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ABSTRACT

We study a variant of the vehicle routing problem that allows vehicles with multiple com-
partments. The need for multiple compartments frequently arises in practical applications
when there are several products of different quality or type, that must be kept or handled
separately. The resulting problem is called the multi-compartment vehicle routing prob-
lem (MCVRP). We propose a tabu search heuristic and embed it into an iterated local
search to solve the MCVRP. In several experiments we analyze the performance of the
iterated tabu search and compare it with results from the literature. We find that it consis-

tently produces solutions that are better than existing heuristic algorithms.

Keywords: Vehicle routing problem. Multi-compartment. Algorithm. Heuristic. Tabu

Search.



Uma heuristica eficiente para o problema de roteamento de veiculos com muiltiplos

compartimentos

RESUMO

Este trabalho apresenta uma variacdo do problema de roteamento de veiculos que permite
o uso de veiculos com multiplos compartimentos. A necessidade de veiculos com multi-
plos compartimentos surge com frequéncia em aplicagdes praticas quando uma série de
produtos, que possuem diferentes qualidades ou tipo, precisam ser transportados mas nao
podem ser misturados. Este problema é chamado na literatura de roteamento de veicu-
los com multiplos compartimentos (PRVMC). Nés propomos uma heuristica busca tabu
implementada em uma busca local iterada para resolver este problema. Experimentos fo-
ram feitos para avaliar a performance da busca tabu iterada e os resultados obtidos foram
comparados com os resultados disponiveis na literatura. O algoritimo proposto € capaz
de encontrar solu¢des melhores e em menos tempo de processamento que as heuristicas

existentes.

Palavras-chave: Roteamento de veiculos, Multiplos compartimentos, Heuristica, Busca

tabu.



LIST OF ABBREVIATIONS AND ACRONYMS

CVRP Capacitated Vehicle Routring Problem

ILS Iterated Local Search

ITS Iterated Tabu Search

MCVRP Multi-Compartment Vehicle Routing Problem
TS Tabu Search

VRP  Vehicle Routing Problem

VRPTW Vehicle Routing Problem with Time Windows



LIST OF FIGURES

Figure 2.1 Distribution of clientes in CMT and GWKC instances. .........ccccceeecvveeeennnen. 17
Figure 2.2 Savings heuristics route Join eXample. .........ccoceeeviiiniiiiniiiiiieiieceieeeeee 18
Figure 2.3 The exchange, relocate and 2-OPT" MOVES. .....cccevveireririniiieieieieeaen 19
Figure 2.4 GENI Type L INSEItION. .....eoviiiiriiiiiiieeniieeiieeeite ettt ettt 20
Figure 2.5 GENI Type I 1€moval........coocuiiiiiiiiiiieiiieeieceie ettt 20
Figure 2.6 GENI Type I iNSEItiON. ....ccccuveeeeiieeiieeeiieeiieeeieeeseeeeieeesveeeieeesveeeeveesnneeens 21
Figure 2.7 GENI Type I removal. .....cccccooiiiiiiiiiiiiiieieceee e 21

Figure 3.1 Example to explain the difference between the VRP, the SDVRP and
the MCVRP. ..ottt 28

Figure 5.1 Example of a move which creates a new visit in the destination route

(left) and a move where the visits already exists in the destination route. ............. 52
Figure 5.2 Performance profiles for GLS of (MUYLDERMANS; PANG, 2010),

the algorithm of (DERIGS et al., 2010), and ITS, for reaching a relative devi-

ation of 1% (left) and 3% (FIZNL). ....ceeieieieieieieieeeeeeee e 59



LIST OF TABLES

Table 2.1 Details of the CMT and GWKC instances. ..........ccoecveeeeniiieenniieeeenieeeenieeenn 16
Table 3.1 Summary of the main features implemented by the papers. .........ccccccveeruneenne 32

Table 4.1 Results of the constructive heuristic and the Tabu search on instance sets

S1, S3, and S4 compared to best known values of the VRP. ...........c.cccoinine 45
Table 4.2 Results of Tabu search on instances S2 compared to (EI Fallahi; PRINS;

WOolfler Calvo, 2008).......ccooiiireieieeieeeieeeee et eeere et e e e e e e e e e e eeaaaeaeeee s 47
Table 5.1 Computational ENVIFONMENLS. ........eeeruieeriieeriieeriieenteeeieeesieeeieeeseeesieeesaeeens 54
Table 5.2 Computational results of the best metaheuristics for the VRP according

to (LAPORTE; ROPKE; VIDAL, 2014). c..coiiiiiiieieeeeeeeeeeeeeee e 55
Table 5.3 Results of the ITS with 103, 10*, 10° and 10° iterations on instances with

ONE COMPATTINENL. ..eviiiiiiiiiiiiiiieeiiee ettt e st e str e st e e sab e e s e e e saneeeas 55
Table 5.4 Results of the ITS with 102, 10*, 10° and 10° iterations on instances with

two compartments and division strategy S1. Split demands are allowed................ 56
Table 5.5 Results of the ITS with 10° iterations and two to five compartments and

splitting strategy S1. Split demands are allowed. ...........ccocceeiiiiiiiiiniiiiniiineee 56
Table 5.6 Comparison to the results of (El Fallahi; PRINS; Wolfler Calvo, 2008),

(MUYLDERMANS; PANG, 2010) and (DERIGS et al., 2010). ......ccccvervrerrennenne 58
Table 5.7 Comparison to the results of (El Fallahi; PRINS; Wolfler Calvo, 2008)

on instances with division StrateZy S2. .......ccccuveeriieriiieeiiieniee et 60

Table 5.8 Comparison of the results of (ABDULKADER; GAJPAL; ELMEKKAWY,
2015) on instances with division strategy S3 to ITS with single and multiple
ViSits and 10% TEETAOMNS. ......cveveviverieeeeeeeeetee ettt ees et seaenesereeenne 61
Table 5.9 Comparison of the results of (ABDULKADER; GAJPAL; ELMEKKAWY,
2015) on instances with division strategy S4 to ITS with single and multiple
Visits and 10% TETAtIONS. .......c.cvevevveeeeeeeececececececeeeeaeaeae et enaes 62



CONTENTS

1 INTRODUCTION.....

1.1 Research Objectives and Contrlbutwm
1.2 Overview of the Dissertation......

2 THE VEHICLE ROUTING PROBLEM

2.1 Problem Definition
2.2 Instances

2.3 Heuristic algorithms

2.3.1 Constructive HEUTISHICS ......eeeiiiiiiiieiiieniieeieeeteeeee e
2.3.1.1 Sweep AlOrithm ......ooeviiiiiiieiiiieeeee e
2.3.1.2 Savings HEUTISTIC ..cc.ueeiiiiiiiiiieiiieiieeeee et
2.3.2 Improvement HEUTIStCS .....ceeuiieriiieiiieniie et
2.3.2.1 Neighborhoods........ccoocuiiiiiiiiiiiieeeeeee e
2.3.2.2 GENI oot
2.3.2.3 Simulated Annealing...........ccceeeviiiieiniiieeeriiie et
2.3.2.4 Variable neighborhood search..........ccccccooviiiniiiiniiiniiiiieeee,
2.3.2.5 Tabu Search..........coooiiiiiiiiiiiiii e
2.3.2.6 Iterated Local Search ............ccoceeeiiiiniiiiiiiiiiieiceeeee e
2.3.3 Population Based HeUriStiCs .......c.eeervieriiiieniieeiieeniee e
2.3.3.1 Genetic AIZOTTtRM .....ooiiiiiiiiiiiiiiciececeee e
2.3.3.2 Ant Colony OptimiZation.........c.cceceveeriieeerueeniieeenieeesieeesreeenneenenes

2.4 Conclusion ..

3 THE MULTI-COMPARTMENT VEHICLE ROUTING PROBLEM

3.1 Real-world Applications..

3.1.1 FUCL AEIIVETY ..eviiiiiieiiie ettt et
3.1.2 Waste collection SYSLEIMS .........eevieeeriieeniiieeniieeniteereee et

3.2 Problem Definition

3.3 Mathematical Model

3.3.1 Problem definition for the MCVRP- WS ...........................................

3.4 Instances

3.5 State-of-the-art Heuristics

3.5.1 Memetic AlGOTTtRM.....ccccuviiiiiiiiiieiiieeeee e
3.5.2 Tabul S€ArCh.......cocuiiiiiiiiiieee e
3.5.3 Guided Local Search..........ccoocveiiiniiiiiiniiieeieee e
3.5.4 General Heuristic for the MCVRP..........ccociiiiiiiniiiiiceee,
3.5.5 Ant Colony AlgOrithm ..........ccceeiiviiiiiiniiiiieeeeeeeeee e
3.5.6 Hybridized ant colony algorithm ............ccoceeviiniinieiiinnicniceieeee.

