

Biologia alimentar do peixe *Characidium* pterostictum Gomes 1947 na sub-bacia hidrográfica do rio Ijuí, Rio Grande do Sul, Brasil

Amanda Antunes de Souza Santos & Clarice Bernhardt Fialho

Introdução

O peixe Characidium pterostictum Gomes 1947 (Figura 1) pertence à família Crenuchidae e a ordem Characiformes, uma das ordens mais diversas entre os peixes de água doce da região Neotropical, representando cerca de 33% da sua riqueza (Malabarba & Malabarba, 2014). Essa espécie é muito abundante na sub-bacia do rio Ijuí, a qual está inserida no sistema hidrográfico do rio Uruguai, estendendo-se pelos biomas Pampa e Mata Atlântica. O conhecimento do hábito alimentar das espécies é importante para compreender seu ciclo de vida, a estrutura e dinâmica das comunidades e revelar propriedades fundamentais do ecossistema, relacionando esses aspectos aos fatores bióticos e abióticos que variam no espaço e tempo. Portanto, pesquisas sobre a biologia alimentar de peixes consistem em uma importante ferramenta na definição de estratégias para o manejo sustentável dos ecossistemas (Barreto & Aranha, 2006; Rolla et al., 2009). O objetivo desse estudo é descrever a biologia alimentar de C. pterostictum na bacia hidrográfica do rio ljuí e investigar possíveis variações espaciais na sua dieta.

Figura 1: *Characidium pterostictum* Gomes 1947 capturado no riacho Araçá, São Luiz Gonzaga, RS, Brasil, comprimento padrão (CP): 56,84mm.

Material e Métodos

As amostragens foram feitas bimensalmente desde julho de 2015 com término em maio de 2016. A coleta de material biológico se deu pelo método da pesca elétrica em três riachos da sub-bacia do rio Ijuí, no estado do Rio Grande do Sul : Araçá - São Luiz Gonzaga, Nock - Ijuí e Santa Bárbara - Santo Ângelo (Figuras 2 e 3). O primeiro riacho localiza-se no bioma Pampa, enquanto os demais pertencem à Mata Atlântica. Os indivíduos foram fixados em campo em solução de formalina 10% e posteriormente, no laboratório, triados, conservados em álcool 70% e analisados. Para a análise foram selecionados, aproximadamente, 20 espécimes por expedição de captura e ponto de amostragem (quando o número amostral permitiu) abrangendo toda a diversidade de tamanhos. Estes foram medidos (comprimento padrão em mm), pesados (em g) e dissecados, sendo o estômago pesado (em g) e armazenado em álcool 70%. Cada estômago foi analisado sob estereomicroscópio. Os itens alimentares foram identificados ao menor nível taxonômico possível e quantificados pelo método volumétrico (Hynes, 1950; Hyslop, 1980). Até o momento, os dados de 40 estômagos referentes ao riacho Araçá foram analisados.



Figura 2: Pontos de coleta de ictiofauna na sub-bacia do rio Ijuí, RS, Brasil. A) Riacho Araçá; B) Riacho Nock; C) Riacho Santa Bárbara.

