I(x, y − 1)|

+ |I(x− 1, y)− I(x, y + 1)|

, (5.3)

The proposed energy function E = min(E1, E2, E3) is then computed based on
the minimum energy from the three possible directions, where E1, E2 and E3 are
combinations of gradient and blur information given by

E1 = E(x− 1, y − 1) + ((CL(x, y) + δ1)(Eb(x, y) + δ2)),
E2 = E(x− 1, y) + ((CU(x, y) + δ1)(Eb(x, y) + δ2)),
E3 = E(x− 1, y + 1) + ((CR(x, y) + δ1)(Eb(x, y) + δ2))

, (5.4)

so that in-focus regions with sharp edges tend to be avoided (i.e., present larger
energy values). The offset parameters δ1 and δ2 control the importance of the
blur and gradient energy maps in the combined map: If δ1 = 0, a region without
significant texture (Ck ≈ 0) will cause the final energy E to be very close to zero
regardless of the defocus blur degree; similarly, if δ2 = 0, a region with significant
blur (Eb ≈ 0) will cause the same effect, regardless of the gradient term. We have
noticed in our experiments that such setting tends to produce noticeable seams in the
retargeted image, since they are concentrated in textureless or very blurred regions
of the image. Small values for δ1 and δ2 can avoid these situations, and we have
noticed experimentally that δ1 = 0.0001 and δ2 = 0.01 present a good compromise
between seamless retargeting and in-focus object preservation.



89

5.5.3 Experimental Results of Blur-Aware Retargeting

For the experimental results, we used some of the images explored in (ZHUO;
SIM, 2011), some images from a TV Series, and some images from the RetargetMe
database (RUBINSTEIN et al., 2010), which also presents the results from other
retargeting methods with a given reduction ratio. In all experiments, we used εl =
εr = εt = εb = 10 pixels as the boundary thresholds.

Figure 5.30: (a)-(c) Seams using (RUBINSTEIN; SHAMIR; AVIDAN, 2008) and
our energy, respectively. (b)-(d) Retargeted images related to (a)-(c). (e) Cropping
+ seams using our complete approach, and (f) our final retargeting result.

(a) (b) (c) (d) (e) (f)

To evaluate the importance of the blur term, we compared the seams pro-
duced by the gradient-based energy (RUBINSTEIN; SHAMIR; AVIDAN, 2008) and
our gradient+blur energy. The underlying seam carving algorithm is the same, only
the energy function changed (to evaluate just the produced seams with and without
blur, cropping was disabled in this example). The results are shown in Fig. 5.30(a)
and Fig. 5.30(c), respectively, while the corresponding retargeted images are shown
in Fig. 5.30(b) and Fig. 5.30(d), respectively. As it can be observed, the seams
produced by our method mostly avoid the in-focus object, which is well preserved
in the corresponding retargeted image. The gradient-based method, on the other
hand, produces several seams along the teddy bear, which generates a deformed
retargeted image. We also illustrate the result of our full retargeting approach com-
bining cropping and seam carving in Fig. 5.30(e), with the final retargeted image
shown in Fig. 5.30(f). It can be noticed that just a few additional seams must be re-
moved to reach the desired resolution with the inclusion of cropping, which reduces
the computational cost (since cropping is much faster than multiple seam removals).

To compare the proposed approach with competitive retargeting methods,
we chose a subset of images acquired with shallow DoF (Depth-of-Field) from (RU-
BINSTEIN et al., 2010) (recall that the scope of this paper is to deal with defocus
blur). Fig. 5.31 illustrates, in the first column, the original images, Butterfly,
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Figure 5.31: First column: images from RetargetMe database (RUBINSTEIN et al.,
2010). Second to sixth columns: results of Optimized Scale and Stretch (WANG
et al., 2008), Multi-operator (RUBINSTEIN; SHAMIR; AVIDAN, 2009), Improved
Seam Carving (RUBINSTEIN; SHAMIR; AVIDAN, 2008), Nonhomogeneous warp-
ing (WOLF; GUTTMANN; COHEN-OR, 2007), and our approach, respectively

Child, DKNY girl, Lotus and Volleyball. The second, third, fourth, fifth and sixth
columns show, respectively, the results produced by Optimized Scale and Stretch
(OSS) (WANG et al., 2008), Multi-operator (MULTIOP) (RUBINSTEIN; SHAMIR;
AVIDAN, 2009), Improved Seam Carving (ISC) (RUBINSTEIN; SHAMIR; AVI-
DAN, 2008), Nonhomogeneous warping (WARP) (WOLF; GUTTMANN; COHEN-
OR, 2007) and our approach.

For the butterfly image, the desired dimension requires both cropping and
blur-aware seam carving. The butterfly (the in-focus object) was best preserved
by using our approach, whereas OSS and WARP clearly deformed the butterfly,
MULTIOP and ISC kept irrelevant background while changing the aspect ratio of
the butterfly with unnatural leaf deformation. This deformation is also noticeable
for the DKNY girl image, since OSS operator deforms the left arm while making the
head looks narrower, MULTIOP and ISC shrink the women in a very unpleasant
way, making her very skinny, and WARP deforms the right arm and head of the
woman. On the other hand, our retargeting operator is able to successfully keep
the aspect ratio of the girl. Similarly, only cropping is not enough to keep the
flower intact in the Lotus image. For this image, OSS and MULTIOP produced a
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good visual result at keeping the flower (although with a little bit of shrinking), but
the ISC operator deformed the middle part of the flower a little bit (especially the
middle leaf of the flower), and the WARP operator completely cut the flower (which
is the most important object in the image). Whereas, our method was able to keep
the size of the flower without any artifacts.

Despite half of the pumpkin was removed by our method in the Child image,
the kid (only in-focus-object) was best preserved intact. The pumpkin was better
preserved by both OSS, MULTIOP, ISC, and WARP but at the cost of deforming
the kid (the face was narrowed, and the baton shrunk). Finally, for Volleyball

image, the deformation can be seen clearly on OSS, ISC and WARP’s results, since
the arms were skinned with respect to other body parts and the MULTIOP operator
shrinks the woman in a very unpleasant way. However, even though the flag on the
left disappears, our method yields the best visual result while keeping the woman
natural, which is the only in-focus object.

Figure 5.32: (a) The original image (taken from Under The Dome TV Series). (b)-
(f) Final retargeting results using our blur aware approach (cropping + seams) with
different defocus blur estimation methods, namely (ZHANG; CHAM, 2012), (BAE;
DURAND, 2007), (TANG; HOU; SONG, 2013), (ZHUO; SIM, 2011) and our method
respectively. (g) Retargeting result without blur estimation, using (RUBINSTEIN;
SHAMIR; AVIDAN, 2008).