3.6 Conclusion ..

4 A TABU SEARCH FOR THE MCVRP WS

4.1 A savings method for the MCVRP-WS

4.2 Tabu search.

4.2.1 Neighborhoods and tabu mechanism...........c.ccceceevviiiernieenieennieenne.

4.3 Computational Results ....

4.3.1 Analysis Of the reSultS........cevcuiiriiiiriiiiiieee e

4.4 Conclusion ..

5 AN ITERATED TABU SEARCH FOR THE MCVRP

5.1 Tabu search algorithm.....

5.1.1 Neighbourhood and tabu liSt..........ccccueeriiiiiniiiniiieiieeeeee e
5.1.2 RoUtE TEfINEMENL .......uvviiiiiieiieeieeeeeeeeeeeeeeeeeeeeeee e e e e e e e e eeens



5.2 Computational Experiments 53
5.2.1 Experimental methodOIOZY .......cccueieiiiiiiiiiiiieniieete et 53
5.2.2 Experiment 1: Performance on VRP instances...........cccceevveeevieeenieeeiieeenieeeieeene 54
5.2.3 Experiment 2: Performance on MCVRP instances ........c.ccccoeceeevieiniiennieennieennn 56
5.2.3.1 Comparison to the results from the literature ............ccoceeveeiiinieniiniinneeneeee. 57
5.2.4 Experiment 3: The single-visit MCVRP .......ccccccooiiiiiiiiiee e 60
5.3 Conclusion .. 62
6 CONCLUSION ..63
6.1 Future work ...63
REFERENCES.. .65

APPENDIX: RESUMO EM PORTUGUES

69



11

1 INTRODUCTION

Operations research (OR) is a discipline that aims to find optimal or near-optimal
solutions to complex decision-making problems with a focus on practical applications.
For this reason, operations research deals with demands that come directly from problems
that arise in the industry. Transportation related problems are among the main subjects of
research due to their great impact on costs and efficiency in a variety of industries. The
fundamental problem studied in OR that deals with transportation is the vehicle routing
problem (VRP).

The VRP consists in finding the optimal set of routes where there is a set of cus-
tomers with a certain demand that must be attended by a visit of a vehicle that departs
from a depot. The VRP is a difficult combinatorial optimization problem where the first
algorithm proposed dates from the end of 1950’s and we still have real-world instances
that the state-of-the-art algorithms cannot solve.

For the different kinds of industry the transportation problems may differ in terms
of vehicle characteristics, special handling of the product and specific requirements from
customers. This work focuses on the case where the customer demand for different types
of products that must be kept separated for some particular reason. Thus, the vehicle
capacity is divided in multiple compartments to be able to attend the demands for more
than one product in a single visit. This problem is called in the literature the multi-
compartment vehicle routing problem (MCVRP). In this work we also consider a variant
of this problem where the customer demand for all product types must be attended in one

single visit, called the MCVRP without splitting (MCVRP-WS).

1.1 Research Objectives and Contributions

This work focuses on researching the state-of-the-art and proposing new heuris-
tics for the MCVRP and the MCVRP-WS. It also involves studing the best heuristic tech-
niques available for the VRP.

The major contribution of this work is the proposal of a new heuristic for the
MCVRP which is an adaptation of a successful algorithm for the VRP. Our algorithm

performs better in terms of accuracy and speed compared to the available ones.
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1.2 Overview of the Dissertation

This dissertation is organized as follows. In the next chapter we present a study of
heuristics for the VRP. Chapter 3 is a study of the MCVRP and the MCVRP-WS concern-
ing real-world applications, mathematical formulation and the state-of-the-art algorithms.
In Chapter 4 we propose an efficient tabu search for the MCVRP-WS. In Chapter 5 we
present an iterated tabu search for the MCVRP that outperforms the state-of-the-art algo-

rithms. We conclude and discuss future work in Chapter 6.
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2 THE VEHICLE ROUTING PROBLEM

The vehicle routing problem (VRP) consists in, given a set of customers with
demands and a depot with a limited amount of vehicles, finding the shortest path routes
that attend all the customers demands. This problem was proposed in the end of the
1950s by (DANTZIG; RAMSER, 1959) and since then it has been intensively studied by
the scientific community due to its strong practical importance in many application fields,
as well as interest as a difficult combinatorial optimization problem.

The VRP generalizes the N'P-hard traveling salesman problem (TSP), thus is
NP-hard as well, which means that no polynomial algorithm can solve it unless P =
NP. Although a lot of scientific effort have been applied and great advances were
reached, state-of-the-art exact algorithms barely solve VRP instances with more than 150
customers and their computational time is often not viable for practical proposes (SUB-
RAMANIAN; UCHOA; OCHI, 2013). Thus, most of the last 10 years of studies for the
VRP rely on heuristic algorithms to find good solutions for real-world problems in a small
amount of time (LAPORTE; ROPKE; VIDAL, 2014). State-of-the-art heuristics can find
solutions of instances with 200 up to 400 customers with an average gap from the optimal
solution of less than 1% in less than 10 minutes (VIDAL et al., 2013).

Practical applications of the VRP are cases where a set of places must be visited
and the necessary routes are a decision variable. The decision for the optimal routes
can consider minimal use of fuel, least amount of vehicles possible, save of resources
as time and money or the routes that result in less environmental impact. This kind of
problem arises in different industries such as transportation, logistics, communication,
manufacturing military, and so on. To attend the necessities of different industries the
VRP was extended adding some constraints and attributes, which results in variants of the
VRP such as (a complete survey about the VRP variants can be found in (VIDAL et al.,
2013)):

e Capacitated VRP (CVRP): this is the classical variation and the most studied one.
Here the a set of customers have demands that must be attended in one single visit
by a fleet of identical vehicles with a fixed capacity. All vehicle routes start and end
in one depot.

o VRP with Time Windows (VRPTW): The customer demand must be attended within

a defined time interval.

e VRP with Pickup and Delivery (VRPPD): A number of goods must be moved from
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pickup locations to delivery locations.

e Heterogeneous VRP (HVRP): In this variant the fleet of vehicles is heterogeneous,

so the vehicles may have different capacities from each other.

e Periodic VRP (PVRP): In this case customers have repetitive demands over multiple
days. Given a planning period of D days one must determine which customers will

be visited and the shortest routes for each day.

e Multi-depot VRP (MDVRP): The vehicles can depart from more than one depot.
In the main definition the vehicle destination must be at the origin depot, but in

variants called non-fixed problems the route can finish in any depot.

o Multi-compartment VRP (MCVRP): in this variation the vehicles capacity is divided
in more than one compartment and the customers have demands for different types

of products where each product type has a dedicated compartment.

Each of these VRP variants are challenging fields of research. In this chapter we
will focus on the CVRP that is the most studied variant of the VRP.

In the next section we present the formal definition of the CVRP. In Section 2.2
we describe the most used sets of instances. Section 2.3 is an overview of the most used
metaheuristics and a brief description of successful work using them. We conclude this

chapter in Section 2.4.

2.1 Problem Definition

The CVRP consists in a fleet of identical vehicles with fixed loading capacity C
and customers that have a defined amount of demand ¢;. We are given a set of locations
V = {V} UV,, where Vj is the depot, and V. = {V},...,V,} is the set of customers.
Each pair of locations ¢, j € V" has a travel time d;;. Each customer may have additionally
adrop time ¢;, i.e. the time needed to load or unload the demand. All the customer demand
must be attended in one visit.

The objective is to find the shortest possible set of routes that satisfy all customers

demands and respect the vehicle capacity. The CVRP can be formulated as follows:
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minimize Z Z(d” + tj)xijk7 (21)
1,J€V k€(r]

subject to Z Z Tijk = 1, Vie V\{W}, (2.2)
1€V ke(r]
injk = ZIjika VieVikelr], (2.3)
i€V i€V
Yowm<ISI=1 VSCV\{VWLISIZ2kel], (24
i,jES
Z CiTijk S C, Vk € [T], (25)
ijEV
T € {0,1}, Vi,jeVikelr]. (2.6)

In this formulation we minimize the total travel time (2.1). By constraint (2.2)
every customer has to be attended exactly once in some route. Constraint (2.3) establishes
flow conservation, and constraint (2.4) eliminates subroutes that do not include the depot.

The capacity are guaranteed by (2.5).

2.2 Instances

An instance for the CVRP contains a set of customers and a depot that is the start-
ing point of each route. Every customer, including the depot, have a well-defined distance
from each other. Usually they have coordinates in a 2D space, then the Euclidean distance
is used. The instance also determines the maximum fleet size and vehicle capacity, the
maximum route length and the drop time.

A lot of different instances can be found in the literature. The instances have from
10 to 1200 customers (in the most recent ones). They also vary in depot positioning (cen-
tered, corner or random) and customer positioning (clustered, symmetric or real case). In
this work we focus on the instances proposed by (CHRISTOFIDES; MINGOZZI; TOTH,
1979) and (GOLDEN et al., 1998), which are two of the most common data sets for the
VRP (LAPORTE; ROPKE; VIDAL, 2014).

The instance set CMT from (CHRISTOFIDES; MINGOZZI; TOTH, 1979) con-
tains 14 instances with 50 to 200 customers. The instance set GWKC from (GOLDEN et

al., 1998) contains 20 instances with 240 to 483 customers distributed spatially in sym-
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metric patterns (see Figure 2.1 for an example). Table 2.1 shows the size of the instances
(n), the limit number of routes or fleet size (/), the maximum route length constraint (d),
the drop time value (1), the vehicle capacity ((Q) and the shortest known total route length
(best known value, BKV).

