
' • 
• 

., 
• 

' 

• 
• I 

EJNGEGANGEN 
Fachbere;ch Physik 

The Supersymmetric t-J Mo~11ss3 
and its 

Quantum Group Deformation 

Inaugural-Dissertation 

zur 

Erlangung der Doktorwürde 
des Fachbereichs Physik 

der Freien Universitãt Berlin 

vorgelegt von 

ANGELA FOERSTER 
aus Porto Alegre 

Berlin, April 1993 



~ dW'-Cf~ : L OLtA t ~ 
~J o.-l ~ .A-t Lt~fQ\ ',v."h·. ~ •, 2_~ ,O 3 2/)0;9 

•i 

' 

• 



... 

• 
11 

r. 
I 

" 

I 

\ 

ABSTRACT 

In this work we investigate the supersymmetric t-J model in one dimension. The 

spectrum of the hamiltonian is obtained by means of the algebraic nested Bethe-ansatz 

method. Furthermore, we present a detailed analysis of the algebraic structure of the 

states. By combining the Bethe ansatz with the spl(2,1) supersymmetry of the t-J 

hamiltonian a complete set of eigenstates is constructed. The ground state and the 

elementary excitations of the model are investigated. We also introduce a new inte­

grable vertex model, the anisotropic t-J model, which possesses splq(2, 1) "quantum 

supergroup" invariance. 
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Chapter 1 : lntrodu.ction and main resu.lts 

Chapter 1 

Introduction and main results 

1. INTRODUCTION 

The discovery of high-Tc superconductors by Bednorz and Müller in 1986 [1] has given 

raise to searches for new mechanisms of superconductivity, since this new kind of super­

conductors (ceramics) are not well described by the BCS theory [2), which is generally 

accepted for the usual metallic superconductors. The pioneer idea for an alternative 

model goes back to Anderson [3), who suggested that strongly correlated electron sys­

tems near the metal-insulator transition may build up a superconductor state. This 

comes from the fact that the initial compound originating the new superconductors 

(e.g. La2Cu04) is an insulator which is transformed into a superconductor below a 
>' 

certain critical temperature by partial substitution of La by atoms with a lower valence, 

like Ba or Sr or by in.creasing the oxygen content [4]. This process is usually referred as 

doping the system with holes. There is a great deal of experimental evidence to support 

the view that the essential feature of this new type of superconductors is the quasi-two 

dimensional motion of holes in CuO planes [5). 

Recently, the t-J model has attracted much interesse in connection with high-Te 

superconductivity, since it is one of the simplest models for studying strongly correlated 

electron systems. This model , proposed by Anderson [6], is obtained from a strong 

coupling expansion of the Hubbard hamiltonian by excluding two electrons at one site. 

It describes electrons with nearest-neighbor hopping and spin exchange interaction on 

a quantum lattice, whose hamiltonian reads 
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(1.1) 

(see next chapter). In principie, the t-J model can be studied for any dimensions 

and for ail ratios of J ft. Although high-Tc cooper-oxide materiais are at least two­

dimensional systems, it is also instructive to investigate the one-dimensionai model. It 

is relatively simple to explore and, as Anderson recently claimed [7], two-dimensional 

strongly correlated systems may share some properties of the one-dimensional case. It 

has been observed that for an appropriate choice of the coupling constants ( J /t = 2) 

the one-dimensional t-J model becomes supersymmetric and completely integrable by 

the Bethe ansatz method. 

The concept of integrable systems in physics was originated in the earlier develop­

ments of the classical mechanics. According to Liouville, a classical hamiltonian system 

with N degrees of freedom is called integrable if it possesses a set of N independent 

integrais of motion commuting with respect to the Poisson brackets. One of the most 

familiar example of an exactly solvable model in classical mechanics is the two-body Ke­

pler problem, whereas the three body problem is not completely integrable. At quantum 

levei, integrability is given by using commutators instead of Poisson brackets. In gen­

eral, for integrable quantum models it is possible to evaiuate some physicai quantities 

such as the spectrum of commuting quantum integrais of motion without any approx­

imation, even for systems with many degrees of freedom. In fact, this is the case of 

many lattice models, e.g. the Heisenberg chain . 
. 

Although the integrability of quantum systems as discussed here is restricted to one 

dimension, there are many reasons that turn this study relevant. It serves as a test for 

compu ter analysis and analytical methods for realistic systems to which, until now, only 

numericai caiculations ( e.g. Monte-Carlo simulations) and perturbative methods may be 

applied. In addition, a nontrivial solvable model reveals an essence of the phenomena 

under consideration. For instance, many concepts established in criticai phenomena 

were inspired by the exact solution of the Ising model. From the experimental point 

of view, we mention that there are some materiais which behave like one-dimensional 

systems [8]. Furthermore, as pointed out by Baxter [9]: "One-dimensionallattice models 

are relevant and can be solved, so why not doso and see what they teU us ?". Integrable 
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systems also play an interesting role in mathematics. For example, they provide an 

explicit realization of algebraic structures, as Lie algebras and quantum groups [10,11]. 

The concept of quantum groups and quantum algebras emerged as a natural ab­

straction of certain basic ideas of the quantum inverse scattering method. These 

new mathematical objects have attracted great interesse due to their relation to non­

commutative geometry and the theory of knots and links [12]. In physics, the notion 

of quantum groups appeared in many fields, such as statistical mechanics and confor­

mai field theory (13]. However, the theory of quantum groups has not shown its full 

power yet. Deformations of algebraic structures played a very important role in the 

development of modern physics. In fact, the transition from Galilei relativity to that of 

Lorentz, as well as the transition from classical to quantum mechanics are nothing more 

than deformations. Both are associated with the parameters "c" and "n". Motivated 

by these reasons, it can be speculated that these new deformations found mainly in the 

mathematics may lead to new developments in the physics (14]. 

One ~f the most powerful techniques for treating one-dimensional quantum sys­

tems or two-dimensional classical statistical models ( vertex models) is the Bethe ansatz 

method. It was first introduced by Bethe in 1931 to solve the isotropic Heisenberg 

model [15] and was subsequently applied to several other models. The approach was 

developed further by Baxter, who solved the XYZ-Heisenberg model ( or the eight-vertex 

model) [9,16]. A great impulse in the theory of integrable systems was given by Faddeev, 

Takhtajan and Sklyanin with the development of the algebraic Bethe ansatz method 

[17], also called quantum inverse scattering method (QYSM). 

This algebraic viewpoint introduced by the russian school provides the solution of 

additional models which in principie were very difficult to solve using the traditional, 

or coordinate Bethe ansatz approach. Moreover, it provided an unified framework for 

treating previous methods of exact solution in different areas of theoretical and mathe­

matical physics: i) method of commuting transfer matrices for two-dimensionallattice 

models of classical statistical mechanics, as the lsing models and vertex models, inves­

tigated by Onsager in 1944 [18], Lieb in 1967 [19] and Baxter in 1972 [16]; ii) method 

of the factorized S-matrices, introduced by Karowski et al in 1978 [20] and developed 

la ter by Zamolodchikov et al. [21]. 

Basically, through the algebraic Bethe ansatz method the problem of finding the 
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spectrum of some hamiltonian reduces to the resolution of a. system of coupled tran­

scendental equations, the so-called Bethe ansatz equations (BAE). Each eigenvector and 

eigenvalue is characterized by a set of roots of these equations. In the thermodynamic 

limit the ground state of the hamiltonian at zero temperature, as well as the elementary 

excitations correspond to some distribution of roots of the BAE which can be handled 

as rapidities ( momenta) of "quasi-particles". Then, the form of the ground state of the 

model can be obtained by minimizing the free energy of the system. An important con­

tribution in the analysis of the thermodynamic properties of one-dimensional quantum 

systems was given by Y ang and Y ang (22] for the Bose-gas system. They used Bethe 

ansaztz methods to investigate the system at finite temperature. 

There are still open questions related to the Bethe ansatz method. One of the 

most interesting is the completeness of the Bethe vectors. Since the pioneering work 

of Bethe [15] and a subsequent work of Faddeev and Takhtajan (23] on the isotropic 

Heisenberg model, it is known that the Bethe ansatz alone does not provide a complete 

set of states instead it only determines the highest weight vectors of the underlying 

SU(2) symmetry group. Recently, Essler, Korepin and Schoutens [24] proved for the 

one-dimensional Hubbard model that the Bethe states are lowest weight vectors with 

respect to an SO( 4) symmetry. Then, for both models a complete set o f vectors can be 

constructed combining the Bethe ansatz with the SU(2) and SO( 4) symmetry groups, 

respectively. However, for other integrable models there is no proof that a complete 

family of eigenstates can be obtained by Bethe ansatz methods. 

The algebraic Bethe ansatz method is based on a fundamental commutation relation 

called Y ang-Baxter· equation 

(1.2) 

where v is the spectral parameter (see next chapter). It is a sufficient condition for 

integrability and leads to a consistent and systematic method to construct solvable 

models. The Yang-Baxter relation has several physical interpretations. In the theory 

of the factorized S-matrix, where S is the two-body scattering matrix, the Yang-Baxter 

equation means that the process of 3-particle scattering is reduced to a sequence of pair 

collisions which do not depend on the time ordering of the two-body collisions. In this 

case the Yang-Baxter equation has the name of factorization equation. In the vertex 
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models of classical statistical physics, the Yang-Baxter equation appears as a condition 

for the vertex weights S which allows for the exact solution of the corresponding model. 

In this context it is usually referted as "star-triangle" relation . 

The solutions of the Yang-Baxter equation can be classified according to the depen­

dence of the matrix S on the spectral parameter in rational, trigonometric or elliptic. 

In the rational case, the Yang-Baxter algebra is associated to a simple Lie algebra or 

Lie group. In the trigonometric case, it is a deformation of a Lie algebra or Lie group 

called "quantum group" that underlies the Yang-Baxter algebra. The name "quantum 

group" follows from the fact that these new structures are related to the Lie groups in 

a similar way as quantum mechanics is related to classical mechanics. The elliptic case 

is until now not very well understood from the algebraic point of view. 

Quantum groups are closely related to Yang-Baxter algebras. Nevertheless, quan­

tum group invariance holds only for integrable vertex models with special choices of 

boundary conditions. This fact has been observed for the six vertex model with ani­

sotropy (or, equivalently, the spin 1/2 anisotropic Heisenberg model with imaginary 

boundary conditions) [25,26]. In arder to treat more general boundary conditions com­

pareci to the usual periodic one, a generalization of the algebraic Bethe ansatz method 

is required [27,28]. In this construction, in addition to the matrix S defining the ver­

tex weights, two new matrices K± that take into account the boundary conditions are 

introduced. The explicit forro of these matrices is determined by the requirement of 

integrability. Actually, this approach really provides a systematic way to get an inte­

grable model with quantum group invariance. Many other integrable models, as the 

Toda-chain [28,29], ·nonlinear Schrodinger equation [28,30], the XY model [31], An-l 

vertex models [32] among others, were also considered in connection with special bound­

ary conditions. However, the Bethe ansatz equations were derived only for the XXZ 

chain [28]. Therefore, the problem of finding the spectrum of open chains has not been 

solved yet in its full extent and is presently a subject of increasing activity. 
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2. MAIN RESULTS 

In this work we investigate the supersymmetric t-J model in one dimension. We 

present an explicit construction of the eigenvalues a.nd eigenvectors of the model using 

the algebraic nested Bethe ansatz method. By this procedure we find a new form of 

the Bethe ansatz equations and also recover the other two forms, previously obtained 

by Lai [33], Schlotmann [34], Sutherland [35] and Sarkar (36]. The equations are solved 

as usual, using the string conjecture. 

Furthermore, we give a detailed analysis o{ the algebraic structure of this model. We 

prove that the Bethe ansatz states are highest weight vectors of an spl(2,1) superalgebra 

[37]. Then, by acting with the spl(2,1) shift operators we find additional eigenvectors. 

After that, the complete family of eigenstates is obtained [38]. The proof is based on 

counting the number of states which happens to be equal to the dimension of the full 

Hilbert space, namely 3L. In addition, we investigate the multiplet structure of the 

anti-ferromagnetic ground state and some low-lying excitations, as spinons and holons. 

For example, it turns out that the ground state is a member of a quartet. 

The thermodynamic properties of the model are discussed for the system at arbi­

trary filling in the presence of an externai magnetic field. The Fermi leveis, the excitation 

spectrum as well as the dispersion relations of the modelare calculated. We also derive 

the relation between some physical quantities of interest as filling and chemical poten­

tial. We mention that an analysis of the excitation spectra was also performed by Bares 

and Blater [40]. 

We proceed our work introducing a new integrable vertex model, namely the 

anisotropic t-J model in one-dimension with quantum supergroup invariance [39], whose 

hamiltonian reads 
L-1 

1f(q) =- P{l: L:(c},uci+l,u + cJ+l,uCj,u)}P 
j=l u 

-2 I: ( Sj SJ+l + SJ SJ+1 + cos-y (SJSJ+l- n;:;+• l) -cos,"t n;. (2.1) 
]=l ]=l 

L-1 

+i sin( "Y)(nl - nL)- i sin(T) l:(njSJ+1 - SJni+l) 
j=l 

Through a generalization of the construction of refs.[27,28,41] we derive the Bethe ansatz 

equations of the model. We show that they are related to the BAE obtained using 
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Chapter 1 : lntroduction and main results 

periodic boundary conditions. Moreover, we propose an alternative approach, where the 

matrix K+ defining the boundaries is the Markov trace associated with the supergroup 

splq(2, 1). This allows for an easy generalization to other cases. We also show that the 

model under consideration provides an explicit realization of the quantum supergroup 

splq(2, 1) and is in addition splq(2, 1) invariant. 

The thesis is divided as follow. In Chapter 2 we solve the one-dimensional super­

symmetric t-J model through the quantum inverse scattering method. Furthermore, a 

careful analysis of the algebraic structure of the model is presented. The proof of the 

completeness of the Bethe states is also given. In Chapter 3 we discuss the thermody­

namic properties of the t-J hamiltonian. By minimizing the free energy of the system we 

find the ground state of the hamiltonian. A description of the model at arbitrary filling 

and in the presence of an externa! magnetic field is given. The Fermi leveis and the 

excitation spectrum, as well as dispersion relations are calculated. Chapter 4 contains 

a study of the anisotropic t-J model with quantum supergroup invariance. 

11 
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Chapter 2 

Solution and Algebraic Structure of 
the Supersymmetric t-J Model· 

1. INTRODUCTION 

In this chapter we investigate a model of classical statistical physics in two di­

mensions, an spl(2,1) supersymmetric 15-vertex model, which is a generalization of the 

6-vertex model. Each link in the square lattice can assume one of three states where two 

are bosonic and one is fermionic. The results for the spl(2,1) supersymmetric 15-vertex 

model are easily translated to the one-dimensional t-J model (for special values of the 

couplings t and J). Recently this model has attracted much interest in connection with 

high-Tc superconductivity. It describes a quantum system of electrons on a one dimen­

sional chain, where at a lattice point there may be an electron with spin up or spin 

down ora bole. The hamiltonian for a lattice of L sites is given by [6] 

(1.1) 

where the projector P = fiY=I (1- niini!) restricts the Hilbert space by the constraint 

of no double occupancy at one lattice point. 

We present an explicit construction of the eigenvalues and eigenvectors of the trans­

fer matrix of the spl(2,1) supersymmetric 15-vertex model using the algebraic nested 

Bethe ansatz method [17,42]. By this procedure the problem of finding the spectrum 

is reduced to the problem of solving a system of coupled transcendental eq~.~ations, the 
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Bethe ansatz equations (BAE). We find three different kinds of BAE, which correspond 

to three different possible choices oí pseudovacua. Two of these forms of BAE were 

already obtained by Lai [33], Schlottmann [34], Sutherland [35] and Sarkar [36] using 

similar methods. Moreover, we analyze in detail the algebraic structure of the eigenvec­

tors obtained by this nested construction. From the invariance of the transfer matrix 

(and consequently of the one-dimensional t-J hamiltonian) with respect to the spl(2,1) 

superalgebra it follows that the eigenstates are classified in terms of supermultiplets cor­

responding to irreducible representations of this superalgebra. We analyze the structure 

of these representations. In addition, we prove that the Bethe ansatz states are highest 

weight vectors of the spl(2,1) superalgebra [37], which was investigated by Scheunert, 

Nahm and Rittenberg [43]. Therefore, by acting with the spl(2,1) lowering operators 

on the Bethe states we obtain additional eigenvectors. Finally, the total number of 

orthogonal eigenvectors generated by this procedure leads to a complete set of states. 

This result has been already announced in [38]. 

The chapter is organized as follows. In section 2 the spl(2,1) vertex model, as 

well as its transfer matrix, is defined on a two-dimensionallattice. We also give the 

relation between the transfer matrix and the one-dimensional supersymmetric t-J model. 

In section 3 we diagonalize the transfer matrix using the quantum inverse scattering 

method. In section 4 the algebraic structure of the Bethe vectors is investigated. Our 

results for lattices with small and large number of sites are illustrated in section 5, where 

the structure of the ground state and some low lying excitations are also discussed. In 

section 6 we give details of the proof of the completeness problem of the Bethe states 

for this model and section 7 contains a summary of the main results. 

13 
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2. THE spl(2,1)-VERTEX MODEL AND YANG-BAXTER ALGEBRA 

The graded 15-vertex model is a lattice model of classical statistical physics in two 

dimensions. Its partition function on a L x L' (L columns and L' rows) periodic square 

lattice is given as 

Z =L li S(x), (2.1) 
conf. xELxL' 

where the sum extends over all allowed "bond configurations". Each bond can accept 

one of three states characterized by a = 1, 2, 3, which can be bosonic (B) or fermionic 

(F). In what follows we will adopt the convention 1 = B, 2 = B, 3 = F. The figure 

below displays a possible configuration for a 5 x 5 square lattice with periodic boundary 

conditions 
2 3 3 3 1 

3.-+---3 3:~-3 

2.-+---2 2---+-2 

3--1--3: 3---+-3 

' 
3.-+--3 3.~-3 

• 

1-+---1 1---+-1 

2 3 3 3 1 

where each vertex weight S( x) assumes one of the 15 allowed configurations at the 

lattice site x depiGted below 

a 
a-1-a=a (a=/=3) 

a 
3 

3-1-3=w 
3 

f3 
a -I- a = b (a =J {3) 

f3 

f3 
a-l-!3 =c (a =J {3) 

a 
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and take the following values 

6 
S -r6 ( ) I t-r t6 2 t-r t6 

a{:J V ="'(-,-a= l7-y60aO{:J- ;;o{:Joet• 

,,8 
(2.2) 

The parametrization in terms of the spectral parameter "v" has been introduced for 

later convenience (see eq.(2.11)). The sign factor a takes care of the statistics 

_ { -1, if "'( = 6 = 3 (fermionic) 
a-y6 - 1, otherwise . (2.3) 

S can be considered as a matrix acting in the tensor product of two 3-dimensional 

auxiliary spaces C 3 X C 3 and can be arranged as a 9 X 9 matrix. 

a o o o o o o o o 
o b o c o o o o o 
o o b o o o c o o 

o c o b o o o o o 
SJ~(v) = o o o o a o o o o 

o o o o o b o c o 
(2.4) 

o o c o o o b o o 
o o o o o c o b o 
o o o o o o o o w 

where 
2 

b= 1, 
2 2 

a= 1--, c=--, w = -1--. 
v v v 

(2.5) 

Let us now introduce the monodromy matrix T( v), which is associated to a line of the 

lattice, say a horizontalline. Therefore, it can be written as the matrix product over 

the S's in the following way 

T-y{6} (v) = s-r 61 (v)Sa262 (v) ••• SCtL6L (v) 
a{f:J} et2f:J1 etsf:J2 a f:JL 

{6} 
li 

"'(-T-a -

li 
{,8} 

61 62 6L 

"'(-1--1-···-1-a · 
,81 ,82 ,BL 

(2.6) 

This monodromy matrix acts in the tensor product of an auxiliary space and a" quantum 

space" C 3 x C 3 L and can be regarded as a 3 x 3 matrix of matrices acting in the "quantum 

15 
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space" 

TJ(v) = (~ 
c3 

(2.7) 

By using periodic boundary conditions, the transfer matrix is defined as a trace of 

the monodromy matrix in the auxiliary space 

{c5} ~ ,....a{6}( ) ~ Ta{c5}( ) 
rvn(v) = L...JTa{.B} v = L...JO'aaO'a{c5} a{.B} v, (2.8) 

where 

O'a{c5} = rr Ua6; • 
(2.9) 

Here the u factors take into account the fact that we are dealing with bosons and 

fermions. 

The thermodynamic properties of the vertex model can be obtained from the solu-

tions of the eigenvalue problem of the transfer matrix 

TW = ÀW. (2.10) 

This eigenvalue problem will be solved in the next section by means of the nested Bethe 

ansatz. 

