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Abstract

BENETTI, F. P. C. Relaxation and quasi-stationary states in systems with long-

range interactions

Thesis (Doctorate) - Physics Institute, Universidade Federal do Rio Grande do Sul, Porto

Alegre, 2016.

Systems whose components interact by unscreened long-range forces�for example, stellar

systems and non-neutral plasmas�have characteristics that are anomalous with respect

to systems with shielded or short-range forces. Besides presenting unique thermodynamic

properties such as negative speci�c heat and inequivalence of ensembles, their dynamics is

predominantly collisionless and leads to out-of-equilibrium quasi-stationary states. These

states are notoriously di�cult to predict given an arbitrary initial condition, and there

is still no uni�ed theory to treat them. Thermodynamic equilibrium is reached only after

long timescales that increase with the system size and often exceed the lifetime of the

universe. Relaxation to equilibrium, therefore, has two timescales: one short, leading to out-

of-equilibrium quasi-stationary states, and a second, longer, which leads to thermodynamic

equilibrium. In this thesis, we examine these phenomena by applying theoretical models

and numerical simulation for di�erent long-range interacting systems, including a model

of classical XY-type spins with long-range interactions, and the self-gravitating system in

three dimensions. In a second stage we study the collisional relaxation to thermodynamic

equilibrium through kinetic equations and numerical simulation. We thus seek to clarify the

mechanisms behind the quasi-stationary states and collisional relaxation.

Keywords: Long-range interactions, quasi-stationary states, self-gravitating systems, HMF

model, Vlasov equation, Boltzmann equation.
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Resumo

BENETTI, F. P. C. Relaxação e estados quasi-estacionários em sistemas com in-

terações de longo alcance

Tese (Doutorado) - Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto

Alegre, 2016.

Sistemas cujos componentes interagem por meio de forças de longo alcance não-blindadas�

por exemplo, sistemas estelares e plasmas não-neutros�têm algumas características anô-

malas em relação a sistemas com forças blindadas ou de curto alcance. Além de apresentarem

características termodinâmicas peculiares como calor especí�co negativo e inequivalência

de ensembles, sua dinâmica é predominantemente não-colisional e leva à estados quasi-

estacionários fora de equilíbrio. Esses estados são notoriamente difíceis de prever dada uma

condição inicial qualquer, e ainda não existe uma teoria uni�cada para tratá-los. O equilíbrio

termodinâmico é atingido somente após tempos longos que escalam com o tamanho do sis-

tema, muitas vezes excedendo o tempo de vida do universo. A relaxação para o equilíbrio,

portanto, tem duas escalas de tempo: uma, curta, que leva a estados quasi-estacionários

fora de equilíbrio, e a segunda, longa, que leva ao equilíbrio termodinâmico. Nesta tese de

doutorado, examinamos esses fenômenos aplicando modelos teóricos e simulação numérica

para diferentes sistemas de interação de longo-alcance, incluindo um modelo de spins clássi-

cos tipo XY com longo alcance, e o sistema auto-gravitante em três dimensões. Em uma se-

gunda etapa, estudamos a relaxação para o equilíbrio termodinâmico, a relaxação colisional,

através de equações cinéticas e simulação numérica. Desta forma, buscamos esclarecer os

mecanismos por trás dos estados quasi-estacionários e da relaxação colisional.

Palavras-chave: Interações de longo alcance, estados quasi-estacionários, sistemas auto-

gravitantes, modelo HMF, equação de Vlasov, equação de Boltzmann.
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Chapter 1

Introduction

Given a system composed of many bodies and their laws of interaction, the fundamental

goal of thermodynamics and statistical mechanics is to determine the stationary state that

the system will evolve to, starting from an initially perturbed con�guration. Ruelle states

that �[...] the main problem of statistical mechanics is to study the in�nite system equilibrium

states and their relation to the interactions which give rise to them� [1]. For most of the

systems dealt with by these disciplines, the transitional period from the perturbed state (that

is, out of equilibrium) to the stable stationary state (equilibrium) is very fast compared to

our macroscopic observation times [2]. This is the case for systems whose particles interact by

short-range forces. In fact, Ruelle goes on to declare the restriction �[...] each subsystem has

a negligible interaction with the subsystems which are far away�1 [1]. Perturbations quickly

die out as neighborhoods thermalise in an exponentially fast process. Naturally, the state of

interest for researchers is then the equilibrium state, which is very successfully described by

these theories.

In this thesis, on the other hand, we focus on interactions which are long-ranged. Typi-

cally, a system is de�ned as having long-range interactions (LRI) if the interaction potential

between pairs of particles, φ, decays as φ ∼ 1/rα, where r is the interparticle distance and α

is a constant that satis�es α < d, d being the dimension of the embedding space [3]. For ex-

ample, gravity and Coulomb interactions both have an exponent α = 1 for dimension d = 3,

and are thus long-ranged. The long-range nature of the interaction means that the particles

dynamics is dominated by the mean-�eld, and not by nearest-neighbor interactions, as in

the short-range case. This leads to many peculiar characteristics from both a dynamical and

statistical equilibrium point of view, including long-lived quasi-stationary nonequilibrium

states [3, 4], anomalous di�usion [5, 6], inequivalence of ensembles [7�9], negative speci�c

heat [10�12], and strange critical exponents [13].

Despite being ubiquitous in nature, these systems remain a challenge due to these dynam-

ical and equilibrium features. In recent years, they have been the object of intense interest

in the statistical mechanics community, involving work in �elds as diverse as stellar and

1In his terminology, a subsystem is equivalent to a particle moving through space.
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galactic dynamics in astrophysics [14�16], non-neutral plasmas [17], vortices in �uid dynam-

ics [18], cold atom clouds [19], and other quantum systems [20, 21]. Furthermore, they are

studied using a range of di�erent theoretical methods, from equilibrium statistical mechan-

ics techniques, such as large deviation theory [22, 23] to dynamics, such as analysis of the

stability of the Vlasov equation [4, 24, 25]. Only recently have these �elds begun to merge

under the denomination of statistical mechanics of long-range interactions, resulting in sev-

eral reviews [3, 26, 27]. Although signi�cant advances have been made, a coherent, uni�ed

theory is still lacking.

The greatest obstacle to a unifying theory is the di�erent mechanisms underlying the

relaxation process. If interparticle forces are long-ranged, thermalisation is not exponentially

fast. Intuitively, we may consider that we can no longer apply the picture of small thermalised

neighborhoods of particles, which in turn equilibrate with each other, because each particle

interacts with others that can be very far away, leading to collective e�ects. Due to the

predominance of the mean-�eld over pair interactions, the dynamics becomes e�ectively

collisionless. Only �nite size e�ects, or correlations, drive the system to thermodynamic

equilibrium. The greater the number of particles in the system, the longer the time necessary

for the equilibrium state to be achieved. Nevertheless, other stable con�gurations arise,

resulting from stationary solutions of the long-range dynamics.

The existence of the nonequilibrium state is due to the collisionless nature of the long-

range dynamics. The force on one particle of a many-body system is the result of its in-

teraction with all other particles in the system. These interactions do not shortly die out

with distance, as in the short-range case. Therefore, the mean-�eld becomes much more

important to the particle's dynamics than its interactions with its neighbors. A simple il-

lustration of this statement in the context of astrophysics can be found in reference [28]:

taking a homogeneous mass distribution inside a certain volume, we can compare the force

exerted on a stellar mass at a point a in the volume by masses at di�erent distances from

a. Taking the in�nitesimal volume element of a solid angle Ω located at a distance r from

point a, the amount of mass it encloses is dΩ r2dr. The force that the mass enclosed in

the radial interval [r1,r2] in the solid angle volume dΩ exerts on point a is proportional

to dΩ
∫ r2
r1
r2/r2dr = dΩ(r2 − r1). As this force grows with interval in r, clearly the mass

enclosed in larger distances is more important to the dynamics than close neighbors. In the

limit N → ∞, the dynamics is completely dominated by the mean-�eld, and the particle

trajectories can be considered as that of particles evolving in a smooth potential. For �nite

systems, �uctuations cause correlations between particles, which in�uence the dynamics on

very long timescales.

Typically, these two contributions�(i) the mean �eld and (ii) the �collisions�, which are,

more accurately, the correlation between a particle and its neighbors�scale as 1 and 1/N ,

respectively, where N is the number of particles. In the thermodynamic limit, N →∞, the

correlations are completely negligible and the dynamics is collisionless. It therefore cannot

be described by the typical collisional Boltzmann equation, and is instead determined by
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the collisionless Boltzmann equation (or Vlasov equation, as it is known in plasma physics).

The stationary solutions of the collisionless Boltzmann equation are not necessarily Maxwell-

Boltzmann equilibrium, and are not described by traditional thermodynamics and statistical

mechanics. Dynamical aspects must be taken into account and other tools must be developed.

Eventually, the 1/N contributions will drive the system towards thermodynamic equilib-

rium. This process is known as collisional relaxation2. For this reason, the nonequilibrium

stationary states are known as quasi-stationary states (QSS): for any �nite N , the micro-

canonical entropy will increase. Nevertheless, the lifetime of the QSS scales as N δ, where δ

depends on the system under consideration. For many physical systems, such as elliptical

galaxies, this timescale can be longer than the age of the universe itself [14]. The QSS is of

much higher interest than the thermodynamic equilibrium state in such cases, distinguishing

them from the typical short-range systems treated by traditional statistical mechanics.

1.1 De�nition and examples of long-range interactions

We have de�ned long-range interactions as those resulting from potentials that decay as

φ ∼ 1/rα. The condition α < d ensures that the potential is nonintegrable in the sense that

if we integrate a distribution of particles over a volume, the potential energy will diverge as

the volume increases.

It is important to note that other de�nitions of LRI exist. For example, some authors

propose the use of the force instead of the potential in order to classify LRI [29,30]. The same

argument of nonintegrability can be made using the force. This results in a dynamical classi-

�cation of LRI, and indicates that α < d−1. The objective of the dynamical classi�cation is

to emphasize that the QSS is the result of the system's dynamics, and that arguments about

nonintegrability of the potential and the resulting nonadditivity of the internal energy are

more suited to thermodynamics and equilibrium statistics than to the study of QSS. One

advantage of this classi�cation is that it determines how a LRI system is a�ected by its

short-range properties: in the limiting case where d−1 < α < d (that is, thermodynamically

long-range but dynamically short-range), the existence of a QSS depends on the character-

istics of the interaction at short-range, unlike dynamically long-range systems which always

exhibit a QSS.

Yet another de�nition has been used in spin systems. In this case, long-range potentials

have been de�ned as decaying with 1/rd+σ, with 0 < σ < 2 for d > 2 [31]. The critical

exponents of systems with these potentials are di�erent from those of short-range systems.

While all the above de�nitions are valid, and certainly imply in interesting �ndings, it is

the �rst de�nition, α < d, that we use in this work. It is su�ciently strong for the methods we

use and the theory we describe. Many examples of physical systems fall under this de�nition.

2 We emphasize that the term collisional can be misleading since there are no hard collisions such as in
a hard-sphere gas model, and only interparticle correlations. However, we will use this terminology since it
is commonplace in the literature.
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Of the fundamental forces, as cited above, both gravitational and Coulomb systems are LR.

Under the �rst category fall galaxies and globular clusters, where the �particles� are stars

or groups of stars, and even the dynamics of the large-scale structure of the universe, where

the �particles� can be the galaxies themselves, as well as dark matter. For the latter, we

may consider any non-neutral plasma, where the Coulomb interaction is not shielded by the

presence of particles of opposite charge. This includes magnetically con�ned ion beams, for

example.

Many systems present e�ective LRI, despite not necessarily having a fundamental long-

range force. A �uid with two-dimensional turbulence can be discretized into vortices which in-

teract through an e�ective logarithmic potential, which is long-range in two dimensions [18].

Another e�ective logarithmic potential occurs in colloids at interfaces. By deforming the

interface, the colloids may induce an e�ective potential V (r) ∼ ln(r/λ) where λ is the cap-

illary length [32]. Both these system thus mimic the behavior of gravitational systems in

two dimensions, which have a logarithmic pair potential. In the case of colloids, the analogy

may be made between the deformation of the interface and the gravitational potential; the

capillary length with a screening of the potential, and the vertical force with the mass. This

analogy even results in an analogous �Jeans' length�: in a stellar system, the Jeans' length

corresponds to the minimum necessary size for it to remain stable, given a certain kinetic

energy [28]. For the capillary system, there exists a maximum system size for which pertur-

bations in homogeneous distributions are stable, analogous to the Jeans' length. Yet another

gravity analogue is the Bose-Einstein condensate con�guration proposed in reference [20],

which has an e�ective 1/r attractive potential between atoms.

Other examples of e�ective long-range forces include wave-particle systems, where the

interaction of the particle with a wave can be an e�ective LRI, and and cold atom clouds,

where no long-range potential exists yet long-range forces still emerge. An example of the

former includes the free electron laser [33, 34], which has been extensively studied recently

by the LRI community [35, 36]. Regarding the latter, cold atoms in cavities and magneto-

optical traps can exhibit both an e�ective Coulomb force due to photon di�usion as well

as an e�ective gravitational force, known as the shadow e�ect, from the decrease of laser

intensity as it enters the atomic cloud [19,37].

Many spin models are also long-range: long-range Ising models have been used to study

the propagation of correlation in quantum systems [21] as well as interactions between exci-

tations in systems of trapped ions [38]. The Hamiltonian-Mean-Field (HMF) model, one of

the most thoroughly studied LRI systems, is a long-range XY model [39]. It has been applied

as a toy model analogous to the free electron laser [36] and for investigating bar formation

in galactic disks [40]. It is also equivalent to the �rst Fourier mode of a one-dimensional

gravitational system [41].

The above examples emphasize the how pervasive LRI systems are in nature. Despite

their very di�erent physical origins, they display a universality peculiar to LRI systems, such

as steady states with non-Maxwell-Boltzmann momentum distributions.
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1.2 Organization of the thesis

The subject of research of this thesis is the collisionless and collisional relaxation of LRI

systems. The two following chapters are dedicated to a revision of these processes. In chapter

2, we present the principal ideas of collisionless relaxation and the di�erent characterizations

of quasi-stationary states. Chapter 3 contains a description of the collisional relaxation

process and characteristics of the thermodynamic equilibrium states of LRI systems.

Following this revision, the next chapters present our published works on the subjects.

The chapters are organized by the speci�c LRI system that was studied. Each begins with

an introduction to the system, followed by sections summarizing the published work. At the

end of each section is the corresponding paper. Chapter 4 is the Hamiltonian Mean Field

(HMF) model, a paradigmatic spin model [39, 42]. The work is a continuation of research

done during my Masters degree, in which we found conditions for which certain theories of

quasi-stationary states (presented in section 2.3) are valid. This work is shown in section 4.1.

The next publication, section 4.2, generalizes this analysis to di�erent initial conditions and

further probes the quasi-stationary states by comparing results from a di�erent theory. The

publications of the last two sections, 4.3 and 4.4, are dedicated to the collisional relaxation

to equilibrium. Chapter 5 is the generalized Hamiltonian Mean Field (GHMF) model, which

is a long-range version of an isotropic XY model [43,44]. This chapter contains two sections,

corresponding to publications about nonequilibrium (section 5.1) and equilibrium (section

5.2) phase transitions. Chapter 6 corresponds to spherically-symmetric three-dimensional

self-gravitating systems, and contains one publication on collisionless quasi-stationary states

(section 6.1), in which we perform a similar analysis as that of the HMF model in section

4.2. A review of most of the work on LRI systems done by our group is presented in chapter

7. My research in this review consists of our work done with the HMF and GHMF model.

Finally, chapter 8 presents a summary and the conclusions of the thesis.





Chapter 2

Collisionless dynamics and relaxation

The existence of quasi-stationary states and the separation of the relaxation process in

two di�erent timescales is due to the collisionless nature of the dynamics of LRI systems.

The total force on any given particle is determined by the collective contribution of all

other particles, which predominates over the individual contributions of particles in its close

neighborhood. The �collisional� relaxation�thus called in analogy with the collisional re-

laxation of short-range systems�occurs only due to �uctuations, residual correlations and

other �nite-size e�ects. The predominance of the mean-�eld potential in the dynamics can

be estimated qualitatively by examining the coupling parameter Γ of plasma physics, which

is the ratio of the potential energy between neighboring particles, uneigh, and the average

kinetic (thermal) energy K [27],

Γ =
uneigh
K . (2.1)

For a LR potential φ(r) as de�ned in chapter 1,

φ(r) ∼ g

rα
, α < d, (2.2)

the typical potential energy between two neighboring particles will be proportional to λ−α,

where λ is the typical separation between particles. For N particles occupying a volume V

of radius R, we can estimate λ as λ ∼ (V/N)1/d = R/N1/d. Then, uneigh will scale as

uneigh ∼
g

λα
=
gNα/d

Rα
(2.3)

where g is the coupling constant, for example the square of the particle mass m or charge q

in gravity and Coulomb, respectively. Taking gravity as an example, g = m2, and

Γ =
uneigh
K ∼ mNα/d

Rα〈v2〉 . (2.4)

As we will see further on in section 2.2, we may estimate how 〈v2〉 scales as a function of

R and the total mass M = mN using the virial theorem. According to this theorem, for

7
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gravitational systems in d dimensions 2〈K〉 = αGM2/Rα. For example, in three dimensions

α = −1 and we recover the famous relation 2K = −U . Thus, in a stationary state,

Γ ∼ mNα/d

Rα

Rα

M

∼ Nα/d−1. (2.5)

Since α < d, Γ vanishes in the limit N →∞, meaning that the interactions between pairs of

particles is negligible compared to the particle's kinetic energy. In this limit, the mean �eld

dominates completely and pair correlations are unimportant, leading to the �collisionless�

dynamics.

The parameter Γ compares the potential energy of the pair interaction with the mean

kinetic energy. We may instead also look at the mean potential energy, U . Continuing with

the example of gravity, U scales as M2/Rα. By increasing the number of particles in the

system, the total mass M also grows, and therefore so does U . From the result of the virial

theorem seen above, if U increases, so does 〈v2〉, leading to extremely high velocities for

N →∞. Therefore, both U and K diverge as N →∞ in long range systems.

In order to establish a useful scaling in the dynamics, so that the kinetic and potential

terms scale similarly without very high velocities, the typical procedure is to rescale the

interaction by some factor dependant of N , known as the Kac prescription [45, 46]. For

gravitational systems, this consists in simply rescaling the particle mass m by 1/N1. When

N tends to in�nity, the pair interaction e�ectively tends to zero, and the only force felt by

each particle is that of the mean-�eld. For �nite N , eventually pair correlations will drive

the system away from the collisionless steady state, in the collisional relaxation process.

In the next sections of this chapter, we will discuss the �rst of these two processes, in

terms of the dynamics and of the stationary solutions. We address why LRI dynamics is

collisionless and describe types of quasi-stationary states.

2.1 Collisionless relaxation

Collisionless relaxation is the �rst step in the relaxation process of LRI systems. It is a

consequence of the dynamics governed by the collisionless Boltzmann equation, also known

as the Vlasov equation in plasma physics,

D

Dt
f(r,p,t) =

(
∂

∂t
+

p

m
· ∇r −∇ψ(r,t) · ∇p

)
f(r,p,t) = 0,

ψ(r,t) =

∫
dr′dp′φ(r− r′) f(r′,p′,t)

(2.6)

1Observing the ratio Γ ∼ Nα/d−1, the 1/N scaling might not seem to be the most appropriate; however,
in order to estimate the ratio, we consider a homogeneous particle distribution, which is not usually the case
for LRI systems. This scaling will be discussed in more detail in section 3.1
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where f(r,p,t) is the smooth one-particle distribution function, or probability density of

�nding a particle in the 2d-dimensional in�nitesimal phase space volume dz = dr dp, ∇p =
∂
∂px
î+ ∂

∂py
ĵ+ ∂

∂pz
k̂, ψ(r,t) is the convolution potential and φ(r−r′) is the interaction potential.

The operatorD/Dt on the left hand side of equation (2.6) is the convective derivative. It gives

the variation in time of a quantity a(r,p,t), where the coordinates r and p are Lagrangian

as opposed to Eulerian�they indicate the position and momentum of an element of a as it

evolves along the �ow of a.

This dynamics di�ers signi�cantly from that of the usual systems dealt with in statistical

mechanics, which obey the collisional Boltzmann equation [47],

D

Dt
f(r,p,t) =

(
∂f(r,p,t)

∂t

)
col

. (2.7)

The collisional term
(
∂f(r,p,t)

∂t

)
col

is associated with the change in the probability of �nding a

particle in the phase space volume dz due to hard-sphere collisions. Of course, for a potential

ψ(r,t) which decays as a power-law, there are contact collisions are rare. Any change in the

probability density at a �ow element is caused by correlations with other particles due to

discrete pair interactions.

2.1.1 Revision of kinetic theory

To understand why LRI systems obey the Vlasov instead of the Boltzmann equation,

we must return to a fundamental description of the Hamiltonian system. Therefore, in this

subsection we will present a review of kinetic theory based on reference [48].

Let us take a system of N particles embedded in a d-dimensional space. The particles

have canonical coordinates of position and conjugate momentum given by {ri}N1 and {pi}N1 ,
respectively, where r and p are each d-dimensional vectors. The evolution of the system of

particles is determined by a HamiltonianH({ri}N1 ,{pi}N1 ; t) which gives Hamilton's equations

of motion

∂ri
∂t

=
∂H
∂pi

, (2.8a)

∂pi
∂t

= −∂H
∂ri

,. (2.8b)

The initial coordinates
(
{ri(t=0)}N1 ,{pi(t=0)}N1

)
together with the above equations com-

pletely determine the state of the system at any time t.

Equivalently, instead of considering the N coordinates of the particles evolving in a 2d-

dimensional phase space, we may take instead Nd-dimensional vectors R and P ,

R = {Ri}Nd1 = (R1, . . . ,RNd),

P = {Pi}Nd1 = (P1, . . . ,PNd).
(2.9)



10 COLLISIONLESS DYNAMICS AND RELAXATION

When ri = (Ri, . . . ,Ri+d) and pi = (Pi, . . . ,Pi+d) for all i ∈ [1,N ], the vectors R and P

represent the state of the system at that moment. Now, it is possible to de�ne a probability

density fN(R,P,t) of �nding the system at a 2dN -dimensional in�nitesimal volume dRdP

at time t.

For a conservative system, the integral over phase space of fN(R,P,t) must be equal to

one: the system does not lose nor gain any particles, and must be located somewhere in the

phase space at all times. Thus, ∫
dRdP fN(R,P,t) = 1, ∀t. (2.10)

According to Liouville's theorem, this probability is conserved through any trajectory in

phase space. Its convective derivative must be equal to zero,

DfN(R,P,t)

Dt
=
∂fN
∂t

+
N∑
i=1

[
∂fN
∂Ri

Ṙi +
∂fN
∂Pi

Ṗi

]
= 0, (2.11)

where from this point forward we use Ri and Pi as notation representing all the d coordi-

nates of the particle i: (Ri, . . . ,Ri+d) now becomes simply Ri, and (Pi, . . . ,Pi+d) is Pi. Using

Hamilton's equations of motion, equation (2.11) can be written also as

∂fN
∂t

=
N∑
i=1

[
∂H
∂Ri

∂fN
∂Pi
− ∂H
∂Pi

∂fN
∂Ri

]
(2.12)

or, more simply,
∂fN(R,P,t)

∂t
= L fN(R,P,t), (2.13)

where L is the Liouville operator,

L =
N∑
i=1

{
∂H
∂Ri

· ∂

∂Pi
− ∂H
∂Pi
· ∂

∂Ri

}
, (2.14)

Equation (2.13) is the Liouville equation, and it determines the evolution of the probability

density fN(R,P,t) in phase space. For a Hamiltonian of the form

H = Hkin +Hext +Hint, (2.15)

where Hkin, Hext and Hint are the kinetic, external and interparticle potential terms, respec-
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tively, the Liouville operator can be written as

L =
∑
i

(Likin + Liext) +
∑
i

∑
j<i

Lijint, (2.16)

Likin = −∂Hkin

∂Pi
· ∂

∂Ri

, (2.17)

Liext =
∂Hext

∂Ri

· ∂

∂Pi
, (2.18)

Lijint =
∂φ(Rij)

∂Ri

·
(

∂

∂Pi
− ∂

∂Pj

)
, (2.19)

where φ(Rij) is the interaction potential between a particle with r = Ri and a particle with

r = Rj.

The Liouville equation and the probability density fN(R,P,t) describe the evolution of

the N -body system exactly. It is, however, very di�cult to deal with, since it describes

the evolution of an 2dN -dimensional function. In an attempt to simplify this treatment,

we may de�ne reduced distribution functions by integrating over some degrees of freedom.

For example, instead of dealing with the probability of �nding the N particles in the 2Nd-

dimensional volume dRdP, we can look for the probability of �nding one particle in the

2d-dimensional volume dr1dp1 by integrating over all degrees of freedom except one,

f1(r1,p1,t) = N

∫ N∏
i=2

dridpifN(R,P,t). (2.20)

In the same manner, we can de�ne the probability of �nding one particle in dr1dp1 and a

second particle in dr2dp2,

f2(r1,p1,r2,p2,t) = N(N − 1)

∫ N∏
i=3

dridpifN(R,P,t) (2.21)

and so on.

Thus, from the distribution fN(R,P,t), the s-particle reduced distribution functions

fs({r}s1,{p}s1) are de�ned as

fs({r}s1,{p}s1) =
N !

(N − s)!

∫
drs+1 · · · drNdps+1 · · · dpNfN

(
{r}N1 ,{p}N1 ; t

)
. (2.22)

If all particles were uncorrelated, the reduced distribution functions could be written as a

product of one-particle distribution functions, fs =
∏s

i=1 f1. However, this is not generally

true. Instead, they may be written as a product of one-particle distribution functions plus
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correlation functions cs({r}s1,{p}s1). For example, for f2 and f3 we may write

f2(1,2) = f1(1)f1(2) + c2(1,2), (2.23)

f3(1,2,3) = f1(1)f1(2)f1(3) + f1(1)c2(2,3) + f1(2)c2(1,3) + f1(3)c2(1,2) + c3(1,2,3) (2.24)

and so on, where we have abbreviated (ri,pi) = i for simplicity.

In order to relate the reduced distribution functions with the Liouville equation, equation

(2.13) is integrated over the interval ({r}Ns+1,{p}Ns+1). After some manipulation [48], a coupled

system of integro-di�erential equations is obtained, given by

∂fs
∂t

=
s∑
i=1

[
(Likin + Liext)fs +

s∑
j<i

Lj,iintfs +

∫
drs+1dps+1Li,s+1

int fs+1

]
. (2.25)

This is the BBGKY hierarchy (Bogoliubov-Born-Green-Kirkwood-Yvon). It de�nes a hier-

archy of coupled equations for the reduced distribution functions fs, since the evolution of fs

depends on fs+1. In the same way as the Liouville equation or the Hamilton equations, the

equations of the BBGKY hierarchy contain all information on the evolution of the system.

Using equation (2.23), the �rst equation of the hierarchy is [49]

∂f1(1)

∂t
+v1·

∂f1(1)

∂r1

−(N−1)
∂f1(1)

∂p1

∫
dr2dp2

∂φ(r12)

∂r1

f1(2) = −(N−1)

∫
dr2dp2

∂φ(r12)

∂r1

∂c2(1,2)

∂p2

.

(2.26)

This equation is very similar to the Boltzmann equation (2.7), if we interpret the right-hand

side (RHS) as the collisional operator. Because of the Kac prescription, in the limit N →∞
the term on the RHS goes to zero: all terms on the left-hand side (LHS) are of order O[1],

while the correlation term is of order O[1/N ]ontheRHS2.

Since the RHS term depends on the correlation c2(1,2), it depends also on the next

equation of the hierarchy, and so on. Therefore, it is still exact. In practice, however, it is

impossible to solve exactly due to the hierarchy, which should be truncated at some point.

To do so, an approximation is necessary.

Due to the Kac rescaling, which introduces the small parameter 1/N , a perturbative

approach can be used [3, 50]. The factor 1/N has not been explicitly written in the above

equations of the BBGKY hierarchy, but for LRI systems it is implicit in the Li,jint and corre-

lational terms. The �rst approximation in 1/N corresponds to truncating the hierarchy for

s > 1 and neglecting the correlational term in f2, so that f2(1,2) = f1(1)f1(2). By doing so,

we neglect the RHS term of equation (2.26), and so only one equation is left in the hierarchy:

the Vlasov equation. Thus, the �rst approximation leads to collisionless dynamics. Taking

the next order of approximation, two-body correlational terms appear [51]. At this point, the

collisional dynamics, which now we see to be in fact due to correlations and not collisions,

2Without the Kac prescription, the LHS would be of order O[N ] and the RHS of order O[1], and the
ratio would still be of order 1/N . The argument for collisionless dynamics thus remains the same without
the Kac prescription, but the terms in the transport equation would diverge in the thermodynamic limit.
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begins to be represented. This aspect will be further explored in the following chapter. For

now, we focus on the collisionless dynamics of the Vlasov equation.

This approximation, completely neglecting �nite N e�ects, should be exact in the ther-

modynamic limit N →∞. Indeed, in 1977 Braun and Hepp demonstrated that for systems

with su�ciently smooth long-range interparticle potentials, the Vlasov collisionless descrip-

tion coincides with the system's dynamics for times that scale at least with lnN [52]. More

recently, it was shown that this is a low estimate, and the time should scale with Nγ with

γ > 0 [53]. In the thermodynamic limit N → ∞, the equilibrium state of a LRI system

is a stationary solution of the Vlasov equation. For �nite N , the collisionless description is

incomplete and �uctuations occur, leading the system from one Vlasov solution to another

until eventually thermodynamic equilibrium is reached, hence the name quasi-stationary

state [4].

To �nd the solution of the Vlasov equation for a given initial condition is not a trivial

task. According to the Jeans theorem [28], any stationary solution of the Vlasov dynamics

depends on the phase space coordinates only through a function of the integrals of motion

of the potential. Equivalently, any functional of an integral of motion of the potential is

a stationary solution of Vlasov dynamics. This implies in a serious problem for �nding a

stationary solution given an arbitrary initial condition, because the Vlasov equation has an

in�nite number of integrals of motion. More speci�cally, the integral of any functional of

the distribution function is a conserved quantity. These are known as the Casimir invariants

[15,54],

Cs[f ] =

∫
drdp a[f(r,p)], (2.27)

where a[f(x)] is any functional of f(x). Therefore, contrary to the collisional Boltzmann

equation, whose stationary solution is the Maxwell-Boltzmann distribution, the Vlasov equa-

tion has an in�nite number of stationary solutions. To fully describe the QSS attained by

an LRI system, we would need to determine which of the in�nite number of stationary solu-

tions corresponds to the system's initial distribution. This is a very di�cult task, given the

non-linearity of equation (2.6).

One aspect of the quasi-stationary state can, nevertheless, be determined: the virial

condition.

2.2 Virial theorem

When an N -body system is in a stationary state, it obeys the virial theorem. This gives

us a clue as to how the stationary con�guration should be. It does not, however, fully specify

it, since many di�erent distributions can satisfy the virial theorem.

The virial theorem was demonstrated for the �rst time by Clausius in 1870 [55], who
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introduced the quantity known as the virial G, given by

G = − 1

2N

N∑
i=1

ri · F(ri), (2.28)

where F(r) is the force on a particle at the position r. Clausius showed that, in a stationary

state, the virial should be equal to the mean kinetic energy of the system. This can be

demonstrated from the moment of inertia I. For a system of N particles of identical mass

m, the average moment of inertia is

I =
m

N

N∑
i=1

|ri|2. (2.29)

Di�erentiating twice with respect to time and dividing by two, we have

1

2N

d2I

dt2
=
m

N

N∑
i=1

(
|v̇i|2 + ri · r̈i

)
= 2K +

1

N

N∑
i=1

ri · F(ri), (2.30)

where K is the mean kinetic energy. In a stationary state, the moment of inertia I should

not change and we may set d2I/dt2 to zero. This leads to the virial theorem,

2K = − 1

N

N∑
i=1

ri · F(ri), (2.31)

or K = G.
Let us consider a system in which the interaction between two particles i and j is given

by the potential φ(|ri − rj|). Given an external potential of the form φext = κ|r|γ, the total
potential at position r is

ψ(r) =
N∑
j=1

φ(|r− rj|) + κ|r|γ. (2.32)

In this case, the virial is

G =
1

2N

N∑
i=1

ri ·
∂ψ(r)

∂r

∣∣∣∣
r=ri

=
1

2N

N∑
i=1

N∑
j=1
j 6=i

ri ·
∂φ(|r− rj|)

∂r

∣∣∣∣
r=ri

+
1

2N

N∑
i=1

κγ|ri|γ (2.33)
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The �rst term of the RHS of equation (2.33) can be written as

N∑
i=1

N∑
j=1
j 6=i

ri ·
∂φ(|r− rj|)

∂r

∣∣∣∣
r=ri

=
N∑
i=2

i−1∑
j=1

ri ·
∂φ(|r− rj|)

∂r

∣∣∣∣
r=ri

+
N−1∑
i=1

N∑
j=i+1

ri ·
∂φ(|r− rj|)

∂r

∣∣∣∣
r=ri

=
N∑
i=2

i−1∑
j=1

ri ·
∂φ(|r− rj|)

∂r

∣∣∣∣
r=ri

+

j−1∑
i=1

N∑
j=2

ri ·
∂φ(|r− rj|)

∂r

∣∣∣∣
r=ri

=
N∑
i=2

i−1∑
j=1

(
ri ·

∂φ(|r− rj|)
∂r

∣∣∣∣
r=ri

+ rj ·
∂φ(|r− ri|)

∂r

∣∣∣∣
r=rj

)

=
N∑
i=2

i−1∑
j=1

(ri − rj) ·
∂φ(|r− rj|)

∂r

∣∣∣∣
r=ri

=
N∑
i=2

i−1∑
j=1

rij
∂φ(rij)

∂rij
, (2.34)

where rij = |rij| = |ri − rj| and ∂/∂ri = (rij/rij)(∂/∂rij).

Depending on the form of the potential φ(rij), the result of equation (2.34) can be

related to the mean potential energy using Euler's homogeneous function theorem. The

theorem states that, if f(r) is a homogeneous function of order n, that is, f(λr) = λnf(r),

then r · ∇f(r) = nf(r). Therefore, if φ(rij) is a homogeneous function of order n, the virial

theorem is

2K =
1

N

N∑
i=2

i−1∑
j=1

nφ(rij) +
1

N

N∑
i=1

κγ|ri|γ

= nU + κγ〈|r|γ〉. (2.35)

where U is the mean interaction potential energy. For example, for a self-gravitating system

in three dimensions, the potential is a homogeneous function of order n = −1, because

φ(λr) = (λr)−1 = φ(r)/λ. Thus, the virial condition is 2K = −U .
We state that an initial condition satis�es the virial condition if the initial distribution

has a mean kinetic energy K0, a mean interaction potential energy U0, and, if an external

potential exists, 〈|ri|γ〉0, that satisfy the equation (2.35). In order to have a measure of a

given state's �closeness� to the virial condition, we introduce the virial number R,

R =
K
G =

2K
nU (2.36)

where the second equality holds for potentials which are homogeneous functions of order

n and without external potentials. Taking once again gravity in three dimensions as an

example, the virial number is

Rg3d = −2K
U . (2.37)
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Figure 2.1: Evolution of the virial number R of a self-gravitating system in three dimensions,
equation (2.37). Two initial conditions are shown: o� the virial condition, R0 = 0.5 (solid line)
and on the virial condition R0 = 1.0 (dashed line). If the initial state does not satisfy the virial
condition given by equation (2.31), the distribution undergoes strong mean-�eld oscillations until it
reaches a con�guration for which it is satis�ed. For R0 = 1.0, oscillations are minimal, because the
system began its evolution already on the virial condition.

The virial number of the initial distribution is R0 = R(t = 0). For R0 6= 1, the virial

condition is not satis�ed. In this case, the system quickly tends to a con�guration which

does satisfy it, and R oscillates around R = 1 until the oscillations are damped and the

system remains in the stationary state with R = 1. The closer R0 is to 1, the smaller will

be the amplitude of the initial oscillations. Figure 2.1 shows two initial conditions for a self-

gravitating system in three dimensions: R0 = 0.5 (solid line) and R0 = 1.0 (dashed line).

The virial number of the system with R0 = 0.5 immediately begins to oscillate around 1.

The same happens for the R0 = 1.0 case, but with much smaller oscillations, seeing as the

system already satis�ed the virial theorem at t = 0.

The potential of the system of interest may not always be a homogeneous function of

order n. This is the case for one of the LRI systems which appear in this thesis: the HMF

model (chapter 4). The interaction between particles in the HMF model is given by a cosine

and so it is not possible to use equation (2.35). In this case, the virial condition must be

explicitly calculated from equation (2.31) for each initial particle distribution. This method

works very well, and was published in the work presented in chapter 4.

2.3 Characterization of quasi-stationary states

Once the virial condition is known for a given LRI system, we can determine if the

initial distribution satis�es it. If it does not, the distribution will necessarily undergo strong

mean-�eld oscillations until it recon�gures itself in such a way that the virial condition is
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satis�ed. This process, known as violent relaxation [56], can cause some particles to gain

large amounts of energy through parametric resonances. When this happens, the system

tends to a core-halo formation: a dense core of low energy surrounded by fewer particles of

high energy. Although not a main subject of this thesis, the core-halo (CH) formation was

intensively studied previously by our research group, and the next subsection 2.3.1 contains

a brief review of its �ndings.

The CH formation contrasts with another well-known description of the QSS known as

Lynden-Bell (LB) statistics. Lynden-Bell introduced the term violent relaxation, and was

the �rst to propose a statistical theory based on this concept. This theory is described in

section 2.3.2. However, our work has shown that LB statistics has good results only when

the initial distribution satis�es the virial condition; that is, when the mean-�eld oscillations

are minimal and the relaxation is not as �violent� [57].

To understand this apparent paradox, we applied a di�erent approach to describe the

QSS when the virial condition is satis�ed: a system of uncoupled particles evolving under a

self-consistent potential. We refer to this method as the integrable model (IM), and describe

it in section 2.3.3.

2.3.1 Core-halo model

When a LRI system begins in a con�guration that is far from a virialised state, the

mean-�eld oscillations lead to wave-particle interactions that can transfer large amounts of

energy from the wave to the resonant particles, in a process similar to Landau-damping [58].

These oscillations should eventually die out as the particles take energy from the waves and

compose a high-energy halo surrounding the dense core containing the majority of particles.

Figure 2.2 shows the CH con�guration for a self-gravitating system in two dimensions, in

which mass particles interact through a potential φ(rij) ∼ ln(rij).

Supposing that the oscillations are able to transfer all of their free energy to the resonant

particles, the core should be completely cold. Due to the phase space incompressibility of

Vlasov dynamics, the phase space density cannot surpass that of the initial distribution,

since the distribution evolves as the density of an incompressible �uid.

Combining these insights with tools from plasma physics, such as the envelope equation,

Levin et al. proposed a core-halo distribution [27],

fCH(r,p) = ηΘ[εc − ε(r,p)] + χΘ[ε(r,p)− εc]Θ[εh − ε(r,p)] (2.38)

where εh and εc are the energy corresponding to the orbits that delimit the halo and core,

respectively, and η and χ are the core and halo densities, respectively. This distribution was

proposed for systems with initial distributions of the water-bag type; that is, a distribution

of constant density η on a compact support in phase space,

fwb(r,p) = ηΘ(rm − |r|)Θ(pm − |p|). (2.39)
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Figure 2.2: Particles in space �left, panels (a) and (c)� and phase space �right, panels (b) and
(d)� of a self-gravitating system in 2 dimensions (interacting through a logarithmic potential). The
top, panels (a) and (b), corresponds to a system with R0 = 2.5 (far from the virial condition), while
on the bottom, panels (c) and (d), the system was initially virialised (R0 = 1). The CH con�guration
is clearly shown on the top panels.

The core density η is the same as the water-bag density due to the incompressibility con-

straint.

In order to determine the parameter εh, Levin et al. used a technique from plasma

physics known as the envelope equation. This method involves determining an equation

of motion for the spatial �envelope� of the water-bag distribution; that is, the limit of the

distribution in r. It is an approximate method, which supposes that the distribution remains

uniform during the �rst few mean-�eld oscillations. At t = 0, the envelope is simply the limit

in r of the water-bag distribution, rm. Once this equation is determined, it is possible to

de�ne a potential corresponding to the uniform distribution that oscillates with the envelope

frequency. Then, test particles interact with this potential, and the highest energy achieved

by a test particle is thus de�ned as the halo energy εh.

The other remaining parameters, εc and χ, are then determined by the constraints of

normalization and mean energy.

This approach has been shown to be very successful for several LRI systems, such as

self-gravitation in one and two dimensions [59, 60] and charged particle beams [61]. For

three-dimensional self-gravitating systems, the lack of a con�ning potential means particles

that gain enough energy are ejected from the system and do not form the halo. The theory

is nevertheless successful in predicting the pro�le and the number of particles that compose
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the core [62].

All of these works show that the core-halo phenomenon occurs in systems which begin

their evolution away from the virial condition. Otherwise, the mean-�eld oscillations do

not occur and wave-particle energy gain is minimized. The works show that in this case,

Lynden-Bell theory, which we will now discuss, has good results.

2.3.2 Violent relaxation

If the initial distribution is not a stationary solution of Vlasov dynamics, it undergoes

strong oscillations until it reaches the QSS. This is a relatively fast process, occurring during

a time interval of the order of the crossing time τcr, the time necessary for a particle to

cross the system [4]. It is known as violent relaxation due to the intensity of the mean-

�eld oscillations. This name was introduced by Lynden-Bell in 1967 in his research on the

steady states of gravitational systems [56]. In this work, Lynden-Bell developed a statistical

theory for describing the stationary states based on the conservation of the density of the

distribution function f(r,p,t) under Vlasov dynamics.

Under collisionless dynamics, the distribution function evolves as the density of an in-

compressible �uid. This means that as the distribution evolves, its local density remains con-

stant along the �ow (its convective derivative is zero). As the distribution function evolves,

it undergoes a �lamentation process on progressively smaller length scales, until eventually

the evolution occurs on a length scale so small it is indiscernible to any observation. In

this situation, a coarse-grained or macroscopic stationary state is reached, described by the

coarse-grained distribution function f̄ , while the microscopic distribution function f contin-

ues to evolve. Figure 2.3 shows an example of the �lamentation process of a distribution of

particles in phase space of a LRI system.

LB statistics determines an expression for f̄ through the maximization of a coarse-grained

entropy sLB under constraints of energy and norm conservation. Only the coarse-grained en-

tropy may increase; the �ne-grained entropy must be preserved (analogous to the preserva-

tion of the Gibbs entropy). The procedure for obtaining the coarse-grained entropy is similar

to the process of counting microstates that leads to the Boltzmann entropy of a lattice gas,

for example.

Let us consider a uniform initial distribution of density η. The phase space is divided into

macrocells, each composed of ν microcells. N microcells are occupied by the initial distri-

bution f0. This number remains constant during the dynamics, due to the incompressibility

of the Vlasov �ow. However, the density in each macrocell is not necessarily preserved. A

phase element that initially occupies a microcell belonging to macrocell j can move on to a

microcell belonging to another macrocell k 6= j (see �gure 2.4). De�ning f̄ as

f̄(r,p) = ηρ(r,p),

ρ(r,p) =
nν
ν
,

(2.40)
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Figure 2.3: Evolution of a distribution of particles in phase space for an LRI system, speci�cally,
the HMF model which will be presented in chapter 4. The �lamentation process of the distribution
is clearly shown.

where nν is the number of occupied microcells in the macrocell centered around (r,p), we

see that nν may vary and therefore the coarse-grained distribution f̄ can also change.

The LB entropy is given by sLB = kB lnW where W is the number of ways to distribute

the N phase elements. At this point, Lynden-Bell assumes that the �ow of f(r,p) is ergodic

and mixing in the energy surface of the d-dimensional phase space. This means that the

probability of �nding f(r,p) in an element drdp of the constant energy surface is proportional

to the ratio of the area of the element and the area of the surface [63]. It follows that all

microcells have an equal probability of being occupied, subject to the appropriate constraints

of energy, norm and momentum. Due to the incompressibility of Vlasov dynamics, no more

than one phase element may occupy a microcell at the same time. The counting of number

of ways to distribute the phase elements is done in the same way as the Boltzmann counting,

except in this case phase elements are being distributed instead of particles. The resulting

entropy is [27]

sLB = −
∫

drdp {ρ(r,p) ln [ρ(r,p)] + [1− ρ(r,p)] ln [1− ρ(r,p)]} . (2.41)
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Figure 2.4: Division of phase space in macrocells which are, in turn, divided into microcells. The left
panel shows a representation of a uniform initial distribution of density η which �lls some macrocells.
Each macrocell has an initial density η or 0. The right panel shows the phase space after a transient
time, with phase elements occupying microcells out of the originally occupied macrocells. The total
number of microcells occupied by phase elements of density η is preserved, but the macrocell density
varies, taking on values between 0 and η. The energy, norm and momentum of the distribution are
conserved by Lagrange multipliers.

Maximizing under the constraints of energy and norm conservation,

1 =

∫
drdp f̄(r,p), (2.42a)

E =

∫
drdp

(
p2

2m
+
ψ(r)

2

)
f̄(r,p), (2.42b)

we obtain the most probable distribution,

fLB(r,p) = η
1

1 + exp [βε(r,p)− µ]
, (2.43)

where ε(r,p) = p2/2m + ψ(r) is the one-particle energy. The form of the expression in

equation (2.43) is similar to a Fermi-Dirac distribution. This results from the conservation

of the density of f�since the density is preserved, a microcell cannot be �lled by more than

one phase element, a characteristic analogous to the Pauli exclusion principle for fermions.

However, the analogous form is only valid for one-level initial distributions. Considering

an initial distribution with L di�erent levels of density ηi, such as the one we used in the

work presented in section 4.2, Lynden-Bell showed that the corresponding coarse-grained

distribution will be

fLB(r,p) =

∑L
i=1 ηie

−βi[ε(r,p)−µi]

1 +
∑L

i=1 e
−βi[ε(r,p)−µi]

(2.44)

LB statistics has had mixed results in describing the QSS of LRI systems. Early compar-

isons of numerical simulations of astrophysical systems showed, for some initial conditions,

a good agreement for low-energy particles and signi�cant deviations in the high-energy tails,

or halos, of the distributions [64�66]. More recent numerical simulations have also had di-
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verging results. In self-gravitating systems, high-energy regions were not in agreement with

the LB distribution [67,68], while for spin models, some initial conditions were well described

and others presented halos that did not match LB theory [57,69].

The population of high-energy levels by particles of initially lower energy is explained by

the oscillatory dynamics of the mean-�eld potential ψ(r). Particles that enter in resonance

with the collective motion gain energy at the expense of the oscillations, a process known as

Landau damping [70, 71]. By taking energy from the collective oscillations, the creation of

the high-energy halo damps the oscillations, which should eventually cease. The distribution

becomes divided between a dense, low-energy degenerate core and a di�use high-energy

halo [59, 60, 62, 72]. Once the oscillations have died out, there is no longer any way for

particles to exchange energy. They remain trapped in their high or low energy state. This is

a clear breaking of the ergodicity and mixing condition.

It is therefore reasonable to assume that, for LB statistics to be applicable, the initial

condition must be such that the potential does not undergo strong oscillations. Thus, the

ergodicity breaking caused by the core-halo formation and the statistically improbable oc-

cupation of high energy levels can be avoided. In fact, LB statistics presents better results

when the initial distribution satis�es the virial theorem, for then the initial state is already

close to a stationary solution [27,67,73].

2.3.3 Integrable Model

The virial condition indicates initial distributions that will not undergo strong oscilla-

tions. Of course, if the initial distribution is not a stationary solution of Vlasov dynamics,

some oscillation will occur even if it does satisfy the virial condition, because the system must

still relax to its QSS. Nevertheless, the oscillations should be weak compared to non-virial

initial conditions.

Previously, we put forth an argument that if the virial condition is satis�ed, LB statistics

may be a good approximation for describing the QSS, because the core-halo structure does

not form. On the other hand, we have also seen that LB statistics depends on the premise

of ergodicity and mixing in phase space, that is, that all regions of phase space have equal

probability of being occupied by a phase element of density η. However, for this to be valid,

the initial distribution should oscillate strongly, hence the name violent relaxation. Then,

energy can be exchanged between particles, which can go on to populate di�erent regions of

phase space. If the potential is stationary, each particle's dynamics becomes independent of

the other particles. The dynamics becomes integrable and no energy is transferred between

them [74]. This implies that virialised initial conditions do not result in ergodicity and mixing

of the distribution function in phase space. If the dynamics is integrable, there is no reason

to suppose that LB statistics is appropriate.

A model that seems more adequate to represent LRI systems with potentials that �uctu-

ate weakly is the self-consistent uncoupled dynamics approach introduced by de Buyl et al.
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in 2011 [75,76]. We refer to it as the �integrable model� (IM) to contrast it with the ergodic

approach of Lynden-Bell. De Buyl et al. proposed a system with uncoupled particles analo-

gous to the HMF model, a model of continuous spins with long-range interactions [39,42]. In

the IM, independent particles interact with an external potential ψ = H cos θ. In the HMF

model, the potential is ψ = M(t) cos θ where M(t) = 〈cos θ〉. In order to associate the two

models, the value of H is de�ned as being equal to 〈cos θ〉 of the stationary distribution of

the IM pendulums.

A similar treatment can be performed for other LRI systems. In general terms, we con-

sider a system composed of N non-interacting particles, subject to an external potential

ψIM(r). Since the particles are independent, no energy is exchanged between them. They

evolve on orbits de�ned by their initial energy and other conserved quantities (for example,

angular momentum in spherically symmetric potentials). Thus, a distribution function f is

conserved, given by

f(ε,{hi}) =
n(ε,{hi})
g(ε,{hi})

, (2.45)

where {hi}, i = 1, . . . ,Nc are the Nc quantities conserved by the dynamics, n(ε,{hi}) and

g(ε,{hi}) are the number of particles and density of states with energy ε and quantities {hi},
respectively. For any given initial distribution f0(r,p), n(ε,{hi}) is given by

n(ε,{hi}) =

∫
f0(r,p)δ [ε− ε(r,p)]

∏
i

δ [hi − hi(r,p)] drdp, (2.46)

where ε(r,p) = p2/2m + ψIM(r) and {hi(r,p)} are the expressions for the other conserved

quantities as a function of the phase space coordinates. The density of states does not depend

on the initial distribution,

g(ε,{hi}) =

∫
δ [ε− ε(r,p)]

∏
i

δ [hi − hi(r,p)] drdp. (2.47)

A particle initially in one of the states of an orbit (ε,{hi}) will pass through all other

states in the same orbit during its evolution3. The time necessary for it to complete the

orbit, returning to its initial state, is the orbital period. If the force is non-linear, the orbital

periods of particles in initially close orbits will be incommensurable. After a transient time,

an orbital shell [(ε,{hi}) , (ε+ dε,{hi + dhi})] will be uniformly occupied by particles, even

if not all states in the shell were initially occupied, as illustrated schematically by �gure 2.5.

Therefore, the marginal distributions n(r) and n(p) can be calculated by integrating over

3 Of course, since each particle is isolated, its dynamics is ergodic over its own orbit. Considered as an
entire distribution, however, it represents a nonergodic version of the LRI system.
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Figure 2.5: Schematic representation in phase space of a distribution undergoing the uncoupled
dynamics of the integrable model. On the left, an initial distribution f0(r,p) of constant density η;
on the right, the stationary state achieved after a transient period in which the distribution spreads
itself over constant energy orbits (in this case, we consider that only the particle energy is conserved).
Black dotted lines represent constant energy orbits.

the orbits,

nIM(r) =

∫
f(ε,{hi})δ [ε− ε(r,p)]

∏
i

δ [hi − hi(r,p)] dεdh1 · · · dhNcdp, (2.48)

nIM(p) =

∫
f(ε,{hi})δ [ε− ε(r,p)]

∏
i

δ [hi − hi(r,p)] dεdh1 · · · dhNcdr. (2.49)

The aim of this integrable, non-interacting model is to describe the QSS of a more

complex, interacting, long-range system. The IM potential ψIM(r) must be related to the pair

interaction potential φ(r,r′) of the LRI system. To do so, the IM potential is de�ned as the

mean-�eld potential ψ(r) =
∫

drnIM(r)φ(r,r′) that would be generated by the distribution

nIM(r) in the LRI system. However, we see from equation (2.48) that the distribution nIM(r)

depends on ψIM(r). The potential ψIM(r) must be solved self-consistently with equations

(2.48) and (2.45). How to do this will depend on the speci�c LRI system being studied.

For example, for potentials due to mass or charge, the IM potential must satisfy the Poisson

equation ∇2ψIM = CnIM(r) where the constant C depends on the LRI system. Schematically

the model is given by �gure 2.6.

This approach is radically di�erent from that of LB statistics. It completely decouples

particle trajectories in phase space, introducing N isolating integrals into the original Hamil-

tonian. The �ow is then nonergodic. In our work with the HMF model and spherically sym-

metric gravitational systems, we have shown that this method works very well for initially

virialised distributions.
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Figure 2.6: Representation of the integrable model. An initial distribution function f0(r,p) evolves
under the dynamics determined by a constant potential ψIM(r) to a stationary distribution fIM(r,p).
The potential ψIM must, for every r, be equivalent to the mean-�eld potential generated by the
stationary distribution nIM(r) =

∫
dpfIM(r,p) with the interaction potential φ(r− r′).

2.4 Summary and relation to thesis

The CH, IM and LB theories both aim to describe the QSS of Vlasov dynamics, valid in

the thermodynamic limit N → ∞. While the CH theory works well in describing the QSS

that arise from initially unvirialised water-bag distributions, previous works had shown that

LB statistics provided good predictions for the momentum and position marginal distribu-

tions for initially virialised water-bag distributions of LRI systems. This was shown in our

work with the HMF model, the subject of chapter 4, a long-range XY model. We derived

a virial condition for water-bag distributions and showed that when it was satis�ed, LB

statistics worked better than for initial distributions that were not virialised, in which case

a CH distribution occurred [57]. Section 4.1 presents this work.

Subsequently, we applied the IM dynamics to the HMF model for multi-level water-bag

distributions: distributions of di�erent density levels on rectangular compact supports in

phase space. We then showed that the results of IM were more accurate than LB statis-

tics [73]. This work is discussed in section 4.2.

Finally, we generalized the IM to spherically symmetric three-dimensional self-gravitating

systems. These systems are notoriously di�cult due to both a short-range divergence and

the unbounded potential at large r. For initial conditions that are virialised, we successfully

predicted the marginal distributions using the uncoupled dynamics [77]. This is the subject

of section 6.1.

The above works deal with the quasi-stationary states of the LR thermodynamic limit,

in which N → ∞ while the pair coupling tends to zero. In �nite systems, �uctuations and

residual correlations lead to collisional relaxation. Consequently, the QSS, corresponding to

stationary Vlasov states, have a �nite lifetime τR. In the next section, we discuss the slow

relaxation that takes the LRI system from the QSS to thermodynamic equilibrium.





Chapter 3

Collisional relaxation and

thermodynamic equilibrium

In the previous chapter, we examined the BBGKY hierarchy and saw that by taking a

zeroth-order approximation in the small parameter 1/N , we obtain the Vlasov, or collision-

less, framework. To see the e�ects of �nite N , we must take the next order of approximation

and include terms of order O[1/N ],

Df

Dt
= cN [g(R,P)] (3.1)

where cN [f ] is the collisional operator. However, by considering these higher-order terms,

the equations become complex and di�cult to solve. Even so, in some cases it is possible

to use kinetic theory to estimate the relaxation time τR; for example, for one-dimensional

homogeneous states, τR ∼ N2 [78].

3.1 Collisional relaxation

A common approach to studying the collisional relaxation is to write equation (3.1) as a

Fokker-Planck equation [28]. Using the notation z = (r,v) to simplify, the approach considers

a test particle of probability density P (z,t) evolving in a bath of particles with a stationary

distribution function f(z). The equation is given by

DP

Dt
=

d∑
i,j=1

∂2

∂zi∂zj
{D[∆zi∆zj]f(z)} −

d∑
i=1

∂

∂zi
{D[∆zi]f(z)} (3.2)

where D[∆zi∆zj] and D[∆zi] are the di�usion and friction coe�cients, respectively.

To simplify the calculation of the coe�cients, it is usual to approximate the system as

27
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homogeneous, so equation (3.2) becomes

DP

Dt
=

d∑
i,j=1

∂2

∂vi∂vj
{D[∆vi∆vj]f(v)} −

d∑
i=1

∂

∂vi
{D[∆vi]f(v)} . (3.3)

By using the dimensional analysis

D[∆v2] ∼ [V ]2

[τ ]
, (3.4)

where [V ] and [τ ] are typical velocity and time scales, the relaxation timescale τR should

scale as τR ∼ [V ]2/D[∆v2].