Table 2.1: Details of the CMT and GWKC instances.

inst n K d T Q BKV
CMTI1 50 5 oo 0 160 524.61
CMT2 75 10 oo 0 140 835.26
CMT3 100 8 oo 0 200 826.14
CMT4 150 12 oo 0 200 1028.42
CMT5 199 17 oo 0 200 1291.29

CMT6 50 6 6200 10 160 555.43
CMT7 75 11 160 10 140 909.67
CMTS 100 9 230 10 200 865.95
CMT9 150 14 200 10 200 1162.55

CMT10 199 18 200 10 200 1395.85
CMTI11 120 7 oco 0 200 1042.11
CMTI12 100 10 co 0 200 819.56
CMT13 120 11 720 50 200 1541.14

CMT14 100 11 1040 90 200 866.37

GWKC1 240 9 650 O 550 5623.47
GWKC2 320 10 900 O 700 8404.61
GWKC3 400 9 1200 O 900 11036.20
GWKC4 480 10 1600 O 1000 13590.00
GWKCS 200 5 1800 O 900 6460.98
GWKC6 280 7 1500 O 900 8412.90
GWKC7 360 8 1300 O 900 10102.70
GWKC8 440 10 1200 O 900 11635.30
GWKC9 255 14 co 0 1000 579.71
GWKCI0 323 16 oo 0 1000 735.66
GWKC11 399 17 oo 0 1000 912.03
GWKCI2 483 19 oo 0 1000 1101.50
GWKCI3 252 26 co 0 1000 857.19
GWKCI14 320 29 co 0 1000 1080.55
GWKCI5 396 33 oo 0 1000 1337.87
GWKC16 480 36 oco 0 1000 1611.56
GWKC17 240 22 oco 0 200 707.76
GWKCI18 300 27 co 0 200 995.13
GWKCI19 360 33 co 0 200 1365.60
GWKC20 420 38 co 0 200 1817.59
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Figure 2.1: This figure shows the distribution of clientes in CMT and GWKC instances.
On the left is the CMT]1 instance, on the right is the GWKCI1. The red dots are the clients
and the blue dot is the depot. The images are from (CVRPLIB, 2016).

2.3 Heuristic algorithms

The VRP is a hard combinatorial optimization problem and exact algorithms are
able to solve only relatively small instances. Thus, search heuristics methods are used to
reach high quality solutions on instances with a large amount of customers. The heuris-
tics methods for the VRP can be classified in constructive heuristics and improvement

heuristics, the latter is divided in local search and population based heuristics.

2.3.1 Constructive Heuristics

The constructive heuristics for the VRP are used to generate a solution for a given
instance usually in a short computational time. It starts from an empty solution and in each
iteration keeps adding new costumers to the routes until all the customers are visited. It is

often used to generate a start solution to improvement heuristics.

2.3.1.1 Sweep Algorithm

This heuristic can be classified as a insertion heuristic because customers are in-
serted in the solution one by one always keeping the solution feasible. The algorithm is
called sweep because the insertion order is defined by the angle that the customer makes
with an arbitrary axis centred at the depot. Feasible routes are created by rotating an imag-
inary line, with one end tied at the depot, and when a customer is touched it is inserted in

the current route. If the maximum route length or vehicle capacity constraints are violated
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a new route is created. Different start positions can result in different solutions, then an
improvement in this heuristic is to run the sweep algorithm once for each customer as the
reference point and use the best solution found. This heuristic is very simple and can find
solutions for the CMT instances with an average deviation of 7.01% from the best known

values.

2.3.1.2 Savings Heuristic

This heuristic is widely used in VRP problems because of its simplicity, speed
and it often obtains good results, in average 6.71% above the optimal solution in CMT
instances (see (CORDEAU et al., 2002)). Consider a route which visits customer V; last,
and another route which visits customer V first. We can join these routes by going directly
from V; to V;. This results in savings of s;; = dy, v, + dv,,v; — dv;v;. The Figure 2.2
exemplify the join of two routes. The heuristic proposed by (CLARKE; WRIGHT, 1964)
determines the savings s;; for each pair of customers V; and V}, and sorts them in a non-
increasing order. Then, the algorithm creates one route for each customer, starting at the
depot, visiting only this customer, and then returning to the depot. Finally, it visits the
savings list in the sorted order cyclically, and repeatedly applies feasible joins, until no
such join is possible. A join is feasible for a saving s;; if two routes with endpoints V; and

V; exist and the resulting route respect the vehicle capacity and route length constraints.

Figure 2.2: Savings heuristics route join example.

v; vj v,

v

depot depot

2.3.2 Improvement Heuristics

Improvement heuristics are algorithms that receive a solution as input, which is
modified by performing a series of operations to obtain a new one. The objective is to
find improved solutions by modifications and evaluations that are made in a systematic
way. Improvement heuristics for the VRP perform intra-route and inter-route moves to
modify the current solution. These moves generate a pool of neighbour solutions that is
called search space. We will present the main moves in the next section. Explore all the

neighbourhood often requires too much operations, thus some techniques that considers
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geographical restrictions to avoid moves between distant customers are used to reduce the
search space. One of them is the generalized insertion procedure GENI that is a kind of
intra-route move, which is presented in more details in the Subsection 2.3.2.2.

Usually, improvement heuristics allow worse solutions and even unfeasible so-
lutions during the search to escape from local minimum with the aim of finding better
solutions after a few more moves. Therefore, metaheuristics must be used to find high
quality solutions. We present the most common metaheuristics for the VRP in Sections

2.3.2.3,2.3.2.4,2.3.2.5 and 2.3.2.6.

2.3.2.1 Neighborhoods

The neighborhoods in VRP are called moves which are operations that transform
a solution s in another solution s’ that shares some characteristics of s. The moves can
be separated into two major categories intra-route moves and inter-route moves. The
intra-route moves, also known as single-route neighborhood, affect only one route of the
current solution at a time. They permute the customers within the route with the objective
of optimize the route length. Thus, traveling salesman problem (TSP) neighborhoods can
be used as intra-route moves for the VRP.

The most used intra-route move in modern heuristics is the 2-OPT proposed by
(LIN, 1965), where two edges are removed and two new edges are created to complete
the route.

The inter-route moves, also known as multiroute neighborhood, move customers
from one route to another involving two or more routes. The most common moves are
exchange, relocate, and 2-OPT".

The exchange move, also known as swap, consists in choosing one or more
consecutive customers in two different routes and then exchange their positions. In the
relocate neighborhood one or more customers are moved from one route to another route.
The 2-OPT" is similar to the 2-OPT, two edges from two different routes are removed
and new ones are inserted. The Figure 2.3 shows an example of each inter-route move
described above.

It is important to notice that, in order to have an efficient algorithm, the evaluation
of the resulting cost of a move must be made in a few operations. The move must be

applied to the solution only after the neighborhood evaluation.
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Figure 2.3: The exchange, relocate and 2-OPT* moves.

Depot Depot Depot Depot

(a) Original routes  (b) Exchange (¢) Relocate (d) 2-OPT*

2.3.2.2 GENI

The generalized insertion procedure, known in the literature as GENI, was pro-
posed by (Gendreau, Michel and Hertz, Alain and Laporte, 1992) for the traveling sales-
man problem. The GENI algorithm is widely used in VRP heuristics to insert customers
to routes or to remove customers from routes. Together with the insertion or removal of a
vertex GENI applies a subset of 3-opt and 4-opt moves to the route. Since the complete
exploration of the neighborhood would be too expensive, O(n*) operations for the 4-opt
moves, only the g-nearest vertices. Considering the fact that the g-nearest list must be
updated after a insertion or removal, the GENI has time complexity O(ng* + n?).

Given that the N,(v) are the g-nearest vertices of v the v;,v; € N,(v), v, €
Ny(vit1) and v; € Np(vj41). The GENI 3-opt moves are called Type I. In Type I insertion,
Figure 2.4, the vertex v is inserted between v; and v;; the edges (v;, v;11), (v;,vj41) and
(vk, vg+1) are deleted and the new edges (v, v;), (v,v;), (v; + 1,v;) and (vj41, Vg1 are

created.

Figure 2.4: GENI Type I insertion.

Vi == _ 0

v;

- ~

. O O
A ’
\ ;
\./\; "/ reversed \1/"1
Vit] \ vj \
Uk 1 Vj+1 1
I,\_/T.I.‘l ,,\ reversed /g
’ 7’
- -
- -
Vk+1 Vk+1

In Type I removal, Figure 2.5, the vertex v; together with the edges (v;_1, v;) and
(vi, vi41) are removed. The other edges removed are (vg, v41) and (v;, vj41). Then, the
edges (v;i—1,vk), (Vit1,v;) and (vg11,vj41) are created.

The GENI 4-opt moves are called Type II. The Type Il insertion, Figure 2.6, con-
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Figure 2.5: GENI Type I removal.
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sists in inserting the vertex v between the vertices v; and v; where the edges removed
are (v, vit1), (vi—1,v1), (v5,v;41) and (vg_1, v ), then the new edges are (v;,v), (v, v;),

(Uz, Ujfl)a (kaly szl) and (U¢+1, Uk)-

Figure 2.6: GENI Type II insertion.
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For the Type Il removal, Figure 2.7, the edges removed are (v;_1, v;), (Vi, Viy1)s
(Uj—l,?)j), (v, v141) and (vg, vg41). The new edges are (v;—1, Vi), (Vig1, Uj—l), (Vig1, Uj)

and (Ul, Uk+1).