It can easily be shown that the matrix S given by eq. (2.2) fulfills the Yang-Baxter 

equation 

a" ,811 1 a' "'(11 .8' "'(1 
1 .8" "'( 11 

1) a" "'(1 
( a' .8' 1 Sa'.B' (v- v )Sa 'Y' (v)S,a·'Y (v)= S.B''Y' (v Sa' "'( v)Sa .a (v- v). (2.11) 

(3" (3" 

a" o/' 

By means of iterations we can also prove the Yang-Baxter relation for the monodromy 

matrix T 

a" ,811 1 a' { "'(11
} .8' { "'(1

} 1 .8" { "'(11
} 1 a" h'} a' .8' 1 

Sa'.B' (v- v )Ta h'} (v)T,a hl (v)= T,a, h'l (v )Ta, hl (v)Sa .B (v- v). (2.12) 
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In addition conservation of fermions imply the following property of the T-matrix 

(2.13) 

for all a = 1, 2, or 3. Here u counts the number of fermions and U 01fJ is represented by 

a line connecting a and {3. 

The Yang-Baxter equation for the monodromy matrix (2.12) together with property 

(2.13) imply the commutativity of the transfer matrix for different spectral parameters 

[r( v), r( v')] = O. (2.14) 

This reflects the integrability of the model. In fact, the eigenvalue problem (2.10) can 

be solved exactly by the Bethe ansatz method. 

At the end of this section we will show that the above defined transfer matrix is 

related to the l-dimensional supersymmetric t-J model, such that if we solve the eigen­

value problem of the transfer matrix r we will automatically diagonalize the hamiltonian 

of the l-dimensional supersymmetric t-J model. 

The hamiltonian of the t-J model for a one-dimensionallattice of L sites is given 

as [6] 

(2.15) 

where the c)~'s are spin up or down annihilation ( creation) operators, the Sj's spin 

matrices and the nj's occupation numbers of electrons at lattice site j. The projector 

P = TI~=l (1 - nitni!) restricts the Hilbert space by the constraint of no double oc­

cupancy at one lattice point. Therefore, at each lattice site we have three possibilities 

(1, 2, 3) = (i,~' 0), i.e. an electron with spin up or down or no electron (hole). This 

hamiltonian can be rewritten in terms of Hubbard's projection operators [44] 

(2.16) 

17 



Chapter 2 : Solu.tion and algebraic stru.ctu.re of the su.persymmetic t-J Model 

where l1j(2j)} denotes an electron with spin up (down) and l3j} a hole at site j. Using 

(2.16), up to a chemical potential the hamiltonian reads 

2 L L ( 2 ) 
1í = -t"" "'cxc:ra x~a + xc:ra x~a) + 1 

"" "" x~P x~a - X~3 X~3 
~ ~ J J+l J+l J 2 ~ ~ J J+l J J+l 
a=l j=l j=l a,/3=1 

(2.17) 

For convenience we will consider the hole operators as fermions and the spin operators as 

bosons. In fact, this choice is possible since in 1-dimension there exists a transformation 

exchanging bosons and fermions. Therefore the spectrum of the t-J model with two 

fermions and and one boson is equivalent to the spectrum of the t-J model with two 

bosons and one fermion (for even L) [36]. 

For J = 2t the t-J model is "supersymmetric" [45] and connected to the previously 

defined vertex model through the relation 

(2.18) 

The proof of this identity is analogous to the one for the isotropic Heisenberg model 

[9,11]. 

3. CONSTRUCTION OF BETHE EIGENVECTORS 

The main subject of this section will be solving the eigenvalue problem of the transfer 

matrix 

(3.1) 

through an algebraic- construction [17] based on- the Y ang-Baxter algebra of the mon­

odromy matrices 

a" {3" 1 a' {-r"} /3' {-r'} 1 P" {-r"} 1 a" {-r'} a' {3' 1 
Sa'/3' (v- v )Ta h'l (v)T13 hl (v)= Tf3' h'} (v )Ta, hl (v)Sa 13 (v- v). (3.2) 

The monodromy matrix T can be written as a 3x3 matrix 

(3.3) 

This suggests solving the problem by means of the nested Bethe ansatz with two levels 

[42]. The transfer matrix is given by a trace of the monodromy matrix T (see eq. 
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Chapter 2 : Solution and algebraic &tructure of the &upersymmetic t-J Model 

(2.8) ). For the first level Bethe ansatz the operators Ba( C a) (a = 2, 3) play the role of 

creation (annihilation) operators of "pseudoparticles". The first level "pseudovacuum" 

ci> is defined by the equation 

C {P} q;{P'} - 0 
-y{P'} -

f31 f32 f3L 
~-~- -1- ... -1-1 q;{P'} =O 

for 1 = 2,3. (3.4) 

f3i (3~ f3t 

Since at a vertex a generalized "ice rule" holds (see eq. (2.2)) the solution of this 

equation is 
L f3I /32 

q;{P} = II Sp;l = I I 
i=l 1 1 

This pseudovacuum is an eigenstate of A 

A~~}}(v)ci>{P'} = aL(v)ci>{.B} 

f3L 
I 
1 

(31 {32 f3 L 1 . 1 1 
1 -1--1-···-1- 1 = 1-1--1-···-1- 1 

1 1 1 1 1 1 

(3.5) 

(3.6) 

l and also of D 1 and D 4 

' 
• . , 

.. 

D {.13} (v)ci>{.B'} - bL(v)ci>{.B} 
1(4){P'} -

/31 /32 (3 L 1 1 1 

a-1--1-···-1-a = a-1--1-···-1-a 
(3.7) 

1 1 1 1 1 1 

(a = 2 and 3, respectively). Because of the special form of the matrix S of eq. (2.2) 

the summations ovef the internallines in eqs. (3.6) and (3. 7) are trivial. In eq. (3.6) 

they can assume only the value 1, and in eq. (3.7) only the fixed value a = 2 or 3, 

respectively. The action of Ba (a = 2 or 3) on the "pseudovacuum" yields new states. 

So, the {Ba} can be considered as "creation operators" and the eigenvector of the 

transfer matrix can be obtained by successive application of the B's according to the 

first level Bethe ansatz 

(3.8) 

where the summations over the ai (i = 1, ... , N) are restricted to ai = 2, 3. The 

coeffi.cients 'i' t~/ are to be to be determined by the second level Bethe ansatz. This 
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means the eigenvalue problem of the transfer matrix (3.1) will be solved in a recurrent 

way (nested Bethe ansatz method). The requirement that \11 is an eigenvector of T leads 

to another eigenvalue problem for a new transfer matrix T(1), as will be shown later. 

Now we start to solve eq. (3.1). Following the general strategy of the algebraic Bethe 

ansatz [17] we apply the transfer matrix r( v) (2.8) to the state W given by eq.(3.8). 

T {,8"}(v)'T.{.8'} - (A {,B"}(v) + T {,B"}(v)) \11{,8'} 
{.8'} 'i.' - {.8'} D {.8'} ' 

(3.9) 

where 
3 3 

{.8"} """ -a{,B"} """ a{,B"} 
TD {.8'}(v)= L....JTa{,B'} (v)= L....JO'aaO'a{.8"}Ta{,8'} (v). (3.10) 

a=2 a=2 

In order to commute A(v), D1 (v) and D4 (v) through all B(vi) towards <I? and then 

apply (3.6) and (3.7) we use the property (2.13) and the following commutation rules, 

derived from the Yang-Baxter relation (3.2) 

A( )B ( ') a(vf-v) ( ') () c(v'-v) () ( ') 
v a v = b( ) Ba v A v - b( ) Ba v A v v'- v v'- v 

(3.11) 

and 

"'( ( ) ( t) 1 ( ( f "'( ( -y11 a' f I f ) T"Y, v Ba v = b(v _v') Ba' v )T-y, v)S-y'a (v- v)- c( v- v )B-y'(v)TJ(v) (3.12) 

Ba(v)B,a(vf)= ( 
1 

)B,a,(vf)Ba'(v)S:.a'.B'(v-vf). 
av-v' 

(3.13) 

All indices of the auxiliary space in eqs. (3.11), (3.12) and (3.13) assume only the values 

2 and 3. Using eq.(3:11) two types of terms arise when Ais commuted through Ba. In 

the first type A and Ba preserve their arguments and in the second type their arguments 

are exchanged. The first kind of terms are called "wanted terms", since they will give 

a vector proportional to \11 and the second type are the "unwanted terms (u.t.)". Then, 

using (3.9), (3.8), (2.13), (3.11) and (3.6), we get 

(3.14) 

where the coefficient ÀA is given by 

N 
, ( ) = L( ) rr a( Vi -V) 
AA V a V b( ) . 

i=l Vi- V 
(3.15) 
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Chapter ~ : Solution and algebraic .dructure of the "uper.,ymmetic t-J Model 

Correspondingly we obtain from (3.12) the wanted a.nd unwa.nted terms in the form 

N 
{.8"} {.8'} L II 1 {.8"} h } 

TD{.B'}(v)\11 =b (v) b(v-v·)Ba~{'lt}(vi)Ba~{'l~}(v2) ... 
i=l I (3.16) 

B hN-d( ).:r. {'IN} {a'}( { ·})'y,{a} + t (D) .. . a~ {'IN} VN ~ T(l){a} V, V1 'J.' (l) U. • , 

where we have introduced a new (the second levei) transfer matrix 

3 
{a'} "' .B{a'} } 

T(l){a} (v, {vi}) = L- O'ppO'p{a'}T(l).B{a} (v, {Vi ) (3.17) 
.8=2 

as a trace (over only f3 = 2 and 3) of the second levei monodromy matrix. This is given 

byT(l) = S(v- VN) ••• S(v- v1 ) in anaiogy to eq. (2.6). Now, however, ali indices (the 

externai and the internai ones) assume only the vaiues 2 and 3, as in the internai block 

of the matrix T denoted in eq. (3.3). In order to obtain in eq. (3.16) a "wanted term" 

proportionai to \li, the vector \11 (l) has to fulfil the eigenvaiue equation 

(3.18) 

which is solved by the second levei Bethe ansatz. The monodromy matrix T(l) belongs 

to an SL(1,1) 6-vertex model slightly modified compareci to the SU(2) one dueto the 

presence of fermions. If we identify T(1 )~ = A(1), T(l>i = B(l), T(l)~ = C(l) and 

T(l)! = D(l) again B(l) (C(l)) can be interpreted as a creation (annihilation) operator 

with respect to the "pseudovacuum" «P(l), which is now of the form 

N OlN 
.:r..{a}- II c - I 
~(1) - Ua;,2 -

i=l 2 
(3.19) 

It is an eigenstate of A(I) and D(1), satisfying 

N 

A(l)~:l}(v, {vi})«PtD'} =li a( v- Vi)«PlD} 
i=l 

OlN 0t2 0t1 2 2 2 (3.20) 

2 -1- ... -1--1- 2 = 2 -1--1- ... -1- 2 
2 2 2 2 2 2 

N 

D(l)1:J1(v, {vi})«PtD'} =li b(v- Vi)«PfDl 
i=l 

OlN 0t2 0t1 2 2 2 (3.21) 

3-l- ... -1- -l- 3 = 3-l- -1- ... -l- 3· 
2 2 2 2 2 2 
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Chapter 2 : Solu.tion and algebraic stru.ctu.re of the su.persymmetic t-J Model 

The summations over the internallines in eqs. (3.20) and (3.21) are only over the values 

2 and 3, respectively. The eigenvector '11(1) of T(1) is given by the second level Bethe 

ansatz 

,y,{a} _ B {a} ( { })B {711}( { }) B hM-d( { });r,.{'lM} 
';l"(1) - (1){'11} /'1, Vi (1){'12} /'2, Vi • • • (1){'1M} "')'M, Vi ';l"(l) • (3.22) 

Following a strategy analogous to the one above, we apply T(t) to the state W (1) and 

commute A(l)( v, {vi}) and D(l)( v, {vi}) through the B(l)("Ya, {vi}) towards <P(l) and 

then use (3.20) and (3.21). Since the Yang-Baxter algebra for the monodromy matrices 

(3.2) is also valid in the inhomogeneous cases when T( v) is replaced by T( v, {vi}) [46], 

we derive the following commutation relations 

(3.23) 

D(t)( v, {vi} )B(l)( v', {vi}) =;((v -v'] B(1)( v', {Vi} )D(1)( v, {vi}) 
v- v' 
c(v- v') 1 - b(v _ v')B(l)(v, {vi})D(l)(v, {vi}), 

(3.24) 

B(1)( v, {v} )B(l)( v', {v})= wfv- v:j B(l)(v', {v} )B(l)(v, {v}). 
av-v 

(3.25) 

Using eqs. (3.17), (3.22), (2.13), (3.23), (3.24), (3.20) and (3.21) as above we obtain 

again wanted and unwanted terms 

T(l)f:;} (v, {vi} )w·l~/ = (.XA< 1> (v, {vi}) + .Xv<1> (v, {vi})) '11 lD'} + u.t.(A(1)) + u.t.(D(t)), 

(3.26) 

where 

IIN ITM a("Y/3- v) 
ÀA<t> = a( v- vi) b( _v) , 

i=l /3=1 /'{3 
(3.27) 

M ITN ITM w(v- "Y.B) 
.Xv(l)=-(-1) b(v-vi) b(v- ) . 

i=1 /3=1 /'{3 
(3.28) 

Substituting these equations in (3.16) and taking (3.8) into account we get, in case the 

unwanted terms u.t.(A(l)) and u.t.(D<l)) cancel, 

r0y;:J(v)w{.B'} = (.Xv1 (v) + .Xv11 (v))w{P"} + u.t.(D), 
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Chapter 2 : Solution and algebraic &tructure of the &upersymmetic t-J Model 

where ÀD1 and ÀD11 are given by 

(3.30) 

M L ITM w(v- r/1) 
ÀD11 = -( -1) b (v) b(v _ ) . 

/1=1 'YII 
(3.31) 

Finally, combining eqs. (3.14) and (3.29) we have, again if the unwanted terms u.t.(A) 

and u.t.(D) cancel 

(3.32) 

where 

(3.33) 

The cancellation of all unwanted terms ensure that W, as given by eq. (3.8), is an 

eigenstate of the transfer matrix T (2.8) with eigenvalue >.(v) of eq. (3.33). 

In the appendix A we show that the unwanted terms indeed vanish if the Bethe 

ansatz equations hold 

j=1, ... ,N, 

N M 
(- 1)MITa~'Ya-vi~ li a~"Y/1-"Ya~ b~"Ya-"Y/1)) = 1 , a= 1, ... M, 

i=l b 'Yn - Vi /1=1 b r/1 - "Yn w 'Yn - "YP 

(3.34) 

(3.35) 

where N is the number of holes plus down spins and M is the number of holes. Another 

way to obtain these equations is to require that the eigenvalue >.(v) (3.33) has no poles 

at v= Vi and v= 'YP· Using (2.5) and making the change ofvariables v~ iv+ 1, 'Y ~ 

i"'( + 2 we obtain 

( 
.)L N 2 . M · 

Vj + ~ = rr Vj- Vk + ~ rr Vj- "Y/1- ~ ' 
v·- z v·- Vk- 2z v·- 'YQ + z 

} k:j:.j } /1=1 1 I' 

j = 1, . .. ,N, (3.36) 

N . rr 'Yn - Vj + z_ = 1 ' a= l, ... ,M. 
j=1 "Yn - Vj - Z 

(3.37) 

This form of the Bethe ansatz equations (BAE) was previously derived by Sutherland 

[35] and later by Sarkar using a generalized permutation operator [36]. We stress that 

23 



Chapter ~ : Solu.tion and algebraic .dructu.re o/ the .su.per.symmetic t-J Model 

this procedure could be repeated with two other choices of the pseudovacuum leading 

to two other forms of the BAE. The pseudovacua of both leveis of the Bethe ansatz <P 

and <1»(
1

) (see eqs. (3.5) and (3.19)), which we used above, consist of states of kind 1=B 

and 2=B, respectively. Basically, the change of pseudovacuum is determined by altering 

the initial convention (1=B, 2=B, 3=F). Using (1=F, 2=B, 3=B) we get 

( 
.)L M +. 

Vj + ~ = rr Vj- {/3 ~ ' 
V •- t V.- "'R- t 

J {3=1 J /IJ 

j=1, ... ,N, (3.38) 

N . M 2. 

rr ,OI - Vj - t. = rr ,OI _,/3 - t. , a=1, ... M, 
j=1 /01 - Vj + z /3=1 /01 - /(3 + 2z 

(3.39) 

where N is the total number of spins and M is the number of spins down. These 

equations were already obtained by Lai [33] and Schlottmann [34] using the coordinate 

Bethe ansatz method. 

Finally, the choice (1=B, 2=F, 3=B) leads to a new form of the BAE 

( 
.)L M . Vj-t ITVj-/(3-t 

v·+i = v·-1R+i' 
J (3=1 J /J 

j =1, ... ,N, (3.40) 

(3.41) 
N . 

rr lOI - Vj + t. = 1 ' a=1, ... M, 
j=1 lOt- Vj- t 

where N is the number of holes plus spin downs and M is the number of spins down. 

In the following we will work with the BAE's (3.36) and (3.37), since this is the most 

convenient form for the present investigation. 

We have reducéd the eigenvalue problem of the transfer matrix (3.1) to a system 

of coupled algebraic equations for the parameters {vj} (j = 1, ... ,N) and {!01 } (a= 

1, ... , M). The basic procedure to solve eqs. (3.36) and (3.37) is to adopt the string­

conjecture, which means that the v's appear as strings and all roots 1's are real 

v~j =v~+ i(n + 1- 2j); j = 1, ... ,n; a= 1, ... ,Nn; n = 1,2, ... 
(3.42) 

1/3 =real; /3 = 1, ... ,M 

where v:; is the position of the center of the string on the real v-axis. The number of 

n-strings N n satisfy the relation 

(3.43) 
n 
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Chapter ~ : Solution and algebraic structure of the .supersymmetic t-J Model 

This hypothesis for the v's can be easily understood by heuristic arguments, analogously 

to the isotropic Heisenberg model [23,47). To understand absence of complex roots for 

the 'Y's we apply the following argument, which is similar to that one developed by 

Takahashi for the one dimensional electron gas with a repulsive delta-function [48). If 

all Vi are real or appear as complex conjugate pairs, 1m {a > O implies that the absolute 

value of the left hand side of eq.(3.37) is larger than unity. Therefore, lm {a > O is not 

possible. In the same way we can prove that Im {a < O is not possible. 

We can see here the great advantage of using this form of BAE. In the other 

two forms not only the parameters v's but also the roots 'Y's appear as strings. This 

means that counting the states is much more complicated. Although we are not able to 

prove the string-conjecture rigorously, we will assume it to be valid. Since Bethe [15), 

assumptions of this kind have been widely used by many authors ([47) and references 

therein ). The string conjectureis illustrated below for a particular case ( N1 = 4, N2 = 2, 

N3 = 1) N = 11 and M = 8 . 

X 

X X 

)( )( )( )( )( v 

X X 

X 

)( )( )( )( )( )( )( )( 

Applying the string_conjecture (3.42) in (3.36) and (3.37) and taking the product over 

j in (3.36) we obtain 

fi (v~+ i(n- 2j + 2)) L= II rr rrm rrn v~- v;r + i(n- m- 2j + 2k + 2) 
i v~+i(n-2j) m 13 k i v~-vif+i(n-m-2j+2k-2) 

IIM rrn v~- {{ + i(n- 2j) 
x { i v~- {{ + i(n- 2j + 2) 

II II
Nn rrn v~- {{3 + i(n- 2j) .. 

. vn-{R+i(n-2j+2)= 
1 

n a J a ~-' 
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The products indicated above can be performed resulting in 

1 

where e(x) = x±~ and x-a 

for n =/= m 

for n = m. 

Taking the logarithm of these equations and using ln e( x) = f arctan x -In( -1) we get 

where 8( x) = 2 arctan x and 

{ 

8( l',l~ml) + 28( ln-~1±2) + · · · + 28( nt~-2) + 8( n~m) 
E>nm(x) = 

28(Í) + 28(f) + ... + 28(2nx-2) + 8(2xn) 

(3.44) 

(3.45) 

for n =f:. m 

for n = m. 
(3.46) 

Hence the solutions of (3.36) and (3.37) are parametrized in terms of the numbers I;: 
and J13 • Here, the I;: are integers (half-integers) if L+ M- Nn is odd (even) and the 

J13 are integers (half-integers) if 'L:n Nn is even (odd). We assume that for every n 

the numbers Icn a = 1 ... Nn are ordered such that I1 < I2 < ... INn (the same for 

{ J f3} ). The admissible values of the numbers I;: and J f3 are denoted by "vacancies". 