3.1.1 Two-body encounters and relaxation time

The �rst estimates of the collisional relaxation time were made for gravitational systems;

speci�cally, the seminal work of Chandrasekhar for stellar systems, in 1941 [79]. In this

work, Chandrasekhar associates the relaxation time with the time necessary for the total

energy exchanged by stellar encounters to be of the same order of the initial kinetic energy.

To do so, he calculated the friction and di�usion coe�cients for the stars by supposing

that their trajectories took place in a homogeneous and in�nite distribution of mass. Under

this assumption, stellar orbits are linear, and each orbit is adequately characterized by its

velocity v. Then, the stellar encounters between the test and bath particles are estimated

to be independent and localized. With these considerations, the variations ∆v and ∆v2

corresponding to each individual encounter can be calculated. To �nd the total variation of

the test particle velocity v as it passes through a system of size R, these variations should

be integrated over the number of encounters that it undergoes. After some calculations (see

e.g. [28] or [80]), the resulting timescale is

τR ∼
N

lnN
τcr (3.5)

where τcr is the crossing time�the time necessary for the particle to cross the system.

Many numerical works have also attempted to determine the relaxation time of LRI

systems. These suggest a scaling of the form τR ∼ NγτD, where the exponent γ varies

according to the interaction type. For example, for self-gravitating systems, the exponent

was found to be γ = 1 for the one-dimensional case [81], γ = 1.3 for a two-dimensional system

of interacting shells [68], and γ = 1 for a two-dimensional system of point masses [82]. For

the HMF model, γ = 1.7 has been found [4], but more recent results suggest that γ = 2 [83].

Up to this day, Chandrasekhar's approach is used as a starting point for studies on

collisional relaxation [28]. However, the approximations used lead to problems such as a

logarithmic divergence for stars separated by large distances and errors in the estimate for

stars with very high or very low velocities [82]. More complete kinetic treatments, which
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take into account inhomogeneity and collective e�ects, have been successful with respect to

eliminating divergences [84]. The equations obtained, however, are complex and it can be

impractical to solve them for real systems [49].

The greatest obstacle is the use of the velocity variable to characterize the orbits. For

homogeneous systems, this is correct; however, when one approximates a gravitational sys-

tem as homogeneous to calculate the mean variation of v due to two-body encounters and

subsequently invokes the �nite size of the system to �nd the total variation, errors may

be introduced. In order to improve this approximation, the �orbit-averaging� method was

introduced and used in Fokker-Planck simulations [85�87]. The root of this method consists

in taking the expression for the variation in velocity due to an encounter and rewriting it in

terms of the particle energy and angular momentum, then integrating over an orbit.

A more realistic orbit-averaging method is to use action-angle variables, which are the

appropriate coordinates for inhomogeneous systems [88,89].

The action-angle variables are obtained from a canonical transformation [74],

J =
1

2π

∮
p(q)dq (3.6)

where (q,p) are the position and momentum canonical coordinates and J is the action. For

integrable systems, all degrees of freedom decouple and the canonical transformation above

leads to a new Hamiltonian that is independent of the angle w, and so

w = Ω(J)t+ w0 (3.7)

where Ω(J) = ∂h/∂J is the angular frequency. Under the adiabatic approximation, the

actions should vary very slowly compared to the timescale of the �uctuations caused by

two-body encounters and other perturbations. Therefore, the orbit-averaging procedure can

be performed by integrating over the angle variables.

These approaches aim to simplify the calculation of the evolution of f under the rigor-

ous kinetic equations, which have been developed by Lenard, Balescu, and Landau in the

�eld of plasma physics. Heyvaerts applied these equations in action-angle variables in self-

gravitating systems [84], and the reviews of Chavanis give a thorough presentation of this

kinetic framework, see e.g. [49, 90]. In the next subsection, we give a brief outline of these

equations, which are the subject of the work presented in section 4.4.

3.1.2 Kinetic treatment

Besides the BBGKY hierarchy, another intuitive way to understand the �nite-size e�ects

is through the Klimontovich equation. Taking again a system of N particles of mass m

with coordinates ({ri}Ni=1,{pi}Ni=1) interacting through a long-range potential φ(|ri − rj|),
we saw that the state of the system could be described by the 2Nd-dimensional probability
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density fN(R,P,t) (2.11), where R and P are Nd-dimensional vectors. The system can also

be described by a 2d-dimensional discrete distribution function fd(r,p,t) [3],

fd(r,p,t) =
N∑
i=1

δ[r− ri(t)]δ[p− pi(t)]. (3.8)

For a conservative system, the total number of particles remains the same so the convective

derivative must be equal to zero,

Dfd
Dt

=
∂fd
∂t

+
p

m
· ∇fd −∇ψd[fd] · ∇pfd = 0, (3.9a)

ψd[fd(r,p,t)] =

∫
dp′dr′fd(r

′,p′,t)φ(|r− r′|). (3.9b)

Equation (3.9) is the Klimontovich equation. It gives the evolution of the N particles in

the 2d-dimensional con�guration space, instead of the 2Nd-dimensional phase space like the

Liouville equation.

The discrete distribution function fd(r,p,t) is uniquely determined for any initial condi-

tion f0(r,p). By taking an average over many di�erent initial conditions corresponding to

the same macroscopic parameters, a smooth distribution function f(r,p,t) is obtained,

f(r,p,t) = 〈fd(r,p,t)〉 (3.10)

as well as a smooth mean-�eld potential,

ψ[f ] =

∫
dp′dr′f(r′,p′,t)φ(|r− r′|). (3.11)

The smooth functions di�er from the discrete functions by the �uctuations δf and δψ,

so that fd(r,p,t) = f(r,p,t) + δf(r,p,t) and ψd(r) = ψ(r) + δψ(r). By de�nition, 〈δf〉 = 0

and 〈δφ〉 = 0.

By taking the same initial condition average over the Klimontovich equation (3.9) and

subtracting the result from the unaveraged equation (3.9), one obtains

∂f

∂t
+

p

m
· ∇f −∇ψ · ∇pf = ∇p · 〈δf∇δψ〉 (3.12a)

∂δf

∂t
+

p

m
· ∇δf −∇δψ · ∇pf −∇ψ · ∇pf = 0. (3.12b)

The system of equations (3.12) is known as the quasi-linear approximation, because in the

�rst equation (3.12a) the term on the RHS is of order O[1/N ], while in the second equation

only terms of order up to O[1/
√
N ] have been kept.

After some algebra [49], an important kinetic equation for the evolution of f can be
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obtained from the results: the Lenard-Balescu equation

∂f

∂t
= π(2π)dm

∂

∂p
·
∫

dkdp′ kk
δ[k · (p− p′)]

|Dk,p|2
(∇p −∇p′) f(p,t)f(p′,t) (3.13)

where 1/|Dk,p| is
1

|Dk,p|
=

φ̂(k)

ε(k,k · p)
, (3.14)

φ̂(k) is the Fourier transform of the interaction potential φ(|r−r′|) and ε(k,ω) is a dielectric

function given by

ε(k,ω) = 1− φ̂(k)

∫
dp

k · ∂f(p)/∂p

k · p− ω . (3.15)

Through equation (3.14), we see that in the Lenard-Balescu equation, the interaction

potential is �dressed� by the dielectric function given by equation (3.15). This �dressing�

is known as collective e�ects. It is responsible for the polarization clouds that shield the

charge of ions in neutral plasmas (Debye shielding), and for the gain in e�ective mass of

stellar particles. It is a result of the �eld of particles reacting to its own perturbations. In some

cases, such as stellar systems, it is argued that the collective e�ects are not important, and

can be neglected [51]. For such cases, one can simply set ε(k,w) = 1, which gives the Landau

equation. However, other studies of stellar systems showed that the inclusion of collective

e�ects can avoid (or, at least, damp) the occurrence of dynamical friction, corresponding to

the drift/friction coe�cient obtained from the Fokker-Planck equation (3.3), D[∆v] [91,92].

Using the two-body encounter method of Chandrasekhar [93], the drift coe�cient becomes

D[∆v] = 8πGm2 ln(Γ)n(< v) (3.16)

wherem is the mass of the test and �eld stars, ln Γ is the Coulomb logarithm and depends on

the system size as well as the typical interparticle distance, and n(< v) indicates the density

of stars with velocity less than the velocity of the test star. Chandrasekhar's result shows

that stars should su�er a friction that depends on their velocity and their mass; physically, it

is caused by a density wake of stars that are gathered behind the test star as it moves through

the �eld. His approach of two-body encounters between a test star and �eld stars does not

include collective e�ects, however; the �elds stars do not interact between themselves.

The damping of an important feature such as dynamical friction is an example of how

collective e�ects can a�ect dynamics. It is still unclear to what extent they can be neglected,

and when they should be included. This was one of the motivations of the work of section

4.4, in which B. Marcos and I calculate di�usion coe�cients in action-angle variables for

inhomogeneous states of the HMF model using Fokker-Planck equations derived from the

Lenard-Balescu and the Landau equations. We were therefore able to compare the inclusion

and exclusion of collective e�ects.

In equation (3.13), we see that when the Kac prescription is used and m = 1/N , the
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timescale of the evolution of f goes at least with O[N ]. After such timescales, the system

should have evolved su�ciently to approach thermodynamic equilibrium.

3.2 Thermodynamic equilibrium

Collisional relaxation should lead the system to the thermodynamic equilibrium described

by Boltzmann-Gibbs statistical mechanics. Even though in this regime we may apply tra-

ditional statistical mechanics, certain peculiarities arise. These are mostly caused by two

fundamental characteristics of LRI systems: nonadditivity and, to a lesser extent, nonexten-

sivity. The lack of these properties can have important consequences for the thermodynamics

of LRI systems.

3.2.1 Nonextensivity

A macroscopic quantity A({xi}) of a system is called extensive if, when its variables

{xi} are multiplied by a constant λ, the quantity scales as λ, so A(λ{xi}) = λA({xi}). In
other words, A is extensive if it is a homogeneous function of order 1. The thermodynamic

potentials should be extensive. For example, if the temperature T , the volume V and the

number of particles N is doubled, the Helmholtz free energy F (T,V,N) should also double.

Another example is the Boltzmann entropy S = kB lnW , where W is the number of states.

For continuous systems, the number of states is related to the surface of constant energy

in the 2Nd-dimensional phase space. This clearly grows exponentially with N , and so the

entropy must scale linearly with N and is therefore always extensive.

In long-range systems, this is not always the case. To illustrate this, let us look at the

Curie-Weiss model, which is a LRI spin system that is commonly used to exemplify this

characteristic due to its simplicity [3]. It consists of N spins that can be either �up� (S = 1)

or �down� (S = −1), described by the Hamiltonian

H =
J

2

N∑
i=1

N∑
j=1
j 6=i

SiSj (3.17)

where J is the coupling constant (negative for ferromagnetic coupling, and positive for

antiferromagnetic coupling).

Since there is a double sum over all N particles, the internal energy U(N) clearly scales

with N2. Therefore, it is nonextensive: if we double the number of particles, the internal

energy will be four times its original value. This is inconvenient for studying its thermody-

namic properties. In the limit N →∞, the Helmholtz free energy will be trivially dominated

by the internal energy U , since F (T,V,N) = U(T,V,N) − TS(T,V,N) and as we have seen,

S always scales with N . The temperature is intensive, that is, it remains unchanged when

varying N .
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R

δ

ρ = N
ΩdRd

Figure 3.1: Representation of a d-
dimensional volume occupied by a homoge-
neous particle density ρ. The small radius
δ represents a typical interparticle distance.
Example taken from [3].

Thus, in order to systematically study the thermodynamics of LRI systems of di�erent

sizes, the common procedure is to rescale the interaction coupling J by a factor 1/N (the

Kac prescription, which we have seen before in chapter 2) [45, 46]. Equivalently, depending

on the system and the parameters one wants to examine, the rescaling can be done with the

volume, with a factor 1/V . This restores extensivity. Other strategies are also possible, such

as rescaling the temperature in order to make it extensive instead of intensive [94]. Then,

both the U and TS terms would scale as N2.

The above example of the Curie-Weiss model is simple because it is a lattice model and

there is no de�ned distance measure with which the interaction decays, so the energy clearly

scales as N2. However, for continuous systems with an arbitrary LRI potential, the situation

is not as immediately clear. We can still make an estimate by considering a homogeneous

distribution of mass inside a d-dimensional volume of radius R (see Figure 3.1). Then, the

density ρ is given by

ρ =
N

V
=

N

ΩdRd
(3.18)

where Ωd is the angular contribution to the volume.

Taking a LR pair potential φ(|r− r′|)

φ(|r− r′|) =
J

|r− r′|α , (3.19)

the mean-�eld potential felt by a particle at the center of the distribution (the black dot in

Figure 3.1) is

ψ = JρΩd

∫ R

δ

dr′r′d−1 1

r′α

= Jρ
Ωd

d− α
(
Rd−α − δd−α

)
.

(3.20)

For short-range systems, the thermodynamic limit consists in taking N → ∞, V → ∞,

while ρ = N/V is constant. Then, writing equation (3.20) as

ψ ∼ JρΩd

(
N1−α/d

(Ωdρ)1−α/d − δ
δ−α
)

(3.21)
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we see that the term that scales with N will tend to zero in the thermodynamic limit, since

in short-range interactions α > d. The energy of the particle will depend on its neighboring

particles, corresponding to the typical short-range distance δ.

If, however, we consider the long-range case, where α < d, the term proportional to

N1−α/d does not die out, and the energy of the particle grows with N . The total energy,

roughly estimated as

U ∼ Nψ ∼ JN2

Rd

(
Rd−α − δd−α

)
, (3.22)

grows superlinearly with N , and is nonextensive in this thermodynamic limit.

More appropriately, the thermodynamic limit for LRI systems is N → ∞, J → 0, with

γ ≡ JN constant. Then,

U ∼ Nγ

(
1

Rα
− δd−α

Rd

)
. (3.23)

Once again, this limit introduces the Kac rescaling 1/N , restoring extensivity.

3.2.2 Nonadditivity

Although extensivity is restored by rescaling the intensity of the interaction between

particles, the system still lacks additivity. A quantity A(x) is additive if it satis�es the relation

A(x1 + x2) = A(x1) + A(x2). Taking a system of N particles with short-range interactions

and dividing it into two subsystems, we may write its internal energy as E = E1 +E2 +E1,2,

where E1 and E2 are the internal energies of subsystems 1 and 2, respectively, and E1,2 is

the energy of interaction between subsystems 1 and 2. For a short-range system, E1 and E2

scale with their respective volumes (or, equivalently, their respective number of particles).

The energy of interaction between subsystems only occurs near the surface that separates

them, therefore it scales as V (d−1)/d; it is an interfacial energy. In the typical short-range

thermodynamic limit, N → ∞, V → ∞, E1,2 is completely negligible and thus the energy

satis�es additivity.

Notwithstanding the Kac prescription, LRI systems remain nonadditive seeing as even

the concept of an interfacial energy becomes ill-de�ned. This is immediately clear with the

example of Campa et al [3], Hamiltonian (3.17) using the Kac prescription J → J/N . If we

split the system into a subsystem of N/2 spins with S = 1 and another of N/2 spins with

S = −1, clearly E1 = E2 = JN/8, while the interaction energy is E1,2 = −JN/4, resulting in
a total energy of E = 0. The interaction energy is not negligible compared to the subsystem

energy; in this perfectly mean-�eld case, it is exactly the same as the negative of their sum.

The interaction energy between subsystems is caused by interaction between their bulk, not

their interface. Thus, the total energy is not additive.

The lack of additivity allows for the existence of convex regions of the entropy as a

function of the energy, the so-called �convex intruders� that occur near �rst-order phase

transitions [3]. In short-range systems, when the system has an energy ε∗ corresponding to

a convex entropy, it can split into two phases of energies ε1 and ε2 out of the convex region
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in such a way that the total energy ε1 + ε2 = ε∗ is the same. This is known as the Maxwell

construction, and is possible due to additivity. In LRI systems, this separation is not possible

and the states corresponding to convex entropies are physically accessible.

3.2.3 Ensemble inequivalence

Without additivity, the LRI system cannot divide into two coexisting phases near critical

points. Therefore, when the system has a mean energy corresponding to a convex region of

the entropy, its con�guration is a valid microcanonical macrostate. These macrostates are

not accessible in the canonical ensemble: the Legendre-Fenchel transform of the entropy with

respect to the temperature can only be applied in concave regions, so the Maxwell envelope

construction must be used. This ensures that the free energy is concave. Therefore, there

may be macrostates corresponding to certain values of the internal energy that are accessible

in the microcanonical ensemble which are not accessible in the canonical ensemble.

It has been proven that when the entropy is concave, the microcanonical and canonical

ensemble are equivalent in the thermodynamic limit [1]. Since LRI systems may present

nonconcave intervals of the entropy (which, importantly, are accessible macrostates), they

may be inequivalent.

It is important to note that not all LRI systems present �convex� intruders, therefore

having LR interactions is not a su�cient condition for this type of inequivalence. Neverthe-

less, many LRI systems do exhibit nonconcavity in the entropy: the Blume-Emery-Gri�ths

spin model [95], the Curie-Weiss-Potts model [96], models for turbulence [97], magnetically-

con�ned plasmas [98] and gravitational systems [99]. Dipolar gases in optical lattices ex-

hibit inequivalence between microcanonical and canonical ensembles; this inequivalence is

of special interest since, unusually, they are best described experimentally by the micro-

canonical ensemble [100]. Cohen and Mukamel have shown that inequivalence may occur

not only between microcanonical and canonical ensembles, but also between canonical and

gran-canonical [9]. A survey on results of ensemble equivalence and inequivalence is given

by Touchette in reference [101].

In some systems, the entropy may exhibit gaps in the domain of its thermodynamic

parameters. Therefore, the microstates corresponding to the values of the parameter along

these gaps are inaccessible, and without additivity the system cannot cross to other valid

domains. This leads to a breaking of ergodicity in the microcanonical ensemble, while in the

canonical ensemble the system is able to cross these forbidden regions [102,103].

An interesting consequence of the lack of additivity is that it allows for negative speci�c

heat, which is commonly known in the astrophysical community [10, 11]. To see how an

isolated self-gravitating system can have negative heat capacity, it su�ces to look at the

virial theorem. As we saw in section 2.2, for three-dimensional self-gravitating systems, the

virial theorem states that 2K = −U or K = −E where E = K + U . Using the equipartition



36 COLLISIONAL RELAXATION AND THERMODYNAMIC EQUILIBRIUM

theorem, K = 3NkBT/2, so
∂E
∂T

= −3NkB/2. (3.24)

A physical interpretation is that as stars lose kinetic energy, they fall into orbits of lower

potential energy, which will now increase their kinetic energy, more than what was initially

lost.

Negative speci�c heat is only possible in the microcanonical ensemble�in the canoni-

cal ensemble, the speci�c heat by de�nition is positive. Therefore, near phase transitions,

ensembles may be inequivalent [7, 104,105].

3.3 Summary and relation to thesis

In this chapter we have reviewed some basic concepts relating to the second relaxation

process of LRI systems, known as collisional relaxation, and the equilibrium properties of

the states thereby achieved. The collisional relaxation occurs due to residual correlations

between particles. In the thermodynamic limit, these correlations tend to zero and may be

neglected. However, in real systems, N is �nite and so the correlations will exist and will

drive the system to thermodynamic equilibrium, although the typical relaxation timescale

τR will scale with the system size (usually superlinearly).

In section 4.3 we study the e�ect of a short-range coupling in a mean-�eld model. The

short-range coupling may induce stronger correlations which should reduce the relaxation

timescale τR. The coupling also introduces the possibility of chaotic orbits in the mean-�eld

limit, allowing us to examine any possible relation between chaos and collisional relaxation.

Collisional relaxation was also the focus of another work, presented in section 4.4. In

this study, we used action-angle variables to �nd di�usion coe�cients for kinetic equations

describing the adiabatic evolution of inhomogeneous states of a mean-�eld spin model, the

Hamiltonian-Mean-Field (HMF) model. This enables us to study the corresponding Fokker-

Planck equation, which is a future project.

Regarding ensemble inequivalence and the equilibrium states of LRI systems, section 5.2

presents a microcanonical and canonical phase diagram for an XY model with a nematic

coupling, the generalized HMF model. This model exhibits �rst-order phase transitions and

ensemble inequivalence. The same model also presents a nonequilibrium phase diagram that

is qualitatively and quantitatively di�erent from its equilibrium diagram, in the sense that

the transitions are of di�erent orders and occur in di�erent regions of parameter space. These

results are presented in section 5.1.



Chapter 4

Hamiltonian Mean Field Model

The Hamiltonian Mean Field (HMF) model, is a one-dimensional model of N particles

that interact through a sinusoidal potential. It was introduced in 1992 by Konishi and

Kaneko as a symplectic map [39], and was �rst named HMF model by Antoni and Ru�o

in 1995 [42]. In 1994, it was also introduced by Pichon in his doctoral thesis as a model

for studying the bar formation in galactic disks [40]. It is a paradigmatic model for the LRI

research community due to its computational simplicity while it maintains the representative

characteristics of LRI systems, such as the existence of QSS [106]. Although considered a

toy model, its dynamics can be representative of many physical phenomena, such as the

bar formation cited above, as well as the free electron laser (FEL) [36] and dipole-dipole

interactions in Bose-Einstein condensates [107].

The system is described by the Hamiltonian

H =
N∑
i=1

p2
i

2
+

1

N

N∑
i,j=1

1− cos (θi − θj)
2

, (4.1)

where (θi,pi) are the canonically conjugate variables of position and momentum, respectively,

of the ith particle. It can be interpreted as a system of particles con�ned to move on a ring

of unitary radius, with the positions given by θ; or, equivalently, as a system of classical XY

spins, in which all spins interact with all others.

Another form of writing the Hamiltonian given by equation (4.1) is

H =
N∑
i=1

p2
i

2
+

N∑
i=1

1−M cos θi
2

, (4.2)

M = 〈cos θ〉, (4.3)

where we used 〈sin θ〉 = 0, considering only distributions symmetric around θ = 0 [72].

The magnetization M is the order parameter that distinguishes between the ferromagnetic

M > 0 and the paramagnetic M = 0 states.

37
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4.1 Ergodicity breaking and parametric resonances in

systems with long-range interactions

The potential of the HMF model is not a homogeneous function of the distance between

particles. As described in section 2.2, in these cases there is no virial condition that asso-

ciates the potential and kinetic energy of a stationary state regardless of the form of the

distribution. We can, however, deduce a generalized virial condition (GVC) that depends on

the speci�c initial distribution.

In this work, we present a GVC for initial distributions of the water-bag (WB) type,

f0(θ,p) = ηΘ(θm−|θ|)Θ(pm−|p|). The GVC speci�es, for a system with a given mean energy

E , the initial magnetization M0 that minimizes the oscillations of the particle distribution.

Besides minimizing the initial mean-�eld oscillations, the GVC should also predict the QSS

magnetization of con�gurations that start away from the GVC curve. This should occur

because any stationary state should satisfy the virial condition. Therefore, even if the initial

magnetization does not correspond to the value predicted by our GVC for a given mean

energy, the oscillations should be such that they lead to a QSS magnetization that does

satisfy the GVC.

We showed that this is in fact the case, and that the virialised initial conditions are

reasonably well described by LB statistics, while initial conditions o� the GVC create high-

energy halos that do not appear in LB distributions. This is in agreement with previous works

by Levin et al that showed that LRI systems such as con�ned plasmas and self-gravitating

systems are reasonably well described by LB statistics when the virial condition is satis�ed,

and form core-halo con�gurations when it is not [61,62].

This work was done as part of my Masters research and was the �rst step in a project that

was continued in my doctoral research. It was published as �Ergodicity breaking and para-

metric resonances in systems with long-range interactions� in the journal Physical Review

Letters, volume 108, page 140601 (2012).
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Statistical mechanics of systems in which particles in-
teract through long-ranged potentials is fundamentally
different from the statistical mechanics of systems with
short-range forces [1]. In the latter case, starting from an
arbitrary initial condition (microcanonical ensemble) sys-
tems evolve to a thermodynamic equilibrium in which
particle distribution functions are given by the usual
Boltzmann-Gibbs statistical mechanics [2]. The state of
thermodynamic equilibrium does not depend on the spe-
cifics of the initial distribution, but only on the global
conserved quantities such as energy, momentum, angular
momentum, etc. The situation is very different for systems
in which particles interact through long-range potentials,
such as gravity or unscreened Coulomb interactions [3–6].
In this case, it has been observed in numerous simulations
that these systems do not relax to thermodynamic equilib-
rium, but become trapped in a quasistationary state (qSS),
the lifetime of which diverges with the number of particles
[4,6–8]. The distribution functions in this quasistationary
state do not obey the Boltzmann-Gibbs statistical mechan-
ics—and, in particular, particle velocities do not follow the
Maxwell-Boltzmann distribution, but depend explicitly on
the initial condition. It has been an outstanding challenge
of statistical mechanics to quantitatively predict the final
stationary state reached by systems with unscreened
long-range forces, without having to explicitly solve the
N-body dynamics or the collisionless Boltzmann (Vlasov)
equation.

Some 40 years ago Lynden-Bell (LB) proposed a gen-
eralization of the Boltzmann-Gibbs statistical mechanics to
treat systems with long-range interactions [9]. Lynden-
Bell’s construction was based on the Boltzmann counting,
but instead of using particles, LB worked directly with the
levels of the distribution function. The motivation for this
approach was the observation that dynamical evolution of
the distribution function for systems with long-range inter-
actions is governed by the Vlasov equation [10]. This
equation has an infinite number of conserved quantities,
Casimirs—any local functional of the distribution function
is a Casimir invariant of the Vlasov dynamics. In particular

if the initial distribution function is discretized into levels,
the volume of each level must be preserved by the Vlasov
flow. For an initially one-level distribution function,
Vlasov dynamics requires that the phase-space density
does not exceed that of the initial distribution—one-
particle distribution function over the reduced phase space
(�-space) evolves as an incompressible fluid. Using this
constraint in a combination with the Boltzmann counting,
LB was able to derive a coarse-grained entropy, the maxi-
mum of which he argued should correspond to the most-
probable distribution—the one that should describe the
equilibrium state. Numerous simulations, however, showed
that, in general, Lynden-Bell statistics was not able to
account for the particle distribution in self-gravitating
systems, and the theory has been abandoned in the astro-
physical context. Recently, however, Lynden-Bell’s work
has been rediscovered by the statistical mechanics com-
munity, which showed that for some systems, specifically
the widely studied Hamiltonian mean-field model (HMF),
Lynden-Bell’s approach could make reasonable predic-
tions about the structure of the phase diagram [11]. The
fundamental question that needs to be addressed is: Under
what conditions can Lynden-Bell statistics be used to
accurately describe systems with long-range interactions?
This will be the topic of the present Letter.
To be specific, we will study the HMF model [1], which

has become a test bench for theories of systems with long-
range forces. However, our results and methods are com-
pletely general and can be applied to other systems, such as
self-gravitating clusters or confined non-neutral plasmas.
The HMF model consists of N particles restricted to move
on a circle of radius one. The dynamics is governed by the
Hamiltonian

H ¼ XN
i¼1

p2
i

2
þ 1

2N

XN
i;j¼1

½1� cosð�i � �jÞ�; (1)

where the angle �i is the position of ith particle and pi is its
conjugate momentum [11–13]. The macroscopic behavior
of the system is characterized by the magnetization vector
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M ¼ ðMx;MyÞ, where Mx � hcos�i, My � hsin�i, and

h� � �i stands for the average over all particles. The
Hamilton equations of motion for each particle reduce to

€� i ¼ �MxðtÞ sin�iðtÞ þMyðtÞ cos�iðtÞ: (2)

Since the Hamiltonian does not have explicit time depen-
dence, the average energy per particle,

u ¼ H

N
¼ hp2i

2
þ 1�MðtÞ2

2
; (3)

is conserved.
The failure of LB theory in the astrophysical context was

attributed to incomplete relaxation, lack of good mixing, or
broken ergodicity [14]. The mechanisms behind this failure
have not been elucidated. On the other hand, it has been
recently observed that if the initial distribution is virial-
ized—satisfies the virial condition—LB’s approach was
able to quite accurately predict the stationary state of
gravitational and Coulomb systems [3–6]. Unfortunately,
the virial theorem can be derived only for potentials which
are homogeneous functions. This is not the case for the
HMFmodel. Nevertheless, the fact that LB theory seems to
apply under some conditions makes one wonder if such
conditions can be found for arbitrary long-range potentials,
which are not in general homogeneous functions.

To answer the questions posed above, we note that if the
initial distribution is virialized, macroscopic oscillations of
observables should be diminished. On the other hand, if the
system is far from virial, the mean-field potential that each
particle feels will undergo strong oscillations. It is then
possible for some particles to enter in resonance with the
oscillations of the mean-field, gaining large amounts of
energy. The parametric resonances will result in the occu-
pation of regions of the phase space which are highly
improbable, from the point of view of Boltzmann-Gibbs
or LB statistics [15]. Furthermore, resonant particles will
take away energy from collective oscillations producing a
form of nonlinear Landau damping [16]. After some time,
macroscopic oscillations will die out and each particle will
feel only the static mean-field potential. From that point
on, particle dynamics will become completely regular,
with no energy exchange possible between the different
particles. The particles which have gained a lot of energy
from the parametric resonances will be trapped forever in
the highly improbable regions of the phase space, unable to
thermalize with the rest of the system.

To see how the theoretical picture advocated above can
be applied to the HMF, we first derive a generalized virial
condition for this model. For simplicity we will consider
initial distributions of the ‘‘water-bag’’ form in (�, p).
Without loss of generality, we choose a frame of reference
where h�i ¼ 0 and hpi ¼ 0. The one-particle initial distri-
bution function then reads

f0ð�; pÞ ¼ 1

4�0p0

�ð�0 � j�jÞ�ðp0 � jpjÞ; (4)

where � is the Heaviside step function, and j�0j and jp0j
are the maximum values of angle and momentum, respec-
tively. Note that from symmetry, MyðtÞ ¼ 0 at all times.

When the dynamics starts, the mean-squared particle
position will evolve with time. We define the envelope

of the particle distribution as �eðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
3h�2ip

, so that
�eð0Þ ¼ �0. We next differentiate �eðtÞ twice with respect
to time to obtain the envelope equation of motion,

€�e ¼ 3hp2i
�e

þ 3h� €�i
�e

� 9h�pi2
�3e

: (5)

Using the conservation of energy, hp2i ¼ 2uþM2
xðtÞ � 1.

To calculate, h� €�i, we use the equation of motion for �.
Supposing that the distribution of angles remains close to
uniform on the interval [� �e, �e], we obtain

h� €�i ¼ �MxðtÞ
2�e

Z �eðtÞ

��eðtÞ
� sin�d�

¼ MxðtÞ cos�eðtÞ �M2
xðtÞ; (6)

where the magnetization MxðtÞ is

MxðtÞ ¼ 1

2�e

Z �eðtÞ

��eðtÞ
d� cos� ¼ sin�eðtÞ

�eðtÞ : (7)

Neglecting the correlations between positions and veloc-
ities, h�pi ¼ 0, we finally obtain a dynamical equation for
the envelope

€�e ¼ 3

�eðtÞ ð2uþMxðtÞ cos�eðtÞ � 1Þ; (8)

where u ¼ p2
0=6þ ð1�M2

0Þ=2 andM0 ¼ sinð�0Þ=�0. The
generalized virial condition is defined by the stationary
envelope, €�e ¼ 0, which means that along the curve

ð2u� 1Þ�0 þ sin�0 cos�0 ¼ 0 (9)

magnetization remains approximately invariant. In Fig. 1
we plot Eq. (9) in the M0-u plane and compare it with the
full molecular dynamics simulation of the HMF model. As
can be seen, agreement between the theory and simulation
is excellent.
Along the generalized virial condition curve, Eq. (9), the

magnetization—and, therefore, the mean-field potential
acting on each particle of the HMF model—has only
microscopic oscillations and the parametric resonances
are suppressed. Under these conditions, we expect that
LB theory will be valid. The coarse-grained entropy within
the LB approach is given by

sðfÞ ¼ �
Z

dpd�

�
f

�0

ln
f

�0

þ
�
1� f

�0

�
ln

�
1� f

�0

��
;

(10)

where �0 ¼ 1=4�0p0 [17]. Maximizing this entropy under
the constraints of energy and particle conservation, we
obtain the equilibrium distribution function

fðp; �Þ ¼ �0

e�½ðp2=2Þ�Mx cos���� þ 1
: (11)
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The Lagrange multipliers � and � are determined by
particle and energy conservation,

Z
dpd�fðp; �Þ ¼ 1; (12)

Z
dpd�fðp; �Þ

�
p2

2
þ 1

2
ð1�Mx cos�Þ

�
¼ u; (13)

respectively, and the magnetization by the self-consistency
requirement, Z

dpd� cos�fðp; �Þ ¼ Mx: (14)

Solving these equations numerically along the curve
Eq. (9), we see that there is an excellent agreement between
LB theory and the simulations, Fig. 2. If the macroscopic
oscillations are suppressed and the parametric resonances
are not excited, the system is able to relax to a quasiergodic
equilibrium permitted by the Vlasov dynamics.

To make clear the role of parametric resonances in
ergodicity breaking, in Fig. 3(a) we plot the Poincaré
section of a set of noninteracting test particles, which at
t ¼ 0 are distributed in accordance with Eq. (4). The
motion of each particle is governed by Eq. (2) with Mx

determined by Eqs. (7) and (8). The position and momen-
tum of each particle are plotted when magnetization is
at its minimum. We see that if the energy and the initial
magnetization lie on the generalized virial curve—point
(B) of Fig. 1—particle trajectories are completely regular.
However, when initial conditions do not coincide with the
generalized virial curve—point (T) of Fig. 1—parametric
resonances appear and dynamics becomes chaotic.
Particles enter in resonance with the oscillations of the
mean-field potential, gaining sufficient energy to move
into statistically improbable regions of the phase space.
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FIG. 2. The angle and velocity distribution functions corre-
sponding to the initial conditions described by points (A), (B)
and (C) of Fig. 1, respectively. Symbols are the results of
molecular dynamics simulations and solid curves are the pre-
dictions of LB theory. The simulated distribution functions for
the point (B), lying on the generalized virial curve, are in
excellent agreement with the predictions of the LB theory
[panels (c) and (d)], demonstrating that the dynamics along the
generalized virial curve is quasiergodic. On the other hand, the
distribution functions for points (A) and (C) deviate significantly
from the predictions of LB theory — showing that away from the
generalized virial curve, ergodicity is broken [panels (a),(b) and
(e),(f)].

0 0.2 0.4 0.6 0.8 1

M0

0

0.2

0.4

0.6

0.8

1
u

Virial condition
Simulation
Phase transition

A

T
B

C
Ferro

Para

FIG. 1 (color online). Phase diagram of the HMF model ob-
tained using the molecular dynamics simulations. Solid curve is
the line of first order phase transitions separating paramagnetic
and ferromagnetic phases. This line extends up toM0 ¼ 0:6, after
which point the order of the phase transition, shaded region (green
line), becomes unclear, with strong dependence on the initial
conditions and various reentrant transitions occurring in this
region. Dashed curve is the generalized virial condition,
Eq. (9). Along this curve oscillations of the envelope are sup-
pressed. Diamonds are the results of simulation. Starting with the
initial energy and magnetization along the virial curve, diamonds
show the final magnetization to which the system relaxes. For
points along this curve, the final magnetization is almost identical
to the initial one. Note that the generalized virial curve terminates
at M0 ¼ 0:34 slightly below the phase transition line. This small
difference, however, is sufficient to invalidate the Lynden-Bell
theory, which for M0 ¼ 0:4 predicts a second order phase tran-
sition, while the simulations show that the phase transition is of
first order [18]. Points (A), (B), and (C) correspond to the initial
conditions for the distribution functions shown in Fig. 2. The
Poincaré sections of the test particle dynamics for the initial
conditions described by the points (B) and (T) are shown in
Fig. 3. Finally, we note that since the stationary distribution
must satisfy the virial condition and the energy is conserved,
Eq. (9) allows us to predict the magnetization to which the system
will evolve for initial conditions lying inside the ferromagnetic
region, see the arrows for points (A) and (C).
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The Poincaré section of test particle dynamics is remark-
ably similar to the final stationary distribution obtained
using the complete N-body molecular dynamics simula-
tion of the HMF, Fig. 3. Equation (8) can also be used to
calculate the period of the first oscillation of MðtÞ. For
example, for point (T) of the phase diagram Fig. 1, we find
the period to be T ¼ 5:0, while the full molecular dynam-
ics simulations gives T ¼ 5:4. For point (C) we find
T ¼ 3:85, while the simulations give T ¼ 3:82.

In conclusion, we have studied the mechanism respon-
sible for the ergodicity breaking in systems with long-
range interactions. Ergodicity breaking and the parametric
resonances are intimately connected. If the macroscopic
oscillations—and the resulting resonances—are sup-
pressed, the system is able to relax to a quasiergodic sta-
tionary state. However, when the parametric resonances
are excited, some particles are ejected to statistically im-
probable regions of the phase space, at the same time as the
oscillations are damped out. The process of continuous
particle ejection, and the resulting decrease of macroscopic
oscillations of the envelope, leads to the formation of a

static mean-field potential and to asymptotically integrable
dynamics. Once the integrability of the equations of motion
is achieved, the ergodicity becomes irreversibly broken.
Unlike for particles with short-range interaction potentials,
ergodicity is the exception rather than the rule for systems
with long-range forces—it can only be observed if the
initial distribution function satisfies the generalized virial
condition derived in this Letter. Finally we note, that since
the stationary distribution must satisfy the virial condition
and the energy must be conserved, Eq. (9) allows us to
predict the magnetization to which the system will evolve
for initial conditions lying inside the ferromagnetic region.
For example, point (A) of Fig. 1 which has initial magne-
tization and energy M0 ¼ 0:74 and u ¼ 0:55, will evolve
to a final stationary state with M ¼ 0:56; while the point
(C) with M0 ¼ 0:74 and u ¼ 0:25, will evolve to a final
stationary state with M ¼ 0:86, which are precisely the
values obtained using the molecular dynamics simulations.
This work was partially supported by the CNPq,

FAPERGS, INCT-FCx, and by the US-AFOSR under the
grant FA9550-09-1-0283.
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[7] J. Barré, D. Mukamel, and S. Ruffo, Phys. Rev. Lett. 87,
030601 (2001).

[8] K. Jain et al., J. Stat. Mech. (2007) P11008.
[9] D. Lynden-Bell,Mon.Not. R.Astron. Soc. 136, 101 (1967).
[10] W. Braun and K. Hepp, Commun. Math. Phys. 56, 101

(1977).
[11] A. Antoniazzi, F. Califano, D. Fanelli, and S. Ruffo, Phys.

Rev. Lett. 98, 150602 (2007); J. Barre, F. Bouchet, T.
Dauxois, and S. Ruffo, Phys. Rev. Lett. 89, 110601
(2002); T.M. Rocha Filho, A. Figueiredo, and M.A.
Amato, Phys. Rev. Lett. 95, 190601 (2005).P. H.
Chavanis, Eur. Phys. J. B, 53, 487 (2006).

[12] A. Antoniazzi, D. Fanelli, S. Ruffo, and Y.Y. Yamaguchi,
Phys. Rev. Lett. 99, 040601 (2007).

[13] A. Antoniazzi, D. Fanelli, J. Barré, P. H. Chavanis, T.
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FIG. 3. Poincaré sections of test particles and snapshots of the
phase space obtained using molecular dynamics simulation once
the system has relaxed to qSS. Panels (a) and (b) correspond to
the initial condition lying on the generalized virial curve, point
(B) of Fig. 1. In this case the test particle dynamics is completely
regular, and the stationary particle distributions are well de-
scribed by LB theory. Panels (c) and (d) correspond to the initial
conditions slightly off the virial curve, point (T) of Fig. 1. Even
though we have moved only a little from the virial curve, we see
the appearance of resonant islands and the dynamics of some of
the test particles becoming chaotic. Such resonances drive some
particles of the HMF to statistically improbable—from the point
of view of the Boltzmann-Gibbs and LB statistical mechanics—
regions of the phase space. Once the envelope oscillations are
damped out, particle dynamics becomes completely integrable,
and there is no mechanism for the resonant particles to equili-
brate with the rest of the distribution. Thus, away from the
generalized virial curve, ergodicity becomes broken.
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4.2 Ergodicity breaking and quasi-stationary states in

systems with long-range interactions

In the previous paper, we showed that LB statistics showed good results for the marginal

distributions in θ and p when the GVC was satis�ed. However, as we saw in subsection 2.3.3,

a model based on assumptions very di�erent from those of LB statistics was proposed to

describe the QSS of the HMF, the integrable model of de Buyl et al. [75, 76]. In the QSS,

the potential should be almost stationary, and so the particle dynamics can be uncoupled

and described by the IM. We predicted that this model should be more successful than

LB statistics for initial conditions on the GVC, because for these conditions the mean-�eld

oscillations are minimized and so there is no mechanism for violent relaxation to occur and

for particles to exchange energy. Seeing as LB statistics is fundamented on violent relaxation

and mixing, the IM seems more appropriate to describe the dynamics.

In the work presented in the following publication, we applied both models, LB statistics

and the IM, to describe the QSS of the HMF model. As a continuation of the work presented

in the preceding section, we found a GVC for WB distributions of multiple density levels in

p, the MLWB (multilevel water-bag) distribution, given by

f0 =
L∑
i=1

ηiΘ(θm − |θ|) [Θ(pi − |p|)−Θ(|p| − pi−1)] , (4.4)

where L is the number of density levels, θm is the maximum value of θ of the distribution, pi

is the maximum value of p for the ith density level and p0 = 0. We compared the marginal

distributions in θ and p, as well as the energy distribution functions f(ε), of initially virialised

conditions with di�erent density levels. For each value of L, the IM results described the

QSS distributions of molecular dynamics better than LB statistics. We also saw that, as we

increased L, the agreement between molecular dynamics and the results of both theories

gets worse. We concluded that the HMF dynamics is in fact closer to an integrable system

than a system with ergodicity and mixing in phase space. The decrease in the success of

the IM and LB models as L increases can be explained in part by the GVC, which may be

insu�cient to minimize the oscillations of each density level independently.

Our results were published in the article �Ergodicity breaking and quasi-stationary states

in systems with long-range interactions� in Physical Review E, volume 89, page 022130

(2014). The article is presented on the following pages.
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In the thermodynamic limit, systems with long-range interactions do not relax to equilibrium, but become
trapped in quasistationary states (qSS), the life time of which diverges with the number of particles. In this paper
we will explore the relaxation of the Hamiltonian Mean-Field model to qSS for a class of initial conditions of
the multilevel water-bag form. We will show that if the initial distribution satisfies the virial condition, thereby
reducing mean field changes, the final distribution in the qSS can be predicted very accurately using a reduced
exactly integrable model. The calculated distribution functions obtained using this approach are found to be more
accurate than the ones predicted by the Lynden-Bell theory.

DOI: 10.1103/PhysRevE.89.022130 PACS number(s): 05.20.−y, 05.45.−a, 05.70.Ln

I. INTRODUCTION

Long-range interacting (LRI) systems are ubiquitous in
nature. They range from the astronomical scale [1–3], to the
macroscopic, e.g., non-neutral plasmas [4,5], wave-plasma
interacting systems (free-electron lasers) [6,7], and two-
dimensional geophysical vortex systems [8], down to the
atomic scale, e.g., classical and quantum cold atoms interacting
via quasiresonant lasers [9,10]. In spite of their importance,
much of the behavior of these systems remains poorly
understood (for recent reviews, see, e.g., Refs. [11–13]). It
is known that LRI systems can exhibit ergodicity breaking
[14–17], anomalous relaxation and diffusion [18,19], quasis-
tationary states (qSS) [20,21], vanishing Lyapunov exponents,
inequivalence of ensembles [22–24], negative specific heat
(nonconcave microcanonical entropies) [25,26], temperature
discontinuities, etc. The thermodynamic anomalies result from
the nonadditivity of energy, while the dynamical pathologies
arise from the complexity of collisionless relaxation driven by
the wave-particle interactions.

In the thermodynamic limit N → ∞, the dynamics of
systems with long-range forces is governed by the collisionless
Boltzmann, or Vlasov, equation:

∂f

∂t
+ p · ∇qf − ∇qV [f ](q,t) · ∇pf = 0, (1)

V [f ](q,t) ≡
∫ ∫

dq′ dp′ f (q′,p′,t) ν(|q − q′|), (2)

where f (q,p,t) is the one-particle distribution function and
where ν(|q − q′|) is the two-body microscopic interaction
potential. Note that the mean-field potential V [f ](q,t) is
a functional of the one-particle distribution f (q,p,t). This
makes the Vlasov equation (1) nonlinear and very difficult to
solve. Equation (2) shows that the mean-field potential and the
distribution function dynamics are intertwined.

The dynamics of a large, but finite, N system may also be
well approximated by the Vlasov equation up to time tmax.
Indeed, Braun and Hepp’s theorem [27] states that for a two-
body smooth long-range potential the “distance” (in the space
of all measures) between two initially close solutions of the
Vlasov equation increases at most exponentially in time, which
establishes a lower bound tmax = O[ln(N )] for the time up to
which the molecular dynamics (MD) evolution of a finite N

LRI system will be described by its associated Vlasov flow.1

In fact, qSS (corresponding to stable stationary states of the
Vlasov equation) persist for times that grow as a power of N

[21]. Therefore, for LRI systems the lim N → ∞ and lim t →
∞ do not commute; taking the latter limit before the former,
the system should reach thermodynamic equilibrium, while
taking the former before the latter, Vlasov dynamics is always
valid and thermodynamic equilibrium is not reached.

For LRI systems with a finite number of particles, the
strongly oscillating mean-field potential and the resulting
parametric resonances lead to a fast relaxation to qSS, on a
time scale independent of N . This is known in astrophysics as
a violent relaxation [28]. The time reversibility of the Vlasov
equation implies that the phase space evolution continues
indefinitely on progressively smaller scales. Therefore, no
invariant fine-grained measure can ever be reached. Filamen-
tation of the distribution function occurs because initially
neighboring phase space elements will evolve according to
distinct phase velocities. Evolution deforms initial condition
support through ever finer filamentations. The coarse-grained
distribution function f̄ , on the other hand, approaches a
stationarity. The concept of qSS and of entropy production
are valid only on a coarse-grained level f̄ (q,p,t). In the limit
N → ∞, the mean-field potential in the qSS will become
stationary, while for finite N small oscillations will persist
indefinitely. These fluctuations will eventually drive a finite
system out of the qSS and to the Boltzmann-Gibbs equilibrium.
In this paper we will not be interested in the finite N corrections
to the Vlasov dynamics, restricting ourselves to the time scale
shorter than the lifetime of the qSS.

The determination of stable solutions to the Vlasov dy-
namics is not an easy task. Besides the usual constants of
motion such as energy, linear and angular momentum, Vlasov

1The initial error of a large N particle approximation fN (q,p,t)
of a continuous distribution f (q,p,t) is d0 = O(1/

√
N), on account

of the central limit theorem. Hence, since Braun-Hepp’s theorem
is also valid for weak solutions, the maximum time during which
the molecular dynamics discrete distribution may, within an error ε,
coincide with its associated Vlasov description grows as ln(N ) at
least,

d(fN,f ) � d0 eα t � ε → tmax � O[ln(N )].

1539-3755/2014/89(2)/022130(9) 022130-1 ©2014 American Physical Society



RIBEIRO-TEIXEIRA, BENETTI, PAKTER, AND LEVIN PHYSICAL REVIEW E 89, 022130 (2014)

dynamics has an infinite number of conserved quantities
known as the Casimir invariants or simply the Casimirs
[29,30],

Cs[f ] =
∫

s[f (q,p,t)] dq dp, (3)

where s(x) is an arbitrary functional. Their conservation is
equivalent to the conservation of phase space densities, which
are a special case of Casimirs. The Casimirs (3) represent
an infinity of conserved quantities. A given initial condition
will select from the start of the evolution a given invariant
submanifold, which will correspond to one of the stable
stationary states of the dynamics. Even if we were able to
know all solutions (invariant submanifolds) to the Vlasov
equation, we would still need to determine to which invariant
submanifold a given initial condition would correspond.

The nonlinearity and the infinity of integrals of motion
complicate the study of LRI systems. To circumvent the
necessity of integrating the Vlasov equation to obtain the final
stationary state, Lynden-Bell (LB) proposed a Boltzmann-like
statistical approach. LB argued that the qSS should correspond
to the maximum of the coarse-grained entropy [28]. For this
to work, however, requires that the dynamics of a LRI system
must be ergodic and mixing, which in general is not the case.
Although simple and elegant, the LB theory in general is not
able to predict accurately the particle distribution inside the
qSS [13,31–38]. It was observed, however, that if the initial
distribution satisfies the virial condition, and the oscillations
of the mean-field potential are suppressed, the qSS marginal
distribution functions predicted by the LB theory are in
excellent agreement with the results of molecular dynamics
simulations [2,3,5,17,35,39]. The virial theorem establishes a
stable stationarity condition for a system of bound interacting
particles. For an isolated system starting from an arbitrary
initial condition, its kinetic and potential energies will oscil-
late around the corresponding virial condition, progressively
approaching it as the system approaches stationarity. The
closer the system is to such virial condition, the smaller is
the amplitude of the mean-field potential oscillations.

On the other hand, if the initial distribution does not satisfy
the virial condition, the mean-field potential undergoes violent
oscillations. Some particles can then enter in resonance with
the macroscopic oscillations gaining large amounts of energy,
thus populating the regions of the phase space that are highly
improbable from the perspective of LB or Maxwell-Boltzmann
statistics, forming a thin halo. The particle evaporation
produced by the resonances takes away energy from the
collective motion leading to Landau damping [40–42] of the
macroscopic oscillations of the mean-field potential. If the
oscillations die completely, the mean-field potential becomes
static and the dynamics of each particle becomes integrable
(for systems with one degree of freedom). The final qSS
reached by LRI systems is not ergodic, with the particle
distribution often characterized by a “cold” dense core and
a “hot” tenuous halo of evaporated (resonant) particles [13].
On the other hand, a good agreement between the LB theory
and MD simulations for initial distributions satisfying the virial
condition has been attributed to the existence of ergodicity and
mixing. This, however, is paradoxical. As has been discussed
above, the relaxation dynamics of LRI systems is driven by the

fluctuations of the mean-field potential. If, on the other hand,
the initial distribution function satisfies the virial condition,
the oscillations will be suppressed diminishing the mixing of
different phase space levels, which should lead to poor mixing
and lack of ergodicity.

Recently, an approach very different in spirit to LB theory
has been proposed to account for the qSS attained by the
Hamiltonian Mean-Field (HMF) model [43–45]. Since the qSS
are characterized by the virialization of the distribution, i.e.,
by the stationarity of the mean-field potential and consequent
integrability of the model, it might be reasonable, under
some conditions, to consider from the start the associated
integrable model of uncoupled pendulums subject to an
effective external field. The authors of Ref. [43] found that
the marginal distributions for this integrable model (IM) fit
well the corresponding HMF qSS distributions for some initial
conditions. We shall argue here that this will be the case only
if the oscillations of the mean-field potential are negligible
from the start, i.e., if the initial distribution satisfies the virial
condition. The possibility of approximating the dynamics of
the HMF by that of an IM further demonstrates that the
hypothesis of ergodicity intrinsic to LB statistics is not valid.

In this paper we will compare the predictions of LB statistics
and of the IM with extensive MD simulations of the HMF
model with initial multilevel water-bag distributions satisfying
the virial condition. In addition to the marginal distributions
[Pθ (θ ) and Pp(p)], we also calculate the energy distribution
f (ε), which provides a sharper distinction among the different
approaches [36,38]. With this comparison, we are interested
in verifying whether the agreement observed between the
LB theory and MD simulations for one-level distributions is
fundamental or is simply a coincidence.

The paper is organized as follows: in Sec. II, we introduce
the model and calculate the generalized virial condition for
the multilevel ICs; in Sec. III we review the LB formalism; in
Sec. IV, we present the IM of uncoupled pendula and use it to
calculate the distribution functions for the qSS of the HMF;
Sec. V is devoted to results and Sec. VI to conclusions.

II. HMF MODEL

The HMF is a paradigmatic model of a system with LRI
[46,47]. The model was originally introduced to study the
collective behavior observed in plasma and astrophysics. The
model describes N interacting particles constrained to move on
a unit circle, or N spins interacting through pairwise exchange
interaction. The Hamiltonian of the ferromagnetic version of
the model is given by (in units of the coupling constant)

H =
∑

i

p2
i

2
+ 1

2N

N∑
i,j=1

[1 − cos(θi − θj )], (4)

where θi is the position of the ith particle on the unit circle and
pi is its conjugate momentum. In equilibrium the model has a
second-order phase transition between a homogeneous and an
inhomogeneous bunched (ferromagnetic) state.

The one-particle energy is

ε(θ,p) = p2

2
+ 1 − Mx cos(θ ) − My sin(θ ), (5)

022130-2
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where M = Mx + i My = 1/N
∑N

j=1 ei θj is the instanta-
neous magnetization, i.e., the average mean-field felt by any
particle [see Eq. (2)], which in the case of the HMF is a
position-independent function of time:

M =
∫

dθ dp f (θ,p,t) ei θ . (6)

In this work we will explore the microcanonical dynamics
of the HMF, which conserves the average energy per particle
u = 〈p2〉

2 + 1−|M|2
2 .

A. Virial condition

The determination of the virial condition for the HMF
model poses a problem, since its interaction potential is not
a homogeneous function of coordinates. This means that one
cannot find a relation between the averages of kinetic and
potential energy, and instead we are left with a functional
equation which depends on the one-particle distribution
function. To proceed we observe that in a stationary state the
virial G = 〈p · q〉 does not depend on time, so that

d

dt
〈p · q〉 =

〈
d

dt
(p · q)

〉
= 0. (7)

Rewriting the above equation as

〈p2〉 = −〈q · q̈〉 (8)

and considering a self-averaging system, i.e., that the above
time averages are equivalent to averages over the particles,
while making use of Hamilton’s equations, it is easy to show
the previous equation is equivalent to

〈p2〉 = − 1

N

N∑
i=1

Fi · qi . (9)

Furthermore, in the case that interactions are long range and
in the thermodynamic limit, the mean-field limit is exact, and
thus the two-particle distribution function factorizes into a
(one-particle) density distribution (pair correlations vanish)
[2]. The virial theorem in this case reduces to

〈p2〉 = −
∫

dq′ dp′ f (q′,p′)
[
−∂V (q′)

∂q′ · q′
]

, (10)

where V (q′) is the mean-field potential, given by (2). The
〈·〉 denotes the time average, which is equivalent to the
ensemble average with a stationary measure. In the case of
the HMF model, however, one is still left with a functional
equation since the stationary distribution is not known. In
Ref. [17], the authors propose a generalized virial condition
for a water-bag initial distribution centered at θ = 0 (My = 0),
with the support [−θm,θm] × [−p1,p1] in phase-space. Using
Eq. (10), 〈p2〉 = − sin(θm) cos(θm)

θm
+ sin2(θm)

θ2
m

. For the water-bag

initial condition, 〈p θ〉(t = 0) = 0, which implies that 〈θ2〉
remains constant for short times, so that the water-bag domain
is not deformed and the relation M = sin(θm)

θm
continues to hold.

Replacing 〈p2〉 by the corresponding function of u and M , one
ends up with the generalized virial condition for the HMF:

(2u − 1)θm + cos(θm) sin(θm) = 0. (11)
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-0.5

 0
 0.5

 1
 1.5

 2

-π -π/2 0 π/2 π

p

θ

FIG. 1. (Color online) Phase-space representation of a multilevel
initial condition. Different colors correspond to different phase space
densities.

Equation (11) is only an approximation, since a water-bag
distribution is not a stationary solution of the Vlasov equation.
Nevertheless, the virial water-bag initial distribution should
be “sufficiently close” to the final qSS to suppress any strong
oscillations of the magnetization [17].

In this paper we will consider initial conditions uniform in
θ , and multilevel in p, given by

f0(θ,p)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η1, for 0 � |p| � p1,

η2, for p1 < |p| � p2,
...
ηL, for pL−1 < |p| � pL,

⎫⎪⎪⎬
⎪⎪⎭ for |θ | � θm,

0, otherwise,

(12)

where p1 < p2 < · · · < pL−1 < pL (see Fig. 1). For these ICs,
the initial magnetization is always the same function of the
envelope of the distribution, θm: M0 = sin(θm)

θm
, so the virial

condition will be the same as Eq. (11).