Figure 2.7: GENI Type II removal.
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2.3.2.3 Simulated Annealing

The simulated annealing is a simple heuristic that has two main components: a
neighborhood generator and an acceptor. The neighborhood generator must generate a
random neighbor solution s’ of a given solution s. The acceptor defines if the next solution
used in the neighborhood generator will be s’ or s. The solution s’ is always accepted if s’
is better s, f(s') < f(s), otherwise s is accepted with probability e~/(<)=/()/T  Here,
T is the so-called temperature which decreases in each iteration to intensify the search

around a promising solution. See (OSMAN, 1993) for an application of the simulated
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annealing in the VRP.

The Record-to-record travel is a variation of the simulated annealing that is also
called deterministic annealing. In this algorithm the solution s is only accepted if its cost
does not exceed the best solution found so far by a factor . Usually o is a little more than

1 (e.g. ¢ = 1.05) (LAPORTE; ROPKE; VIDAL, 2014).

2.3.2.4 Variable neighborhood search

The variable neighborhood search (VNS), as the name suggests, is based on the
fact that different neighborhood operators applied to the same solution can result in dif-
ferent local optimal solutions. Thus, the VNS needs a set of different neighborhoods that
usually is ordered in increasing size of search space. The first neighborhood is applied to
the initial solution until reach the local minimum, then the next neighborhood operator is
applied to the resulting solution. When the last neighborhood was applied the first one
is tried again and it goes until no of the neighborhood operators can find a better solu-
tion. The use of multiple neighborhoods diversify the search because each one explores
different regions in the search space.

The paper (KYTOJOKI et al., 2007) proposes an efficient VNS implementation for
the VRP that is able to find results near to the best known value in a few seconds. Their al-
gorithm use the inter-route neighborhoods relocate, 2-OPT* and exchange, in this order.
Also, after each inter-route neighborhood, the intra-route neighborhoods 2-OPT, Or-OPT

and 3-OPT are applied to the modified routes.

2.3.2.5 Tabu Search

Tabu search (TS) is one of the most used meta-heuristic for the VRP with a variety
of implementations proposed in the pasts years (LAPORTE; ROPKE; VIDAL, 2014). It
1s a meta-heuristic which guides a local search through the search space and it is one
of the most successful heuristics for vehicle routing problems (CORDEAU et al., 2002).
TS is a local search that starts with an initial solution and moves to the next solution
after visiting a given neighborhood, the algorithm goes until a stop criterion is reached.
The main feature of the TS is that it allows non-improving moves and avoids cycling by
storing recent moves in a short-term memory and declaring moves that return to previous
solutions as tabu (GLOVER; LAGUNA, 1997). A common tabu criteria for the VRP is

that a customer is not allowed to go back to its previous route for 6 iterations when moved
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from one route to another.

A classical TS implementation for the VRP was proposed by (GENDREAU; HERTZ;
LAPORTE, 1994), they use the GENI heuristic for insertions and removals in the relocate
neighbourhood. The main feature of their algorithm is consider infeasible solutions dur-
ing the search, it means that solutions that violate the vehicle capacity or route length are
also visited, but the excess amount is penalized in the objective function by a factor that
increases in each iteration.

Other good implementation of TS for the VRP is the granular tabu search from
(TOTH; VIGO, 2003). The idea is to remove unpromising edges whose cost exceeds a

threshold. This threshold in based in a good solution determined by a fast heuristic.

2.3.2.6 Iterated Local Search

The iterated local search (ILS) metaheuristic can be seen as a framework where
any local search procedure can be embedded in it. (CORDEAU; MAISCHBERGER,
2012) and (CHEN; HUANG; DONG, 2010) are two successful examples of ILS for the
VREP, the first has used a tabu search as local search procedure and the last has used a
variable neighborhood descent.

The ILS consists in three components: a perturbation procedure, a local search
heuristic and an acceptance criterion. The perturbation procedure modifies the solution
with the aim of jumping the search to different places in the search space. The perturbation
must be done with care, if it is to strong the algorithm is reduced to a random start. In
the acceptance criterion is selected the solution that will be used in the next iteration.
The algorithm, as shown in Algorithm 1, starts from some local minimum and repeatedly
applies a perturbation to escape from it followed by a tabu search to find another local
minimum, until some stopping criterion is satisfied.

The iterated variable neighborhood search algorithm proposed by (CHEN; HUANG;
DONG, 2010) the perturbation procedure is a exchange move where two route are ran-
domly chosen as well the amount of customers exchanged in each route. The acceptance
criterion selects the best known solution so far if it was not improved in 50 consecutive
iterations, otherwise it uses a technique similar to simulated annealing to select between

the last used solution or the solution returned by the VND.
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Algorithm 1 Iterated tabu search
1: function ITS()

2: so < Generatelnitial Solution

3: s* < localSearch(sy)

4: i

5: for termination condition do

6: s’ < perturb(s*)

7: s < localSearch(s’)

8: if f(s”) < f(s™) then

9: = &

10: end if

11: s* < acceptanceCriterion(s’™, s*, s**)
12: end for

13: return the best solution s* found during search

14: end function

2.3.3 Population Based Heuristics

Population based heuristics, also known as evolutionary algorithms, use methods
that are inspired by evolution of species, such as reproduction, mutation, recombination
and selection. The algorithm starts with a population, which is a pool of solutions, then
in each iteration a series of strategies are applied so that the individuals, or solutions, are
combined or modified with the aim of finding better solutions.

The two most successful population based metaheuristic are genetic algorithm
and ant colony optimization that we describe in the next sections. Even though, pop-
ulation based heuristics are widely studied, all known successful VRP heuristic of this
type use some kind of local search to intensify the search in promising solutions (LA-
PORTE; ROPKE; VIDAL, 2014). The resulting algorithms are so-called memetic algo-
rithm (MOSCATO; COTTA, 2010) and hybridized ant colony algorithm (ABDULKA-
DER; GAJPAL; ELMEKKAWY, 2015).

2.3.3.1 Genetic Algorithm

The genetic algorithm (GA) starts by a population of solutions, these solutions are
referred in GA as chromosomes. Then, new solutions, or individuals, are created using
two operators called crossover and mutation applied to the chosen solutions in order to
improve then or diversify the population. After a sufficient amount of new solutions a new
population is selected and the algorithm starts again. It goes until a termination condition

is satisfied.
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The first competitive GA that could outperforms the existing powerful tabu search
methods was proposed by (PRINS, 2004). In the proposed GA, the chromosome repre-
sentation is a simple sequence of clients without route delimiters. This representation is
also called giant-tours because it can be seen as the order in which a vehicle must visit
all customers. Then a optimal split procedure is applied to divide the giant-tour in routes
following the tour order and respecting the vehicle capacity and route length constraints.
This technique is still used in state-of-the-art algorithms as (VIDAL et al., 2012).

The GA proposed by (NAGATA; BRAYSY, 2009) is one of the best heuristics
for the VRP. They use as initial population an amount of 100 solutions. The solutions
are generated by a procedure similar to the savings heuristic where routes are joined in
a random order together with a local search procedure to improve the solution quality.
They use a crossover technique called edge assembly crossover (EAX) that was proposed
by the same author for the traveling salesman problem and adapted to the VRP. The EAX
is a five step procedure that receives two parent solution and creates only one child solu-
tion based on the parent characteristics. The EAX can generate infeasible solutions that
violates the vehicle capacity constraint, when it happens a repairing procedure is applied.
The repairing procedure is a best improvement local search that considers only moves
that reduce the overcapacity violation. Finally, a first improvement local search using the
2-OPT, Relocate and Exchange neighborhoods is applied to improve the resulting solu-
tion. The modification and the local search procedures are the mutation components of

the GA.

2.3.3.2 Ant Colony Optimization

The inspiring source of this metaheuristic proposed by (DORIGO; CARO; GAM-
BARDELLA, 1999) is the pheromone used by ants as trail marker and as communication
medium. This algorithm explores a technique of learning based on the history of previ-
ous visited solutions. The ant colony optimization (ACO) algorithms consist in iterations
over three main step: generation of a pool of solutions (ants) considering the pheromone
information, update the pheromone information also called pheromone evaporation and
daemon actions that is a local search or adjusts to the pheromone to intensify the search
in promising solutions.

(DOERNER et al., 2004) is a successful implementation of this metaheuristic for
the VRP. They propose a ACO that uses the savings heuristic (see Section 2.3.1.2) to

construct the solutions. Instead of always join the routes with biggest saving, they use
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the pheromones to increase the probability of join more promising routes. They com-
pare three different approaches to handle with pheromones: rank based ant system where
only the best £ ants leave pheromone, min-max ant system where only the best ant leave
pheromone but there is a upper and lower bounds on the pheromone values and finally
and colony system where also the best ant leaves pheromone but the global evaporation
is also restricted to arcs in the best solution found. For all solutions found a local search
using exchange and 2-OPT neighborhood is applied to guarantee that they are a local

minimum.