A "BA-hole" corresponds to a non-occupied place in the set of numbers {In} or {J} 

for a solution of the BAE (~nfilled vacancy). A typical set of roots of the Bethe ansatz 

.. 

equations in the complex plane, including real roots, BA-holes and n-strings is displayed ~' 
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Chapter 2 : Solu.tion and algebraic stru.ctu.re of the su.persymmetic t-J Model 

below 
X 

X 

)( )( e e )( )( v 

X 

X 

>< )( e >< >< 

The numbers 1:; and J f3 are limited to the intervals 

11:1 < l:!a.x =~(L+ M- :~:::>nmNm -1), (3.47) m 
(3.48) 

where tnm = 2min(n,m)- 8nm· In fact, all sets {I:;,Jp} where the I's and J's are 

pairwise different specify all the Bethe vectors ÜIPBethe) N,M ). They are highest weight 

vectors of an spl(2,1) superalgebra, as we will show in the next section. 

In arder to avoid misunderstandings we should add some general remarks on the 

string conjecture (3.42) and the bounds I:!a.x and 1ma.x given by eqs. (3.47) and (3.48). 

Both statements are to be considered as assumptions, they cannot be proven rigorously. 

In fact they are not exact. There are finite size corrections of the string configurations 

of arder O(e-L) for fixed string centers v:; and of order 0(1) near to the boundary v~a.x 

(given by I::.a.x), producing "exotic solutions". On the other hand a naive estimate of 

I:!a.x from eq. (3.44) would suggest additional s~lutions (for n ~ 2) which are canceled 

by assumption (3.47). However, both assumptions together lead to the correct number 

of states, as is well known for the SU(2) case [23,47] and will be proven below for the 

spl(2,1) case. Obviously, the effects of the two phenomena mentioned above compensate 

for this computation. In addition to the "exotic solutions" mentioned above, there exist 

also "wide pairs" and "quartets" [49] if the density of real roots is large enough. It is 

believed that these problems may be avoided and exotic effects may be neglected, if one 

considers the following thermodynamic limit. Introduce a symmetry breaking magnetic 

field B and take first the limit L ~ oo and then B ~ O. It should be stressed that 

many features of the Bethe ansatz are not well understood. 
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At the end of this section we apply the results obtained for the spl(2,1) vertex model 

to the supersymmetric t-J model. Using the identity (2.18) it is possible to obtain the 

energy eigenvalues of the t-J model from the eigenvalues of the transfer matrix (3.33). 

The terms >..v1 ,v11 given by eqs. (3.30) and (3.31) do not contribute and from eq. (3.15) 

we find 
N 4 

E= L- L 1 .2' 
j=l + VJ 

(3.49) 

Using the string-conjecture (3.42) the above equation can be arranged as follows 

Nn 4 E-L-"'"' n - L..J L..J n2 + vn2 • 
n a=l a 

(3.50) 

For later convenience we define other important physical quantities as the momentum 

(23] 

N ( + .) Nn v. z 
P = -iLln v~_ i =L L (-2arctanv~ + 1r)1 

j=l 1 n a=l 

(3.51), 

the magnetization Sz and the number of electrons (see eq. (4.10)) 

(3.52) 

Q = nr + n! =L- M. (3.53) 
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Chapter ~ : Solution and algebraic structure o f the supersymmetic t-J M odel 

4. ALGEBRAIC PROPERTIES OF THE BETHE STATES 

In this section we analyze the algebraic properties of the Bethe states. By asymptotic 

expansion (v -+ oo) we define a matrix M of operators in the "quantum space" as 

follows 

a"h"} a" h"} 2 -a"h"} -2 
Ta h }(v)= O'a"h"}8a 8h } - ;;O'a"aO'a"h"}Ma h } +O( v ). (4.1) 

It turns out that the entries of M are generators of the superalgebra spl(2, 1)~ We prove 

the commutation relations using the Yang-Baxter relation (3.2) for the monodromy 

matrix and the property (2.13). For v-+ oo we have (in what follows we will omit the 

quantum space indices and write them only whenever necessary) 

M~" f{' (v') - :E( a", {3", a, {3)f{' ( v')M~" = f{' ( v')8p" - :E( a", {3", a, {3)8~" f;" (v'). 

(4.2) 

Here the sign function ~ is given by 

(4.3) 

Furthermore, taking v' -+ oo we get 

M- a" M-P" _ ""( 11 R" R)M-!3" M-a" = M-/311 c a" _ ""( 11 Rll R) c{J" M-a" a f3 .:.-a ,fJ ,a,fJ f3 a a o13 .:.-a ,p ,a,p oa p • (4.4) 

This relation representa the commutation and anti-commutation rules of the spl(2,1) 

superalgebra [43]. The generators Mf,M!, (a'# 3) are fermionic, whereas the M/ and 

Mff (a, {3 =I 3) are bosonic. The sign factors :E take into account the statistics, i.e., 

:E = -1(1) if we ar~ dealing with odd (even) generators. Eq. (4.4) can be written in 

the compact form 

(4.5) 

In addition, from ( 4.2) it is easy to see that the transfer matrix T (2.8) is invariant with 

respect to the spl(2,1) superalgebra, i.e. 

[M~", r( v')] = O. (4.6) 

Notice that the results (4.2), (4.4), (4.5) and (4.6) are also valid if we change the 

convention (1 = B, 2 = B, 3 = F). The position of the fermion simply determine 

which are the odd generators. 
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Let us now consider the matrix M 

N 1) Ma 
N2 

Ma . Wa (4.7) 

The diagonal elements Wa (a = 1, 2, 3) generate the Cartan subalgebra with weights 

Wa (a= 1,2,3) 

(4.8) 

In terms of the t-J model the weights are related to the z-component of the SU(2)-spin 

Sz = 1/2( Wt - w2) and the number of electrons Q = w1 + w2. In order to calculate 

these weights for Bethe ansatz states we substitute (2.5) in (3.14), (3.15), (3.29), (3.30) 

and (3.31) and obtain with eq. (4.1) and (4.7) for v--+ oo 

(1- ~w1) 'li+ O(v-2
) = (1- ê(L- N)) 'li+ O(v-2

), 

(1- ~W2) 'li+ O(v-2
) = (1- ê(N- M)) w + O(v-2

), 

( -1- ~Wa) 'li+ O(v-2
) = ( -1- êM) w + O(v-2

). 

(4.9) 

Therefore the weights can be expressed in terms of the quantities L ( = number of sites ), 

N ( = number of first levei roots) and M ( = number of second levei roots) 

( 4.10) 

where nr, nb nh are the numbers of up-spins, down-spins and holes, respectively. At 

the end of this sec~ion we will derive inequalities between these weights and give a 

physical interpretation. 

Next we show that the Bethe vectors are highest weight vectors with respect to the 

spl(2,1) superalgebra, i.e., 

(4.11) 

For a= 1, f3 = 2 or 3 we have, after using (3.8) and ( 4.2) 

( 4.12) 
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Chapter ~ : Solution and algebraic &tructure of the ~upersymmetic t-J Model 

where 

( 4.13) 

-R ' In order to commute A(vj) and T~(vj) through the B 01 s toward cp we use the commu-

tation rules (3.11), (3.12) and the property (2.13). Although many terms appear, it is 

possible to arrange them as follows: 

N 

M{'I! = L Yj~i ( Vj, {vi} )Ba1 ( vt)Ba2 ( v2) ... Ba;_ 1 ( Vj-I)Bai+ 1 ( Vj+l) •.• 

j=l (4.14) 

with yet unknown coefficients Yj~.. The first coefficient, Y1~1 , can be obtained by 
J 

using the :first term in (3.11) and (3.12) when commuting A(v1 ) and T!(vt) with 

B 012 (v2)B013 (v3) ... B 01N(vN), since otherwise the argument v1 reappears in the Ba's. 

The contribution oí the A( v1 ) term to Y1 ~1 is straightforward, whereas for the f C ( v1) 

term we shall use the relation 

1 
-- Res S"Y6 (v- v')= S"YS6 

2 v'=v a{J {J 01 ( 4.15) 

to .get the eigenvalue problem for the transfer matrix T(I)( Vt, {vi}) (3.17). Once again, 

we just take the first term in (3.23) and (3.24) when commuting A(I) and D(l) with the 

B(I) 's. Then, aíter some manipulations we have 

( 4.16) 

Analogous expressions follow for the other coefficients Yj~. (j ~ 2) 
1 

(
aL(v·)ITN a(vi- Vj) _ bL(v·)ITN a(vj- v;) ITM a(/13- Vj)) 

3 b(v· -v·) 3 b(v · -v·) b(/R -v·) ' 
Í~j I J i#j ) I {J=l f' ) (4.17) 

j = 1, ... ,N. 

We observe that the requirement Yj!. =O (j = 1, ... N, f3 = 2, 3) is equivalent to the 
J 

Bethe ansatz equations (3.34), therefore Bethe states fulfil the highest weight condition 

!VIfw =O (/3 = 2 or 3). 
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To calcula te Mi \11 we use the relation 

( 4.18) 

which follows from ( 4.2). M(t) is defined by asymptotic expansion of the monodromy 

T(
1
), in analogy with M given by eq. (4.1). From (3.22) and commutation relations for 

M(l) and T(l) analogous to eq. ( 4.2) we get 

where 

[M(l)~' B(l>('Y )]+ = A(l)(-Y) + T(l): (I). ( 4.20) 

Analogously, by commuting A(t) + T(l); through the B(t) 's we have 

( 4.21) 

The coefficients 1(1),,8 can be derived in a straightforward way by taking the first terrns 

of the commutation relations (3.23) and (3.24). We get 

IT
N ITM a(ia -lp) ( M ITN ITM w(fp -la) 

Y(I),,B = a( 1,8- Vi) b( _ ) + -1) b(ip- Vi) b( _ ) ' (4.22) 
i=l a-:f:..B la I.B i=l a#-.8 I.B la 

(3=1, ... ,M. 

The requirement Y(1),.8 =O ((3 = 1, ... , M) is equivalent to the Bethe ansatz equations 

(3.35), which implies Mi'II =O. We stress that the property (4.11) can also be proved 

for the other two choices of pseudovacuum in a similar way. 

At the end of this section we derive some inequalities between the weights Wa (a = 
1,2,3). From eq.(4.5) we have 

(4.23) 

Using (Mg)t = Mp and the highest weight property of the Bethe vectors (4.11) we 

obtain 
(4.24) 

32 

.. 

• 



.. 

I • 

Chapter ~ : Solution and algebraic structure of the supersymmetic t-J Model 

Combining ( 4.10) with Wi ~ O (i = 1, 2, 3) and ( 4.24) we find conditions for the numbers 

N and M of roots in the first and second level Bethe ansatz, respectively 

(4.25) 

This means in terms of physical quantities that the magnetization Sz = !Cnr - n!) = 

!(L- 2N + M) and the number of electrons Q = nr + n! =L- M are restricted to 

O :5 Sz < Q/2 :s; L/2. 

5. RESULTS FOR SMALL AND LARGE LATTICES 

In this section we illustrate the algebraic properties of the Bethe states. We begin with 

a lattice of two sites and then discuss the case of lattices with a large number of sites. 

The simple case of one lattice point corresponds to the fundamental representation 

of spl(2,1) which is given by the following weight diagram in the (Sz, Q)-plane, where 

Q is the number of electrons and S z the total magnetization of the system. 

Q 

1 • • 

o • Sz 

1 o 1 
-2 2 

By diagonalization of the t-J hamiltonian ( 2.17) ( or of the transfer matrix r) on a 

lattice with two sites we obtain the eigenstates and eigenvalues 

w1 = I i i) , E=2 

w2 = ~(I i!) + I! i)) , E=2 

w3 =I!!), E=2 (5.1) 

'114=~(10 i)+ll O)), E=2 

'lls=~(IO !)+I! O)), E=2 
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w6 =~(li!) -I! i)) , E=-2 

W7 = ~(lO i) -I i O)) , E=-2 
(5.1') 

'lls=~(IO !)-I! O)), E=-2 

'ltg=IOO), E=-2 

where O denotes a hole. This result can be visualized in terms of the following spl(2,1) 

weight diagrams in the Clebsh-Gordan series 3 0 3 = 5 E9 4 

• •• • 
•• •• + 

• 
The numbers in the weight diagrams specify the eigenvectors according to eqs. ( 5.1) 

and (5.1'). The symbol * denotes the highest weight vectors according to eq. (5.2) 

below. Notice that the ground state is degenerate and given by a quartet. All states 

of an irreducible representation can be generated by repeated application of the shift 

operators :Mg (/3 =I= a) to any one of the states. Graphically, the effect of the shift 

operators on a general state of a representation of spl(2,1) is given by 

On the other hand, if we solve the Bethe ansatz equations (3.36) and (3.37) for two sites 

we obtain only two eigenvectors, 'lt 1 = ~ and '116 = B 011 ( v1 = O)~ ~{;1)' with energy 

eigenvalues 2 and -2, respectively (see eq. (3.49)). In the language of the nested Bethe 

ansatz ~ and ~(l) are the first and second level pseudoground states, respectively. 

We can easily check that these eigenvectors are highest weight vectors of the spl(2,1) 

superalgebra, in agreement with our general proof in section 4. 

(5.2) 
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Chapter f : Solution and algebraic .structure of the .super.symmetic t-J Model 

Furthennore, the seven missing eigenvectors can be obtained by successive applications 

of the shift operators 

(5.3) 

Therefore, the Bethe ansatz together with the supersymmetry of the modei provide ali 

9 eigenvectors for the 2-sites model. 

We remark that by soiving ali three different forms of the BAE we get ali highest 

weight vectors of the SU(2) algebra. Solving eqs. (3.38) and (3.39) we get the eigen­

vectors '114 and '119 and from eqs.(3.40) and (3.41) we obtain the eigenvectors '111 and 

'117. 

In the case of lattices with a large number of sites the Bethe ansatz method turns 

out to be crucial, since the effort of an exact diagonalization growths exponentially with 

the number of sites L. As already pointed out in sections 3 and 4, by this method, the 

problem of finding the spectrum of the t-J hamiltonian reduces to the solution of the 

BAE's (3.36) and (3.37) for the parameters v's and 1's. Adopting the string conjecture, 

which has an accuracy of O( e-L), the soiutions of the BAE's are parametrized in terms 

of the numbers I:; and Jp. Moreover, each set {I:;, Jp} where the I's and J's are pairwise 

different specify a Bethe vector, which is the leading vector of an spl(2,1) multipiet. 

Now we illustrate our results for the ground state and some elementary excitations 
. 

at "half-filling" F= Qj L= 1. The following holds true for any lattice size, especialiy 

in the thermodynamic limit L-+ oo. 

5.1) GROUND STATE 

The ground state involves only real roots. This can be proved as usual by minimiz­

ing the free energy for finite temperature T and taking T-+ O. A complete analysis of 

this proof as well as a detailed investigation of the elementary excitations of this model 

is given in the next chapter. The ground state, as we already remarked, corresponds 

to the configuration N1 = N = t, N2,3, ... = O and M = O. In this configuration the 

number of vacancies for the first-level and second-level real roots is 2I!nax + 1 = t and 
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Chapter 2 : Solution and algebraic structure of the supersymmetic t-J Model 

The quantum numbers of this state are S z = O and Q = 40 = L - 1, which means a 

holon is a particle-like excitation with spin O and charge -1. 

At arbitrary filling F< 1, for the ground state the distribution of the roots in the 

v-plane also involves only real roots. In contrast to the half-filling case there is now 

in addition a "sea" of real roots in the ~-plane, such that there appears a nontrivial 

Fermi-level. For example, for a lattice of L= 40 sites we finda Bethe ansatz state with 

N = 25 first level real roots and M = 10 second level real roots and 14 BA-holes 

* 
)( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( Jl 

• • 
oooooooxxxxxxxxxxooooooe J 

• 
Also here the ground state is member of a quartet. The quantum numbers are S z = O 

and Q = 30, which means spin O and filling F= 1-10/40 = .75. Dueto the nontrivial 

Fermi-level there exist "holon-antiholon" excitations in this case. A more quantitative 

description of the excitation spectrum can be found in section 4 of the next chapter. 

6. COMPLETENESS OF THE BETHE VECTORS 

In this section we show how to construct a complete set of eigenvectors of the t-J 

hamiltonian for arbitrary chain of length L. This is obtained by combining the Bethe 

ansatz with the supersymmetry of the model. 

From the section 3 we know that all collections {I~, J p} where the I's and J's are 

pairwise different sp_ecify all the Bethe vectors (!tPBethe)N,M ). The number of admissible 

values for the I~'s and the J13's (for fixed {Nn} and M) is (2/:!ax + 1) and (2Jmax + 1), 

respectively. I:!ax and lmax are given by eqs. (3.47) and (3.48). Taking into account 

that many different string configurations Nn give the same number of roots N (see eq. 

(3.43)), the number of possible Bethe vectors for fixed N, M is given by 

Z(N, M) = L (2Jm~ + 1) IJ (2J~ax + 1)' (6.1) 
{Nn} n Nn 

where the sum over {Nn} is constrained to 'L:::n nNn = N. It is convenient to introduce 

the quantity q = 'L:n Nn. Using eqs. (3.47) and (3.48) we write this sumas 

N 

Z(N,M) =L (q ~ 1) L II (L- 2:m ;mNm + M), (6.2) 
q=O {Nn} n n 
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Ohapter 1! : Solution and algebraic structu.re of the supersymmetic t-J Model 

where the inner sum is constrained to fixed values of N and q. This expression resem­

bles the one calculated by Bethe in the isotropic Heisenberg model [15,23] and can be 

simplified to 

Z(N, M) = ~ L+ M - 2N + 1 (q - 1) (L+ M - N + 1) (N - 1) . 
LJ L+M-N+1 M q q-1 
q=O 

(6.3) 

The total number of Bethe vectors is obtained by summing Z ( N, M) over ali N, M 

restricted to (4.25). However, this number is less than 3L, so that the Bethe ansatz 

does not yield all the states of the model. In order to construct a complete set we shall 

invoke the supersymmetry of the transfer matrix. First, from ( 4.6) it follows that the 

Bethe vectors are classified by multiplets corresponding to irreducible representations of 

the superalgebra spl(2,1). Furthermore, from ( 4.11) follows that the Bethe vectors are 

highest weight vectors. Then by acting with the spl(2,1) lowering operators lV!g (/3 <a) 

on the Bethe states we obtain additional states Each Bethe state (with fixed N,M in 

the interval ( 4.25)) is the highest weight vector in a multiplet of dimension [43] 

d( N M) _ { 48 z + 1 = 2L + 1 if N = M = O ( ) 
' - S(Sz + 1/2) = 4(L- 2N + M + 1) otherwise. 6

.4 

With these considerations, the total number of eigenvectors is 

L L=tM 
Z= L L d(N,M)Z(N,M) =2L+1+Zt-1+Z2 

M=ON=M 

t N 
= 2L + 1 + 4 "' (L _ 2N + 1) L - 2N + 1 "' (L - N + 1) (N - 1) 

LJ L-N+1 LJ q q-1 
N=l q=l 

L L=tM 
+ 4 2::: -2::: (L - 2N + M + 1) L + M - 2

N + 1 

M=lN=M L+M -N + 1 

x t, (q~l) e+M ;N +1) (~~n· 
The first sum in (6.5) can be performed (see ref. [23]) to give 

Zt = 4 · 2L- 4(L + 1). 

(6.5) 

(6.6) 

The second sum Z2 deserves special attention. We present the main necessary steps for 

its evaluation. First, performing the sum over q we get 

L L=tM 
z = 4 "' "' (L_ 2N M 1)L + M- 2N + 1 (N- 1) (L) 2 LJ LJ + + L+M-N+1 M N . 

M=lN=M 

(6.7) 
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Employing some combinatorics and making the substitution N -+ x = N- M we obtain 

After some rearrangements this expression can be rewritten as 

Z2 =4 t. ~L[[ CL;~) (x+~ -1) + (:=D (L Mx)] 
- (M + 1)[ c fM) (x~~; 1) +c: 1) c~~~) J]. 

(6.9) 

Substituting x-+ L- x- M + 1 in the second and fourth terms of eq. (6.9) we get 

z2 = 4 t. L~+~ H:;~) (x + ~ -1)- (M + 1)[ (x fM) (x ~~ ~ 1) ]· 
(6.10) 

Using the binomial formula we obtain after some rearrangements 

(6.11) 

Interchanging the sum and the integral and performing the sum gives 

1 

Zz = (L 4~~)! /(1- p) [(1 + 2p)L-2- (1 + p)L-2] dp. (6.12) 

o 

This integral can be easily performed, resulting in 

(6.13) 

Substituting (6.6) and (6.13) into (6.5) we get 

(6.14) 

Thus we have shown that the number of eigenvectors of the t-J hamiltonian is 3L, which 

is precisely the number of states in the Hilbert space of a chain of length L, where at 

each site there may be either a spin up ora spin down electron ora hole. 
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7. SUMMARY 

In this chapter we have shown that the Bethe ansatz states for the one-dimensional 

supersymmetric t-J modelare highest weight vectors of an spl(2,1) superalgebra. Then, 

by acting with the spl(2,1) lowering operators on the Bethe states we have obtained a 

~omplete set of eigenvectors of the t-J hamiltonian. 