(a) (b) (c) (d) (e) (f) (g)

Finally, we conducted an experiment to explore the impact of the defocus
blur estimation method on our blur aware retargeting approach. For that purpose,
we applied our retargeting method to a shallow DoF image using different defocus
blur map estimation algorithms, namely (ZHANG; CHAM, 2012), (BAE; DU-
RAND, 2007), (TANG; HOU; SONG, 2013), (ZHUO; SIM, 2011) and our method
shown in Fig. 5.32(b) to Fig. 5.32(f). For the chosen default blur estimation tech-
nique, we used Tσ = 1 as the in-focus threshold, as described before. For the other
methods, we adjusted the threshold manually (since the blur ranges may vary). As
it can be observed, the proposed approach produces plausible results for other blur
estimation methods as well. For the sake of comparison, we also showed the re-
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sult of gradient-based seam carving (RUBINSTEIN; SHAMIR; AVIDAN, 2008) in
Fig. 5.32(g). Clearly, the use of blur information presents potential to improve the
visual quality of the retargeted image.

5.6 Image and Video Deblurring

It is important to point out that in many scenarios the quality of a given
algorithm is highly dependent on the final application. For instance, the classical
stereo matching problem can be used as input for view interpolation. In that con-
text, it was shown that the best methods for stereo matching considered popular
objective metrics (such as the percentage of "bad pixels" used in the Middlebury
dataset (SCHARSTEIN; SZELISKI, 2002)) might not produce the best interpo-
lated view according to objective image quality metrics PSNR or SSIM (FüHR et
al., 2013). Analogously, blur estimation can be viewed as an intermediate step re-
quired in non-blind image reblurring or deblurring. In this dissertation, we also
evaluate the quality of the proposed blur estimation method, as well as competi-
tive approaches, by measuring the PSNR of deblurred images. This strategy was
actually used in (D’ANDRES et al., 2016) for still images, but they evaluated natu-
rally blurred images with artificial noise contamination, so that the final comparison
involves both deblurring and denoising.

Additionally, we also perform a correlation analysis between the blur estima-
tion error (MAE) and the PSNR of the corresponding deblurred image. Although
a negative correlation might be expected, that is not always the case, as shown in
next section.

5.6.1 Image Deblurring

When using non-blind deconvolution methods, the quality of the deblurred
images depend on the estimated blur map and also on the deblurring algorithm
itself. In this dissertation, we used the combination of deblurring methods proposed
in (KRISHNAN; FERGUS, 2009) and (LEVIN et al., 2007) fed by the proposed full
blur maps to evaluate the quality of the deblurred images produced using our maps.
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More precisely, the deblurring model is given by

Î = arg min
I

(δdata(I) + λδreg(I)), (5.5)

where Î is an estimate of the original (sharp) image I, δdata(I) is a data-fidelity term,
and δreg(I) is the regularization term. More precisely, δdata(I) = ‖h⊗I−Ib‖2

2, where
h is the spatially varying (known) blur kernel, and Ib is the observed blurry image.
For the regularization term, we use sparse derivative priors δreg(I) = ‖f1 ⊗ I‖α +
‖f2 ⊗ I‖α, where f1 and f2 are first order derivatives in the horizontal and vertical
directions, respectively, and ‖.‖α is the alpha-norm that acts as a penalty function,
set to 0.8 based on hyper-Laplacian priors (KRISHNAN; FERGUS, 2009). We set
λ = 0.002 based on experiments, aiming to maximize the PSNR of the deblurred
image. A very similar deblurring algorithm was also employed in (D’ANDRES et
al., 2016), but they also consider a blur map estimation error Eh in the objective
function. We opted not to use such term to perform a fair comparison of different
blur estimation methods in the context of image deblurring, although the use of
such term can indeed improve the results.

We have applied the deblurring algorithm to our blur maps, as well as to the
ground truth data provided in (D’ANDRES et al., 2016), and the defocus maps
produced by competitive blur estimation methods. The deblurred images were
then compared with the original all-in-focus image, allowing an objective compari-
son. This process was performed for the same 22 images used in the previous test,
and the resulting PSNRs are summarized in Table 5.11. It can be observed that
only (D’ANDRES et al., 2016) and our method presented a higher average PSNR
value than the original blurry images, along with the results produced by the ground
truth blur values. For the sake of fairness, it is important to point out that deblur-
ring results with disc kernel formulation reported in (D’ANDRES et al., 2016) using
the additional error correction term for estimated blur maps (as mentioned before)
for artificially noisy versions of the same dataset yielded PNSR gains of 2.06dB
(σn = 1) and 1.55dB (σn = 2.55), compared to 0.58dB gain and 1.05dB gain with
error correction term when Gaussian formulation is used for the noiseless version of
the dataset. In fact, using the error correction term boosts the PSNR of deblurred
images using all blur estimation methods, as shown in the bottom of Table 5.11. In
both cases, the average PSNR gains of 0.92dB and 1.42dB (with error correction
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Table 5.11: PNSRs for the deblurred images using the data provided in (D’ANDRES
et al., 2016)
Image# Blurry GT Data Zhuo&Sim Zhang&Cham Bae&Durand Tang et.al. Shen et.al. Chen et.al. Andres et.al. OurM.