III. LYNDEN-BELL STATISTICS

Lynden-Bell suggested a statistical approach, based on a
coarse-grained entropy [28], to try to account for the mass
distribution in elliptical galaxies. Since the relaxation to qSS
of elliptical galaxies is collisionless and is characterized by
very strong oscillations of the mean-field potential, LB called
this process violent relaxation.

A fundamental insight of LB’s theory is that Vlasov flow
is incompressible. This can be seen by recognizing that the
volume in phase space occupied by a given phase space density
level,

vη =
∫

dq dp δ[f (q,p,t) − η], (13)

is a Casimir invariant [Eq. (3)] and is, therefore, preserved by
the dynamics. Notice that this implies that the phase space
density at later times cannot exceed the maximum of the
density at time t = 0.

Lynden-Bell argued that variations of the mean gravita-
tional field to which particles (stars) are subjected are so violent
that all phase space elements are equally likely to be found at
a given energy. This is equivalent to requiring ergodicity and

022130-3



RIBEIRO-TEIXEIRA, BENETTI, PAKTER, AND LEVIN PHYSICAL REVIEW E 89, 022130 (2014)

mixing. The relaxation of such systems should take place under
the following constraints:

(1) That the total number of elements of phase with a given
mass density (resp. magnetic moment, charge density, etc.)
is conserved (incompressibility of Vlasov flow, no sinks, no
sources).

(2) That total energy is conserved (isolated system).
(3) No overlap of two elements of phase is allowed by the

dynamics, since in this case there would be no conservation of
the number of phase elements as stated before (exclusion).

These three assumptions are a direct consequence of
the Vlasov equation to which the dynamics of the time-
dependent phase space distribution function f (q,p,t) is
subjected. However, although very reasonable, the assumption
of ergodicity does not have any a priori justification. This
hypothesis, however, is crucial to LB statistics, since it allows a
combinatorial counting of states, i.e., an “ensemble” approach
to the distribution function.

LB defines a coarse-grained entropy, which is a func-
tional of the coarse-grained one-particle density distribution
f̄LB(q,p) = ∑L

α=1 f̄α(q,p) and must be maximized with
respect to {f̄α}. The index α runs over the L phase space
levels, and f̄α(q,p) are the respective level distributions. The
most probable qSS should be the one which maximizes the
entropy subject to the constraints of conservation of the phase
space volumes of each level [Eq. (13)] and of the total energy∫ (

p2

2m
+ V (q)

2

)
f̄LB(q,p)dq dp = u. (14)

V (q) is the average mean-field potential at point q [Eq. (2) with
f (q,p,t) = f̄LB(q,p)]. Since Vlasov dynamics does not lead
to entropy production, entropy increase in the LB scheme is
the result of coarse graining. Solving the variational problem,
we obtain

f̄LB(q,p) =
L∑

α=1

ηα

exp[−βα(ε({q},{p}) − μα)]

1 + ∑
γ exp[−βγ (ε({q},{p}) − μγ )]

,

(15)

where the ηα are the respective phase space level densities, and
μα and βα = β ηα are the effective chemical potentials and the
inverse temperatures, which enforce the respective phase space
volumes and energy conservation. The “inverse temperature”
β gives a measure of how degenerate the system is. In the limit
of very low phase space density (high β), i.e., fα 	 ηα , the
LB distribution tends to a sum of Maxwellians.

The hypothesis of ergodicity “washes out” the memory of
the initial condition, except for the conservation of the re-
spective phase space volumes. Using the molecular dynamics
simulations, in the forthcoming sections, we will show that
conservation of the phase space volumes is not sufficient to
predict the particle distribution in the qSS.

IV. INTEGRABLE MODEL ANALOGUE

We now consider an approach that is diametrically opposite
from the ergodicity-based LB statistics [43,45]. When the
system attains a qSS the mean-field potential must be sta-
tionary, V (q,t) = V (q). Conversely, the mean-field potential
can be stationary only if the density distribution function,

ρ(q) ≡ ∫
dp f (q,p,t), is also stationary [see Eq. (2)]. In this

limit, particle movements uncouple, and V (q) simply factors
out as a constant (in the case of HMF, at least). Motivated by
this, the authors in Refs. [43,45] propose that the qSS of the
HMF model might be well described by the qSS attained by
an associated IM of uncoupled pendulums subject to a fixed
external field H , whose single-particle energy function is given
by

ε(θ,p) = p2

2
+ 1 − H cos(θ ). (16)

The value of the field H is then fixed self-consistently to be
H = 〈cos(θ )〉 = 1

N

∑
i cos(θi). It was observed, however, that

even though for some initial conditions this approximation
leads to qSS distributions which are in a good agreement with
the MD simulations, in general this is not the case. Indeed,
from our previous discussion, we expect that the distribution
function of uncoupled pendulums will provide a reasonable
approximation to the qSS distribution of the HMF only
if the oscillations of the mean-field potential are negligible
from the start, i.e., when the initial particle distribution satisfies
the virial condition. On the other hand, if the initial condition
is far from virial, the parametric resonances will lead to the
formation of a qSS with a characteristic core-halo structure
[13,17,48].

Determining the stationary distribution attained by the sys-
tem of uncoupled pendulums is straightforward. Let’s consider
an arbitrary initial phase space distribution of angles and
velocities. Evidently the dynamics of uncoupled pendulums
is such that the number of pendulums with energy [ε,ε + dε]
is a constant of motion. Since the force derived from Eq. (16) is
nonlinear in angle, the particles on the energy shell [ε,ε + dε]
with slightly distinct energies will have incommensurate
orbital frequencies. Therefore, after a transient period, the
resulting phase mixing will lead to a uniformity of the particle
distribution over the energy shell. Suppose that we start with
a distribution of angles and velocities f0(θ,p). The number of
particles with energy between [ε,ε + dε] is n(ε)dε, where

n(ε) =
∫∫

dθ dp f0(θ,p) δ[ε(θ,p) − ε]. (17)

The density of states with a given energy [ε,ε + dε] is

g(ε) =
∫∫

dθ dp δ[ε(θ,p) − ε]. (18)

At t = 0, however, not all of these states are occupied.
Nevertheless, as the dynamics evolves, the phase mixing will
result in a uniform occupation of all the states of a given
energy, keeping n(ε) constant. The coarse-grained distribution
function for the stationary state of a system of uncoupled
pendulums f̄ (ε) must then satisfy f̄ (ε)g(ε) = n(ε), from
which we conclude that

f̄ (ε) =
∫ ∫

dθ dp f0(θ,p) δ[ε(θ,p) − ε]∫ ∫
dθ dp δ[ε(θ,p) − ε]

. (19)

The density of states can be calculated explicitly to be [36]

g(ε) =
{

4 K(κ1/2)/
√

H, if κ � 1,

4 K(κ−1/2)/
√

Hκ, if κ > 1,
(20)
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where κ(ε; H ) = (ε − 1 + H )/2H , and K(x) is the complete
elliptic integral of the first kind (defined as in Ref. [49]).
Again it is important to stress that the formalism above applies
only to the IM of uncoupled pendulums. In particular we see
that the initial occupation of the energy shells is preserved
throughout the dynamics. The initially unpopulated energy
shells will remain unpopulated in the stationary distribution
derived above. This, in general, is not the case for the HMF
model away from the virial condition when the parametric
resonances lead to the occupation of the high-energy states
not present in the initial distribution. On the other hand, if
the virial condition is satisfied, M(t) will remain constant (in
the thermodynamic limit) and the parametric resonances will
be suppressed. In this case IM with H = M(0) = M0 should
provide an accurate description of the stationary distribution.

To calculate the coarse-grained distribution for the sta-
tionary state starting from an initial water-bag distribution
f0(θ,p) = 1

4θmp1
�(θm − |θ |) �(p1 − |p|), we must perform

the integration over the phase space in the numerator of
Eq. (19). Integrating first over momentum, we find

2η1

∫
dθ �(θm − |θ |)

∫ p1

0
dp δ

{
p2

2
− [ε − 1 + H cos(θ )]

}

= 2
√

2η1

∫ θm

0
dθ

�[ε − 1 + H cos(θ )]√
ε − 1 + H cos(θ )

×�

{
p2

1

2
− [ε − 1 + H cos(θ )]

}
, (21)

where η1 = 1
4θmp1

is the normalization constant of the density
distribution function f0. The theta functions in the integrand
above impose restrictions on the domain of integration over
θ . Performing the integration in θ , the numerator can then be
written as∫ ∫

dθ dp f0(θ,p) δ[ε(θ,p) − ε]

= 1

θmp1

1√
H κ

[
F

(
θ (1)

up

2
,κ−1/2

)
− F

(
θ

(1)
low

2
,κ−1/2

)]
,

(22)

where F (φ,x) is the incomplete elliptic integral of the first
kind, and the appropriate limits of integration θ

(1)
low and θ (1)

up are
defined below.

The L-level initial conditions defined by Eq. (12) may be
considered as a superposition of water bags with different
supports. Superposition of result (19) is possible since the
pendulums are noninteracting. For these ICs the contribution
to the numerator of Eq. (19) from each of the L water bags of
the multilevel IC gives

I (i)(ε; H ) ≡ 4
√

2√
H κ

[
F

(
θ (i)

up

2
,κ−1/2

)
− F

(
θ

(i)
low

2
,κ−1/2

)]
,

(23)

where the superscript (i) refers to a water bag with domain
[−θm,θm] × [−pi,pi]. The upper and lower limits of integra-
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p

θ θmin θmax

FIG. 2. (Color online) Schematic representation of the construc-
tion of the final distribution function for the uncoupled pendulums.
Superimposed is the support of the water-bag initial condition. In red
are the orbits (chunks of orbits) that contribute to the integral (19).

tion are determined by (see Fig. 2)

θ (i)
up = min{cos−1(1 − 2κ),θm}

θ
(i)
low =

{
0, for ε � p2

i /2 − H,

min
{

cos−1
( p2

i

2H
+ 1 − 2κ

)
,θm

}
, for ε > p2

i /2 − H.

(24)

Of course, I (i)(ε; H ) = 0 for energies ε � 1 − H or ε �
εmax = p2

i /2 + 1 − H cos(θm) [from Eq. (24)]. The single-
particle distribution function is then given by

f̄ (ε) = ηL I (L) + ∑L−1
i=1 (ηL−i − ηL+1−i) I (L−i)

g(ε)
. (25)

V. NUMERICAL RESULTS

To explore the validity of the theory constructed above we
have performed molecular dynamics simulations of the HMF
model with N = 106 particles. The system is allowed to relax
until a qSS is reached. We then compute the position and
momentum marginal distribution functions Pθ (θ ) and Pp(p),
as well as the energy distribution f̄ (ε) [36]. In Figs. 3–5 and
8–10 we compare the predictions of LB theory and of IM with
the results of MD simulations for water-bag initial distributions
with increasing number of levels L.
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FIG. 3. (Color online) Comparison of the marginal distributions
in (a) angles and (b) velocities with the results of MD simulations for
the qSS of the HMF. The LB distribution (blue dashed curves) and
the IM distribution (red solid curves) for a virial one-level water-bag
initial condition with u = 0.4, M0 = 0.742.
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FIG. 4. (Color online) Comparison of the marginal qSS distri-
butions in angle [(a) and (c)] and momentum [(b) and (d)] of the
MD (black squares), the corresponding LB stationary distribution
(blue dashed curves), and IM distribution (red solid curves), for
two sets of virial two-level water-bag initial conditions. (a) and (b)
u = 0.3, initial magnetization M0 = 0.822, θm = 1.06, p1 = 1.02,
η1 = 0.106; (c) and (d) u = 0.5, M0 = 0.637, θm = 1.58, p1 = 1.24,
η1 = 0.059. For both ICs p1 = 0.3p2, η2 = 0.5η1.

A. Marginal distributions

Figures 3–5 show the marginal distributions of angles (left
panels) and velocities (right panels), which are calculated from
the full single-particle density distribution function f (θ,p) as

Pθ (θ ) ≡
∫

dp f (θ,p); Pp(p) ≡
∫

dθ f (θ,p). (26)

Figure 3 is for a one-level water-bag initial condition; Fig. 4,
for a two-level IC; and Fig. 5, for a three-level IC. We note the
departure of both IM and LB from MD for increasing number
of density levels L.
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FIG. 5. (Color online) Comparison of the marginal qSS distri-
butions in angle [(a) and (c)] and momentum [(b) and (d)] of the
MD (black squares), the corresponding LB stationary distribution
(blue dashed curves), and IM distribution (red solid curves), for
two sets of virial three-level water-bag initial conditions. (a) and (b)
u = 0.3, initial magnetization M0 = 0.822, θm = 1.06, p1 = 1.12,
η1 = 0.079; (c) and (d) u = 0.5, M0 = 0.637, θm = 1.58, p1 = 1.35,
η1 = 0.044. For both ICs p1 = 0.3p2, η2 = 0.5η1, p3 = 0.2p1, η3 =
0.3η1.
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FIG. 6. (Color online) The rms deviations ξθ and ξp between the
LB (IM) marginal distributions in angle and momentum, respectively,
and the MD distributions, as a function of number of levels L.
Triangles correspond to IM-MD deviation, ξ IM , and circles to IM-MD
deviation, ξLB . Red symbols (triangles and circles) correspond to
u = 0.2; green symbols, to u = 0.3; blue symbols, to u = 0.4; and
pink symbols, to u = 0.5.

Nevertheless, IM accounts very accurately for the MD
data; see Figs. 3–5. The differences are noticeable only in
the tails of the distributions. Although for one-level initial
conditions LB theory provides an accurate description of the
marginal distributions, this agreement deteriorates rapidly for
multilevel initial conditions. The discrepancy between LB and
MD simulations is clearest when one considers the complete
distribution function f̄ (ε). In the next section we will see
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FIG. 7. (Color online) Comparison between the one-particle en-
ergies for a few selected particles and corresponding magnetization
as a function of time. Panels (a) and (c) correspond to u = 0.2,
L = 1; panels (b) and (d), to u = 0.2, L = 3; panels (e) and (g),
to u = 0.5, L = 1; panels (f) and (h), to u = 0.5, L = 3. Note the
presence of significant oscillations both in one-particle energy and in
magnetization, for multilevel distributions.
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FIG. 8. (Color online) Comparison between MD qSS energy dis-
tribution function (black squares), the corresponding LB distribution
(blue dashed curve), and IM stationary distribution (red solid curve),
for a one-level water-bag IC; (a) u = 0.2; (b) u = 0.5. Insets are the
same curves in log-linear scale. The same IC parameters as in Fig. 3.

that, although the simulations show the existence of a fully
degenerate core, LB theory predicts a nondegenerate core
characterized by a finite Fermi-Dirac temperature.

To quantify the extent of agreement between the MD
simulations and IM and LB theories we define the root-mean-
square (rms) deviation of f2(x) from a reference distribution
f1(x) as

ξx =
{∫

dx [f2(x) − f1(x)]2∫
dx f 2

1 (x)

}1/2

. (27)

In Fig. 6 we plot ξx for IM-MD (triangles) and for LB-MD
(circles) for marginal distributions in angle and momentum.
Although ξ do not exceed 10%, we see that for fixed L, the
deviations between LB-MD are always greater than deviations
between IM-MD. For given L and u, rms deviation between
LB-MD is roughly twice the corresponding deviation between
IM-MD. Therefore, the HMF qSS is closer to a completely
integrable system than to the ergodicity based LB theory.
Furthermore, since both ξ IM and ξLB (either for Pθ or Pp)
increase with increasing number of levels, results suggest
that for general ICs, HMF qSS will be neither ergodic nor
integrable.
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FIG. 9. (Color online) Comparison between MD qSS energy dis-
tribution function (black squares), the corresponding LB distribution
(blue dashed curve), and IM stationary distribution (red solid curve)
for a two-level IC; (a) u = 0.2; (b) u = 0.5. The same IC parameters
as in Fig. 4.
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FIG. 10. (Color online) Comparison between MD qSS energy
distribution function (black squares), the corresponding LB distri-
bution (blue dashed curve), and IM analog stationary distribution
(red solid curve) for a three-level IC; (a) u = 0.2; (b) u = 0.5. The
same IC parameters as in Fig. 5.

The departure from IM predictions, in particular, is a
consequence of the fact that, when increasing L, the virial
condition (11) does not restrict the stationarity of all the
density levels. This is clearly shown in Fig. 7, where we plot,
side-by-side, single-particle energies’ time evolution (for some
selected particles of the system) and the time evolution of the
system magnetization. There is a clear relationship between
the amplitude of the oscillations of the magnetization and both
the variation and variance of the single-particle orbit energies.
It demonstrates that for multilevel water-bag distributions
satisfying the generalized virial condition, both one-particle
energies and magnetization undergo significant oscillations.
These oscillations are expected to give rise to parametric
resonances which will lead to the halo formation.

B. Energy distributions

The integration over angles (momentums) required to
calculate the marginal distributions Pp (Pθ ) smoothes out these
functions. To explore better the one-particle distribution in the
qSS it is, therefore, important to study the full distribution
function f̄ (ε):

f̄ (ε) =
∫

dθ dp f (θ,p) δ [ε(θ,p) − ε]∫
dθ dp δ [ε(θ,p) − ε]

, (28)

where ε(θ,p) is the single-particle energy function (5) and the
denominator is the density of states g(ε).

Figure 8 shows the comparison between MD, IM, and LB
energy distributions for a one-level water-bag IC. Figure 9
shows the same for a two-level IC, and Fig. 10 for a three-level
IC. Here again the discrepancy between IM predictions and the
MD data is larger in the tails of the distributions. Even though
the system starts on the virial curve (11), the water-bag IC is not
a fixed point of the Vlasov dynamics. Therefore, for multilevel
distributions the magnetization (mean-field potential) may
undergo significant oscillations. In this case, some particles
may enter in resonance with the mean-field oscillations gaining
energy to form a tenuous halo.

For one-level water-bag initial conditions, we see that the
MD-obtained energy distribution is in very good agreement
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FIG. 11. (Color online) Snapshots of the phase space at (a) t = 0
(three-level IC); (b) t = 1.7 × 104 time steps after evolution under
Eq. (4) (HMF model); (c) t = 103 time steps after evolution under
Eq. (16) (uncoupled pendulums). In both cases (b) and (c) systems
have attained stationarity. The number of points is the same in all
panels.

with the predictions of IM. On the other hand LB theory is
incompatible with MD data (see Fig. 8), while MD shows a
plateau at the maximum phase-space density, corresponding
to a fully degenerate Fermi core [48], LB predicts a smoothly
decaying function, corresponding to a Fermi-Dirac distribution
with a finite temperature.

For a two-level IC (Fig. 9), we see that the distribution
function predicted by the IM deviates from the results of MD
simulations. The qualitative structure, however, is maintained.
In particular, a small (for the specific set of chosen parameters)
plateau persists for low energies, as well as a two-step decay
of f̄ (ε), which reflects the two-level IC. While MD shows
that the occupation of the lowest energy levels is the same
as in the initial distribution, LB predicts a lower maximum
density for the qSS. The perfect mixing required by LB allows
for initially more energetic levels to decay and penetrate the
region originally occupied by the less energetic levels, contrary
to what is seen in numerical simulations [36].

For the three-level IC (Fig. 10), we see that the energy
distribution starts to deviate significantly from predictions of
IM. This is the result of mixing between the different density
levels, which within IM is possible only among the initial levels
lying on the same trajectory (orbit) (see Fig. 11). Nevertheless,
we see that for lower energies, IM and MD curves still coincide.
One might think that increased mixing between the different
phase space density levels will lead to an improved agreement
between LB theory and MD simulations. This, however, is
not the case, and, in particular, we see that for three-level
distributions LB theory provides an even poorer fit of MD data
than for two levels.

One may notice that for higher average energies u [insets
in the (b) panels in Figs. 8–10] the tails of the distributions,
which lie close to the separatrix energy εsx = 1 + M0, are
closer to LB distribution. For these values of u, the separatrix
is occupied by the initial distribution f0(θ,p). Since at the sep-

0

 0.05

 0.1

 0.15

 0.2

 0.25

1 2 3

ξ ε

L

FIG. 12. (Color online) The rms deviations ξε between LB (IM)
energy distributions and the corresponding MD distribution, as a
function of number of levels L. Triangles correspond to IM-MD
rms deviation, ξ IM

ε , and circles to IM-MD rms deviation, ξLB
ε . Red

symbols (triangles and circles) correspond to u = 0.2; green symbols,
to u = 0.3; blue symbols, to u = 0.4; and pink symbols, to u = 0.5.

aratrix the resonance criterion is met by mean-field oscillations
of any frequency (and infinitesimal amplitude) [50], particles
initially at [εsx − δε,εsx + δε] will be excited, and the tails
of f̄ (ε) will not coincide with the distribution given by the
IM approximation. Even though the LB distribution allows
for particle excitation, we argue that similarity with the tails of
the numerical data is incidental, since the particles forming the
tails of the MD distributions represent a fraction of �0.1% of
the total system. Moreover, we argue that the similar behavior
observed at the tails of the marginal distributions (Figs. 3–5)
should be reminiscent of the same phenomenon, since the
marginals Pθ (θ ) and Pp(p) are derived from the full energy
distribution f̄ (ε) through integration over p or θ , respectively.

In Fig. 12 we compare the rms deviation ξ IM
ε (triangles)

and ξLB
ε (circles) as a function of the number of levels in the

IC, for different values of the average energy per particle u.
Once again we see that for a given L, the rms deviation ξ IM

ε

is always below ξLB
ε . Furthermore, sensitivity to u is much

milder than sensitivity to L. Specially for the more complex
ICs (two and three levels), the relative departure of LB and IM
predictions for the energy distributions is significantly larger
than it is for the marginal distributions, being close to 25% for
L = 3 (ξLB

ε ).

VI. CONCLUSIONS

We have computed, using extensive MD simulations, the
qSS distribution functions of the HMF model starting from the
multilevel water-bag initial conditions. The distributions were
compared with the predictions of the Lynden-Bell theory and
a theory based on the coarse-grained dynamics of uncoupled
pendulums, the integrable model (IM) [28,44]. To suppress the
halo formation all the initial water-bags were chosen to satisfy
the generalized virial condition [17].

It is important to stress that LB and IM theories are based
on diametrically opposite assumptions. While LB requires
ergodicity and good mixing, IM is completely nonergodic.
We have verified that for all sets of parameters considered,
the HMF model was closer to the integrable limit than to
the LB-postulated ergodicity. We have also verified that as
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the initial conditions become more complex, i.e., as the
number of levels increases, the distribution functions deviate
stronger from the predictions of both LB and IM theories.
Nevertheless for all the cases investigated, IM remained more
accurate than LB theory. The challenge for the future is
to understand the structure of the qSS for the multilevel
distribution functions, which do not satisfy the virial condition.
For one-level water bags the core-halo theory provides a very
accurate description of the structure of such qSS [13]. For mul-
tilevel systems, however, the complicated mixing between the
different phase-space density levels results in a very complex

evolution of the core, which so far has escaped any simple
characterization.
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[23] J. Barré, D. Mukamel, and S. Ruffo, Phys. Rev. Lett. 87, 030601

(2001).

[24] O. Cohen and D. Mukamel, J. Stat. Mech. Theor. Exp. (2012)
P12017.

[25] W. Thirring, Z. Phys. 235, 339 (1970).
[26] D. Lynden-Bell, Physica A 263, 293 (1999).
[27] W. Braun and K. Hepp, Commun. Math. Phys. 56, 101

(1977).
[28] D. Lynden-Bell, Mon. Not. R. Astr. Soc. 136, 101 (1967).
[29] P. Chavanis and F. Bouchet, Astron. Astrophys. 430, 771 (2005).
[30] T. M. Rocha Filho, A. Figueiredo, and M. A. Amato, Phys. Rev.

Lett. 95, 190601 (2005).
[31] Y. Y. Yamaguchi, Phys. Rev. E 78, 041114 (2008).
[32] S. Goldstein, S. Cuperman, and M. Lecar, Mon. Not. R. Astr.

Soc. 143, 209 (1969).
[33] S. Cuperman, S. Goldstein, and M. Lecar, Mon. Not. R. Astr.

Soc. 146, 161 (1969).
[34] M. Lecar and L. Cohen, Astrophys. Space Sci. 13, 397

(1971).
[35] M. Joyce and T. Worrakitpoonpon, Phys. Rev. E 84, 011139

(2011).
[36] R. Pakter and Y. Levin, Phys. Rev. Lett. 110, 140601 (2013).
[37] R. Pakter and Y. Levin, J. Stat. Phys. 150, 531 (2013).
[38] A. Campa and P.-H. Chavanis, Eur. Phys. J. B 86, 170 (2013).
[39] Y. Levin, R. Pakter, and F. B. Rizzato, Phys. Rev. E 78, 021130

(2008).
[40] C.-S. Wu, Phys. Rev. 127, 1419 (1962).
[41] D. Sagan, Am. J. Phys. 62, 450 (1994).
[42] L. D. Landau, J. Phys. (USSR) 10, 25 (1946).
[43] P. de Buyl, D. Mukamel, and S. Ruffo, Philos. Trans. R. Soc.

London, Ser. A 369, 439 (2011).
[44] P. de Buyl, D. Mukamel, and S. Ruffo, Phys. Rev. E 84, 061151

(2011).
[45] X. Leoncini, T. L. Van Den Berg, and D. Fanelli, Europhys. Lett.

86, 20002 (2009).
[46] T. Konishi and K. Kaneko, J. Phys. A 25, 6283 (1992).
[47] M. Antoni and S. Ruffo, Phys. Rev. E 52, 2361 (1995).
[48] R. Pakter and Y. Levin, Phys. Rev. Lett. 106, 200603 (2011).
[49] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series

and, Products (Academic Press, New York, 2007).
[50] A. Lichtenberg and A. Lieberman, Regular and Chaotic Dy-

namics, Applied Mathematical Sciences (Springer, New York,
2010).

022130-9



CHAOS AND RELAXATION TO EQUILIBRIUM IN SYSTEMS WITH LONG-RANGE

INTERACTIONS 53

4.3 Chaos and relaxation to equilibrium in systems with

long-range interactions

The objective of this work was to see the e�ect that a short-range coupling could have on

the dynamics of the HMF model. Depending on the intensity of the coupling, the relaxation

to equilibrium could be accelerated. With this in mind, we proposed a system composed of

two coupled HMF models,

H({θi},{φi},{pθi},{pφi}) = HHMF({θi},{pθi}) +HHMF({φi},{pφi}) + ε
N∑
i=1

cos(θi− φi) (4.5)

where HHMF is regular HMF model Hamiltonian given by equation (4.1), and the order

parameters are given by

Mθ =
1

N

N∑
i=1

cos θi,

Mφ =
1

N

N∑
i=1

cosφi.

(4.6)

The last term on the RHS of equation (4.5) gives the short-range coupling, with the inten-

sity controlled by the parameter ε. Each pair of coordinates (θi,φi) are coupled. The θ, φ

subsystems are internally mean-�eld, but coupled through the short-range coupling between

each pair of coordinates of same index i. Figure 4.1 illustrates the model for N = 5, showing

a ladder-type structure. Hence, we call this system the HMF-Ladder model.

θ1 θ2 θ3 θ4 θ5

ψ1 ψ2 ψ3 ψ4 ψ5

Figure 4.1: Illustration of the interactions in the HMF-ladder model. Circles on the top (bottom)
line represent particles of the θ (ψ) subsystem. The dotted lines between pairs of particles with same
index i represent the short-range coupling ε cos(θi−φi), while the solid lines represent the mean-�eld
coupling between all particles in each subsystem. In this illustration, N = 5.

The coupling between two degrees of freedom also introduces the possibility of chaotic

orbits in the mean-�eld dynamics. In the QSS, oscillations of the magnetization should be

very weak, and the dynamics can be approximated as that of independent rotors evolving

under a stationary �eld M . For the normal HMF model, this means that the dynamics is

integrable (the degrees of freedom in the Hamiltonian uncouple) [74]. However, in the HMF

ladder model, even with stationary magnetizations Mθ and Mφ, the orbits can be chaotic



54 HAMILTONIAN MEAN FIELD MODEL

due to the coupling of the θi,φi variables. This allows us to also explore the role of chaos in

the collisional relaxation process. To quantify the presence of chaotic orbits, we calculated

the Lyapunov exponents λ of test particles evolving under stationary magnetizations.

To see the e�ect of the short-range coupling on the relaxation time, we simulated the

molecular dynamics for di�erent values of ε and controlled their approach to equilibrium

with the kurtosis κ, given by

κ =
〈p4〉
〈p2〉2 . (4.7)

The value of the kurtosis for a Maxwell-Boltzmann distribution in 2 dimensions is κ = 2.

By monitoring the value of κ, we can see how fast the system is relaxing to the equilibrium

distribution. For each ε, we performed the MD simulations for di�erent values of N and saw

that the curves in κ scaled in time as t ∼ N δ, where δ depends on ε.

Our expectation was that the value of δ should decrease as a function of ε: the short-

range coupling should reduce the lifetime of the QSS. We also expected that the average

Lyapunov exponent 〈λ〉 of the test particles evolving under the analogous QSS stationary

magnetizations should increase as a function of ε: the short-range coupling should make orbits

more chaotic. On the other hand, if the coupling is very strong, ε ∼ 1, both subsystems can

synchronize and behave as one single HMF system. In this case, we expect that δ should

tend to its value at ε = 0.

The increase in 〈λ〉 as a function of ε was validated, as well as the decrease of δ for

weak coupling ε � 1. Thus, we found a correlation between increasing 〈λ〉 and decreasing

δ, but only for weak coupling. In fact, δ begins to grow again at a surprisingly low value of

〈λ〉, indicating that the relation between chaotic orbits and the collisional relaxation time is

unclear.

This work was published in the article �Chaos and relaxation to equilibrium in systems

with long-range interactions� in the journal Physical Review E, volume 92, page 052123

(2015).
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In the thermodynamic limit, systems with long-range interactions do not relax to equilibrium, but become
trapped in nonequilibrium stationary states. For a finite number of particles a nonequilibrium state has a finite
lifetime, so that eventually a system will relax to thermodynamic equilibrium. The time that a system remains
trapped in a quasistationary state (QSS) scales with the number of particles as Nδ , with δ > 0, and diverges in
the thermodynamic limit. In this paper we will explore the role of chaotic dynamics on the time that a system
remains trapped in a QSS. We discover that chaos, measured by the Lyapunov exponents, favors faster relaxation
to equilibrium. Surprisingly, weak chaos favors faster relaxation than strong chaos.

DOI: 10.1103/PhysRevE.92.052123 PACS number(s): 05.20.−y, 05.45.−a, 05.70.Ln

I. INTRODUCTION

Systems in which particles interact through long-range
(LR) forces remain an outstanding challenge to statistical
physics. Such systems are characterized by an interparticle
potential that decays with distance as 1/rα , where α < d and
d is the dimensionality of the embedding space [1–3]. Into
this category fall galaxies and globular clusters [4,5], two-
dimensional fluid models [6], confined plasmas [7], quantum
spin models [8], dipolar systems [9], cold atoms models
[10], and colloidal particles at interfaces [11]. LR interacting
systems are found to have a complex relaxation process, with
distinct time scales. Unlike systems in which particles interact
by short-range potentials, in the thermodynamic limit LR
systems do not relax to equilibrium but become trapped in
out-of-equilibrium quasistationary states (QSS), the lifetime
of which diverges with the number of particles. Once a system
is trapped in a QSS, two outcomes are possible: if the system
has a finite number of particles N , residual correlations will
eventually drive it to thermodynamic equilibrium (if such
equilibrium exists, which is not the case for 3D gravitational
systems) after a time t×, which scales with N as t× ∼ Nδ ,
where δ is a system-specific exponent [12–14]. On the other
hand, in the thermodynamic limit, N → ∞, the system will
remain trapped in a stationary state forever. In this collisionless
limit, the relaxation to stationarity is a result of Landau
damping [15–18], which transfers the energy of collective
oscillations to the individual particles. Once the oscillations
of the mean-field potential die out, the particles will move
in a static mean-field potential. If a system has sufficient
symmetry, the motion of particles in a static potential will
be integrable, and the ergodicity will be irrevocably broken.
This is often the case for gravitational systems whose initial
particle distribution has a spherical symmetry and satisfies the
generalized virial condition. On the other hand, if the initial
distribution is spherically symmetric, but far from virial, strong
density oscillations during the process of violent relaxation can
lead to symmetry breaking [19–21]. This means that even if
the initial distribution is spherically symmetric, the particle
distribution and the static mean-field potential of the QSS will
lack this symmetry. In general, equations of motion of a particle
in a nonspherically symmetric potential are nonintegrable and
chaotic orbits may be present. A natural question that arises
is: will presence of chaos diminish the lifetime of a QSS,
i.e., speed up the relaxation to thermodynamic equilibrium

of a gravitational system [22]? That is, will a gravitational
system in which spherical symmetry is spontaneously broken
relax to thermodynamic equilibrium faster than a system in
which this symmetry remains preserved, as suggested by
Refs. [23] and [24]? Unfortunately, slow dynamics makes
it very difficult to address this question in the context of
self-gravitating systems. We are, therefore, forced to study
simpler models that exhibit the same phenomenology as self-
gravitating systems. However, even for simplified models it is
very difficult to arrive at any analytical results. One possibility
is to explore the Lenard-Balescu equation from plasma physics
[25]. However, in order to be minimally tractable, this equation
requires integrable one-particle dynamics [26], ruling out the
possibility of studying the effects of chaos due to broken
symmetry. In this paper we will, therefore, rely on molecular
dynamics simulations to explore the effect of chaos on
collisional relaxation of QSS to thermodynamic equilibrium.

II. HAMILTONIAN MEAN-FIELD MODEL

A paradigmatic model of a system with LR interactions is
the Hamiltonian mean-field (HMF) model of particles moving
on a circle. The Hamiltonian for this system is

H =
N∑

i=1

p2
i

2
+ 1

2N

N∑
i,j=1

[1 − cos(θi − θj )], (1)

where pi and θi are the conjugate momenta and positions.
If the initial particle distribution is symmetric, i.e., for each
particle exists a particle in a symmetric position in phase
space, the order parameter of the system—the magnetization
per particle M—has only one nonzero vector component and
can be written as

M = 〈cos θ〉, (2)

where the brackets denote average over the particle
distribution. The average energy per particle, ε = H/N , can
then be expressed as

ε = 〈p2〉
2

+ 1 − M(t)2

2
, (3)

and the one-particle energy, ui = u(θi,pi), as

ui = p2
i

2
+ 1 − M(t) cos(θi), (4)

1539-3755/2015/92(5)/052123(7) 052123-1 ©2015 American Physical Society
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corresponding to the energy of a single simple pendulum
in a time-dependent potential. Introduced by Konishi and
Kaneko as a symplectic map [27], modified to a continuous
time system by Inagaki and Konishi [28], and, subsequently,
presented by Antoni and Ruffo as a dynamical mean-field
version of the XY spin model [29], the HMF model has been
extensively studied in the literature. Depending on the overall
energy of the system, the HMF has two phases: a high-energy
paramagnetic (uniform) phase and a low-energy ferromagnetic
(clustered) phase. The HMF model exhibits properties such
as long-lived QSS, out-of-equilibrium phase transitions, and
slow relaxation to thermodynamic equilibrium [1,2]. Like
other LR interacting systems, the HMF model first reaches
an out-of-equilibrium, nonmixed [30], QSS through a process
of violent relaxation stabilized by Landau damping [31,32]. In
the thermodynamic limit, N → ∞, and in the ferromagnetic
(clustered) phase, after the initial mean-field oscillations die
out, the dynamics of spins (particles) becomes equivalent
to noninteracting pendulums and chaos is absent. Integrable
dynamics in the QSS prevents us from using this model to
explore the role of chaos in relaxation to equilibrium. To
address this question we, therefore, introduce a new model—
the HMF-ladder—composed of two coupled HMFs interacting
through a short-range sinusoidal potential. Since this model
has two degrees of freedom, we expect that the spin dynamics
of its QSS will be nonintegrable, allowing us to explore the
role of chaos in relaxation to thermodynamic equilibrium.

III. HMF-LADDER MODEL

The dynamics of the conjugate momenta pi = {pθi
,pφi

} and
positions qi = {θi,φi} of the HMF-ladder model is governed
by the Hamiltonian

H = Hθ + Hφ + ε

N∑
i=1

cos (θi − φi), (5)

where

Hθ =
N∑

i=1

p2
θi

2
+ N

2

(
1 − M2

θ

)
, (6)

Hφ =
N∑

i=1

p2
φi

2
+ N

2

(
1 − M2

φ

)
, (7)

and

Mα = 〈cos α〉, α = {θ,φ}. (8)

The terms given by Eqs. (6) and (7) correspond to the usual
HMF model, Eq. (1). The mean energy per “particles,” E , is
given by

E = εθ + εφ + ε〈cos(θ − φ)〉, (9)

where

εα =
〈
p2

α

〉
2

+ 1 − M2
α

2
, α = {θ,φ}. (10)

Unlike a simple HMF model in which particles have only
one degree of freedom θi , positions of the “particles” of the
HMF-ladder are described by a 2D vector qi = {θi, φi}. The
dynamics of the HMF-ladder in general, therefore, will not be

integrable even in a stationary state. The Hamilton equations
of motion of the HMF-ladder are

θ̈i = −Mθ sin(θi) + ε sin(θi − φi), (11a)

φ̈i = −Mφ sin(φi) − ε sin(θi − φi), (11b)

where Mθ and Mφ are given by Eq. (8) where time is measured
in units of τD = 1. In this case, the one-particle energy,
Ui = Ui(θi,φi,pθi

,pφi
), can be written as

Ui = p2
θi

2
+ p2

φi

2
− Mθ (t) cos(θi)

−Mφ(t) cos(φi) + ε cos(θi − φi) + 2, (12)

corresponding to the energy of two coupled pendulums in a
time-dependent potential.

IV. GENERALIZED VIRIAL CONDITION

In general, the dynamics of the HMF-ladder prior to its
relaxation to QSS is very complicated, driven by various
resonances arising from the particle-wave interactions. This
makes the study of arbitrary initial conditions very difficult.
There is, however, a class of initial conditions—called virial
initial conditions [2]—for which the relaxation to QSS is
adiabatic. Such initial distributions are particularly useful for
exploring the relaxation to equilibrium, since in these cases
the initial and QSS magnetizations will remain approximately
the same. In this paper we will, therefore, explore the role of
chaotic dynamics on the relaxation of virial initial conditions
to thermodynamic equilibrium.

The virial theorem requires that in a stationary state

〈p2〉 = −
∫

dq dpf (q,p)

[
− ∂V (q)

∂q
· q

]
, (13)

where V (q) is the mean-field potential [2]. We expect that if
the initial distribution satisfies the generalized virial condition
(GVC), the macroscopic oscillations of magnetizations will be
suppressed. Note that the fact that the distribution satisfies the
generalized virial condition does not mean that it is already
stationary. To be stationary it must be a time-independent
solution of the collisionless Boltzmann (Vlasov) equation.
Nevertheless, if the initial distribution satisfies the GVC,
relaxation to QSS should be gentler, and strong oscillations of
magnetizations should be suppressed. Furthermore, we expect
that for such distributions the initial and final magnetizations
will be almost the same.

The virial theorem for the HMF-ladder model is given by
Eq. (13) with ∂V (θ,φ)/∂θ = −θ̈ , ∂V (θ,φ)/∂φ = −φ̈, and
〈p2〉 = 〈p2

θ 〉 + 〈p2
φ〉. That is,

〈
p2

θ

〉 + 〈
p2

φ

〉 = −
∫

dθ dφ dpθ dpφ

× (θ θ̈ + φφ̈)f (θ,φ,pθ ,pφ), (14)

with θ̈ and φ̈ given by Eqs. (11). For weak coupling ε �
|Mθ,φ|, we use an ansatz that the virial theorem can be applied
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independently to θ and φ subsystems, so that

〈
p2

θ

〉 =
∫

dθ dφ dpθ dpφ[Mθθ sin θ

− εθ sin(θ − φ)]f (θ,φ,pθ ,pφ), (15)

〈
p2

φ

〉 =
∫

dθ dφ dpφ dpθ [Mφφ sin φ

+ εφ sin(θ − φ)]f (θ,φ,pθ ,pφ). (16)

Since the coupling ε is antiferromagnetic, the QSS magneti-
zations should obey Mθ = −Mφ . We, therefore, consider an
initial distribution f0(θ,φ,pθ ,pφ) composed of two antisym-
metric water bags, that is,

f0(θ,φ,pθ ,pφ) = f θ
0 (θ,pθ )f φ

0 (φ,pφ), (17)

with

f θ
0 (θ,pθ ) = ηθ�(θm − |θ |)�(pm − |pθ |), (18a)

f
φ

0 (φ,pφ) = ηφ�(φm − |φ − π |)�(pm − |pφ|). (18b)

The water-bag distributions in θ and φ are identical in momen-
tum and have the same kinetic energy. Normalization requires
that ηθ = 1/4θmpm and ηφ = 1/4φmpm. The distributions are
antisymmetric: f

φ

0 is centered around π , while f θ
0 is centered

on zero, with θm = φm so Mθ = −Mφ . If the GVC is satisfied,
the QSS magnetizations Mθ and Mφ should remain close to
their initial values,

Mθ = sin θm

θm

, (19a)

Mφ = − sin φm

φm

. (19b)

Carrying out the integration in Eqs. (15) and (16) using the
WB distribution Eqs. (18), we find

〈
p2

θ

〉 = M2
θ − Mθ cos(θm) + εMφ cos(θm) − εMφMθ, (20a)〈

p2
φ

〉 = M2
φ + Mφ cos(φm) − εMθ cos(φm) − εMφMθ, (20b)

where we have used Eqs. (19).
The QSS magnetizations of systems whose initial distribu-

tions satisfy the GVC should be approximately the same as
their initial values. We also suppose that, for a weak coupling
ε � |Mθ,φ|, the subsystems should remain roughly indepen-
dent. Thus, we may approximate ε〈cos(θ − φ)〉 ≈ εMθMφ

(its initial value). Under these constraints, by conservation
of energy 〈p2〉 = 〈p2

θ 〉 + 〈p2
φ〉 should also be preserved, and

〈p2
θ 〉 = 〈p2

φ〉 from symmetry. Therefore, we may use Eq. (9)
to write

〈
p2

θ,φ

〉 = E − 1 + M2
θ + M2

φ

2
− εMθMφ. (21)

Inserting the last expression in Eq. (20), and using Mφ = −Mθ ,
φm = θm, we obtain the GVC for the HMF-ladder, which can
be written in terms of θ ,

E − 1 + Mθ cos θm(1 + ε) = 0, (22)

or of φ,

E − 1 − Mφ cos φm(1 + ε) = 0. (23)

Both expressions are equivalent. Equations (22) and (23)
can also be written in terms of each subsystem’s mean
“energy” (without the interaction term) εθ or εφ , given by
Eq. (10). For the GVC described above, the two should be
approximately equal, so we may define ε = εθ = εφ . Then,
E = 2ε + εMθMφ = 2ε − εM2

α , α = {θ,φ}, and the GVC
reduces to

2ε − εM2
θ − 1 + Mθ cos θm(1 + ε) = 0, (24a)

2ε − εM2
φ − 1 − Mφ cos φm(1 + ε) = 0. (24b)

For ε = 0, Eqs. (24) are the same as the GVC found for the
HMF model [33,34].

In Fig. 1 we show the evolution of magnetizations for two
initial WB distributions, calculated using molecular dynamics
simulations, one of which satisfies GVC and the other one does
not. As expected the oscillations of magnetization of a system
that does not satisfy GVC are much more violent and the
final QSS magnetization differs significantly from the initial
value. On the other hand, for the WB distribution that satisfies
GVC, the initial and final magnetizations are approximately
the same.

 0.2

 0.4

 0.6

 0.8

Mθ

 0.2

 0.4

 0.6

 0.8

0 50 100 150

Mθ

t /τD

FIG. 1. Results of molecular dynamics simulations showing the
short-time oscillations of the magnetization Mθ for two initial WB
distributions. The top curve (solid line) is for the distribution that
does not satisfy the GVC. The bottom curve (solid line) is for the
initial distribution that satisfies the GVC. The horizontal dashed lines
show the value of the initial magnetization for each case. Notice
that for the distribution that satisfies the GVC, strong oscillations are
suppressed and the final magnetization is close to the initial one. In
both cases, ε = 0.1 and εθ = εφ = 0.6, and the corresponding virial
magnetization is ∼0.5. Due to symmetry, we show only Mθ and not
Mφ (Mφ ≈ −Mθ ).
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V. PARTICLE DYNAMICS

To explore the particle dynamics in a QSS we will consider
Poincaré sections of test particles moving in a fixed mean-field
potential determined by the generalized magnetizations. We
are interested to study how the chaotic dynamics influences
the relaxation of a QSS to thermodynamic equilibrium.

Lyapunov exponents

The central property of chaos is sensitivity to initial
conditions (SIC). For a dynamical system, SIC implies that
all “nearby” initial conditions result in orbits that separate
exponentially fast from the original orbit. Suppose a one-
dimensional dynamical system whose equation of motion is

ẋ = F (x). (25)

Consider a given orbit, labeled a, and a second, nearby orbit,
labeled b. For both orbits, we can write

ẋa(t) = F (xa),
(26)

ẋb(t) = F (xb).

The distance between these orbits as a function of time is
d(t) = xa(t) − xb(t), which follows the time evolution

ḋ(t) = ẋa(t) − ẋb(t) = F (xa) − F (xb). (27)

Since the second orbit begins very close to the first, we can
expand F (xb) about the nearby position xa , keeping only the
first order term:

F (xb) ≈ F (xa) + ∂F
∂x

∣∣∣∣
xa

(xb − xa), (28)

= F (xa) − ∂F

∂x

∣∣∣∣
xa

d(t). (29)

Therefore, we can write Eq. (27) as

ḋ(t) = ∂F

∂x

∣∣∣∣
xa

d(t). (30)

The largest Lyapunov exponent (LLE) λ1 is a measure of this
rate of separation: λ1 = limt→∞ 1

t
ln d(t)

d0
, where d0 = d(0) is

the initial separation. If λ1 > 0, the two nearby orbits will
separate rapidly, and we have SIC and chaos [35,36]. Compu-
tationally, we cannot wait an infinitely long integration time,
so we calculate an instantaneous Lyapunov exponent (LE) and
wait long enough for this exponent to settle approximately to
its asymptotic value. A strictly positive maximum Lyapunov
exponent is synonymous to exponential instability [37]. A
simple method of calculating the λ1 based on its instantaneous
value are provided by Benettin et al. [38]. In the case of
the HMF-ladder, there are 4N Lyapunov exponents. But, for
Hamiltonian flows, the Lyapunov exponent distribution (LED)
has a symmetry λi = −λ4N−i+1 and, since phase-space volume
must be preserved,

∑4N
i=1 λi = 0. In addition in a QSS we have

a conservation of particle energy, which, by symmetry, gives
two zeros to the LED for each particle. Therefore, it is sufficient
to calculate only the N largest LE, since the other exponents
will be either zero or negative.

 0.1
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 0  100  200  300  400  500
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t /τD

N=10000
N=20000
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FIG. 2. (Color online) Evolution of the largest Lyapunov expo-
nent (LLE), λ1, to its stationary value, for the HMF model. The
convergence to the same value, λ1 	 0.45 τ−1

D , was found for different
numbers of particles. This result is in agreement with the previous
studies where the same behavior was observed and attributed to the
instability of particles near a separatrix [40].

VI. NUMERICAL RESULTS

We have integrated the equations of motion using the
fourth-order symplectic Position-Extended-Forest-Ruth-Like
(PEFRL) algorithm [39] with a time step dt = 0.1 [38].

A. Molecular dynamics simulation

For molecular dynamics (MD) simulations of the
HMF-ladder, we adopted the antisymmetric WB distribution,
Eq. (18), with energy εθ = εφ = 0.6 that satisfies the GVC,
Eq. (24). In Fig. 2 we first show the convergence of the LLE
for the usual HMF model with the number of particles N ,
ranging from N = 105 to 8 × 105. We see that the final value
is approximately the same for all N , λ1 	 0.45 τ−1

D . This is a
surprising result, since we expect that the particle dynamics
of HMF in a QSS should be completely integrable, with LLE
equal to zero. To understand better the positive value of the
LLE of the HMF, we have performed a test particle dynamics
simulation in which each particle moves in a fixed, time
independent, mean-field potential determined by the initial
particle distribution. We then calculated the LLE of each test
particle. As expected, for all the particles, the LLE is zero,
except for the particle near the separatrix, for which λ1 	
0.28 τ−1

D . This result suggests that the nonvanishing LLE value
found for the HMF model may be due to unstable behavior of
particles near the separatrix, as was also suggested in Ref. [40].
Therefore, the LLE does not provide us with an accurate
measure of the degree of chaos present in a many-body
system, since its value is dominated by one unstable particle
near a separatrix. Unfortunately, it is practically impossible
to calculate the exact LED for N = 105 particles. We expect,
however, that for initial conditions that satisfy GVC this
spectrum should be similar to the spectrum of noninteracting
test-particles moving in a fixed mean-field potential. The LED
of test particles can be easily obtained by simply calculating
the LLE of each test-particle of the initial distribution.

B. Test particle model simulation

To calculate the LED, we numerically integrated Eqs. (11)
for the initial particle distribution of WB form satisfying
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FIG. 3. (Color online) Lyapunov exponent distribution (top) and Poincaré sections (bottom) of the test-particle model for ε = 0.0 (left
column), ε = 0.5 (middle column), and ε = 1.0 (right column). The Poincaré sections corresponding to ε = 0.0, ε = 0.5, and ε = 1.0 are of
50 test particles with energy 2.5, 2.8, and 3.2, respectively, taken when pφ = 0. We see a correlation between Poincaré sections with nonchaotic
regular orbits and LED dominated by low exponents.

the GVC. The test-particles move in a time-independent
mean-field potential determined by the initial magnetizations,
Mθ and Mφ . The largest LE for each particle was obtained
using the method proposed by Benettin et al. In the upper
row of Fig. 3, we present a histogram of the LED obtained
using test particle dynamics with N = 105 and different values
of the coupling parameter ε. In the lower row, we show the
characteristic Poincaré sections for the most chaotic particles
near the separatrix. We see that there is a strong correlation
between the LED and the Poincaré plots.
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∋
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FIG. 4. Average value of the LED, 〈λ〉, vs. the coupling parameter
ε. As expected, stronger coupling is related with presence of more
chaos in the test-particle dynamics.

In Fig. 4 we plot the average value of the LED, as a function
of the coupling parameter ε. For larger values of ε, we see that
the orbits become more chaotic.

C. Relaxation exponent

To explore the relaxation to equilibrium, we study the
characteristic time scale on which a system evolves from
a QSS to thermodynamic equilibrium in MD simulations.
As discussed previously, the crossover time scales with the
number of particles as t× ∼ Nδ . We expect that the value

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

10-3 10-2 10-1 100 101 102 103

κ

t / 104τD

N=10000
N=20000
N=40000
N=80000

10-3 10-2 10-1 100 101 102 103

t / N1.00τD

N=10000
N=20000
N=40000
N=80000

FIG. 5. (Color online) Evolution of the kurtosis for the HMF
model (ε = 0.0) with different numbers of particles, with time
rescaled by 104τD (left) and Nδ (right), δ = 1.0. The initial particle
distribution satisfied the GVC, with magnetization M0 = 0.431 852
and mean energy εθ = εφ = 0.6. The collapse suggests δ equal to 1.0,
as predicted by the kinetic equation analysis developed in Ref. [41]
for the HMF model.
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FIG. 6. (Color online) Evolution of the kurtosis for the HMF-
ladder model with different numbers of particles, with time rescaled
by 104τD (left) and Nδ (right), δ = 0.75. The initial condition satisfied
the GVC, with magnetization M0 = 0.440 772, subsystem energy
εθ = εφ = 0.6, and a coupling of ε = 0.01.

of the exponent δ should be correlated with the degree of
chaos present in the HMF-ladder. To calculate δ, we monitor
the crossover from a QSS to thermodynamic equilibrium by
measuring the momentum kurtosis given by

κ = 〈p4〉
〈p2〉2

. (31)

For the HMF-ladder in thermodynamic equilibrium, kurtosis
has a universal value of two. In Figs. 5 and 6, we show the
temporal evolution of kurtosis for N = 103, 2 × 103, 4 × 103,
and 8 × 103 particles. When the time is scaled with t× all
the curves for different N and the same value of ε collapse onto
one curve. The exponent δ is obtained by requiring the best pos-
sible data collapse; see Figs. 5 and 6. In Fig. 7 we plot the value
of δ as a function of the average Lyapunov exponent. We see
that the exponent δ is not a monotonic function of the amount
of chaos present in a system. This is contrary to our naive
expectation that the rate of relaxation to equilibrium should be
proportional to the amount of chaos present in a QSS.

VII. CONCLUSIONS

We have explored the role of chaotic dynamics on the time
that a system with long-range interactions remains trapped
in a QSS before relaxing to thermodynamic equilibrium. The
motivation for the study is provided by self-gravitating sys-
tems, which during the process of violent relaxation can suffer
spontaneous symmetry breaking. When such systems relax
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 0  0.01  0.02  0.03  0.04
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FIG. 7. Exponent δ (from the relaxation time τ× ∼ Nδ) vs.
average value of the LED, 〈λ〉. Each pair (δ,〈λ〉) corresponds to a
different value of the coupling parameter ε (see Fig. 4). We see that
weak chaos favors relaxation to equilibrium more than strong chaos.
Error bars restrict the range of reasonable data collapse.

to QSS, the resulting mean-field potential will lack spherical
symmetry and the particle dynamics will be nonintegrable. The
question that we wanted to address in this paper is if presence
of chaotic dynamics in a nonequilibrium QSS speeds up the
collisional relaxation to thermodynamic equilibrium. Unfortu-
nately, a very slow dynamics of self-gravitating systems makes
it very difficult to explore this issue. To overcome this difficulty
we introduced a HMF-ladder model, which has a much simpler
QSS than a self-gravitating system, characterized only by two
magnetizations, Mθ and Mφ . With the help of this model, we
have discovered that a small degree of chaos, measured by the
average of LED, favors relaxation of QSS to thermodynamic
equilibrium. Surprisingly, a large amount of chaos is not as
efficient at driving a system to equilibrium as a small amount
of chaos. Clearly chaotic dynamics of noninteracting particles
cannot by itself be responsible for the relaxation to equilibrium.
Nevertheless, our results suggest that there is an optimum
amount of chaos that helps the residual two-body correlations
drive the system toward equilibrium. At the moment we do not
have any explanation for this curious behavior.
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62 HAMILTONIAN MEAN FIELD MODEL

4.4 Collisional relaxation in the inhomogeneous Hamiltonian-

mean-�eld Model: Di�usion coe�cients

Continuing on the topic of relaxation to equilibrium, in this work we studied the kinetic

equations of the HMF model including terms of order O[1/N ]. Our goal with this work was

to study the relaxation dynamics of inhomogeneous systems. This was motivated by previous

works in astrophysics, which usually approximate self-gravitating systems as homogeneous

in order to calculate their di�usion coe�cients and subsequently use a Fokker-Planck for-

malism. For this approach to work, the three di�erent dynamical timescales should scale

appropriately:

• τenc, the time related to the duration of a binary encounter;

• τcr, the crossing time (the time necessary for a star to cross the stellar background);

and

• τR, the relaxation time, associated with the time necessary for the entire system to

lose memory of its initial state.

In the framework of space and velocity variables (r,v), the homogeneous approximation

requires that τenc � τcr � τR. While the second inequality is satis�ed, the �rst is a somewhat

uncontrolled approximation.

However, by using a canonical framework of angle-action variables (w,J), the Hamiltonian

is transformed in such a way that it is independent of the angle (at least adiabatically).

Therefore, it becomes homogeneous in angle. The only timescale assumption we need is the

second, τcr � τR, to guarantee an adiabatic evolution of the one-particle distribution in

angle-action coordinates, f(J).

The kinetic equations for the evolution of generic, inhomogeneous LRI systems in action-

angle variables have been developed by Heyvaerts [84] and Chavanis [90]. As we have seen

in subsection 3.1.2, starting from the Klimontovich equation, the next order of approxima-

tion gives the Lenard-Balescu equation. This equation contains a dielectric function which

represents collective e�ects ; that is, the response of the system to its own internal perturba-

tions. If the collective e�ects are ignored, the dielectric function can be set to one and the

Lenard-Balescu equation becomes the Landau equation.

Although the demonstration and form of these equations has been shown, their applica-

tion to actual LRI systems is quite a di�cult task. It is necessary to calculate the action given

a mean-�eld potential ψ(r) which is not known beforehand. Sometimes it can be achieved

by representing the potential in a biorthogonal basis (Kalnajs matrix method [108]), for

example in the work of Fouvry et al with tepid galactic disks [109]. Luckily, in the HMF

model, the mean-�eld limit with an adiabatically evolving mean magnetization M consists

in uncoupled oscillators, so we can write the action variable explicitly. Previous work on the
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stability of Vlasov solutions with angle-action variables also provided useful identities for

writing the Fourier transforms of the mean-�eld potential [25, 89,110].