2.4 Conclusion

The vehicle routing problem has been subject of studies for more than 50 years,
but great advances were reached in the past 10 years. The new algorithms are able to
solve bigger instances in less and less computational time. The industry together with the
academy continue to bring new instances and challenging constraints and variations that
turns the VRP an always interesting and important topic of research. An open challenge
is design heuristic algorithms for the VRP that have a good score in four characteristics:
speed, accuracy, flexibility and simplicity. Such an algorithm is hard to design because

usually speed and accuracy came in detriment of flexibility and simplicity.
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3 THE MULTI-COMPARTMENT VEHICLE ROUTING PROBLEM

The problem called the multi-compartment vehicle routing problem (MCVRP),
also found as VRP with compartments (VRPC) and multi-compartment delivery prob-
lem (MCDP) in the literature, extends the well-known vehicle routing problem (VRP) by
allowing the co-delivery (or co-collection) of different products that must be kept in sep-
arate compartments. The MCVRP is a single depot vehicle routing problem for multiple
product types given a homogeneous fleet. Each customer may have different demand for
each product type, and the vehicles have multiple compartments of different sizes ded-
icated for each product type. As in the standard vehicle routing problem, the aim is to
satisfy the demands of every customer such that the total travel time of all vehicles is
minimized. The MCVRP generalizes the A/P-hard Capacitated VRP, and thus is also
N'P-hard. The largest instances that state-of-the-art exact approaches for MCVRP could
solve contain about 50 customers (COELHO; LAPORTE, 2015). Thus larger problems,
or problems with additional constraints are usually solved by heuristic algorithms.

The MCVRP has an important feature that is the split demand which allows cus-
tomers to be visited multiple times, but the demand for each product must be attended
in a single visit. It is important to notice that the split demands feature is different from
split delivery (SDVRP) ((ARCHETTI N. BIANCHESSI, 2014)) where a demand can be
attended for multiple vehicles and may be greater than the compartment capacity.

We present in Figure 3.1 an example, proposed in (El Fallahi; PRINS; Wolfler
Calvo, 2008), to better understand the difference between the VRP, the SDVRP and the
MCVRP. The customers a, b, ¢, d have demands for two different products and the depot
is the square in the center. The vehicles have capacity 18 in two compartments of capacity
9. For the VRP and the SDVRP suppose that the products can be mixed together then the
customers demands is the sum of the two products demand. The shortest length to attend
all demands for the VRP is 22 in three routes: (a[7], b[10]), (c[6]), (d[13]); for the SDVRP
the length is 19 in two routes: (a[2],b[10], ¢[6]), (a[5], d[13]); and for the MCVRP the
length is 20 in two routes: (a[6,0],b[3, 7], c[0,2]), (a]0, 1],d][5, 8], c[4, 0]).

In summary, the MCVRP has the following characteristics:

e Single Depot: all vehicles must depart and arrive at the same place;
e Homogeneous Fleet: all vehicles are identical (equal amount of compartments and
capacity);

e Multiple product types: each product type has a dedicated compartment;
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Figure 3.1: Example to explain the difference between the VRP, the SDVRP and the

MCVRP.
al6, 1] b[3,7)

6

epo;

d[5, 8] 4,9

e Split demands: customer demands for different product types may be attended by

different vehicles;

e Route duration limit: usually these problems have maximum route duration con-
straint, it means that the time from the depot, visiting the customers (including the

drop time), and return to the depot must not exceeds a maximum time.

This chapter is organized as follows. The next section address real-world ap-
plication, we formally define the problem and present the mathematical formulation in
Section 3.2. The instances available in literature are described in Section 3.4. In the
Section 3.5 we present the main heuristic algorithms found in literature. We conclude in

Section 3.6.

3.1 Real-world Applications

Real-world applications for this problem are cases where products must be trans-
ported in different compartments for some particular reason. In this section we present
MCVRP applications in real-world cases found in the literature. In these applications
usually other constraints are added to attend the reality of each problem.

In the diary factory the raw milk collection use temperature-controlled vehicles
that have many compartments and consume more fuel than regular vehicles. Raw milk
is a very perishable product so the delivery time is not only a cost factor but also an im-
portant factor for the quality of the final product. Milks from different collection center
cannot mixed in the same compartment as well milks of different types. (SETHANAN;
PITAKASO, 2016) proposes a differential evolution algorithm for this problem that, be-
sides the traveling cost, also considers the vehicle cleaning cost in the objective function.

(MENDOZA et al., 2010) studied a memetic algorithm for the MCVRP with stochastic
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demands that was motivated by this real-world problem.

The delivery of groceries to convenience stores often use vehicles with multi-
compartments. Unlike a supermarket, convenience stores carry most of their inventory
in the front of the store. These space limitations impose the need to a very tight control of
inventories which requires small orders of different product types. These orders must be
attended by a single distributor that can deliver dry, refrigerates and frozen items together
in the same vehicle. A compartment can often be a box filled with dry ice or in large trucks
spaces separated by bulkheads. This problem was studied in (CHAJAKIS; GUIGNARD,
2003) where optimization models were proposed for two possible cargo space layouts.

The MCVREP is also applied to transportation of live animals to slaughterhouses,
this problem is known as Livestock collection problem (OPPEN; KKETANGEN, 2008).
It consists in transportation of living animals from farmers to one slaughterhouse. Some
interesting constraints arise in this problem: animals cannot be transported continuously
for more than 8 hours; mixing animals with and without horns or animals of substantially
different size are not allowed; and the visit order must follow a health status of the animals.
(OPPEN; KKETANGEN, 2008) proposes a tabu search for this specific problem.

In (LAHYANI et al., 2015) the authors propose a model and an exact approach to
solve a rich MCVRP that arises in olive oil collection process in Tunisia. Olive oil have
three different grades known as extra, virgin and lampante. The different grades must be
kept separated during the transportation, then vehicles with compartments are necessary.
Other important constraint in this problem is that it is forbidden to load extra and virgin
oil immediately after lampante oil in the same compartment, unless it has been cleaned.

Next we present the two main applications of the MCVRP that is the fuel delivery

and waste collection.

3.1.1 Fuel delivery

The fuel delivery problem is the most studied application of the MCVRP. The fuel
distribution consists in several different product types that must be delivered by compart-
mentalized vehicles to customers with several tanks. The vehicles often are not equipped
with debit meters, which implies that whenever a deliver is made the full contempt of the
compartment must be emptied. The vehicles have compartments with fixed sizes and the
products are incompatible with each other, then they must be delivered in different com-

partments. There are no incompatibilities between product and compartment, it means
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that each product can be allocated any compartment where the packing arise as a sub-
problem. Often customers order large demands and one compartment receives only one
product for one customer so the main problem is assign orders to vehicle compartments.
Once it is done the routing part is rather easy, one TSP with few stops must be solved for
each truck.

A study about different problems that arise in petroleum companies can be found
in (COELHO; LAPORTE, 2015). They propose a classification where compartments and
tanks can be split or unsplit, where a split tank may receive deliveries from different ve-
hicles, likewise, a split compartment can deliver the load to different compartments. In
(COELHO; LAPORTE, 2015) also present the mathematical model and an exact algo-
rithm for these variants of the MCVRP including multi-period.

In (DERIGS et al., 2010) the MCVRP is called VRP with compartments (VRPC)
and define it as an abstract problem covering different applications that can occur in retail
and petrol industries. They consider that certain products pair must not be loaded in the
same compartment and certain products cannot be transported in certain compartments.
That work also provide a study of several heuristics to solve VRPC.

(CORNILLIER et al., 2008) propose a multi-phase heuristic for a variant of the
VRPC where one must determine, for each day of the planning horizon, how much of
each product should be delivered to each station, how to load these products into vehicle
compartments and how to plan vehicle routes. The station do not specify fixed visit dates
and delivery amounts, these decisions are optimized by the distributor.

The paper (POPOVIC; VIDOVIC; RADIVOJEVIC, 2012) treat the problem fuel
delivery problem as Inventory Routing Problem (IRP) where the distributor has the re-
sponsibility of clients inventory management, given the clients (or stations) order quantity
and time of delivery. Then the distributor can better utilize the vehicles.

A real case of the fuel delivery problem is related in (AVELLA; BOCCIA; SFORZA,
2004). Each customer has an order and a frequency of one or more days. One must deter-
mine the routes and delivery plan for each truck where each order must be satisfied by the
following day and the total cost is minimum. The paper presents a heuristic and an exact
algorithm to solve this problem.

In petrol station replenishment often is found problems with multiple depot and
time windows as presented in (CORNILLIER; BOCTOR; RENAUD, 2012; BENAN-
TAR; OUAFI, 2012). In (MENDOZA et al., 2010) stochastic demands has been intro-

duced to the MCVRP, i.e. the exact value of demands is not known at the moment when
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the routes are planned, to obtain the MCVRPSD.

3.1.2 Waste collection systems

The MCVREP arises in the waste collection systems by the necessity of collecting
different types of waste that can not be mixed. The total cost of recycling can be reduced
if the waste separation process is eliminated and this can be done in collection site with
disposal bins for each kind of waste. Then, for transportation, vehicles with compartments
are required to keep the types of waste separated.