01 25.51 26.48 24.90 23.77 25.31 21.14 22.35 19.75 26.25 26.07
02 24.54 25.19 24.18 23.79 24.22 23.62 22.53 19.80 24.90 24.89
03 23.74 25.23 23.60 22.88 23.51 16.35 20.12 16.75 24.76 24.21
04 23.58 25.98 24.87 24.61 24.10 16.17 21.12 17.74 25.56 25.64
05 26.50 28.32 25.17 23.85 25.82 17.35 20.28 16.65 27.83 26.81
06 24.05 25.06 21.47 19.95 23.30 15.52 21.04 15.92 23.87 24.66
07 27.09 28.59 26.02 25.70 26.37 17.98 22.32 18.87 28.28 27.49
08 23.47 24.48 23.95 23.97 23.23 19.82 21.61 18.30 24.40 23.92
09 22.56 23.35 21.94 21.23 22.41 20.00 21.49 19.13 23.26 22.70
10 23.97 25.13 24.09 22.14 24.25 15.92 20.89 16.63 24.93 24.87
11 23.47 24.04 23.37 23.11 23.43 17.12 23.04 21.63 23.87 23.81
12 23.73 24.49 23.70 23.62 23.65 19.24 23.97 21.95 24.36 23.96
13 28.09 28.41 24.95 23.25 27.17 19.02 21.80 17.80 28.13 28.40
14 24.75 25.17 24.52 24.05 24.70 17.92 21.77 19.32 25.47 25.19
15 20.43 21.17 19.84 19.04 20.32 20.57 19.33 16.66 21.08 20.48
16 23.87 25.14 24.16 21.64 24.26 19.70 19.95 15.28 25.01 24.60
17 24.33 24.10 22.40 21.60 23.01 18.84 21.76 17.69 22.69 23.75
18 22.71 23.73 22.74 22.40 22.70 18.24 22.82 20.99 23.53 23.17
19 24.31 25.47 24.11 24.22 23.84 20.81 22.23 19.38 25.11 24.61
20 22.23 22.63 21.46 20.63 21.91 17.13 20.94 17.86 21.92 22.38
21 25.63 26.47 25.26 24.36 24.76 23.23 23.61 20.52 26.08 26.23
22 23.91 24.24 23.24 22.50 23.04 21.54 22.90 20.41 24.06 23.95

Avg. PSNR 24.20 25.13 23.63 22.83 23.88 18.96 21.72 18.59 24.79 24.63

Avg. Gain n/a 0.92 −0.56 −1.37 −0.32 −5.23 −2.48 −5.60 0.58 0.42

Average results with the blur error correction term added to Eq. (5.5)

Avg. PSNR 24.20 25.63 23.80 23.04 24.08 19.17 21.75 19.36 25.26 24.93

Avg. Gain n/a 1.42 −0.39 −1.16 −0.12 −5.03 −2.45 −4.83 1.05 0.72

term) obtained using ground truth blur maps can be considered an upper bound for
deblurring, at least for the chosen deblurring algorithm, and the chosen parameters
(clearly, different results will be reached if the deblurring method or its parameters
are changed).

Fig. 5.33 and Fig. 5.34 show some deblurring examples using the ground truth
blur map data and the defocus blur maps obtained with the estimation methods an-
alyzed in Table 5.11. Although visual analysis is very subjective, it can be observed
that only deblurring results fed by our blur map and (D’ANDRES et al., 2016) are
close to the original sharp image. On the other hand, other methods do not seem to
produce visually good results. For instance, instead (SHEN; HWANG; PEI, 2012)
produces disturbing ringing artifacts (seventh column of Fig. 5.33 and Fig. 5.34).

Still in the context of non-blind image deblurring, it would be very interesting
to evaluate how a given objective error measure (e.g. MAE) used to compare defocus
blur estimation methods relate to an objective error measure (e.g. PNSR) used
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Figure 5.33: Comparison of deblurring results using different blur maps using the
images(1-12) provided in (D’ANDRES et al., 2016). Left column: original sharp
image, blurry image. Remaining columns, from left to right: deblurring result
using ground truth data and blur map of (ZHUO; SIM, 2011), (ZHANG; CHAM,
2012), (BAE; DURAND, 2007), (TANG; HOU; SONG, 2013), (SHEN; HWANG;
PEI, 2012), (CHEN; CHEN; CHANG, 2016), (D’ANDRES et al., 2016) and the
proposed method, respectively. (Best view can be seen zooming)

to compare deblurring/restoration algorithms. Although important, it is not to
our knowledge the existence of such analysis, probably due to the lack of datasets
containing naturally blurred images, their sharp counterparts and the ground truth
for the blur values.
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Figure 5.34: Comparison of deblurring results using different blur maps using the
images(13-22) provided in (D’ANDRES et al., 2016). Left column: original sharp
image, blurry image. Remaining columns, from left to right: deblurring result
using ground truth data and blur map of (ZHUO; SIM, 2011), (ZHANG; CHAM,
2012), (BAE; DURAND, 2007), (TANG; HOU; SONG, 2013), (SHEN; HWANG;
PEI, 2012), (CHEN; CHEN; CHANG, 2016), (D’ANDRES et al., 2016) and the
proposed method, respectively. (Best view can be seen zooming)

In this part of the dissertation, we perform a correlation analysis for the
dataset proposed in (D’ANDRES et al., 2016) considering all methods used in the
comparisons shown in the previous sections. In the first analysis, we compare the
pairs MAE × PSNR considering all images and methods (22 images × 8 methods =
174 pairs). More precisely, the Pearson correlation coefficient was −0.66, with con-
fidence p < 0.001, indicating a statistically significant negative correlation between
the MAE and PSNR, which was expected (better blur maps should yield better
deblurred images).
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We have also analyzed the relationship between the MAE and PSNR for each
method individually. The scatter plots are shown in Fig. 5.35, and for most methods
the PSNR tends to increases as the MAE decreases. In fact, the Pearson correlation
coefficient was negative (around −0.5) and statistically significant (p < 0.05) for all
methods except for (SHEN; HWANG; PEI, 2012), (CHEN; CHEN; CHANG, 2016)
and (D’ANDRES et al., 2016). For these last three methods, the p-values were
0.84, 0.46 and 0.82, which highly suggests that there is no correlation between MAE
and PSNR for these methods. We have also analyzed Spearman’s and Kendall’s
rank correlation coefficients, which measures how well the variables are related by
a monotonic function, and the results were consistent with the Pearson coefficient.
Although we do not have a definitive explanation for this fact, we believe that the
spatial distribution of the error across different methods might play an important
role. For example, blur estimation errors along homogeneous regions can have a
small effect on the deblurred image, whereas the opposite happens along edges or
textured regions.

It is also important to emphasize that these results are highly affected by the
deblurring method (as well as the parameters used in the chosen method). However,
it indicates that for some methods the MAE of the blur map may not be a good
indicative of the quality of the corresponding deblurred image.

Figure 5.35: Scatter plot of MAE and PSNR for different methods
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5.6.2 Video Deblurring

The last set of experiments aim to investigate the application of the pro-
posed defocus blur estimation method for video sequences in the context of video
deblurring. In the analysis, we used our defocus blur map estimation results with
and without temporal coherence, and results are explored only quantitatively since
(to our knowledge) there are no publicly available pairs of defocus/all-in-focus video
sequences. In fact, we used the same video sequences evaluated in Section 5.4.