Both the Landau and Lenard-Balescu equations can be written in the form of a Fokker-

Planck equation,
∂f

∂t
=

∂2

∂J2
{Ddif [J

2]f(J)} − ∂

∂J
{Dfric[J ]f(J)} (4.8)

where Ddif [J
2] and Dfric[J ] are the di�usion and friction coe�cients, respectively. Their

form depends on whether or not collective e�ects are included. We were able to numerically

calculate these di�usion coe�cients and showed that they are both qualitatively and quanti-

tatively very di�erent for the two cases (neglecting or including collective e�ects). For highly

inhomogeneous states (M → 1), we also obtained analytical expressions for the coe�cients.

Molecular dynamics of the HMF model provided an �experimental� test of our results.

The di�usion coe�cient of the HMF model matches very well the Lenard-Balescu di�usion

coe�cient, showing that collective e�ects are very important in its dynamics. To test the

Landau di�usion coe�cient, on the other hand, we needed to somehow isolate the collective

e�ects from the HMF model. In order to do so, we set up a system composed of Nb bath

particles who do not interact between themselves, and Ntp test particles who interact with

the oscillations of the bath. This new system, which we call MDbath, is therefore composed

of:

Bath Nb particles who are initially distributed according to a Vlasov-stable distribution

f b0(θ,p). This initial distribution de�nes the stationary magnetization (corresponding

to the adiabatically evolving magnetization)

M0 =

∫
dθdp cos θf b0(θ,p). (4.9)

The bath particles then evolve according to

θ̈bi = −M0 sin θi. (4.10)

Test particles Ntp particles who do not interact between themselves, but only with the

true, instantaneous magnetization of the bath particles, given by

M b
x =

1

Nb

Nb∑
i=1

cos θi,

M b
y =

1

Nb

Nb∑
i=1

sin θi.

(4.11)

The test particles evolve according to

θ̈tpi = −Mx sin θi +My cos θi. (4.12)
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The di�usion coe�cients of the MDbath setup are calculated from the test particles only,

not the bath particles. This allows us to eliminate the collective e�ects from the system: the

test particles interact only with the �uctuations around M0 caused by the �nite number

of bath particles, and not their self-interaction. The resulting di�usion coe�cients matched

very well the Landau di�usion coe�cients, validating the results without collective e�ects.

Of course, since the true HMF model is completely self-interacting, the adequate di�usion

coe�cient is the Lenard-Balescu one.

This work was published in Physical Review E as a regular article, titled �Collisional

relaxation in the Hamiltonian Mean-Field Model: Di�usion coe�cients�, volume 95, page

022111 in February 2017. It is the result of a collaboration with Bruno Marcos, done during

a six-month stay at the Université de Nice � Sophia Antipolis (now Université Côte d'Azur)

�nanced by CAPES.
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Systems of particles with long-range interactions present two important processes: first, the formation of out-
of-equilibrium quasistationary states (QSS) and, second, the collisional relaxation towards Maxwell-Boltzmann
equilibrium in a much longer time scale. In this paper, we study the collisional relaxation in the Hamiltonian
mean-field model using the appropriate kinetic equations for a system of N particles at order 1/N : the Landau
equation when collective effects are neglected and the Lenard-Balescu equation when they are taken into account.
We derive explicit expressions for the diffusion coefficients using both equations for any magnetization, and we
obtain analytic expressions for highly clustered configurations. An important conclusion is that in this system
collective effects are crucial in order to describe the relaxation dynamics. We compare the diffusion calculated
with the kinetic equations with simulations set up to simulate the system with or without collective effects,
obtaining a very good agreement between theory and simulations.

DOI: 10.1103/PhysRevE.95.022111

I. INTRODUCTION

Systems with long-range interactions present the generic
evolution in two distinct stages: first, the evolution to a
quasistationary state in a process called collisionless (or
violent) relaxation [1] in a time scale τdyn, and, second,
the evolution towards thermodynamic equilibrium in the so-
called collisional relaxation process, in a time scale of order
τcoll ∼ Nδτdyn, where δ > 0 depends on the system considered.
The mechanism of collisional relaxation is qualitatively well
known since the seminal work of Chandrasekhar [2]: The
main elements are two-body collisions, which randomizes the
velocity of the particles, leading to a Maxwell-Boltzmann
velocity distribution. Using simple calculations and approx-
imating the system as spatially homogeneous, Chandrasekhar
was able to determine that, for gravitational systems in
three dimensions, τcoll ∼ τdynN/ ln N . This approach was
subsequently used by other authors, notably Hénon in the
1960s (see, e.g., Ref. [3]), and led to the development
of Fokker-Planck techniques. All these methods share the
same feature of approximating the system as homogeneous.
For example, in the orbit-averaging approach (see, e.g.,
Ref. [4]), diffusion coefficients are computed approximating
the system as homogeneous, and then they are averaged over
the actual orbits of the particles. This method is used because
it is technically difficult to compute diffusion coefficients
for inhomogeneous configurations, essentially because the
trajectories of the unperturbed particles (i.e., in the mean-field
limit) would need to be computed, which is generally a very
difficult task. Moreover, using this approach, it is not possible
to take into account collective effects, which can be important
for some systems and configurations, which we will see it is
the case in the present work.

At the same time, a rigorous kinetic theory for (repul-
sive, neutral) plasmas was being developed first by Landau
(introducing, notably, the concept of Landau damping) and
subsequently by other authors such as Lenard, Balescu, etc.

*Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil.
†Parc Valrose, 06108 Nice, Cedex 02, France.

(see, e.g., Ref. [5]). When the system is neutral, the mean-field
configuration is homogeneous, and it is therefore possible to
attack the problem in an essentially analytical way, including
even collective effects.

Over the past few years a rigorous kinetic theory for inho-
mogeneous configurations has been developed by different
authors [6–10]. In these works, the general procedure in
order to compute kinetic equations at order 1/N has been
described. There are, however, many practical difficulties
when trying to compute quantities of interest such as the
diffusion coefficients, and this for various reasons. The natural
way to write these equations is to use angle-action variables
(see, e.g., Ref. [11]). To compute them as a function of the
natural variables (x,v) is technically equivalent to solving the
equations of motion for the unperturbed (N → ∞) potential,
which is in general impossible analytically. The subsequent
calculation of the diffusion coefficient (which involves, e.g.,
Fourier transform about the angle variable) becomes (even
numerically) very difficult. For this reason, we are only aware
of the study of self-gravitating tepid disks [12,13]. In this case,
it is possible to make controlled approximations, which makes
the semianalytical calculations feasible.

In this paper we have chosen to study exactly a sufficiently
simple model in order to compute the diffusion coefficients
without approximations (up to order 1/N). To do so, we
use the popular Hamiltonian mean-field model (HMF) [14],
which has widely been used to study long-range systems.
Its simplicity permits us to compute some analytical and
numerical quantities which would be impossible in more
realistic models such as three-dimensional gravity. For this
reason, the diffusion coefficients have already been studied in
the much simpler spatially homogeneous configuration [15].
Our work has two main objectives: On one side, it will
permit us to compare the diffusion coefficients with numerical
simulations in order to check the validity of the assumptions
made deriving the kinetic equations in the case of spatially
inhomogeneous distributions. On the other side, it will set up
the method to solve numerically the Lenard-Balescu equation
not only for the HMF but also for other more complicated
models, as self-gravitating systems.

2470-0045/2017/95(2)/022111(14) 022111-1 ©2017 American Physical Society
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The paper is organized as follows: In the first section we
summarize the kinetic theory we will apply in the paper. In the
next section, we apply the equations for the HMF to compute
the diffusion coefficients, giving also analytical results for
some cases. Then we compare the theoretical predictions with
molecular dynamics simulations, including or not collective
effects, and then we give conclusions and perspectives.

II. KINETIC THEORY

The evolution of an N -body system under Hamiltonian
dynamics can be described using kinetic theory. The approach
outlined in this section follows that of several previous works
(see Introduction) and is summarized in, e.g., Ref. [16].1 The
problem addressed by this kinetic approach is the following:
Given a set of N particles of mass m with initial positions
{ri} and velocity {vi} and their Hamiltonian equations of
motion, how and to what steady state will they evolve? We
start with the discrete distribution function fd (r,v,t), which
contains all the information of the state of the system at a given
time t ,

fd (r,v,t) = m

N∑
i=1

δ[r − ri(t)]δ[v − vi(t)]. (1)

The evolution of the discrete distribution function is given
exactly by the Klimontovich equation [17]

∂fd

∂t
+ v · ∂fd

∂r
− ∂φd

∂r
· ∂fd

∂v
= 0, (2)

φd (r,t) =
∫

u(|r − r′|)fd (r′,v′,t)dr′dv′, (3)

where φd (r,t) is the discrete convolution potential, u(r − r′)
is the pair interaction potential between particles at positions
r and r′, and ∂f

∂u =∑d
i=1

∂f

∂ui
ei and d is the spatial dimension.

For a given initial distribution f d
0 (r,v) = m

∑N
i=1 δ[r −

ri(t = 0)]δ[v − vi(t = 0)], the discrete distribution is deter-
mined at all future times t . A smooth distribution function
can be obtained by averaging over an ensemble of initial
conditions,

f (r,v,t) = 〈fd (r,v,t)〉 (4)

and thus fd (r,v,t) = f (r,v,t) + δf (r,v,t).
The same smoothing process can be done for the Klimon-

tovich equation. Since averages over the fluctuations are zero,
this leads to

∂f

∂t
+ v · ∂f

∂r
− ∂φ

∂r
· ∂f

∂v
= ∂

∂v
·
〈
δf

∂δφ

∂r

〉
. (5)

The above equation gives the evolution of the smooth dis-
tribution due to correlation between its own fluctuations and
the fluctuation of the smooth potential φ(r,t), determined by

1Here we use the Klimontovich formulism; the same equations may
be obtained from the Born-Bogoliubov-Green-Klimontovich-Yvon
(BBGKY) hierarchy, see, i.e., Ref. [8].

φd (r,t) = φ(r,t) + δφ(r,t), where

φ(r,t) =
∫

u(|r − r′|)f (r′,v′,t)dr′dv′, (6)

δφ(r,t) =
∫

u(|r − r′|)δf (r′,v′,t)dr′dv′. (7)

Subtracting Eq. (5) from the Klimontovich equation and
keeping only terms of order lower than O(1/N ) gives the
linearized Klimontovich equation,

∂δf

∂t
+ v · ∂δf

∂r
− ∂δφ

∂r
· ∂f

∂v
− ∂φ

∂r
· ∂δf

∂v
= 0. (8)

The system of Eqs. (5) and (8) are known as the quasilinear
approximation, since in the first equation the correlation term
on the right-hand side is of order 1/N , while in the second
equation all terms of order 1/N or higher have been neglected.

A. Homogeneous systems

We will first give a brief derivation of the kinetic equations
for the spatially homogeneous case. It is technically simpler
than the inhomogeneous one while sharing the same ideas. In
this case f = f (v,t), so Eqs. (5) and (8) become

∂f

∂t
= ∂

∂v
·
〈
δf

∂δφ

∂r

〉
, (9a)

∂δf

∂t
+ v · ∂δf

∂r
− ∂δφ

∂r
· ∂f

∂v
= 0. (9b)

The fluctuation terms are more easily dealt with by using
the Fourier-Laplace transforms

δ̃f (k,v,ω) = 1

(2π )d

∫
dr
∫ ∞

0
dt e−i(k·r−ωt)δf (r,v,t) (10)

and

δ̃φ(k,ω) = 1

(2π )d

∫
dr
∫ ∞

0
dt e−i(k·r−ωt)δφ(r,t). (11)

Taking the Fourier-Laplace transform of Eq. (9b), we have

δ̂f (k,v,0) − i(k · v − ω) δ̃f (k,v,ω)

+ ik · ∂f

∂v
δ̃φ(k,ω) = 0, (12)

where

δ̂f (k,v,0) =
∫

dr
(2π )d

e−ik·rδf (r,v,0). (13)

From the above equation, we can isolate δ̃f and thus find an
expression relating the fluctuations of the distribution function
and the fluctuations of the potential and the initial condition,

δ̃f = k · ∂f

∂v δ̃φ(k)

k · v − ω︸ ︷︷ ︸
collective

effects

+ δ̂f (k,v,0)

i(k · v − ω)︸ ︷︷ ︸
initial

conditions

. (14)

Because collective effects are difficult to compute analytically,
a common approximation found in the literature consists
in neglecting them (see, e.g., Ref. [9]). In this paper we
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will consider the complete problem, and we will study their
importance in the inhomogeneous HMF.

The next step in the derivation consists in expressing the
Fourier transform of the fluctuation of the potential δ̃φ(k,ω)
as a function of the fluctuation δ̃f (k,w). To do so, we integrate
Eq. (14) over v, and, using the Fourier transform of Eq. (7),
we get∫ ∞

−∞
dvδ̃f (k,v,ω) = 1

ε(k,ω)

∫ ∞

−∞
dv

δ̂f (k,v,0)

i(v · k − ω)
, (15)

where we have defined the plasma response dielectric function

ε(k,ω) = 1 − û(k)
∫

dv
k · ∂f (v)/∂v

v · k − ω
. (16)

Using again Eqs. (7) and (15), we get

δ̃φ(k,ω) = û(k)
∫ ∞

−∞
dvδ̃f (k,v,ω)

= û(k)

ε(k,ω)

∫ ∞

−∞
dv

δ̂f (k,v,0)

i(p · k − ω)
. (17)

Inserting Eqs. (14) and (17) into Eq. (9a), after some algebra,
we get the Lenard-Balescu equation (using the notation [17]):

∂f

∂t
= π (2π )dm

d∑
i,j=1

∂

∂vi

∫
dkdv′kikj

û(k)2

|ε(k,k · v)|2

× δ[k · (v − v′)]

(
∂

∂vj

− ∂

∂v′
j

)
f (v,t)f (v′,t). (18)

When collective effects are neglected, i.e., the first term of
Eq. (14) is neglected, it is simple to see from Eq. (16) that
ε(k,ω) = 1.

B. Inhomogeneous systems

In inhomogeneous systems, the strategy is to use, instead
of the variables (r,v), the angle-action variables (w,J) cor-
responding to the Hamiltonian H of smooth dynamics (i.e.,
the one corresponding to the limit N → ∞) [18]. Using these
variables, particles described by the Hamiltonian H keep their
action J constant during the dynamic and their angle evolves
with time as w = 	(J)t + w0, where w0 is the angle at t = 0
and 	(J) = ∂H/∂J is the angular frequency [19]. The system
thus becomes “homogeneous” in the new coordinates [20].

The equations for evolution of smooth distribution function
f and its fluctuation δf are [7,10]

∂f (J)

∂t
+ [H(J),f (J)] = −〈[δφ,δf (J)]〉, (19a)

∂δf (J)

∂t
+ [H(J),δf (J)] + [δφ,f (J)] = 0, (19b)

where φ is the smooth mean-field potential and δφ is its
fluctuation, and [H,B] = ∂H

∂J
∂B
∂w − ∂H

∂w
∂B
∂J are Poisson brackets

with action-angle variables as the canonical coordinates.

Since by construction ∂H/∂w = 0 and ∂f/∂w = 0, the
terms in Poisson brackets reduce to

[H,δf ] = ∂H
∂J

∂δf

∂w
= 	(J) · ∂δf

∂w
, (20)

[δφ,f ] = −∂δφ

∂w
· ∂f

∂J
. (21)

Substituting the above in Eq. (19) and averaging over
angles w,

∂f

∂t
= ∂

∂J
·
〈

δf
∂δφ

∂w

〉
, (22a)

∂δf

∂t
+ 	(J) · ∂δf

∂w
− ∂δφ

∂w
· ∂f

∂J
= 0, (22b)

where A represents the angle-averaging of A. From now on,
we disregard this notation and write A = A for simplicity,
but we emphasize that the equations from this point further
correspond to the angle-averaged quantities.

Observe that Eq. (22) have the same structure as their
homogeneous counterpart equation (9) identifying the action
J with the velocity v and the angle w with the spatial variable
r. The only difference appears in the second term of Eq. (22b)
in which the velocity v is substituted by the frequency of the
unperturbed orbit 	(J). Following then the same procedure
as the one described in the homogeneous case, we get the
Lenard-Balescu-type kinetic equation (with collective effects)
in action-angle variables [8,10],

∂f

∂t
= π (2π )dm

∂

∂J
·
∑
k,k′

∫
dJ′k

δ[k · 	(J) − k′ · 	(J′)]
|Dk,k′(J,J′,k · 	(J))|2

×
(

k · ∂

∂J
− k′ · ∂

∂J′

)
f (J,t)f (J′,t), (23)

where
1

Dk,k′(J,J′,ω)
=
∑
α,α′

�̂α(k,J)(ε−1)α,α′ (ω)�̂�
α′(k′,J′), (24)

and εαα′(ω) is the dielectric tensor

εαα′ (ω) = δαα′ + (2π )d
∑

k

∫
dJ

k · ∂f/∂J
k · 	(J) − ω

× �̂�
α(k,J)�̂α′ (k,J). (25)

The indices (α,α′) are labels for the biorthogonal basis
{ρα,�α}, where ρ(r) = ∫ f (r,v,t)dv, which satisfies [21]∫

u(|r − r′|)ρα(r′)dr′ = �α, (26)∫
ρα(r)��

α′(r)dr = −δα,α′ . (27)

The terms �̂α are the Fourier transforms of the potential in the
biorthogonal representation with respect to the angles,

�̂α(k,J) = 1

(2π )d

∫
dwe−ik·w�α(w,J). (28)

The Lenard-Balescu equation (23) gives the evolution of f due
to the inclusion of a finite-N correction to the collisionless
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(Vlasov) kinetic equation. From Eq. (23), we see that the
evolution, which slowly deforms the orbits of constant J, is
driven by resonances between orbital frequencies, k · 	(J) =
k′ · 	(J′). This differs from the homogeneous case, Eq. (18),
where f evolves due to the resonances v = v′.

Using the chain rule, the Lenard-Balescu-type equation (23)
can be written in the form of a Fokker-Planck equation,

∂f

∂t
=

d∑
i,j=1

∂2

∂Ji∂Jj

D
ij

dif(J,t)f (J,t) − ∂

∂J
· Df r (J,t)f (J,t),

(29)

where

D
ij

dif(J,t) = π (2π )dm
∑
k,k′

∫
dJ′kikj

1

|Dk,k′(J,J′,k′ · 	(J′))|2

× δ[k · 	(J) − k′ · 	(J′)]f (J′,t) (30)

is the diffusion coefficient and the friction coefficient is

Df r (J,t) = π (2π )dm
∑
k,k′

∫
dJ′f (J′) k

(
k

∂

∂J
− k′ ∂

∂J′

)

× δ[k · 	(J) − k′ · 	(J′)]
|Dk,k′(J,J′,k′ · 	(J′))|2 . (31)

The ith component of the friction coefficient (31) can also be
written as the sum of the derivative of the diffusion coefficient,
plus a polarization force [10],

Di
f r (J,t) = ∂

∂Ji

D
ij

dif(J,t) + Di
pol(J,t), (32)

where the i component of the polarization force is

Di
pol(J,t) = π (2π )dm

∑
k,k′

∫
dJ′kik′ 1

|Dk,k′(J,J′,k′ · 	(J′))|2

× δ[k · 	(J) − k′ · 	(J′)]
∂f (J′,t)

∂J′ . (33)

When collective effects are not considered, we have

εαα′ = δαα′ , (34)

and therefore the Landau equation is obtained using the bare,
undressed Fourier transforms of the potential,

1∣∣Dbare
k,k′ (J,J′,k′ · 	(J′))

∣∣2 = |�̂α(k,J)�̂�
α(k′,J′)|2. (35)

III. KINETIC EQUATIONS FOR THE HAMILTONIAN
MEAN-FIELD MODEL

We will compute explicitly the diffusion coefficients for the
HMF model. It is given by the Hamiltonian

H =
N∑

i=1

p2

2
− 1

2N

N∑
i,j=1

cos(θi − θj ). (36)

The energy of one particle can be written as

h(θ,p) = p2

2
+ φ(θ ) = p2

2
− 1

N

N∑
i=1

cos(θi − θ ). (37)

The potential φ(θ ) = −1/N
∑

i cos(θi − θ ) can be rewritten
as

φ(θ ) = −
∑N

i=1 cos θi

N
cos θ −

∑N
i=1 sin θi

N
sin θ

= −Mx cos θ − My sin θ, (38)

where M = (Mx,My) is the magnetization vector. Its modulus
quantifies how bunched, or clustered, the particles are. Shifting
all angles by a phase α = arctan(My/Mx), we can write
the potential simply as a function of the modulus of the
magnetization M ,

φ(θ�) = −M cos θ�, (39)

where θ� = θ − α and M = Mx =∑N
i=1 cos θ�

i . For simplic-
ity, henceforth we denote θ� as θ .

A. Action-angle variables

Inhomogeneous states of the HMF model have previously
been studied using action-angle variables in the case of Vlasov
stability [22,23]. We define our action angle variables in the
same way as these references. The action J is defined as

J = 1

2π

∮
pdθ

with p = √
2[h − φ(θ )], where energy h is the one-particle

energy and φ(θ ) is the mean-field potential, Eq. (39). The
potential can be fully specified with a single scalar quantity,
the modulus of the magnetization M . It is possible to write
simply and in a generic way an expression for the action which
depends only on the energy of the particle h and the adiabatic,
static magnetization M0 (see Appendix A),

J (κ) = 4
√

M0

π

{
2[E(κ) − (1 − κ2)K(κ)], κ < 1

κE
(

1
κ

)
, κ > 1

, (40)

where

κ =
√

h + M0

2M0
. (41)

The action J is discontinuous at the separatrix κ = 1, the
boundary between rotating and librating orbits (see Fig. 1).
Figure 2 shows the action as a function of κ and the
discontinuity at the separatrix.

The frequency 	(J ) is 	(J ) = ∂h/∂J . Due to the fre-
quency being noninjective in J , and J being a function of
elliptical integrals of κ , it is easier to treat all expressions
directly as a function of κ . We use the Jacobian ∂κ/∂J to
change variables,[

∂J

∂κ

]
= 4

√
M0

π

{
2κK(κ), κ < 1

K
(

1
κ

)
, κ > 1.

(42)

Thus the frequency is given by 	(J ) = (∂κ/∂J )(∂h/∂κ),

	(κ) = π
√

M0

{
1

2K(κ) , κ < 1
κ

K( 1
κ ) , κ > 1

. (43)

The explicit expressions for the action-angle variables is a
great advantage of the HMF model for the investigating
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θm
θ

p 0

0

3

2

1

−3

−2

−1

− ππ

FIG. 1. Examples of a librating orbit (red solid line), for which
κ < 1, a rotating orbit (blue dotted line), for which κ > 1, and the
separatrix orbit (green dashed line), for which κ = 1. For the librating
orbit, θm = arccos(1 − 2κ2), while for the other orbits θm = π .

inhomogeneous states. For most systems, this is not possible,
a few exceptions in astrophysics being spherical potentials and
flat axisymmetric potentials such as razor-thin and tepid disks,
as well as some nonaxisymmetric potentials such as Stäckel
potentials [18].

B. Kinetic equations

For the HMF model, the pair potential u(θ − θ ′) =
− cos(θ − θ ′) can be written in the two-dimensional
biorthogonal representation as �c = − cos[θ (w,κ)] and �s =
− sin[θ (w,κ)], and its Fourier transforms are

�̂c(m,κ) = −cm(κ) = −1

2π

∫ π

−π

cos[θ (w,κ)]e−imwdw,

(44)

�̂s(m,κ) = −sm(κ) = −1

2π

∫ π

−π

sin[θ (w,κ)]e−imwdw.

These can be written more simply as (see Appendix B)

cn(κ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π2

K(κ)2
|n|q(κ)|n|/2

1−q(κ)|n| κ < 1, n even,

0 κ < 1, n odd,

2π2κ2

K( 1
κ )2

|n|q( 1
κ )|n|

1−q( 1
κ )2|n| κ > 1,

(45)

√√
M0

4
√√
M0

π

4
√√
M0

π

8
√√
M0

π

8
√√
M0

π

J

Jκ

κΩ

0

1

1

FIG. 2. Action as a function of κ for the HMF model (left), and
frequency 	 versus J (inset: 	 vs κ) (right) for the HMF model.

and

sn(κ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 κ < 1, n even,

−i π2

K(κ)2
nq(κ)|n|/2

1+q(κ)|n| κ < 1, n odd,

−i 2π2κ2

K( 1
κ )2

nq( 1
κ )|n|

1+q( 1
κ )2|n| κ > 1, p > 0,

i 2π2κ2

K( 1
κ )2

nq( 1
κ )|n|

1+q( 1
κ )2|n| κ > 1, p < 0,

(46)

where q(k) = exp[−πK(
√

1 − k2)/K(k)]. To switch vari-
ables from J to κ , we use the Dirac δ identity δ[f (x)] =∑

x∗ δ(x − x∗)/|∂f/∂x|x∗ [where x∗ are the roots of f (x)].
Thus, the Lenard-Balescu equation for the HMF model is

∂f

∂t
= 2π2

N

∣∣∣∣∂J

∂κ

∣∣∣∣−1
∂

∂κ

∞∑
n,n′=−∞

∫
dκ ′n|∂J ′/∂κ ′|

|Dnn′(κ,κ ′,n	(κ))|2

×
∑
κ�

δ(κ ′ − κ�)∣∣n′ ∂	
∂κ ′
∣∣
κ�

(
n

∣∣∣∣∂J

∂κ

∣∣∣∣−1
∂

∂κ
− n′

∣∣∣∣∂J ′

∂κ ′

∣∣∣∣−1
∂

∂κ ′

)
× f (κ,t)f (κ ′,t), (47)

where κ� are the roots of the equation m	(κ) − m′	(κ ′) = 0,
the Jacobian |∂J/∂κ| is given by Eq. (42), and ∂	/∂κ is

∂	

∂κ
= π

√
M0

⎧⎨⎩
E(κ)+(κ2−1)K(κ)

2κ(κ2−1)K2(κ) , κ < 1,

κ2E( 1
κ )

(κ2−1)K2( 1
κ ) , κ > 1.

(48)

The associated diffusion coefficient is

Ddif(κ) = 2π2

N

∞∑
n,n′=∞

∑
κ�

n2|∂J/∂κ|κ�

|Dnn′(κ,κ�,n	(κ))|2
f (κ�,t)∣∣n′ ∂	

∂κ ′
∣∣
κ�

(49)

and the polarization coefficient is

Dpol(κ) = 2π2

N

∞∑
n,n′=−∞

∑
κ�

n n′

|Dnn′(κ,κ�,n	(κ))|2
∂f/∂κ ′|κ�∣∣n′ ∂	

∂κ ′
∣∣
κ�

.

(50)

Equation (24), which determines Dnn′ (κ,κ ′,ω), becomes

1

Dnn′(κ,κ ′,ω)
= cn(κ)cn′(κ ′)

εcc(ω)
− sn(κ)sn′(κ ′)

εss(ω)
. (51)

If collective effects are neglected, then εcc = εss = 1, and we
get simply

1

Dbare
nn′ (κ,κ ′)

= cn(κ)cn′(κ ′) − sn(κ)sn′(κ ′). (52)

If collective effects are not neglected, then it is necessary to
compute numerically the dielectric tensor, with the procedure
we detail below.

C. Numerical computation of the dielectric tensor

The cc and ss components of the dielectric tensor are

εcc(ω) = 1 + 2π

∞∑
�=−∞

∫ ∞

0
dκ

gcc
� (κ)

	(κ) − ω/�
(53)
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FIG. 3. Poles of integral in the dielectric tensor components (53)
and (54). For ω/� > 	0 (dash-dotted line), only one pole occurs (κ2),
while for 0 < ω/� < 	0 (dashed line), there are two (κ1 and κ2).

and

εss(ω) = 1 + 2π

∞∑
�=−∞

∫ ∞

0
dκ

gss
� (κ)

	(κ) − ω/�
, (54)

respectively, where, to simplify the notation, we have defined

gcc
� (κ) = |c�(κ)|2∂f/∂κ, (55a)

gss
� (κ) = |s�(κ)|2∂f/∂κ. (55b)

The off-diagonal terms, involving products of the type
cn(κ)sn′(κ ′), are zero after integration.

The integrals in Eqs. (53) and (54) must be performed
carefully due to the poles at ω = �	(κ). Poles can only
occur if � and ω are of the same sign. Moreover, the number
of poles depends on the value of ω, since 	(κ) can have
the same value at two different values of κ for 	(κ) < 	0

where 	0 = 	(0) = √
M0. Therefore, we distinguish among

the following cases (see Fig. 3):
(1) ω/� < 0: no poles;
(2) 0 < ω/� < 	0: one pole κ1 < 1 and one pole

at κ2 > 1;
(3) ω/� > 	0: one pole at κ2 > 1.
For each case, the integrals must be separated into different

regions. In all cases we separate between the regions κ ∈ (0,1)
and κ ∈ (1,∞), due to the different expressions of 	(κ),
cn(κ), and sn(κ) in the two domains. Therefore, for case 1,
the integrals in Eqs. (53) and (54) are∫

dκ
g

cc/ss

� (κ)

	(κ) − ω/�
=
∫ 1

0
dκ

g
cc/ss

� (κ)

	(κ) − ω/�

+
∫ ∞

1
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
. (56)

For case (2), we must use the Landau contour in both regions,∫
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
= P

∫ 1

0
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
+ iπResκ1

+P
∫ ∞

1
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
+ iπResκ2,

(57)

and, for case (3), only in the second region,∫
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
=
∫ 1

0
dκ

g
cc/ss

� (κ)

	(κ) − ω/�

+P
∫ ∞

1
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
+ iπResκ2,

(58)

where P
∫

denotes the Cauchy principal value and Resx is the
residue of the integrand at x.

Equations (49), (51), (53), and (54), with 	(κ), sm(κ),
and cm(κ) determined by equations (43), (45), and (46),
respectively, enable us to calculate the diffusion coefficient
of the HMF model in action-angle variables, with collective
effects. The same can be done neglecting collective effects,
using the same equations with εcc = εss = 1. The inclusion
or exclusion of collective effects greatly affects the resulting
diffusion coefficient. This is shown in Fig. 6, where we present
diffusion coefficients considering a thermal bath,

f (κ,t) = C exp[−βM0(2κ2 − 1)], (59)

for two equilibrium configurations (β,M0), where C =√
β/(2π )3/I0(βM0) and In(z) is the nth-order modified Bessel

function of the first kind. For the numerical results, all sums
over n, n′, and � are truncated at nmax = 6 and �max = 6, re-
spectively (although normally nmax = 4 and �max = 2 suffice).

From the forms of equations of the diffusion coeffi-
cients (49), we see that the contributions to the diffusion of
a particle with a parameter κ come from its resonances with
particles of parameter κ�, where κ� and κ satisfy n	(κ) =
n′	(κ�) and n,n′ are integers. In order to see how each
resonance contributes to the diffusion coefficient, in Fig. 4 we
plot maps showing the normalized contribution of each term
in the κ� sum, for a given κ , for a thermal distribution function
corresponding to M0 = 0.05 (top) and M0 = 0.9 (bottom). In
other words, if we write the diffusion coefficient as

Ddif(κ) =
∑
κ�

γ (κ,κ�), (60)

then the color map shows γ (κ,κ�)/Ddif(κ).
In the highly inhomogeneous case, M0 = 0.9, almost all

the contribution comes from κ� < 1 (inside the separatrix).
This is mainly due to the distribution being highly clustered,
so most particles are below the separatrix. Consequently, for
most particles, the main contribution to their diffusion comes
from resonances with particles at their same frequency. This
is represented by the strong yellow line at κ� < 1. For the
almost-homogeneous case, M0 = 0.05, the particles are not
so clustered and so particles with κ� �= κ also contribute, as
demonstrated by the presence of other curves in the top panel.

D. Examples of numerical calculations

In this section we show the predictions for the diffusion
coefficients both including or neglecting collective effects.
Note that, near the separatrix (κ = 1), we do not plot the value
of the diffusion coefficient. This is because the calculation
becomes numerically unstable in this region. Indeed, the
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FIG. 4. Normalized contribution to the Lenard-Balescu diffusion
coefficient Ddif (κ), Eq. (49), as a function of κ�. Both panels
correspond to thermal equilibrium distributions but with different
magnetizations: (a) almost homogeneous, M0 = 0.05, and (b) highly
inhomogeneous, M0 = 0.9. In the latter case, most of the contribution
comes from resonances at κ� < 1.0 (below the separatrix), while for
the nearly homogeneous system this is not the case.

perturbative approach we have used may not be valid [24,25]
for particles crossing the separatrix. Since it does not seem to
play an important role in the diffusion, we neglect the point
κ ≈ 1. First, we notice that, as in the homogeneous case [15],
collective effects are very important in this system. To illustrate
this behavior, we plot the components of the dielectric tensor
in Fig. 5. We observe a characteristic frequency (materialized
by a “bump”) at a frequency of order n	0, with n = 1 for
sine perturbations and n = 2 for cosine ones. We observe that
collective effects are very important for frequencies ω � n	0

in this case, i.e., the modulus of the components of the dielec-
tric tensor differs considerably from 1. Inspecting the kinetic
equation (47), we see that this implies that for values of κ which
correspond to these frequencies (which correspond mainly to
librating particles) collective effects are important. However,
particles with larger frequencies do not present strong collec-
tive effects, because they have frequencies ω 
 	0 for which
the components of the dielectric tensor is close to 1.

This fact is apparent in the computation of the diffusion
coefficients for two different magnetizations shown in Fig. 6.
For both small magnetization (i.e., system very close to
homogeneity) as well as magnetization closer to 1, the
diffusion coefficients predicted by the Landau equation (no
collective effects) and the Lenard-Balescu equation (collective
effects) difrer completely except, as expected, for κ > 1,
which corresponds to particles with frequencies for which

Re[ cc]

Im[ cc]

Re[ ss]

Im[ ss]

| cc|

| ss|

ω/Ω0

0.0

0.0

0.0

1.0

1.0

0.5

1.5

2.0

2.0

2.0

3.0
−4.0

−2.0

4.0

4.0

6.0

8.0

10.0

12.0

FIG. 5. Cosine (top) and sine (bottom) components of the
dielectric tensor ε(ω), given by Eqs. (53) and (54), respectively.
The equilibrium parameters are (u,M0) = (−0.1,0.728). The vertical
lines show ω = 	0 and ω = 2	0.

the modulus of the components of the dielectric tensor tends
to 1.

E. Analytical results for highly magnetized states

It is possible to obtain analytical expressions for the
diffusion coefficients for highly magnetized configurations. In
this case, all the particles have κ < 1 and it suffices to perform
the sums in the kinetic equations up to |n| = |n′| = 2 to obtain
a good approximation to the dielectric tensor and the diffusion
coefficients. This implies that the position of the resonances are
κ� = κ , simply.2 If the system is less magnetized, then there are
resonances with particles which are outside the separatrix, and
in this case it is necessary to solve numerically the resonance
condition n	(κ) = n′	(κ∗). We will study the case in which
collective effects are neglected, and then when collective
effects are considered for two paradigmatic cases: a core-halo
distribution and a Maxwell-Boltzmann distribution. These two
distributions can be considered as prototypes of the two classes
of distributions which appears after the violent relaxation
process. When initial condition leads to a very “violent” violent
relaxation, it results in a core-halo quasiequilibrium, while
when the initial condition leads to a “gentle” violent relaxation,
a compact distribution similar to a Gaussian one forms [26].

2Note that in this approximation the flux associated with Eq. (23)
is zero, and hence f does not vary with time.

022111-7



F. P. C. BENETTI AND B. MARCOS PHYSICAL REVIEW E 95, 022111 (2017)

Landau

Landau

Len-Bal

Len-Bal

κ

NDdif

0.0
0.0

1.00.5 1.5 2.0

0.00

0.50

1.00

1.50

5.0

10.0

15.0

20.0

FIG. 6. Diffusion coefficient Ddif (κ) for two different equilib-
rium configurations: (u,M0) = (−0.1,0.7285) (top) and (u,M0) =
(0.2475,0.0632) (bottom). Solid (red) lines show the diffusion
coefficient with collective effects, Eqs. (49) and (51), while the dashed
(blue) lines show the result without collective effects, Eqs. (49)
and (52). Both curves are cut off near κ = 1 due to numerical
instability at the separatrix.

1. Without collective effects

When collective effects are neglected, εcc = 1 and εss = 1,
a very good approximation is given by taking only the first term
of Eqs. (49) and (50) (taking higher terms is straightforward).
We obtain therefore

Ddif(κ) =
4π8κ2(1 − κ2)sech4

[
πK(

√
1−κ2)

2K(κ)

]
NK(κ)5[(κ2 − 1)K(κ) + E(κ)]

f (κ), (61a)

Dpol(κ) =
π9κ(κ2 − 1)sech4

[
πK(

√
1−κ2)

2K(κ)

]
2N

√
M0K(κ)6[(κ2 − 1)K(κ) + E(κ)]

∂f

∂κ
(κ).

(61b)

If M0 is very close to 1, then most of the particles have
small κ . It is possible to expand Eq. (61) around κ = 0, giving
the following simple results:

Ddif(κ) = 1

N
[32π2κ4 + O(κ6)]f (κ), (62a)

Dpol(κ) = 1

N
√

M0
[8π2κ3 + O(κ5)]

∂f

∂κ
(κ). (62b)

2. With collective effects

We will first consider the core-halo distribution. It can be
modeled by the sum of two step functions,

fch(κ) = η1�[μ1 − h] + η2�[μ2 − h], (63)

where we have assumed that μ1 and μ2 corresponds to the
energy of particles which are inside the separatrix. Using the
definition of h = M0(2κ2 − 1), we can express Eq. (63) as a
function of κ

fch(κ) = η1�
[
2M0

(
κ2

1 − κ2
)]+ η2�

[
2M0

(
κ2

2 − κ2
)]

, (64)

where κi = √
μi/M0 + 1 and κ1 < 1 and κ2 < 1.

Computing the dielectric tensor is straightforward because
the derivative of fch about κ involves Dirac δ functions:

∂fch

∂κ
= −2κM0

{
η1δ
[
M0
(
κ2

1 − κ2)]+ η2δ
[
M0
(
κ2

2 − κ2)]}.
(65)

The dielectric tensor is purely real, and it can be calculated
inserting Eq. (64) into Eqs. (53) and (54):

εcc/ss(ω) = 1 + 2π

∞∑
�=−∞

{
g

cc/ss

� (κ1)

	(κ1) − ω/�
+ g

cc/ss

� (κ2)

	(κ2) − ω/�

}
+ (ω → −ω), (66)

where (ω → −ω) means to sum the same expression with
ω replaced by −ω. Using Eqs. (49) and (50) with Eq. (64)
and κ∗ = κ , it is straightforward to compute the diffusion
coefficients.

It is interesting to compare the diffusion coefficients for
an idealized core-halo distribution (64) with a more realistic,
smoother version of it, which is the kind of distribution we
simulated (see Sec. IV):

fch∗
i
(h) = η1

1 + exp[β1(h − μ1)]
+ η2

1 + exp[β2(h − μ2)]
.

(67)

For a given mean energy u and magnetization M0, plus
the normalization constraints, three of the six parameters
η1,η2,β1,β2,μ1,μ2 are determined. We have chosen the coef-
ficients η1 = 0.298, η2 = 0.05, μ1 = −0.517, and μ2 = 0.19
for i = 1,2; β1 = 70 and β2 = 70 for i = 1; and β1 = 30
and β2 = 10 for i = 2. As the coefficients βi increase, the
step functions become steeper. We observe in the top row of
Fig. 7 that for the steeper case ch∗

1 the two-step core-halo (64)
describes very well both the components of the dielectric
tensor and the diffusion coefficient. For the softer case ch∗

2,
we observe a correct agreement for the components of the
dielectric tensor for most of the frequencies. The disagreement
is responsible for the differences observed in the diffusion
coefficient for some ranges of κ .

For the case of distributions like the Maxwell-Boltzmann
one, the main difficulty consists of computing the dielectric
tensor. It is possible to do it analytically for a wide class of
functions taking the advantage that if M0 → 1, most of the
particles have small κ . We can thus expand in Taylor series the
different quantities which appear in the kinetic equations. We
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FIG. 7. [(a)–(c)] Comparison of the approximate expressions (C1) and (C2) and the diffusion coefficient for a core-halo system (see text
for details), and [(d)–(f)] the same quantities at Maxwell-Boltzmann equilibrium for magnetization M0 = 0.95.

need therefore (valid for κ � 1):

J (κ) = 2
√

M0κ
2 + O(κ4), (68a)

	(κ) =
√

M0

[
1 − κ2

4
+ O(κ4)

]
, (68b)

c2(κ) = κ2

2
+ O(κ4), (68c)

s1(κ) = −iκ + O(κ3). (68d)

The components of the dielectric tensor can be approxi-
mated as

εcc(ω) � 1 + π

2

∫ 1

0
dκ

κ4∂fMB/∂κ√
M0
(
1 − κ2

4

)− ω/2
+ (ω → −ω),

(69a)

εss(ω) � 1 + 2π

∫ 1

0
dκ

κ2∂fMB/∂κ√
M0
(
1 − κ2

4

)− ω
+ (ω → −ω).

(69b)

Taking as the distribution function the thermal equilibrium
one (59), the integrals can be expressed in terms of trigono-
metric and exponential integrals (for the explicit expressions,
see Appendix C). Using the approximations (C1) and (C2)
and the terms of Eqs. (49) and (50) corresponding to n and n′
taking the values from −2 to +2 we get, for large M0, a lengthy
but analytical approximation (which we do not explicitly write
here) of the diffusion coefficients which is very accurate for
M0 close to 1. In the bottom row of Fig. 7 we show the diffusion
coefficients for M0 = 0.95.

IV. COMPARISON WITH SIMULATIONS

The previous subsection presents the application of the
kinetic equations to the HMF model. In order to compare
those analytical results with the Hamiltonian dynamics of the
N -body system, we use molecular dynamics, integrating the
equations of motion of N particles and tracking their orbits
through time.

In order to compare the theoretical results with simulation
we adopt the point of view of the Fokker-Planck equation. The
idea is to study a test particle evolving in a field composed of
the other particles. The effect of the field on the test particle
is taken into account by the diffusion and friction coefficients.
The mean-field properties of the field evolve adiabatically
compared to the time scale of the fluctuations which lead to the
test particle’s relaxation. In the case of the HMF model, this
means that the field’s magnetization is M = M0 + δM , where
M0 evolves very slowly compared to δM . The test particle’s
base orbit is thus determined by M0, whereas the fluctuations
δM drive its relaxation. The collective effects represent the
reaction of the field to its own perturbations, that is, the field
particles are also affected by δM . If we disregard collective
effects, the field particles should evolve subject only to the
mean magnetization M0. Therefore, a possible way of testing
the importance of collective effects in the HMF model is to
simulate two types of N -body dynamics.

The first, which we will refer to as “MD(bath),” is a
dynamics without collective effects. The system is composed
of Nb particles which form a thermal bath and evolve with
the adiabatic, static magnetization M0 (corresponding to the
smooth potential),

θ̈i
b = −M0 sin θi, i = 1, . . . ,Nb (70)
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FIG. 8. Variation of J 2, Eq. (75), as a function of time for different
values of J0 and different thermal distributions. Points are molecular
dynamics results of the regular HMF model and lines are linear fits.
For longer times, the diffusion becomes sublinear.

and Ntp independent test particles which evolve under the
potential due to the oscillating magnetization of the bath
particles,

θ̈i
tp = −Mb

x sin θi + Mb
y cos θi, i = Nb + 1, . . . ,Nb + Ntp

(71)

Mb
x = 1

Nb

Nb∑
i=1

cos θi, Mb
y = 1

Nb

Nb∑
i=1

sin θi .

The bath particles are set up with any initial positions and
velocities corresponding to the Vlasov-stable distribution for
which we want to measure the diffusion coefficients, e.g., (59)
or (67). We detail the procedure for the former case: The
initial particle positions and velocities must be distributed

according to

feq(θ,p) =
√

β

(2π )3
I−1

0 (βM0) exp

[
−β

(
p2

2
− M0 cos θ

)]
.

(72)

For each M0, β must be determined self-consistently by

M0 = I1(βM0)

I0(βM0)
. (73)

Second, we simulate the full N -body simulation of the HMF
model—hence with collective effects—which we shall refer to
as “MD(full).” All N particles in the system evolve according
to

θ̈i = −Mx sin θi + My cos θi, i = 1, . . . ,N
(74)

Mx = 1

N

N∑
i=1

cos θi, My = 1

N

N∑
i=1

sin θi .

We have seen from the analytical calculations that collective
effects are important in the HMF model. Therefore, these
two N -body methods should result in very different diffusion
coefficients. We measure the diffusion coefficients of test
particles as follows: First, we calculate the initial action Ji(t0)
of each test particle—or simply each particle, in the case of
MD(full)—and separate them accordingly into L bins of size
�J0. Then we calculate the mean-square variation of J for
each J0 as a function of �t ,

〈δJ 2〉� = 1

N�

N�∑
i=1

[Ji(t0 + �t) − J0]2, � = 1, . . . ,L (75)

where the sum, for each bin �, is over all N� particles
with J (t0) ∈ [(� − 1/2)�J0,(� + 1/2)�J0). The diffusion

LandauLandauLandau
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Len-BalLen-BalLen-Bal
MD(full)MD(full)MD(full)

J̄

N Ddif
0.15

0.10

0.05

0.00
0.0

0.0

0.0

0.0
0.0

0.0

0.0

0.0

1.0

1.0

1.0

1.0

1.0

1.0

0.50.5

0.5

0.5

0.5

1.51.5

1.5

1.5

1.5

2.0

2.0

2.0

2. 20 .52.5

0.2

0.4

0.6

4.0

3.0

20.0

15.0

10.0

5.0

)c()b()a(

FIG. 9. Diffusion coefficients calculated by molecular dynamics, Eq. (76), compared to the theoretical results, for an equilibrium distribution
with parameters (a) (u,M0) = (−0.2,0.816), (b) (u,M0) = (0.0,0.622), and (c) (u,M0) = (0.2475,0.06). On the bottom, MD simulations without
collective effects with the prediction of the Landau equation (49). On the top, MD simulations with collective effects with the theoretical curve
predicted by the Lenard-Balescu (Len-Bal) equation, using condition (34), and the molecular dynamics given by the regular HMF model,
MD(full). The gray vertical line represents the separatrix.
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FIG. 10. Diffusion coefficients for a system in a “core-halo”
type distribution, given by Eq. (67). On the top, without collective
effects: simulation of test particles interacting with the distribution
[MD(bath)] and the theoretical curve (Landau). The gray vertical line
represents the separatrix. On the bottom, MD simulation results of
the regular HMF [MD(full)] with the theoretical curve with collective
effects (Len-Bal). The parameters for the distribution are β1 = 30,
β2 = 10, η1 = 0.298, η2 = 0.051, μ1 = −0.517, and μ2 = 0.19,
which gives M0 = 0.8.

coefficient for a given J0 (or, equivalently, for a given bin �),
is half of the slope of the linear part of the curve 〈δJ 2(�t)〉�,

DMD
dif (J0) = 〈δJ 2〉�

2�t
. (76)

For some values of J0, care must be taken to calculate
the coefficient in the full HMF molecular dynamics: If the
magnetization is sufficiently high, then there are little to no
particles for higher values of J0. Therefore, to calculate the
coefficient in these regions, we simulate the dynamics of test
particles with high J0 that interact with the full HMF.

Examples of the linear fit are shown in Fig. 8, for two
values of J0. Typically, the fit is done over a time range of
t ∈ [100,500], although this may vary depending on the value
of J0 and M0. On average, choosing different time ranges does
not greatly affect the outcome. For the fits, we took averages
of 〈δJ 2(�t)〉� over many time intervals of the dynamics, that
is, for many values of t0. Typically, we used 100 intervals.

In Fig. 9, we compare the molecular dynamics results with
the kinetic theory diffusion coefficients for systems in thermal
baths.3

The top panels show the case without collective effects
[MD(bath)] and the Landau diffusion coefficient calculated

3For clarity, in the plots of the diffusion coefficients in which the
abscissa is the action, we use instead a rescaled action J̄ ,

J̄ =
{
J/2 κ < 1
J κ > 1

.

with (49) and (34), while the bottom panels show the case with
collective effects [MD(full)] and the Lenard-Balescu diffusion
coefficient (49). Each kind of simulation has been performed
with N = 500 000 particles, except for the lowest magnetiza-
tion case, which was performed with N = 1 000 000. We see
that for magnetizations not close to zero [Figs. 9(a) and 9(b)]
the MD fit matches very well the result from the corresponding
kinetic equation. In the case of magnetization close to zero
[Fig. 9(c)] the match is only reasonably good. This can be
explained because in this case the linear diffusion regime is
very short and, consequently, the fluctuations larger.

We test also the theoretical results for a core-halo distri-
bution ch∗

2 equation (67). For both without collective effects
(top) and with collective effects (bottom), the results match
very well, see Fig. 10.

V. CONCLUSION

In this paper we have studied the diffusion coefficients
corresponding the collisional relaxation in the inhomogeneous
HMF model. To perform these calculations we have used the
Landau and the Lenard-Balescu equations expressed in action-
angle variables. We have described precisely how to perform
the calculations and showed that the diffusion coefficients can
be easily computed in a very reduced computer time with high
precision. Moreover, we have given analytical expressions for
the dielectric tensor and the diffusion coefficients for systems
with magnetization close to 1, which agree very well with the
exact ones.

One of the conclusions of the paper is that, for the cases for
which we have calculated the diffusion coefficients, collective
effects are very important in the dynamics independently of
how much the system is clustered (i.e., magnetized). We note
that this is also the case in the homogeneous case [15].

We have also studied which particles “talk to each other”
in the collisional relaxation process. For highly clustered
systems (i.e., magnetization close to one), the contribution of
the relaxation of a given particle comes almost exclusively
from particles in the same orbit (i.e., with the same κ).
This is a similar behavior than in the homogeneous case,
for which it is simple to show that for any long-range
one-dimensional system the contribution for the relaxation
comes from particles with the same velocity [17]. As the
system becomes less clustered, the situation becomes more
complicated, and particles in different orbits start to “interact”
with one another (see Fig. 4).

In order to test the theoretical predictions, we have com-
puted numerically the diffusion coefficients using molecular
dynamics simulations. To check our calculations when the
collective effects are neglected, we have set up a simple method
to perform simulations in which collective effects are absent.
We have found a very good agreement between the theoretical
calculations and the simulations both for the dynamics with
and without collective effects. We have performed these tests
for baths at Maxwell-Boltzmann equilibrium as well as out of
equilibrium (core-halo distributions).

The next natural step of this work is to use the diffusion
coefficients to compute the whole evolution of the HMF model
up to thermalization. With the methods developed in the paper,
it is a relatively simple task to compute the evolution with the
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Landau or the Lenard-Balescu equation. The magnetization
should be computed self-consistently at each time step and then
the diffusion coefficient. We stress that the evolution of Eq. (47)
could present interesting features because it is nonlinear. This
subject will be presented in a forthcoming paper.

We note also that the analytical expressions for the dielectric
tensor can be used to study analytically the stability and the
mean-field evolution of the HMF model for highly clustered
states, computing in an appropriate but straightforward way
the pole contributions to the dielectric tensor (see Ref. [22] for
a detailed study on the subject).

The extension of our calculations to more complicated inter-
actions, e.g., one-dimensional gravity, is in principle feasible.
There are, however, two complications to the calculations
compared to the HMF model: first, the biorthogonal basis is
not constituted by only two functions but by a infinite number
of them. There is, however, the hope that with a suitable choice
of family of functions for a given shape of the QSS a reduced
number of elements of the basis is sufficient to obtain a good
accuracy in the calculations, similarly to the case studied in
Refs. [27,28]. Second, we do not expect to have an analytical
expression for the Fourier transform of the angle of the element
of the basis [Eq. (44)]. These calculations should be performed
numerically, which is feasible with a modest computer.
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APPENDIX A: ACTION-ANGLE VARIABLES
OF THE PENDULA

In this Appendix, we present action-angle variables for a
pendulum with the Hamiltonian

h(θ,p) = p2

2
− M0 cos θ, (A1)

using the same conventions as Refs. [22] and [29]. The action
J is given by

J = 1

2π

∮
pdθ. (A2)

If the energy h is greater than the magnetization M0, then
the orbit is rotating: Its momentum will never reach zero.
In such cases, the integration over θ will only go from −π

to π , for positive momentum, or π to −π , for negative
momentum. For librating orbits, which have energy h less
than the magnetization M0, the orbit completes a loop in phase
space (see Fig. 1 in the main text), reaching zero momentum

at the extreme value of θ , ±θm. The integration starts with
positive momentum at −θm and then goes to θm and then back
to −θm with negative momentum. The action is thus given by

J = 1

2π

{
2
∫ θm

−θm

√
2(h + M0 cos θ )dθ h < M0,∫ π

−π

√
2(h + M0 cos θ )dθ h > M0.

(A3)

Using the transformation x = θ/2 and cos θ = 1 −
2 sin2(θ/2), Eq. (A3) can be written as

J = 4
√

M0

π

⎧⎨⎩2
∫ θm

2
0

√
κ2 − sin2 xdx κ < 1,

κ
∫ π

2
0

√
1 − 1

κ2 sin2 xdx κ > 1,

(A4)

where

κ =
√

h + M0

2M0
(A5)

and θm = 2 arcsin(κ). For κ > 1, the integral in Eq. (A4) is
the complete Legendre elliptic integral of the second kind
E(1/κ) = E(π/2,1/κ), where

E(φ,k) =
∫ φ

0

√
1 − k2 sin2 θdθ, k < 1. (A6)

For κ < 1, switching variables with sin θ = κ sin x, the corre-
sponding integral in Eq. (A4) becomes∫ θm/2

0

√
κ2 − sin2 xdx = E(κ) − (1 − κ2)K(κ), (A7)

where K(k) is the complete elliptic integral of the first kind,

K(k) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

. (A8)

Therefore, the action is

J =
{

8
√

M0

π
[E(κ) − (1 − κ2)K(κ)], κ < 1,

4
√

M0

π
κE
(

1
κ

)
, κ > 1.

(A9)

The angle variables, w, satisfy [20]

w = 	t, (A10)

where 	 = ∂h/∂J is the angular frequency and t is the time
of the pendulum at position θ ,

t =
∫ θ

0

dθ ′
√

2(h + M0 cos θ ′)
. (A11)

Integrating
∫

dt = ∫ dθ/p(θ,κ) gives

t(θ,κ) = 1√
M0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F (φ,κ) κ < 1, p > 0,

2K(κ) − F (φ,κ) κ < 1, p < 0,

1
κ
F
(

θ
2 , 1

κ

)
κ > 1, p > 0,

1
κ
F
(

θ
2 , 1

κ

)
κ > 1, p < 0,

(A12)
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where φ = arcsin ( 1
κ

sin θ
2 ). Multiplying by 	(κ) as given by

Eq. (43), we find the angle variables

w = π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (φ,κ)
2K(κ) κ < 1, p > 0,

1 − F (φ,κ)
2K(κ) κ < 1, p < 0,

F

(
θ
2 , 1

κ

)
K( 1

κ ) κ > 1, p > 0,

−F

(
θ
2 , 1

κ

)
K( 1

κ ) κ > 1, p < 0.