(ELBEK; WQ@HLK, 2016) describes a real case of glass and paper waste collec-
tion in Denmark. They use vehicles with two compartments and variable capacities. The
objective is ensure that the cubes were the waste is placed are emptied before being over-
filled. (REED; YIANNAKOU; EVERING, 2014) also studied the waste collection in the
UK. They propose an ant colony algorithm that we will see in details in this work.

The glass waste collection is also the context of study in (HENKE; SPERANZA;
WASCHER, 2015), they study a special case that occurs in Germany where glass of dif-
ferent colors must be kept separated. In this context the trucks allow the use of bulkheads
in predefined positions, it will split the loading space in compartments of variable size.
Then, the number of compartments can be identical to the number of products types but
can also be smaller. They propose a variable neighborhood search that determines not
only the vehicle routes, but also for each route how many compartments and what the
size of each compartment the vehicle capacity should be divided. Results for random
generated and real case instances are presented in the paper.

A complete study about the urban solid waste collection system is found in (LU
et al., ). The paper highlight the deficiencies of the state-of-the-art studies on algorithms
for this problem, they focus on U.S. and Europe waste collection system. In densely
populated cities, like in China, the waste collection needs to be done daily. (LU et al.,
) propose a heuristic for multi-constrained and multi-compartment roll-on and roll-off
waste collection and use it to solve a real case in a city in China.

The Table 3.1 summarizes some of the papers cited in this chapter. The columns
represent the main features, the mark e means that the paper implements the feature in the

respective column.
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Table 3.1: Summary of the main features implemented by the papers.
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= == €334 2822 ¢&E3
S e s EE 8 238582568 Solution method
This work Chap. 4 . e o o o o o Tabu search
This work Chap. 5 . e o o o ° o Iterated tabu search
This work Chap. 5 e o e o o o o o Iterated tabu search
(EI Fallahi; PRINS; Wolfler Calvo, 2008) . e o o o . Memetic and Tabu search
(El Fallahi; PRINS; Wolfler Calvo, 2008) o o o o o o . Memetic and Tabu search
(MUYLDERMANS; PANG, 2010) o o e o o o Metaheuristic
(DERIGS et al., 2010) o o e o o o . General heuristic
(REED; YIANNAKOU; EVERING, 2014) . e o o o Ant colony algorithm
(ABDULKADER; GAJPAL; ELMEKKAWY, 2015) . e o o o o o Hybrizided ant colony algorithm
(SETHANAN; PITAKASO, 2016) . . o o . o o Exact algorithm and metaheuristic
(MENDOZA et al., 2010) . o o o o . o o Memetic algorithm
(OPPEN; KKETANGEN, 2008) . . . e Tabu Search
(LAHYANI et al., 2015) o o o o . . e Branch-and-cut algorithm
(COELHO; LAPORTE, 2015) e o o o o o . . . Exact algorithms
(COELHO; LAPORTE, 2015) o o o o o . . . Exact algorithms
(COELHO; LAPORTE, 2015) . o o o o . . . Exact algorithms
(COELHO; LAPORTE, 2015) . e o o . . . Exact algorithms
(DERIGS et al., 2010) o o o o . General heuristic
(CORNILLIER et al., 2008) e o o o o . o o Exact algorithm
(AVELLA; BOCCIA; SFORZA, 2004) o o . e o o o o Heuristic and exact approach
(ELBEK; WG@HLK, 2016) o o o o o . . e Variable neighborhood search
(HENKE; SPERANZA; WASCHER, 2015) e o . . Variable neighborhood search

3.2 Problem Definition

The MCVREP is a variation of the VRP where the fleet consists of identical vehicles
with multiple compartments and the customers have demands for different products. We
are given a set of locations V' = {4} UV, where V}, is the depot, and V. = {V},...,V,,}
is the set of customers. Each pair of locations 4, 7 € V has a travel time d;;. We assume
symmetric travel times (d;; = dj;;). Each customer may have additionally a drop time
t;, 1.e. the time needed to load or unload the demand. There are m different types of
products P = [m]' , and a fleet of identical vehicles with m compartments, dedicated
to the different products, with capacity C' € R™. Each customer ¢ € V, has a demand
¢; € R™, and we assume ¢; < C'. A valid route of a vehicle starts and ends at the depot and
visits a number of customers. There is no constraint on the number of visited customers
per route, but a customer may be visited several times in different routes. Formally, a visit
is a pair v = (V(v), P(v)) € V. x 27 of a customer V' (v) and a set of product types
P(v), and a route is represented by an ordered subset R = {vy,...,vyp)} of visits of
length [(R). The set of visited customers of aroute is V' (R) = {V (v) | v € R}, the set of
attended client-demand pairs P(R) = {(V;,p) | V; € V,p € P,(V;, P) € R}. The total

"We use the notation [n] = {1,2,...,n}.
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time of a route is

d(R) = dVO,V(m) + Z dV(vi)7V(vi+1) + dV(”z(R)%Vo + Z L

1<i<i(R) i€V(R)

and its demand is ¢(R?), where c¢(R), = 3 i) p(ri)=p Crin-

We want to find a set of valid routes s = {Ry,..., R,} that partition the set of
client-demand pairs (P(R;) N P(R;) = 0 for all 4,5 € [r], and Uiy P(R;) = V4 x
P) satisfying the capacity constraints ¢(R;) < C, and such that the total time d(S) =
> _icj A(R;) is minimized. The total time travelled by each vehicle must not exceed a
maximum time D. There is no limit on the number of routes. For m = 1 the problem
reduces to the standard CVRP.

In the MCVRP a customer may be visited up to m times, one for each product
type, but the demand of a product must be attended in one visit. Different from the classi-
cal VRP, the fleet size is not upper bounded. In the taxonomoy of (COELHO; LAPORTE,
2015) for fuel delivery problems, the MCVRP would be classified as as split compart-
ments and unsplit tanks (i.e. product demands).

This is the same problem definition as used in (El Fallahi; PRINS; Wolfler Calvo,
2008). (MUYLDERMANS; PANG, 2010) and (DERIGS et al., 2010) have only one
difference which is that they do not consider the total travel time constraint (D), but this
is not a significant difference because most of the instances do not have this restriction.
In (DERIGS et al., 2010) the authors consider also with other variants where the vehicle
compartments are not dedicated to a single product, thus they define incompatibilities
between products (products that must not be transported together) and between products

and compartments (products that must not be transported in some specific compartment).

3.3 Mathematical Model

The MCVRP can be modeled as an integer linear program as follows. The deci-

sion variable z;;;, indicates that vehicle % visits arc (7, j), and the decision variable y;y,
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indicates that the demand for product p of client j is attended by vehicle .

minimize Z Z dijxijka (31)

1,j€V kelr]

subject to injk <1, Vi eV, Vk € |[r], (3.2)
eV
injk = Zl’jik, \V/] - V,]{? - [T], (33)
iev iev
> wpe < I8 -1, VSC VS| >2kelr], (34
i,jes
Yikp < Zfﬁjik, VieVikelrl,peP, (3.5)

eV

> i =1, VieVipeP, (36
kelr]
> ciiry < Gy, Vk € [r],Vp € P, (3.7)
JjeVL
> (dij + )z < D, VE € [r], (3.8)
ijEV
2k € {0,1}, Vi,j eV, kelr, (3.9)
Yjkp € {07 1}7 vj S V+7k € [T]ap € Pp. (3.10)

In this formulation we minimize the total travel time (3.11). By constraint (3.12)
every customer can be visited at most once per route. Constraint (3.13) establishes route
flow conservation, and constraint (3.14) eliminates sub-routes that do not include the de-
pot. Constraint (3.5) couples routing variables x to demand variables y. Constraints (3.6)
guarantee that client’s demand for a product is attended by a single visit. The capacity and
total length constraints are guaranteed by (3.15) and (3.16). Solving this model directly
is unpractical due to the exponential number of constraints (3.14), but it can be solved by

branch-and-cut methods.

3.3.1 Problem definition for the MCVRP-WS

In this work we also study a less general variant of the MCVRP that is the single
visit MCVREP, also called as the MCVRP without splitting (MCVRP-WS) by (EI Fallahi;
PRINS; Wolfler Calvo, 2008). The MCVRP-WS is a variation of the MCVRP where the
client demand for all product types must be attended in one single visit. The MCVRP-WS
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can be formulated as follows. Let x;;;, indicate that vehicle & travels from: € Vtoj € V.

Then we want to

minimize ) (di; + )z, (3.11)
1,JEV ker]

subjectto ) ) =1, Vie VA {V}, (3.12)
i€V ke(r]
D @i =Y @ VieV,kelr], (3.13)
eV eV
> e <|SI -1, VS CV\{W}I|S| >2,kelr], (3.14)
1,JES
Z cizijr < C, Vk e lr], (3.15)
i,JEV
Z dz‘jl'ijk <D, Vk € [’I“], (3.16)
i,JEV
2 € {0, 1}, Vi,jeVikelr]. (3.17)

In this formulation we minimize the total travel time (3.11). By constraint (3.12)
every customer has to be attended exactly once in some route. Constraint (3.13) estab-
lishes flow conservation, and constraint (3.14) eliminates subroutes that do not include
the depot. The capacity and total length constraints are guaranteed by (3.15) and (3.16).
Note that constraint (3.15) is vector-valued and will be expanded into m separate con-
straints, one for each product type. Solving this model directly is unpractical due to the
exponential number of contraints (3.14).