Some selected frames from the videos used in the experiments, along with
deblurring results using our method with and without temporal coherence, can be
seen in Figs. 5.36-5.39. The first observation is that for videos #1, #2, and #3,
which were extracted from a TV Series, present visual artifacts (e.g. “blockiness”
in Fig. 5.37(d)(f)), which can be caused by video compression. On the other hand,
deblurring results of the video that we recorded (in Fig. 5.39) do not present these
kinds of artifacts.

In terms of temporal artifacts, it is very difficult to evaluate the gain achieved
by the temporal coherence based on still frames only. To see all deblurred results,
please visit <https://sites.google.com/site/axkaraali/dissertationvideos>. However,
visual evaluation shows that there is not much difference between the two deblurred
version of videos, which indicates that the gain obtained by the temporal smooth-
ness in the estimation does not seem to produce deblurred videos with less temporal
artifacts.

https://sites.google.com/site/axkaraali/dissertationvideos
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Figure 5.36: Video deblurring results for Video #1. Original image (a) and the
selected patch (b), deblurring results using our defocus estimation method with (c)
and without temporal coherence (e) and corresponding selected patches (d)-(f).

(a) (b)

(c) (d)

(e) (f)



100

Figure 5.37: Video deblurring results for Video #2. Original image (a) and the
selected patch (b), deblurring results using our defocus estimation method with (c)
and without temporal coherence (e) and corresponding selected patches (d)-(f).

(a) (b)

(c) (d)

(e) (f)
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Figure 5.38: Video deblurring results for Video #3. Original image (a) and the
selected patch (b), deblurring results using our defocus estimation method with (c)
and without temporal coherence (e) and corresponding selected patches (d)-(f).

(a) (b)

(c) (d)

(e) (f)



102

Figure 5.39: Video deblurring results for Video #4. Original image (a) and the
selected patch (b), deblurring results using our defocus estimation method with (c)
and without temporal coherence (e) and corresponding selected patches (d)-(f).

(a) (b)

(c) (d)

(e) (f)
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6 CONCLUSIONS

In this dissertation, we proposed two different edge-based defocus blur es-
timation methods for still images. The first approach computes 1D profiles along
edge points orthogonal to the local contour, and evaluate the location of the edge
(maximum of the derivative) to adaptively select the number of reblurring scales.
Considering the time consumption of exploring 1D oriented edge profiles, a second
method was proposed based on 2D multiscale image gradients, and local reblurring
parameters were selected based on the agreement of an edge detector computed at
several scales.

Since the mathematical formulation that supports both methods is based on
continuous domain filters and the implementation uses discretized Gaussians, a cor-
rection step is proposed in order to deal with discretization errors. Experimental
results showed that the refinement scheme was able to reduce blur estimation er-
ror in low-blur regions of synthetically blurred images, where error induced by the
discretized Gaussian is larger.

The refined blur estimates are then smoothed locally along the image con-
tours by minimizing an energy function that contains a data fidelity term and a
regularization term, aiming to keep good initial blur estimates and correcting bad
estimates. Our results showed that the proposed Connected Edge Filter (CEF)
indeed improves the initial estimates both in terms of visual inspection and quanti-
tative error analysis using the Mean Absolute Error (MAE).

The final full blur estimation methods were then compared with several other
state-of-the-art defocus blur estimation methods using synthetic images, as in most
blur estimation papers, and also using a database with naturally blurred images re-
cently introduced by (D’ANDRES et al., 2016), which also contains “ground truth”
data. Our experimental results showed that the proposed method presents a good
compromise between running time and accuracy when compared to competitive ap-
proaches, being more accurate than all tested edge-based methods (ZHUO; SIM,
2011), (ZHANG; CHAM, 2012), (BAE; DURAND, 2007), (TANG; HOU; SONG,
2013), (SHEN; HWANG; PEI, 2012) and (CHEN; CHEN; CHANG, 2016) for
the tests with synthetic images. Results using the recent natural database were
consistent with the synthetic database: the proposed method was also more accu-
rate than all edge-based methods, being inferior only to the patch-based approach
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(D’ANDRES et al., 2016), which is based on Regression Tree Fields that tend to be
computationally expensive.

This dissertation also presented an extension of the proposed methods based
on still images to deal with defocused video sequences aiming to impose temporal
consistency and reduce jittering, since applying defocus blur map estimation meth-
ods (including our) in a frame by frame manner tends to produce temporal incon-
sistencies. The temporal part of the proposed method is based on Kalman Filters,
which inherently allow a compromise between data fidelity and temporal smoothing
by adjusting the noise amounts in the state transition and observation models. In
this work, the state transition model was set empirically in a way such that when
the local appearance of a given pixel is consistent in time, the noise is small (so that
smoothing is increased). On the other hand, when the observed defocus blur esti-
mate (i.e. the proposed method for still images applied in a framewise manner) at
a given pixel is considered as reliable, the observation noise is set to a smaller value
aiming to maintain data fidelity. The final result is then a compromise between data
fidelity and smoothness, a temporal analogous to the spatial compromise provided
by the CEF. Experimental results show that the proposed model based on Kalman
filtering provided smooth temporal trajectories, at the same time allowing sharp
transitions during occlusions/disocclusions. Since the proposed scheme is applied
in a pixel-wise manner, results tend to be better for static (or slowly moving) cam-
eras. For video sequences with strong camera motion, the local patch analysis across
frames tends produce large values, which reduces temporal filtering. In those cases,
a more adequate solution would be to perform filtering along pixel paths, obtained
by optical flow or particle tracking. However, our attempts for particle tracking in
blurry videos were not successful, probably due to the weak textural information at
blurry regions.

As an additional contribution, this dissertation also proposed a new image
retargeting method for photos taken by shallow DoF cameras. To accomplish im-
age retargeting, the estimated blur map is used to identify in-focus regions first,
and cropping is applied to remove image boundaries. If cropping is not enough to
meet the desired dimensions of the output image, improved seam carving is applied
using a novel blur-aware energy function. Our experimental results showed that in-
focus regions are indeed better preserved by our approach when compared to other
state-of-the art methods e.g. (WANG et al., 2008), Multi-operator (RUBINSTEIN;
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SHAMIR; AVIDAN, 2009), Improved Seam Carving (RUBINSTEIN; SHAMIR;
AVIDAN, 2008), Nonhomogeneous warping (WOLF; GUTTMANN; COHEN-OR,
2007).