An interesting extension of this work is an analysis of the splq(2, 1) "quantum­

group" structure of a "q-deformed" version of this model. This is presented in chapter 

4. 
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APPENDIX A : The cancellation of the unwanted terms and the BAE 

In this appendix we show that the cancellation conditions of the "unwanted terms" 

u.t. = u.t.(A) + u.t.(D) and u.t.(I) = u.t.(A(I)) + u.t.(D(1)) are equivalent to the Bethe 

ansatz equations (3.34) and (3.35). As already pointed out in section 3 all terms whose 

arguments are exchanged when A(v) and TD(v) is commuted through rr.f=I Baj(vj) 

using eqs.(3.11) and (3.12) are called u..t.(A) and u..t.(D), respectively. They can be 

arranged as follows 

N 

u.t.(A) = L KJA) ( Vj, {vi} )Ba1 (VI )Bo:2 ( v2) ... Bo:i_ 1 ( Vj-dBo:i (v) 
i=I (A.1) 

xBai+1 (vi+I) ... Bo:N(vN)g?w[~}, 

N 

u.t.(D) = L KJD)( Vj, {vi} )Ba1 (VI )Ba2 ( v2) ... Bo:i_ 1 ( Vj-l )Bo:i (v) 
i=I (A.2) 

xBO:j+t ( Vj+I) .•• Bo:N ( VN )g?wl~1 . 

Here KjA) and KjD> (j = 1, ... , N) are coeffi.cients to be determined. The first coef­

ficient of eq.(A.1) can be computed using the second term in (3.11) when commuting 

A( v) with Bo:1 (vi) and then using the first term in eq.(3.11) when commuting A( vt) 

with the remaining Ba's, since otherwise the argument Vt reappears in the Ba's . We 

get 
N 

K (A) _ L( )c(vt- v) IT a(vi- VI) 
I --a VI ) . 

b( VI - V) i~ I b( Vj - VI 
(A.3) 

In order to calculate xjD) we rewrite the second term of eq.(3.12) as 

1 (s'"a'( , ') , ( ')) -v_ v' v~~~ 1 ,o: v -v Bo:'(v)T-y, v , (A.4) 

by means of eqs.(2.5) and ( 4.15). Then, proceeding along the same lines as in the 

calculation of K~A) we get the eigenvalue problem for the transfer matrix T(I) (3.17). In 

addition, just taking the first term in eqs.(3.23) and (3.24) when passing A(I) and Tf 
through the B(I) 's we obtain, after some rearrangements 

(A.5) 
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Appendix A : The cancellation of the unwanted terms and the BAE 

To get the other coefficients I<jA> and KjD) (j = 2, ... , N) we use the commutation 

rules for the B 01 's (3.13) and put B 01i(v) in the first place . Then, repeating the same 

procedure we obtain analogous expressions with j in tlié place of 1. Furthermore, the 

requirement KjA) + KjD) =O (j = 1, ... , N) together with the fact that ~~=~ is an odd 

function (see eq.(2.5) ) leads to the Bethe ansatz equation (3.34). 

The "unwanted terms" that appear in the second levei of the Bethe ansatz method 

can be arranged as follows 

M 

u.t.(I) =L ( KáA<t>) + KáD<l))) B(I)("Yl! {vi})B(I)(f'2, {vi}) ... 
fJ=I (A.6) 

... B(I)( 1'/3-I, {vi} )B(I)( v, { Vi})B(I)bfJ+I, {Vi}) ... B(l)( IM, {vi} )~(I) . 

By similar arguments as above, the coefficients K~A(l)) + J<~D(l)) can be computed using 

the second term in eqs.(3.23) and (3.24) when commuting A(I)(v, {vi}) and T(I);(v, {vi}) 

through B(I)( li, {Vi}) and then using the first term in (3.23) and (3.24) when commuting 

A(1)("Yl! {vi}) and T(I);("Yl! {vi}) with the remaining B(l)'s 

N M 

K (A<l)) + K(D< 1 >) _ IT ( ·) c("Y1 -v) IT a('i'Ot -11) 
1 1 - - a {I - v, ) 

i=l b("Yl - v) Ot#l b( fOi - 1'1 

N M 
-(-l)Mc(v-f'I) ITb({I-vi) IT w(II-I'Ot). 

b(v- {I) i=l Ot#l b(1'1 -f'Ot) 

(A.7) 

Once again, the other coefficients can be obtained using the commutation rules (3.25). 

The requirement K~A<t>) + K~D<l)) =O (/3 = 1, ... , M) together with the fact that ~~=~ 
is an odd function yields the Bethe ansatz equation (3.35) . 
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Chapter 3 

Thermodynamic Properties of the 
Supersymmetric t-J Model 

1. INTRODUCTION 

In this chapter we present a detailed analysis of the ground state and elementary 

excitation spectrum of the supersymmetric t-J model in one dimension. In the ther­

modynamic limit (L --+ oo) we prove by minimizing the free energy that the ground 

state at zero temperature involves only real roots. We interpret the spectra in terms 

of soliton-like excitations which are identified as holons and spinons. The dispersion 

relations for some physical situations are also derived. 

For a system at arbitrary filling in the presence of an externai magnetic field non­

trivial Fermi-levels appear. We compute them analytically for some special situations 

(for example, system near half-filling) as well as numerically. In this case exists an exci­

tation involving the transfer of a root below the Fermi level to a previously unoccupied 

state above the Fermi level. This excitation, which does not change the number of par­

ticles is referred as holon-antiholon excitation. The relation between physical quantities 

as the filling and the chemical potential is also derived. The methods used here are based 

on the works of Faddeev et al. [23,50] and Takahashi [47] for the isotropic Heisenberg 

model and Lieb [51], Yang [22] and Korepin (52] for the one-dimensional Bose-gas sys­

tem with repulsive delta function potential. Part of the results obtained in this chapter 

were derived by Bares and Blater [40] using another form of the Bethe-ansatz equations 

of the previous chapter (3.38)- (3.39). This approach leads to involved manipulations 
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Chapter 3 : Thermodynamic Propertie" of the Super.,ymmetric t-J Model 

of the ground state (formed by two-strings in the v-a.xis) and the excitation spectrum. 

Of course, the results for the physical quantities are the same. 

This chapter is arranged as follows. In section 2 we find the structure of the ground 

state of the model. The Yang's equations are also obtained. In section 3 we derive the 
0 relation between some physical quantities of interest, as the magnetization and magnetic 

field. We also introduce the "Fermi leveis" of the system and their dependence on the 

externai parameters of the model. A quantitative description of the low-lying excitation 

spectrum of the system as well as the corresponding dispersion laws can be found in 

section 4. Section 5 summarizes our main results. 

2. THE THERMODYNAMIC EQUATIONS AND GROUND STATE 

In this section we describe the thermodynamic properties of the one-dimensional 

supersymmetric t-J model and find the ground state specially at zero temperature. 

In the limit L -+ oo the roots v and 1 of the BAE tend to have a continuous 

distribution with densities 

1 M 
u(l) = L L 8(/-{~). 

e=I 

We also define the densities of BA-holes p~(v), uh(l) as 

dgn(v) ( h ) 
dv = 211" Pn(v) + Pn(v) , 

dh(l) = 211" (u(l) +uh( I))' 
d( 

where gn(v) and h('y) are defined by the expressions 
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appearing in the BAE ( eqs.(3.44) and (3.45) of the previous chapter). The definition 

of the densities of BA-holes by (2.3)-(2.4) are motivated by the fact that e.g. the BAE 

(3.44) imply for all I~'j~ ~v~(}) 

(n) 

1vi dv (dgn(v) - 27rpn(v)) = ln) -ln) - #roots E [I~n) ln)] 
v~n) dv J I I ' J 

• 
- #vacancies - #roots 

- #BA- holes. 

Differentiating eqs (2.5), (2.6) and taking (2.3) and (2.4) into account we get 

.!_ 
2 

n 
2

- ""'AnmPm(v)- BnnPn(v) + [n]a(v) = Pn(v) + p:(v), (2.7) 
1rn +v L....t 

m~n 

n 

where Anm and Bnn are operators defined by 

Anm = [In- ml] + 2[ln- ml + 2] + 2[ln- ml + 4] + ... + 2[n + m- 2] + [n + m], 

Bnn = 2[2] + 2[4] + ... + 2[2n- 2] + [2n], (2.9) 

[n] is an operator defined by (f is an arbitrary function) 

[n]f(v) = .!.joo dk 2 t _ k)2 f(k) 7r _
00 

n + v (2.10) 
1 n 

=- *f(v) 7r n2 + v2 . 

and 

[O ]f( v) =f( v). 

Here we adopt the notation of ref. (47]. From eq. (2.9) we see that Ann = [O]+ Bnn· 

Then substituting this property into (2.7) we obtain 

1 n L . [ h -
2 2 

- AnmPm(v) + n]u(v) = Pn(v) 
1r n +v 

(2.11) 

and 
(2.12) 

n 
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These equations are solved in section 4 for some special cases. 

In order to find the equilibrium state of the system at fixed temperature T, ex­

ternai magnetic filed H (~ O) and chemical potential A (> O) we must minimize the 

thermodynamic potential ( gran-potential) S1 =E- TS- AQ- HSz. Here Eis the 

energy (eq. (3.50) of chapter 2) and Sz the magnetization (eq. (3.52) of chapter 2) of 

the system per site which can be written in terms of the densities of roots Pn, u as 

E ~1
00 

4n 
L

= 1- L..J dv 2 2 pn(v), _00 n +v 
n 

(2.13) 

s 1 100 1100 ___::.=--L n dvpn(v) +- d1u(1)· 
L 2 -oo 2 -oo n 

(2.14) 

For later use we also write the filling or the number of electrons Q ( eq. (3.53) of chapter 

2) in terms o f u as 

Q 100 F = L = 1 - -oo d1u(t ). (2.15) 

We still need to find the entropy S of the system. It is given by the logarithm of the 

number of accessible states of the system. We follow Yang and use the fact that in a 

small interval [v, v+dv] ([t, 1+d1]) there are Pn(v)Ldv (u( 1)Ld1) particles or BA-roots 

and P!(v)Ldv (uh(1)Ld1) BA-holes. Therefore, assuming that these numbers are much 

larger compareci to the unit, the total entropy in this small interval is 

1 
[(Pn + p~)Ldv]! l [(u + uh)Ldv]! 

n +n = 
(pnLdv )!(p:Ldv )! ( u Ldv )!(uh Ldv )! 

= ((Pn + P!)ln(pn + P!)- PnlnPn- P!lnp!) Ldv' 

+ ((u + uh)ln(u +uh)- ulnu- uh lnuh) Ld{ 

Therefore the total entropy per site is given by 

~=L I: dv((Pn + P:)ln(pn + p:)- PnlnPn- p~lnp!) 
n 
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Now we can proceed on the minimization of the thermodynamic potential n 

(2.17) 

From eqs.(2.11), (2.12) we can express Sp~ and Suh in terms of Spn and Su 

Sp~ =-L Anm8Pm + [n]Su, (2.18) 
m 

n 

Then substituting the expressions above into (2.17) and using the symmetry Anm = 

Amn, (see eq.(2.9)) we have 

Since the variations 6pn(v) and 6u('Y) are independent, we obtain directly from this 

equation 

( h) 4n +nH ( ) In 1 + Pn = -~ + LAnmln 1 + P'; - [n]ln (1 + uh), 
Pn m Pm (j 

U sing the properties 

[n]const. = const., [n][m] = [n + m], 
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and 

([O)+ [2])In (1 + P~+I) = [1) {In (1 + p~) +In (1 + P~+2 )}. 
Pn+I Pn Pn+2 

We derive the following relations, after a cumbersome calculation (see Appendix A) 

K1(v) = -
1

: v
2 

+H+ T[2]1n (1 +e-~)- T[1]ln (1 +e-~) 
+ T ([O]+ [2]) ~[j] ln ( 1 +e-Ki-t;J<">) 

1 

( 
Kn-dt>)) ( Kn(t>)) 

Kn(v) =H+ T[1]1n 1 +e- x + T[2]ln 1 +e--x-

+ T([O] + [2]) ~[i] In ( 1 +e- Ka;<">); n ~ 2 
1 

e('Y) =-~+A -T:L)nJln (1 +e-~), 
n 

where Kn and e are defined by 

K (v)= Tln p~(v) 
n - Pn(v)' 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

The coupled nonlinear integral equations for the functions K1 (v) (2.22), Kn( v) (2.23) 

and e('Y) (2.24) play a central role in the investigation of the thermodynamic properties 

of the model. In fact, this kind of equations was introduced by Yang and Yang [22) for 

the one-dimensional Bose gas with deita-function interaction. In this case the situation 

is simpier, since just one integral equation appears. Equations of this type are commonly 

called Yang equations. They were also derived for the isotropic [47) and anisotropic [53) 

Heisenberg model, Hubbard modei [54), Kondo modei [55), non degenerate Anderson 

model [56), isotropic [57) and anisotropic Heisenberg model [58) with arbitrary spin. The 

physical interpretation of the functions K 1 (v) and e( {) is that they provi de directly the 

eiementary excitation spectrum. This can be motivated by considering the ratio f( v) of 

the number of occupied vacancies to the number of ali possibie vacancies in the interval 

v, v + dv, which according to eqs.(2.25) reads 

f( ) PI( v) 1 
v = PI (v) + P~ (v) = 1 + e~ . 

49 



Chapter 3 : Thermodynamic Properties of the Supersymmetric t-J Model 

Comparing this with the Fermi-Dirac distribution we observe that K1 (v) plays the role 

of an excitation energy measured from the Fermi levei. Correspondingly, e has the same 

interpretation. We return to this point in the next section. 

We see from eqs (2.22),(2.23) and (2.24) that the functions Kn~2 (v) are always 

positive while K 1(v) and e('Y) may have positive and negative regions. Let us now 

consider the case T = O in order to find the ground state of the system, i.e. the 

eigenstate of the t-J hamiltonian at arbitrary filling with an externai magnetic field 

corresponding to the lowest eigenvalue. Taking the limit T ~ O in (2.22),(2.23) and 

(2.24) we obtain the following expressions 

4 1 100 

2 1 100 

1 K 1(v)=-
2
+H-- dk ( k)2 K!(k)+- dk ( k)2 e-(k) 

1 + V 7r _ 00 4 + V - 7r -oo 1 + V -

(2.27) 

where 

H 1100 1 e( 'Y) = - "2 + A + ; -oo dk 1 + ( 'Y _ k )2 K! ( k) 

for K 1 (v) <O 
for K 1(v) >O ' 

for e('Y) <O 
for e( 'Y) ;::: O 

(2.28) 

(2.29) 

(2.30) 

In addition from eqs.(2.25) and (2.26) we have that at T = O the densities of roots p 

and u are different from zero only in the regions where K and e are negative (below 

the Fermi energy). Since Kn~2 is always positive we conclude that the ground state 

involves only real roots 
Pn~2(v) =O 

Pt(v)=O, if Kt(v);:::o, 

u( 'Y) = O, i f e('y) ;::: O 

(2.31) 

and states with n ;::: 2 ( complex strings) correspond to elementary excitations. We 

return to this point later. 

Let us come back to the Yang's equations (2.27) and (2.28). We can verify that 

K 1 (v) and e( 'Y) satisfy the following properties 

(2.32) 
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Chapter 3 : Thermodynamic Properties of the Sv.persymmetric t-J Model 

dK1(v) O 
dv > 
de( -y) 

0 -> d-y 

for v> O 

for 'Y >O 

and change sign at some point, say iJ = ±B and 'Y = ±Q; The figures below illustrate 

qualitatively the behavior of the functions K1 (v) and e( 'Y) 

e('Y) 

The parameters B and Q correspond to "Fermi leveis" , since in the ground state they 

delimit the region where the distributions of real roots Pl (v) and u( 'Y) are non vanishing . 

They are determined by the requirement K 1(B) =O and e(Q) =O and depend on the 

magnetic field H and chemical potential A according to eqs.(2.27) and (2.28). In the 

next section we determine B and Q numerically as well as analytically for some limit 

cases. Now, we can rewrite the Yang's equations as 

4 11B 2 llQ 1 
K 1(v)=- 1 2 +H-- dk 4 ( k)2 K1(k)+- dk 1 ( k)2 e(k) + V 7r -B + V - 7r -Q + V -

(2.33) 

. H 118 
· 1 

e('Y) = -2 +A+ 7r -B dk 1 + ('Y _ k)2 K 1(k) (2.34) 

since K!(v) = Kt(v) for lvl < B and e-('Y) = e('Y) for I'YI < Q. These equations 

play an essential role in the investigation of the elementary excitation spectrum of the 

supersysmmetric t-J model. They can be exactly solved for special limit values of B 

and Q using the Wiener-Hopf technique and small B( Q) expansion. 

For later convenience we write down the relations for the magnetization (2.14) and 

filling (2.15) in terms of the quantities B and Q as 

(2.35) 
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F= 1- JQ d"'fU("'f) 
-Q 

(2.36) 

At the end of this section we discuss qualitatively our results for the ground state of 

the system at arbitrary filling in the presence of an externai magnetic field. The ground 

state is characterized by having only real roots in the v and 'Y axis, as illustrated in the 

figure below 

9 e 9 e *>oooooo<* e 9 9 9 v 
-B B 

At the half filling ( one electron per si te) there are no second levei roots in the "'(­

axis ("Fermi levei" Q is zero, according to eq.(2.36)). By removing electrons from the 

system the Fermi level Q increases continuously up to a situation where the filling is 

zero ( Q = oo ). The Fermi level B associated with the first levei roots depends basically 

on an applied magnetic field H similar to the case of the XXX Heisenberg model. A 

non zero value of H yields a finite value of B. The larger is the externai magnetic field 

the smaller is the Fermi level B. In the next section we determine the Fermi leveis B 

and Q as well as some physical quantities of interest such as magnetization or filling as 

a function of the chemical potential A and magnetic field H. 
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3. FERMI LEVELS, MAGNETIZATION AND FILLING 

In this section we find the relation between the integration limits ("Fermi leveis") 

B and Q and the magnetic field H and the chemical potential A for the cases i) system 

near the half filling in the absence of a magnetic field ; ii) system at the half filling in 

the presence of a magnetic field. The behavior of the filling as a function of the chemical 

potential as well as the relation between the magnetization and the magnetic field are 

also obtained for these cases. 

The integration limits B and Q can be calculated through the equations 

K1(v) = -1:v2 +H- !4:v2 *K!(v)+ !1:v2 *e-(v), (3.1) 

H 1 1 
e(r) = --

2 
+A+ -

1 2 * K!(;), (3.2) 
7r +i 

introduced in the last section ( see eqs.(2.27) and (2.28)) together with the notation 

K _ K+ + }"'- _ { K!, for K1 <O 
1 - 1 11 - K+ for K > O ' 

1 ' 1 -

(3.3) 

and 

_ + + - _ { e-, for e < O 
e-e e - + ~ >O . 

€ , 10r € _ 
(3.4) 

We begin by Fourier transforming (3.1) and (3.2) ( see Appendix B for further details) 

e(x) = -21rS(x)~ + 21rS(x)A + e-lxl_k!(x). (3.6) 

One may replace K!(e.-) by K! = K1- ki c e.-= €- e.+). Depending on the physical 

situation we will write eqs.(3.5)-(3.6) in terms of ki (e.+) or K! ce.-). 

3.1 THE FERMI LEVEL Q, FILLING AND CHEMICAL POTENTIAL 

Consider the case where no externa! magnetic field is applied (H = O) on the 

system. From eq. (3.1) we have that K 1 is always negative, which means B = oo. 

Furthermore, from (2.36) we see that the larger is the values of Q the smaller is the 

filling. This situation is depicted below through the graphs for Kt, e and ground state 
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configuration. 

v 

)( )( )( )( )( )( )( )( ><V o e e ~E >E >< >~ e e o"( 

Our task isto find the relation between the "Ferxni level" Q and the chemical potential 

A (or the filling F) for small and large values of Q. From eq.(3.5) we express K! as 

a function of Ri and €- and insert it into eq.(3.6). Using the fact that Ri = O we 

obtain 

with _ e-llxl 
Gz(x) = 

2 
h , 1 = integer 

COS X 

For example, for 1 = O and 1 = 1 we have 

1 1 
Go (v) = 4 cosh( v211' ) ' 

G1(v) = ..:!_ (,8(1- i~)+ ,8(1 +i~)) 
471" 2 2 

(3.7) 

(3.8) 

where j3(x) is the be~a function [59]. We solve eq.(3.7) separately for small and large 

values of Q. 

a) SYSTEM NEAR HALF FILLING (SMALL Q) 

Transforining back eq. (3.7) and using (3.4) we find 

(3.9) 

For very small values of Q we can approximate the integral above by its integrand at the 

mean value of the integration limits (k =O) multiplied by the interval of integration. 