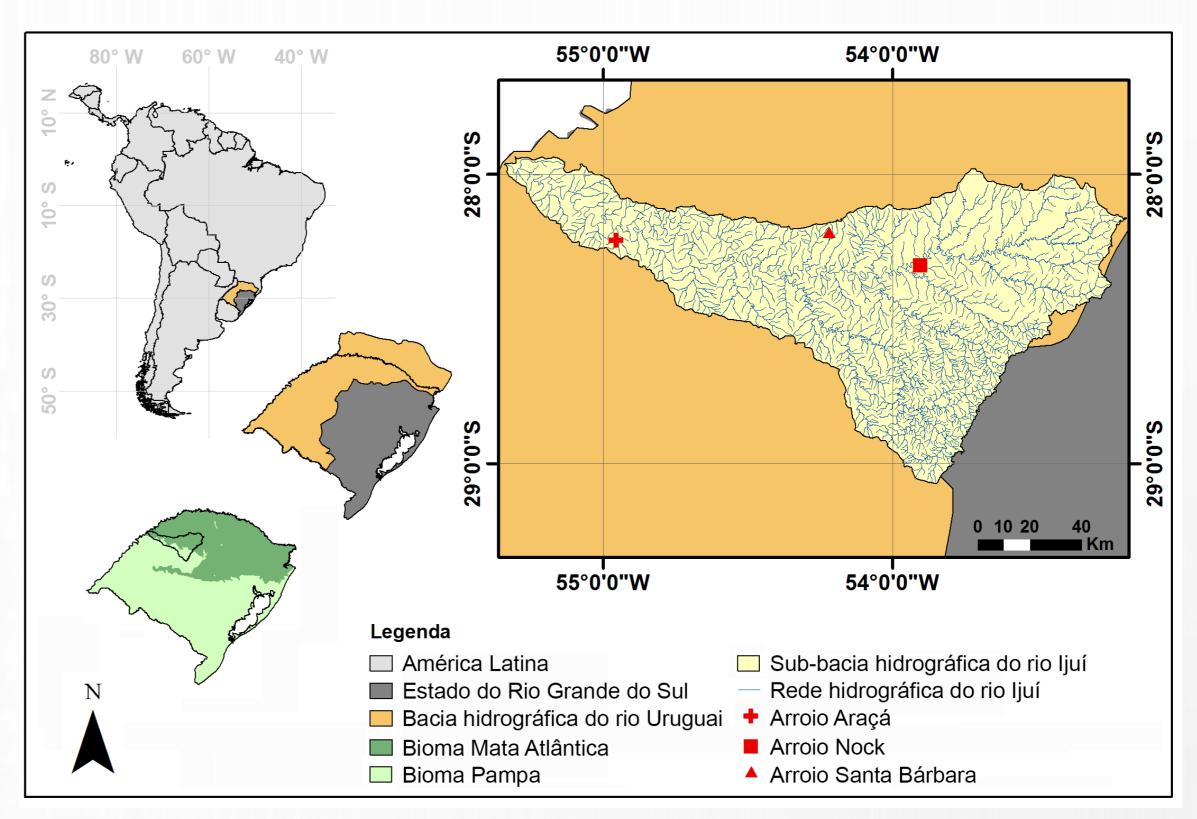


Figura 3: Representação geográfica da sub-bacia do rio Ijuí, RS, Brasil, com destaque em vermelho para os pontos de captura de ictiofauna. Fonte: Cavalheiro, 2016

Resultados e Discussão

Os itens alimentares encontrados até então foram: Chelicerata (Acarina), Diptera autóctone autóctone (Chironomidae, Ceratopogonidae, Psychodidae, Simulidae, Culicidae e pupas), Plecoptera autóctone, Trichoptera autóctone, Ephemeroptera Hymenoptera alóctone, Hemiptera autóctone, autóctone, Coleoptera autóctone (Psephenidae e outros), Lepidoptera autóctone, resto de inseto aquático, matéria orgânica e detrito. Quatro desses itens – Plecoptera autóctone, Ephemeroptera autóctone, Coleoptera da família Psephenidae e resto de inseto aquático – representaram mais da metade do volume total consumido (VO: 64,03%). Chironomidae (FO: 73,53%), resto de inseto aquático (FO:67,65%), Psychodidae (FO: 23,53%), Trichoptera (FO:23,53%) e Ephemeroptera (FO:23,53%) foram os itens mais consumidos, concluindo-se que a espécie é insetívora de substrato. Esse resultado reforça os dados obtidos por Aranha et al., em 2000, no estado do Paraná.

Tabela 1: Valores de Frequência Volumétrica (VO) e Frequência de Ocorrência (FO) para os itens alimentares consumidos por *Characidium pterostictum,* coletados na Bacia do rio Ijuí de julho de 2015 a maio de 2016.

Item Alimentar	VO%	FO%
Diptera autóctone	0.21	2.94
Chironomidae	8.73	73.53
Ceratopogonidae	1.66	14.71
Psychodidae	6.24	23.53
Simulidae	2.70	8.82
Plecoptera autóctone	12.27	17.65
Trichoptera autóctone	8.73	23.53
Ephemeroptera autóctone	21.21	23.53
Hemiptera autóctone	0.42	2.94
Coleoptera autóctone	0.62	2.94
Psephenidae	10.81	2.94
Lepidoptera autóctone	4.99	20.59
Resto de Inseto aquático	19.75	67.65
Matéria Orgânica não identificada	1.46	17.65
Detrito	0.21	2.94

Referências

Aranha, J. M. R., Gomes, J. H. C., & Fogaça, F. N. (2000). Feeding of two sympatric species of *Characidium, C. lanei* and *C. pterostictum* (Characidiinae) in a coastal stream of Atlantic Forest (Southern Brazil). Brazilian Archives of Biology and Technology, *43*(5), 527-531.

Barreto, A. P. & Aranha, J. M. (2006). Diet of four species of Characiforms in an Atlantic forest stream, Guaraquecaba, Paraná, Brazil. Revista Brasileira de Zoologia, 23(3): 779-788.

Cavalheiro, L. W. (2016). Redes tróficas em riachos urbanos e rurais: quais são os padrões? Qual a origem dos recursos em cada ambiente? Um estudo proposto para a bacia do Rio Ijuí, RS, Brasil. Tese de doutorado não publicada. Universidade Federal do Rio Grande do Sul, Porto Alegre.

Hynes, H. B. N. (1950). The food of fresh-water sticklebacks (*Gasterosteus aculeatus* and *Pygosteus pungitius*), with a review of methods used in studies of the food of fishes. Journal of Animal Ecology, 19: 36-58.

Hyslop, E. J. (1980). Stomach contents analysis—a review of methods and their application. Journal of Fish Biology, 17: 411-

Malabarba, L. & Malabarba, M. C. (2014). Filogenia e classificação dos peixes Neotropicais. In: Baldisserotto, B.; Cyrino, J.; Urbinati, E. (Org.). Biologia e Fisiologia de Peixes Neotropicais de Água Doce. 1ed. Jaboticabal: FUNEP, p. 1-12. Rolla, A. P. P. R.; Esteves, K. E. & Ávila-da-Silva, A. O. (2009). Feeding ecology of a stream fish assemblage in an Atlantic Forest remnant (Serra do Japi, SP, Brazil). Neotropical Ichthyology, 7(1): 65-76.