Finally, we have also explored the proposed blur map estimation method in
the context of image and video deblurring. For still images, we used the natural
dataset of (D’ANDRES et al., 2016), which contains blurry and all-in-focus images
of the same scene, allowing an objective comparison. Using the same (fixed) non-
blind deconvolution algorithm, we used the blur maps produced by several defocus
blur estimation methods to estimate the sharp image. Our results showed that only
the proposed method and (D’ANDRES et al., 2016) produced deblurred images
with higher PSNR than the blurry image itself. For the same dataset, we have
also performed a correlation analysis between the blur estimation error (MAE) and
the quality of the deblurred image (PSNR). Our findings indicated that considering
all images and methods, there is negative correlation with statistical significance,
which was expected: the lower the MAE, the higher should be the PSNR. However,
when analyzing each method individually, some of them (such as (D’ANDRES et
al., 2016)) did not show significant correlation between MAE and PSNR. For video
sequences, due to the lack of ground truth data, deblurring results are evaluated only
visually. It was observed that regions presenting slight defocus blur were deblurred
with minor visual artifacts, but the impact of temporal coherence could not be
observed in these specific examples. Although qualitative evaluations showed that
deblurring results with and without temporal coherence were very similar, the usage
of different deblurring algorithms might produce better video deblurring results that
could show the impact of temporal coherence. Also, temporal coherence could be
included in the deblurring algorithm itself.

6.1 Future Work

As future work, firstly we intend to investigate a better way for estimating
the initial sparse map by improving the confidence parameter ξ while considering
the non-connected but neighboring edges for filtering the obtained sparse blur map.
Clearly, a better estimate for ξ will also impose a better “guess” for the measurement
noise parameter of the Kalman Filter. On the other hand, the current Kalman
filtering model works in a pixel-wise manner, so that the temporal estimates at a
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given pixel are smooth, by might introduce some spatial fluctuations. To better
handle this issue, a vector version of the Kalman filter within image patches that
also imposes spatial smoothness constraints in the temporal filtering might produce
better results.

Another improvement that can be made is in the sparse blur map interpola-
tion. Currently, nearly all the edge-based defocus blur estimation methods use the
Laplacian based (KRISHNAN; FERGUS, 2009) interpolation scheme, which is slow
and creates edges in the regions with uniform blur. To address this problem, we
proposed to use of the fast guided filter (GASTAL; OLIVEIRA, 2011). There are
several recent edge-aware filters (e.g. methods (HE; SUN; TANG, 2013; LI et al.,
2016)) that could be explored in the context of joint-domain interpolation. In partic-
ular, since the sparse blur map is computed at image edges, it would be interesting
to investigate the inclusion of gradient information in the guided filter.

Regarding image retargeting, we intend to use more recent seam carving al-
gorithms in conjunction with our blur-aware energy function and the inclusion of
temporal consistency information to deal with video retargeting applications ex-
ploring recent video carving methods such as (FURUTA; TSUBAKI; YAMASAKI,
2016).

Finally, as we stated before, there is no standard dataset to evaluate spatially
varying defocus blur estimation methods. Therefore, most methods typically use ar-
tificially blurred images to perform quantitative evaluations. Recently, (D’ANDRES
et al., 2016) provided a dataset containing 22 images with “known” blur values pro-
duced using the Lytro camera. Similarly, an extended version of this database with
higher resolution and in different environments (e.g. indoor areas) could be produced
in order to close the gap of lacking validation dataset.
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APPENDIX A - RESUMO EXPANDIDO

Esta tese apresenta dois métodos diferentes para estimação de desfocagem
usando uma única imagem. Ambos os métodos assumem uma função de espal-
hamento de ponto (Point Spread Function - PSF) Gaussiana e exploram a razão
de magnitudes de gradientes de versões re-borradas da imagem original com escalas
diferentes nas bordas da imagem, o que fornece uma expressão matemática fechada
para borramento local.

Mais precisamente, considere um sinal 1D f contendo uma borda (descon-
tínua) com amplitude a e deslocamento b em x = 0:

f(x) = au(x) + b, (6.1)

onde u é a função degrau unitário.
Considerando um borramento uniforme, caracterizado por uma PSF Gaus-

siana espacialmente invariante g(x;σb) com variância σ2
b , a borda borrada fb em um

sinal de domínio contínuo é dada por

fb(x) = f(x) ∗ g(x;σb), (6.2)

e então sua derivada é dada por

f ′b(x) = (f(x) ∗ g(x;σb))′ = f(x) ∗ g′(x;σb)

= g(x;σb) = a√
2πσ2

b

exp
(
− x2

2σ2
b

)
(6.3)

Se fb1(x) é uma versão re-borrada de fb(x) com outro núcleo Gaussiano
g(x;σ1) cujo o parâmetro de escala σ1 é conhecido, então a razão Rg das derivadas
no local da borda é dada por

Rg = |f
′
b(0)|
|f ′b1(0)| =

√√√√σ2
1 + σ2

b

σ2
b

, (6.4)

de modo que o parâmetro de desfocagem σb da imagem observada pode ser obtido
como

σb = 1√
R2
g − 1

σ1. (6.5)
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De fato, essa abordagem foi a essência do método de estimação de borramento
por desfoco proposta em (ZHUO; SIM, 2011).

A formulação apresentada até agora permite a estimação de borramento local
por desfoco utilizando uma versão re-borrada do sinal observado fb(x). Uma exten-
são simples envolve o uso de duas versões re-borradas. Mais precisamente, se fb1(x)
e fb2(x) são versões re-borradas de fb usando núcelos Gaussianos com variâncias σ2

1

e σ2
2, respectivamente, a razão Rg das derivadas pode ser computada explicitamente

como

Rg(x) =
|f ′b1(x)|
|f ′b2(x)| =

√√√√σ2
b + σ2

2
σ2
b + σ2

1
exp

(
− (σ2

2 − σ2
1)x2

2(σ2
b + σ2

2)(σ2
b + σ2

1)

)
. (6.6)

Se avaliarmos Rg(x) no local exato da borda (i.e. em x = 0) e resolvemos
Eq. 6.6 para σb, obtemos

σb =

√√√√σ2
2 −Rg(0)2σ2

1
Rg(0)2 − 1 , (6.7)

assumindo que σ2 > σ1.
A formulação usando uma ou mais versões re-borradas de fb foi explorada por

vários métodos, tais como (ZHANG; CHAM, 2012; KRIENER; BINDER; WILLE,
2013; JIANG et al., 2013; ZHANG et al., 2016; MAHMOUDPOUR; KIM, 2016;
CHEN; CHEN; CHANG, 2016). Embora a idéia seja simples e rápida, é impor-
tante observar que nenhum desses artigos fornece diretrizes sobre como selecionar
o(s) parâmetro(s) de re-borramento. É interessante notar que a Eq. 6.6 é afetada
principalmente por três fatores ao lidar com imagens naturais: i) ruído, ii) exatidão
da localização da borda, e iii) influência de bordas vizinhas, o que pode levar a es-
colhas conflitantes para o parâmetro de re-borramento. Neste trabalho, mostramos
primeiro como σ1 e σ2 impactam a estimativa do borramento σb, e então apresenta-
mos uma abordagem para selecionar esses parâmetros adaptativamente.