(A13)

APPENDIX B: ELLIPTIC IDENTITIES FOR
FOURIER TRANSFORMS

In this appendix, we show how to obtain the expressions
for the Fourier transforms of the orthogonal components of
the potential, proportional to cn(κ) and sn(κ) [Eq. (44)], as
obtained in Ref. [29]. First, we must find cos[θ (w,κ)] and
sin[θ (w,κ)] as functions of w and κ directly. These can be
obtained from the angle variable (A13), which depends on θ

through incomplete elliptic integrals [22]. For the incomplete
elliptic integral of the first kind F (α,k), α can be expressed
in terms of the Jacobi elliptic functions sn(u,k), cn(u,k), and
dn(u,k). In particular, if F (α,k) = u, then sin α = sn(u,k).
Applying to Eq. (A13) gives

cos[θ (w,κ)] =
{

1 − 2κ2sn2
[ 2K(κ)w

π
,κ
]

κ < 1,

1 − 2sn2
[

K(1/κ)w
π

,1/κ
]

κ > 1,
(B1)

and

sin[θ (w,κ)]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2κsn

[ 2K(κ)w
π

,κ
]
dn
[ 2K(κ)w

π
,κ
]

κ < 1,

2sn
[K( 1

κ
)w

π
, 1
κ

]
cn
[K( 1

κ
)w

π
, 1
κ

]
κ > 1, p > 1,

−2sn
[K( 1

κ
)w

π
, 1
κ

]
cn
[K( 1

κ
)w

π
, 1
κ

]
κ > 1, p < 1,

(B2)

where the properties sn2(u,k) + cn2(u,k) = 1 and dn(u,k) =√
1 − k2sn2(u,k) were used. Finally, (B1) and (B2) can be

expressed in terms of the following expansions involving the
elliptic functions [30],

sn2(u,k) = K(k) − E(k)

k2K(k)

− 2π2

k2K(k)2

∞∑
n=1

nq(k)n

1 − q(k)2n
cos

πnu

K(k)
, (B3)

sn(u,k)dn(u,k) = 2π2

kK(k)2

∞∑
n=1

(
n − 1

2

)
q(k)n− 1

2

1 + q(k)2n−1

× sin
π
(
n − 1

2

)
u

K(k)
, (B4)

sn(u,k)cn(u,k) = 2π2

k2K(k)2

∞∑
n=1

nq(k)n

1 + q(k)2n
sin

πnu

K(k)
, (B5)

where q(k) = exp[−(
√

1 − k2)/K(k)].
To find cn(κ) and sn(κ), the above expansions should be

applied in the equations for cos[θ (w,κ)] and sin[θ (w,κ)]. This
gives the results of Eqs. (45) and (46).

APPENDIX C: DIELECTRIC TENSOR FOR A
MAXWELL-BOLTZMANN DISTRIBUTION FOR M0 → 1

Taking as the distribution function the thermal equilibrium
one (59), the components of the dielectric tensor can be
approximated as

εcc(ω) � 1 + π

2

∫ 1

0
dκ

κ4∂fMB/∂κ√
M0
(
1 − κ2

4

)− ω/2
+ (ω → −ω)

= 1 + 16πβC(ω − 2
√

M0)2α1[Ei(x1) − Ei(x2)]√
M0

+ 2πC[α2 sinh(βM0) − βM0 cosh(βM0)]

βM
3/2
0

+ i
16π2bC(w − 2

√
M0)2α1�

(√
M0 − w

2

)
�(ω)√

M0

+ (ω → −ω). (C1)

εss(ω) � 1 + 2π

∫ 1

0
dκ

∂f/∂κ√
M0
(
1 − κ2

4

)− ω
κ2 + (ω → −ω)

� 1 + 64π
sinh(bM0)√

M0

− 64πb(
√

M0 − w)α3[Ei(x3) − Ei(x4)]

+ i16π3bC(
√

M0 − w)α3�(
√

M0 − w)�(ω)

+ (ω → −ω), (C2)

where α1 = e4β
√

M0ω−7βM0 , α2 = −4β
√

M0ω + 9βM0 + 1,
α3 = e8b

√
M0w−7bM0 , x1 = 6βM0 − 4β

√
M0ω x2 = 8βM0 −

4β
√

M0ω, x3 = 8b(M0 − √
M0w), x4 = 6bM0 − 8b

√
M0w,

�(x) is the Heaviside step function and (ω → −ω) to sum to
the expressions written the same with ω replaced by −ω.
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Chapter 5

Generalized Hamiltonian Mean Field

Model

The generalized Hamiltonian Mean Field model (GHMF) is composed of N spins inter-

acting by a ferromagnetic coupling (like the HMF model), plus a nematic coupling,

H({θi},{pi}) =
N∑
i=1

p2
i

2
+

1

2N

N∑
i,j=1

{1−∆ cos(θi − θj)− (1−∆) cos[q(θi − θj)]} , (5.1)

where q ∈ N and the parameter ∆ ∈ (0,1) gives the weight of the ferromagnetic compared

to the nematic term. For q = 1 or ∆ = 1, the HMF model is recovered. For ∆ = 0, the

coupling between spins becomes purely nematic. This spin model is a long-range version of

the one used in Refs [43,44].

The presence of two di�erent types of coupling results in a richer phase diagram than the

HMF model, which only has two phases: paramagnetic (M = 0) and ferromagnetic (M > 0),

where M is the modulus of the magnetization, M = 〈cos θ〉. For the GHMF, we may de�ne

two order parameters, the magnetizations

M1 = 〈cos θ〉 and Mq = 〈cos(qθ)〉. (5.2)

Then, we have three possible phases: (i) the paramagnetic phase (M1 = Mq = 0), (ii) the

nematic phase, (Mq>0, M1 =0), and (iii) the ferromagnetic phase (M1>0, Mq>0) (Figure

5.1).

The two following works study the transitions between these di�erent phases for q = 2,

in both the nonequilibrium case (section 5.1) and the equilibrium case (section 5.2).
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(i) M1 = M2 = 0

θ
0
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(ii) M1 = 0,M2 > 0
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(iii) M1 > 0,M2 > 0
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π
2

π

−π
2

Figure 5.1: Illustration of the di�erent phases for the GHMF model with q = 2: (i) paramagnetic,
(ii) nematic and (iii) ferromagnetic. Dots represent particles constrained to move on a circle of
unitary radius (black circle), with position given by the coordinate θ, or equivalently as particles
with spin θ.

5.1 Nonequilibrium phase transitions in systems with long-

range interactions

The three possible phases of the GHMF model with q = 2 are the paramagnetic phase,

where particles are homogeneously distributed in angle in the interval (−π,π], the ferromag-

netic phase, with particles clumped around θ = 0, and the nematic phase, with a clump

of particles around θ = 0 and another around θ = π; see Figure 5.1 for an illustration.

These phases can be formed in both equilibrium and nonequilibrium states. In this work,

we developed a nonequilibrium phase diagram using nonlinear stability analysis of homoge-

neous states and compared its predictions with the QSS of molecular dynamics. Finally, we

compared it to the microcanonical equilibrium phase diagram obtained by Boltzmann-Gibbs

statistical mechanics.

For the molecular dynamics, since we want to discover the QSS of a system that is

initially homogeneous, we distribute N particles with random angles and momenta in the

intervals θ ∈ [−π,π] and θ ∈ [−p0,p0]. Then, we numerically evolve their Hamilton equations

of motions,

θ̇i = pi,

ṗi = −∆M1 sin θi − 2(1−∆)M2 sin(2θi),
(5.3)

until the system reaches a steady state.

The system is Hamiltonian, and so it conserves the mean energy ε, which is given by

ε =
p0

6
+ 1, (5.4)

for the initial distribution cited above. We then build the �experimental� MD phase diagram

on the (ε,∆) plane.

To construct the dynamical phase diagram, �rst we observe that homogeneous states
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are always possible solutions of Vlasov dynamics; however, they are not necessarily sta-

ble. We tested the stability of the initial homogeneous distribution by expanding pm, the

maximum momentum of the distribution, as a Fourier series, pm(t) = p0 +
∑
An(t) cosnθ,

n ∈ Z. These perturbations are incorporated into the expressions for the magnetizations,

Mq =
∫

dpdθf(θ,p,t) cos(qθ). By writing time derivatives of the Mq, we analyzed their lin-

earised solutions to �nd the limits where the homogeneous (i.e., paramagnetic) state becomes

unstable compared to the nematic or ferromagnetic state. To �nd the nematic-ferromagnetic

transition, a nonlinear analysis is necessary. We de�ne the transition line as that in which

the growth of M1 and M2 are equal. The results of MD and the dynamical analysis matched

very well.

Finally, we compare this nonequilibrium phase diagram to the one predicted by equi-

librium statistical mechanics. To construct the equilibrium diagram, we �rst calculate the

microcanonical entropy S(E ,N) = kB ln Ω(E ,N), where

Ω(E ,N) =

∫ ∏
i

dθi

∫ ∏
i

dpi δ[E −H({θi},{pi})] (5.5)

and E = Nε. Maximizing the entropy, we �nd the most likely values ofM1 andM2, and thus

construct the phase diagram. As expected, the equilibrium phase diagram is very di�erent

from the nonequilibrium phase diagram.

These results were published in the paper �Nonequilibrium Phase Transitions in Systems

with Long-Range Interactions� in the journal Physical Review Letters, volume 109, page

230601 (2012) [104]. This work was part of my Masters research, and lead to the development

of the work described in the next section, 5.2.
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We introduce a generalized Hamiltonian mean field model—an XY model with both linear and

quadratic coupling between spins and explicit Hamiltonian dynamics. In addition to the usual paramag-

netic and ferromagnetic phases, this model also possesses a nematic phase. The generalized Hamiltonian

mean field model can be solved explicitly using Boltzmann-Gibbs statistical mechanics, in both canonical

and microcanonical ensembles. However, when the resulting microcanonical phase diagram is compared

with the one obtained using molecular dynamics simulations, it is found that the two are very different. We

will present a dynamical theory which allows us to explicitly calculate the phase diagram obtained using

molecular dynamics simulations without any adjustable parameters. The model illustrates the fundamental

role played by dynamics as well the inadequacy of Boltzmann-Gibbs statistics for systems with long-range

forces in the thermodynamic limit.

DOI: 10.1103/PhysRevLett.109.230601 PACS numbers: 05.70.Ln, 05.20.�y, 05.45.�a

A fundamental concept in statistical mechanics, taught
in a typical course, is the equivalence of ensembles [1].
One also learns that mean field theory becomes exact for
systems with long-range (LR) interactions [2,3]. However,
in order to have a well-defined thermodynamic limit, in this
case, special care must be taken. The usual approach is to
scale the strength of the two-body interaction potential
with the number of particles in the system, N. This is
the, so-called, Kac prescription—it makes the infinitely
long-range two-body interaction infinitesimally weak [2].
The thermodynamic limit becomes well-defined, since
both the kinetic and the potential contributions to the total
energy now scale linearly with N, making the energy
extensive. Over the last decade, however, it has become
clear that both the ensemble equivalence and the exactness
of mean field theory may fail for systems with LR
interactions [4–6]. The phase-diagrams calculated using
Boltzmann-Gibbs (BG) statistics in canonical and micro-
canonical ensembles do not always coincide [4].
Furthermore, molecular dynamics simulations, show that
isolated LR interacting systems become trapped in quasi-
stationary states (qSS), the lifetime of which diverges with
the number of particles [7–15]. These qSS depend explic-
itly on the initial particle distribution.

The inapplicability of BG statistics to systems with LR
forces in thermodynamic limit is a consequence of the
ergodicity breaking. Scaling of two-body potentials with
the number of particles—essential for the existence of a
well-defined thermodynamic limit—destroys the correla-
tions (collisions) between the particles [16] that drive
normal short-range interacting systems towards the ther-
modynamic equilibrium. Relaxation to the stationary state
of an LR system is, therefore, fundamentally different from
the collisional (correlational) relaxation of normal gases
and fluids. Collisionless relaxation relies on the collective

excitations and evaporative cooling driven by Landau
damping [12,17]. The final stationary state reached by a
collisionless system is intrinsically nonergodic [13,18].
It does not correspond to the maximum of the Boltzmann
entropy. To exemplify this dichotomy, in this Letter, we
introduce a new generalized Hamiltonian mean field
model (GHMF)—a LR version of the model studied in
Refs. [19,20]—which can be solved exactly using BG
statistical mechanics. We will show that the equilibrium
phase diagram predicted by the BG statistics in the micro-
canonical ensemble is very different from the one obtained
using the molecular dynamics (MD) simulations. We will
then construct a dynamical theory that correctly predicts
the location and the order of the phase transitions observed
in MD simulations.
The GHMF is described by the Hamiltonian

Hð�i; piÞ ¼
XN
i¼1

p2
i

2
þ 1

2N

XN
i;j¼1

½1� �cosð�i � �jÞ

� ð1� �Þ cosð2�i � 2�jÞ�; (1)

where � 2 ½0; 1�. The model can be thought of as either
XY spins confined to a line, or as particles restricted
to move on a circle. The latter interpretation is perhaps
more convenient when discussing MD simulations with
equations of motion given by: _�i ¼ @H=@pi and
_pi ¼ �@H=@�i.
We define the ferromagnetic and nematic order parame-

ters as m1 ¼ 1
N

P
N
i¼1 cos�i and m2 ¼ 1

N

P
N
i¼1 cos2�i,

respectively. Using the usual statistical mechanics
approach [5], we first calculate the microcanonical entropy
for the GHMF.
Within BG statistical mechanics, all the thermodynamic

information is encoded in the phase space volume acces-
sible to the system with the total energy E
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�ðE;NÞ ¼
Z �

��

Y
d�i

Z 1

�1

Y
dpi�ðE�Hð�i; piÞÞ: (2)

The integral in Eq. (2) can be divided into two parts—
kinetic and configurational,

�ðE;NÞ ¼
Z

dK�kinðKÞ�confðE� KÞ; (3)

where

�kinðKÞ ¼
Z 1

�1

Y
dpi�

�
K �

P
p2
i

2

�
; (4)

�confðE� KÞ ¼
Z �

��

Y
d�i�ðE� K �Uðf�igÞÞ; (5)

and U is the potential energy, second term in Eq. (1).
Integrating over the momentum degrees of freedom, in
the thermodynamic limit we obtain

�kinðKÞ ¼ exp

�
N

2

�
ln�þ ln2K � ln

N

2
þ 1

��
: (6)

The microcanonical entropy per particle is sð"Þ ¼
1
N ln�ðE;NÞ,

sð"Þ¼1

2
ln2�þ1

2
þsup

�

�
1

2
ln2�þ 1

N
ln�confðNð"��ÞÞ

�
;

(7)

where � � K=N ¼ ðE�UÞ=N ¼ "� u. Since the poten-
tial energy depends only on m1 and m2, we define

�mðm1; m2Þ ¼
Z �

��

Y
d�i�

�X
cos�i � Nm1

�

� �
�X

cos2�i � Nm2

�
; (8)

which using the Fourier representation of the delta function
can be written as

�mðm1;m2Þ¼ 1

ð2�Þ2
Z 1

�1
dx

Z 1

�1
dyexp

�
N

�
�ixm1� iym2

þ ln

��Z
d�expðixcos�þ iycos2�Þ

����
:

(9)

The integral can be evaluated using the saddle-point
method. The extremum corresponds to (x?, y?), which
must satisfy

m1 ¼
R
d� cos� exp½ix cos�þ iy cos2��R

d� exp½ix cos�þ iy cos2�� ; (10)

m2 ¼
R
d� cos2� exp½ix cos�þ iy cos2��R

d� exp½ix cos�þ iy cos2�� : (11)

Defining a ¼ ix? and b ¼ iy? and neglecting terms of
order lower than N,

1

N
ln�mðm1;m2Þ ¼�m1aðm1;m2Þ�m2bðm1;m2Þ

þ ln

�Z
d�exp½aðm1;m2Þcos�þbðm1;m2Þcos2��

�
:

(12)

In the thermodynamic limit, we may replace
ln�confðE� KÞ by ln�mðm1; m2Þ in Eq. (7). Furthermore,
noting that � ¼ "� u, where u ¼ ð1� �m2

1 � ð1�
�Þm2

2Þ=2, the maximization can be taken with respect
to m1, m2 instead of �. The entropy per particle then
becomes

sð"Þ ¼ 1

2
ln2�þ 1

2
þ supm1;m2

�
1

2
ln½ð2"� 1þ �m2

1

þ ð1��Þm2
2Þ� �m1aðm1; m2Þ �m2bðm1; m2Þ

þ ln

�Z
d� expðaðm1; m2Þ cos�þ bðm1; m2Þ

� cos2�Þ
��
: (13)

with the equilibrium values of the order parameter
(m?

1 , m
?
2 ) given by

�m?
1

2"� 1þ�m?2
1 þ ð1� �Þm?2

2

¼ aðm?
1 ; m

?
2 Þ; (14)

ð1� �Þm?
2

2"� 1þ�m?2
1 þ ð1� �Þm?2

2

¼ bðm?
1 ; m

?
2 Þ: (15)

Substituting these expressions into Eqs. (10) and (11),
we find the equilibrium values of the order parameters

m1 ¼
R
�
�� d� cos� exp

h
�m1 cos�þð1��Þm2 cos2�
2"�1þ�m2

1
þð1��Þm2

2

i
R
�
�� d� exp

h
�m1 cos�þð1��Þm2 cos2�
2"�1þ�m2

1
þð1��Þm2

2

i ; (16)

m2 ¼
R
�
�� d� cos2� exp

h
�m1 cos�þð1��Þm2 cos2�
2"�1þ�m2

1
þð1��Þm2

2

i
R
�
�� d� exp

h
�m1 cos�þð1��Þm2 cos2�
2"�1þ�m2

1þð1��Þm2
2

i ; (17)

where for notational simplicity, we have dropped ?. In
the case of a first order phase transition—more than one
solution of Eqs. (16) and (17)—the equilibrium values
of m1 and m2 will correspond to the ones that lead to the
maximum entropy. The resulting microcanonical phase
diagram is shown in Fig. 1.
Equation (2) requires that the system described by the

Hamiltonian [Eq. (1)] is ergodic—has equal probability of
visiting all possible microstates. To see if this is the case,
we use MD simulations to study its dynamics. For the
GHMF, we are interested to understand how an ordered
(ferromagnetic or nematic) state can arise from an origi-
nally disordered homogeneous (paramagnetic) particle
distribution f0ð�; pÞ ¼ 1

4�p0
�ð�� j�jÞ�ðp0 � jpjÞ. The
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Hamilton’s equations of motion reduce to a second order
differential equation for �i,

€� i ¼ Fð�iÞ
� ��m1ðtÞ sin�iðtÞ � 2ð1��Þm2ðtÞ sin2�iðtÞ; (18)

where Fð�Þ is the force acting on a particle located at �,
and where we have used the fact that hsin�ðtÞi ¼
hsin2�ðtÞi ¼ 0, throughout the dynamical evolution
[15,21]. Comparing the phase diagram obtained using
MD simulations, we see that it is very different from the
prediction of the microcanonical BG statistical mechanics,
see Fig. 2.

Besides occurring in different regions of the (", �)
plane, the phase transitions predicted by the BG statistics
are of the wrong order. While the transitions from para-
magnetic to ferromagnetic or nematic phases are found to
be of second order, MD simulations show that these tran-
sitions are of first order. Furthermore, the second order
phase transition line between the nematic and the ferro-
magnetic phase disappears completely and is replaced by a
region of instability in which either phase can occur with
equal probability.

To understand the results of MD simulations, one must
forget equilibrium statistical mechanics and return to ki-
netic theory. In the thermodynamic limit, the dynamical
evolution of the one-particle distribution function fð�; p; tÞ
of a system with long-range interactions is governed
exactly by the Vlasov equation [22]. Vlasov dynamics is
collisionless—the relaxation to equilibrium comes from
Landau damping, a dynamical process in which individual
particles gain energy from collective oscillations, while
the oscillations are damped out. The one-particle
energy of the GHMF is � ¼ p2=2þ 1� �m1 cosð�Þ �
ð1� �Þm2 cosð2�Þ. Note that the initial particle distribu-
tion f0ð�; pÞ has m1 ¼ m2 ¼ 0, so that it can be expressed
as a function of �. This means that f0ð�; pÞ is a stationary

solution of the Vlasov equation. A phase transition in
GHMF, therefore, can occur only after a dynamical insta-
bility. To explore the nonlinear stability of the GHMF,
we consider a perturbation of the initial distribution,
such that the maximum momentum p0 ! pmðtÞ ¼ p0 þP1

n¼0 AnðtÞ cosðn�Þ. We define the generalized order pa-

rameters as

mnðtÞ � hcosðn�Þi �
Z

fð�; p; tÞ cosðn�Þdpd�; (19)

where fð�; p; tÞ ¼ 1
4�p0

�ð�� j�jÞ�ðpmðtÞ � jpjÞ. Note

that this distribution preserves the phase space density, as
is required by the Vlasov equation. Performing the inte-
gration in Eq. (19), we find that mnðtÞ ¼ AnðTÞ=2p0.
Taking two temporal derivatives of mnðtÞ, we obtain,

€mn ¼ �n2hp2 cosðn�Þi � nhFð�Þ sinðn�Þi; (20)

where we have used the equation of motion, Eq. (18).
Performing the averages using the distribution function
fð�; p; tÞ, we obtain the equations of motion for the gen-
eralized order parameters,

€m 1 þ
�
12"� 6� �

2

�
m1 ¼ f1ðm1; m2; m3; m4Þ; (21)

0 0.2 0.4 0.6 0.8 1
 ∆

0.5

0.55

0.6

0.65

0.7

0.75

0.8

ε

1st order
2nd order
TCP

Para

Nematic Ferro

FIG. 1. Microcanonical phase diagram obtained using BG
statistics. Solid circles are the two tricritical points.
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FIG. 2 (color online). The out-of-equilibrium phase diagram
of the GHMF. The squares and triangles are simulation results
for the qSS nematic-paramagnetic and para-ferromagnetic phase
transitions, respectively. The shaded area represents the nematic-
ferromagnetic transition region in which either phase occurs with
equal probability. To the right of this region, the order is
ferromagnetic, and to the left, nematic. Black solid lines are
the theoretical predictions for the transitions. All transitions are
first order. Insets show the phase space particle distribution in
different phases. Notice the characteristic core-halo structure
[15] inside both nematic and ferromagnetic phases. The simu-
lations were performed with 2� 106 particles for the
paramagnetic-nematic and paramagnetic-ferromagnetic transi-
tion, and with 2� 107 particles to locate the instability region
between the nematic and ferromagnetic phases.
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€m 2 þ 2ð12"þ�� 7Þm2 ¼ f2ðm1; m2; m3; m4Þ; (22)

€m 3 þ 27ð2"� 1Þm3 ¼ f3ðm1; m2; m3; m4Þ; (23)

€m 4 þ 48ð2"� 1Þm4 ¼ f4ðm1; m2; m3; m4Þ; (24)

where

f1 ¼ m1m2

�
1� 3�

2

�
þ ð�� 1Þm2m3 � 3ð2"� 1Þ

� fm3
1 þm2

1m3 þm3½m2ð2þm2Þ þ 2ð1þm2Þm4�
þ 2m1½m2 þm2

2 þm2
3 þm2m4 þm2

4�g; (25)

f2 ¼ �ðm2
1 �m1m3 þ 2m2m4Þ � 2m2m4

� 12ð2"� 1Þ½m3
2 þm2

3m4 þ 2m1m3ð1þm2 þm4Þ
þm2

1ð1þ 2m2 þm4Þ þ 2m2ðm2
3 þm4 þm2

4Þ�;
(26)

f3 ¼ 3m1

2
½ð2� �Þm2 ��m4� � 9ð2"� 1Þfm3

1 þ 6m2
1m3

þ 3m1½m2ð2þm2Þ þ 2ð1þm2Þm4�
þ 3m3½m2

3 þ 2ðm2
2 þm2m4 þm2

4Þ�g; (27)

f4¼2�m1m3�4ð��1Þm2
2�48ð2"�1Þ½2m1ð1þm2Þm3

þm2ðm2þm2
3Þþ2ðm2

2þm2
3Þm4þm3

4

þm2
1ðm2þ2m4Þ�: (28)

We have restricted ourselves to the first four generalized
order parameters, since these are already sufficient to under-
stand the phase diagram obtained using MD simulations.
Note that the right hand sides of Eqs. (21)–(24) are nonlinear
functions, so that the transition from paramagnetic-to-
ferromagnetic or paramagnetic-to-nematic phases is deter-
mined by the linear stability of these equations. Furthermore,
all the order parameters with n > 2 are linearly stable.
Equations (21) and (22) show that the paramagnetic
phase becomes unstable to ferromagnetic ordering when
12"� 6� �< 0 and tonematic orderingwhen12"þ��
7< 0. The two stability lines agree perfectly with the results
of MD simulations, see Fig. 2. It is important to note thatm3

andm4 always remain linearly stable (recall that " > 0:5 for
the initial distribution).

Linear stability analysis, however, is not sufficient to
determine the order of the phase transitions for which the
full nonlinear equations must be considered. We first note
that Eqs. (21)–(24) are conservative, they do not account
for the Landau damping that is responsible for the relaxa-
tion to equilibrium and formation of the core-halo struc-
tures [15], like the ones shown in the insets of Fig. 2.
Phenomenologically, Landau damping can be included in

Eqs. (21)–(24) by introducing terms linear in _mn. The
relaxation will then proceed towards the fixed points of
Eqs. (21)–(24) which can be calculated explicitly. We find
that when either transition line is crossed, the system
evolves either to nematic (m1 ¼ 0, m2 � 0) or ferromag-
netic (m1 � 0, m2 � 0) fixed points. When crossing the
paramagnetic-nematic phase transition line, (�< 0:5), the
order parameter m1 remains zero, while m2 jumps byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
ffiffiffiffi
43

p
18 � 29

18

q
� 0:459, independent of �. This theoretical

prediction is in excellent agreement with the results of
MD simulation which see a jump in the nematic order
parameter of 0.45, characterizing a strong first-order
phase transition, see Fig. 3. When the paramagnetic-
ferromagnetic line is crossed (�> 0:5), both m1 and m2

experience a jump. For � ¼ 0:6, the theory predicts the
jumps to be 0.5102 and�0:1861, for the ferromagnetic and
nematic parameters, respectively, while the simulations
find 0.41 and �0:10. For � ¼ 1, the theory predicts the
respective jumps to be 0.555391 and �0:1129, while the
simulations find 0.45 and �0:07. It is interesting to note
that while for the nematic transition the jump in m2 is
universal—independent of �—for the ferromagnetic tran-
sition, this is not the case.
What will determine the transition between nematic and

ferromagnetic phases? Deep inside the nematic and ferro-
magnetic phases, Eqs. (21)–(24) possess both stable ne-
matic (m1 ¼ 0, m2 � 0) and ferromagnetic fixed points
(m1 � 0, m2 � 0). Which of these fixed points is reached
first will depend on the initial condition. Starting from a
paramagnetic distribution f0, in the unstable region of the
phase diagram, both m1 and m2 will grow with time.
Equations (21) and (22) show that the rate of growth of
the two order parameters are, in general, very different,

while m1 � e�1t, where �1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið6þ �� 12"Þ=2p

, the ne-

matic order parameter grows as m2 � e�2t, with �2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14� 24"� 2�

p
. If the nematic order parameter first
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FIG. 3 (color online). Panel (a) shows the growth and satura-
tion of the order parameter m2 across the paramagnetic-nematic
transition obtained using MD simulations. The predicted theo-
retical value ism2 ¼ 0:459, which is in excellent agreement with
the simulations. In panel (b), the symbols are the momentum
distribution in the qSS obtained using MD, while the solid line
depicts the corresponding Maxwell—Boltzmann distribution to
which the systems should relax in the infinite time limit. The
parameters are � ¼ 0:2 and u ¼ 0:567.
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reaches the value characteristic of the nematic fixed point,
then nematic order will be established, otherwise the phase
will be ferromagnetic. Therefore, we expect that the
nematic-ferromagnetic transition line should be given by
�1 ¼ �2 (solid line between nematic and ferromagnetic
phases in Fig. 2). This is indeed where the instability
characterizing nematic-to-ferromagnetic region is found
to be, see Fig. 2.

We have introduced a generalized Hamiltonian mean
field model. In addition to the usual paramagnetic and
ferromagnetic phases, this model also possesses a nematic
phase. We have obtained the phase diagram of the GHMF
using three different methods: BG statistical mechanics,
MD simulations, and a new dynamical theory introduced in
this Letter. The model exemplifies the failure of BG sta-
tistics to describe isolated systems with LR interactions, in
the thermodynamic limit. This is the first time that a
complex (multiphase) out-of-equilibrium phase diagram
for quasistationary states has been calculated analytically
for a system with LR interactions.

This work was partially supported by the CNPq,
FAPERGS, INCT-FCx, and by the US-AFOSR under the
grant FA9550-12-1-0438.
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ENSEMBLE INEQUIVALENCE IN A MEAN-FIELD XY MODEL WITH FERROMAGNETIC AND

NEMATIC COUPLINGS 87

5.2 Ensemble inequivalence in a mean-�eld XY model

with ferromagnetic and nematic couplings

In this work, we focused on the equilibrium phase diagram of the GHMF model. As in

the previous section, we consider only q = 2, so the three phases are paramagnetic, nematic

and ferromagnetic. We calculated the microcanonical phase diagram in the (ε,∆) plane in

the same manner as before, as well as the canonical phase diagram in the (T,∆) plane, where

T is the temperature.

To calculate the canonical phase diagram, we integrated the canonical partition function

Z(β,N) =

∫ ∏
i

dθi

∫ ∏
i

dpie
−βH({θi},{pi}), (5.6)

where β = 1/T is the inverse temperature andH({θi},{pi}) is the Hamiltonian given by equa-

tion (5.1). This gives us the free energy F (β,N) = − lnZ(β,N)/β. The order parametersM1

and M2
1 are determined using the canonical measure exp[−βH({θi},{pi})]

∏
i dθidpi. Then,

we have all the necessary equations to construct the canonical phase diagram, minimizing

the free energy to �nd M1 and M2 for a given T and ∆.

The resulting phase diagrams, both in the microcanonical and canonical cases, show

that the transition is of second-order along most of the transition curves. Notably, it is of

�rst-order near the region where the three transition lines meet, around ∆ ≈ 0.5. As stated

previously in subsection 3.2.3, ensemble inequivalence may exist in �rst-order phase transi-

tions. This occurs because there are two values of the order parameters that correspond to

the same mapping variable. For example, in the �rst-order phase transition between param-

agnetic and ferromagnetic phases in the microcanonical ensemble, two values of M1 and M2

result in the same free energy, for the same temperature T and parameter ∆. The transition

line is then mapped onto the microcanonical phase diagram by �nding the mean energy ε

as a function of the temperature and the magnetizations. Unlike the temperature, however,

this will give two di�erent values of the mean energy, resulting in two di�erent transition

curves. The area between these curves is thus inaccessible in the canonical ensemble, since

they do not correspond to macrostates that minimize the free energy.

Our results thus expose a strong ensemble inequivalence in the GHMF model.

This work, entitled �Ensemble inequivalence in a mean-�eld XY model with ferromagnetic

and nematic couplings�, was published in the journal Physical Review E, volume 90, page

062141 (2014).

1In the published paper, the notation for the order parameters di�ers: R1 ≡M1 and R2 ≡M2.
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We explore ensemble inequivalence in long-range interacting systems by studying an XY model of classical
spins with ferromagnetic and nematic coupling. We demonstrate the inequivalence by mapping the microcanonical
phase diagram onto the canonical one, and also by doing the inverse mapping. We show that the equilibrium
phase diagrams within the two ensembles strongly disagree within the regions of first-order transitions, exhibiting
interesting features like temperature jumps. In particular, we discuss the coexistence and forbidden regions of
different macroscopic states in both the phase diagrams.

DOI: 10.1103/PhysRevE.90.062141 PACS number(s): 05.70.Fh, 05.20.Gg

Recent years have seen extensive studies of systems with
long-range interactions that have the two-body potential in
d dimensions decaying at large separation r as 1/rα , 0 �
α � d [1–4]. Examples span a wide variety, from bacterial
population [5], plasmas [6], and dipolar ferroelectrics and
ferromagnets [7], to two-dimensional geophysical vortices
[8] and self-gravitating systems [9]. A striking feature of
long-range systems distinct from short-range ones is that
of nonadditivity, whereby thermodynamic quantities scale
superlinearly with the system size. Nonadditivity manifests
in static properties like negative microcanonical specific heat
[10,11], inequivalence of statistical ensembles [12–19], and
other rich possibilities [20]. As for the dynamics, long-range
systems often exhibit broken ergodicity [16,21] and slow
relaxation towards equilibrium [8,16,22–25].

Here, we demonstrate ensemble inequivalence in a model
of long-range systems that has mean-field interaction (i.e.,
α = 0) and two coupling modes. This so-called generalized
Hamiltonian mean-field (GHMF) model, a long-range version
with added kinetic energy of the model of Ref. [26], has N

interacting particles with angular coordinates θi ∈ [0,2π ] and
momenta pi , i = 1,2, . . . ,N , which are moving on a unit circle
[27]. The GHMF Hamiltonian is

H =
N∑

i=1

p2
i

2
+ 1

2N

N∑
i,j=1

[1 − � cos θij − (1 − �) cos 2θij ],

(1)

where θij ≡ θi − θj . Here, cos θij is an attractive interac-
tion minimized by the particles forming a cluster, so that
θij = 0 (mod 2π ), while cos 2θij with two minima at θij =
0, π (mod 2π ) promotes a two-cluster state. The parameter
� ∈ [0,1] sets the relative strength of the two coupling
modes. The potential energy in Eq. (1) is scaled by N to
make the energy extensive, following the Kac prescription
[28], but the system remains nonadditive. In terms of the
XY -spin vectors Si ≡ (cos θi, sin θi), the interactions have the
form of a mean-field ferromagnetic interaction ∼ −�Si · Sj ,

and a mean-field coupling ∼ −(1 − �)(Si · Sj )2 promoting
nematic ordering. For XY lattice models with this type of
ferro-nematic coupling, see Refs. [26,29–31]. The system (1)
has Hamilton dynamics: dθi/dt = pi , dpi/dt = −∂H/∂θi .
For � = 1, when no nematic ordering exists, the GHMF model
becomes the Hamiltonian mean-field (HMF) model [22], a
paradigmatic model of long-range systems [1].

In this work, we report on striking and strong inequivalence
of statistical ensembles for the GHMF model. The system
has three equilibrium phases: ferromagnetic, paramagnetic,
and nematic, with first- and second-order transitions. Let us
note that Ref. [32] studied another model with long-range
interactions, which also shows paramagnetic, ferromagnetic,
and nematic-like phases. For the GHMF model, by comparing
the phase diagrams in the canonical and microcanonical
ensembles (the latter is derived in Ref. [27]), we show in the
regions of first-order transitions that the phase diagrams differ
significantly. We analyze the inequivalence in two ways, by
mapping the microcanonical phase diagram onto the canonical
one, as is usually done [13–19], and also by doing the inverse
mapping of the canonical onto the microcanonical one; in
particular, we discuss the coexistence and forbidden regions
of different macroscopic states. This study demonstrates
the subtleties and intricacies of the presence of different
stability regions of macroscopic states in long-range systems in
microcanonical and canonical equilibria. It is worth noting that
compared to the pure para-ferro transition, the phenomenology
here due to the presence of the additional nematic phase is
much richer. We show that the region where the three phases
meet, within both microcanonical and canonical ensembles, is
the one exhibiting ensemble inequivalence.

We now turn to derive our results. Rotational symmetry
of the Hamiltonian (1) allows us to choose, without loss of
generality, the ordering direction in the equilibrium stationary
state to be along x (there are no stationary states with a nonzero
angle between the directions of ferromagnetic and nematic or-
der) and to define as order parameters the equilibrium averages

Rm ≡ 〈cos mθ〉, m = 1,2, (2)

1539-3755/2014/90(6)/062141(5) 062141-1 ©2014 American Physical Society
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where m = 1 (2) stands for the ferromagnetic
(nematic) order. The canonical partition function is
Z = ∏

i

∫
dpidθi exp(−βH ), with β = 1/T being the inverse

of the temperature T measured in units of the Boltzmann
constant. Since Eq. (1) is a mean-field system, in the thermo-
dynamic limit N → ∞, one follows the standard Hubbard-
Stratonovich transformation and a saddle-point approximation
to evaluate Z [1]. One then obtains expressions for Rm’s, and
the average energy per particle, given by 〈ε〉 = ∂(βf )/∂β,
where f is the free energy per particle. One has, with m = 1,2,

Rm =
∫

dθ cos mθeβ[�R1 cos θ+(1−�)R2 cos 2θ]∫
dθeβ[�R1 cos θ+(1−�)R2 cos 2θ]

, (3)

〈ε〉 = 1/(2β) + 1/2 − (1/2)(�R2
1 + (1 − �)R2

2), and

f = − 1

2β
ln

(
2π

β

)
+ 1

2
+ 1

2

(
�R2

1 + (1 − �)R2
2

)

− 1

β
ln

( ∫
dθeβ[�R1 cos θ+(1−�)R2 cos 2θ]

)
. (4)

The canonical phase diagram in the �-T plane is obtained by
plotting the equilibrium values of R1 and R2 that solve Eq. (3)
and minimize the free energy (4).

We now describe a practical way to obtain the canonical
phase diagram, by introducing auxiliary variables R, α as

R ≡
√

(β�R1)2 + (β(1 − �)R2)2,
(5)

cos α ≡ β�R1/R, sin α ≡ β(1 − �)R2/R.

Then, the argument of the exponential in Eq. (3) becomes
R(cos α cos θ + sin α cos 2θ ), and the integrals on the right
hand side of Eq. (3) evaluate to two quantities Cm(R,α) that
depend on the introduced auxiliary variables. Using Rm =
Cm(R,α) we obtain, by virtue of Eq. (5), all the parameters in a
parametric form in terms of the introduced auxiliary variables:

β = R cos α

C1
+ R sin α

C2
, � = 1 − T

R sin α

C2
. (6)

Once R1,2, β, and � are determined, one can use Eq. (4) to find
the free energy of the solution. Varying R � 0 and α ∈ [0,π/2)
gives all solutions of Eq. (3), while Eq. (4) yields the stable
branches. We note that in Ref. [33], studying a nonequilibrium
version of our model, a different and more useful method of
finding C1,2, based on the Fourier mode representation of an
equivalent Fokker-Planck equation, is used; in our equilibrium
setup, however, exploiting the integrals (3) is simpler. For the
pure nematic phase (that has R1 = 0), one sets α = π/2, so
that the only auxiliary parameter is R; one finds R2 = C2(R)
from Eq. (3), and the temperature from β = R/(R2(1 − �)).

In contrast to Eq. (3), the order parameters within a
microcanonical ensemble, derived in Ref. [27], satisfy

Rm =
∫

dθ cos mθ exp
[

�R1 cos θ+(1−�)R2 cos 2θ

q(ε)

]
∫

dθ exp
[

�R1 cos θ+(1−�)R2 cos 2θ

q(ε)

] . (7)

Here, ε is the energy per particle, and q(ε) ≡ 2ε − 1 + �R2
1 +

(1 − �)R2
2. For given values of ε and �, the equilibrium values

of R1 and R2 are obtained as a particular solution of Eq. (7)

that maximizes the entropy [27]:

s(ε) = 1

2
ln 2π + 1

2
+ ln q(ε)

2
− 1

2

(
�R2

1 + (1 − �)R2
2

q(ε)

)

+ ln
∫

dθ exp

[
�R1 cos θ + (1 − �)R2 cos 2θ

q(ε)

]
.

(8)

The averages (7) are the same as Eq. (3) on making the
identification of the microcanonical energy ε with the average
energy 〈ε〉 in the canonical ensemble, so that the inverse
temperature β in Eq. (3) is

β−1 = q(ε) = 2ε − 1 + �R2
1 + (1 − �)R2

2 . (9)

This constitutes a link between the phase diagrams in the
two ensembles. Using then the integrals (3), we get the
following parametric representation in the �-ε plane for
the microcanonical ensemble: After finding R1 = C1(R,α)
and R2 = C2(R,α), we get R cos α = �R1/q(ε), R sin α =
(1 − �)R2/q(ε), or, explicitly,

� = R2 cos α

R2 cos α + R1 sin α
,

(10)

ε = 1

2

[
(1 − �)R2

R sin α
− �R2

1 − (1 − �)R2
2 + 1

]
.

Once R1,2,ε,� have been determined, one can use Eq. (8) to
find the entropy of the solution. For the pure nematic phase,
α = π/2, and R2

2 = 1 + (1 − 2ε)/(1 − �).
Summarizing, expressions (3), (6), (7), and (10) provide

self-consistent stationary state solutions for the order param-
eters in the canonical and the microcanonical ensembles,
respectively. Stable branches of these solutions correspond
respectively to the minimum of the free energy (4) and to the
maximum of the entropy (8).

We now present results of the phase diagrams for the two
ensembles in Fig. 1. Both diagrams are qualitatively similar,
with three phases: paramagnetic, ferromagnetic, and nematic.
For large values of the parameter �, on decreasing the energy
or temperature, one observes a second-order transition from the
paramagnetic to the ferromagnetic phase; only at lower values
of � does this phase transition become of first order. For low
values of �, decreasing the energy or temperature results in
a second-order transition from the paramagnetic to the purely
nematic phase for which R1 is zero; a further decrease results
in either a second-order transition (for very small values of �)
or a first-order transition (for � ≈ 1/2) to the ferromagnetic
phase that has nonzero R1.

While the phase diagrams in Fig. 1 look simple, their map-
pings onto each other (Fig. 2) reveal nontrivial inequivalence
between the canonical and microcanonical descriptions. This
inequivalence is because while the self-consistent solutions
(3), (6), (7), and (10) are the same for both ensembles
and transform onto one another by using Eq. (9), they are
nevertheless stable in different parameter regimes. Thus, using
the mapping, Eq. (9), two situations can arise: either a gap, i.e.,
a region of inaccessible states, or an overlap, i.e., a region of
multiple stable solutions. Note that the second-order transition
to the nematic phase is the same in both descriptions.
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FIG. 1. (Color online) Comparison of the canonical and the
microcanonical phase diagrams. Here, pf1 means first-order para-
ferro transition, etc. (a) Phase diagram in the �-ε plane in the
microcanonical ensemble, Eqs. (7) and (8). The two tricritical points
are at � ≈ 0.545, ε ≈ 0.636, and at � ≈ 0.477, ε ≈ 0.628, while
there is a critical end point at � ≈ 0.487, ε ≈ 0.628. The inset shows
a zoom into the central part. (b) Phase diagram in the �-T plane in
the canonical ensemble, Eqs. (3) and (4). There are two tricritical
points, at � ≈ 0.667, T ≈ 0.333, and at � ≈ 0.34, T ≈ 0.267. The
critical end point is at � ≈ 0.441, T ≈ 0.279.

As Fig. 2(a) shows, mapping of the canonical phase diagram
onto the �-ε plane yields a gap. In the domain of � where a
first-order canonical transition occurs, the canonical transition
line splits into two lines when mapped onto the �-ε plane.
Between these lines, there is no stable canonical state for a
given ε (cf. Fig. 3).

A more nontrivial situation arises due to the mapping
of the microcanonical phase diagram onto the �-T plane,
as shown in Fig. 2(b). Here, two features are evident. First,
in regions where the microcanonical transition is of second
order but the canonical transition is of first order, there are
three microcanonically stable values of R1,2 at temperatures
between the lines T (1)

max (green line) and T (1)
min (red line), and

those between the lines T (1)
max and T (2)

min (brown line). Second, in
regions of a first-order microcanonical transition, the transition
line splits into two lines, denoted T (1ord)

max (blue line) and T (1ord)
min

(black dashed line), with the latter coinciding with either T (1)
min

or T (2)
min, such that for temperatures in between there are two

microcanonically stable values of R1,2; see the inset of Fig. 2(b)
and cuts of the �-T phase diagram at fixed values of � in
Fig. 3. Thus, in the whole domain of � where the canonical
transition is of first order, one observes a multiplicity of
microcanonically stable states in the �-T plane. Remarkably,
the tricritical points are different in the two ensembles.

In Fig. 4, we employ relation (9) to draw the temperature-
energy relation T (ε) for � = 0.5. For both microcanonical
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FIG. 2. (Color online) Inequivalence of phase diagrams in the
two ensembles. (a) Canonical phase diagram Fig. 1(b) mapped onto
the �-ε plane (the microcanonical diagram is in the background
in gray). Between the bold black and the thin red lines, there is
no canonical equilibrium state possible. (b) Microcanonical phase
diagram Fig. 1(a) mapped onto the �-T plane (the canonical diagram
is in the background in gray). T (1)

min (red) is the minimal temperature
at which the paramagnetic phase exists. T (1)

max (green) is the maximum
temperature at which the ferromagnetic phase exists. T (2)

max (cyan)
(T (2)

min, brown)] is the maximum (minimum) temperature at which the
nematic phase exists. The blue line for T (1ord)

max shows the splitting of
the first-order microcanonical transition in the region 0.477 < � <

0.545 (another line that belongs to this splitting is masked by T (1)
min

and T (2)
min). The inset shows a zoom into this middle region, where

black dashed and blue dotted lines correspond to the two values of
the temperature at the microcanonical jump.

and canonical ensembles, this curve has two branches: a high-
energy branch and a low-energy branch. At the point where the
two branches intersect, the two entropies in the microcanonical
ensemble and the two free energies in the canonical ensemble
become equal. In the region where the canonical curve shows
a jump in the energy at a given temperature, characteristic of a
first-order transition that here occurs between the paramagnetic
and the ferromagnetic phase [see Fig. 1(b)], the microcanonical
curve shows a region of negative specific heat (∂T /∂ε < 0).
Since the canonical specific heat is always positive, being given
by the fluctuations in the energy of the system, the negative
microcanonical specific heat is a further indication of ensemble
inequivalence for the model under study.

To conclude, we addressed the issue of ensemble inequiv-
alence in long-range interacting systems by studying an XY

model of classical spins with linear and quadratic coupling,
and evolving under Hamilton dynamics. In this so-called
generalized Hamiltonian mean-field model, we compared
exact equilibrium phase diagrams in the microcanonical and
canonical ensembles. We showed that, within the region of
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FIG. 3. (Color online) Stable solutions of R1,2 vs temperature
T in the canonical ensemble and energy ε in the microcanonical
ensemble (dotted grey lines); red solid lines are stable “imports” from
another ensemble (canonically stable states on left column panels and
microcanonically stable states on right column panels); � equals 0.49
(top) and 0.47 (bottom). The values of T (1)

max, T (1)
min, T (2)

max, T (2)
min, and T (1ord)

max

marked by arrows coincide with those in Fig. 2.

first-order transitions, the two ensembles show very different
behaviors. Nevertheless, let us remark that when plotted using
appropriate variables, the arrangement of critical points and
transition lines is similar in the phase diagrams of the two
ensembles. One may study how the relaxation to equilibrium
differs in the two ensembles, a behavior investigated earlier in
the microcanonical ensemble in Ref. [27]. In that paper, it was
shown that an isolated system described by the Hamiltonian
(1) relaxes to quasistationary states (QSSs) which also have
paramagnetic, ferromagnetic, and nematic phases. The phase
diagram of a QSS, however, is very different from the one

0.2

0.3

0.4 0.6

T

ε

FIG. 4. (Color online) Plot of the dependence ε-T for � = 0.5,
showing regions of microcanonical energies that are inaccessible
canonically. Bold grey lines, canonically stable states; blue solid
lines, microcanonically stable states.

predicted by the equilibrium statistical mechanics in the
microcanonical ensemble, Fig. 1. Nevertheless, we expect
that since the lifetime of the QSS scales with the number
of particles in the system, a finite system will eventually relax
to the Boltzmann-Gibbs equilibrium. In the thermodynamic
limit, however, this relaxation might take longer than the age
of the universe. It will be of interest to explore such dynamical
behavior in the canonical ensemble.

Finally, we mention that an overdamped nonequilibrium
version of the GHMF is a Kuramoto-type model of synchro-
nization of globally coupled oscillators (just as an overdamped
nonequilibrium version of the HMF model is the standard
Kuramoto model [34,35]), where transitions to synchroniza-
tion are of major interest. In the context of synchronization,
nematic and ferromagnetic phases correspond respectively
to two-cluster and one-cluster synchronization patterns (see
Ref. [33]), but their stability is obtained from dynamical and
not from free energy or entropy considerations.
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Chapter 6

Gravitation

Galaxies, globular clusters and other self-gravitating systems are the quintessential LRI

systems. Many of the instigating characteristics of LRI systems were �rst observed by astro-

physicists, such as negative speci�c heat [10], out-of-equilibrium stationary states and long

relaxation times [79]. The study of self-gravitating systems in three dimensions, however,

has serious setbacks. The gravitational potential φ(r) ∼ 1/r is unbounded: bodies of mass

can gain enough energy to escape con�nement and become separated by in�nitely large dis-

tances. At close distances, the potential 1/r diverges, requiring the introduction of a cut-o�

parameter to bound the potential from below.

These two complications can be circumvented by using initial distributions close to the

virial condition. For these distributions, particle evaporation is avoided because the distri-

bution does not undergo strong oscillations. Also, if the initial distribution is spherically

symmetric, symmetry breaking does not occur near the virial condition [111]. Particles sub-

ject to spherically symmetric potentials conserve angular momentum, thus avoiding the

divergence and collapse when r → 0.

6.1 Nonequilibrium stationary states of 3d self-gravitating

systems

In the work presented in this chapter, we generalized the integrable model developed for

the HMF model for a three-dimensional self-gravitating system. Being more complex than

the HMF model, it is natural to presume that the IM for the self-gravitating system will

also have new complications. Considering only spherically symmetric distributions, both the

energy ε and the angular momentum ` are conserved. Therefore, the construction of the

IM should take into account not only the conservation of the energy distribution function

f(ε), as is the case for the HMF IM, but the conservation of the distribution in energy and

angular momentum f(ε,`). Also, the functional form of the external potential of the HMF

IM is already known, H cos θ, so that it is only necessary to determine the value H. For the

gravitational case, however, the dependency of the external potential ψ(r) depends on the
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stationary distribution of the IM. The potential must be calculated for each value of r self-

consistently. In the publication that follows, we show how this is done. We compare the IM

results with molecular dynamics and obtain good results for di�erent initial distributions. For

the WB distribution, we show that the IM is a better description of the marginal distributions

than LB statistics, as is the case for the HMF model. On the other hand, systems with very

unstable initial distributions, for example, with extreme density variations, are not well

described by the IM. These cases are similar to the results for the HMF model in which

we saw that, as we increase the number of density levels in the initial distributions, the IM

predictions start to deviate from the molecular dynamics results, even for virialised initial

conditions.

These results were published in our paper �Nonequilibrium Stationary States of 3D Self-

Gravitating Systems�, Physical Review Letters, volume 113, pages 100602 (2014). The Letter

is presented in the following pages.



Nonequilibrium Stationary States of 3D Self-Gravitating Systems

Fernanda P. C. Benetti, Ana C. Ribeiro-Teixeira, Renato Pakter, and Yan Levin
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051,

CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
(Received 21 May 2014; revised manuscript received 15 July 2014; published 4 September 2014)

Three-dimensional self-gravitating systems do not evolve to thermodynamic equilibrium but become
trapped in nonequilibrium quasistationary states. In this Letter, we present a theory which allows us to
a priori predict the particle distribution in a final quasistationary state to which a self-gravitating system
will evolve from an initial condition which is isotropic in particle velocities and satisfies a virial constraint
2K ¼ −U, where K is the total kinetic energy, and U is the potential energy of the system.
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Unlike systems with short-range forces which relax to
thermodynamic equilibrium starting from an arbitrary
initial condition, systems with long-range interactions
become trapped in nonequilibrium quasistationary states
(QSS), the lifetime of which diverges with the number of
particles [1–9]. For interaction potentials unbounded from
above, the QSS have been observed to have a characteristic
core-halo structure [10]. The extent of the halo is deter-
mined by the parametric resonances which arise from the
collective density oscillations during the relaxation process
[11]. The dynamics of 3D self-gravitating systems, how-
ever, is significantly more complex due to the existence of
unbound states [12,13]. Indeed, Newton’s gravitational
potential is bounded from above so that the parametric
resonances may actually transfer enough energy to allow
some particles to completely escape from the gravitational
cluster [13,14]. This makes the study of 3D self-gravitating
systems particularly challenging [15,16]. Recently, how-
ever, it was shown that if the initial particle distribution
function is isotropic in velocity and satisfies the so-called
virial condition (VC), density oscillations and parametric
resonances will be suppressed [17–20]. The relaxation to
equilibrium will then proceed adiabatically. In the thermo-
dynamic limit, each particle of the gravitational cluster will
evolve under the action of a quasistatic mean-field poten-
tial, and the phase mixing of particle trajectories will lead to
a nonequilibrium QSS. In this Letter, we will show that it is
possible to a priori predict the density and the velocity
distribution functions within the QSS to which a 3D
gravitational system will evolve if the initial distribution
is isotropic in particle velocities and satisfies the VC.
The virial theorem requires that a stationary gravitational

system must have 2K ¼ −U, where K is the total kinetic
energy and U is the potential energy. This, however, does
not mean that an arbitrary initial distribution which satisfies
the VC will remain stationary. To be stationary, a distri-
bution function must be a time-independent solution of the
collisionless Boltzmann (Vlasov) equation [21–23]. From
Jeans’s theorem, this will only be the case if the distribution

depends on the phase space coordinates solely through the
integrals of motion [24]. Recently, however, it was shown
that if the initial particle distribution f0ðr;pÞ is spherically
symmetric and isotropic in velocity, f0ðr;pÞ ¼ f0ðr; pÞ,
and satisfies the VC, strong density oscillations will be
suppressed, and the relaxation to QSS will be intrinsically
different than for initial distributions which do not satisfy
the VC [10,25]. In principle, a spherically symmetric
distribution does not need to be a function of the modulus
of momentum. A spherical symmetry is compatible with
the distribution being a function of both radial and angular
momentum independently. The assumption of isotropicity
is included to prevent the radial orbit instability (ROI)
which leads to spontaneous symmetry breaking of the
distribution function. ROI can occur when kinetic energy of
the system is dominated by the radial velocity component
[26,27]. On the other hand, for isotropic velocity distribu-
tions, symmetry breaking occurs only when the initial
distribution deviates strongly from the VC [28]. For initial
particle distributions isotropic in velocity and satisfying the
VC, relaxation to equilibrium is a consequence of phase
mixing of particle trajectories [29], while for nonvirial
initial conditions, relaxation results from the excitation
of parametric resonances [11] and a nonlinear Landau
damping [10,30].
Consider a spherically symmetric—in both positions and

velocities—initial phase space particle distribution. We will
work in the thermodynamic limit N → ∞, m → 0, while
mN ¼ M, where N is the total number of particles,m is the
mass of each particle, and M is the total mass of the
gravitational system. At t ¼ 0, the particles are distributed
in accordance with the initial distribution f0ðr; pÞ inside an
infinite 3D configuration space. We would like to predict
the distribution function for the system when it relaxes to a
QSS. It is easy to see that in the thermodynamic limit, the
positional correlations between the particles vanish and all
the dynamics is controlled by the mean-field potential [23].
Furthermore, if the initial distribution is such that the VC is
satisfied, the mean-field potential should vary adiabatically,
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and the energy of each particle should change little. Since
the mean-field potential is a nonlinear function of position,
the particles on the energy shell [E, E þ dE] with slightly
distinct one-particle energies E will have incommensurate
orbital frequencies. This means that after a transient period,
the phase mixing will result in a uniform particle distri-
bution over the energy shell. The particle distribution in
the final QSS can then be obtained by a coarse graining of
the initial distribution over the phase space available to the
particle dynamics, taking into account the conservation of
the angular momentum of each particle, given the spherical
symmetry of the mean-field potential.
Consider an arbitrary initial particle distribution f0ðr; pÞ

that satisfies the VC. For t > 0, the particles will evolve
under the action of an external adiabatically varying
potential φðr; tÞ, which will eventually converge to some
ψðrÞ. Our approach will be to construct a coarse-grained
distribution for particles evolving directly under the action
of the static potential ψðrÞ, which will then be calculated
self-consistently [31–33]. Clearly, such an approximation
will only work if the variation of φðr; tÞ is adiabatic and no
resonances are excited. This is precisely the case for the
initial distributions which are isotropic in velocity and
satisfy the VC [29].
Since ψðrÞ is static and spherically symmetric, the

energy and the angular momentum of each particle will
be preserved. The nonlinearity of ψðrÞ will lead to phase
mixing of particle trajectories with the same energy and
angular momentum. The number of particles with energy
between [E, E þ dE] and the square of the angular
momentum between [l2, l2 þ dl2] is nðE;l2ÞdEdl2

and is conserved throughout dynamics. In the QSS, these
particles will spread over the phase space volume
gðE;l2ÞdEdl2, so that the coarse-grained distribution
function for the QSS will be

fðE;l2Þ ¼ nðE;l2Þ
gðE;l2Þ : ð1Þ

The self-consistent potential ψðrÞ must satisfy the Poisson
equation,

1

r2
d
dr

�
r2

dψ
dr

�
¼ 4πGmρðrÞ; ð2Þ

where

ρðrÞ ¼
Z

d3pf½Eðr;pÞ;l2ðr;pÞ� ð3Þ

is the asymptotic particle density. This gives us a closed set
of equations which can be used to calculate the distribution
function in the QSS. To simplify the notation, we will scale
all the distances to an arbitrary length scale L0, time to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L3
0=GM

q
, the potential to GM=L0, and the energy

to GM2=L0.
Because of the conservation of the angular momentum of

each particle, it is convenient to work with the canonical
positions (r, θ, ϕ) and conjugate momenta (pr, pθ, pϕ).
Note that in terms of these variables, the invariant phase
space measure is d3xd3p ¼ drdθdϕdprdpθdpϕ. The
particle energy and square modulus of the angular momen-
tum are

ϵðr; θ; pr; pθ; pϕÞ ¼
1

2

�
p2
r þ

p2
θ

r2
þ p2

ϕ

r2sin2θ

�
þ ψðrÞ; ð4Þ

l2ðθ; pθ; pϕÞ ¼ p2
θ þ

p2
ϕ

sin2θ
; ð5Þ

respectively. The density of states gðE;l2Þ is

gðE;l2Þ ¼
Z

dprdpθdpϕ

Z
drdθdϕδ½l2 − l2ðθ; pθ; pϕÞ�

× δ½E − ϵðr; θ; pr; pθ; pϕÞ�; ð6Þ

and the particle phase space density nðE;l2Þ is

nðE;l2Þ¼
Z

dprdpθdpϕ

Z
drdθdϕδ½l2−l2ðθ;pθ;pϕÞ�

×δ½E−ϵðr;θ;pr;pθ;pϕÞ�

×f0

 
r;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
rþ

p2
θ

r2
þ p2

ϕ

r2sin2θ

s !
: ð7Þ

Integration over all the variables in Eqs. (6) and (7), other
than dr, can be performed with the help of a Dirac delta
function identity

δ½fðxÞ� ¼
P

iδðx − xiÞ
jf0ðxiÞj

; ð8Þ

where xi is the ith root of fðxÞ. Carrying out the integration,
we obtain the coarse-grained distribution function for the
QSS,

fðE;l2Þ ¼

R
drf0½r;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − ψðrÞp Þ� Θ½E−

l2

2r2
−ψðrÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E− l2

2r2
−ψðrÞ

q
R
dr

Θ½E− l2

2r2
−ψðrÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E− l2

2r2
−ψðrÞ

q ; ð9Þ

where Θ is the Heaviside step function. The coarse-grained
distribution function depends on position and momentum
only through the conserved quantities E and l2; therefore,
it is automatically a stationary solution of the Vlasov
equation.
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The Poisson equation can be rewritten as

r2
d2ψ
dr2

þ 2r
dψ
dr

¼ NðrÞ; ð10Þ

where NðrÞ ¼ 4πr2ρðrÞ, or

NðrÞ ¼
Z

dprdpθdpϕ

Z
dθdϕfðE;l2Þ: ð11Þ

Multiplying Eq. (11) by the identity

Z
dðl2Þδ

�
l2 − p2

θ −
p2
ϕ

sin2θ

�
¼ 1; ð12Þ

and changing the order of integration, we can write

NðrÞ¼
Z

dðl2Þdprdpθdpϕ

Z
dθdϕδ

�
l2−p2

θ−
p2
ϕ

sin2θ

�

×f

�
p2
r

2
þ p2

θ

2r2
þ p2

ϕ

2r2sin2θ
þψðrÞ;p2

θþ
p2
ϕ

sin2θ

�
: ð13Þ

The integration over the variables pθ, pϕ, θ, and ϕ can now
be performed explicitly with the help of Eq. (8). Finally,
changing the integration variable from pr to E, Eq. (13)
simplifies to

NðrÞ¼8π2
Z

∞

0

dðl2Þ
Z

∞

E0

dEfðE;l2Þ Θ½E− l2

2r2−ψðrÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(E− l2

2r2−ψðrÞ)
q ;

ð14Þ

where the lower limit of integration is E0 ¼ ðl2=2r2Þ þ
ψðrÞ and fðE;l2Þ is given by Eq. (9). Substituting Eq. (14)
into Eq. (10), we find an integrodifferential equation for the
gravitational potential ψðrÞ in the QSS. Equation (10) can
be solved numerically using the Picard iteration. Once the
gravitational potential is known, the coarse-grained distri-
bution function can be easily calculated by performing the
integration in Eq. (9).
We next validated the proposed theory by comparing

the marginal position and velocity distribution functions
NðrÞ and NðpÞ to explicit molecular dynamics (MD)
simulations of a 3D self-gravitating system of N particles.
The simulations were performed using a version of the
particle-in-cell (PIC) algorithm, in which each particle
interacts with a mean-field potential produced by all other
particles [10]. In the absence of ROI, these simulations
produce identical particle distributions in QSS as calculated
using traditional binary interaction methods but are 3 orders
of magnitude faster. This allows us to easily reach the QSS
[34]. The density distribution NðrÞ is given by Eq. (14). To
obtain the momentum distribution, we first calculate the
distribution

NðprÞ ¼
Z

drdpθdpϕ

Z
dθdϕfðE;l2Þ; ð15Þ

where E ¼ p2
r=2þ ðl2=2r2Þ þ ψðrÞ and l2 ¼ p2

θþ
ðp2

ϕ=sin
2θÞ. The change of variable from pr to the modulus

of momentum p can be performed with the help of Eq. (12)
and the identity

Z
dp2δ

�
p2 − p2

r −
l2

r2

�
¼ 1; ð16Þ

yielding

NðpÞ ¼ 8π2p
Z

∞

0

dðl2Þ
Z

∞

0

drfðE;l2ÞΘ½p
2 − l2

r2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − l2

r2

q ; ð17Þ

where E ¼ p2=2þ ψðrÞ.
We first consider a water-bag initial distribution,

f0ðr; pÞ ¼ ηΘðr2m − r2ÞΘðp2
m − p2Þ; ð18Þ

where η ¼ 9=ð16π2r3mp3
mÞ is the normalization constant.