(3.10) 
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The value of e(O) is obtained directly írom the equation above by setting 1 =O. Then, 

after some rearrangements we find 

A- 47rGI("Y) + 2QA( G1(1)- G1(o)) 
e(!)~ 1- 2QG1(0) · (3.11) 

The condition e(Q) =O determines Q. Expanding G1(1) for small Q values we have 

ln2 
G1(0) =-

27r 
(3.12) 

and using (3.11) we obtain the relation between the chemical potential A and the "Fermi 

levei" Q 

Q= 
8 

3((3) (2ln 2- A), (3.13) 

for small Q. Here ((z) is the zeta Riemann function [59]. From the foregoing expression 

we see that there is a criticai chemical potential Ac = 2ln 2 ;::: A such that the equality 

characterizes a system at the half filling (F= 1). We also derive the relation between 

the filling F and Q by using a similar procedure involving eqs.(2.11), (2.12), (2.31) and 

(2.36) 

(3.14) 

'Then, combining (3.13) with (3.14) we get the relation between the filling F and the 

chemical potent"ial A for the case that the system is near the half filling. 

ln2 
F~1--

7r 
8 

3((3) (2ln2- A). 

Next we analyze the limit for very large Q values. 

h) SYSTEM NEAR ZERO FILLING (LARGE Q) 

(3.15) 

In this case is more convenient to work with €+ instead of €- in eq. (3.7). Then 

using eq.(3.4) and transforming the result we get 

- 4 2 1100 

2 + e(-r) - -- 4 2 - 2A - - dk 
4 

( k )2 e ( k ). 
7r + I 7r -oo + I -

(3.16) 

This equation is linear in e. It is convenient to separate e= fa + fb with 

4 2 1 1-Q 2 1 { 00 2 
€4 ( 1) = -; 4 + 12 - ; -oo dk 4 + (I _ k )2 fa ( k) - ; } Q dk 4 + (I _ k )2 fa ( k) ( 3.17) 
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(3.18) 

The procedure to obtain Ea and Eb is to rewrite these equations in the Wiener-Hopf form. 

This can be achieved by changing variables 1-+ 1 + Q and defining y(T) = e(T + Q). 

After some manipulations we find 

(3.19) 

1 100 2 1 100 2 
Yb(l) = -2A- -rr 

0 
dk 4 +(I_ k)2 Yb(k)- -rr 

0 
dk 4 + (T + k + 2Q)2 Yb(k) (3.20) 

Assuming large Q ( very small chemical potential A or filling F) we can verify that the 

last term in eqs.(3.19) and (3.20) is of the order of 1/Q2
• Thus, in order to obtain the 

leading term for Q tending to infinity we may neglect these expressions. Of course, if we 

are interested in corrections to the leading contribution we may take these terms into 

account and solve the equations (3.19) and (3.20) by iteration [57]. For our purpose it 

is suffi.cient to consider 

(3.21) 

(3.22) 

where the superscript (1) means the leading contribution to y. These equations are of 

the Wiener-Hopf kind and can be solved analytically. In fact, this method allows for 

a solution of integral equations in a semi-infinity domain through the use of Fourier 

transform (see Appendix B ). We begin with eq. (3.21), which can be expressed in the 

form 

(3.23) 

where y~~(k) = yi1>(k) for k >O and zero otherwise. Its Fourier transform is given by 

(see Appendix B ) 

(1) 1 !00 4e-izQ e-2lzl 
Ya+(x) = -

2 
.g+(x) dz . g_(z), 

7rl _
00 

Z - X - UJ 
(3.24) 
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where T7 is a positive infinitesimal and 9+ and 9- are a.nalytic functions in the upper 

a.nd lower half complex plane, respectively 

1 (.,., - ix) ;: ( 1 ix) 
9+(x) =- r --- ' y'2'7r 1re 2 7r 

(3.25) 

9-(x) = _1 ('7 + ix)_;: r(!+ ix)' 
-J2; 1re 2 1r 

(3.26) 

a.nd they factorize the function 

1- .1' (-.!:. 2 ) = 1 + e-2lzl = 1 
1r 4 +;2 9+(x)9-(x) 

(3.27) 

Here ris the gamma function [59] and .1' means Fourier transformation. Correspond­

ingly, from eq.(3.22) we can also obtain the Fourier transform of y~2(;) 

-(1) 1 100 
4TrA8(z) yb+(x) = --

2 
.9+(x) dz . 9-(z). 

'Trt _
00 

Z :- X - 'tT/ 
(3.28) 

The condition e( Q) = O determines Q. U sing that 

(3.29) 

together with y~>(x) = y~~(x) + y~2(x) , where gi1\x) and y~1\x) are given by (3.24) 

and (3.28) we obtain the relation between Q and the chemical potential A (for small 

Q) 

(3.30) 

We can also derive the relation between the filling F and the Fermi levei Q through 

eqs.(2.11), (2.12) ,(2.31) and (2.36) by a similar procedure, 

4 
F~ TrQ. (3.31) 

Therefore, for a system near zero filling, the relation between F and A is given by 

F~ 2vA. 
7r 

(3.32) 

Hence, the value A = O corresponds to a situation where all the sites of the chain are 

not occupied (zero filling). 
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8.0 r-r-----,-------r-------, 

6.0 

4.0 

2.0 

Wiener-Hopf 

... ... -.. .. - .... .. ... . . .. . . . 

small Q expansion 
o~------~--------~----~~ 
o 0.5 1.0 1.5 

Chemical Potential A 
Fig.l: Numerical and analvtical curves for the Fermi level Q as a 

function of the chemical potential A 

Fig. 1 shows the "Fermi levei" Q as a function of the chemical potential A calculated 

from the approximated formulas (3.13) and (3.30). The exact ·solution obtained from a 

numerical integration of eqs.(3.1) and (3.2) is also displayed. 

We can see that the results derived from the Wiener-Hopf method and from the 

mean value theorem agree quite well with the numericãl calculation for large and small 

values of Q, respectively. Although only the leading term for large values of Q was 

considered so far we see that the Wiener-Hopf method yields reasonable results even for 

intermediate values of.A. The relation between the filling F and the chemical potential 

A is illustrated in the fig. 2. 

The numerical curveis obtained from eqs.(2.11), (2.12) and (2.36) and the analytical 

ones from eqs.(3.15) and (3.32). In this case we also observe a good agreement between 

the analytical approximations and the exact result. The zero filling corresponds to 

A = O while the half-filling is characterized by A = 21n 2. 

3.2 FERMI LEVEL B, MAGNETIZATION AND MAGNETIC FIELD 

We consider the case that the system is at halffllling, i.e, Q =O, as can be seen from 

eq.(2.36). In addition, from (2.33) and (2.35) we have that the smaller is the magnetic 

field the larger is the value of the integration limit B. This situation is exemplífied 
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1.0 

0.8 
~ 
bJ) 0.6 
!=: ·---·- 0.4 ~ 

0.2 

o 
o 0.5 1.0 1.5 

Chemical Potential A 
Fig.2: Numerical and analytical results for the Filling F versus the 

chemical potential A 

helow in the graphics of K 1 (v) and E( i) and the ground state configuration 

v i 

o o o 1 )( )( )( 1 o o o v o 9 9 9 9 9 9 o o Oi 

Our purpose isto obtain the relation between the Fermi level B and the magnetic field 

H for small and large values of B. 

a) SMALL MAGNETIC FIELD (LARGE B) 

We start rewriting the eq.(3.5) in terms of k+ instead of using k- . Then, anti 

Fourier transforming the I:esult we have (with G0 and G1 given by eq.(3.8)) 

As in the previous case, invoking linearity of the equation above in f, we may sep­

arate it using K1 = ]{la + K1b, where K1a(Klb) is the solution associated with the 
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inhomogeneous term ~ ( -47rGo (v)) . Changing the variable v -+ v + B and defining 

y(v) = K 1(v + B) we obtain, after some rearrangements 

H { 00 (>O 
Ya(v) = 2 +lo dkG1(v- k)ya(k) +lo dkG1(v + 2B + k)ya(k) 

y,(v) = -47rGo(v + B) + J.oo dkG,(v- k)y,(k) + J.oo dkG,(v + 2B + k)y,(k)' 

(3.34) 

For large B we can neglect the last term in the expressions above and apply the Wiener­

Hopf method to solve the integral equations. The procedure is essentially the same as 

in the previous case for large values of Q. Thus, we find 

(3.35) 

Here TJ is a positive infinitesimal and 9+ and 9- are given by eqs.(3.25) and (3.26). The 

condition K 1(B) =O, which is equivalent to limx-+oo -ixfi+(x), establishes the relation 

between B and H 
2 (H{f) B~--ln - -- , 
7r 27r 27r 

(3.36) 

for large B. This is the same relation obtained for the Heisenberg model Hxxx (see 

ref.[57]), since at the half filling both Yang equations are similar. Using the same 

method we derive the relation between the magnetization S z and the Fermi levei B. 

Consequently, for small magnetic field H, the relation between S z and H is 

H 
Sz=-. 

7re 

h) LARGE MAGNETIC FIELD (SMALL B) 

(3.37) 

Consider the case where B is small. Using that e- =O and K!(v) = K1(v) for 

lvl < B in eq. (3.1) we find 

4 118 
2 K1(v)=-

1 2 +H-- dk 4 ( k)2 K1(k). 
+v 1r -B + v-

(3.38) 

Then proceeding along the same lines as in the calculation of Q x A for small Q values 

and using the condition K-(B) =O we obtain the relation between the magnetic field 

H and the Fermi levei B 
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Bf'V - H (3.39) 

.. and also the relation between H and the magnetization S z 

~ 

• ! 

... 

.. 
• 

(3.40) 

for large H values. We see in these expressions that there is a finite critica! magnetic 

field (Hc = 4) for which B =O and ~ = ~· This means a ferromagnetic transition (the 

number (N) of down spins plus boles vanishes). 

In the figs. 3 and 4 we illustrate the behavior of the Fermi levei B and the magne­

tization S z versus the magnetic field H. 

4.0 .---r----.----r-----,.--

~ 3.0 -C1) 
> 
C1.) 

2.0 ~ 
·~ s 
~ 1.0 C1) 

........ 

~ 

o ~----~----~----~----~~ o 1.0 2.0 3.0 4.0 
Magnetic Field H 

Fig.3: Nv.merical and analytical resv.lts for the Fermi level B as a 

function of the magnetic field H 

The numerical curves are obtained from eqs.(3.1) , (3.2), (2.11), (2.12) and (2.35). 

We see a very good agreement between them and our analytical results. For low mag­

ne~ic field the magnetization vanishes linearly, while for H= H c= 4 the system becomes 

ferromagnetic. 

4. GROUND STATE AND ELEMENTARY EXCITATIONS 

In this section ~e derive the energy and momentum for the ground state of the 

system at half filling. This is the simplest case and can be solved just using Foui:ier 

61 



. . . ·~ 

- ,··,·~(";.,ó•,.:;.• • .c.•...;.,· ... ·~-..v...· ...... ·..r~~·- , ...... :.:~ ..... :.~ .. ···--·--·~ 

Chapter 3 : Thermodynamic Properties of the Supersymmetric t-J Model 

0.5 
<1.) 
;..I ·- 0.4 Cl.l ...._ 
~ o ·- 0.3 ;..I 

~ 
N ·-;..I 0.2 <1.) 
~ 
OJ) 
~ 0.1 
~ 

expansion 

o o 1.0 2.0 3.0 4.0 
Magnetic Field H 

Fig.4: Numerical and analytical results for Sz x H 

transformations. Furthermore,· we compute these physical quantities at· half-filling for 

some elementary excitations as spinons, holons, .. and give the corresponding dispersion 

relatio.ns. We follow the basic ideas of Faddeev and Takhtajan [23,50] who studied the 

ground state and excitations for the isotropic Heisenberg model in the antiferromagnetic 

regime. Our case is more complex due to the nested Bethe ansatz with two leveis, 

which originates new type of excitations. This subject was discussed qualitatively in 

section 5 of chapter 2. The case of the system at arbitrary filling is also discussed. 

By performing numerical calculations we present the dispersion relations of the holon­

antiholon excitation. 

The energy and momentum per lattice si te can be calculated through the equations 

E 100 
4n 

L 
= 1 - L dv 2 2 Pn( V), 

_
00 

n +v 
n 

(4.1) 

p 100 L= L -oo dv(-2arctanv+7r)Pn(v), 
n 

(4.2) 

introduced in section 3 of the previous chapter together with the equation for the density 

of roots Pl (eq.(2.11)) 

1 1 1 2 1 1 
PI(v) + p~(v) =; 1 + v2 -; 4 + v2 * PI(v) +; 1 + v2 * u(v). (4.3) 

By Fourier transforming this equation we get 

h(x) ( 1 + e-2 1:c1) = -,õ~(x) + e-lxl + e-lxlõ-(x). 
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We can solve this equation according to the physical situation under consideration. We 

recall that all cases that will be treated here were already discussed qualitatively in 

section 5 of chapter 2. We begin with the case of the ground state . 

4.1) GROUND STATE 

By minimizing the free energy we found that the ground state for half-filling F= 1 

involves only first levei real roots. This situation corresponds to the configuration 

Pn?:.2 = O, U = O, p~ = O. (4.5) 

Therefore, from eq.(4.4) we find that the Fourier transform of the density of first levei 

real roots is 
-as 1 
PI = 2 coshx (4.6) 

Then, the corresponding energy (4.1) and momentum (4.2) have the form 

EGS 
L= 1-21n2, (4.7) 

pGS 7r 

L=2· (4.8) 

As shown in the last chapter, the magnetization of the ground state is Sz = O. This 

result can also be obtained using eqs.(4.6) and (2.14). 

Next we consider some elementary excitations at half-fllling. 

4.2) "SPINONS"_ 

This excitation is obtained by removing a real root from the Jl-axis or introducing 

a first levei BA-hole, which corresponds to a spin fiip. In this case we have 

h 1 ( Pn?:.2 =O, U =O, P1 = L8 V- Vh), (4.9) 

where V h is the position of a first levei BA-hole. We recall that a one-spinon state exists 

on lattices with an odd number of lattice sites, otherwise spinons appear pairwise. From 

eq.(4.4) we find the form of the Fourier transform of the density of first levei roots 

PI(x) = pG5 (x)- p~(x) . 
1 1 + e-2lxl 

(4.10) 
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The energy and momentum of this state measured from the ground state have the 

form 

( 4.11) 

ó.P(vh) = P(vh)- P 05 = arctan (sinh (7r;h)) -;, (4.12) 

where E( vh), P( v h) are calculated from eqs.( 4.1),( 4.2) and ( 4.10) and E05 ,P05 are 

given by (4.7) and (4.8). For vanishing magnetic field we find from eq.(3.1) or (3.33) 

Kt (v h) = -47rGo( v h) = -ó.E( Vh) (see eq.(3.8)) which confirms the fact that the Yang 

function K 1 measures the energy excitation. By introducing more than one first-level 

BA-hole we can verify the additivity of the contribution of them in the energy and 

momentum equations. From eqs.(4.11) and (4.12) we have the following dispersion 

relation 

ó.E = 1rsin(.6.P), O :5 ó.P :5 1r. ( 4.13) 

This is a gapless excitation and for small momenta, the relation between energy and 

momentum turns out to be linear. The magnetization of this state is ~ = ! (see 

eqs.(2.14) and ( 4.10)). 

Another elementary excitation is a string in the v axis. 

4.3) STRING EXCITATION 

The presence of a 2-string in the v-axis characterizes another elementary excitation, 

where 

2 

Pn~3 =O, , O'= O, p~ = ~L S(v- Vh), 
h=l 

( 4.14) 

Here, Vh is a position of the first-level BA-hole and v 8 is the position of the 2-string. 

The magnetization of this excitation is Sz =O (see section 5 of chapter 2). Then, from 

eq.( 4.4) we get the Fourier transform of the density of first-level real roots, 

( 4.15) 

From eqs.(4.1) and (4.2) we obtain the expressions for the energy and momentum of 

this excitation, which have the same formas those calculated in the previous example. 

This can be easily seen by the fact that the contribution of the last term in eq.( 4.15) 
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for the energy a.nd momentum cancels the contribution of n = 2 in eqs.(4.1) a.nd (4.2). 

The only di:fference between theses states and the previous ones is the value of the 

magnetization. This result can also be proven by similar arguments for higher-strings. 

Another excitation of interest are the "holons" . 

4.4) "HOLONS" 

This excitation is obtained by filling a vaca.ncy in the -y-axis, which mea.ns. physically, 

removing one electron of the system. In this situation we have 

( 4.16) 

where 'Yr is the position of a root in the -y-axis. It is pointed out that this configuration 

exists for a lattice with a.n odd number of sites, otherwise there would appear BA-holes 

in the Jl-axis. From eq.(4.4) we obtain 

_ -as e-l~lu(x) 
Pt(x) = Pt (x)- 1 + e-2lxl· (4.17) 

Then, we have the following expressions for the energy and momentum measured from 

the ground state 

D..E( ) = E( ) - EGS =4 {oo d cos( 'YrX) 
'Yr 'Yr Jo X e2lxl + 1 

=!3 ( 1 -i~) + f3 ( 1 +i~) 
( 4.18) 

(4.19) 

where f3(x) is the beta function [59). E(-yr) , P('Yr) are calculated from eqs.(4.1),(4.2) 

and (4.17) and Eas, pGS are given by (4.7) a.nd (4.8). By mea.ns of eqs (3.9) a.nd 

(3.8) we ca.n show that D..E('Yr)- A = -E('Yr ), which means that the Ya.ng function E 

can be interpreted as the holon excitation energy measured from the Fermi levei. For 

low excitation energies 'Yr is close to zero. In this case, we can expa.nd the expressions 

above, resulting in 

D..E =L an'Y~n, (4.20) 
n=O 
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where the coefficient an is given by 

{ 
2ln2, 

an = (-1)"(1-2- 2")C:(2n+l) 
22n- i l 

for n =O 
otherwise, 

( 4.21) 

(4.22) 

and ( is the Riemann's zeta function [59]. Takingjust the first terms in ( 4.20) and ( 4.21) 

we see that the relation between the energy and momentum is quadratic for small values 

of tl.P, i.e., 

( 4.23) 

This behavior can also be found by numerical calculations. The result above means 
2 

that for half-filling holon excitations show an energy gap ao and an "effective mass" F:; 
contrasting the case of non half-filling discussed now. 

HOLON-ANTIHOLON EXCITATION 

In the case that the system is at arbitrary filling a non-trivial Fermi levei Q appears 

(see section 3). Hence, there exists an excitation that does not change the number of 

particles. This excitation, the so called holon-antiholon excitation, involves the transfer 

of a second-level real root to a previously unoccupied state above the Fermi levei Q. 

This means that the excitation is characterized by a second-level BA-hole (antiholon) 

{h with I"Yhl < Q and a second-level real root (holon) {p with I"Ypl > Q. The situation 

is illustrated in the figure below 

GROUND- STATE 

HOLON- ANTIHOLON 

EXCITATION 

)( )( )( )( )( )( )( )( v 

e e e e e >OOO~ e e 

)( )( )( )()( )( )( )( v 

---ea-ee-EOHOB-G-e~)(8)~( ~)(~0~)(<--G-e ~O~)~( G-0 ~O,____ __ f 
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Chapter 9 : Thermodynamic Properties of the Su.persymmetric t-J Model 

Notice that due to the presence of /p and /h the value of the other 'Y and v are 

changed (polarization effect) : 1 -+ 7, v -+ v so that the BAE eqs. ((3.44) and (3.45) 

of chapter 2) can be rewritten as 

N M 

LB(va)- L Bu(va- vp) +I: B(va -7p)- B(va- 'Yh) + B(va- /p) = 27ria (5.1) 
fJ=l /1=1 

N 

L lJ(va -7p) = 21rJp (5.2) 
a=l 

lf we subtract these equations from eqs.(3.44),(3.45) and consider the variation Va = 
Va- ~va, 7tJ = 'YP- ~:Yp, which implies in first order that lJ(va) -lJ(va) = lJ'(va)~va 
we arrive at 

have 

N M 

LlJ'(va)- L (J~l (va- vp)(~va)- ~vp) +L lJ'(va- :Yp)(~vQ- ~:Yp) 
fJ=l fJ=l (5.3) 

+ B(va -/h)- B(va - 'Yp) =O 

N 

L B'(va- :y11 )(~va- ~:Yp) =o. (5.4) 
a= I 

In the thermodynamic limit ( L-+ oo such that ~ = const. and ~ = const. ) we 

la ( ) L -+ x, Va-+ V X , 

1-+ y, :Yp ---+ I( X), 

( ) 
_ 1 dx(v) 

P v - L -;r;;-, 

u('Y) = ~ d~~). 
In addition, the sums in eqs.(5.3) and (5.4) can be replaced by integrais. A rigorous 

proof may be found in Yang-Yang (60] Then, we have 

L~v (e'( v)-;_: dv'8;1 (v- v')pa5 (v') + ;_: d')'8'(v -')')uG
5 (1')) 

+ 1B dv'lJ~ 1 (v- v')L~vpa5(v') -1Q d11J'(v- !)L~"'(CTGS('Y) 
-B -Q 

+ lJ(v- /h) -lJ(v- /p) =O 
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The expressions under brackets can be recognized as the densities 21rp05(v) and 27r 

uGS('y), respectively (see eqs.(2.11), (2.12) of this chapter and (3.46) of chapter 2). 