Para ilustrar o impacto das escalas de re-borramento, vamos considerar a
imagem sintética artificialmente desfocada (mostrada na Fig. 6.1), cujo parâmetro
de desfocagem σb varia verticalmente (na Eq. 6.2) a partir do topo (σb = 0, 5) e
aumenta linearmente até (σb = 3) no meio e volta a cair linearmente para (σb = 0, 5).
Na parte superior e inferior da imagem (realçadas em azul), as bordas estão bem
separadas, mas no meio (realçado com vermelho) a estrutura é fina. Nós também
produzimos versões ruidosas da Fig. 6.1 usando ruído gaussiano aditivo com médio
zero, cujo desvio padrão é dado por η = 1, 275 e η = 2, 55.

Realizamos um conjunto de experimentos mantendo σ1 = 1 fixo e focamos
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Figure 6.1: Imagem sintética artificialmente desfocada.

o impacto do parâmetro de re-borramento σ2. Em seguida, avaliamos média de
erro absoluto (MEA) da estimatação de borramento por desfoco ao longo da parte
superior e inferior da imagem (regiões azuis na Fig. 6.1), da parte central (região
vermelha na Fig. 6.1) e ao longo de toda a borda esquerda (vertical), usando difer-
entes valores (globais) para σ2. Os resultados, mostrados na Tabela 6.1, indicam
que (como dissemos antes) escolher um valor adequado para σ1 e σ2 globalmente
não é possível. Também pode ser observado que valores maiores para σ2 produzem
melhores resultados nas regiões azuis, que contêm pouca interferência de borda (e
a diferença aumenta à medida que se adiciona mais ruído), enquanto que valores
menores para σ2 são melhores na região vermelha (onde a interferência de borda
mais forte).

Table 6.1: Média de erros absolutos calculados em diferentes regiões de borda da
imagem apresentada na Fig. 6.1 (Azul/Vermelho/Global) usando σ1 = 1 e valores
diferentes por σ2 e variando a contaminação do ruído.

Nível de ruído

σ2 η = 0 η = 1, 275 η = 2, 55

1.5 0, 065/0,224/0,103 0, 065/0,266/0,122 0, 081/0,270/0, 150
2.0 0, 064/0, 299/0, 124 0, 061/0, 312/0, 129 0, 067/0, 315/0,145

2.5 0,063/0, 399/0, 153 0, 059/0, 404/0, 153 0, 060/0, 412/0, 165
3.0 0,063/0, 521/0, 191 0,057/0, 524/0, 189 0,056/0, 533/0, 199

Nesta tese, foram propostos dois métodos diferentes para a estimatação de
borramento por desfoco utilizando a escala adaptativa para re-borramento. O
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primeiro explora os locais de borda estimados usando perfis de imagem 1D, en-
quanto o segundo usa gradientes de imagem diretamente.

• A primeira abordagem calcula perfis 1D ao longo de pontos de borda ortog-
onais ao contorno local, e avalia a localização da borda (máximo da primeira
derivada) para selecionar adaptativamente o número de escalas no re-borramento.

• Um segundo método foi proposto com base em gradientes de imagem direta-
mente no domínio 2D, e os parâmetros de re-borramento locais foram sele-
cionados com base na concordância de um detector de bordas calculado em
várias escalas (considerando o consumo de tempo de explorar perfis de aresta
orientados 1D).

Dada uma estimativa inicial da escala de desfocagem nas posições de borda
proporcionada por qualquer um destes dois métodos, um novo método de filtragem
local que suaviza as estimativas refinadas ao longo dos contornos de imagem também
é proposto. Sendo σbi a estimativa de borramento inicial em um pixel i, a filtragem
é obtida pela minimização de

E =
Nc∑
i=1

ξi(αi − σbi)2 +
Nc∑
j=1

ψij(αi − αj)2

 , (6.8)

onde ξi é um valor de confiança para cada estimativa de borramento por desfoco σbi ,
de modo que quando ξi é grande a estimativa refinada αi tende a estar mais próxima
da estimativa inicial σbi . A filtragem é realizada em cada componente conexo do
mapa de bordas da imagem, e Nc é o número de elementos no componente.

É também proposto um passo de correção que atenua os erros introduzidos
pela discretização da formulação contínua e um filtro de domínio conjunto (joint-
domain filter) rápido é explorado para propagar informações de desfocagem para
toda a imagem, gerando o mapa de desfocagem completo.

Os resultados experimentais em imagens sintéticas e reais mostram que os
métodos propostos apresentam resultados promissores para a estimativa de borra-
mento por desfoco, com um bom compromisso entre qualidade e tempo de execução
quando comparados a técnicas no estado-da-arte. Mais precisamente, isto pode ser
visto na Fig. 6.2 que mostra imagens reais fornecidas em (D’ANDRES et al., 2016)
para comparação visual e na a Tabela 6.2 apresenta uma avaliação quantitativa.

Para lidar com sequências de vídeo desfocadas, a consistência temporal tam-
bém foi incluída no modelo proposto. Mais precisamente, Filtros de Kalman foram
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Figure 6.2: Comparação de diferentes algoritmos de estimação de borramento uti-
lizando imagens fornecidas em (D’ANDRES et al., 2016). Coluna esquerda: imagens
originais. Colunas restantes, da esquerda para a direita: ground truth e resultados
produzidos por (ZHUO; SIM, 2011), (ZHANG; CHAM, 2012), (BAE; DURAND,
2007), (TANG; HOU; SONG, 2013), (SHEN; HWANG; PEI, 2012), (CHEN; CHEN;
CHANG, 2016), (D’ANDRES et al., 2016) e o método proposto, respectivamente.

Table 6.2: Média de erros absolutos (MEA) para as imagens fornecidas
em (D’ANDRES et al., 2016).
Imagem# Zhuo&Sim Zhang&Cham Bae&Durand Tang et.al. Shen et.al. Chen et.al. Andres et.al. Nosso M.