We will measure all the lengths in units of rm, which is
equivalent to setting rm ¼ 1. The VC requires that
2K ¼ −U, where

K ¼ 1

2

Z
d3rd3pf0ðr; pÞp2 ð19Þ

is the kinetic energy and

U ¼ 1

2

Z
d3rd3pf0ðr; pÞψ0ðrÞ ð20Þ

is the potential energy of the system. The potential ψ0ðrÞ
for the initial water-bag distribution is

ψ0ðrÞ ¼
(

r2−3
2

if r < 1

− 1
r if r ≥ 1:

ð21Þ

Using Eqs. (18) and (21) to calculate K and U, the VC
reduces to pm ¼ 1. In Fig. 1, we plot the joint distribution
function fðE;l2Þ for the QSS.
The marginal distribution functions can be calculated

using Eqs. (14) and (17) together with Eq. (9). Figure 2
shows the position and velocity distributions NðrÞ and
NðpÞ predicted by the integrable model. The symbols are
the results of MD simulations. An excellent agreement
between the theory and the simulations can be seen.
One particularly nice feature of the present theory is that

it can be easily used to predict the final QSS for any initial
distribution as long as it satisfies the VC. We next study a
parabolic initial distribution given by
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f0ðr; pÞ ¼ ηð1 − r2ÞΘð1 − r2ÞΘðp2
m − p2Þ; ð22Þ

with η ¼ 45=ð32π2p3
mÞ. The VC for this distribution is

pm ¼ 5=
ffiffiffiffiffi
21

p
. The marginal distributions predicted by the

theory are compared with simulations in Fig. 3. Once again,
the agreement is very good. For strongly inhomogeneous
initial distributions, the VC is not enough to completely
prevent the temporal dynamics of the mean-field potential.
That is, even if we restrict one moment of the distribution
function, other moments might still have sufficiently strong
dynamics to excite parametric resonances. Indeed, we find
that for very strongly inhomogeneous initial distributions,
there is some discrepancy between the theory and the
simulations. Nevertheless, even in these extreme cases, the
theory remains quite accurate [34].
We have presented a theory that is able to predict the

particle distribution in the final QSS to which a 3D self-
gravitating system will relax from an initial condition. The
theory can be used for initial distributions which are
isotropic in particle velocity and satisfy the VC. It is
interesting to compare and contrast our approach with the
theory of violent relaxation developed by Lynden-Bell
(LB). The statistical mechanics of LB is based on the

assumption of ergodicity and perfect mixing of the density
levels of the initial distribution function over the phase
space [36]. This is contrary to the approach presented
in this Letter, which shows that dynamics of 3D self-
gravitating systems with initial distribution satisfying the
virial condition is closer to integrable than ergodic.
Curiously for various systems, in which the particles

are either self-bound—like 1D and 2D gravity—or are
bounded by an external potential or by the topology—such
as magnetically confined plasmas or spin systems—the LB
approach was found to work best for the initial water-bag
distributions that satisfied the VC [10,20]. For distributions
away from the VC, QSS were found to have a characteristic
core-halo structure very different from the predictions of
LB theory [17–19,37,38]. It was recently observed, how-
ever, that for more complex inhomogeneous or multilevel
distributions, LB theory failed even when the initial
distribution function satisfied the VC [29,39]. The failure
of LB theory can now be attributed to the almost complete
absence of ergodicity and mixing when the initial distri-
bution satisfies the VC. The evolution of the mean-field
potential of such systems is almost adiabatic, and the
dynamics is closer to integrable than to ergodic [29]. The
relaxation to QSS is the result of phase mixing of particles
on the same energy shells and not a consequence of

FIG. 2 (color online). Theoretically predicted density (left)
and momentum (right) distributions (solid lines) for the QSS for
the initial water-bag distribution. The symbols (black dots) are the
results of MD simulations. The initial t ¼ 0 density and mo-
mentum distributions are plotted with dashed lines—an initial
water-bag distribution is given by Eq. (18).

FIG. 3 (color online). Solid lines are the theoretically predicted
density (left) and momentum (right) distributions for the QSS for
initial distribution (dashed lines) given by Eq. (22). The symbols
(black dots) are the results of MD simulations.FIG. 1 (color online). Distribution function in energy and

angular momentum for the QSS for an initial water-bag distri-
bution, Eq. (18), satisfying the VC.

FIG. 4 (color online). Comparison between the density, left
panel, and momentum, right panel, distributions calculated using
LB statistics and the present theory. Initial distribution is the
water-bag in momentum and position, Eq. (18), satisfying the
VC. Solid curves are the results of the present theory, dashed
curves are the predictions of the LB theory, and the solid circles
are the results of MD simulations.
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ergodicity over the full energy surface. Indeed, for 3D
gravitational systems, LB theory fails to accurately account
for either velocity or density distributions, as can be seen
in Fig. 4, even for the initial virial water-bag distribution,
Eq. (18). Furthermore, LB theory is very difficult to extend
to more complicated initial conditions than a one-level
water-bag distribution, while the present approach can, in
principle, be used for any arbitrary distribution as long as it
satisfies the VC. The goal of the future work will be to
extend the theory presented in this Letter to initial dis-
tributions which do not satisfy the VC. Parametric reso-
nances and particle evaporation, however, make this a very
difficult task.

This work was partially supported by the CNPq,
FAPERGS, CAPES, INCT-FCx, and by the US-AFOSR
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Chapter 7

Review of Statistical Mechanics of

Systems with Long-Range Interactions

This last chapter of the research content contains a review of the work our research group

has done in the �eld of systems with long-range interactions up to 2013. Previously to this

thesis project, T. N. Teles, F. Rizzato, R. Pakter and Y. Levin had worked on describing

the QSS of systems as diverse as non-neutral plasmas and self-gravitating systems in several

dimensions, using the core-halo distribution described in section 2.3.1. Combined with our

later work with the HMF and GHMF models, this resulted in our review, summarized below.

7.1 Nonequilibrium statistical mechanics of systems with

long-range interactions

This review agglomerates the work on LRI systems done by our research group until

2013. It contains a thorough introduction to the fundamental concepts of LRI systems, such

as collisionless dynamics and nonequilibrium quasistationary states. Several chapters are

dedicated to self-gravitating systems in one, two and three dimensions, and to magnetically

con�ned ion beams.

My contribution to this work was in the chapters of the HMF and GHMF models. These

chapters exposed more thoroughly the work we had done in references [57] and [104] (pre-

sented in sections 4.1 and 5.1 of this thesis, respectively) as well as reviews of the equilibrium

properties of the HMF model. We show that the magnetization of the HMF model evolves

from a paramagnetic QSS to its ferromagnetic equilibrium value with a timescale that scales

as N1.7. The expected exponent should be 2 [112]. A possible explanation for this diver-

gence is that the initial distribution of our simulations was ferromagnetic; therefore the

homogeneous arguments that indicate the exponent 2 are not completely satis�ed.

Besides the equilibrium properties, we also tentatively apply the core-halo distribution

described in subsection 2.3.1 to the QSS of the HMF and GHMF models. Since these models

are periodical, there is an added di�culty to using the core-halo theory: particles located

101
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in orbits above the separatrix (the orbit which separates rotating and librating orbits) have

e�ectively �escaped� from con�nement. The test particle method described in subsection

2.3.1 relies on the envelope equation, which determines the oscillating potential for their

dynamics. The envelope becomes ill-de�ned, however, when it reaches the periodical limit;

that is, when θe > π. Therefore, the halo energy determined by the maximum energy of the

test particles is also ill-de�ned.

Nevertheless, we show that structurally the core-halo distribution works very well if

we measure the halo energy from the actual molecular dynamics results instead of the test-

particle method1. The only setback is the lack of a way to determine the halo energy without

resorting to full molecular dynamics.

This review, �Nonequilibrium statistical mechanics of systems with long-range interac-

tions�, was published in Physics Reports, volume 535, pages 1− 60 (2014).

1 It also works if the energy is low enough so that the envelope does not reach the periodical limit θe = π.
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1. Introduction

A long time ago Einstein expressed his belief that thermodynamics is ‘‘the only physical theory of universal content
concerning which I am convinced that, within the framework of applicability of its basic concepts, it will never be
overthrown’’ [1]. One can, however, wonder about the extent of the ‘‘applicability’’ to which Einstein was referring. For
example, can thermodynamics in any form be applied to study non-neutral plasmas or galaxies in which ‘‘particles’’ interact
by long-range (LR) forces?

The difficulty of studying systems with LR interactions was already well appreciated by Gibbs, who noted the
inapplicability of statistical mechanics when interparticle potentials decay with exponents smaller than the dimensionality
of the embedding space [2,3]. For such systems energy is not extensive and traditional thermodynamics fails. One way to
correct the lack of extensivity is to scale the interaction energy with the inverse of the number of particles. This is the so-
called Kac prescription designed to restore extensivity to the free energy [4–6]. The problem, however, remains — although
the energy is now extensive, it is still non-additive. On the other hand, it is a fundamental postulate of thermodynamics
that entropy and energy must be additive over the subsystems — that is, the interfacial contributions should be negligibly
small. For systems with short-range forces this condition is clearly satisfied — in the thermodynamic limit the interfacial
energy is much smaller than the energy of the bulk. This, however, is not true for systems with LR forces for which the
interfacial region cannot be clearly defined [7] — every particle interacts with every other particle of the system, so that no
clear separation into bulk and interface exists.

One can still hope that although the additivity of energy breaks down, it might still be possible to use equilibrium
statistical mechanics to describe stationary states of systems with LR interactions. Very quickly, however, one runs into
difficulties. For example, depending on the ensemble used, one finds that a system can remain either in one phase or undergo
a phase transition [8]. One also finds that in the microcanonical ensemble such systems can have negative specific heat
[9–14], contrary to the laws of usual thermodynamics.
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There is, however, an even more profound problem with applying classical statistical mechanics to systems with LR
forces. The underlying assumption of Boltzmann–Gibbs (BG) statistics is the existence of ergodicity and mixing [15]. For a
closed system of particles (in a microcanonical ensemble) the initial distribution should uniformly spread over the available
phase space, so that in equilibrium all microstates corresponding to a given thermodynamic macrostate should be equally
probable. Although there is no general proof of ergodicity and mixing, in practice it has been found to apply to most
nonintegrable systemswith short-range forces. There is, however, no indication that ergodicity andmixing exist for systems
with LR interactions [7,16–19]. In fact, one should expect precisely the opposite. Kac renormalization of the interaction
potential kills off the correlations between particles. Within the kinetic theory, it is precisely these correlations (collisions)
that drive a system to thermodynamic equilibrium. In the absence of correlations, the dynamical evolution of the one-
particle distribution function f (r, p, t) is governed by the collisionless Boltzmann (Vlasov) equation [20,21]. Starting from
an arbitrary initial condition, a solution of this equation does not evolve to a stationary state — the spatiotemporal evolution
continues ad infinitum on smaller and smaller length scales. It is only in a coarse-grained sense that we can say that the
system has reached an ‘‘equilibrium’’ — a finite resolution imposed on us by an experiment or a computer simulation will
not allow us to see the full fine-grained evolution of the distribution function. The coarse-grained stationary state will, in
general, be very different from the normal thermodynamic equilibrium. Unlike the state of thermodynamic equilibrium, it
will explicitly dependon the initial distribution of particle positions and velocities [22]. In particular, the velocity distribution
in the stationary state (SS) will not have the characteristic Maxwell–Boltzmann form [23–25]. Indeed, observations and
simulations of both gravitational clusters [26–40] and confined non-neutral plasmas [23,41–52], indicate the presence of
such nonequilibrium stationary states.

It is, therefore, clear that in the thermodynamic limit, traditional methods of equilibrium statistical mechanics cannot be
applied to systems with LR forces. A new theory is needed. The goal of the present Report is to show how such theory can be
constructed. Using the properties of Vlasov dynamics and the theory of parametric resonances,wewill derive coarse-grained
distribution functions for the nonequilibrium stationary states of systemswith LR interactions, without explicitly solving the
collisionless Boltzmann equation. Comparing the theory with the explicit N-body simulations, wewill show that it is able to
quantitatively predict both position and velocity distribution functions of self-gravitating clusters [38,39,53], magnetically
confined plasmas [23,24], and of kinetic spin models [25,54,55], without any adjustable parameters. We will focus on a
statistical theory of nonequilibrium quasi-stationary states; only briefly shall we address the thermodynamic equilibrium,
which has already been thoroughly covered by Campa et al. in Ref. [7].

The Report is organized as follows: in Section 1we beginwith an introduction to the principal properties of systemswith
LR interactions, followed by a review of the Vlasov dynamics. Sections 2–4 present results for self-gravitating clusters in one,
two, and three dimensions, respectively. In Section 5 we address the nonequilibrium properties of magnetically confined
plasmas, and in Sections 6 and 7 we discuss two different kinetic spin models. Section 8 concludes the Report, reviewing
the theories and the results obtained so far and outlining the perspectives for future research.

2. Systems with long range forces

Among the physical systems, a significant fraction involves those whose particles interact by long-range potentials of the
form ψ(r) ∼ 1/rα , where α < d and d is the dimensionality of the embedding space. Examples of such systems include
galaxies and globular clusters [56–64], two-dimensional and geophysical flows and vortexmodels [18,65–70], quantum spin
models [71], dipolar excitons [72], cold atom models [73], colloids at interfaces [74–77] as well as magnetically confined
plasmas [23,78–80]. In order to predict the behavior of systems with short-range forces we can rely on thermodynamics
and statistical mechanics both of which, however, fail for systems with LR interactions.

Thermodynamics requires extensivity and additivity [81], neither of which is valid for LR systems [7]. A system of N
particles confined inside a volume V is said to be extensive if, when the number of particles and the volume are scaled by
λ, the internal energy U(λN, λV ) of the system scales as λU(N, V ). It is easy to see that systems with short-range forces are
extensive. If the interaction potential is short-range, each particle will interact only with the particles which are within the
range γ of the interaction potential. Suppose that a system is homogeneous, the number of particles within the distance γ
of a given particle will then be proportional to Nγ d/V and the internal energy must have the form of U(N, V ) = Nf (N/V ),
where f (x) is a function that depends on the microscopic interactions between the particles. This form of internal energy
is clearly extensive. In fact, it is not necessary for the interaction potential to be strictly short-range – bounded by γ –
algebraically decaying potentials will lead to extensive thermodynamics as long as they decay sufficiently rapidly, i.e. if
α > d [82]. We shall call all such systems ‘‘finite range’’.

Extensivity is important for the existence of a nontrivial thermodynamic limit and the equivalence of different statistical
ensembles. A thermodynamic system in contact with a thermal reservoir at temperature T – canonical ensemble – must be
at the minimum of its Helmholtz free energy F(N, V ) = U(N, V )− TS(N, V ), where S(N, V ) is the entropy. The celebrated
Boltzmann formula S = kB lnW relates the thermodynamics with dynamics by associating W , the number of microstates
available to the system through its dynamics, to the concept of entropy of classical thermodynamics. The phase space volume
of a confined Hamiltonian system, which is proportional to W , grows exponentially with the number of particles so that
S ∼ N , irrespective of the range of interactions. Therefore, both the internal energy and entropy of a finite range system
scale linearly with the number of particles in the system, allowing for a nontrivial thermodynamic equilibrium.
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LR systems, however, are intrinsically different. The infinite range of the interaction potential results in an internal energy
that scales superlinearly with the number of particles in the system, U ∼ N2. Therefore if such a system is put in contact
with a thermal bath, for large N the Helmholtz free energy will be dominated by the internal energy. The equilibrium state
will then correspond to the minimum of the internal energy U . The entropy will be irrelevant, unless the temperature of the
reservoir is unrealistically large and scales with the number of particles in the system, T ∼ N .

In practice, most LR systems are isolated from the environment. This is the case for galaxies and magnetically confined
plasmas. Gravity in three dimensions is particularly challenging because of the evaporation of particles [26,83,84]; however,
one and two dimensional gravitational systems and magnetically confined plasmas can be studied straightforwardly using
molecular dynamics simulations (MD). Unlike systems with short-range forces – which must be confined to a box in order
to have a nontrivial thermodynamics – one and two dimensional gravitational systems are self-confining and can exist in
an infinite volume, V → ∞. Once again, however, one runs into a difficulty with the long-range nature of the interaction
potential. The superextensive interaction energy leads to strong forces and velocities which rapidly exceed that of the speed
of light. To avoid this problem and to obtain a well defined thermodynamic limit it is necessary to rescale the gravitational
coupling constant by a factor 1/N . This is the so-called Kac prescription [4]. For a gravitational system of N particles in an
infinite volume, the Kac prescription is equivalent to the requirement that the mass of each particle m → 0, while mN
remains finite,mN = M . One can show that this leads to a well defined thermodynamic limit as N → ∞.

Although the rescaled gravity and plasmas are extensive, they remain nonadditive. For a d-dimensional system of
particles interacting by a finite-range potential, the interfacial energy scales with the number of particles as N

d−1
d , while

the bulk energy grows as N . Thus, the total energy of a finite-range system in the thermodynamic limit is equivalent to
the sum of the energies of its macroscopic subsystems. This is not true for LR systems. As the interaction range grows, the
concept of interface loses its meaning. One can no longer consider a total system as a sum of smaller subsystems, since the
LR nature of the potential leads to a nontrivial interaction between all the subsystems. The lack of additivity can result
in a negative specific heat for an isolated LR system [7,9,10,12]. On the other hand, if a LR system is in contact with a
thermal bath, its specific heat must be positive. Contrary to what happens with finite-range systems the predictions of
microcanonical and canonical ensemblesmay, therefore, be inequivalent for systemswith LR interactions [85–88]. Similarly,
the canonical and the grand-canonical ensembles may also become inequivalent [89]. Besides inequivalence of ensembles,
it has also been debated that negative specific heat may result in yet another abnormality: the violation of the zeroth law of
thermodynamics [90–93].

Another difficultywith the statistical treatment of LR systems is the lack of ergodicity. The ergodic hypothesis allows us to
replace the time averages by the ensemble averages [94]. Consider a 2dN dimensional phase space ofN interacting particles.
Each point X in this phase space represents a possible configuration (microstate) of the system. For a given thermodynamic
macrostate there is a huge number of possible microstates. This allows us to define a statistical ensemble of microstates
with a probability density ρ(X, t). The dynamics of ρ(X, t) is governed by the Liouville equation. For equilibrium statistical
mechanics to work, the initial probability density should uniformly spread over the energy surface — producing a, so-called,
mixing flow [15].

The fundamental problem of ergodic theory is to understand under what conditions a nonstationary phase space density
will converge to a stationary one [95,96]. Note that for a time reversible systemone cannot have a ‘‘fine-grained’’ equilibrium,
a thermodynamic equilibrium exists only in a coarse-grained sense. On a fine-grained scale, the dynamical evolution of the
probability density will never stop, so that if at some point during the dynamical evolution the velocities of all the particles
are reversed, the system will diverge from the equilibrium. Although ergodicity and mixing have been verified for many
different systems with finite-range forces, both seem to fail for systems with LR interactions [16,17,19,97].

The relaxation to a stationary state (SS) of systems with LR interactions is fundamentally different from the relaxation
to equilibrium of systems with short-range forces. For the latter, the relaxation is collisional and the reduced probability
densities are governed by the BBGKY (Born, Bogoliubov, Green, Kirkwood, Yvon) hierarchy of equations [98]. At the leading
order of this hierarchy is the Boltzmann equation Df /Dt = (∂ f /∂t)col, where Df /Dt ≡ ∂ f /∂t + (p/m) · ∇r f + F · ∇pf
is the convective derivative of f (r, p, t) and F = ṗ. This equation describes the evolution of the one-particle distribution
function f (r, p, t) [99]. The right hand side of the Boltzmann equation is the collision term that drives the system toward
thermodynamic equilibrium [99]. The distribution functions in thermodynamic equilibrium do not depend on the initial
condition, but only on the global conserved quantities, and are described by the Boltzmann–Gibbs statistical mechanics
[100].

The situation is very different for systems with LR forces. In the thermodynamic limit N → ∞ the dynamics of these
systems is completely dominated by the mean-field and the collisions (correlations) are negligible. To see why this is so,
let us consider, for example, a one dimensional gravitational system of particles of mass m, interacting by ϕ(x) = Gm2

|x|,
where G is the gravitational constant. As was discussed above, to have a well defined thermodynamic limit we need to
require that m → 0, while the total mass of the system remains fixed, mN = M . Although the interaction between any
two particles is vanishingly small, the infinite range of the potential results in a finite total force acting on each particle. To
quantify the discreteness (correlations) effects [101] we can define a plasma parameter – corresponding to the ratio of the
characteristic two-body interaction energy and the average kinetic energy – Γ ≡ 2Gm2a/m⟨v2⟩, where ⟨v2⟩ is the average
particle velocity and a is a characteristic separation between the particles. Γ measures the degree to which the dynamics of
a system is dominated by the correlations— ifΓ > 1 the correlations (collisions) are important and ifΓ < 1 the dynamics is
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governed purely by the mean-field. Starting from an initial particle distribution, a one dimensional gravitational cluster will
relax to a stationary state,with a characteristic velocity ⟨v2⟩ ∼ O(1). It will be shown in the following sections that the extent
of the mass distribution is controlled by the parametric resonances, so that starting from an initial particle distribution with
a compact support, the final distribution will be restricted to a finite ‘‘volume’’ or radius rh, so that a ∼ rh/N . We then come
to the conclusion that Γ ∼ 1/N2, in the thermodynamic limit the correlations vanish and the dynamics of a LR system is
determined purely by the mean-field.

The argument above suggests that for LR systems the (collisional) right-hand side of the Boltzmann equation should
vanish and the one-particle distribution function should satisfy the collisionless Boltzmann equation Df /Dt = 0. This
equation is also known as the Vlasov equation [20]. While the stationary solution to the Boltzmann equation is the
Maxwell–Boltzmann distribution, the Vlasov equation has an infinite number of stationary states, depending on the
initial particle distribution. The one-particle distribution function evolves on ever-decreasing length scales. Eventually, the
dynamical scale becomes so small that the evolution of f (r, p, t) can no longer be observed at any resolution available to
us. It is only in this coarse-grained sense that a LR system achieves a stationary state (SS).

For a finite number of particles, the correlations – although very small – remain finite. The cumulative effect of weak
correlations will drive a LR system from a quasi-stationary state (qSS) toward the true thermodynamic equilibrium. The
relaxation time t×, however, is very slow, diverging with the number of particles as Nγ [53,102,103]. The value of the
exponent γ depends on each system [39], but is usually γ ≥ 1. We expect that t× ∼ 1/Γ , so that for 1D gravity t× ∼ N2.
For 2D gravitational clusters the interaction potential is logarithmic, so that the crossover time should scale as t× ∼ N/ lnN .
In the following sections we will see if these simple estimates of the relaxation time agree with the results of N-body
simulations.

Although interesting theoretically, the strong divergence of t× precludes the equilibrium state from ever being reached
by most physically relevant systems, such as galaxies and plasmas. To achieve equilibrium these systems would require a
span of time longer than the age of the universe [61,64,104].

3. Vlasov dynamics

In the thermodynamic limit N → ∞, the correlations between the particles of a LR system vanish and the dynamics of
the one-particle distribution function f (q, p, t) is governed exactly [20] by the Vlasov equation,

∂

∂t
+ p ·

∂

∂q
−
∂ψ

∂q
·
∂

∂p


f (q, p, t) = 0. (1)

The one-particle distribution function evolves in the phase space as the density of an incompressible fluid — its local
value remains constant along the flow. The ψ(q) represents the potential felt by a ‘‘fluid element’’ located at (q, p). It can
be shown that the Vlasov dynamics has an infinite number of conserved quantities called Casimir invariants [105,106]. Any
local functional of the distribution function is a Casimir invariant,

C[f ] =


g(f )dqdp. (2)

In particular, the fine-grained Boltzmann entropy

S(f ) = −


f (q, p, t) ln f (q, p, t)dqdp (3)

is a Casimir invariant and is conserved by the Vlasov flow. The entropy can increase only in a coarse-grained sense [107]. To
see this let us define a coarse-grained distribution function

f̄ (q, p, t) =
1

(∆p∆q)d


∆p,∆q

f (q′, p′, t)dq′dp′. (4)

Consider the evolution of the coarse-grained entropy

∆S̄ = S̄(t1)− S(t0) =

 
s(f̄ , t1)− s(f , t0)


dqdp, (5)

where we have defined the Boltzmann entropy density s(f , t) = −f (q, p, t) ln f (q, p, t). We have also supposed that at
t = t0 the exact particle distribution is known. Since the fine-grained entropy is conserved, we can rewrite Eq. (5) as

∆S̄ =

 
s(f̄ , t1)− s(f , t1)


dqdp. (6)

To perform the coarse-graining, we divide the macrocells of volume (∆p∆q)d into K microcells, with the local value of the
distribution function inside the microcell i given by fi. Now, consider the variation of the coarse-grained entropy inside the
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Fig. 1. Evolution of particle distribution in the phase space of the Hamiltonian mean field (HMF) model.

macrocell j,

∆S̄j = (∆p∆q)d
K
i

s


K
l
fl

K

− s(fi)

 = (∆p∆q)d

Ks


K
i
fi

K

−

K
i

s(fi)

 . (7)

Since the entropy density s(x) is a concave function it must satisfy Jensen’s inequality

1
K

K
i

s(fi) ≤ s


K
i
fi

K

 , (8)

from which we conclude that the coarse-grained entropy of the system should increase with time,∆S̄ ≥ 0. The Boltzmann
entropy will be maximum in equilibrium; this, however, does not mean that the equilibrium can always be reached. As we
shall see, in the thermodynamic limit, systems with LR interactions can become trapped in a non-ergodic stationary state.

If the initial fine-grained distribution function f0(q, p) is divided into p levels of phase space density ηj, Vlasov dynamics
will preserve the hypervolume of each level, C(ηj) =


δ[f (q, p, t) − ηj]dqdp. In this review, we will concentrate on one-

level (waterbag) initial distributions of the form

f0(q, p) = ηΘ(qm − |q|)Θ(pm − |p|), (9)

where Θ(x) is the Heaviside step function, qm and pm represent the maximum values for the generalized coordinates and
momentum, and η is the phase space density of the initial particle distribution. Starting from this initial condition, the fine-
grained distribution function f (q, p, t)will evolve in phase space through the process of filamentation, developing structure
on smaller and smaller length scales, see Fig. 1. Eventually, the length scale of the dynamical evolution will become so
small, that to an observer it will appear that the dynamics has ceased. At this stage, we may say that the coarse-grained
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Fig. 2. Schematic of phase space evolution described by the Vlasov dynamics: (a) initial and (b) final stationary state for a distribution with initial phase
space density η. In this example, ν = 9.

distribution, f̄ , has achieved a stationary state, even though the fine-grained distribution f is still evolving. For a practical
purpose of describing the results of molecular dynamics simulations –which, of course, have finite precision –we only need
to have the knowledge of f̄ (q, p).

3.1. Lynden-Bell statistics

In a seminal work, Lynden-Bell (LB) proposed a statistical approach for calculating f̄ (q, p) for the final stationary
state [108]. LB theory is similar in its construction to the usual Boltzmann statistics, but instead ofworkingwith the particles,
Lynden-Bell studied the distribution of the phase space density levels, η. It is important to keep in mind that, similar to the
usual equilibrium statistical mechanics, the LB approach requires the existence of ergodicity and mixing [7,104].

The phase space is divided into P macrocells which are in turn subdivided into νmicrocells of volume hd. As the dynamics
progresses, the distribution function spreads over the phase space, occupying more macrocells than it did initially. This
process is illustrated in Fig. 2. The volume fraction occupied by the level η inside the macrocell i is

ρ(q, p) =
ni

ν
, (10)

where ni is the number of microcells inside a macrocell i occupied by the level η. The volume fraction is related to the
distribution function by ρ(q, p) = f̄ (q, p)/η. Due to the incompressibility of Vlasov dynamics, each microcell can be
occupied by at most one level η, so that the density must satisfy

ρ(q, p) ≤ 1. (11)

LB supposed that in a stationary state the dynamics of the density levels is ergodic — η’s have an equal probability of
occupying any of the microcells. He then applied the usual Boltzmann counting to calculate the most probable distribution
of the density level over the phase space.

The total number of occupied microcells,

N =


i

ni (12)

remains constant throughout the dynamics. The number ofways inwhich theseN occupiedmicrocells can be divided among
the P macrocells is given by

N!

P
i
ni!

. (13)

Now consider a macrocell. The number of ways in which ni of its ν microcells can be occupied by a density level is

ν!

(ν − ni)!
. (14)

Note that the density levels are treated as distinguishable. Multiplying expressions (14) and (13) we obtain the total number
of possible microstates,

W (ni) =
N!

P
i
ni!


i

ν!

(ν − ni)!
. (15)
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The coarse-grained entropy of the system is defined as Slb ≡ −kB lnW (ni)where kB is the Boltzmann constant. In the limit
in which the variations of ρ(q, p) between the macrocells are infinitesimal, the entropy can be written as

Slb = −kB


dqdp
hd

{ρ(q, p) ln[ρ(q, p)] + [1 − ρ(q, p)] ln[1 − ρ(q, p)]}. (16)

Similar to the usual thermodynamic equilibrium, LB proposed that the SS of a LR system corresponds to themost probable
distribution of the density levels among the macrocells. To find this distribution, we must maximize the LB entropy under
the constraints of energy 

p2

2m
+
ψ(q)
2


f̄ (q, p)dqdp = E0 (17)

and particle
f̄ (q, p)dqdp = 1, (18)

conservation. In the above equations E0 is the average particle energy in the initial distribution and ψ(q) is the potential
at position q in the stationary state. Maximizing the entropy Eq. (16), under the constraints given by Eqs. (17) and (18), we
find the coarse-grained distribution function f̄ (q, p) = ηρ(q, p) for the SS,

flb(q, p) = f̄ (q, p) =
η

1 + eβ[ϵ(q,p)−µ]
(19)

where ϵ(q, p) =
p2

2m + ψ(q) is the one-particle energy. The Lagrange multipliers β and µ are the inverse temperature and
the chemical potential of the stationary state. The expression (19) is similar to the distribution function of fermions in an
equilibrium system.

Besides Lynden-Bell’s theory, other statistical approaches have also been proposed to study qSSs which arise in the
process of collisionless relaxation. Example include, statistics based on particles instead of the distribution function [109]
and an information-theoretical approach [106,110]. Just like LB theory these approaches require existence of ergodicity and
good mixing [111,112] which, in general, are not valid for systems with LR forces. In this Report, we will only focus on LB
theory. In the following sections we will see how well it compares with the simulations.

4. Gravitation in one dimension

Due inpart to complications of 3Dgravitational systems,whichwill be addressed later on,many studies of self-gravitating
systems have focused on one and two dimensions [30,34,113–122]. The reduced dimensionality makes the study of these
systems much simpler. The fact that the gravitational potential in one and two dimensions is unbounded from above
prevents particle evaporation which makes theoretical and simulation work on 3D systems very difficult. In spite of their
greater simplicity, 1D and 2D gravitational systems share many characteristics of 3D gravity. For example, the global
structure of disk-like galaxies, found using 3D numerical simulation, are also reproduced by 2D simulations [83]. One-
dimensional self-gravitating systems have also been used to study the stellar dynamics of galaxy clusters and of cosmological
models [28,31,58,59,122–131].

A 1D self-gravitating system consists of N sheets of mass densitym uniformly distributed in the y–z plane, free to move
along the x axis. The dynamics of the sheets is the same as the dynamics of point particles of massm interacting by a linear
potential. The particles are free to cross one another. The thermodynamic limit, limN→∞ mN = M = constant, is equivalent
to the Kac prescription necessary to guarantee the extensivity of the energy.

The Poisson equation for this system is

∇
2ψ(x, t) = 4πGρ(x, t) (20)

where G is the gravitational constant and ρ(x, t) is the mass density. In order to simplify the expressions, we will work with
dimensionless variables. We rescale the mass, length, velocity, potential, mass density, and energy2 by M , L0 (an arbitrary
length scale), V0 =

√
2πGML0, ψ0 = 2πGML0, ρ0 = M/L0, and E0 = MV 2

0 = 2πGM2L0, respectively. This is equivalent to
considering G = M = 1 and to defining a dynamical time scale

τD = (2πGρ0)−1/2. (21)

2 A system’s energy takes into account the total work necessary to bring a particle from infinity (or from a position where the potential is zero) to
a position q, i.e.


[ψ(q) − ψ(∞)]dq. For 3D self-gravitating systems the potential at infinity is zero, and for plasmas it is zero at the conducting wall.

However, it is important to note that for 1D and 2D self-gravitating systems, the potential diverges at infinity. Since this divergent term appears in both
the initial and the final state, the problem is avoided by using a renormalized energy, see Ref. [39] for more details.
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Thus, the Poisson equation becomes

∇
2ψ(x, t) = 2ρ(x, t). (22)

For a particle (sheet) of (reduced) mass density located at x′, the density is ρ(x, x′) = δ(x− x′), and the long-range potential
is given by the Green’s function,

G(x, x′) = |x − x′
|. (23)

A particularly interesting aspect of one-dimensional gravity is that the interaction potential does not have any singularities,
which simplifies significantly molecular dynamics (MD) simulations, allowing us to explore in great detail the relaxation of
this model to the qSS.

4.1. Molecular dynamics

The reduced Hamiltonian for a system of N particles interacting by a one-dimensional gravitational potential is

H(x, v) =

N
i=1

v2i

2
+

1
2N

N
i,j

|xi − xj|. (24)

This Hamiltonian, along with Hamilton’s equations of motion, completely determines the dynamics of the system. The
acceleration of a particle at position x, due to its interaction with the other N − 1 particles, is given by

ẍ = −
1
N

N
i=1

x − xi
|x − xi|

, (25)

which may be expressed as

ẍ =
N>(x)− N<(x)

N
, (26)

where N>(x) and N<(x) represent the number of particles to the right and to the left of x, respectively. To simulate the
system according to Eq. (26) requires time that scales with N2. However, the simulation may be simplified by using a vector
containing the indices of each particle, and reordering it according to each particle’s position at each new calculation. The
expression in Eq. (26) then may be written as

ẍ =
(N − i)− (i − 1)

N
=

N − 2i + 1
N

, (27)

where i is the index of the particle at position x. This simplification involves no approximation; the advantage is purely
computational, for the simulations becomemore efficient regarding the computational time [132]—the typical time required
to order a vector of size N varies at most with N lnN [133]. Using this method, the trajectories may be obtained exactly, that
is, atmachine precision [132]. However, for the exact procedure, the trajectoriesmust be calculated at each collision, and the
number of collisions grows as N2. Therefore, in our simulations, we used a fourth-order symplectic integrator, reordering
the index vector at each time step and maintaining the relative error in energy at 10−5.

We simulate numerically the evolution of a system of particles that are initially distributed uniformly with positions xi
where xi ∈ [−xm, xm] and velocities vi ∈ [−vm, vm], so that the initial distribution function is given by

f0(x, v) = ηΘ(xm − |x|)Θ(vm − |v|) (28)

where η = (4xmvm)−1. In order to calculate the initial energy, we must find the potential that is the solution of the Poisson
equation (22) at t = 0,

d2

dx2
ψ(x) =

 1
xm

for |x| ≤ xm
0 for |x| ≥ xm

(29)

with boundary conditions lim|x|→∞ ψ(x) = |x| and ψ ′(0) = 0. The solution is given by

ψ(x) =

 x2

2xm
+

xm
2

for |x| ≤ xm
|x| for |x| ≥ xm.

(30)

Using the definition of the mean energy, Eq. (17), the initial energy of the system is found to be

E0 =
v2m

6
+

1
3

(31)

where without loss of generality we have set xm = 1.
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4.2. Equilibrium

If the system relaxes to equilibrium the gravitational potential must satisfy the Poisson equation

∇
2ψ(x) = 2n(x) (32)

where n(x) is the equilibrium density distribution. Using the Maxwell–Boltzmann distribution, fmb(x, v) = Ce−β(v2/2+w(x)),
the equilibrium density distribution is given by

n(x) =


fmb(x, v) dv =


2π
β

Ce−βω(x), (33)

where β is the Lagrange multiplier used to conserve total energy, C is the normalization constant and ω(x) is the potential
of mean force [101]. As N → ∞, interparticle correlations vanish and ω(x) ∼ ψ(x). Substituting Eq. (33) into Eq. (32), we
obtain the Poisson–Boltzmann equation in its dimensionless form

∇
2ψeq(x) =


8π
β

Ce−βψeq(x). (34)

Solving this equation using the boundary conditions lim|x|→∞ ψeq(x) = |x| andψ ′
eq(0) = 0, the potential is found to be [124]

ψeq(x) = −
1
β

ln

1
4
sech2


βx
2


, (35)

and the distribution function is given by

feq(x, v) =


β3

32π
e−

βv2
2 sech2


βx
2


. (36)

The value of β is determined by the conservation of energy, Eq. (17) with f̄ (x, v) = feq(x, v), yielding

β =
3
2E
. (37)

The equilibrium density and velocity distributions are given by

n(x) =
β

4
sech2


βx
2


(38)

and

n(v) =


β

2π
e−βv2/2. (39)

In Fig. 3 we compare the equilibrium distributions, Eqs. (38) and (39), with the results of MD simulations. As can be seen,
the predictions of equilibrium statistical mechanics are very different from those of MD simulations. This clearly shows that
the ergodicity required by the Boltzmann–Gibbs statistical mechanics is violated.

In the next section we will compare the predictions of Lynden-Bell statistics with the results of MD simulations.

4.3. Lynden-Bell theory for one-dimensional gravity

The application of Lynden-Bell statistics to one-dimensional gravitational systems has spanned various decades, with
divergent results. While early studies have suggested some correspondence between numerical simulations and the
predictions of LB statistics, especially for low-energies, they have also shown the occurrence of high-energy tails in the
distribution, which LB statistics could not describe [29,134–137]. More recent works demonstrated that although for
some very specific initial conditions LB theory agrees well with MD simulations, in general it fails to describe the qSS
[112,127,138,139]. In this section we will examine the predictions of LB statistics and compare them with the results of
MD simulations for various initial conditions.

In order to determine flb(x, v), Eq. (19), for a one-dimensional gravitational system, we need to calculate the gravitational
potentialψlb(x). To do this wemust solve the Poisson equation (Eq. (22)) with f (x, v) = flb(x, v) and the one-particle energy
given by ϵ(x, v) = v2/2 + ψlb(x). Integrating the LB distribution over momentum, we obtain the Poisson equation

d2ψlb(x)
dx2

= −


8π
β
η Li1/2


−e−β(ψlb(x)−µ)


, (40)
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Fig. 3. Distributions in (a) position and (b) velocity for a 1D gravitational system with E0 = 0.75, obtained using MD simulations with N = 2 × 104

(points), averaged over times t = 1000τD to t = 1100τD , compared with the equilibrium distributions (lines), given by Eqs. (38) and (39). Repeating the
MD simulation for the same initial energy, but different initial conditions, and taking the average value of the resulting distributions, error bars are smaller
than the symbol size.

Fig. 4. Distributions in (a) position and (b) velocity for a 1D gravitational system with E0 = 0.75, obtained using MD simulations with N = 2 × 104

(points), averaged over t = 1000τD and t = 1100τD , compared with the LB distributions (lines), n(x) =

flb(x, v)dv and n(v) =


flb(x, v)dxwith flb(x, v)

given by Eq. (19). Error bars are smaller than the symbol size.

with boundary conditions lim|x|→∞ ψlb(x) = |x| and ψ ′
lb(0) = 0, where Lin(x) is the polylogarithm function of order

n [140]. The solution to this equation is obtained numerically. We see that the predictions of LB statistics are in general
quite different from the results of MD simulations, as exemplified in Fig. 4, which compares the position and the velocity
distributions n(x) =


flb(x, v)dv and n(v) =


flb(x, v)dx with the results of MD simulations.

The problem, common to both BG and LB statistics, is that in the thermodynamic limit, systems with LR forces are
intrinsically non-ergodic, invalidating the basic assumptions that underlie both theories. For systems with a finite number
of particles, however, ergodicity is restored on a sufficiently long time scale. Such systems will eventually relax to the BG
equilibrium (if it exists, and the BG entropy has a maximum), after being trapped in a qSS for a time proportional to the
number of particles in the system.

The Kac scaling required by the LR nature of the interaction potential destroys the correlations (collisions) between the
particles [101]. Therefore, in the thermodynamic limit, LR systems are intrinsically collisionless — particles move under
the action of the mean-field potential produced by all the other particles. In general, the mean-field potential has a complex
dynamics, characterized by quasi-periodic oscillations [125]. It is possible, therefore, for some particles to enter in resonance
with the oscillations and gain large amounts of energy at the expense of the collective motion [46,141,142]. This process
is known as Landau damping [143]. The Landau damping diminishes the amplitude of the oscillations and leads to the
formation of a tenuous halo of highly energetic particleswhich surround the high density core [144]. After all the oscillations
have died out, a SS state is established. The phase space distribution of particles in the SS has a characteristic core–halo
structure, very different from the predictions of either BG or LB statistics. Once the stationary state is established, there is
no longer a mechanism through which highly energetic particles of the halo can equilibrate with the particles of the core,
and the ergodicity is broken.
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4.4. The virial condition

If the system is in a stationary state, it must satisfy the virial theorem. Consider a system with a Hamiltonian given by

H =


i

p2
i

2mi
+

1
2


i,j

V (ri − rj)+
κ

2

N
i=1

|ri|γ (41)

where (ri, pi) are respectively the coordinates of position and momentum of the ith particle, V (ri − rj) is the interaction
potential and (κ/2)

N
i=1(ri)

γ is a generic confining potential. The virial function I is defined as

I =


i

ri · pi


, (42)

where ⟨x⟩ represents a time average. Differentiating the virial function with respect to time and using Hamilton’s
equations [145], we find

d
dt

I =


i

p2
i

mi


−


i

ri ·
∂

∂ri


Ṽ +

κ

2


j

|rj|γ


, (43)

where

Ṽ =
1
2


j,k

V (rj − rk). (44)

If Ṽ is a homogeneous function of order p, that is, Ṽ (r) = λ−pṼ (λr), then by Euler’s theorem,

pṼ =


i

ri ·
∂

∂ri
Ṽ .

For a stationary state, dI/dt = 0, which determines the virial condition

2K − pU −
γ κ

2
rγm = 0 (45)

where K =
1
N ⟨
N

i p2
i /2mi⟩ is the average kinetic energy per particle in a SS, U =

1
N ⟨Ṽ ⟩ is the average potential energy

per particle in a SS, and rγm =
1
N ⟨
N

i |ri|γ ⟩. In the case of two-dimensional gravity,3 which will be discussed in Section 5,
the interaction potential is logarithmic, V = 2Gm2 ln(|ri − rj|), and is not a homogeneous function. However, writing the

logarithm as ln x = limp→0


xp
p −

1
p


, after some manipulation (see [39]), we find

GM2 (N − 1)
N

=


i

ri ·
∂

∂ri
Ṽ . (46)

Using Eq. (46) in Eq. (43), the virial condition for a 2D gravitational system is found to be

⟨v2⟩ = GM
N − 1
N

(47)

where we have set κ = 0 in Eq. (41).
In 1D the gravitational potential is a homogeneous function of order p = 1, so that the virial condition reduces to

2K = U . (48)
If at t = 0 the initial distribution function is not a stationary solution of the Vlasov equation, the system will undergo

oscillations.When the relaxation is completed and a qSS is established, Eq. (48)must be satisfied. However, even if the initial
distribution function does not satisfy the stationary Vlasov equation – as is the case for thewaterbag distributions considered
above – we can significantly diminish the amplitude of oscillations during the relaxation process if the initial distribution is
forced to satisfy the virial condition, Eq. (48). For such distributions, even though the initial state is not stationary, it is not
‘‘too far’’ from a qSS. To quantify this, we define the virial number for 1D gravity as R = 2K/U . When R = 1, the virial
condition is satisfied and the oscillations should be suppressed; on the other hand, if R ≠ 1, the system will experience
strong density oscillations due to the imbalance between the kinetic and the potential energies. We expect that the process
of relaxation to the qSS should be quite different for these two cases. Indeed, we find that when R0 = 1, where R0 is the
virial number at time t = 0, the resulting qSS has a compact structure, which is reasonably well captured by LB theory, see
Fig. 5. On the other hand when R0 ≠ 1, the system separates into a central core surrounded by a halo of highly energetic
particles. To understand the mechanism of the core–halo formation, we need to explore the parametric resonances which
appear as a result of the density oscillations.

3 The specific case of two-dimensional gravity is addressed in Ref. [146], which presents a study of the virial theorem in the general case of d dimensions
and includes terms for friction and noise.
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Fig. 5. Distributions in (a) position and (b) velocity of a system that initially was in a waterbag distribution with R0 = 1. The solid line represents the
predictions of LB theory, Eq. (19), while the points are results of MD simulation with N = 2 × 104 , averaged over t = 1000τD to t = 1100τD . For this case,
LB theory provides a fairly accurate approximation for the qSS distribution, despite a small deviation in the distribution tails. Error bars in the distributions
are comparable to the symbol size.

4.5. The envelope equation

To explore the density oscillations, we define the envelope xe(t) to be the extent of the system, xe(t) ≡

3⟨x2(t)⟩. Note

that at t = 0, the envelope xe(t) coincides with the boundary of the initial waterbag distribution, xe(0) = 1. Differentiating
xe(t) twice with respect to time, we have

ẍe(t) =
3⟨x(t)ẍ(t)⟩

xe(t)
+

3⟨ẋ2(t)⟩
xe(t)

−
9⟨x(t)ẋ(t)⟩2

x3e (t)
. (49)

To simplify the first term, we suppose that the mass density oscillations are smooth, so that the particle distribution
remains uniform. Under these conditions, the oscillating gravitational potentialψe(x, t)maintains the functional form given
by Eq. (30), but with xm → xe(t),

ψe(x, t) =

 x2

2xe(t)
+

xe(t)
2

for |x| ≤ xe(t)

|x| for |x| ≥ xe(t).
(50)

Similarly, the distribution function will be approximated by a waterbag

fe(x, v, t) = ηeΘ(xe(t)− |x|)Θ(vm − |v|) (51)

with ηe = [4xe(t)vm]
−1. The average ⟨xẍ⟩ can then be expressed as

⟨xẍ⟩ = −


x
d
dx
ψe(x, t)


= −


x
d
dx
ψe(x, t)fe(x, v, t) dx dv

= −
1

2xe(t)

 xe(t)

−xe(t)

x2

xe(t)
dx, (52)

resulting in

⟨xẍ⟩ = −
xe(t)
3
. (53)

The second and the third terms of Eq. (49) are

⟨ẋ2⟩ =
1

2vm

 vm

−vm

v2 dv =
v2m

3
(54)

and

⟨xẋ⟩ =
1

4xe(t)vm

 xe(t)

−xe(t)
x dx

 vm

−vm

v dv = 0, (55)
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Fig. 6. Oscillations of the envelope xe(t) determined by Eq. (56) (solid line) compared to results of MD simulation (squares). The virial number isR0 = 0.5.

Fig. 7. Poincaré sections of test particle dynamics (see Eq. (58)) for R0 ≈ 1 (a) and R0 = 0.5 (b). In (a) the dynamics is integrable while in (b), two
resonance islands are formed. Panel (c) shows the phase space obtained using MD simulation of a 1D self-gravitating system with R0 = 0.5 at t = 7.
The test particle dynamics enables us to determine the maximum energy ϵh that a particle in the full N-body simulation can achieve. In the case of 1D
gravitation, ϵh = |xh|, where xh , indicated in panel (b), is the maximum position reached by a test particle.

considering that at t = 0 there is no correlation between position and velocity. The envelope equation reduces to

ẍe(t) =
R0

xe(t)
− 1, (56)

where R0 = 2K(t = 0)/U(t = 0) = v2m and the initial conditions are xe(0) = 1 and ẋe(t) = 0. If R0 = 1, then ẍe(t) = 0,
and the system does not develop oscillations. Fig. 6 compares the oscillations of the envelope predicted by Eq. (56) with the
results of MD simulation, showing a reasonable agreement for short times.

4.6. The test particle model

To understand the mechanism of halo formation, we first study the dynamics of noninteracting test particles initially
located at positions x0i ∈ [−1, 1] with velocities v0i ∈ [−vm, vm], where vm =

√
R0. Each particle moves in a gravitational

potential produced by the oscillating mass density

ρ(t) =
1

2xe(t)
Θ(xe(t)− |x|) (57)

where xe(t) is governed by the envelope equation, Eq. (56). The trajectory of a test particle is thendetermined by the equation
of motion

ẍi(t) =

−
xi(t)
xe(t)

for |xi(t)| ≤ xe(t)

− sgn[xi(t)− xe(t)] for |xi(t)| ≥ xe(t)
(58)

where sgn is the sign function [147].
In Fig. 7 we show the Poincaré sections for test particle dynamics. When R0 = 1, the trajectories of the test particles

correspond to harmonic oscillators and the dynamics is completely regular; on the other hand, when R0 ≠ 1, we see the
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appearance of resonance islands. At short times a very similar structure of the phase space is also found in the complete MD
simulation, as shown in panel (c) of the same figure. The formation of resonance islands is the result of the particle(density)-
wave interactions [148–150]. The parametric resonances allow some particles to move into the regions of the phase space
which are highly improbable from the perspective of BG or LB statistics. Once the oscillations die out, these particles are
trapped, becoming a part of a halo.

4.7. The core–halo distribution

From the Jeans theorem, a steady-state solution of the Vlasov equation depends on the phase space coordinates only
through the integrals of motion of the mean-field potential. Conversely, any function of the integrals of motion is a steady-
state solution of the Vlasov equation [64]. In all the cases treated in this Report, the only integral ofmotion is the one-particle
energy. Thus, a Maxwell–Boltzmann distribution is only one of the infinite number of solutions of the Vlasov equation. In
particular an arbitrary initial distributionwill not converge to theMaxwell–Boltzmanndistribution, as is the case for systems
with finite-range forces.

Unlike gravitation in three dimensions, in 1D particles cannot escape to infinity. The test particle dynamics shows,
however, that the resonant particles may gain a lot of energy from collective oscillations and form a tenuous high-energy
halo that surrounds the central core region. Since the Hamiltonian dynamics is conservative, the gain of energy of resonant
particles must result in the loss of energy (cooling down) of the core particles. In principle, the halo formation will continue
until the oscillations of the core have completely died down. Once the SS state is established, the core particles should be
in the ‘‘ground state’’. The incompressibility constraint imposed by the Vlasov dynamics, however, does not allow the core
particles to collapse to the minimum of the potential energy. Rather, these particles will arrange in such a way as to occupy
all of the low energy states up to the allowed maximum phase space density η,

f̄core(x, v) = ηΘ(ϵF − ϵ(x, v)), (59)

where ϵF is the ‘‘Fermi energy’’ of the core.
The maximum energy that a halo particle can gain corresponds to the resonant orbit. As the oscillations die down, the

resonances shift toward the smaller energies, resulting in a quasi-homogeneous population of the phase space between ϵF
and the maximum halo energy, ϵh. We will, therefore, suppose that in a qSS the halo particles are distributed according to

f̄halo(x, v) = χΘ(ϵ(x, v)− ϵF )Θ(ϵh − ϵ(x, v)), (60)

where χ is the phase space density of the halo particles and the maximum halo energy, ϵh, can be calculated using the test
particle dynamics and is given by ϵh = |xh|, see Fig. 7. The complete core–halo distribution is then

f̄ch(x, v) = ηΘ(ϵF − ϵ(x, v))+ χΘ(ϵ(x, v)− ϵF )Θ(ϵh − ϵ(x, v)). (61)

From now on, for simplicity we will write fch instead of f̄ch. After determining ϵh using the test particle dynamics, two
unknowns remain, ϵF and χ , which are obtained using the conservation of the total energy and the number of particles
in the system. Integrating the core–halo distribution function over velocities and substituting the resulting particle density
into the Poisson equation, the gravitational potential is found to satisfy

d2

dx2
ψch(x) = 2

√
2

(η − χ)

ϵF − ψch(x)+ χ


ϵh − ψch(x) for ψch(x) ≤ ϵF ,

χ

ϵh − ψch(x) for ϵF ≤ ψch(x) ≤ ϵh,

0 for ψch(x) ≥ ϵh,

(62)

with the boundary conditions given by lim|x|→∞ ψch(x) = |x| and ψ ′
ch(0) = 0. The parameters χ and ϵF are determined

self-consistently from the numerical solution of Eq. (62) and the conservation of the total energy and the number of particles
(Eqs. (17) and (18)) in the system. Once the potential is knownwe can easily calculate the distributions n(x) =


fch(x, v) dv

and n(v) =

fch(x, v) dx, see Fig. 8.