Now, let us introduce the shift functions 

(5.7) 

which measure the deviation of the distribution of real roots p and O' due to the presence 

of /p and /h· Then, eqs.(5.5) and (5.6) can be written as 

Fp(vlfp,/h) +! j_: dv' 4 + (v
2
- v')2Fp(v'!lp,/h) 

1 JQ 1 1 1..," 1 (
5

·
8

) 
- 7r -Q d/1 +(v -1)2Fu(l!lp,/h) = 7r "Yp dv'1 +(v- v')2 

1 JB 1 Fu(ll/p,/h)-- dv 
1 
+ ( )2Fp(v!/p,/h) =O (5.9) 

7r -B V -I 

Now it is possible to calculate the energy and momentum for this excitation over the 

ground state (or vacuum). These quantities are obtained by adding the contributions 

due to "vacuum polarization" to the corresponding "bare quantities". We begin by 

computing the energy t::.E( /p, /h) which is given by subtracting the energy of the excited 

state from the ground-state energy (see eq.(3.50) of chapter 2) 

N 4 N 4 
t::..E(Ip, /h) = -L 1 + v2 + L 1 + v2 . 

a=l a a=l a 

(5.10) 

Proceeding along the same line as in the calculation of eq.(5.5), i.e., taking into account 

Va = Va- Âva and considering the thermodynamic limit we find 

(5.11) 

Analogously, the momentum t::.P( /p, Ih) is equal to the momentum of the excited state 

minus the momentum of the ground state 

(5.12) 
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1.5 .---,----r---r-----r----,---, 

1.0 

0.5 

Holon -antiholon 
excitation for 

H = O and F = 0.99998 

o ~--~--~--~~--~--~--~ 
-1.5 -1.0 -0.5 o 0.5 1.0 1.5 

LP 
Fig.5: H olon-antiholon excitation near half-filling 

1.5 .------.----,.---,-------,------y---,-----.---, 

1.0 

0.5 

Holon-Antiholon 
'\\ excitation for 

··.H = O and F = 0.89 

: 

: 

; 

o . 
-2.0 -1.5 -1.0 -0.5 o 0.5 1.0 1.5 2.0 

LP 
Fig.6: Holon-antiholon excitation for F= 0.89 

Then, the energy and momentum excitations are written in terms of the shift-function 

Fp(vhp,/h) obtained from eqs.(5.8) and (5.9). In the figures below we show the.disper­

sion relations of the holon-antiholon excitation calculated numerically using eqs.(5.11), 

(5.12), (5.8) and (5.9). 

The fig. 5 corresponds to the case that the system in dose to the half-filling 

(F= 0.99998 or Q = 0.0001). We observe a quadratic behavior between D.E and t:::..P. 
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2.0 ....-----,----,----.------,------

6E 
1.5 

1.0 

0.5 

Holon-Antiholon 
excitation for 
H = O and F = O. 78 

"' .... 
: 

o L---~~--~----~----~----~ 
-2.5 -1.5 -0.5 0.5 1.5 2.5 

6P 
Fig.7: Holon-antiholon excitation for F= 0.78 

By decreasing the filling we note that the dispersion law turns out to be linear. The 

different curves in the figs. 6 and 7 correspond to different choices of the antiholon 

position /h which ·is maintained fixed. The case /h = Q is denoted by a dashed line 

while the case /h = O is represented by a solid line. Notice that when /h is very dose 

to the Fermi levei Q the excitation energy is nearly zero and it increases by moving the 

/h towards the origin. 

We remark that the excitation energy L:lE (5.11) can be written in terms of the 

function e in (3.2) through the relation 

(5.13) 

The proof of this identity is analogous to the one for the Bose gas system [52]. Therefore, 

the function e can be interpreted as the excitation energy measured from the Fermi levei 

as seen in the chapter 2 by heuristic arguments. 
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5. SUMMARY 

In this chapter we have studied the ground state and excitation spectrum of the 

one-dimensional supersymmetric t-J model. We have shown that using the Bethe ansatz 

formulation ( eqs.(3.36)-(3.37) of chapter 2) the ground state involves only real roots. 

In addition, we have interpreted the excitation spectrum of the hamiltonian in terms of 

"quasi-particles" excitations as spinons and holons. We found that for small momenta 

the dispersion law for spinons is linear whereas the holon excitations at half-filling 

exhibits a quadratic behavior. The holon-antiholon excitation existing for non half­

filling shows a linear dispersion behavior . 
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APPENDIX A : Proof of some useful relations 

In this section we derive eqs.(2.22), (2.23) and (2.24) using the following properties 

[n]const. = const., (A.l) 

[n][m] = [n + m], (A.2) 

n 
[m]fn = fm+ni fn(v) =- 2 + 2 , (A.3) 

n v 

[j]An m = { An,m+j, m > n , (A.4) 
' An+;,m, m ~ n 

(1](An-l,m + An+I,m)- ([O]+ (2])An,m = -([0] + [2])8n,m 1 (A.5) 

which can be obtained from the definition of An,m (2.9) and [n] (2.10). To exemplify 

the procedure we prove the relation (A.4). Suppose that m > n. Then, using (2.9) and 

(A.2) we find 

[j]An,m = [m - n + j] + 2[m - n + j + 2] + · · · + 2[m + n + j - 2] + 2[m + n + j] 

= [(m + j)- n] + 2((m + j)- n + 2] + · · · + 2[(m + j) + n- 2] + [m + j + n] 

Analogously, for the casem~ n we have 

which completes the proof. 

PROOF OF EQ.(2.22) 

We begin by rewriting eq.(2.20) for the case n = 1 

ln(l + el) =
4ft; H+ Al,dn(1 + e11

) +L Al,m ln(l +e;/)- [1] ln(l + 17-l) (A.6) 
m2:2 

where 
h uh 

!?n=lnPn, 11=In- (A.7) 
Pn U 

From (2.9) we have that A1,m = [m- 1]([0] + [2]), which means that eq.(A.6) can be 

written in the forro 

4ft +H 
ln(l + ei) = T +((O]+ (2]) (ln(l +!?I) -ln ei) + 

+((O]+ (2]) L [m- 1] ln(1 +e;/)- [1] ln(1 + 17-l) 
(A.8) 

m2:2 
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Appendix A : Proof of some v.sefv.l relations 

After some arra.ngements we have 

In UI = 
4ft; H+ [2] In(1 + u11

) +([O]+ [2]) ~[j] ln(1 + uj~l)- [1] In(l + 77-1) (A.9) 
1 

Multipiying both sides by T and using eqs.(A. 7), (2.25) and (2.26) we obtain eq.(2.22). 

Now we want to finda similar expression for Un ~ 2. 

PROOF OF EQ.(2.23} 

Combining eq.(2.20) together with (A.5) we find, after some manipulations 

In Un =[1] In(1 + Un-d + [2] ln(1 + u;;1
) 

-[2] ln(l + Un) + [1] ln(l + Un+l) 

AUX 

(A. lO) 

Substituting (2.20) in the expression under brackets denoted by AUX and using the 

properties (A.l)-(A.4) we get 

AU X =L ln(l + u;/) ([l]An+1,m- [2]An,m) + ~ (A.ll) 
m 

By means of the eqs.(A.4) and (2.9) this relation can be simplified, resulting in 

AUX =([O]+ [2]) L [m- n]ln(l + u;/) + ~ 
m=n+l 

(A.l2) 

Substituting (A.12) in (A.10) we find 

In Un =[l]ln(l +Un-I)+ [2] ln(1 + u;;1) 

([O]+ [2]) L [m- n] In(1 + u;1
) + ~ 

m=n+I 

(A.13) 

Multiplying both sites by T a.nd using eqs.(A.7), (2.25) and (2.26) we obtain eq.(2.23). 

The proof of eq.(2.24) is straightforward, we just have to use the fact that ln(1 + 

77) - In(1 + ry-1) = In 77 in the second relation of (2.20) . 
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APPENDIX B : Fourier transforms and Wiener-Hopf method 

In this appendix we present the definition of the Fourier Transforms which were ex­

tensively used in this chapter. We also review briefiy the Wiener-Hopf method [57,61] 

employed to solve the integral equations (3.20), (3.21) and (3.31). 

FOURIER TRANSFORMS 

The function j( x) is called the Fourier transform of f( v) , defined as 

j(x) = :F(f(v)) =i: dve-ivz f(v) 

and the inverse reads 

f(v) =:F-1 (Rx)) = 217r i: dxeivxj(x). 

A Fourier transform that appears frequently in this work is 

:F ( n ) = 7re-nlxl, n = 1,2, ... 
n2 +v2 

WIENER-HOPF METHOD 

The Wiener-Hopf method is used to solve integral equations of the type 

y(v) = <P(v) + 100 

dwK(v- w)y(w). 

By introducing the functions Y+ and Y- defined by 

Y+(v) = y(v), v> O 

Y-(v)=y(v), v<O 

we can Fourier transform (B.4), resulting in 

(1- K(x))ií+(x) + fí-(x) = ~(x) 

(B.1) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

The key to the solution of this equation isto finda decomposition of the kernel K into 

factors 9± that are analytic in the upper and lower complex x plane, respectively 

- 1 
1 - K ( x) = ( ) ) , lim 9 ± ( x) = 1. 

9+ X 9(X X-+00 

(B.7) 

Then, it can be proved that the Fourier transform of Y+ is given by [57,60] 

- 9+(x)1
00 ~(z) Y+(x) = -

2
-. dz . g_(z). 
7rZ _00 Z - X - ZT/ 

(B.8) 

Back transforming (B.8) and substituting into (B.4), we also obtain Y-( v). 
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Chapter 4 

The Supersymmetric t-J Model 
with Quantum Group lnvariance 

1. INTRODUCTION 

The Yang-Baxter equation for the matrix of vertex weight S is the fundamental 

relation to construct integrable models. The solutions of the Yang-Baxter equation can 

be classified according to the dependence of the matrix S on the spectral parameter in 

rational, trigonometric and elliptic type. In the rational case (see for example eq.(2.5) 

in chapter 2), the Yang-Baxter algebra is associated to a simple Lie algebra. In the 

trigonometric case, it is a deformation of the Lie algebra called "quantum group" that 

underlies the Yang-Baxter algebra. In chapter 2 we have investigated the rational case 

for a graded 15-vertex model. Furthermore the connection between the Yang-Baxter 

algebra and the superalgebra spl(2, 1) was established. In the present chapter we analyze 

the corresponding trigonometric case and show how the concept of quantum supergroups 

appears in this context. 

Although quantum groups are closely related to Yang-Baxter algebras, quantum 

group invariance holds only for integrable vertex models with special choices of boundary 

conditions. It has been observed (25,26] that the hamiltonian Hxxz of the spin 1/2 

anisotropic Heisenberg model with special boundary conditions and special endpoints 

terms 

75 



:-· 

Chapter 4 : The t-J Model with quantum group invariance 

(1.1) 

is SUq(2) invariant (q = ei-r ), i.e., it commutes with the generators of the quantum 

group SUq(2). Although the hamiltonian (1.1) is not hermitean, its eigenvalues turn out 

to be real. This may be related to the fact that the hamiltonian (1.1) can b~ written in 

terms of the Temperly-Lieb operators [26]. Its spectrum was determined numerically by 

Alcaraz et al [25] using the coordinate Bethe ansatz. Furthermore, the diagonalization 

of the hamiltonian (1.1) through the quantum inverse scattering method was already 

considered by Cheridnik (27] and Sklyanin [28] and later by Destri and H. de Vega 

(41]. In these references the hamiltonian (1.1) was related to the 6-vertex model with 

anisotropy* and a generalization of the algebraic Bethe ansatz method was introduced 

in order to treat more general boundary conditions compared to the usual periodic 

ones. In this construction, in addition to the matrix S defining the vertex weights, two 

new matrices K± that take into account the boundary conditions are introduced. The 

explicit form of these matrices is determined by the requirement of integrability. In 

addition, in this approach the appropriate monodromy matrix is constructed from two 

horizontallines of the two-dimensional classical vertex model. It is pointed out that the 

choice of special boundary conditions is essential to get "quantum group" invariance. 

However, quantum group invariance alone does not necessarily imply integrability [62], 

but this construction really provides a systematic way to get an integrable model with 

quantum group invariance. Other integrable models, as the Toda-chain [28,29], non­

linear Schrõdinger equation [28], the XY model [31], the XY Z model [28] and An-I 

vertex models [32] were also considered in connection with special boundary conditions. 

However, the Bethe ansatz equations were derived only for the XXZ chain [28]. There­

fore, the problem of finding the spectrum of open chains has not been solved yet in its 

full extent and is presently a subject of increasing activity [63]. 

* In this context anisotropy means that the matrix S, which defines the vertex 
weights, depends on a new parameter (/)in addition to the spectral parameter v. 

76 

t" 

l 
t 

I 
I 
I 
i 
l 



------- -------------~-----------------------

" 

! ;. . 

.. 

Chapter 4 : The t-J Model with quantum group invariance 

In this chapter we introduce the quantum integra.ble supersymmetric t-J hamilto-

nian 

L-1 

'H(q) =- P{L L(c},O'ci+1,0' + t}+1,D'ci,D')}P 
i=1 O' 

- 2 I: ( Sj Sf+• + SJ SJ+t + cos -y ( Sf SJ+t - n;i+t)) - cos -y t n; , (1.2) 
J=1 J=1 

L-1 

+ isin(1)(n1- nL)- isin('Y) L(niSf+1- SJni+d 
i=1 

which is splq(2, 1) invariant. We show that this hamiltonian can be related to the trans­

fer matrix of a "graded" 15-vertex model with anisotropy adapted to special boundary 

conditions . Through a generalization of the Cheridnik and Sklyanin algebraic approach 

to the case of a graded three states vertex model we solve the eigenvalue problem of 

the transfer matrix in a recurrent way (nested Bethe ansatz method with two leveis). 

The explicit form of the matrix S was obtained by Zhanget al [64LKaufman [65]. 

For the matrices K- and K+ which define the boundary conditions we use the identity 

matrix and the Markov trace associated with the superalgebra splq(2, 1), respectively. 

This is motivated by the fact that in the theory of links the Markov trace is employed to 

build up invariant objects. In fact, we can verify that this choice leads to an integrable 

and invariant model. We remark that in references [28,41] the Markov trace does not 

appear explicitly. Nevertheless, the use of Markov traces allows for a straightforward 

generalization for more complex cases. 

Obviously, the ·deformed t-J hamiltonian (1.2) is not hermitean, however it has 

real eigenvalues, as in the case of the quantum XX Z chain [25,26]. We remark that the 

choice of periodic boundary conditions for the "graded" 15-vertex model with anisotropy 

results in a hamiltonian with complex eigenvalues, as indicated by a direct diagonaliza­

tion even for 3 sites. This is in contrast to the 6-vertex model, where the eigenvalues 

are also real for periodic boundary conditions. From the Yang-Baxter algebra of the 

model we construct in the limit v --+ ±ioo a deformation of the "graded" Lie algebra 

spl(2, 1). More precisely, the generators of the quantum supergroup splq(2, 1) emerge 

from these speciallimits of the spectral parameter in the monodromy matrix. We show 

explicitly that they commute with the transfer matrix. 
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The present chapter is organized as follows. In section 2 we introduce the splq(2, 1) 

vertex model and define some ba.sic quantities, e.g., the vertex weights S and the ma­

trices K± defining the boundary conditions, monodromy and transfer matrices. The 

relation between the transfer matrix of the vertex model and the hamiltonian of the 

supersymmetric t-J model is also discussed for the deformed case. The spectrum of 

the model is presented in sec.3 by means of the algebraic-nested Bethe-ansatz method 

adapted to special boundary conditions. In sec 4. we show that the integrable vertex 

model under consideration provides an explicit realization of the quantum supergroup 

splq(2, 1). A summary of our main results is presented in section 5. 

2. THE VERTEX MODEL, YANG-BAXTER ALGEBRA AND 

SPECIAL BOUNDARY CONDITIONS 

We consider an integrable generalization of the graded 15-vertex model (introduced 

in the chapter 2) with an anisotropy parameter 1 and special boundary conditions 

[27,28,41]. It is a three states vertex model characterized by a = 1, 2, 3, which can be 

bosonic (B) or fermionic (F). In what follows we will adopt the convention of chapter 2, 

i.e., 1 =B, 2 =B, 3 =F. We begin by introducing the matrix of vertex weights S, which 

in terms of a generic spectral parameter v reads [64,65] " 

a o o o o o o o o 
o b o c_ o o o o o 
o o b o o o c_ o o 

h o c+ o b o o o o o 
SZ~(v) - /+a - o o o o a o o o o 

o o o o o b o C- o 
(3 

o o C+ o o o b o o 
o o o o o C+ o b o 
o o o o o o o o w 

where the indices a , (3 , 1 and h run from 1 to 3 and 

It provides a trigonometric solution of Y ang-Baxter equation 

ot'' {3" 1 ot' 1" {3' -y' 1 {3" -y" 1 a" 1' a' {3' 1 
Sa'f3' (v- v )Sa 1 , (v)Sp 1 (v)= SP'-r' (v )Sa, -r (v)Sa p (v- v). 
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Chapter 4 : The t-J Model with qu.antum group invariance 

In the limit 1 -+ O it reduces to the rational S matrix of chapter 2. This S matrix acts 

in the tensor product of two 3-dimensional auxiliary spaces C 3 
X C 3

• 

The standard row-to-row monodromy matrix for a L X L square lattice is defined 

as the matrix product over the s's 

(2.4) 

This matrix T acts in the tensor product of an auxiliary space and a "quantum space" 

C 3 x C 3 L and can be arranged as a 3 x 3 matrix of matrices acting in the "quantum 

space" 

TJ(v) = (~ ~~ ~i) · 
Ca D~ Df 

(2.5) 

Furthermore, it also fulfills the Yang-Baxter relation 

o/' .8" 1 a' { "(11
} .8' h'} 1 _ .8" h"} 1 a" h'} a' .8' _ I 

Sa'/3' (v- v )Ta h'l (v)T.B hl (v)- T.B, h'l (v )Ta, hl (v)Sa .8 (v v), (2.6) 

as follows from eq.(2.3). 