01 0, 229 0, 326 0, 397 1, 028 0, 579 1, 023 0, 098 0, 119
02 0, 358 0, 399 0, 361 0, 746 0, 510 0, 839 0, 129 0, 172
03 0, 233 0, 270 0, 325 1, 866 0, 558 0, 989 0, 106 0, 186
04 0, 216 0, 266 0, 554 2, 050 0, 581 0, 938 0, 080 0, 114
05 0, 211 0, 268 0, 291 1, 281 0, 644 1, 177 0, 081 0, 160
06 0, 210 0, 309 0, 478 2, 444 0, 472 0, 898 0, 073 0, 181
07 0, 230 0, 268 0, 581 2, 358 0, 675 1, 056 0, 105 0, 185
08 0, 490 0, 465 0, 901 4, 177 0, 419 0, 675 0, 083 0, 364
09 0, 404 0, 478 0, 624 1, 239 0, 579 0, 995 0, 069 0, 224
10 0, 268 0, 344 0, 445 1, 759 0, 513 0, 951 0, 131 0, 128
11 0, 400 0, 412 0, 604 2, 834 0, 566 0, 872 0, 112 0, 190
12 0, 432 0, 443 0, 698 3, 056 0, 411 0, 731 0, 077 0, 217
13 0, 258 0, 309 0, 381 2, 459 0, 654 1, 103 0, 084 0, 147
14 0, 343 0, 380 0, 547 1, 813 0, 683 1, 004 0, 266 0, 264
15 0, 535 0, 539 0, 652 0, 388 0, 387 0, 705 0, 076 0, 328
16 0, 289 0, 353 0, 416 0, 887 0, 469 0, 926 0, 108 0, 221
17 0, 485 0, 522 0, 626 2, 720 0, 405 0, 678 0, 134 0, 289
18 0, 324 0, 337 0, 466 1, 525 0, 487 0, 880 0, 105 0, 181
19 0, 319 0, 325 0, 514 1, 084 0, 678 1, 020 0, 135 0, 226
20 0, 329 0, 397 0, 592 1, 785 0, 523 0, 961 0, 112 0, 158
21 0, 296 0, 363 0, 450 1, 063 0, 549 0, 916 0, 094 0, 116
22 0, 437 0, 556 0, 687 1, 487 0, 429 0, 880 0, 084 0, 202

MEA Medio 0, 332 0, 379 0, 527 1, 821 0, 535 0, 919 0, 106 0, 199

Tempo Medio(Seg) 9, 42 22, 58 7, 63 11, 84 2, 72 0, 81 n/a 1, 44

aplicados para gerar estimativas temporais suaves para cada pixel quando a aparên-
cia local da sequência de vídeo não varia muito, permitindo transições durante
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mudanças drásticas da aparência local, que podem se relacionar com oclusões /
desoclusões.

Uma experiência simples que inclui uma sequência de vídeo curta tomada
por uma câmera estática e sem qualquer movimento visível do objeto, (somente as
mudanças do plano focal) podem ser vistas na Fig. 6.3. Para mostrar os resultados
estimados do mapa de desfocagem bem como a nossa versão filtrada de Kalman das
sequências de mapa de desfocagem, escolhemos cinco pontos de controle (pontos ver-
melhos na Fig. 6.3) e avaliamos as escalas de desfocagem estimadas nesses pontos ao
longo do tempo. Mais precisamente, os pontos #1 e #5 estão nas regiões mais des-
focadas no início da sequência, e seu nível de borramento reduz ao longo do tempo.
Os pontos #3 e #4 pertencem ao mesmo objeto e são inicialmente desfocados, fi-
cando em foco após algum tempo, enquanto o ponto #2 apresenta o comportamento
oposto, iniciando em foco e depois desfocando.

Figure 6.3: Sequências de vídeo desfocadas e cinco pontos de controle. (a) quadro
#1, (b) quadro #32 e (c) quadro #80

(a) (b) (c)

A Fig. 6.4 mostra os valores estimados de borramento por desfoco para os
cinco pontos de controle obtidos com diferentes métodos, bem como o método pro-
posto com e sem coerência temporal. Uma vez que a variação espacial / temporal
do vídeo borrado tem apenas mudanças focais ao longo do tempo, os mapas de
borramento (completos) estimados deveriam mudar suavemente. No entanto, as
estimativas de desfocagem na forma quadro a quadro (incluindo o nosso método)
criam inconsistências temporais devido ao fato de que nenhum dos métodos usa in-
formações temporais. Por outro lado, o esquema temporal proposto apresenta uma
variação temporal suave no tempo (como na Fig. 6.4).
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Figure 6.4: Valores estimados de borramento por desfoco para os cinco pontos de
controle obtidos com diferentes métodos, bem como nosso método com e sem co-
erência temporal. (a) ponto de controle #1, (b) ponto de controle #2, (c) ponto de
controle #3, (d) ponto de controle #4 and (e) ponto de controle #5
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Finalmente, esta tese também mostra aplicações dos métodos propostos para
a estimativa de desfocagem de imagem e vídeo. Um novo método de redimensiona-
mento (retargeting) de imagens é proposto para fotografias capturadas por câmeras
com baixa profundidade de campo. O método inclui informação de desfocamento
local no contexto do método seam carving, visando preservar objetos em foco com
melhor qualidade visual. Assumindo que os pixels em foco estejam relacionados às
regiões de interesse de uma imagem com desfocamento, o método de redimensiona-
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mento proposto começa com um método de corte (cropping), o qual remove as partes
sem importância (borradas) da imagem, e então o método seam carving é aplicado
com uma nova função de energia que prioriza as regiões em foco. Os resultados
experimentais mostram que o método proposto funciona melhor na preservação de
objetos em foco do que outras técnicas de redimensionamento de imagens.

Figure 6.5: (a)-(c) Seams usando (RUBINSTEIN; SHAMIR; AVIDAN, 2008) e nosso
mapa de energia, respectivamente. (b)-(d) Imagens redimensionadas relacionadas
com (a)-(c). (e) Cropping + seams usando nosso metodo completo, e (f) nosso
resultado final.