4.8. Thermodynamic equilibrium

For finite N , correlations are not completely negligible and eventually they will drive the system to thermodynamic
equilibrium. The equilibrium state should be described by the MB distribution Eq. (36), discussed in Section 4.2. Therefore if
the number of particles in the system is not too large and the simulation is run for a sufficiently long time the thermodynamic
equilibrium should be observed. Fig. 9 shows the results of MD simulation for t = 3× 106τD. We see that after this time the
system indeed relaxes to the thermodynamic equilibrium with the particle distribution given by Eq. (36).

The approach to equilibrium can be observed using a crossover parameter, ζ (t), which measures how well the system’s
density profile is described by the core–halo distribution fch(x, v), Eq. (61) at each instant. We define

ζ (t) =
1
N2


[N(x, t)− Nch(x)]2dx (63)



16 Y. Levin et al. / Physics Reports 535 (2014) 1–60

Fig. 8. Distributions inside qSS in (a) position and (b) velocity, for a system with R0 = 2.5, and distributions in (c) position and (d) velocity for a system
with R0 = 0.5. Points show the results of MD simulations with N = 2 × 104 averaged over t = 1000τD to t = 1100τD , and the solid lines correspond to
the marginal distributions predicted by the core–halo theory. Error bars in the distributions are comparable to the symbol size.

Fig. 9. Equilibrium distributions: (a) position and (b) velocity, for a system with R0 = 2.5 at time t = 3 × 106τD , obtained using MD simulation with
N = 1000 (points). Solid lines are the predictions of BG statistics, Eqs. (38) and (39).

where N(x, t) is the number of particles located between x and x+dx at time t and Nch(x) = N

fch(x, v)dv. The smaller the

value of ζ (t), the better the agreement between the system’smarginal distribution in position and the predicted distribution
of the core–halo theory. When the system starts to cross over to equilibrium, ζ (t) begins to deviate from its minimum,
growing until it reaches the equilibrium value, given by ζeq =

1
N2


[Nmb(x) − Nch(x)]2dx where Nmb(x) = Nn(x) with n(x)

given by Eq. (38). In Fig. 10, we show the evolution of ζ (t) for different values of N . After relaxing to the qSS, ζ (t) rises and
approaches the equilibrium value. Rescaling time with τ× = τDNγ , with γ = 1.8, all the curves collapse onto one universal
curve. This value of γ is approximate — to find a precise value of γ , a very large number of particles must be used in MD
simulations. Nevertheless, the observed value of γ agrees quite well with the exponent γ = 2 predicted by the theoretical
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Fig. 10. Relaxation to equilibrium, shown by the crossover parameter ζ (t), Eq. (63), with time rescaled by 105τD in (a) and by τ× = τDN1.8 in (b). In this
case, the equilibrium value ζeq is approximately 0.032. The virial number is R0 = 0.5.

argument of Section 2. While our simulations find γ = 1.8, other previous simulations with smaller number of particles
find γ = 1 [115], γ = 2 [151] and greater [31,32,152].

5. Gravitation in two dimensions

We next consider self-gravitating systems in two dimensions. Such systems and their dynamics have been applied
to study topics ranging from the spiral structure of disk-like galaxies [113,114,153] to the large-scale structure of the
universe [154]. They have also been analyzed in the context of equilibrium thermodynamics [155,156].

The system consists of N particles of mass m in a two-dimensional space. The total mass of the system is M = mN . It
is convenient to define dimensionless variables by rescaling length, velocity, potential, and energy with respect to L0 (an
arbitrary length scale), V0 =

√
2GM ,ψ0 = 2GM and E0 = MV 2

0 = 2GM2, respectively, where G is the gravitational constant.
This process is equivalent to settingM = G = 1 and to defining the dynamical time

τD =
L0

√
2GM

. (64)

In three-dimensional space, the system corresponds to rods of mass densitym [155].
Considering only systems with azimuthal symmetry, the corresponding gravitational potential ψ satisfies the

dimensionless Poisson equation,

∇
2ψ(r, t) = 2πρ(r, t), (65)

where ρ(r, t) is the mass density of a self-gravitating system which is obtained from the one particle distribution function,
ρ(r, t) =


f (r, v; t) d2v. For an isolated particle the density is

ρ(r, r′) = δ(|r − r′|), (66)

so that the Green’s function solution to Eq. (65) is

G(r, r′) = ln |r − r′|. (67)

The Hamiltonian for a N particle gravitational system is then

H =

N
i=1

p2i
2m

+
m2

2

N
i,j=1

ln |ri − rj|. (68)

5.1. Molecular dynamics

Wewill study 2D gravitational systems in the thermodynamic limit. In this limit, if the initial distribution is azimuthally
symmetric, the mean-field potential will also retain this symmetry, so that the angular momentum, pθ = mr2θ̇ , of each
particle is conserved. This allows us to use an effective Hamiltonian description based on Gauss’s law. A particle at position
ri is subject to an interaction potential produced by all the particles with r ≤ ri, leading to an effective Hamiltonian

Heff (ri, θi, pri , pθi) =

N
i=1


p2ri
2m

+
p2θi

2mr2i


+

N
i=1

meff (ri)m ln ri, (69)



18 Y. Levin et al. / Physics Reports 535 (2014) 1–60

where

meff (ri) = m
N
j=1

Θ(ri − rj), (70)

is the mass of all the particles with the radial coordinates r < ri. The equation of motion for ri is then

r̈i =
v2θi

r3i
−

meff (ri)
ri

, (71)

where vθi = pθ/m is determined by the initial distribution. The advantage of the effective Hamiltonian is that the simulation
time of the system’s dynamics depends exclusively on the time of sorting a vector composed of N elements, similar to 1D
gravity.

At the start of the simulation the N point particles are distributed uniformly inside a circle of radius rm. They are
also assigned velocities from a uniform distribution with the maximum value vm. This corresponds to a one-level initial
distribution of the form

f0(r, v) = ηΘ(rm − r)Θ(vm − v) (72)

where η = (π2r2mv
2
m)

−1 is the normalization constant.
Since in the thermodynamic limit the mean-field potential is purely radial, the angular momentum of each particle will

remain constant throughout the simulation. The radial dynamics of each particle is then determined by the Eq. (71), while
the θi(t) dynamics is controlled by the angular momentum conservation vθi(t) = vθi(0). The magnitude of the velocity of

the particle i is vi =


v2ri + (riθ̇i)2.

The potential ψ associated with the initial distribution satisfies the Poisson equation,

d2ψ(r)
dr2

+
1
r
dψ(r)
dr

=


2
r2m

for r ≤ rm

0 for r > rm
(73)

with the boundary conditions given by limr→∞ ψ(r) = ln(r) and ψ ′(0) = 0. The solution to this equation is

ψ(r) =


r2 − r2m
2r2m

+ ln(rm) for r ≤ rm

ln(r) for r > rm.
(74)

Using this potential, Eq. (74), and the initial distribution function, Eq. (72), in the expression for conservation of energy,
Eq. (17), the initial energy of the system is calculated to be

E0 =
v2m

4
−

1
8
, (75)

where without loss of generality we have set rm = 1.
We now consider two cases: one in which the initial distribution obeys the virial condition (R0 = 1) and one in which

it does not (R0 ≠ 1). In Section 4.4, we have shown that the virial condition for a two-dimensional gravitational system
requires that ⟨v2⟩ = GM(N − 1)/N . In the thermodynamic limit, using the rescaled variables, the virial condition reduces
to

⟨v2⟩ =
1
2
. (76)

We then define the virial number for a 2D gravitational system to be

R = 2⟨v2⟩. (77)

5.2. Lynden-Bell theory for a 2D self-gravitating system

In analogy with 1D gravity, if the initial distribution of a 2D self-gravitating system obeys the virial condition, we expect
that the parametric resonances will not be excited and the qSS should be well described by the Lynden-Bell statistics. The
mean-field potential should then satisfy the Poisson equation with the mass density given by the momentum integral of
Eq. (19),

d2ψlb(r)
dr2

+
1
r
dψlb(r)

dr
=

4π2η

β
ln[1 + e−β(ψlb(r)−µ)]. (78)
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Fig. 11. Particle distributions in (a) position and (b) velocity of a 2D gravitational system that initially satisfied the virial condition. The solid lines represent
the prediction of LB statistics, n(r) = N(r)/N and n(v) = N(v)/N , with N(r) and N(v) given by Eqs. (79) and (80). Points are results of MD simulation for
N = 10,000 particles, averaged over times t = 1000 to t = 1100. Error bars in the distributions are comparable to the symbol size.

Fig. 12. Distribution in position for a 2D self-gravitating system with R0 = 0.694. The solid line represents the prediction of LB theory, n(r) = N(r)/N
with N(r) given by Eq. (79), while the symbols are the results of MD simulation with N = 10,000 particles, averaged over times t = 2000 to t = 2100.
Error bars in the distributions are comparable to the symbol size.

The boundary conditions for this equation are limr→∞ ψlb(r) = ln(r) and ψ ′
lb(0) = 0. The parameters β and µ are

determined self-consistently by the conservation of energy and norm of the distribution function, Eqs. (17) and (18). Once
ψlb(r), β , and µ are calculated, we can compare the theoretical predictions with the results of the MD simulations. To do
this we calculate the marginal distributions: the number of particles located between [r, r + dr],

N(r) = 2πNr


d2vflb(r, v) =
4Nr
βv2m

ln[1 + e−β(ψlb(r)−µ)] ; (79)

and the number of particles with velocities between [v, v + dv],

N(v) = 2πNv


d2rflb(r, v). (80)

Comparing the theory and the simulation, we see a reasonably good agreement between the LB statistics and the results
of MD simulations, Fig. 11. However, if the initial distribution does not satisfy the virial condition, LB theory starts to
deviate from the results of MD simulations. A tail in the marginal distribution functions emerges, showing the formation of
a core–halo structure, see Fig. 12.

5.3. The envelope equation

The appearance of the core–halo structure is a consequence of the parametric resonances which arise from the density
oscillations. To study these oscillations we define the envelope of the particle distribution as re(t) =

√
2⟨r · r⟩. Note that
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with this definition re(0) = rm. Differentiating re(t) twice with respect to time, we find

r̈e(t) =
2⟨r · r̈⟩
re(t)

+
2⟨ṙ · ṙ⟩
re(t)

−
4⟨r · ṙ⟩2

re3(t)
, (81)

which can be rewritten as

r̈e(t) =
2⟨r · r̈⟩
re(t)

+
ε2(t)
r3e (t)

(82)

where

ε2(t) ≡ 4

⟨r · r⟩⟨ṙ · ṙ⟩ − ⟨r · ṙ⟩2


(83)

is known as the ‘‘emittance’’. The emittance is an important parameter in the physics of charged particle beams, and is
related to the area occupied by the particles in the phase space [79]. Unlike the one-dimensional case, in two dimensions
the term ⟨r · r̈⟩ can be simplified using the Poisson equation (65),

⟨r · r̈⟩ =


r · r̈ fe(r, v, t)d2rd2v

=
1
2π


r · r̈ ∇

2ψed2r

= −


r2
∂ψ

∂r
∇

2ψedr

= −


r
∂ψe

∂r
∂

∂r


r
∂ψe

∂r


dr

= −
1
2

 re(t)

0
dr
∂

∂r


r
∂ψe

∂r

2

. (84)

The gradient of the potential at re is 1/re, and we obtain

⟨r · r̈⟩ = −1/2. (85)

We are interested to study the behavior of a 2D self-gravitating system when its initial distribution does not deviate
significantly from the virial condition. In this case, we expect that the emittance will remain close to its initial value,
ε2(0) = v2m = R0, so that the envelope equation reduces to

r̈e(t) =
R0

r3e (t)
−

1
re(t)

. (86)

As expected, if re(0) = 1 and R0 = 1, r̈e = 0, so that the envelope does not develop oscillations.
Comparing the temporal evolution of re(t) with the data from MD simulations, we see that there is a reasonably good

agreement between the two, especially for short times (Fig. 13).

5.4. The test particle model

We now study the behavior of test particles subject to a gravitational potentialψe(t) produced by an oscillating uniform
mass distribution,

ρ(t) =
1

πr2e (t)
Θ(re(t)− r). (87)

Solving the Poisson equation we find

ψe(r, t) =

 r2 − re(t)2

2re(t)2
+ ln(re(t)) for r ≤ re(t)

ln(r) for r ≥ re(t).
(88)

This means that the dynamics of a test particle i which at t = 0 was at ri(0) and had an angular momentum pθi will be
governed by the equation of motion

r̈i(t)−
vθi

2

ri3(t)
=


−

ri(t)
r2e (t)

for ri(t) ≤ re(t)

−
1

ri(t)
for ri(t) ≥ re(t)

(89)

where re(t) is the solution of Eq. (86).



Y. Levin et al. / Physics Reports 535 (2014) 1–60 21

Fig. 13. Evolution of the envelope re according to Eq. (86) (solid line) compared to MD simulation (points) for a 2D self-gravitating systemwith R0 = 1.5.
A reasonably good agreement is seen for short times.

Fig. 14. Poincaré sections for a 2D self-gravitating system with (a) R0 ≈ 1 and (b) R0 = 0.9. While in (a) the dynamics is completely regular in (b) we
see the formation of a resonance island. We have considered vθi = 0 so that only the radial velocity appears in the Poincaré sections.

We integrate the equations of motion (89) for 15 test particles, uniformly distributed at t = 0, ri(0) ∈ [0, 1] and
vi(0) ∈ [0, vm], with vm =

√
R0. The Poincaré section is constructed by plotting the position and velocity of each test

particle when the envelope re(t) is at its minimum value, see Fig. 14.
In Fig. 15 we compare the phase space structure of the test particle dynamics to a snapshot of the phase space obtained

using MD simulation, after the qSS has been established. We see that the test particle dynamics allows us to calculate the
maximum energy that a particle of a self-gravitating system can gain from the density oscillations.

5.5. The core–halo distribution

The particles which enter in resonance with the core density oscillations escape from the central region producing a
tenuous halo. The halo formation progressively dampens the oscillations, bringing the resonances closer and closer to the
core. When the qSS is established, we expect that the particle distribution will, once again, correspond to the core–halo
distribution, given by

fch(r, v) = ηΘ(ϵF − ϵ(r, v))+ χΘ(ϵ(r, v)− ϵF )Θ(ϵh − ϵ(r, v)), (90)

where ϵF and χ are calculated using conservation of energy and norm and ϵh is determined by the test particle dynamics,
see Fig. 15. Integrating the core–halo distribution over v, we obtain the particle density in the qSS state. Substituting this
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Fig. 15. Poincaré section of test particles (a) moving in an effective potential given by Eq. (88) and the phase space of MD simulation at t = 2000 with
N = 20,000 (b). The virial number isR0 = 0.694. Comparing the two phase spaces, we see that the test particle dynamics allows us to accurately determine
the maximum energy ϵh that a particle of a 2D self-gravitating system can gain from the density oscillations. In this particular case, ϵh = ln(rh), where rh
is the maximum position reached by a test particle, as indicated in the panel (a).

Fig. 16. Distributions in (a) position and (b) velocity for a 2D self-gravitating system with R0 = 0.25. The solid line corresponds to the prediction of the
core–halo distribution function, Eq. (90), and points are results of MD simulation with N = 10,000 particles averaged over times t = 2000 to t = 2100.
Error bars in the distributions are comparable to the symbol size.

into Poisson equation (65), we obtain the equation for the gravitational potential of a 2D cluster

∇
2ψch(r) = 4π2


η(ϵF − ψch(r))+ χ(ϵh − ϵF ) for ψch(r) < ϵF ,
χ(ϵh − ψch(r)) for ϵF ≤ ψch(r) ≤ ϵh,
0 for ψch(r) > ϵh,

(91)

with boundary conditions limr→∞ ψch(r) = ln(r) andψ ′
ch(0) = 0. The system of equations (91) can be solved analytically,

see Ref. [39]. Comparing the marginal distributions predicted by the core–halo theory to the results of MD simulations
(Fig. 16), an excellent agreement between the two is observed.

5.6. Relaxation time

Finally, it is interesting to explore howmuch time τ×(N) a finite system of N particles remains in the qSS before relaxing
to the true thermodynamic equilibrium. To this end, we use the crossover parameter ζ (t), defined as

ζ (t) =
1
N2


∞

0
[N(r, t)− Nch(r)]2dr (92)

whereN(r, t) is the number of particles located inside shells between r and r+dr at time t andNch(r) = 2πNr

fch (r, v) d2v,

where fch (r, v) is the core–halo distribution, Eq. (90). Fig. 17 shows the value of ζ (t) for systems with different numbers
of particles. The panel Fig. 17b shows that if the time is rescaled by τ× = Nγ τD, where γ = 1.35 and τD is the dynamical
time defined by Eq. (64), all the curves fall on a universal curve, indicating the divergence of the crossover time in the
thermodynamic limit. Thus, in the limit N → ∞ a self-gravitating system will remain forever trapped in a nonequilibrium
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Fig. 17. (a) ζ (t) for different numbers of particles in the 2D self-gravitating system. In the inset, we show the fast (N independent) relaxation to the
core–halo qSS after a time t ≈ 2000τD . The system remains in the qSS for a time interval that scales with the number of particles. When the time is
rescaled by τ×(N) all the data in (a) fall on a universal curve (b).

stationary state. Recent simulations performed with discrete particles instead of the concentric shells used in this Report
have lead to exponent γ ≈ 1 [157], which is in good agreementwith the scaling argument presented in Section 2, t×N/ lnN .

5.7. Thermodynamic equilibrium

For a finite number of particles, after a time τ×(N), we expect the system to relax to thermodynamic equilibrium, with

fmb(r, v) = Ce
−β


v2
2 +ψeq(r)


, (93)

where C is the normalization constant. To see that this is the case, we calculate the gravitational potential and the marginal
distributions and compare them to the results of MD simulations. The gravitational potential in equilibriumψeq will satisfy
the Poisson–Boltzmann equation

∇
2ψeq(r) =

d2ψeq(r)
dr2

+
1
r
dψeq

dr
=

4π2C
β

e−βψeq(r), (94)

where β = 1/T is the Lagrangemultiplier used to enforce the conservation of the total energy. The solution of this equation
is given in Ref. [39],

ψeq(r) =
1
2
ln

e2(2E−1)

+ r2

. (95)

Curiously, an isolated 2D gravitational system can only exist at one temperature, T = 1/4, independent of the initial energy.
If such a system is put in contact with a thermal bath, it will either gain energy from the bath and grow without bound or
lose energy and shrink, depending if the temperature of the bath is greater or smaller than T = 1/4, respectively.

Fig. 18 compares the marginal distributions obtained using the MD simulations with the predictions of equilibrium
statistical mechanics. The number density of particles located between [r, r + dr] is

N(r) = 2πNr


d2v fmb(r, v) =
2Ne2(2E−1)r

(e2(2E−1) + r2)2
, (96)

and the number density of particles with velocities between [v, v + dv] is

N(v) = 2πNv


d2r fmb(r, v) = 4Nve−2v2 . (97)

The figure shows a good agreement between the results of MD simulations and BG statistics. However, to reach
thermodynamic equilibrium, it was necessary to run a simulation with N = 10,000 particles for t = 106 dynamical times.
Up to this time, the system remained trapped in a qSS state with the particles distributed in accordance with the core–halo
distribution function fch(r, v), Eq. (90).
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Fig. 18. Equilibrium distributions: (a) position and (b) velocity of a 2D self-gravitating system with E0 = −0.0434. The solid line corresponds to the
equilibrium distributions, Eqs. (96) and (97), and the points are results of MD simulations with N = 10,000 particles at t = 106 .

6. Gravitation in three dimensions

The relaxation of 3D self-gravitating systems is extremely difficult to study. There are two basic problems arising from
the fact that Newton’s gravitational potential has no lower bound, but is bounded from above. The consequence of the
upper bound is that some particles of a self-gravitating system can gain enough kinetic energy to escape the gravitational
field of the cluster. In principle, there is no limit to the particle evaporation since the energy can be constantly supplied
by the two-body collisions [38,61,105] and the gravitational collapse. As a consequence, the Poisson–Boltzmann equation
for a 3D open system has no solutions. Based on cosmological simulations, however, it has been observed that 3D systems
do relax to qSSs [158–160]. There have been a number of phenomenological models proposed to describe the observed
density profiles in such qSS: ‘‘de Vaucouleurs’’, ‘‘Sérsic’’ and ‘‘NFW’’ models [161–168]. These, phenomenological density
distributions, however, lack the theoretical foundation.

The fact that the Poisson–Boltzmann equation does not have a solution indicates that open 3D self-gravitating systems
are intrinsically unstable in the infinite time limit. This instability is a consequence of the binary collisions which lead to a
flux of evaporating particles. On shorter time scales, however, it is possible for a system to relax to a collisionless qSS. Again,
however, the situation in 3D is much more complex than in one and two dimensions [30,34,113–118,120–122]. Significant
evaporation of particles can happen even on very short time scales, leading to a halo that extends all the way to infinity.
At the moment, there is no theory that can account for the particle distribution inside a 3D halo. The theory of parametric
resonances, which was so successful for treating 1D and 2D gravity, cannot be applied in 3D since, in general, there are no
bounded resonant orbits.

Although the particle distribution in a qSS cannot be predicted a priori, we expect that it will have a core–halo structure.
Evaporation should progressively cool down the core region. Statistically only a completely degenerate core can remain
stable in an infinite space— at finite temperature the entropy gainwill always favor particle evaporation. Furthermore, since
the collisionless relaxation is controlled by the Vlasov equation, the phase space density in the core cannot exceed that of
the initial waterbag distribution. We, therefore, expect that the core will be described by a fully degenerate Fermi–Dirac
distribution [38] with the ‘‘spin’’ degeneracy equal to the phase space density of the initial waterbag distribution. The
difficulty, however, is that without knowing the full particle distribution in the halo, we cannot calculate the self-consistent
gravitational potential and close all the equations of the theory.

For a 3D gravitational system of total massM , the gravitational potential in the qSS must satisfy the Poisson equation,

∇
2ψ(r) = 4πGM


f (r, v)d3v, (98)

where f (r, v) is the one particle distribution function. If the potential ψ(r) has a radial symmetry, the particles can be
represented as spherical shells of massm = M/N . This approach greatly facilitates the numerical simulations, and becomes
exact in the thermodynamic limit.

It is convenient to measure all the distances in an arbitrary length unit r0, the time in units of dynamical time,

τD =


r30
GM

, (99)

and the gravitational potential in units of ψ0 = GM/r0. The Poisson equation (98) then reduces to

∇
2ψ(r, t) = 4π


f (r, v, t)d3v. (100)
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Fig. 19. Poincaré sections of a 3D gravitational system, for (a) R0 ≈ 1 and (b) R0 = 0.97. In (a) the orbits are completely integrable, whereas in (b), we
see a resonance island.

For a particle located at r′, ρ(r) = δ(|r−r′|), the Green’s function of the Poisson equation is the usual Newton’s gravitational
potential

G(|r − r′|) = 1/|r − r′|. (101)

This potential diverges at small distances and is bounded from above.We saw already that in 1D and 2D some particles enter
in resonance with the density oscillations and gain a lot of energy. The situation in 3D is evenmore complex — the potential
is bounded from above so that the resonant particles can gain enough energy to completely escape from the gravitational
field of the cluster.

6.1. Test particle dynamics

To get a better idea of the relaxation process which leads to the core–halo formation, we study the dynamics of test
particles moving under the action of an oscillating gravitational potential. Once again we consider particles which at t = 0
were distributed uniformly in the phase space inside a sphere of radius 0 < r ≤ rm and 0 < v ≤ vm. We define the

‘‘envelope radius’’ as re(t) =


5⟨r2⟩
3 , which at t = 0 satisfies re(t) = rm. We will work in dimensionless units and set

r0 = rm. Differentiating twicewith respect to time andperformingmanipulations similar to those for 1D and2Dgravitational
systems, we obtain a differential equation that governs the envelope dynamics,

r̈e +
1
r2e

−
R0

r3e
= 0, (102)

where

R0 = −
2K0

V0
(103)

is the virial number, and K0 and V0 are the kinetic and the potential energy of the initial distribution.
We consider the dynamics of 10 test particles, initially distributed uniformly with positions ri ∈ [0, 1] and velocities

vi ∈ [0, vm],

r̈i(t)−
l2i

ri3(t)
=


−

ri(t)
r3e (t)

for ri(t) ≤ re(t)

−
1

r2i (t)
for ri(t) ≥ re(t),

(104)

where li = |ri(0)× vi(0)| and re(t) evolves according to Eq. (102). Fig. 19 shows the Poincaré sections for two systems with
R0 ≈ 1 and R0 = 0.97. For R0 ≈ 1, the orbits remain integrable, while even a small deviation from the virial condition
results in the appearance of a resonance island. For slightly larger or smaller R0 the resonant orbit becomes unbounded.

6.2. Lynden-Bell theory for a 3D self-gravitating system

It is interesting to consider the predictions of the LB theory for a 3D self-gravitating system. In this case the one-particle
distribution function becomes

flb(r, v) =
η

eβ[ϵ(r,v)−µ] + 1
, (105)
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Fig. 20. (a) β and (b) µ as a function of rw , for a 3D self-gravitating system. While the inverse temperature parameter β diverges in (a), the chemical
potential µ in (b) asymptotically goes to a finite value µ ≈ −0.41, as rw increases. The virial number is R0 = 1.7.

where η = 9/16π2v3m and ϵ(r, v) = v2/2 + ψ(r). Integrating over the velocities we obtain the density distribution
corresponding the LB stationary state. Substituting this into the Poisson equation allows us to write a self-consistent
equation for the gravitational potential

1
r2
∂

∂r
r2
∂ψ

∂r
= −16π2 η


π

2β3
Li3/2(−eβ[µ−ψ(r)]), (106)

where Lin(x) is the nth polylogarithm function of x. This equation has to be solved numerically and the two Lagrange
multiplier β and µ must be calculated to preserve the number of particles and the energy of the system. The solution of
Eq. (106) is complicated by the open boundary conditions. In practice, wewill solve this equation by enclosing the system in
a spherical box of radius rw and then take the limit rw → ∞. As expected, when rw → ∞, the LB distribution separates into
a completely degenerate core and a very tenuous halo which extends all the way to rw . However, the particle distribution
in the halo is very different from the ones found in MD simulations, see Fig. 21, so that LB theory fails to correctly describe
a 3D self-gravitating system.

6.3. Systems with R0 = 1

If the initial particle distribution satisfies the virial condition R0 = 1, the macroscopic oscillations will be suppressed
and the parametric resonances will not be excited, see Fig. 19. For such initial distributions, we saw that LB theory worked
reasonably well for 1D and 2D gravitational systems. For 3D systems, however, LB theory fails even when R0 = 1. As
rw → ∞, the solution of Eq. (106) requires that β → ∞ (see Fig. 20) and the distribution function approaches the
degenerate limit fcore(r, v) = η1Θ(µ − ϵ) (plus halo particles at infinity). Thus, for an open system, LB theory will always
predict a fully degenerate core [169]. This conclusion, however, is valid only in the asymptotic t → ∞ limit. In this limit,
even small oscillations of the envelope will lead to particle evaporation and result in formation of a cold core. In practice,
however, for R0 = 1 the rate of evaporation is very low, so that the degenerate limit will not be reached in the time of
simulation. To treat this ‘‘short’’ time limit, we can introduce an effective cutoff (a wall) at rw . The precise value of the
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Fig. 21. The (a) mass and (b) velocity distributions of a 3D self-gravitating system in the qSS obtained by MD simulation (symbols) and the LB prediction
(solid line). The wall radius is placed at rw = 104 and the virial number is R0 = 1.7.

cutoff is unimportant, as long as it is not too large 5 ≤ rw ≤ 100. The wall will prevent the particle evaporation and a
complete cooling of the core region. Indeed, the cutoff-LB distribution (cLB) is found to describe reasonably the qSS state for
R0 = 1 [38], see Fig. 22.

7. Non-neutral plasmas

In this chapterwewill analyze qSSs ofmagnetically confined non-neutral plasmas. The non-neutrality condition is crucial
for the plasma to be a long-ranged interacting system — for neutral two component plasmas, Debye screening leads to an
effective short-range interaction potential [79,170,171]. The equilibrium state of neutral plasmas and electrolytes, therefore,
can be studied using the usual Boltzmann–Gibbs statistical mechanics [101].

Many different applications, such as heavy ion fusion, high-energy physics, communications, materials processing, and
cancer therapy, depend on the physics of transport of intense charged-particle beams. The goal is to avoid the heavy particle
losses produced by the parametric resonances [47,172], which can lead to halo formation that is detrimental to the beam
quality, and can result in damage to the accelerator walls. A theory which can quantitatively predict this effect is, therefore,
highly desirable for a better understanding of the physics of beam transport [50,144,173–175].

In general, the dynamics of the beams is influenced by multiple effects, including the mismatched envelope (rms
radius of the beam) [50–52,144,176], movement outside the axis of symmetry [177–182], nonuniformities in the beam
distribution [149,183–185], and the image forces due to the surrounding conducting walls [186–188]. Of all these, the
study of parametric resonances resulting from the transverse beam oscillations has attracted the most attention. Envelope
mismatch is believed to be the main cause of the halo formation in space-charge dominated beams [189]. In this section we
will show that the mismatch of the beam envelope is closely related to the virial condition – similarly to the one found for
self-gravitating systems – and that the final qSS is, once again, described by the core–halo distribution function.

7.1. The model

Our system consists of a beam of charged point particles, confined by an external magnetic field Bext(r) = B0ẑ,
propagating along the axial ẑ direction, with velocity Vb. The beam has a characteristic radius rb and is surrounded by a
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Fig. 22. The mass (a) and velocity (b) distributions in the qSS of a 3D self-gravitating system obtained by MD simulation with N = 2× 104 (symbols) and
the distributions obtained using LB theory with a cutoff at rw = 10 (solid line), for an initially virialized waterbag distribution, R0 = 1.

Fig. 23. Charged particle beamof characteristic radius rb propagating along the longitudinal direction ẑwith constant velocityVb . The particles are confined
by a magnetic field Bext

= B0 ẑ, and the beam is isolated from the external environment by a conducting cylindrical wall located at rw .

conductive cylindrical wall of radius rw .4 We assume that the beam has axial symmetry and that the motion along the
ẑ direction is uniform. Consequently, we consider that the relevant dynamics takes place only in the transverse plane
‘‘⊥’’.5 Under these conditions, the time t can be replaced by the longitudinal coordinate s, by means of a canonical
transformation of the original Hamiltonian, where s = Vbt and Vb = βbc , c being the speed of light in vacuum, as illustrated
in Fig. 23.

The charge of the beam particle is Zie, where Zi is the valence and e is the electron charge. Furthermore, assuming that the
transverse velocity of the beam particles is much lower than the longitudinal velocity, the dynamics along the transverse
plane may be considered non-relativistic. This set of conditions, known as the paraxial approximation, is sufficient to study
narrow and intense charged-particle beams [79].

4 A conducting grounded wall requires that the electric potential at the wall vanishes φs(rw) = 0.
5 We approximate∇

2
≈ ∇

2
⊥
since the variation of the potential along the longitudinal direction is negligible compared to the variations in the transverse

plane. Therefore, in this section, ∇ will be understood to represent ∇⊥ .
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Fig. 24. Change of reference frames: ‘‘O’’ represents the laboratory frame and ‘‘O′ ’’ the Larmor frame.

The electric Es and magnetic Bs fields satisfy Maxwell’s equations [79] and the electric potential the Poisson equation,

∇
2φs

=
1
r
∂

∂r


r
∂

∂r


φs(r, s) = −4πZienb (107)

with boundary conditions φ(rw) = 0 and φ′(0) = 0, where nb is the number density of the particles. The electric potential
is always zero outside the conductive wall, located at rw . The vector potential, ẑAs

z(r, s), produced by the current of charges
ZienbVzb – the longitudinal velocity of the beam, Vzb(r, s), is approximated by Vb – satisfies

∇
2As

z(r, s) = −4πZienbβb. (108)

Comparing Eqs. (107) and (108), we see that the electric and vector potentials are related by

As
z = βbφ

s. (109)

Thus, solving the Poisson equation (107), we find the electromagnetic field acting on each particle,

Es
= −∇φs(r, s), (110)

B = Bext
+ βb∇φ

s(r, s) × ẑ. (111)

As a matter of convenience, [47,79], we study the system in the Larmor frame which rotates in relation to the laboratory
with a constant angular frequencyΩL = −ZieB0/2γbmc , where γb = (1−β2

b )
−1/2 andm is themass of a particle, see Fig. 24.

We define the dimensionless potential as

ψb(r, s) =

Zie/γ 3

b mβ
2
b c

2φs(r, s). (112)

In the Larmor frame, the focusing due to the magnetic field Bext , results in a radial confining force. The change to the Larmor
frame is accomplished by a change of coordinates (r, θ) → (r ′, θ ′), where

r ′
= r,

θ ′
= θ −ΩL s, (113)

as shown in Fig. 24. The evolution of the distribution function f (r, v, s) in the Larmor frame satisfies the Poisson–Vlasov
systems of equations [79],

∂ f
∂s

+ v · ∇f +

−κ2

z r − ∇ψb(r)

· ∇vf = 0, (114)

∇
2ψb(r) = −2πKn(r, s), (115)

where n(r, s) =

f dv is the density profile of the beam, κz = |ΩL|/βbc is the focusing field parameter, and K =

2Z2
i e

2Nb/γ
3
b β

2
bmc2 is the perveance whichmeasures the intensity of the beam. The number of particles per unit axial length
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is Nb, r is the position vector in the transverse plane, and v ≡ dr/ds is the dimensionless transverse ‘‘velocity’’. The problem
then reduces to studying the dynamics of 2D pseudo-particles of charge q =


K
Nb

confined by an external parabolic potential

U = κzr2/2. The interaction potential between the particles isµb(r, r′) = q2Gb(r, r′)where Gb(r, r′) is the Green’s function
of the two-dimensional Poisson equation. For conducting boundary conditions at rw , the Green’s function can be calculated
using Kelvin’s inversion theorem [147,190]. The Hamiltonian for the effective 2D system is then

Hb(ri, θi, vri , vθi) =

Nb
i=1


v2ri

2
+
v2θi

2r2i


−

q2

2

Nb
i,j=1

Gb(ri, rj)+
κ2
z r

2
i

2
. (116)

Starting from an arbitrary initial distribution, the system of particles can now be simulated to obtain the final qSS.
If the system has azimuthal symmetry, the simulations can be simplified further. In the thermodynamic limit the Vlasov

mean-field description becomes exact, so that each particle moves under the action of the mean electromagnetic potential
produced by all the other particles. To approach the mean-field limit with a finite number of particles we can uniformly
smear the charge of each particle over a circle or radius ri corresponding to its position. This is the same approximation that
was used to efficiently simulate 2D and 3D gravitational systems. Using Gauss’s law, the equation of motion for the radial
coordinate of a particle i becomes

r̈eff (ri) =
v2θi

r3i
+

K
Nb

neff (ri)
ri

− κ2
z ri, (117)

neff (ri) =

Nb
j=1

Θ(ri − rj), (118)

where neff is the number of particles with r < ri and vθi = r2i θ̇i. Since the force acting on each particle is radially symmetric,
vθi is a conserved quantity determined from the initial condition, vθi(t) = vθi(0). The effectiveHamiltonian in themean-field
limit can then be written as

Hb
eff (ri, θi, vri , vθi) =

Nb
i=1


v2ri

2
+
v2θi

2r2i
−

K
Nb

neff (ri) ln


ri
rw


+
κ2
z r

2
i

2


. (119)

7.2. The envelope equation

We define the beam envelope as rb ≡

2⟨r2⟩

1/2. Differentiating twice with respect to s gives us the beam envelope
equation,

r̈b + κ2
z rb −

K
rb

−
ε2(t)
r3b

= 0, (120)

where ε(t) is the emittance, Eq. (83). This equation is exact; however, the dynamics of ε(t) is unknown. For short times we
will set it equal to the initial emittance ε(t) = ε(0) ≡ ε0.

The beam envelope will not oscillate if r̈b = 0. This defines the matched beam radius,

r∗

b =


K
2κ2

z
+


K 2

4κ4
z

+
ε20

κ2
z

1/21/2

, (121)

which is equivalent to the virial condition, Eq. (45).
If the initial beam is launched with the radius rb = r∗

b , it will not develop significant oscillations and will not suffer
emittance growth. However, in practice it is virtually impossible to launch a beam precisely at this radius. We, therefore,
define the virial parameter as

µ(t) ≡ rb(t)/r∗

b , (122)

which measures how far the initial beam deviates from the virial condition.

7.3. Initial conditions

At t = 0 the Nb particles are distributed uniformly in phase space with ri ∈ [0, rm] and velocities vi ∈ [0, vm],

f0(rm, vm) = ηΘ(rm − r)Θ(vm − v). (123)
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It is convenient to measure all length in units
√
ε0/κz and ‘‘time’’ (longitudinal length) s in units of 1/κz . The transverse

velocities will then be measured in units
√
ε0κz . In these dimensionless units the matched beam radius becomes

r∗

b =


K ∗

2
+


K ∗2

4
+ 1

1/21/2

, (124)

where K ∗
= K/ε0κz . Unlike for self-gravitating systems, for which only the virial number determined the dynamical

evolution, in the case of beams we have two dimensionless parameters, K ∗ and µ0 = µ(0).
In the reduced units, ε0 = 1 and

vm = 1/rm, (125)

where rm = rb(0) and the emittance growth is εqSS .
The potential ψb

wb associated with the initial distribution given by Eq. (123) can be obtained by solving the Poisson
equation (115),

d2ψb
wb(r)
dr2

+
1
r
dψb

wb(r)
dr

=


−2K ∗/r2m for r ≤ rm,
0 for rm < r ≤ rw,

(126)

with the boundary conditions ψb
wb(rw) = 0 and ψ ′b

wb(0) = 0. The solution is

ψb
wb(r) =

−K ∗


(r2 − r2m)

2r2m
+ ln(rm/rw)


for r ≤ rm,

−K ∗ ln(r/rw) for rm ≤ r ≤ rw.
(127)

For the initial waterbag distribution (123), the initial energy of the system is

E0(K ∗, rw;µ0) =
v2m

4
+

r2m
4

+
K ∗

8
−

K ∗

2
ln

rm
rw


, (128)

with rm and vm defined by Eqs. (122) and (125), respectively.6

7.4. Lynden-Bell theory for a charged particle beam

We will first analyze the situation in which the beam envelope at t = 0 is matched, i.e. satisfies the virial condition
µ0 = 1. From our experience with self-gravitating systems, we expect that in this case LB statistics should work reasonably
well. The electromagnetic potential should then satisfy the Poisson equation (115), with the charge density obtained by
integrating the distribution function, Eq. (19), over velocities,

d2ψb
lb(r)

dr2
+

1
r
dψb

lb(r)
dr

= −
4π2K ∗

β
ln


1 + e

−β


ψb
lb(r)+

r2
2 −α


. (129)

The Lagrange multipliers α and β are determined using energy and norm conservation. The solution to this equation is
obtained numerically and the resulting marginal distributions

N(r) = 2πNbr


d2vflb(r, v) (130)

and

N(v) = 2πNbv


d2rflb(r, v) (131)

are compared with the results of MD simulations in Fig. 25, showing a very good agreement.

6 If the initial distribution is nonuniform, the functional dependence between vm and rm will change.
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Fig. 25. Number density of particles in (a) position and (b) velocity for a system initially in awaterbag distributionwithµ0 = 1, where K ∗
= 1 and rw = 4.

The solid line corresponds to the distribution obtained using LB theory, Eq. (19), and the points are results of MD simulation with Nb = 50,000 particles,
averaged over 100 dynamical times after the system reached a qSS. Error bars in the distributions are comparable to the symbol size.

Fig. 26. Poincaré section of the test particles (a) and phase space of the N-body MD simulation (b) using the Hamiltonian (119) at t = 200, for an initial
distribution with µ0 = 1.5 and K ∗

= 1. The test particle dynamics allows us to determine the maximum position rh reached and, consequently, the

maximum energy ϵh that a particle may attain, ϵh =
r2h
2 − ln rh

rw
.

7.5. The test particle model

In practice, it is very difficult to launch a perfectlymatched beam. Inmost caseµ0 ≠ 1 and parametric resonances will be
excited. To study these, we once again appeal to themodel of non-interacting test particlesmoving in an oscillating potential
ψe(rb(t)). We consider 15 test particles initially distributed uniformly with positions ri ∈ [0, rm] and velocities vi ∈ [0, vm].
The equation of motion for the particle i is

r̈i(t)−
vθi

2

ri3(t)
+ ri(t) =


K ∗

ri(t)
r2b (t)

for ri(t) ≤ rb(t)

K ∗
1

ri(t)
for ri(t) ≥ rb(t),

(132)

where rb(t) evolves according to (120) with ε(t) = ε0.
Comparing the result of the test particle dynamics with the full N-body MD simulation, shown in Fig. 26, we see that the

reduced test-particle model predicts accurately the location of the resonant orbit. This allows us to calculate the maximum

energy ϵh that a particle can gain from the parametric resonance, ϵh =
r2h
2 − ln rh

rw
, where rh is the maximum distance from

the origin reached by a test particle of the initial distribution, see Fig. 26(a). Phenomenologically it has been found [50]
that for beams with large space charge K ∗, rh is simply related to the virial parameter and the matched envelope radius,
rh = 2r∗

b (1 + ln(µ0)).
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Fig. 27. Regions of phase space used in the solution of Eq. (115).

7.6. The core–halo distribution

For mismatched beams (µ0 ≠ 1), we expect that the qSS distribution function will, once again, be of the core–halo type,

fch(r, v) =
1
π2

[Θ(ϵF − ϵ(r, v))+ χΘ(ϵh − ϵ(r, v))Θ(ϵ(r, v)− ϵF )] . (133)

It is convenient to divide phase space into three regions, I , II , and III (Fig. 27), corresponding respectively to r < rc ,
rc < r < rh, and rh < r < rw , where rc is the core radius. The particle density

n(r) =


fch(r, v)d2v (134)

in the three regions can be written as

nI(r) =
2
π

[ϵF + χ(ϵh − ϵF )− VI(r)] , (135)

nII(r) =
2χ
π

[ϵh − VII(r)] , (136)

and nIII(r) = 0, where Vi(r) ≡ ψchi(r) + r2/2, i = I, II, III is the total potential that takes into account the effects of
the interaction between particles as well as the contribution of the external field. The parameter rc is determined by the
condition V (rc) = ϵF . Themaximum halo extent rh is calculated using test particle dynamics, see Fig. 26(a). Bothψchi(r) and
Vi(r) and their first derivativesmust be continuous at r = rc and r = rh. These conditions, togetherwith the Poisson equation
(115), provide a closed set of equations for the potential in different regions. The equations can be solved analytically,
allowing us to calculate the distribution function in the qSS [191]. A good agreement between theory and MD simulation is
shown in Fig. 28.

The theory also allows us to predict the emittance growth, a quantity which is of primary importance for beam physics.
Comparing the predictions of the present theory with the results of MD simulations, an excellent agreement between the
two is observed, Fig. 29. The theory is also in excellent agreement with the experimental measurements [50].

The fraction of particles that escape from the core region to form a high energy halo can be obtained by integrating the
distribution function between the energies ϵF and ϵh, Fh = (χ/π2)


Θ(ϵh − ϵ)Θ(ϵ − ϵF )d2rd2v (Fig. 30). We find

Fh = 1 − 2Ar2c I2(αcrc), (137)

where In(z) is the modified Bessel function of the first kind of order n.

7.7. Relaxation time

Since plasmas contain astronomical numbers of charged particles, relaxation to Boltzmann–Gibbs thermodynamic
equilibrium will not happen on laboratory time scale. From the purely theoretical stand point, however, it is interesting
to study what would happen if the number of particles can be reduced. This can be easily achieved on computer, if not in
practice. We thus define a crossover parameter

ζ (t) =
1
N2


∞

0
[N(v, t)− Nlb(v)]

2dv (138)
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Fig. 28. Particle distribution for a mismatched beam, with µ0 = 1.5 and K ∗
= 1. Points are results of MD simulation with N = 5 × 104 , averaged over

100 dynamical times in the qSS, and the line shows the prediction obtained using the core–halo distribution, Eq. (134). Error bars in the distributions are
comparable to the symbol size.

Fig. 29. Emittance growth, ε/ε0 , as a function of the initial virial parameter µ0 predicted by the core–halo theory (solid line) and compared with the MD
simulations (points) for K ∗

= 1.

Fig. 30. Fraction of particles occupying the halo, Eq. (137), as a function of the initial mismatch µ0 , for K ∗
= 1.

where N(v, t) is the number of particles with velocity in the interval [v, v + dv] at simulation time t , and Nlb(v) is given
by Eq. (131). The LB distribution is used in the definition of ζ (t) because we consider cases when the virial condition is
initially satisfied. The value of ζ (t) should tend toward its asymptotic value, ζeq, as the system approaches thermodynamic
equilibrium. This value is given by

ζeq =
1
N2


∞

0
[Neq(v)− Nlb(v)]

2dv, (139)
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Fig. 31. (a) ζ (t) for different numbers of particles in the system. When the dynamical time τD is rescaled by τ× , all points in (a) converge to a universal
curve (b). In this case, the asymptotic value of ζ is ζeq ≈ 0.08. The simulations were performed with explicit particles with initial distribution satisfying
the virial condition, µ0 = K ∗

= 1.

where Neq(v) = 2πNv

fmb(r, v) dr and fmb(r, v) is the equilibrium distribution function. The dynamic time scale is set

to τD = κz . If the simulation time is scaled with τ× = Nγ τD, where γ = 1.3, all curves fall on the same universal curve.
This shows that in thermodynamic limit the crossover time diverges as N1.3τD (Fig. 31). The result is very similar to the one
found in self-gravitating systems. Recently a theoretical model based on the Chandrasekhar collisional mechanism has been
proposed to account for such large crossover time. The theory predicts that the most important factor in determining the
exponent γ is the system dimensionality [192,193].

7.8. Thermodynamic equilibrium

After the crossover time τ×(N), during which the plasma remains trapped in an out of equilibrium qSS, it should relax
to the thermodynamic equilibrium in which the particle density and velocity distributions should be given by the usual
Boltzmann–Gibbs statistical mechanics

n(r) = Ce
−β


ω(r)+ r2

2


(140)

and

n(v) =
β

2π
e−

β|v|2
2 , (141)

where C is the normalization constant, β = 1/T is the Lagrange multiplier for conservation of energy, and ω(r) is the
potential of mean force [101]. For large number of particles, the correlations become unimportant and ω(r) ≈ ψ(r). The
potential ψeq must then satisfy the Poisson–Boltzmann equation,

d2ψeq(r)
dr2

+
1
r
dψeq(r)

dr
= −

4π2K ∗C
β

e
−β


ψeq(r)+ r2

2


(142)

with the boundary conditions ψeq(rw) = 0 and ψ ′
eq(0) = 0. The solution to this equation can be obtained numerically. In

Fig. 32 we compare the predictions of the Boltzmann–Gibbs statistical mechanics with the results of MD simulations. The
computer runs were performed with not too many particles to allow the system to relax to equilibrium within reasonable
CPU time. Fig. 32 shows the marginal distributions N(r) = 2πrn(r), and N(v) = 2πvn(v) with n(r) and n(v) given by
Eqs. (140) and (141). As expected, after a sufficiently long time the system relaxes to the thermodynamic equilibrium.

8. The Hamiltonian mean field model

The gravitational and plasma systems studied up to now are of great practical importance. From the perspective of
statisticalmechanics, however, they have a serious drawback— they donot exhibit a phase transition. In the last two sections
of this review we will consider two systems with long-range forces which do show a spontaneous symmetry breaking. In
particular, we are interested to explore how the phase transitions between the qSSs differ from the usual equilibrium phase
transitions.
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Fig. 32. Distribution in (a) position and (b) velocity for a systemwith E0 = 1.597. The solid line represents the equilibrium resultsN(r) andN(v), obtained
using the Maxwell–Boltzmann distribution, and the points are the results of molecular dynamics simulations with N = 1000 particles. A fourth-order
symplectic integrator with constant step size of dt = 10−2 was used for the molecular dynamics [194].

The first system that we will study is the Hamiltonian Mean Field (HMF) model. The HMF is a mean-field version of the
XY -model, in which all spins interact with each other [195,196]. It has become a paradigm of a system with long-range
interaction [197–200], and is especially interesting due to its phase transition. For one-dimensional systems with short-
range forces the Mermin–Wagner theorem prohibits spontaneous symmetry breaking in 1D [201]. The phase transition in
the HMF is only possible because of the infinite range interaction between the spins [202,203]. The HMF model can also be
considered a simplified representation of a one-dimensional self-gravitating [204] or Coulomb system [205] on a ring, and
has some similarity with the Colson–Bonifacio model of a single-pass free electron laser [206–209].

8.1. The model

The HMFmodel can be interpreted in terms of interacting spins or as particles confined to move on a circle of radius one.
The particle interpretation is more convenient for studying the dynamics of this model, so we will adopt it for most of our
discussion. The dynamics of N particles of the HMF is governed by the Hamiltonian [196]

H =

N
i=1

p2i
2

+
γ

2N

N
i,j=1


1 − cos(θi − θj)


, (143)

where θi is the coordinate and pi the conjugatemomentumof the ith particle, and γ is a parameter that controls the intensity
of the interaction. The sign of γ determines the type of coupling between the particles: if γ > 0, the interaction is attractive
and the coupling is ferromagnetic; if γ < 0, the interaction is repulsive and the coupling is antiferromagnetic.

TheHamiltonian (143) is a simplification of a one-dimensional gravitational or a Coulomb systemwith periodic boundary
conditions and a neutralizing background. For example, consider a system formed by N particles distributed along a ring of
unit radius, i.e. with position θ ∈ [−π, π ]. The Poisson equation is

∇
2ψ(θ) = ξ

N
i=1


δ(θ − θi)−

1
2π


(144)

where ξ depends on the system under consideration, and ψ(−π) = ψ(π), ψ ′(−π) = ψ ′(π) = 0 if θi = 0, ∀ i. In the
gravitational case ξ = 4πGm, where G is the gravitational constant,m = M/N is the particle mass andM the total mass. For
the Coulomb case, ξ = −q/ε0, where q = Q/N is the charge density, Q the total charge and ε0 the vacuum permittivity. The
term 1/2π represents the uniform neutralizing background which is necessary both for Coulomb and gravitational systems
with periodic boundary conditions.

Expressing the Dirac delta in its Fourier representation, δ(θ − θi) =


n exp[ i n(θ − θi)]/2π and integrating the Poisson
equation, the potential produced by N particles is found to be

ψ(θ) = ξ

N
i=1

∞
n=1


1 − cos(n(θ − θi))

πn2


. (145)

The potential is normalized so that ψ(0) = 0 when θi = 0, ∀i. Truncating the series at n = 1 and taking γ /N = ξ/π , we
recover the potential of the HMF model.
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We will consider the ferromagnetic HMF model. Rescaling time, we can set γ = 1. The Hamiltonian (143) can then be
written as

H =

N
i=1

p2i
2

+
1
2N

N
i,j=1

(1 − cos θi cos θj − sin θi sin θj), (146)

or

H =

N
i=1

p2i
2

+
1
2

−
1
2N


N
i=1

cos θi

2

−
1
2N


N
i=1

sin θi

2

. (147)

The order parameter of the system is the magnetization per particle, M = (Mx,My), which measures how ‘‘bunched’’ is
the particle distribution. IfM = 0 the particles are uniformly distributed over the ring. The components of themagnetization
are

Mx = ⟨cos θ⟩ =
1
N

N
i=1

cos θi (148)

and

My = ⟨sin θ⟩ =
1
N

N
i=1

sin θi. (149)

The energy per particle, E = H/N , can be written as

E =
⟨p2⟩
2

+
1 − M2

x − M2
y

2
, (150)

and the one particle energy is

ϵ(θi, pi) =
p2i
2

+ 1 − Mx cos(θi)− My sin(θi). (151)

If the initial distribution is symmetric in θ , then My = 0, and in the thermodynamic limit, it will remain so throughout the
evolution [25]. For now we will only consider symmetric distributions and setMy(t) = 0.

8.2. Thermodynamic equilibrium

Classical statistical mechanics provides a prediction for the thermodynamic equilibrium of the HMF model [196]. In
this subsection, we shall briefly describe the results in the microcanonical ensemble. A more extensive treatment of the
equilibrium state of the HMF model can be found in Ref. [7].

Themicrocanonical ensemble is defined by the surface of constant energy E in the 2Nd-dimensional configuration space,
d being the number of degrees of freedom of each particle (d = 1 for the HMF),

Ω(E,N) =

 π

−π

dθ


∞

−∞

dp δ(H(p, θ)− E), (152)

where θ andp areN-dimensional vectors representing the positions and velocities of allN particles that compose the system:
θ = (θ1, θ2, . . . , θN) and p = (p1, p2, . . . , pN). Thus, we also write dθ =

N
i=1 dθi and dp =

N
i=1 dpi.

The Boltzmann entropy per particle is s =
1
N lnΩ which is calculated to be [7,210]

s(E) =
1
2
(ln 4π + 1)+ sup

M


1
2
ln


E −
1 − M2

2


−

M2

2E − 1 + M2
+ ln I0


M

2E − 1 + M2


(153)

where In(z) =

dθ cos nθ exp(z cos θ) is the modified Bessel function of the first kind. The curve s(E) is shown on Fig. 33.

The equilibrium magnetization is obtained by solving the equation

I1


M
2E−1+M2


I0


M
2E−1+M2

 = M, (154)

and is plotted as a function of E in Fig. 34. Finally, Fig. 35 shows the inverse temperature β = 1/T as a function of E . These
figures indicate a second-order phase transition between ferromagnetic and paramagnetic states at Ec = 0.75.
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Fig. 33. Microcanonical entropy as a function of the mean energy for the HMF model.

Fig. 34. Equilibrium magnetization as a function of the mean energy E for the HMF.

Fig. 35. The inverse temperature β = 1/(2E − 1 + M2) as a function of the mean energy E for the HMF. The sharp corner at E = 0.75 indicates a
second-order phase transition.

8.3. Nonequilibrium quasi-stationary states

The results shown in Section 8.2 are valid if the HMF is able to relax to thermodynamic equilibrium. However, as we have
seen throughout this report, in thermodynamic limit systemswith long-range interactions do not reach the equilibrium, but
become trapped in a qSS, the lifetime of which diverges with the number of particles [102]. Thus, in practice the equilibrium
state will never be achieved by the HMFmodel with a large enough number of particles. To explore the properties of the qSS
and the possible phase transitions between the different nonequilibrium states, we use MD simulations. In this report we
focus on simulations with initial distributions of the one-level waterbag type — Eq. (155); for results of studies of the qSSs
of the HMF model using other types of initial distributions, see for example Refs. [211–213].
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At t = 0 the particles are distributed in accordance with the one-level waterbag distribution,

f0(θ, p) = ηΘ(θm − |θ |)Θ(pm − |p|), (155)

whereΘ(x) is the Heaviside step function. The constants η (density), θm (maximum value of θ ) and pm (maximum value of
p) are determined by the normalization of the distribution, initial magnetization (M0) and mean energy (E ), respectively,

1 =

 π

−π

dθ


∞

−∞

dp f0(θ, p), (156)

M0 =

 π

−π

dθ


∞

−∞

dp f0(θ, p) cos θ, (157)

and

E =

 π

−π

dθ


∞

−∞

dp f0(θ, p)
p2

2
+

1 − M2
0

2
. (158)

These lead to

η =
1

4θm pm
, (159)

M0 =
sin θm
θm

, (160)

and

pm =


3 ( 2E − 1 + M2

0 ). (161)

To simulate a system composed of N particles, we use two vectors of dimension N/2, where the ith component of the
first vector represents the angle θi of the ith particle, and similarly the ith component of the second vector is themomentum
pi of the respective particle. As the initial condition, each θi and pi take a random value between [−θm, θm] and [−pm, pm],
respectively. For each of these particles, we consider that there exists a particle in a symmetrical position in phase space:
θi+N/2 = −θi and pi+N/2 = −pi, which ensures thatMy(t) = 0∀ t and increases the simulation speed — since the dynamics
is symmetric, we only need to integrate the motion of half of the particles.

