

PRODUÇÃO DE BIODIESEL (éster) VIA ROTA ENZIMÁTICA UTILIZANDO ÓLEO DE SOJA RESIDUAL

Luana Carrion Carvalho, Marco Antônio Zachia Ayub

INTRODUÇÃO E OBJETIVOS

O biodiesel é uma mistura de ésteres de ácidos graxos, obtido principalmente pela transesterificação de óleos vegetais ou de gorduras animais com álcool de cadeia curta, sob ação de um catalisador (Christopher *et al.*, 2014). O objetivo desta pesquisa foi testar o uso de metanol e etanol em reações de transesterificação catalisadas por lipases, assim como o uso de misturas de lipases para promover um maior rendimento reacional e o uso de diferentes solventes de reação.

MATERIAIS E MÉTODOS

Foram utilizadas como biocatalizadoras as lipases de *Candida antarctic*a (CALB, Novozym 435), *Thermomyces lanuginosus* (TLL, Lipozyme TL-IM), e *Rhizomucor miehei* (RML, Lipozyme RM-IM). O produto foi analisado em cromatógrafo a gás conforme metodologia descrita por Poppe *et al.*, 2015.

- razão molar alcool:óleo 6:1
- 15 % de enzima/peso de óleo
- 37 °C
- 180 rpm
- tempo de reação de 24 h

RESULTADOS E DISCUSSÃO

Conforme a Tabela 1, o rendimento com etanol foi muito superior ao rendimento com metanol, demonstrando que o etanol foi o melhor álcool (aceptor acila) para qualquer uma das três lipases. Os próximos experimentos foram conduzidos apenas com etanol.

Tabela 1 – Rendimento de síntese de biodiesel com etanol e com metanol

Nome	% ÉSTERES
1 - TLL+METANOL	0,35
2 - TLL+ETANOL	74,65
3 - CALB+METANOL	32,10
4 - CALB+ETANOL	82,19
5 - RML+METANOL	1,77
6 - RML+ETANOL	80,06

Devido à heterogeneidade do substrato e à regiosseletividade das lipases, o uso de uma mistura de lipases, denominada *combi-lipase*, se mostra mais eficiente no processo de transesterificação que o uso de uma lipase isolada. A mistura ótima para este óleo foi de 21,5 % de CALB, 57 % de TLL e 21,5 % de RML (Figura 1).

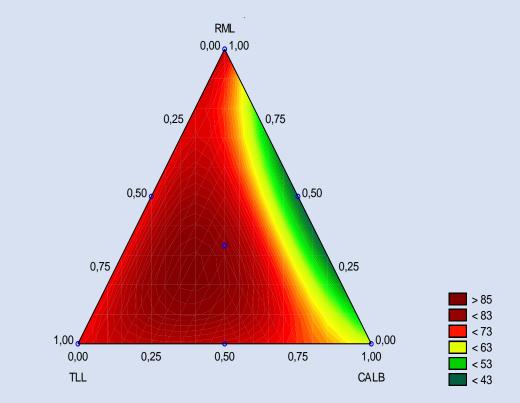


Figura 1 – Planejamento de Mistura Simplex Centróide

A reação sem solvente apresentou um rendimento superior em comparação com as reações que apresentaram solvente (Tabela 2), o que torna o processo mais barato, pois o uso de solventes aumenta os custos de produção, e dessa forma, optou-se por conduzir o próximo experimento sem o seu uso.

Tabela 2 – Efeito de solventes de reação na síntese de biodiesel utilizando o combi-lipase

Nome	% ÉSTERES	log P
MISTURA + TERC BUTANOL	80,53	0,584
MISTURA + DICLOROMETANO	27,51	1,5
MITURA + HEPTANO	82,77	4
MISTURA + HEXANO	86,33	3,5
MISTURA + ACETONITRILA	58,70	-0,33
MISTURA + ISOOCTANO	72,23	4,78
MISTURA + CICLOHEXANO	79,14	3,2
MISTURA SEM SOLVENTE	89,87	

O rendimento da reação se manteve constante a partir de 24 h de reação com uma conversão de biodiesel de 89 % (Figura 2)

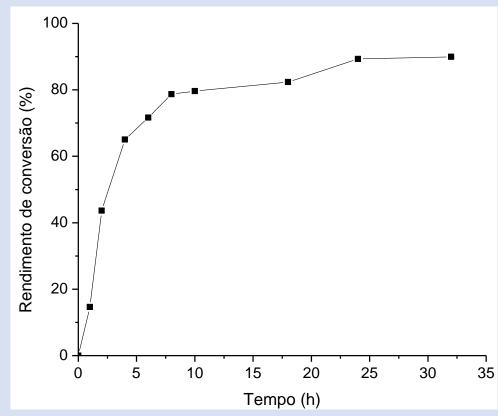


Figura 2 – Estudo de Cinética de Reação

CONCLUSÕES

O uso do *combi-lipase* como biocatalisador para reações de transesterificação utilizando o óleo de soja residual foi empregado com sucesso na síntese de biodiesel. A combinação de enzimas resultou em conversões mais elevadas do que quando foram utilizadas individualmente. Esses resultados são promissores para a utilização de catálise enzimática na síntese de ésteres de biodiesel.

REFERÊNCIAS

CHRISTOPHER, L. P.; HEMANATHAN, K.; ZAMBARE, V. P. Enzymatic biodiesel: Challenges and opportunities. Applied Energy, v. 119, n. 0, p. 497-520, 2014.

POPPE, J. K.; MATTE, C. R.; PERALBA, M. C. R.; FERNANDEZ-LAFUENTE, R.; RODRIGUES, R. C.; AYUB, M. A. Z. Optimization of ethyl ester production from olive and palm oils using mixtures of immobilized lipases. Applied Catalysis A:General, v.490, n.25, p.50-56, 2015.