In order to construct the model with special boundary conditions let us introduce 

the "doubled" monodromy matrix U [28,41] 

u'Y{6} ( ) 
a{.B} V - "f{6} () -la'{.B'}( ) 

Ta'{.B'} v T a{.B} -v 

s1 s2 Sa SL 
I 

v v v v 

- (2.7) 

a -v -v' -v' -v 
f3t /32 /33 f3L 

where the symbol o indicates that at this point the line denoted by v changes to -v (in 

refs.[28,41] a matrix K- is employed to indicate this change). T-1 is the inverse of T 

in the auxiliary and "quantum" spaces, i.e., 

T 'Y {6} ( )T-la'{.8'}( ) T-l'Y {6} ( )Ta'{.8'}( ) c"(d6} 
a'{.8'} V a {.8} V = a'{.8'} V a {.8} V = Oa0{.8}' (2.8) 
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Chapter 4 : The t-J Model with quantu.m group invariance 

and can be constructed as the matrix product over the s-1 in the following way 

T-n{6} (v) = 
01{/3} 

Here s-1 is the inverse of S 

6 

s-1 ~~(v)= Q*/ 
{3 

S .., 6 ( )S-1 o/ !3' ( ) s-n 6 ( )So/ !3' ( ) ~:..., ~:6 
Ol'/3' V OI f3 V = 011{31 V 01 f3 V = U01 Uf3 

and it can be obtained from the matrix S as 

-n 6 s~,z, (-v,,) 
s 01' /3' c v, , ) = - . c ) . c r sm v +1 sm v -1 

(2.9) 

{!9} 

(2.10) 

(2.11) 

The notation for the elements of s-1 and T- 1 is the same as in (2.1) and (2.5) with a 

signal ,_, to distinguish them from the elements of S and T. For example, 

(2.12) 

Analogously, the "doubled" monodromy matrix U can also be written as a 3 x 3 matrix 

(2.13) 

For later convenience, the "doubled" monodromy matrix is written as a product of 

matrices s and s-1 

(2.14) 

which follows from (2.7), (2.4) and (2.9). 
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Chapter 4 : The t-J Model with qu.antu.m group invariance 

It can easily be shown that the matrix S satisfies the property 

S Q' {l ( ')sfl' a' ( ') sa {l ( ')sfl' a' ( ') a' fl' V - V 1 6 V + V = a' {l' V + V 1 6 V - V • (2.15) 

Notice that in the language of refs.[28,41] we are working with x- = 1. Then, using 

eqs.(2.6), (2.7) and (2.15) we can prove that the "doubled" monodromy matrix U fulfills 

a modified Yang-Baxter algebra of the following form (for simplicity, we omit the indices 

of the "quantum" space) 

a fl ( ') a'( ) fl'6' ( ') "f'( ') fl ( ')Sa fl'( ')Ua'( )s-r'6' ( ') ( Sa'fl' v-v U6, v S-r,6 v+v U-r v = Up, v a'-r' v+v 6, v -r 6 v-v . 2.16) 

It is pointed out that we have a new structure of the Yang-Baxter algebra due 

to the presence of two vertex weights S at each side of the equation above. In fact, 

vertex models with special boundary conditions (S.B.C.) are more complex to handle in 
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Chapter 4 : The t-J Model with quantum group invariance 

comparison with vertex models with periodic boundary conditions (P.B.C.). Besides the 

fact that the monodromy matrix is constructed from two horizontallines, in contrast 

to the usual one with only one line, the Yang-Baxter algebra has a more complicated 

structure. 

The transfer matrix is defined as the Markov trace associated with the superalgebra 

splq(2, 1) of the "doubled" monodromy matrix in the auxiliary space 

where 

{c5}( ) 'Ç"' K Ua{c5}( ) 
r{.B} V = L..t aa a{,B} V , 

a 

(

1 o 
K= O q2 

o o 

{,8}. 

(2.17) 

(2.18) 

Here q is the quantum group deformation parameter related to the anisotropy parameter 

1 by q = é'Y, with q. being root of unity. The Markov trace (2.18) is obtained from the 

projector on the trivial representation in C3 X C3* [66]. In fact, Markov traces play a 

special role in the theory of links, where they are used to construct invariants [12,67]. 

Details about the derivation of this Markov trace are given in appendix A. We show 

in section 4 that this construction assures splq(2, 1) invariance of the transfer matrix 

of the model. In appendix A, we prove the integrability of the model, i.e., the transfer 

matrix (2.17) commutes for different spectral parameters 

[r( v), r( v')] = O. (2.19) 

N otice that in the construction of references (28,41] the matrix K depends on the spectral 

parameter v whereas in the Markov trace (2.18) v does not appear explicitly. This is 
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Chapter 4 : The t-J Model with quantum group invariance 

due to the fact that a symmetric form of the matrix S defining the vertex weights was 

employed in contrast to our case (see eq.(2.1)). We stress that the use of Markov traces 

is more useful, since it allows for a systematic generalization for more complicated cases 

(see, for example ref. [68], where a SUq(N) vertex modeÍ is studied in this context). 

The transfer matrix (2.17) is related with a "q-deformed" version of the one­

dimensional supersymmetric t-J model 

L-1 

rt<q) =- P{L L(c}, 11 ci+I,11 + c}+1,11 c;,IT)}P 
j=l 11 

~ ( x x SYSY (Szsz n;n;+t )) 0 -2 iSr S; sj+l + j i+I + cos; j i+l- 4 - cos; f;;t n;' 

L-1 

+i sin(;)(nt- nL)- i sin(;) L:Cn;SJ+1 - SJni+I) 
i= I 

{2.20) 

in the following way 
a -sin; () 

av 7" (v) I v=O = 4 1-l q + 2 cot i (2.21) 

In (2.20) L is the number of sites of the quantum chain. The notation is the same as 

stated in chapter 2 for the supersymmetic t-J model. 

Notice that the splq(2, 1) invariant hamiltonian (2.20) has special imaginary terms. 

In fact, this feature has also appeared in the SUq(2) invariant XXZ hamiltonian (see 

eq.(1.1)). However, in contrast to this case, the hamiltonian (2.20) has not only an 

imaginary boundary term (nt-nL) but also an imaginary term (last operator in (2.20)) 

that contributes, in principie, for all sites of the chain. In particular it gives a local . . 
contribution of 1( -1) when two first neighboring sites of the chain are occupied by 

ti (i l) and consequently it is relevant for configurations ! i (i!) which are separated 

by holes, e.g., chains of the type i t O i t O ... i t O. It is interesting to observe that 

this term breaks the spin parity of the model, which means that the hamiltonian (2.20) 

is not invariant by inverting all spins anymore. At half filling ( one electron per si te, 

i.e. n i = 1 for j = 1, ... , L), this term reduces to the boundary term of the H x x z 

hamiltonian (t sin(;)(cr[,- cri)) and the boundary (nt- nL) cancels out, as expected. 

Although the deformed t-J hamiltonian is not hermitean, it possesses real eigenvalues. 

Indeed, we believe that a new definition of the scalar product ( using the Markov trace) 

could restore the hermicity of the hamiltonian. 
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Chapter 4 : The t-J Model with quantum group invariance 

3. CONSTRUCTION OF BETHE EIGENVECTORS ADAPTED TO 

SPECIAL BOUNDARY CONDITIONS 

In this section we will solve the eigenvalue problem of the transfer matrix (2.17) 

(3.1) 

following the algebraic nested Bethe ansatz method with two levels adapted to special 

boundary conditions (S.B.C.). This construction is based on the Yang-Baxter algebra 

of the "doubled" monodromy matrices 

S~,~ (v-v')U6.' (v)S~:r (v+v')U~' (v')= U$,(v')S~,~' (v+v')U6.' (v)S~'~' (v-v'). (3.2) 

As already pointed out in the last section the "doubled" monodromy matrix U can 

be written as a 3 x 3 matrix 

(3.3) 

and the transfer matrix is given by the Markov trace (2.18) of the "doubled" monodromy 

matrix U (see eq.(2.17)). According to the first level Bethe ansatz the eigenvector of 

the transfer matrix can be written as (in what follows we will omit the quantum space 

indices and write them only whenever necessary) 

(3.4) 

where the summations over the ai (i = 1, ... , N) are restricted to ai = 2, 3. The 

coefficients 'l!t~/ are determined by the second levei Bethe ansatz and <P is the first 

levei "pseudovacuum" defined by the equation 

Ci'<P =O for 1 = 2, 3, 

whose solution is 

L f3t /32 
<P{P} = II Df3;1 = I I 

i=l 1 1 

smce 

1 --1---.-1--....1---

1 1 1 1 
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Chapter 4 : The t-J M odel with quantum group invariance 

for all { bi}. This pseudovacuum is an eigenvector of A 

1 1 1 

and also of v~ and ~ 

1 

1 1 1 

1 1 1 

(3.7) 

1 

1 

V 0 (v)«P = -(c+(2v) -l)bL(v)bL(-v)ci> + c+(2v) A(v)ci>. (3.8) 
a a(2v) a(2v) 

Here the graphic technic to get the eigenvalue is more cumbersome, since many different 

configurations are possible and we have to sum all of them. Nevertheless, an easy way 

to calculate V~ci> for a= 2, 3 isto write V~ in terms of the elements of the monodromy 

T and its inverse T-1 ( see eq.(2.7)) 

3 

V~(v) = Ca(v)Ba( -v)+ L D~(v)D~( -v) (3.9) 
{3=2 

and then commute Ca with Ba through the Yang-Baxter equation for the monodromy 

matrices T and T-1 , which follows straightforwardly from eq.(2.6). Finally, using the 

fact that Ca«P = D~«P = i>~«P = O we find eq.(3.8). We remark that in eqs. (3.8) and 

(3.9) no· summation over a is assumed and the summations over the internallines in 

eq.(3. 7) can assume only the value 1, dueto the special form of the matrices S and s-1 . 

Following the general strategy of the algebraic Bethe ansatz to solve eq.(3.1) we 

apply the transfer matrix r (2.17) to the eigenvector '11 (3.4) 

r(v)'ll = (A(v) +rn(v))'ll, (3.10) 

where 

rn(v) = q2 (v~- v~). (3.11) 

Using the Yang-Baxter relation (3.2) and the expressions for the matrices S (2.1) 

and U (2.13) we obtain the commutation rules between A(v), V~,(v) and Ba(v') (a 
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,a' = 2, 3). We do not write them here since we will not need them later. These 

relations simplify considerably if instead of using V~, (v) we work with V~, (v) such that 

where x( v) is given by 

More explicit we have 

( ) _ b(2v )a(2v + 1) 
X v - q a(2v)b(2v + 1)' 

A( v )Ba( v') =a( v' -v )b( v' +v) Ba( v')A( v) - c+( v' -v )b(2v') Ba( v )A( v') 

(3.12) 

(3.13) 

b(v'- v)a(v' +v) b(v'- v)a(2v') 

( , ) sa' {3' (2v' + ) (3.14) 
-c_ v + v ( v')Ba' (v )iJf3, (v') /3 a I 

a( v'+ v) X f3 b(2v' + 1) 

and correspondingly for v;, 
11 1 R o/1 

S t/3 a ( ') st-ll' ( , ) 
A/3 ( ) ( ') _ /3' a" V- V {3"'a -v- V -1 ( ') A/3"'( ) 

V 13, v Ba v - b( ) - Ba' v V 13, v 
v- v' b( -v- v'- 1) 

1 c+( v+ v')b(2v') 8 ( )A( ')b/3 
+ x(v) a (v+ v')a(2v') /3' v v a 

(3.15) 

{3 a" 
_ x( v') c+( v- v') S f3"a (2v' + 1) 8 •( v ybP;; (v') 

x(v) b(v- v') b(2v' +1) /3 a 

All índices of the auxiliary space in eqs.(3.12), (3.14) and eq.(3.15) assume only the 

values 2 and 3 and the superscript "t" in eq.(3.15) means the transpose of the matrix 

S (2.1) (St~1 = SJ! ) and its inverse. We observe in these relations the presence of an 

additional term Ba(v)V:,(v') in (3.14) and Bf3•(v)A(v') in (3.15) in comparison with 

the corresponding relations using the Yang-Baxter algebra for the monodromy T (2.6). 

Nevertheless, the scheme of the algebraic Bethe ansatz method can be applied, as for 

the Hxxz chain [28]. Notice that the action of the new operators V~' on the first levei 

"pseudovacuum" <P 

(3.16) 
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Chapter 4 : The t-J M odel with qu.antum grou.p invariance 

yields a simpler expression than the corresponding one for 1)~' (v) . In fact, an exami­

nation of the action of 1)~' (v) over the pseudovacuum <P suggests how the operator iJ~' 

shall be defined. The matrix u in eq.(3.16) is justa diagonal matrix given by 

u= (~ ~ ~). (3.17) 
o o -1 

By successive applications of eq.(3.14) we commute A through ali 801 towards q,, From 

the first term on the right hand side of (3.14) we get the "wanted" contributions 

A(v)w = ÀA(v)w + u.t.(A), (3.18) 

where the coefficient ÀA is given by 

N 
, L( )-L( ) rr a( vi- v)b(vi +v) 
AA =a v a -v . 

i=l b(vi- v)a(vi +v) 
(3.19) 

The terms generated from the second and third terms in eqs. (3.14) are called "un-

wanted" since they can not originate a vector proportional to W. Correspondingly, we 

get from the commutation relation (3.15) wanted and unwanted contributions 

3 N 1 1 
rv(v)w =qx(v) L: vg(v)w = qx(v) II (b( _ ·)- ) 

. v v, b(-v- v·-"' {3=2 1=1 I I 

A/31/1 
X Ba' ( Vt )Ba' ( V2) •. · Ba' (V N )'D af: (V )q, 

1 2 N ~-'N 

Stf3'N OI~ ( )St-tf3'N'-tiN ( ) 
x f3'N-tiN v- VN 13'// OIN -v- VN- I ... 

(3.20) 

tf3;' a; ( )St-I 13~" h ( ) 
X S {3~' j

2 
v- v2 f3':ta 2 -v- v2 - 1 

crtf3~'a~ ( )St-I/3 it( ) {a} ( ) 
X 0 {3 Ít V- VI f3t"at -V- VI- I W(I) + u.t. 1), 

The product of St and st-I in the above expression can be recognized as a new "dou-
/3" {a'} bled" monodromy matrix U(I)p~'{a }(v+~, {vi+~}), similar to U(v) (see eq.(2.14)). 

We denominate this matrix as the second levei "doubled" monodromy matrix. Then, 

eq.(3.20) can be rewritten in the form 

( ) ,T, = ( )VA/3n.. = bL( )b-L(- )(c+(2v) _ 1) b(2v)b(2v + 1) 
TDV'Jc' qxv f3'j! v v a(2v) a(2v)w(2v+l) 

N 1 1 
X rr ( b( ) - ) B a' ( vi)B a' ( V2) ... B a' (v N) . . v- Vi b(-v- v·-"' 1 2 N a=I I I 

(3.21) 

A f3'N' f3'N {a'} I . I · { 01} 
X 1){3'.j. (v)q, U(l)f3N'{a} (v+ 2' {v,+ 2})W(l) + u.t.(1J), 
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From eq.(3.16) we know how the operator v:~' (v) acts on the first level pseudovac­

uum ~. Thus, we have 

rv( v )'li =qx( v )V~~= bL( v )bL( -v )(c+(2v) _ 1) b(2v)b(2v + 1) 
~ a(2v) a(2v )w(2v + 1) 

N 1 1 
X rr (b( ) - )Ba'(vi)Ba'(v2) ... Ba' (vN)~ 

. v- Vi b(-v- v·- "V 1 2 N 
a=1 I I 

(3.22) 

X 1"(1)~:~} (V+ ~' {Vi + ~} )wt~/ + U..t.('D), 

where T(1) is the second levei transfer matrix 

3 

T(1)(v,{vi}) ='Ler: U(1)~(v,{vi}), (3.23) 

~=2 

which is defined as the Markov trace associated to the superalgebra SUq(1, 1) of the 

second level "doubled" monodromy matrix U(1) = St(v- VN)St-\v- VN) ... St(v­

Vi)St-1(v- v1). It is pointed out that all indices range from 2 to 3, as in the internai 

block of the matrix U (3.3). This suggests the identification A(l) = U(1);, 8(1) -

U( 1 )~, C(1) = U(l)~ and 'D(1) = U(1)~· Our task isto solve the eigenvalue problem 

(3.24) 

in order to get the eigenvalue À1> in (3.22). The eigenvector 'li (1) is defined by the second 

levei Bethe ansatz 

. 
where 4>(1) is the second levei "pseudovacuum", which takes the form ~tD} = Il~1 Óai,2 

and is annihilated by c( 1) 

(3.26) 

Indeed, as in the previous step, it is more convenient to work with the operator V(I) 

defined as 
A c_(2v) 

'D(1)( v, {vi})= 'D(l)( v, {Vi})- a(2v) A(l)( v, {vi}). 

Then the action of A(1) and 'D(1) on the pseudovaccum ~(I) is given by 

N 

A( I)( v, {vi} )~(1) = rr a( v - Vi)ã( -v- Vi)~(l)l 
i=l 
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Chapter 4 : The t-J M odel with qu.antum group invariance 

(3.29) 

The commutation relations for A(1), 'D(1)and 8(1) follow from the Yang-Baxter 

algebra (3.2), which ÍS also valid for U(1)( V, {Vi}) 

, a( v'- v)b(v' +v) , c_( v'- v)b(2v') , 
A(1)( v )8(1)( v ) = b( v' _v )a( v' +v) 8(1)( v )A(1)( v) - b( v' _v )a(2v') 8(1)( v )A(t)( v ) 

c+( v'+ v) ~ , 
a( v'+ v) 8(1)(v)'D(l)(v ), 

(3.30) 

and 

~ , a( v'- v)b(v' +v) 1 ~ c_( v- v')b(2v) ~ , 
'D(l)( v )8(1)( v ) = b( v' -v )a( v' +v) 8(1)( v )'D(t)( v)+ b( v - v')a(2v) 8(1)( v )'D(1)( v ) 

c-( v' +v )b(2v )b(2v') 8 ( )A ( ') 
-a( v'+ v)a(2v)a(2v') (l) v (1

) v ' 
(3.31) 

In this levei we also observe the presence of the terms 8(1)( v) f>(1)( v') in (3.30) and 

8(
1
)(v) A(1)(v') in (3.31). Then, proceeding along the same lines as in the calculation 

of {3.10) we obtain wanted and unwanted contributions when A(1) and 'D(l) commutes 

with 8(1) toward ~( 1 ). The "unwanted" terms are not proportional to W(1) and hence 

they must cancel in order to get an eigenvector of the second levei transfer matrix T(1) 

(3.24). 

T(1) (v+ ~,{v;+~}) '1!(1) =( (1- c;g: :.;r/) A(1) (v+~, {v;+~}) 

-1J(1) (v+ i, {v;+ i})) >1!(1) 

(3.32) 

= (.-\A<t> + .Àv< 1>) \11(1) + u.t.(A(1)) + u.t.('D(1)) 

where .ÀA(l) and .Àv< 1> are given by 

N M 
.ÀA(l) = (1- c_(2v +r)) IT a( v- vi)ã( -v- Vi- I) IT a( vi- v)b(vj +v+ I) 

a(2v +r) i=
1 

i=1 ~(Vj- v)a(vj +v+ r) 
(3.33) 

.Àv =- (1- c_(2v +r)) fí b(v- Vi)b(-v- Vi- I) fí a(vj- v)b(vj +v+ r) 
(l) a(2v +r) i=1 i=1 b(vj- v)a(vj +v+ r) 

(3.34) 
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Chapter 4 : The t-J Model with quantum group invariance 

Thus, substituting these results in (3.22) we find 

rv(v)W = (>..v1 (v) + Àv11 (v))w + u.t.(V), 

where the eigenvalues Àv1 and Àv11 read 

>..v (v)= b(2v)b(2v +"!) (c+(2v) _ 1) ( 1 - c_(2v +'Y)) bL(v)bL(-v) 
1 a(2v)w(2v+"f) a(2v) a(2v+"f) . 

IT a( v- Vi)ã( -v- Vi- "f) IT a( v;- v)b(v; +v+ 'Y) 
x . b(v- v·)b(-v -Vi-"") . b(v;- v)a(v; +v+"()' 

1=1 I I J=l 

>..v (v)=- b(2v)b(2v+"f) (c+(2v) _ 1) ( 1 - c_(2v+"f))bL(v)bL(-v) 
11 a(2v )w(2v + 'Y) a(2v) a(2v + "f) 

M IT a(v;- v)b(v; +v+ 'Y) 
X j=l b(vi- v)a(vj +v+"()' 

(3.35) 

(3.36) 

(3.37) 

Then, combining eqs.(3.18) and (3.35) we get the eigenvalue >..(v) of the transfer matrix 

r( v) if the "unwanted terms" u.t.(A) and u.t.(V) cancel out 

r(v)'lf = >..(v)'lf, (3.38) 

with 
(3.39) 

All "unwanted" terms vanish if the Bethe ansatz equations (BAE) hold 

(3.40) 
M 

II 
a(v; + Vk + "f)b(v;- vk) 

X = 1, 
j=l b(Vj + Vk + "f)a(Vj- Vk) 

k= 1, ... ,N, 

IT
N a(vz- Vi)ã( -Vk- Vi- "f) 

N = 1' 
i=l b(vz- Vi)b( -Vk- Vi- "f) 

l= 1, ... ,M (3.41) 

In this case '11 (3.4) is an eigenstate of the transfer matrix T (2.17). These equations can 

be obtained by demanding that the eigenvalue >..(v) (3.39) has no poles at v = Vi and 

v = v;. As a matter of fact, one can use this property (a necessary condition for the 
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Chapter 4 : The t-J Model with quantu.m grou.p invariance 

eigenvalues ) as a short-cut to derive the BAE. Using eq.(2.2) and making the change 

of variables v -+ ~ - t , v -+ ~ - -y the BAE can be written as 

(
sinh t( Vk -i)) 

2
L fi sinh t( Vk - Vi + 2i) sinh j( Vk +Vi + 2i) 

sinh t( Vk +i) i:/:k sinh i( v ~c - Vi - 2i) sinh t( v ~c +Vi - 2i) 

IIM sinh i(v~c- Vj- i) sinh i(vk + Vj- i) _ 
X .1( ) h .1( ) - 1 ' k = 1, ... 'N, i=l sinh 2 Vk - Vj +i sin 2 Vk + Vj +i 

(3.42) 

ITN sinh ~(v,- Vi- i) sinh ~(v,+ Vi- i) 
i=l sinh i(vz- Vi+ i)sinh i(vz +Vi+ i) = 1 

' 
1 

= 
1

' · · · ,M. 
(3.43) 

Therefore, we have reduced the eigenvalue problem of the transfer matrix r to the 

solution of a system of coupled transcendental equations for the parameters v and v. 