The trajectory of each particle is governed by the equation of motion θ̈i = ṗi = −∂H/∂θi, or

θ̈i = −
1
N

sin θi
N
j=1

cos θj +
1
N

cos θi
N
j=1

sin θj

= −Mx sin θi + My cos θi
= −M sin θi. (162)

The numerical integration is implemented using a fourth-order symplectic integrator [214], available online from
E. Hairer [215]. To control the numerical precision, the error in conservation of energy per particle E , given by Eq. (150),
was kept at approximately 10−8.

Fig. 36 shows examples of two initial phase space distributions, panels (a) and (c), and the respective distributions after
a qSS have been achieved, panels (b) and (d). The simulations were performed with N = 2 × 105 particles. The initial
magnetization was the same in both simulations, M0 = 0.8 — both initial waterbags had the same θm. The pm’s for the two
distributions were different corresponding to energies (a) E = 0.7 and (c) E = 0.45. The two initial conditions lead to
different phases: the higher energy configuration leads to a paramagnetic (homogeneous) distribution, panel (b), while the
system with lower energy remains magnetized, panel (d).

The final qSS state depends both on the initial magnetization M0 and energy E . This is very different from the state of
thermodynamic equilibrium which depends only on E . The evolution ofM for two systems with the same energy E = 0.62
and different values of M0 is shown in Fig. 37. A system with an initial magnetization M0 = 0.2 quickly relaxes to a
paramagnetic state inwhich itsmagnetization oscillates aroundM = 0. On the other hand, a systemwithM0 = 0.8 remains
magnetized. In both cases, the magnetization M(t) oscillates around its quasi-stationary value Ms, given by the temporal
average of M(t) [211]. However, while the oscillations inside the ferromagnetic state are clearly damped, the amplitude of
oscillations in the paramagnetic state remains finite. The difference between the two states is that inside the ferromagnetic
phase the particles experience a finite mean-field potential produced byM(t)while in the paramagnetic phase the average
potential is zero. Thismeans that inside the ferromagnetic state some particles can enter in resonancewith the oscillations of
the potential and gain energy from the collective motion. This, in turn, will result in Landau damping of the magnetization
and the relaxation to qSS. In the paramagnetic phase, M(t) oscillates around zero, so there is no resonant mechanism to
dampen the oscillations.
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Fig. 36. Phase space of molecular dynamics with N = 2 × 105 . The left column shows the initial distributions with (a) E = 0.7 and (c) E = 0.45. The
initial magnetization is the same for both cases, M0 = 0.8. The right column shows the two final qSS to which the system relaxes: (b) paramagnetic and
(d) ferromagnetic. The simulation time is t = 5000.

Fig. 37. Magnetization as a function of time obtained using MD simulation with N = 106 particles. For the same energy E = 0.62, different initial
magnetizations result in distinct qSS: forM0 = 0.8 ferromagnetic (solid line) and forM0 = 0.2 paramagnetic (dashed line).

The location of the phase transition can be determined by performing simulations for different initial conditions,
varying E for a fixed initial magnetization and calculating Ms. The resulting nonequilibrium phase diagram for the HMF
model is shown in Fig. 38. The results are fairly similar to the nonequilibrium phase diagram found using the Lynden-Bell
entropy [216], yet has some differences, primarily as to the order of the phase transition in some regions, as will be seen
further on in this chapter, and in the location of the transition for higher initial magnetizations.

It is interesting to compare the nonequilibrium phase diagramwith the one found for the equilibrium of the HMFmodel.
In equilibrium, the critical energy Ee = 0.75 separates the paramagnetic (E > Ee) from the ferromagnetic phase (E < Ee)
and is independent of the initial magnetization, as is shown by the dashed–dotted line of zero slope in the phase diagram,
Fig. 38. On the other hand, the transition between the nonequilibrium ferromagnetic and paramagnetic phases occurs at
different values of E , depending on the initial magnetization. This transition is represented by a solid line. The shaded
region is the forbidden zone — since the minimum kinetic energy is zero, M0 determines the minimum allowed energy
per particle Emin = (1 − M2

0 )/2. The diagram also shows a region in which the nonequilibrium order–disorder transition
is not well defined: the wide, shaded line around the critical line for M0 > 0.6, approximately. For these values of M0,
there are regions where the average energy E is above the critical line, yet in which the system remains magnetized. Similar
regions, or reentrances, have also been observed in studies of the HMF model using numerical resolution of the Vlasov



Y. Levin et al. / Physics Reports 535 (2014) 1–60 41

Fig. 38. Phase diagram of the HMF model. The solid line shows the nonequilibrium transition, obtained using MD simulations. Around this line, for
M0 > 0.6, approximately, the green line shows a region in which the transition is not very well defined, where ‘‘reentrances’’, small ferromagnetic regions
exist above the critical line, inside the paramagnetic region. The equilibrium transition, at E = 0.75, is represented by the blue dash-dotted line. The gray
area represents forbidden initial conditions, delimited by the minimum energy necessary for a given M0 . (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 39. Example of the envelope θe at t = 0 (red lines) in comparison with an initial waterbag distribution of particles (dots). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

equation [217] and Lynden-Bell statistics [218]. Finally, while the equilibrium phase transition between the ferromagnetic
and paramagnetic phases is of second order [7], the nonequilibrium phase transition is of first order.

In our studies of self-gravitating systems and plasmas, we saw the importance of the virial theorem to determine when
strong collective oscillations will occur. However, since the potential of the HMF is not a homogeneous function of the
separation between the particles, we cannot directly apply the results of Section 4.4 to determine the virial condition. To
discover underwhat conditions themagnetization of theHMFmodelwill remain constant, so that the parametric resonances
will not be excited, we need to derive a Generalized Virial Condition (GVC). To do this we define the envelope of the particle
distribution of the HMF as [19]

θe(t) =


3⟨θ2(t)⟩. (163)

Note that at t = 0, the envelope coincides with the maximum θ of the initial waterbag distribution, θm, see Fig. 39.
Differentiating Eq. (163) twice with respect to time, we find

θ̈e(t) =
3⟨θ̇2(t)⟩
θe(t)

+
3⟨θ θ̈(t)⟩
θe(t)

−
9⟨θ(t)θ̇(t)⟩2

θ3e (t)
. (164)

As the result of the conservation of energy, see Eq. (150), in the first term, themean square velocity ⟨θ̇2(t)⟩ is 2E −1+M2(t).
To calculate the other averages, we assume the marginal distribution in θ remains uniform in the interval [−θe(t), θe(t)]
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Fig. 40. Comparison of the magnetization M(t) =


i cos θi/N of molecular dynamics (dots) and of the envelope magnetization Me(t) = sin θe(t)/θe(t)
(line). The initial condition is (M0 = 0.75, E = 0.25), off the generalized virial curve.

and zero outside. Using this approximation, the second term of Eq. (164) reduces to

⟨θ θ̈(t)⟩ =
−M(t)
2θe(t)

 θe(t)

−θe(t)
θ sin θdθ

=
M(t)
2θe(t)

[θ cos θ − sin θ ]θe(t)
−θe(t)

=
M(t)
2θe(t)

[2θe(t) cos θe(t)− 2 sin θe(t)]

= M(t) cos θe − M(t)
sin θe(t)
θe(t)

.

The last term of Eq. (164) may be neglected by disregarding the correlations between θ and p. The resulting envelope
equation is

θ̈e(t) =
3
θe
(2E + Me(t) cos θe − 1) , (165)

where we have used

Me(t) =
1

2θe(t)

 θe(t)

−θe(t)
cos θdθ

=
sin θe(t)
θe(t)

. (166)

Fig. 40 compares the evolution of magnetization Me(t), predicted by the Eqs. (165) and (166), with the magnetization
obtained using the fullN-bodyMD simulation.We see an excellent agreement between the theory and simulation, especially
at short times. For longer times, the amplitude of the magnetization observed in the simulations is damped, while in
the envelope oscillations it is not. This occurs because the envelope equation is conservative, while in the simulation the
parametric resonances transfer the energy from the collective oscillations to the individual particles.

The GVC corresponds to the initial condition for which the envelope does not oscillate, so thatMe(t) = M0. This happens
when [19],

2E + M0 cos θm − 1 = 0, (167)

so that θ̈e(t) = 0. Eq. (167) defines the GVC condition which is plotted by the dashed line in the nonequilibrium phase
diagram of Fig. 41.

To test the GVC we perform MD simulations starting with initial waterbag distributions which lie directly on top of the
GVC curve (167).We then plotwith triangles in Fig. 41 the finalmagnetization towhich the system relaxes (note that for both
the initial and the final state the energy is the same).We see that the final stationarymagnetizationsMs are almost exactly the
same as the initial magnetizationsM0. Furthermore, for systemswith initial conditions off the GVC curve, themagnetization
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Fig. 41. Phase diagram of the HMF model, exhibiting the generalized virial condition (red dashed line). Triangles represent the stationary magnetization
Ms , determined using MD simulations, of systems with initial conditions on the generalized virial condition. Points A, B and C show the initial state of the
systems corresponding to Fig. 42, and T and B to Fig. 43. The arrows next to A and C indicate that the stationarymagnetization corresponding to these initial
conditions is close to the magnetization of the GVC curve for the same energy E . The continuation of the GVC curve, the blue dotted line for M0 < 0.343,
shows an unstable region. The lower gray area represents inaccessible initial conditions. The black solid line shows the phase transition, and the thick green
line represents the region of reentrances, where some small ferromagnetic regions exist above the critical line.

quickly changes and begins to oscillate around the stationary value corresponding to Ms on the GVC curve with the same
E . For example, points A and C of Fig. 41 each represent initial conditions off the GVC. Let us call the coordinates of these
points (MA

0 , E
A) and (MC

0 , E
C ), respectively. The stationary values obtained using theMD simulations correspond to (MA

s , E
A)

and (MC
s , E

C ). The arrows next to points A and C indicate the values of MA
s and MC

s on the GVC curve to which the system
relaxes. This result is quite surprising, since the distribution functions for the initial and the final state are very different for
systems that do not satisfy the GVC [19]. It is not clear at thismomentwhy the approximate GVC derived using thewaterbag
distribution works so well to predict the final magnetizations for systems which initially are very far from their qSS.

Eq. (167) has an unstable branch, represented by the blue dotted line in Fig. 41. If the initial conditions place the system
exactly on this branch, the magnetization will remain the same, however, any perturbation will make the system evolve
from the line of unstable fixed points toward the line of stable ones, represented by the red dashed curve.

8.4. Lynden-Bell theory for the HMF model

The LB theory has been extensively applied to the HMF model, in some cases showing reasonable agreement with the
results of MD simulations [54,55,219,220]. From the examples of gravity and plasma, however, we expect that LB theory
should only work when the initial distribution satisfies the GVC. For non-virial initial conditions, resonances should drive
the HMF into a qSS with a core–halo particle distribution [19,25].

The LB distribution for the HMF model is given by [55]

f̄lb(θ, p) = η
e−β(p2/2−M[f̄lb] cos θ−µ)

1 + e−β(p2/2−M[f̄lb] cos θ−µ)
, (168)

whereM(f̄lb) =

f̄lb cos θdpdθ . The phase space density η is determined by the initial distribution (159), while β andµ are

the Lagrange multipliers used to preserve the norm and the energy. Solving the system of equations

E =
η

2


p2

1 + exp(βp2/2 − βM(f̄ ) cos θ − βµ)

−1
dpdθ +

1 − M(f̄ )2

2
, (169)

1 = η

 
1 + exp(βp2/2 − βM(f̄ ) cos θ − βµ)

−1
dpdθ (170)

and

M = η


cos θ


1 + exp(βp2/2 − βM(f̄ ) cos θ − βµ)

−1
dpdθ (171)

we can calculate β , µ and M and obtain the particle distribution predicted by LB for the qSS.
In Fig. 42, we show the marginal distributions, in angle and momentum, obtained using MD simulations, and compare

them with the predictions of LB theory. Three different initial conditions are shown in Fig. 41: panels A and C correspond
to non-virial initial conditions, while panel B shows the initial condition that lies on the GVC. For the non-virial initial
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Fig. 42. Distributions in angle (left column) and momentum (right column) of the stationary states calculated using molecular dynamics (squares) and
LB theory (lines) for three different initial conditions — top row (point A of Fig. 41): M0 = 0.8, E = 0.43 (off the generalized virial curve); middle row
(point B of Fig. 41): M0 = 0.8, E = 0.3297 (on the generalized virial curve); bottom row (point C of Fig. 41): M0 = 0.8, E = 0.25 (off the GVC). In the
MD simulations were used N = 105 and the corresponding distributions were averaged between times t = 15,000 and t = 17,000. Error bars in the
distributions are smaller than the symbol size.

conditions, the distribution functions show a significant deviation from the LB theory. On the other hand, the initial
distribution that satisfies the GVC is found to relax to the qSS which is well described by LB theory, panel B of
Fig. 41.

8.5. The test particle model

The discrepancies between the results of MD simulations and the LB theory, for initial distributions which do not satisfy
the GVC, are a consequence of the parametric resonances which transfer the energy from the collective motion to the
individual particles [19]. To study these resonances we, once again, appeal to the test particle model. The test particles
obey the equation of motion (162), with the magnetization determined by the envelope equation, Me(t). Fig. 43 shows the
Poincaré sections of test particle dynamics – the phase space of the test particles plotted when Me(t) is at its minimum –
compared with the phase space of the HMF, obtained using MD simulation. Two cases are shown: top panels correspond
to the initial conditions that obey the GVC (point B of Fig. 41), while the bottom panels correspond to the initial conditions
slightly off the GVC (point T of Fig. 41). For the initial distribution satisfying the GVC, the test particle dynamics is regular
and no halo is formed. On the other hand, for the non-virial initial distributions (off the GVC), we see resonances which lead
to the halo formation in the HMF.

The mechanism of core–halo formation in the HMF is the same as was discussed for gravitational and plasma systems.
The parametric resonances transfer the energy from the collective motion to the individual particles. This, in turn, dampens
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Fig. 43. Right column: Poincaré sections of test particle dynamics. Left column: phase space of molecular dynamics of N = 105 particles. Top row: initial
conditions on the generalized virial curve (M0 = 0.8, E = 0.3297) — point B of Fig. 41. Bottom row: initial conditions off the generalized virial curve
(M0 = 0.8, E = 0.4) — point T of Fig. 41.

the collective oscillations, forcing the core particles into low energy orbits. Once the oscillations die out completely, the
dynamics of all the particles becomes integrable, and the ergodicity is irreversibly broken. The high energy particles become
trapped inside a halo, while the low energy particles form a degenerate core. The LB theory, which relies on the assumptions
of ergodicity and efficient mixing [104], is not able to describe such qSSs [19].

8.6. The core–halo distribution

The core–halo distribution for the HMF model is [25]

f̄ch(θ, p) = ηΘ(ϵF − ϵ(θ, p))+ χΘ(ϵ(θ, p)− ϵF )Θ(ϵh − ϵ(θ, p)), (172)

with the one-particle energy given by ϵ(θ, p) =
p2

2 + 1 − M cos(θ). To calculate this distribution we need to determine ϵh,
ϵF , Ms and χ . The parameters ϵF and χ are calculated using the conservation of energy and norm, respectively,

E =
1
2


p2fch(θ, p)dpdθ +

1
2
(1 − M2

s ), (173)

1 =


fch(θ, p)dpdθ, (174)

and Ms is given by

Ms =


cos θ fch(θ, p)dθdp. (175)

To calculate ϵh for gravitational systems and plasmas we have used the test particle dynamics to locate precisely the
resonant orbit. However, there is an inherent difficulty in using this approach for the HMF model. The interaction potential
for HMF particles is bounded from above. Depending on the initial conditions, some particles can gain enough energy to
completely escape the confining potential, and start moving in rotating orbits. This makes it difficult to pinpoint the highest
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Fig. 44. qSS magnetization according to the core–halo theory (black dots), LB theory (red line), and as determined by MD simulations with N = 2 × 106

particles (blue squares), averaged over 200 dynamical times in the qSS. For the core–halo theory, ϵh was determined by test particle dynamics. The shaded
region shows where the first order transition predicted by the core–halo theory will occur. Error bars of the MD simulation results are comparable to the
symbol size.

possible energy of the resonant particle. In this sense, the HMF model is similar to 3d self-gravitating systems, for which
particles can escape the gravitational potential of the cluster. Another difficulty with the test particle dynamics is that while
the system is spatially periodic, the envelope equation (165) is not. The oscillations of the envelope may be so large that
the envelope surpasses θe = π , in which case an artificial periodicity must be introduced into the test particle dynamics.
In spite of these difficulties, we can still attempt to use the core–halo distribution with the approximate values of ϵh to
locate the order–disorder transition in this model. Fig. 44 shows the qSS magnetization Ms as determined by the core–halo
theory and the test particle dynamics for various values of E at fixed initial magnetization M0 = 0.4. The core–halo theory
predicts a first order phase transition between the paramagnetic and ferromagnetic phases. In the same figure we also plot
the prediction of LB theory. Although the distribution functions of LB theory deviate significantly from the results of MD
simulations, far from the transition point the theory accounts quite accurately for the values of Ms. LB theory, however,
incorrectly predicts that the phase transition between the qSSs forM0 = 0.4 is of second order [216], while the simulations
find it to be of first order, Fig. 44. Numerical resolution of the Vlasov equation, which may be used to study the dynamics of
the HMF model [221], also shows only first-order transitions in the HMF [217].

At the moment, we lack a general method to calculate the halo energy ϵh for arbitrary values of M0 and E . The envelope
equation and the test particles dynamics allow us to make accurate predictions of ϵh for distributions close to the GVC.
To predict the final particle distributions in the qSS which are far from the GVC, we can use a short MD simulation of the
full HMF model with not too many particles. Since the formation of resonances is a fast process, the ϵh can be defined as
the highest energy achieved by any particle after a few oscillations of M(t). Fig. 45 shows that this procedure leads to an
excellent description of the final qSS.

8.7. Relaxation to equilibrium

For finite N , the lifespan of the qSS is finite, and eventually a crossover to thermodynamic equilibrium occurs [222]. In
equilibrium the particle distribution has the usual Maxwell–Boltzmann form, with the magnetization given by the solution
of Eq. (154) [7]. The relaxation to equilibrium is shown in Fig. 46, which demonstrates the evolution of M for different
values of N . The initial condition (M0 = 0.4 and E = 0.65) is such that the qSS is paramagnetic, while the equilibrium state
is ferromagnetic. For this energy, the equilibrium magnetization is Meq = 0.397, represented by the black dotted line in
Fig. 46. As the figure shows, the fewer particles in the system, the faster the magnetization relaxes to the equilibrium value.
Rescaling time with Nγ , with γ ≈ 1.7, all the curves collapse onto one universal curve. The lifespan of the qSS therefore
scales with τ× ∼ Nγ . The exponent γ ≈ 1.7 is the same as the value found in other studies of the HMF model [102].
However, recent large-scale MD simulations show that for large N , the exponent γ crosses over to γ = 2. This is consistent
with the arguments based on the Balescu–Lenard equation, which suggest that the crossover time from a paramagnetic
(homogeneous) qSS to a ferromagnetic equilibrium state should scale as N2 [223–225].

9. The generalized Hamiltonian mean field model

From the perspective of statistical mechanics, the HMF model is significantly richer than self-gravitating or plasma
systems. Unlike these systems, the HMF possesses a genuine nonequilibrium phase transition between qSSs. The structure
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Fig. 45. Comparison of MD simulation with N = 8 × 105 particles and predictions of the core–halo theory for (M0 = 0.8, E = 0.55). Panel (a) shows
the phase space at t = 10,000 (black dots) and the curves ϵ(θ, p) = ϵh (red line) and ϵ(θ, p) = ϵF (green line). Panel (b) shows the one-particle energy
ϵ(θ, p) (black dots) and the energies ϵh (red line) and ϵF (green line). Panels (c) and (d) show the distributions in θ and p, respectively, of molecular
dynamics (squares) and core–halo theory (lines). The halo energy ϵh was determined using a short MD simulation with N = 1000. The distributions of MD
simulations are averaged over 100 dynamical times in the qSS, and error bars are comparable to symbol size. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

a b

Fig. 46. Magnetization as a function of time for different values of N: N = 75 × 103 (blue), N = 125 × 103 (green), N = 150 × 103 (magenta)
and N = 175 × 103 (black). The results are from MD simulations with initial magnetization M0 = 0.4, and mean energy E = 0.65. For this energy,
the equilibrium state is ferromagnetic, while the qSS is paramagnetic. The black dotted line represents the equilibrium magnetization, Meq = 0.397,
corresponding to this energy. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

of the phase diagram of the HMF, however, is still relatively simple, since only paramagnetic and ferromagnetic phases exist.
To explore further the differences between equilibrium and nonequilibrium phase transitions, we introduce a Generalized
HamiltonianMean Field (GHMF)model. In addition to paramagnetic and ferromagnetic phases, thismodel also has a nematic
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phase. In this section we will compare the equilibrium and nonequilibrium phase diagrams of the GHMF and show that in
the new qSS nematic phase, particles are once again distributed in accordance with the core–halo distribution.

9.1. The model

The Hamiltonian of the GHMF model is given by

H =

N
i=1

p2i
2

+
1
2N

N
i,j=1


1 −∆ cos(θi − θj)− (1 −∆) cos(qθi − qθj)


, (176)

where q ∈ N and∆ ∈ [0, 1] [226]. This model is a long-range version of the models studied in Refs. [227,228]. Considering
the particles as a collection of spins, the generalized nematic coupling cos(qθi−qθj) favors either alignment ormisalignment
of spins. For example, for q = 2, it favors either parallel or antiparallel spins. From the perspective of the particle dynamics,
either homogeneous or bunched states are possible, with the number of bunches controlled by the parameter q.

The order parameters for the GHMF model are the generalized magnetizations

M1 =
1
N

N
i=1

cos θ (177)

and

Mq =
1
N

N
i=1

cos(qθ). (178)

Note that the full definition of themagnetizations should include ⟨sin θ⟩ and ⟨sin qθ⟩, analogous to theHMFmodel; however,
we neglect these terms because only initial distributions symmetric in θ will be considered.

The GHMF Hamiltonian (176) can be rewritten as

H =

N
i=1

p2i
2

+
1
2

−
1
2N
∆


N
i=1

cos θi

2

−
1
2N
(1 −∆)


N
i=1

cos(qθi)

2

.

The average energy per particle is

E =
⟨p2⟩
2

+
1 −∆M2

1 − (1 −∆)M2
q

2
(179)

and the one-particle energy is

ϵ(θ, p) =
p2

2
+ 1 −∆M1 cos θ − (1 −∆)Mq cos(qθ). (180)

9.2. Thermodynamic equilibrium

The procedure for obtaining the equilibrium values ofM1 andMq is the same as used for the HMFmodel. Here we present
only the final results; more details can be found in the Ref. [226]. The microcanonical entropy is given by

s(E) =
1
2
ln 2π +

1
2

+ sup
M1,Mq


1
2
ln

2E − 1 +∆M2

1 + (1 −∆)M2
q


− M1a(M1,Mq)

−Mq b(M1,Mq)+ ln


dθ exp[a(M1,Mq) cos θ + b(M1,Mq) cos qθ ]

. (181)

The equilibrium magnetizations correspond to the maximum of the entropy (181) and must satisfy the coupled equations

M1 =


dθ cos θ exp [a cos θ + b cos qθ ]

dθ exp [a cos θ + b cos qθ ]
(182)

and

Mq =


dθ cos qθ exp [a cos θ + b cos qθ ]

dθ exp [a cos θ + b cos qθ ]
, (183)
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Fig. 47. Equilibrium phase diagram (microcanonical ensemble) for q = 2. The transitions are second order (dashed lines), with the exception of a small
region in the center, between two tricritical points (solid circles), in which the transition is first order (solid line). On the right, the three panels show the
equilibrium (MB) angular distributions f (θ) for each phase: paramagnetic (a), nematic (b), and ferromagnetic (c).

where

a(M1,Mq) =
∆M1

2E − 1 +∆M2
1 + (1 −∆)M2

q
, (184)

b(M1,Mq) =
(1 −∆)Mq

2E − 1 +∆M2
1 + (1 −∆)M2

q
. (185)

The roots of Eqs. (182)–(185) determine the equilibrium magnetizations for a given E , q and∆. Fig. 47 shows the phase
diagram for q = 2 [226]. Most transitions are of second order (dashed lines), except for a small region near∆ = 0.5, where
the transition is of first order (solid line). The equilibrium distribution functions f (θ) for the three phases are illustrated in
the right-hand panels of Fig. 47:

(a) the paramagnetic phase (M1 = M2 = 0),
(b) the nematic phase (|M2| > |M1| ≥ 0) and
(c) the ferromagnetic phase (|M1| > 0, |M2| ≥ 0).

The generalizedmagnetizationsM1 (solid line) andM2 (dotted line) as a function of energy, for four values of∆, are shown
in Fig. 48: panels (a), (b) and (c) show second order transitions (nematic–paramagnetic, ferromagnetic–paramagnetic, and
ferromagnetic–nematic, respectively), and panel (d) shows a first order ferromagnetic–paramagnetic transition. In the latter
case, the critical energy is the energy for which the entropies of the ferromagnetic and paramagnetic phases are equal.

9.3. Nonequilibrium quasi-stationary states

Unlike the equilibrium states of the GHMF, which only depends on the initial energy, the qSSs depend explicitly on the
initial particle distribution. In this Report wewill explore how the ordered ferromagnetic and nematic phases arise from the
initially homogeneous particle distribution of the waterbag form,

f0(θ, p) =
1

4πpm
Θ(π − |θ |)Θ(pm − |p|). (186)

In MD simulations, N particles are distributed so that (−π,−pm) ≤ (θi, pi) ≤ (π, pm), where (θi, pi) is the position and
momentum of the ith particle. The average energy per particle is E = p2m/6. The equation of motion for the ith particle is
given by

θ̈i = −
∂H
∂θi

= −∆M1(t) sin θi − 2(1 −∆)M2(t) sin(2θi). (187)

In simulations we observe that the system quickly relaxes into a qSS in which M1(t) and M2(t) oscillate slightly around
their average values (M1 and M2), which depend on E and ∆. Phase transitions are located by performing a series of
simulations varying ∆, for a given value of E , and calculating the average value of M1(t) and M2(t) over a time interval
inside a qSS. The transitions are found to be of first order.
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Fig. 48. Equilibrium solutions of M1 (solid line) and M2 (dotted line) as a function of the mean energy E , exhibiting the (a) nematic–paramagnetic,
(b) ferromagnetic–paramagnetic, (c) ferromagnetic–nematic, and (d) ferromagnetic–paramagnetic phase transitions, at ∆ = 0.2, 0.8, 0.4 and 0.5,
respectively. The transitions shown in (a), (b) and (c) are second order, and the transition in (d) is first order.

9.4. Stability of the homogeneous state

The distribution given by Eq. (186) is a stationary solution of the Vlasov equation. Therefore, a transition between a
homogeneous state and a non-homogeneous state, either ferromagnetic or nematic, can occur only as a result of a dynamical
instability. Therefore, by studying the stability of the homogeneous solution, we should be able to gain an insight into the
structure of the phase diagram of the GHMF model. A similar approach has also been used to study the HMF model in an
external magnetic field [229] and was shown to agree with the predictions of the linear response theory [230].

To explore the stability of the distribution function Eq. (186), we perturb the upper momentum limit, pm, as

pm(t) = p0 +

∞
k=1

Ak(t) cos(kθ). (188)

We define the generalized magnetizationsMn as

Mn(t) = η


∞

−∞

dp
 π

−π

dθ cos(nθ)Θ(pm(t)− |p|)Θ(π − |θ |)

= 2η
 π

−π

dθpm(t) cos(nθ)

= 2η
 π

−π

dθp0 cos(nθ)+ 2η
∞
k=1

 π

−π

dθAk(t) cos(kθ) cos(nθ)

= 2πηAn(t)

=
An(t)
2p0

, (189)

where η = 1/4πp0. Differentiating the term ⟨cos(nθ)⟩ twice with respect to time, we find the equation of motion

M̈n(t) = −n⟨F(θ) sin(nθ)⟩ − n2
⟨p2 cos(nθ)⟩. (190)

The average values are calculated using the distribution function f (θ, p, t) = ηΘ(pm(t)−|p|)Θ(π−|θ |). Thus, the integral
above involves an infinite series of cosines. For our analysis, we consider the series up to k = 4, which will prove to
be sufficient to locate and determine the order of the phase transitions. Performing the averages, we obtain a system of
differential equations for the generalized magnetizations,

M̈1 +


12E − 6 −∆

2


M1 = f1(M1,M2,M3,M4) (191)
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M̈2 + 2 (12E +∆− 7)M2 = f2(M1,M2,M3,M4) (192)

M̈3 + 27(2E − 1)M3 = f3(M1,M2,M3,M4) (193)

M̈4 + 48(2E − 1)M4 = f4(M1,M2,M3,M4), (194)

where

f1 = M1M2


1 −

3∆
2


+ (∆− 1)M2M3 − 3(2E − 1){M3

1 + M2
1M3

+M3[M2(2 + M2)+ 2(1 + M2)M4] + 2M1[M2 + M2
2 + M2

3 + M2M4 + M2
4 ]}, (195)

f2 = ∆(M2
1 − M1M3 + 2M2M4)− 2M2M4 − 12(2E − 1)[M3

2 + M2
3M4

+ 2M1M3(1 + M2 + M4)+ M2
1 (1 + 2M2 + M4)+ 2M2(M2

3 + M4 + M4
2)], (196)

f3 =
3M1

2
[(2 −∆)M2 −∆M4] − 9(2E − 1){M3

1 + 6M2
1M3

+ 3M1[M2(2 + M2)+ 2(1 + M2)M4] + 3M3[M2
3 + 2(M2

2 + M2M4 + M2
4 )]} (197)

and

f4 = 2∆M1M3 − 4(∆− 1)M2
2 − 48(2E − 1)[2M1(1 + M2)M3 + M2(M2 + M2

3 )

+ 2(M2
2 + M2

3 )M4 + M3
4 + M2

1 (M2 + 2M4)]. (198)

Eqs. (191)–(194) have been written so as to separate linear terms on the left hand side and the nonlinear terms on the right
hand side of the equality. To calculate the paramagnetic–ferromagnetic and paramagnetic–nematic phase boundaries, we
analyze the linear stability of M1(t) and M2(t). Neglecting the nonlinear terms (195)–(198), Eqs. (191) and (192) take the
form M̈1,2 = −κ1,2M1,2, whose solutions are exp(±i

√
κ1,2t). Thus, the magnetizations will remain stable only if κ1,2 ≥ 0.

If κ1,2 < 0, the exponents will become real and any infinitesimal fluctuation will experience an exponential growth,
destabilizing the paramagnetic phase. The phase boundary that separates the paramagnetic phase from the ferromagnetic
and nematic phases is, therefore, determined by the conditions κ1 = 0 and κ2 = 0, respectively. According to the Eqs. (191)
and (192), κ1 = (12E − 6 −∆)/2 and κ2 = 2(12E +∆− 7) = 0 and we find the phase boundaries to be

Epf
c (∆) =

6 +∆

12
(199)

and

Epn
c (∆) =

7 −∆

12
, (200)

where E
pf
c and E

pn
c are the boundaries for the paramagnetic–ferromagnetic and paramagnetic–nematic transitions,

respectively.
To determine the order of the phase transitions, we study the fixed points of the system of equations (191)–(194),

including the nonlinear terms (195)–(198). Although the equations are conservative, we expect that in the full GHMF,
the Landau damping will provide dissipation which will drive the system toward the qSS. The dissipation can be included
by adding terms proportional to Ṁn into Eqs. (191)–(194). This will make the system relax to the stable fixed points of
Eqs. (191)–(194), which will then correspond to the generalized magnetizations in the final qSS. We find that once the
paramagnetic–nematic boundary is crossed, the value ofM2 jumps discontinuously from zero to approximately 0.459, while
M1 remains zero. The jump in M2 is very close to the value observed in MD simulation, 0.450, independent of ∆. For the
paramagnetic–ferromagnetic transition, the twomagnetizations jump from zero to finite values which depend on∆. In this
case the theory is again consistent with the simulations predicting that when crossing the phase transition boundary,M2 is
always negative, whileM1 may be positive or negative.

The ferromagnetic–nematic phase boundary should be determined by the two growth rates (
√
κ1,2) ofM1(t) andM2(t).

If M1 grows faster than M2, the system will reach the ferromagnetic fixed point prior to reaching the nematic one, and vice
versa. Therefore, we expect that the ferromagnetic–nematic phase boundary should be close to the curve κ1 = κ2,

Enf
c = (22 − 5∆)/36. (201)

Fig. 49 show the nonequilibrium phase diagram for the GHMF model for an initially homogeneous particle distribution.
The theoretically calculated phase boundaries obtained using Eqs. (199)–(201) are shown as the solid lines. The results of
MD simulations are shown as symbols. The paramagnetic–nematic and the paramagnetic–ferromagnetic phase boundaries
predicted by the theory are in perfect agreement with the results of MD simulations. For the ferromagnetic–nematic
transition the simulations find an instability region in which either phase can occur with equal probability, Fig. 50. The
theoretically predicted phase boundary for the ferromagnetic–nematic transition Eq. (201) passes through the instability
region.
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Fig. 49. The nonequilibrium phase diagram of the GHMF model (q = 2). Lines are the phase transitions predicted by the linear stability analysis.
Squares and triangles are the results of MD simulations and represent the paramagnetic–nematic and the paramagnetic–ferromagnetic phase boundaries,
respectively. Solid circles show the limits of the nematic–ferromagnetic transition region. Error bars are smaller than the size of the symbols. The gray area,
between the circles, is an unstable region where MD simulations find both nematic and ferromagnetic phases, with almost equal probability, see Fig. 50.
The right hand panels show examples of the phase space distributions obtained using the MD simulations for each of the three phases: (a) paramagnetic,
(b) ferromagnetic, and (c) nematic.

Fig. 50. The probability of finding a ferromagnetic phase, within the instability region of Fig. 49, at energy E = 0.5 for various values of ∆. To calculate
the probability for N = 50,000, we have used ntotal = 100 different initial conditions drawn from the same waterbag distribution, Eq. (186), and observed
how many of these (nferro) evolved into a ferromagnetic phase. For N = 500,000, we have used ntotal = 300 different initial conditions for each value of∆.

9.5. The core–halo distribution

The particle distributions in the ferromagnetic and nematic phases are, once again, of the core–halo form, Eq. (172), with
the one-particle energy given by Eq. (180). In Fig. 51 we plot a snapshot of the phase space of the GHMF and the energy of
each particle once the system has relaxed into a nematic qSS. In both panels of Fig. 51 a core–halo structure can be clearly
seen. In the nematic phase it actually appears that there are two cores. This happens because M1 = 0 and the one-particle
energy has two minimums at θ = 0 and θ = π . Both cores, however, appear in the core–halo distribution function, given
by

fch(θ, p) = ηΘ(ϵF − ϵ(θ, p))+ χΘ(ϵh − ϵ(θ, p))Θ(ϵ(θ, p)− ϵF ), (202)

where η and χ are the phase space densities of the core and halo, respectively; ϵF and ϵh are the maximum energies of the
core and halo, respectively; and the one-particle energy ϵ(θ, p) is given by Eq. (180).

In Fig. 52 we plot the marginal distributions calculated using the core–halo theory,

N(θ) =


fch(θ, p) dp (203)

and

N(p) =


fch(θ, p) dθ (204)
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Fig. 51. (a) Phase space particle distribution and (b) one-particle energy obtained using MD simulation for GHMF with∆ = 0.2 and N = 105 particles. In
panel (a) the blue line shows the orbit corresponding to energy ϵh and the red line to the orbit with energy ϵF . In panel (b) the same color lines show the
halo and Fermi energies. The initial distribution was homogeneous (paramagnetic) waterbag of energy E = 0.55. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 52. Marginal distributions N(θ), Eq. (203), and N(p), Eq. (204), for a nematic qSS of the GHMF model. All the parameters are the same as in Fig. 51.

with fch(θ, p) given by Eq. (202), and compare them with the results of MD simulations. The halo energy ϵh (blue line in
Fig. 51(b)) was obtained using a short simulation with N = 1000 particles, which ran for only 10 dynamical times. The
Fermi energy ϵF and the halo phase space density χ were calculated using the conservation of energy and of norm. The
predicted value for the Fermi energy ϵF is the red line in Fig. 51(b). In panel (a) of the same figure we show the orbit of a
particle with energy equal to ϵF (red line). This orbit perfectly encloses the core. In the same panel, the blue line represents
an orbit of a particle with energy ϵh.

As with other long-range systems, eventually the GHMF will relax to thermodynamic equilibrium described by the
Boltzmann–Gibbs statistical mechanics. The resultant phase diagram will then change to the one shown in Fig. 47. In the
thermodynamic limit N → ∞, this relaxation, however, will never occur and the systemwill remain trapped forever in one
of the qSSs.

10. Conclusions and perspectives

In this Review we have explored statistical mechanics of systems with long-range interactions. A number of different
examples have been considered, ranging from plasmas and self-gravitating systems to the kinetic spin models. In the
thermodynamic limit, these systems do not relax to the Boltzmann–Gibbs equilibrium, but become trapped in the qSSs, the
life time of which diverges with the number of particles N . If N is small, after staying in the qSS for a time of approximately
τ× ∼ Nγ , where γ is usually larger or equal to one, a system relaxes to the thermodynamic equilibrium described by the
usual Boltzmann–Gibbs statistical mechanics. This is what has been observed for all the models studied so far — after a
time τ×, they all (with the exception of 3D gravity, which always remains out of equilibrium) relaxed to thermodynamic
equilibrium. In this respect, speculations that long-ranged systems should be described by the non-extensive Tsallis statistics
are unfounded [231].

In the case of plasmas and elliptical galaxies, the number of ‘‘particles’’ is so large that the state of thermodynamic
equilibrium cannot be reached within the life time of the universe. Furthermore, for 3D gravity, we saw that there is an
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Fig. 53. Comparison of theoretical (lines) and N-body MD simulation (dots) results for the 1D self-gravitating system that initially satisfies the virial
condition (R0 = 1). In panels (a) and (b), the theoretical distribution corresponds to LB theory, and in panels (c) and (d) corresponding to core–halo
theory.

additional problem related to the bounded (from above) nature of Newton’s gravitational potential and the resulting flux of
evaporating particles. For 1D and 2D gravitational systems, on the other hand, there is no problemwith particle evaporation.
After a short time, these systems relax to qSSswhich have a characteristic core–halo structure. The distribution function that
describes qSSs of self-gravitating systems is the same as the one that describes the qSS of magnetically confined plasmas
and of spin systems. The ubiquity of core–halo distributions, observed in so many different contexts, suggests that there
is a significant degree of universality to the process of collisionless relaxation. The core–halo distribution appears to be a
universal attractor – in a coarse-grained sense – analogous to the Maxwell–Boltzmann distribution for systems with short-
range forces.

A qSS reached by a long-range interacting system depends explicitly on the initial particle distribution. In this Report
we have considered only the initial conditions of the waterbag form. In the future, it will be important to extend the
theory to more complex initial conditions. Preliminary work in this direction indicates that multilevel distributions lead
to significantly more complex qSSs, with very interesting topological structure which, nevertheless, preserves some of the
core–halo characteristics [212]. Curiously, for such initial distributions, the LB theory fails to describe the qSSs, even when
initial conditions satisfy the virial theorem. This indicates that formultilevel distributionsmixing is even poorer than it is for
one level waterbags. Furthermore, even for one-level waterbag distributions satisfying the virial condition, there are small
deviations between the results of simulations and the LB theory, and some halo formation may be observed. This suggests
that the core–halo distribution may also be relevant for predicting the qSS of initially virialized waterbag distributions.
Since for R0 = 1 the parametric resonances are not excited, the halo energy in this case should be the same as the energy
of the most energetic particle of the initial distribution. In Fig. 53 we compare the predictions of the core–halo and the LB
theories with the results of MD simulations for 1D self-gravitating system with R0 = 1. It appears that even in this case
the core–halo theory agrees better with the results of simulations than does the LB approach. This suggests that mixing
and ergodicity are not perfect even for initially virialized distributions. This, however, should be tested for other models
discussed in this Review.

A trapping of a system in a qSS is a consequence of the ergodicity breaking. The process of Landau damping decreases
the amplitude of collective oscillations which are responsible for the energy transfer between the particles. For long-range
systems, there are no collisions (correlations) between the particles, and the only mechanism of energy transfer is the
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wave–particle interaction. Therefore, once the oscillations have completely died out, each particles will move in a static
mean-field potential and the ergodicity of the system will be broken. All the systems that have been considered so far had
either spherical (in 3D) or polar (in 2D) symmetry. The equations ofmotion for a particle inside such potentials are integrable.
This, in general, is not true for asymmetric potentials for which particle trajectories can become chaotic. It should be of great
interest to explore if the chaotic dynamics in the qSS can lead to a faster relaxation to the Boltzmann–Gibbs equilibrium and
a shorter lifetime of a qSS.

There are a number of outstanding open question which remain to be addressed. Can the core–halo theory developed
above be extended to study 3D self-gravitating systems? For such systems the halo will extend all the way to infinity. At the
momentwe do not have an understanding of the structure of such halos. Furthermore, both 2D and 3D gravitational systems
are susceptible to symmetry breaking instabilities [232]. The simulationmethods used in the present work, which primarily
relied on the Gauss’s law, do not allowus to study such instabilities. The theoretical understanding of the symmetry breaking
mechanism that leads to asymmetric QSS is still lacking and it is not clear how to extend the core–halo theory to describe the
asymmetric stationary states. Finally, in the future it will be important to move beyond the waterbag initial distributions.
As discussed above, multilevel initial distributions appear to exhibit ergodicity breaking and poor mixing even when they
are virialized. This makes the study of such initial conditions very challenging [212]. Nevertheless, it has been observed that
even such complex initial distributions also relax to core–halo QSS, with the particle distribution in the core well fitted by
polytropic distributions [213].

In spite of their ubiquity, long-range interacting systems are still poorly understood. They are the unexplored frontier of
statistical physics. We hope that the present Report helps to attract the attention of the statistical mechanics community to
this fascinating field.
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Chapter 8

Final considerations and conclusions

Systems with long-range interactions present peculiarities in their dynamical and equilib-

rium properties, with respect to the short-range interacting systems that are typically treated

by statistical mechanics. From a dynamical perspective, the predominance of the mean-�eld

results in a collisionless relaxation process which leads to long-lived quasi-stationary states

that do not have a Maxwell-Boltzmann velocity distribution. These quasi-stationary states

depend not only on the mean energy (or temperature, or other typical thermodynamic vari-

ables), but on the explicit form of the initial distribution. For example, initial distributions

of the WB type whose ratio of mean kinetic and potential energy is not virialised can lead

to a core-halo con�guration. The formation of such structures depends on wave-particle res-

onances, a dynamical feature which cannot be taken into account by traditional statistical

mechanics. If, on the other hand, the initial state satis�es the virial theorem, then oscillations

are minimal and there is little halo formation. This had been demonstrated for several LRI

systems. We showed that it is also valid for the HMF model, after determining a generalized

virial condition based on the envelope equation technique of plasma physics.

The quasi-stationary states correspond to stationary solutions of the Vlasov (collision-

less) dynamics, which is valid in the limit N → ∞. However, for �nite-size systems, the

Vlasov dynamics is only the zero-order approximation. The kinetic equations resulting from

the next order �the quasi-linear approximation� are the Landau and the Lenard-Balescu

equations. They give the secular evolution of the one-particle distribution function, with

terms that scale at least as O[1/N ]. These terms are responsible for driving the distribution

to thermodynamic equilibrium, but only on timescales τR ∼ N δ where δ > 0 depends on the

LR interaction. Once the equilibrium state is achieved, equilibrium statistical mechanics can

be used to describe it. Even so, features such as ensemble inequivalence may be observed

near phase transitions.

In this thesis, we have approached the statistical description of systems with long-range

interactions through several of these aspects: �rst, by characterizing the quasi-stationary

states using approaches based on opposing assumptions to see which best represents the

dynamics in the QSS. The �rst approach, Lynden-Bell statistics, takes advantage of the
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incompressibility of the Vlasov �ow to perform a Boltzmann-counting of phase density ele-

ments in a discretized phase space. Thus, it is is possible to de�ne a coarse-grained entropy.

To �nd the QSS distributions, this entropy should be maximized respecting the appropriate

constraints. The second approach is that of uncoupled, self-consistent particle dynamics: the

integrable model. It consists of noninteracting particles evolving under a static potential,

which phase-mix over constant energy orbits. The static potential is self-consistently calcu-

lated according to the stationary distribution after phase-mixing. The opposing assumptions

of both approaches are ergodicity and e�cient mixing (LB statistics) and integrability (IM

dynamics).

These methods were applied to both the HMF model and to three-dimensional self-

gravitating systems. For the HMF model, we expanded our generalized virial condition for

multilevel WB distributions. Comparing LB and IM results, we show that the distributions

obtained from the IM are a much better match with molecular dynamics than LB statistics.

For the self-gravitating system, we generalized the IM from the uncoupled pendula of de

Buyl et al, where the only unknown to be determined self-consistently is the �eld H, to the

gravitational IM, where the self-consistent potential has to be determined as a function of r.

This led to very good results compared with molecular dynamics as well, providing a direct

and simple method for determining the marginal distributions of spherically-symmetric self-

gravitating systems that are close to virial equilibrium.

These results, together with the previous success of the core-halo distribution in describ-

ing QSS resulting from strong mean-�eld oscillations, indicate that the QSS is more inte-

grable than ergodic. The topic of ergodicity breaking, however, is still active; other works

which use quantitative measures of ergodicity such as comparison of time and ensemble av-

erages and sojourn times show di�ering results. If a system is nonergodic, ensemble and time

averages will di�er, and sojourn times (the time the system spends in a given state) will

follow a distribution with a power-law tail. For the HMF model, ergodicity is established

after times that scale with N , so in the limit N →∞ it is broken [113]. For two-dimensional

self-gravitating systems, the timescale is very long compared to a short-range interacting

system, but does not depend on N [114]. The relation of these quantitative measures with

our results, which are based on characterizing the QSS with models that imply nonergodicity,

is a topic that can be investigated.

Second, after focusing on the QSS, we examined the relaxation to equilibrium. We pro-

posed a short-range coupling between two HMF systems to see how the coupling intensity

could a�ect the timescale of relaxation τR as well as the presence of chaotic orbits. In

the mean-�eld limit, with a stationary magnetization, the HMF model should not present

chaos. With a coupling between two degrees of freedom, however, chaotic orbits may arise.

We showed a correlation between the presence of chaotic orbits and the decrease in the

exponent δ of the timescale τR ∼ N δ, but only for very weak coupling.

Our second work on relaxation to equilibrium was focused on the kinetic equations them-

selves. Based on the Landau and Lenard-Balescu equations in action-angle variables proposed
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by Chavanis, we calculated theoretical di�usion coe�cients for the associated Fokker-Planck

equations. The two kinetic equations result in di�erent di�usion coe�cients, seeing as the

Landau one neglects collective e�ects while the Lenard-Balescu equation preserves them

(through a dielectric function). We proposed a method of removing collective e�ects from

the molecular dynamics of the HMF model by having test particles interact with a bath

who is subject to a stationary magnetization. In this way, the bath does not have collective

e�ects, since its internal perturbations do not a�ect its dynamics. Then, comparing di�usion

coe�cients obtained from the bath molecular dynamics setup and the full HMF molecular

dynamics with their theoretical counterparts (obtained from the Landau and Lenard-Balescu

equations, respectively), we saw that they match very well, for several di�erent distributions.

We showed that the inclusion of collective e�ects is very important in the HMF model, due to

the qualitative and quantitative di�erence between the Landau and Lenard-Balescu di�usion

coe�cients.

Finally, the third aspect of this thesis concerns the equilibrium states themselves. We

introduced a long-range version of an XY model with ferromagnetic and nematic coupling,

the GHMF model, and calculated its equilibrium variables in the microcanonical and canon-

ical ensembles. Using these results, we constructed phase diagrams and showed regions of

negative speci�c heat and inequivalence between the two ensembles. These phase diagrams

also di�er signi�cantly from a nonequilibrium phase diagram of the same system, published

in a di�erent work. In order to predict the transition lines of the nonequilibrium diagram,

we analyzed the dynamical stability of the homogeneous state; since it is nonequilibrium

and refers to phases of the QSS, equilibrium statistical mechanics does not apply.

Through these three aspects, we have made a broad examination of several phenomena

peculiar to LRI systems. Many branches have also been opened to be explored in the future.

For example, a theory is still needed to describe the core-halo con�gurations of the multilevel

WB distributions used in our work with the HMF model. Regarding the collisional relax-

ation, our calculation of the di�usion coe�cients now allows us to apply them in numerical

integration of the Fokker-Planck equation in action-angle variables for the inhomogeneous

HMF, or its associated Langevin equation. We may also apply our calculations to other one-

dimensional potentials and verify if the collective e�ects remain as important as they are for

the HMF model, or if it is an anomaly. Another interesting prospect is to continue our study

of chaos and relaxation, by constructing other systems with chaotic orbits in the smooth,

mean-�eld limit, to shed light on our results with the HMF-ladder model. One possibility is

Schwarzschild's method of constructing triaxial mass distributions that obey Jeans' theorem

(and so are stable) [115], to study their relaxation timescale compared with symmetric dis-

tributions. By these advances, we hope to have provided a good basis for continuing research

on both the QSS and its characterization, as well as the relaxation processes.





Appendix A

Numerical simulation

The results presented in this thesis relied heavily on molecular dynamics simulations

and numerical computations. The programs were developed in the languages Fortran 90 and

C/CUDA. In this appendix, I present an outline of the methods used in each work.

A.1 Molecular dynamics

Molecular dynamics consists in integrating the equations of motion of N particles and

following their evolution. Almost all the systems studied have time-independent Hamilto-

nians, with the exception of the test particles used in sections 4.1 and 4.4. Therefore, the

molecular dynamics was carried out in the microcanonical ensemble, with the total energy

conserved up to a desired tolerance dependant on the system and integration method.

The basic outline of all molecular dynamics programs is

1. Read input with simulation parameters; most importantly, number of particles N and

desired initial distribution;

2. Generate initial values of position θ and momentum p for every particle according the

desired initial distribution;

3. Calculate the total force on each particle;

4. Integrate the equations of motion of each particle for a time step ∆t;

5. At certain time intervals, print output (usually, phase space coordinates of the N

particles, total energy (to ensure the integrator conserves energy at a desired precision),

etc.

6. Return to step 3 until �nal simulation time is achieved.
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A.1.1 Initial particle distributions

In the Fortran 90 programs, the initial position q0
i and momentum p0

i of the ith particle

is determined by the random number generator ran2, available in Reference [116]. The gen-

erator ran2 gives a real number x following a uniform probability distribution for x ∈ [0,1].

For an initial waterbag distribution in one dimension,

f 1d
wb =

1

4qmpm
Θ(qm − |q|)Θ(pm − |p|), (A.1)

q0
i and p

0
i are obtained from x simply by expanding the uniform probability range from [0,1]

to [−qm,qm] and [−pm,pm], respectively. The limits qm and pm must be determined by the

desired initial potential and kinetic energy. For example, in the HMF model (see chapter

4, the position coordinate is q = θ, and the limit θm is given by the initial magnetization

M0 = 〈cos θ〉0 =
∫

dpdθ cos θf 1d
wb(θ,p) = sin θm/θm. The magnetization determines the initial

potential energy. Then, given a mean energy and initial magnetization, we also know the

initial kinetic energy, and therefore pm: K = 1
2

∫
dθdpp2f 1d

wb(θ,p) = p2
m/6.

In three dimensions, more care must be taken to generate the waterbag distribution,

f 3d
wb =

1

16π2r3
mv

3
m

Θ(r2
m − r2)Θ(v2

m − v2). (A.2)

The coordinates ri = (xi,yi,zi) are then generated in the following way, for each i:

1. Generate three numbers αi,βi,γi ∈ [0,1] using the ran2 function;

2. Calculate ai = r3
mαi, bi = 2βi − 1 and c = 4iπ ∗ γi;

3. Calculate the Cartesian coordinates xi = a
1/3
i

√
1− b2

i cos ci, yi = a
1/3
i

√
1− b2 sin ci,

zi = a
1/3
i bi.

The same is done for the velocity vi = (vx,i,vy,i,vz,i).

More complicated distributions were generated using di�erent methods. The rejection

method was used for the parabolic-type distribution f 3d
p (r,v) = η(r2

m− r2)Θ(r2
m− r2)Θ(v2

m−
v2) used in section 6.1. For the Gaussian distributions used in section 4.4, the Ziggurat algo-

rithm was used, described in reference [117] with source code available in the website [118]

under the GNU LGPL license.

For the molecular dynamics programs written using C, the same methods were used,

replacing the random number generator ran2 with the C function rand(). This function gives

an integer in the range [0,RAND_MAX], so each generated number must be transformed

into �oating point and divided by RAND_MAX to give a real number x ∈ [0,1].
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A.1.2 Integrating the equations of motion

After generating the phase space coordinates
(
{qi}Ni=1,{pi}Ni=1

)
, the evolution of the sys-

tem is determined by integrating the equations of motion

q̇αi =
pαi
m
, (A.3)

ṗαi = − ∂H
∂qαi

, (A.4)

where α = 1, . . . ,d and d is the spatial dimension (for example, in d = 3, q1 = x,q2 = y,q3 =

z).

In the Fortran 90 programs, numerical integrators available online were used. For the

HMF model (chapter 4), integration was performed using the GNI_COMP algorithm de-

scribed in reference [119] and made available in the website [120]. This method integrates

second-order di�erential equations. In the case of the HMF and GHMF models,

θ̈i = −M sin θi,

M =
1

N

N∑
i=1

cos θi
(A.5)

if M is taken as symmetric around θ = 0 or

θ̈i = −Mx sin θi +My cos θi,

Mx =
1

N

N∑
i=1

cos θi,

My =
1

N

N∑
i=1

sin θi

(A.6)

if the center of mass of the particles is allowed to �uctuate. The latter case is only used in

the �MD(full)� simulations described in section 4.4.

Molecular dynamics of the three-dimensional self-gravitating systems were performed in

two di�erent ways: the �rst was using the �shell� method, in which we consider that each

particle corresponds to a mass m uniformly distributed over a spherical shell with radius ri,

where i is the index of the particle. The hamiltonian in spherical coordinates is

H =
1

2m

N∑
i=1

(
p2
ri

+
pθi
r2
i

+
p2
φi

r2
i sin2 θi

)
+

1

2

N∑
i=1

ψ(ri) (A.7)

where ψ(ri) =
∑

j=1,j 6=iGm
2/|ri−rj|. By Gauss' law and spherical symmetry, the force on a

shell at radius ri will depend only on the shells with radius r < ri. Furthermore, the angular
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momentum `2 = p2
θi

+ p2
φi
/ sin2 θ is conserved, so the relevant equation of motion is for r,

vri =
v2
`

r3
i

− GM(r < ri)

r2
i

, (A.8)

where v` = `/m and M(r < ri) is the total mass of all shells with radius r < ri. Since the

mass of each shell is 1/N , this is simply the number of shells with r < ri divided by N .

To integrate equation (A.8), the �dverk� subroutine was used, which is an adaptive step-

size Runge-Kutta algorithm available online [121].

The second method for integrating the three-dimensional self-gravitating systems was

full N -body simulation, without the shell approximation described above. In this case, each

mass is a point particle of mass m = 1/N , located at r. To simulate the evolution of the

system, we integrate

v̇i = − 1

N

∑
j 6=i

ri − rj
|ri − rj|3

. (A.9)

The acceleration on each particle is calculated in parallel on GPUs using NVIDIA's CUDA

language, based on the algorithm for N -body systems described in Ref [122]. To avoid time

spent during data transfer between the GPU and CPU, the actual integration of equation

(A.9) was also done on the GPU, using an implementation of the symplectic algorithm of

Yoshida [123].

A.2 Other numerical methods

To obtain the di�usion coe�cients in action-angle variables for the HMF model, described

in section 4.4, it was necessary to evaluate elliptic integrals, integrals involving poles and

principal values. In this case, all integrals were calculated numerically using routines available

in the Gnu Scienti�c Library (GSL) for the C programming language.
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