This problem was studied in the literature by three papers (El Fallahi; PRINS;
Wolfler Calvo, 2008), (REED; YIANNAKOU; EVERING, 2014) and (ABDULKADER;
GAJPAL; ELMEKKAWY, 2015) that we will explain in the following sections.

3.4 Instances

The test instances are based on instances proposed by (CHRISTOFIDES; MIN-
GOZZI;, TOTH, 1979) and (GOLDEN et al., 1998), which are two of the most common
data sets for the VRP (LAPORTE; ROPKE; VIDAL, 2014). For further details about the
CVRP instances see section 2.2.

An instance for the CVRP is transformed into an instance for the MCVRP by a

strategy that divides the vehicle’s capacity into compartments, and the demand of the
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customers into demands for different products. We use four division strategies S1-S4 in
our tests. Strategies S1 and S2 have been proposed by (El Fallahi; PRINS; Wolfler Calvo,
2008). Strategies S3 and S4 apply only to the CMT instances, and have been proposed
by (REED; YIANNAKOU; EVERING, 2014). Strategy S1 divides the capacity of the
vehicle and the demand of each customer into m equal parts where m is the number of
compartments. For these instances a solution of the corresponding VRP is also a solution
for the MCVRP instance. If we do not allow split demands, the optimal solutions are
the same. Therefore, these instances are mainly useful for evaluating the advantage of
allowing to visit a customer multiple times, and for testing the scalability of the algorithms
with respect to the number of compartments.

Strategy S2 divides the demands of CVRP instances unevenly. For each customer
1 € V4 with a demand of ¢; in the corresponding VRP, the demand for the first product
is ¢;1 = ¢;/k, for arandom k € {3,4,5}, and the demand for the second product is the
remainder c;» = ¢; — ¢;1. To define the capacity of the compartments of the vehicles, let
D; be the average demand for the first product, and D, the average demand for the second

product. Then the capacity of compartment p € {1, 2} is set to
Cp = Cbp/(ﬁl +b2)

Strategy S3 divides the vehicle’s capacity into two compartments in a ratio of
3:1. The customer demands are divided using a 3:1 ratio, except the demands of the
sub-region 0 < z,y < 35, which are divided using a 2:1 ratio. Strategy S4 is similar,
but divides vehicle compartments and customer demands using a 4:1 ratio, except for
region mentioned above, which maintains a 2:1 ratio. Strategies S3 and S4 apply only to
the CMT instances, since they assume that the client’s coordinates lie within the square
[0, 100)2.

(MUYLDERMANS; PANG, 2010) have proposed another set of instances to ex-
plore the benefits of co-collection. The instances are randomly generated varying the
number of customers (n=30, 100 and 300), number of product types (k=2, 3, and 4), the
compartments capacity and the customers demands. The instances are Euclidean 100x100
square. The location of the depot can be in the lower left corner or in the middle of the
square, while the customers can be uniformly distributed or concentrated in the upper

right 50x50 area.
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3.5 State-of-the-art Heuristics

Although the MCVRP is practically relevant, the problem variant defined above
is not widely studied. The previous examples are all motivated by multiple compart-
ments, but, as shown in Table 3.1, have varying characteristics, such as free assignment
of products to compartments (OPPEN; KKETANGEN, 2008; CORNILLIER et al., 2008;
COELHO; LAPORTE, 2015), time windows (CORNILLIER et al., 2008), stochastic de-
mands (MENDOZA et al., 2010; ELBEK; W@HLK, 2016), or multiple planning pe-
riods (AVELLA; BOCCIA; SFORZA, 2004; LAHYANI et al., 2015; COELHO; LA-
PORTE, 2015). To the best of our knowledge, only (EI Fallahi; PRINS; Wolfler Calvo,
2008), (DERIGS et al., 2010), (MUYLDERMANS; PANG, 2010), (REED; YIANNAKOU;
EVERING, 2014), and (ABDULKADER; GAJPAL; ELMEKKAWY, 2015) study the
MCVRP.

(EI Fallahi; PRINS; Wolfler Calvo, 2008) is the first study in the literature about
the MCVRP. They were motivated by the distribution of cattle food to farms, where the
different feeds are kept separate to avoid contamination. They have proposed a Memetic
algorithm, a Tabu search and a set of instances that will be used in further studies. In
(MUYLDERMANS; PANG, 2010) the authors have studied the MCVRP and benefits of
co-collection presenting several cases where it saves costs compared to separate collec-
tion. They have proposed a guided local search that present very good results in instances
with only one product type, but for instances with two or more products the solution qual-
ity decrease quickly. For this reason, they conclude that or the MCVRP is more difficult or
there is good room for improvements in their algorithm. This question is other motivation
for our work. (DERIGS et al., 2010) present a set of generic heuristics for the MCVRP
and variants and they compare their results against the other two papers. (REED; YIAN-
NAKOU; EVERING, 2014), and (ABDULKADER; GAJPAL; ELMEKKAWY, 2015)
are two complementary work about a ant colony algorithm for the MCVRP-WS.

In this section we present in more details these heuristics that are the state-of-the-

art for the MCVRP.

3.5.1 Memetic Algorithm

The memetic algorithm (MA) for the MCVRP described here was proposed by (El
Fallahi; PRINS; Wolfler Calvo, 2008). The MA is a genetic algorithm hybridized with a
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local search procedure used to intensify the search. They use a population of constant size
so each offspring obtained by crossover immediately replaces one existing solution. The
GA use the elitism property it means that the best solution is either preserved or improved.

The chromosome is represented as a string of demands, then for a instance of n
customers and m products the chromosome will have nm genes. In this representation
the chromosome can be seen as giant tours (BEASLEY, 1983) performed by a vehicle of
infinite capacity. To obtain a complete solution this representation is split into tours and
product demands are aggregated such that each client is visited only once.

The initial population is generated by two techniques. The first half is generated
by the random permutation of customers. The other half is generated by a constructive
heuristic that generates a VRP solution for each product using the savings algorithm of
(CLARKE; WRIGHT, 1964), randomizes these solutions and combines them to solutions
for the MCVRP.

They use a classical TSP crossover, where two chromosomes P, P, and two cut-
ting points ¢ and j are chosen by random. The new solution is formed by customers
from index ¢ to 7 from solution P; and the remain customers are from solution P, swept
circularly from index j + 1.

The local search is applied with a fixed probability to improve the new solution. It
operates in a complete solution with delimiters obtained by the splitting procedure. Adja-
cent demands from the same customer in a route are called aggregate. In the local search
is not allowed to split aggregates, it only happens in the crossover. The neighborhood
combines 2-opt moves and the relocation of a single demand or all demands of a client
to another tour. The first-improvement strategy is used. The resulting solution replaces a

random solution of the worse half of the population, if it is fitter than the worst individual.

3.5.2 Tabu Search

In (El Fallahi; PRINS; Wolfler Calvo, 2008) the authors also have proposed a tabu
search for the MCVRP. The tabu search starts from a initial solution using the same con-
structive algorithm used in the MA, as well the same local search to improve the solution.
Different from the MA, it relaxes the capacity and length constraints during the search
allowing infeasible solutions. Those infeasible solutions are penalized in the objective
function using a classical criteria for the VRP proposed by (GENDREAU; HERTZ; LA-
PORTE, 1994).
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To avoid loop back to already visited solutions they use the short-term memory
strategy as tabu list. A move is tabu, if it inserts an arc back into the solution that has
been removed less than the tabu tenure © iterations ago. The tabu tenure is decreased
or increased dynamically according to the solution quality to intensify or diversify the
search. For diversification their algorithm uses also dynamic restarts, and splits the route
of maximum capacity and length excess if no progress to feasibility is made. The latter
mechanism is also the only way to split demands of a customer, which were not allocated
to different routes in the initial solution. In average the tabu search performs better then

the MA.

3.5.3 Guided Local Search

(MUYLDERMANS; PANG, 2010) propose a guided local search for the MCVRP
and demonstrate the cost savings of co-collection and -delivery compared to single-product
vehicles in several applications.

The algorithm starts with an initial feasible solution obtained by applying the sav-
ings algorithm of (CLARKE; WRIGHT, 1964), this solution in subsequently improved
with a local search phase combined with a guided local search (GLS) to improve the
solution quality. The GLS is a penalty based heuristic, the distance matrix is modi-
fied by penalising long distances between two consecutive stops in the current solution
(VOUDORIS, 1997). Each combination of customer-product is defined as stop in the so-
lution representation. Thus, a route is composed by stops and in a valid solution all stops
must be visited.

The local search use the first improvement strategy and explores four well-known
neighborhood moves: 2-opt, relocate, exchange and cross.

To speed up the search procedure their algorithm do not examine the full neigh-
bourhood. For each stop s; a list of the nearest other stops is created in a non-decreasing
order. Then, only moves containing these stops are evaluated. The local search also allow
the search in infeasible solutions with a penalization procedure.

