

SALÃO DE INICIAÇÃO CIENTÍFICA XXVIII SIC

Evento	Salão UFRGS 2016: SIC - XXVIII SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2016
Local	Campus do Vale - UFRGS
Título	Avaliação das Condições de Operação na Qualidade Final de
	Produtos Liofilizados
Autor	LIZANDRA MISTRELLO FUNARI
Orientador	NICOLAS BRUNO MAILLARD

Avaliação das Condições de Operação na Qualidade Final de Produtos Liofilizados Lizandra Mistrello Funari University of Birmingham/UFRGS

Liofilização é amplamente utilizada nas indústrias alimentícias e farmacêuticas. O processo consiste em secagem do produto por desidratação (perda de água) por sublimação e dessorção em três etapas. As etapas são: congelamento do produto, secagem primária e secagem secundária. Na etapa de congelamento, toda a água do produto é transformada em gelo. Na secagem primária, o gelo é removido por sublimação à baixa pressão e temperatura. E, na secagem secundária, a água que não foi congelada na primeira etapa é removida por dessorção. No presente trabalho foi realizado o estudo do efeito de diferentes condições de liofilização na qualidade do produto final, analisando colapso do produto. Qualquer perda de estrutura (micro ou macro) durante o processo de liofilização é considerado colapso, afetando a qualidade e as características do produto final. Desta forma, entender o colapso e quando ele ocorre é de fundamental importância para otimização do processo. Foram utilizadas soluções de sacarose, goma Arábica e uma mistura dos dois sólidos em água destilada em quatro diferentes condições de liofilização. Para cada sólido estudado, foram preparadas seis diferentes concentrações. Assim, foi possível realizar comparações quanto à concentração e sólido para ocorrência de colapso. As amostras foram liofilizadas em frascos de vidro de 10mL, contendo 1mL de solução. As condições utilizadas variaram nos parâmetros da primeira secagem e na taxa de aquecimento entre a primeira e a segunda secagem, uma vez que esses são os parâmetros que mais afetam o colapso. Todas as amostras foram congeladas a -40°C e à pressão atmosférica para máxima formação de gelo em soluções de sacarose. Na primeira secagem foram utilizadas temperaturas de -40°C e -20°C e na segunda secagem a temperatura utilizada foi de 20°C para todas as condições. A pressão durante as secagens foi de 0,1 mbar em todas as condições. As taxas de aquecimento utilizadas entre as secagens foram: rampas de 5°C/h e 10°C/h e um degrau (mudança rápida entre as temperaturas). Para análise do produto final, microscopia eletrônica de varredura foi realizada em algumas amostras para comparação de microestruturas. A altura final do produto liofilizado foi também medida para análise de colapso em relação à macroestrutura. O teor de humidade residual de cada amostra foi também calculado para avalição da efetividade das condições escolhidas. A humidade residual foi calculada por dois métodos: por diferença de peso antes e depois da liofilização e por secagem em forno. Foi observado que a adição de goma arábica à sacarose ajuda a evitar a ocorrência de colapso no processo, devido à grande massa molecular da goma. Para todas as condições escolhidas, as amostras de goma Arábica não apresentaram colapso. Dentre as condições estudadas, aquela com a rampa mais lenta (5°C/h) foi a que menos apresentou colapso. Também se observou um aumento de humidade residual com o aumento da concentração das amostras para todos os sólidos. Todas as condições escolhidas foram capazes de secar as amostras.