A direct check of the above equations shows that for a given solution { Vk} and { v1} 

of the BAE a negation of any single parameter Vk -+ -v~c or vz -+ -vz also leads to 

a solution of the equations (3.42),(3.43) and (3.43). This implies that is sufficient to 

consider only BAE roots with a positive real part. Other solutions can be generated 

just by inverting the sign of any single parameter v or v. For the case that ali real parts 

of the parameters v and v are positive, we can define 2N variables Àk and 2M variables 

u, as 

Àk = Vk, Àk+N = -VN-k+l j = 1, ... N 

and 

u, =v,, Ul+M = -VM-1+1 1 = 1, ... 'M 

Then eqs.(3.42) and (3.43) can be rewritten as 

(
sinh i(Àk- i)) 

2
L IT sinh i(..\k - Ài + 2i) 

sinh t( À ~c + i) i:l:k sinh t( Àk - À i - 2i) 

2
M sinh .1(..\~c- ui- i) XII . h~(..\ ') = 1 ' k = 1, ... '2N, 

i=l sm 2 k- Uj + z 
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Chapter 4 : The t-J Model with quantum group invariance 

II
2

N sinh ~( 'ILl - Ài - i) _ 
-v( , ) - 1 , I = 1, ... , 2M 

i=I sinh 2 u, - "'i + i 
(3.47) 

They are similar to the BAE for periodic boundary conditions on a 2L sites ( see ap-

pendix B). Nevertheless, only particular solutions of the above equations, which must be 

symmetrically distributed with respect to the origin (see eqs.(3.44) and (3.45)) satisfy 

the original BAE (3.42)-(3.43). 

4. QUANTUM GROUP STRUCTURE OF THE DEFORMED T-J MODEL 

In this section we investigate the quantum group structure of the deformed t­

J model (2.20). We show that for special limit values of the spectral parameter v 

the Yang-Baxter algebra leads to a deformation of the "graded" Lie algebra spl(2, 1). 

Furthermore, we prove that the transfer matrix r ( or, equivalently, the deformed t-J 

hamiltonian) is splq(2, 1) invariant. 

In what follows we use x = év and q = ei-r. First it is convenient to write the 

matrix S (2.1) as 

(4.1) 

then S + ( S _) corresponds to the leading term in the limi t o f the matrix S ( x) for 

x --+- oo(O). They can be written as 

o 
qw2 

(q _ q-l)q-~-wauh 

1 ~ -(q- q- )e1 q 2 

q-w2 

o 

(4.2) 

(4.3) 

where Wi,Ji, ei, i= 1, 2 are the generators of the spl(2,1) superalgebra in the "graded" 

Cartan-Chevalley basis and the matrix u was already defined in (3.17). Further details 

may be found in the appendix C, where we recall the main properties of the superalgebra 

spl(2,1) and also the fundamental representation of the generators Wi,fi, ei. In the 

limit x --7 oo(O), the leading terms T+, (T-) of the monodromy matrix T (2.4) are 

proportional to 
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Chapter 4 : The t-J Model with quantum group invariance 

~ -a+E1 q 2 

qfq-W2 

o 

L ith """ -~ -~ FI = ~ q 2 ® ... ® q 2 ® ft 
j=l 

L ith 

""" - !!.l. - !!.l. F2 = ~ q 2 ® ... ® q 2 ® j2 

j=l 
L ich """ -~ -~ E 1 = ~ q 2 ® ... ® q 2 ® e1 

j=l 
L ich 

""" - !!.l. - !!.l. E2 = ~ q 2 ® ... ® q 2 ® e2 

j=l 

(4.4) 

(4.5) 

(4.6) 

~ ~ 
®q2 ® ... ®q2 

(4.7) 

where h1 = w1 - w2 and h2 = w2 + wa (see appendix C). In the last four expressions 

we have a kind of "q-sum" of one-site operators extended to all sites L. For L = 2 these 

formulae define a co-product : Ã(2)(JI) = F1 , etc. The matrix u takes into account 
. . 

that F
2 

and E
2 

are odd operators. In the literature we also find the definition of the 

coproduct without u, but then we shall use the graded-tensor product law instead of 

usual tensor product law [69]. Both methods are equivalent. By taking appropriate 

limits (x ~ oo,O or v-+ ±ioo) in the Yang-Baxter relation for the monodromy T (2.6) 

we get 

(4.8) 

(4.9) 

(4.10) 
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Using the definitions of S+ (4.2),S- (4.3),T+ (4.4) and T_ (4.5) together with the 

above relations for special values of the free indices (a" ,(3", a and /3) we obtain the 

following q-(anti)commutation rules and cubic q-Serre relations ( with HI = WI - W2 

and H2 = W2 + Wa) 

qH2 _ q-H2 
[F2, E2]+ = q _ q-1 , [F2, E1] =O, 

[E2, E2]+ = [F2, F2]+ =O, 

( F1) 
2 
F2 - ( q + q -I )FI F2FI + F2 (FI) 

2 
= o, 

(E1)
2
E2- (q +q-1)EIE2EI +E2(EI)

2 
=O, 

qFI ( F2) 
2 

- q-1 ( F2) 
2 
F1 = O, 

qE1 ( E2) 
2 

- q-1 
( E2) 

2 

EI = O. 

( 4.11) 

( 4.12) 

( 4.13) 

Here aii is an element of the "graded" Cartan matrix given by a11 = 2, aii = -1(i = 
j ± 1), aii =O (otherwise ), with i,j = 1,2. In the appendix D we show further details 

about the calculation of the above expressions. These relations define a deformation of 

the spl(2, 1) superalgebra since in the isotropic limit {-+O the usual spl(2, 1) (anti-) 

commutators and cubic Serre relations is recovered. It is called the splq(2, 1) quantum 

group. Note that this deformed structure is x independent and depends only on the 

anisotropic parameter q and that the complicated commutation rules ( 4.11)- ( 4.13) are 

equivalent to the beautiful relations ( 4.8)- ( 4.10) which follow from the Yang-Baxter 

equation (2.6). 
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Chapter 4 : The t-J M odel with qu.antu.m grou.p invariance 

Let us now consider the "doubled" monodromy matrixU. From eqs.(2.7) and (2.13) 

we can write the elements of U in terms of the row-to-row monodromy T (2.5) and its 

inverse T-1 (2.12) 

3 

A(x) = A(x)Ã(1/x) +L Bo(x)Co(1/x), 
o=2 

3 

8 0 (x) = A(x)Bo(1/x) +L Bp(x)D~(1/x), ( 4.14) 
f:J=2 

3 

C0 (x) = C0 (x)Ã(1/x) +L Dfi(x)Cp(1/x), 
{:1=2 

3 

Vfi(x) = Co(x)Bp(1/x) +L D~(x)D!J(1/x), 
-y=2 

where the indices a,/3 assume the values 2 or 3. Then, taking the limit x --+ oo, O of the 

"doubled" monodromy matrix U we find that the leading terms also yield the generators 

of splq(2, 1). We list below just the relevant ones for next calculations 

( 4.15) 

This means the splq(2, 1) generators can also be obtained from U and using the Yang­

Baxter relation for the "doubled" monodromy U we also get the q-( anti)commutation 

and cubic q-Serre relations (4.11)- (4.13). It should be stressed that the transfer 

matrix constructed from T with periodic boundary conditions is not "quantum group" 

invariant since it does not commute with the splq(2, 1) generators. In fact, this feature 

also appears in the six vertex model with anisotropy [41]. In addition, the eigenvalues of 

this transfer matrix are not real. In arder to get quantum group invariance, we shall work 
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with the "doubled" monodromy matrix U ( associated with special boundary conditions ). 

This can be shown as follows. Letting x' --+ oo, O in eq.(3.2) we can evaluate the relevant 

commutation rules between A(x),'D~(x) and 'Df{x) and the splq(2, 1) generators. After 

some calculations we obtain 

(4.16) 

[~(x), E1] =O, 

( 4.17) 

(4.18) 

( 4.19) 

( 4.20) 

In the appendix E we present explicitly the calculation of one of these relations, namely 

the commutation between A(x) and F1 . Using these commutation relations and the 

definition of the matrix 7' = tr(KU) in eq.(2.17) we easily obtain 

(T(x),E1 ) = (T(x),E2] = 0 

[1'( X), FI] = [1'( X), F2] = o 

[T(x),qH'] = 0, Í = 1,2. 

( 4.21) 

Therefore, the transfer matrix 7' is splq(2, 1) invariant and consequently the eigenstates 

of the deformed t-J hamiltonian (2.20) can be classified by the splq(2, 1) superalgebra. 
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Chapter 4 : The t-J Model with quantum group invariance 

The question of the completeness of the Bethe states for the deformed t-J model 

was not considered so far. In fact, this does not to seem to be an easy task, since 

it was not proved yet even for the Heisenberg H x x z model. There is however some 

hope that the quantum group invariance could bring some insight on the problem of the 

completeness. 

5. SUMMARY 

In this chapter we have introduced a new integrable vertex model, namely, the 

"graded" 15-vertex model with anisotropy. Through a generalization of the Cherdnik­

Sklyanin construction for the case of a vertex model with three states, which can be 

bosonic or fermionic, we derived the Bethe ansatz equations of the model. Moreover, 

we showed that this vertex model can be related to a deformed one-dimensional super­

symmetric t-J model. 

The underlying quantum group structure was also investigated. We found that a 

deformation of the "graded" Lie algebra spl(2, 1) follows from the Yang Baxter algebra 

in the limit v --+ ±ioo. Finally, we have proved that this model is splq(2, 1) quantum 

group invariant. 
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APPENDIX A : Integrability 

In this appendix we prove that the transfer matrix r( v) (2.17) commutes for differ-

ent spectral parameters. Let us introduce the necessary notation for the S-matrix and 

Clebsch-Gordan coefficients. 

I ô 

SZ~(v) - )( -

(3 a 

K'! a a 

a o o 
o b o 
o o b 

o C+ o 
o o o 
o o o 

o o c+ 
o o o 
o o o 

a O O 
o b o 
o o b 

O c_ O 
o o o 
o o o 

0 0 C+ 
o o o 
o o o 

o o o 
c_ o o 
o o o 

b o o 
o a o 
o o b 

o o o 
o o C+ 
o o o 

o o o 
c+ O O 
o o o 

b o o 
O a O 
o o b 

o o o 
O O c+ 
o o o 

= (-~ ~ ~) 
o o -q 
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q 

o 
o 

o o o 
o o o 

c_ o o 

o o o 
o o o (A.l) 
o C- o 

b o o 
o b o 
o o w 

o o o 
o o o 

C- 0 0 

o o o 
o o o (A.2) 
O c_ O 

b o o 
o b o 
o o w 

(A.3) 

(A.4) 
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Appendix A : Integrability 

Notice that the Markov trace associated with the superalgebra splq(2, 1) (2.18) can 

be obtained from the Clebsh-Gordan coeficientes (A.3) and (A.4) as follows 

(A.5) 

In order to prove the intebrabilty of the model we use the modified Yang-Baxter 

algebra (2.16), the relation (2.15) and tbe following properties 

S-"P'P(x)KI\ KV sa'a(l)- ( )KV Kl\ õtõt' q õt' a' P' P' P/3' x - Ct X õta pp 

ã 

p 

ã a 

= c1(x) 
v 
_A /3 

(A.6) 

/3 /3 

wbere Ct(X) = q + q-l - ~- xq
2 

S-õti3 ( )T.?I\ Kl\ sa'/3'(.!.)- ( )KI\ Kl\ 
iJ'õt' X J.\.iJ'W õt'a' {ja x - C2 X õta iJ/3 

(A.7) 
a /3 
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S-õl {3'( )KV KV sa/3 ( 1) ( )KV KV 
'(jõt X 'P' /3' õt'a' {3'a' x = C2 X õta P/3 

p (3 

ãMa 
3*v3 

(A.8) 
(3 a 

(A.9) 

• 
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Proof: 

(A.7) 

(A.6) l 
= Ct(zy) 

(2.16) 1 

= Ct(zy)c2(f) 
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y 

y-1 
(A.9) 1 (A.S) 

ct(xy)c2( f) 
X 

x-1 

y 

y-1 

-
X 

x-1 
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y 

y-1 
c2( i> 

c1(xy)c2( f) 
X 

x-1 

= r(y)r(x) 

• I 
' .. 

l 
i 
i 
~ 
! 

I 
~· 
I 

,• 

,. 

, .. 
I 
I 
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Appendix B : BAE for periodic boundary conditions 

APPENDIX B : BAE for periodic boundary conditions 

In this appendix we present the Bethe ansatz equations for a graded 15-vertex 

model with anisotropy using periodic boundary conditions. The procedure is the same 

as employed in section 3 of chapter 2, but using the trigonometric form of the S­

matrix ( eqs.(2.2)). In fact, we can obtain the BAE directly by substituting eqs.(2.2) in 

eqs.(3.34), (3.35) of chapter 2, resulting in 

(
sinh t( v; -i)) L IT sinh t( v; - Vk + 2i) 
sinh t(v; +i) k~j sinh t(v;- Vk- 2i) 

II
M sinh j(v;- Va-i) _ 

X • h :1..( ') - 1 , 
a=l Sln 2 Vj - Va + z 

j=l, ... ,N, 

II
N sinh j(va- v;- i) _ 

'nh :1..( ') - 1, 
j=l 51 2 Va - Vj + z 

a= l, ... ,M 
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APPENDIX C : Superalgebra spl(2, 1) 

The classical simple graded Lie algebra spl(2, 1) is defined as the associative algebra 

over C generated by hi , fi , i= 1,2 (in the "graded" Cartan-Chevalley basis), where 

hi , e1 , !I (e2 , h) are even (odd) generators, which satisfy the (anti) commutation 

relations 

[hi,/i] = ai;/i, [hi,e;] = -ai;e;, 

[ft, e1] = ht, [ft, e2] = O, 

[h, e2]+ = h2, [h, ei] =O, 

together with the cubic Serre relations 

!t(h)2
- (h)2 !t =o 

e1(e2?- (e2?e1 =O 

(C.1) 

(C.2) 

In the relations above ai; is an element of the "graded" Cartan matrix A given by 

( 2 -1) 
A= -1 O . (C.3) 

The fundamental representation of the generators is given below 

G 
o n h2 =w,+w3 = G o 

D· ht = Wt- w2 = -1 1 (C.4) 
o o 

G 
1 

D h=G 
o 

O· !t = o o 
o o 

e,= o o n e,= G o 

D· o o 
o 1 

The spl(2, 1) graded Lie Algebra can also be defined in the Cartan-Weyl basis [43], 

as in chapter 2. 
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Appendix D : Proof of some q-commutation rules 

APPENDIX D : Proof of some q-commutation rules 

In this appendix we compute the commutation rule between FI and EI and the 

first cubic q-Serre relations in ( 4.13). We begin by choosing a = 1, f3 = 2, a" = 2, 

/3" = 1 in the Yang-Baxter equation (4.9). We find 

S 2IT IT 2 S 2IT 2T I T IT. 2S I2 T IT. 2S 2I 
+I2 +I -2 + +21 +1 -2 = -2 +1 +12 + -1 +2 +12 

Using the definition of S+ (4.2), T+ (4.4), T_ (4.5) we get 

EiqíWaq-íWaFI -q-íWaFIElqiWa = 

= 1 (q-W1+W2 _ qW1-W2) 
(q-q-I) 

(D.1) 

(D.2) 

To prove that qw3 commutes with F1(E1) we repeat the same procedure using a= 1, 

f3 = 3, a"= 2, /3" = 3 (a= 2, f3 = 3, a"= 1, /3" = 3) in eq.(4.9) (eq.(4.10)). Then we 

find 
q-H1 _ qH1 

[EI,FI) = q _ q-l 

as already pointed out in section 4 . 

(D.3) 

To demonstrate the first cubic q-Serre relation in ( 4.13), we begin by noting that 

this expression can be rewritten as 

(D.4) 

where [A, B]q = AB - qBA. The internai q-commutation rule between F2 and FI can 

be computed by adópting a = 2, f3 = 1, a" = 3, /3" = 2 in eq.( 4.8). Proceeding along 

the same lines as in the calculation of [ E 1 , F1] we get 

-t 
[p. F] __ q q~W2+Wa;;.T 3 =Ma 

2, 1 q - q- q-1 v +1 - 1 (D.5) 

Finally to show that [F~,Ml]q =O, we shall use a= 1, f3 = 1, a"= 2, /3" = 3 in (4.8). 

This completes the proof. Similarly, we can demonstrate the other relations . 
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APPENDIX E : Proof of the spl9(2, 1) invariance of the model 

In this appendix we derive the commutation relation between A( x) and F1 • By 

choosing a = 1, f3 = 2, 1 = 2, 8 = 2 in the Yang-Baxter equation for the "doubled" 

monodro:iny matrix U (3.2) we obtain 

A(x)C2(x') = a(x/x')a(xx')c2(x')A(x)- a(xx')c-(x/x')c2(x)A(x') 
b(x/x')b(xx') b(xx') b(x/x') 

_ c_(xx')c-(x/x') ('D2 ( )C ( ') 'D2 ( )C ( ')) 
b(xx')b(x/x') 2 x 2 x + 3 x 3 x (E.1) 

a(x/x')c-(xx') ( 2( ') ( ) 2( ') ( )) 
+ b(x/x')b(xx') '[)2 X c2 X +'Da X Ca X 

In the limit x' --+ oo , according to (2.2), the above expression results in 

Then by using (4.15) we have 

(E.3) 

Multiplying from the left to the right by qtWa and from the right to the left by q-W1 

we get 

(E.4) 
.A(x) .A(x) 

To prove that A(x) commutes with qWa (qw1) we repeat the same strategy using a= 1, 

/3 = 3, 1 = 1, 8 = 3 (a= 1, /3 = 1, 1 = 1, 8 = 1) in (3.2) for the limit x' --+ O(oo) . 

Therefore, we find 

(E.5) 

as already pointed out in sec. 4. All other relations (4.16)-(4.19) are computed analo­

gously. 
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KURZFASSUNG DER ERGEBNISSE 

In der vorliegenden Arbeit wurde das eindimensionale supersymmetrische t-J Mo­

deU untersucht. Dieses Modell beschreibt ein System von stark wechselwirkenden Elek­

tronen auf einem eindimensionalen Gitter. Durch die Anwendung der algebraischen 

"nested Bethe ansatz"-Methode habe ich die Eigenvektoren und die Eigenwerte kon­

struiert. AuBerdem habe ich eine neue Form der Bethe-Ansatz-Gleichungen erhalten. 
,_'L r 

Weiter wurden die algebraischen Eigenschaften des Modells ausführlich diskutiert. 

Es wurde gezeigt, daB die Bethe-Ansatz-Zustande hõchste-Gewichts-Zustande der spl(2, 1) 

Superalgebra sind. Dann habe ich durch die Anwendung der "shift" Operatoren über 

die Bethe Zustande einen vollstandigen Satz von Bethe-Vektoren erhalten. 

Es wurde auch die Grundzustandsenergie und das Energiespektrum der elementa­

ren Anregungen, wie "spinons" und "holons" bestimmt. Die Dispersionsrelationen, die 

Fermi-Kanten, die magnetische Suszeptibilitat als Funktion des magnetischen Feldes, 

sowie die Elektrondichte als Funktion des chemischen Potentials wurden ebenfalls be­

rechnet . 

Es wurde weiterhin ein verallgemeinertes anisotropes t-J Modell eingeführt. Durch 

die Anwendung von Markov-Spuren wurde eine Methode entwickelt, um spezielle Rand­

bedingungen zu behandeln. Es wurde gezeigt, daB dieses q-deformierte t-J Modell mit 

diesen Randbedingungen splq(2, 1)-invariant ist. 

Das im Vergleich zum Fall von periodischen Randbedingungen wesentlich kom­

pliziertere Problem, die Bethe-Ansatz-Gleichungen herzuleiten wurde durch eine Er­

weiterung der Methode des algebraischen "nested Bethe ansatz" gelõst. Mit Hilfe der 

Yang-Baxter-Algebra wurde eine explizite Realisierung der Quantengruppe splq(2, 1) 

konstruiert . 
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