(a) (b) (c) (d) (e) (f)

Para mostrar a uso do termo de borramento proposto, realizamos experi-
mento comparando os seams produzidos pelo método utilizando apenas energia de
gradiente (RUBINSTEIN; SHAMIR; AVIDAN, 2008) e nosso, que além de ener-
gia de gradiente, usa também a estimativa de borramento. O algoritmo subjacente
é o mesmo, apenas a função de energia é alterada (para avaliar apenas os seams
produzidos com e sem estimativa de borramento, o corte foi desativado neste ex-
emplo). Os resultados são mostrados nas Fig. 6.5(a) e Fig. 6.5(c) respectivamente,
enquanto as correspondentes imagens redimensionadas são mostradas nas Fig. 6.5(b)
e Fig. 6.5(d), respectivamente. Como pode ser observado, os seams produzidos pelo
nosso método evitam principalmente a distorção do objeto em foco, que está bem
preservado na correspondente imagem redimensionada. O método baseado em gradi-
ente, por outro lado, produz vários seams ao longo do urso de pelúcia, que gera uma
imagem redimensionada deformada. Também ilustramos o resultado de nossa abor-
dagem de redimensionamento completa, combinando corte e seam na Fig. 6.5(e),
com a imagem redimensionada final mostrada em Fig. 6.5(f). Pode-se notar que
apenas alguns seams adicionais devem ser removidos para alcançar a resolução de-
sejada com a inclusão de corte, o que reduz o custo computacional (porque o corte
é muito mais rápido do que a remoção dos seams).

Finalmente, esta tese também explora o método de estimação de desfocagem
proposto no contexto de des-borramento de imagens e sequências de vídeo, e os
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Table 6.3: Relação Sinal-Ruído de Pico das images desborradas fornecidas
em (D’ANDRES et al., 2016)
Imagem# Im. Borrada Dado de GT Zhuo&Sim Zhang&Cham Bae&Durand Tang et.al. Shen et.al. Chen et.al. Andres et.al. NossoM.

01 25, 51 26, 48 24, 90 23, 77 25, 31 21, 14 22, 35 19, 75 26, 25 26, 07
02 24, 54 25, 19 24, 18 23, 79 24, 22 23, 62 22, 53 19, 80 24, 90 24, 89
03 23, 74 25, 23 23, 60 22, 88 23, 51 16, 35 20, 12 16, 75 24, 76 24, 21
04 23, 58 25, 98 24, 87 24, 61 24, 10 16, 17 21, 12 17, 74 25, 56 25, 64
05 26, 50 28, 32 25, 17 23, 85 25, 82 17, 35 20, 28 16, 65 27, 83 26, 81
06 24, 05 25, 06 21, 47 19, 95 23, 30 15, 52 21, 04 15, 92 23, 87 24, 66
07 27, 09 28, 59 26, 02 25, 70 26, 37 17, 98 22, 32 18, 87 28, 28 27, 49
08 23, 47 24, 48 23, 95 23, 97 23, 23 19, 82 21, 61 18, 30 24, 40 23, 92
09 22, 56 23, 35 21, 94 21, 23 22, 41 20, 00 21, 49 19, 13 23, 26 22, 70
10 23, 97 25, 13 24, 09 22, 14 24, 25 15, 92 20, 89 16, 63 24, 93 24, 87
11 23, 47 24, 04 23, 37 23, 11 23, 43 17, 12 23, 04 21, 63 23, 87 23, 81
12 23, 73 24, 49 23, 70 23, 62 23, 65 19, 24 23, 97 21, 95 24, 36 23, 96
13 28, 09 28, 41 24, 95 23, 25 27, 17 19, 02 21, 80 17, 80 28, 13 28, 40
14 24, 75 25, 17 24, 52 24, 05 24, 70 17, 92 21, 77 19, 32 25, 47 25, 19
15 20, 43 21, 17 19, 84 19, 04 20, 32 20, 57 19, 33 16, 66 21, 08 20, 48
16 23, 87 25, 14 24, 16 21, 64 24, 26 19, 70 19, 95 15, 28 25, 01 24, 60
17 24, 33 24, 10 22, 40 21, 60 23, 01 18, 84 21, 76 17, 69 22, 69 23, 75
18 22, 71 23, 73 22, 74 22, 40 22, 70 18, 24 22, 82 20, 99 23, 53 23, 17
19 24, 31 25, 47 24, 11 24, 22 23, 84 20, 81 22, 23 19, 38 25, 11 24, 61
20 22, 23 22, 63 21, 46 20, 63 21, 91 17, 13 20, 94 17, 86 21, 92 22, 38
21 25, 63 26, 47 25, 26 24, 36 24, 76 23, 23 23, 61 20, 52 26, 08 26, 23
22 23, 91 24, 24 23, 24 22, 50 23, 04 21, 54 22, 90 20, 41 24, 06 23, 95

PSNR Médio 24, 20 25, 13 23, 63 22, 83 23, 88 18, 96 21, 72 18, 59 24, 79 24, 63

Ganho Médio n/a 0, 92 −0, 56 −1, 37 −0, 32 −5, 23 −2, 48 −5, 60 0, 58 0, 42

resultados são comparados com vários outros métodos de estimação de desfocagem.
As imagens des-borradas usando diferentes métodos de estimativa de borramento
foram comparadas com a imagem original (sem borramento), e avaliadas quantita-
tivamente usando a razão Sinal-Ruído de Pico (ou PSNR, de Peak signal-to-noise
ratio). Os resultados mostrados na Tabela 6.3 indicam que apenas a técnica proposta
e a recente abordagem de (D’ANDRES et al., 2016) alcançam ganhos no PSNR em
comparação com a imagem original borrada.

A Fig. 6.6 mostra alguns exemplos de des-borramento utilizando os dados
de ground truth e os mapas de desfocagem obtidos com diferentes métodos. Emb-
ora a análise visual seja muito subjetiva, pode-se observar que somente os resulta-
dos de des-borramentos pelo nosso mapa de desfocagem e pelo o mapa desfocagem
de (D’ANDRES et al., 2016) estão próximos da imagem original, corroborando os
resultados da Tabela 6.3.
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Figure 6.6: Comparação dos resultados de des-borramento de imagens fornecidas
em (D’ANDRES et al., 2016). Coluna esquerda: imagens originais e desfocadas.
Colunas restantes, da esquerda para a direita: os resultados de des-borramento us-
ando dado de ground truth e os mapas de desfocagem obtidos com os métodos de
(ZHUO; SIM, 2011), (ZHANG; CHAM, 2012), (BAE; DURAND, 2007), (TANG;
HOU; SONG, 2013), (SHEN; HWANG; PEI, 2012), (CHEN; CHEN; CHANG,
2016), (D’ANDRES et al., 2016) e do nosso método, respectivamente.
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