They find very good results (0.79% above best known values) using classical VRP
set of instances with only one product type and single compartment. But for instances
with 2 compartments their results are 3 times worse (2.7% above best known values). The
authors conclude that MCVRP is more difficult or their algorithm still has some room for

improvements.
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To demonstrate the benefits of the co-collection they compute the routing cost for
co-collection and for separate collection using the last set of instances described in section
3.4. To evaluate the separate collection a CVRP is solved for each commodity using the
vehicle total capacity. Their results show that the co-collection take advantages over the
separate collection specially in cases when the number of commodities is higher and in

large vehicle capacity.

3.5.4 General Heuristic for the MCVRP

(DERIGS et al., 2010) study the vehicle routing problem with compartments (VRPC),
which generalizes the MCVRP to flexible compartments, and the allocation of several
products to a compartment, subject to product-product and product-compartment incom-
patibilities. They present a suite of heuristic algorithms including constructive meth-
ods, local searches, solution modification by destruction and reconstruction, and meta-
heuristics. Individual components and seven global configurations were tested on 200
instances. The best combination uses the savings method of (CLARKE; WRIGHT, 1964)
to create an initial solution, and several neighborhoods based on k-opt and the removal
and re-insertion of product demands. The best performing metaheuristic was record-to-
record-travel accepting solutions with a relative deviation from the incumbent of up to

3%.

3.5.5 Ant Colony Algorithm

(REED; YIANNAKOU; EVERING, 2014) present an ant colony system (ACS)
for the MCVRP-WS. In each phase a number of ants equal to the number of clients con-
struct feasible tours. Each time no client can be added to the current tour, a new tour
starts from a random unvisited client. At the end of each phase the dynamic preferences
for a transition from a client to a successor are updated according to standard ACS rules.
The tours are improved a a 2-opt local search. The algorithm preprocesses instances by
clustering them using a modified £-means algorithm, that maintains the clusters balanced
with respect to the capacity of the vehicles. The ACS then is applied to each cluster

independently. The authors evaluate the algorithm on five exemplary instances.
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3.5.6 Hybridized ant colony algorithm

(ABDULKADER; GAJPAL; ELMEKKAWY, 2015) build on the work of (REED;
YIANNAKOU; EVERING, 2014) to create a hybridized ant colony algorithm (HAC).
The authors adds a different initialization that sets the dynamic preferences to D! for the
total length D of a random initial solution, and add two neighborhoods to the improvement
by local search after the construction via the ACS. The first inserts a customer into a
different position in the same or another route, the second swaps to customers from the
same or different routes. Experiments suggest that these changes improve the solutions

of (REED; YIANNAKOU; EVERING, 2014) by about 5 %, in average.

3.6 Conclusion

In this chapter we have presented the multi-compartment vehicle routing problem
(MCVRP) that introduces the co-collection or co-delivery of different types of products
to the classical CVRP. This problem have a large range of applications for logistics in
different industries. The petrol distribution and waste collection systems are the appli-
cations with more studies in the literature, but these problems have specific constraints.
The MCVRP that we presented here with the mathematical model still is not well stud-
ied in the literature. We have given an overview of the state-of-the-art heuristics and we

conclude that this problem have space for improvements.
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4 A TABU SEARCH FOR THE MCVRP-WS

In this chapter we propose a tabu search for the MCVRP-WS. The following sub-
section presents our constructive heuristic used to generate de initial solution and in sec-

tion 4.2 we present the tabu search in detail.

4.1 A savings method for the MCVRP-WS

To generate an initial solution we modified the savings heuristic proposed by
(CLARKE; WRIGHT, 1964).

The generalization to the multi-compartment and time-restricted case is straight-
forward. We consider a join only feasible if the combined route still satisfies the time
and each compartment capacity constraints. A initial solution of good quality has shown

experimentally to be important to get better final results for the problem.

4.2 Tabu search

The Tabu search meta-heuristic has been proposed by Glover and is a heuristic
based on modification of a solution (see (GLOVER; LAGUNA, 1997)). For a search
space S and a neighborhood function N : S — 29 it starts from some initial solution,
repeatedly passes from the current solution s € S to a neighboring solution s € N(s)
until some stopping criterion is satisfied. Similar to local search, Tabu search chooses a
neighbor of better objective function value, until no such neighbor exists. In standard Tabu
search, one of the best such neighbors is chosen. Otherwise, the best neighbor which has
not been declared tabu is chosen. The tabu mechanism is a short-term memory designed
to avoid cycling in local minima and to diversify the search. Commonly, some attributes
of recently visited solutions are declared tabu for a number of steps, called the fabu tenure,
and a solution is considered tabu if it has some tabu attribute. Attributes may be elements
of solutions, e.g. an arc visited by some vehicle in a solution of a VRP, or complete
solutions. Tabu search also frequently includes so-called aspiration criteria, i.e. rules
that allow neighboring solutions to be chosen even if they are tabu. After stopping, Tabu

search returns the best found solution during the search.
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4.2.1 Neighborhoods and tabu mechanism

We use four different neighborhoods in our Tabu search. They are defined in
terms of moves types, i.e. modifications of the current solution to obtain some neighboring
solution. A shift move removes some customer from his current route, and inserts him into
an arbitrary position in some other route; a swap move selects two customers in different
routes, and exchanges their positions, i.e. the first customer is inserted into the second
route in place of the second customer and vice versa. A crossover move selects two

customers in two different routes, and combines the initial and final parts of the routes

to obtain two new routes. For routes R = {ry,72,...,ryr)} and S = {s1,52,..., 59}
selecting customers 7; and s; produces new routes R’ = {ry,...,7_1,5j,..., SZ(S)} and
S" = {s1,...,8j-1,74,...,7yr)}. Finally a route swap move selects two customers in a

route and swaps their positions.

The Tabu search examines all moves in the presented order (shift, swap, crossover,
and route swap). Within a move category, routes are always visited in a random order, and
customers always in order of the route. We consider only feasible solutions that respect
the capacity and length constraints. The number of examined route swap moves has been
limited to min{n?/4,250}. The search adopts a first improvement strategy, accepting
the first non-tabu neighbor which is better than the current solution, or the best non-tabu
neighbor, if no better one exists. Ties among several best neighbors are broken in favour
of the first best neighbor. The only aspiration criterion is to accept tabu solutions that
improve the incumbent.

To define the tabu rules, we consider a given customer being part of some route
as a solution attribute. For any of the move types, a client that has been moved from
some source route is prohibited to return to that route during the tabu tenure. In some
preliminary experiments we have fixed the tabu tenure at 15 steps.

Algorithm 2 shows a pseudo code of the proposed Tabu search.

4.3 Computational Results

The Tabu search has been implemented in C++ and tested on a PC with an AMD
FX-8150 Eight-Core processor running at 3.4 GHz, and with 32 GB of main memory.
For the tests only one core has been used. The algorithms were tested with classical

VRP instances and multiple compartments generated from existing VRP instances since
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Algorithm 2 Tabu search pseudocode

Input: Current solution s.
Output: A local minium s*.

1:

s* 45 > initialize the best solution with current
2: while timeout do
N’ < worstpossiblesolution > initialize best neighbor as worst possible

24:

solution

improved <+ false > flag to stop neighbor search when a neighbor better then s

is found

if limproved then
improved < try All ShiftMoves(s*,s, N')
end if
if limproved then
improved < try All SwapMoves(s*, s, N')
end if
if limproved then
improved < try All CrossOver Moves(s*, s, N')
end if
if limproved then
maxMoves < min(n?/4,250)
while !maxMoves & limproved do
improved = RouteSwapMove(s*, s, N')
end while
end if
update T'abu List with most recent move
if N/ < s* then
s*« N’
end if
s+ N’

25: end while
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we were not able to find publicly available MC-VRP instances. This section shows the
obtained results and compares them against (El Fallahi; PRINS; Wolfler Calvo, 2008)
and (REED; YIANNAKOU; EVERING, 2014), which are, to our knowledge, the only

publications which address the same problem.

4.3.1 Analysis of the results

The results obtained in our tests are reported in Tables 4.1 and 4.2. Table 4.1 shows
the results obtained on instances sets S1 (one comparment), S3, and S4. Each instance
of the set was executed ten times with the same parameters and a different random seed.
We present for each instance the best known value of the VRP case (column “BKV”’) and
the solution obtained by the constructive method of Clarke and Wright (column “C/W”).
For the Tabu search we report the average relative deviation from the best known value
(column “TS”), the average time in seconds to find the best solution (column “T (s)”) and
the relative deviation of the best solution in all ten replications from the best known value
(column “Best”). The results have been obtained with a time limit of n?/100 seconds,

where n is the number of customers of the instance.

Table 4.1: Results of the constructive heuristic and the Tabu search on instance sets S1,
S3, and S4 compared to best known values of the VRP.

S1 S3 S4
Name BKV CW TS T() Best C/W TS T(s) Best C/W TS T (s) Best
CMT1 5246 114 2.1 100 0.6 188 5.6 9.7 50 178 6.2 13.3 438
CMT2 8353 8.6 6.8 244 54 102 7.6 277 57 132 88 258 8.0
CMT3 826.1 7.6 40 686 2.0 10.8 8.8 585 69 13.0 7.1 714 6.6
CMT4 10284 109 6.1 1449 48 174 129 169.5 109 186 13.5 1829 11.6
CMT5 12914 8.1 6.8 2658 6.2 132 124 300.1 12.1 162 14.0 3259 13.6
CMT6 5554 113 1.3 146 06 109 5.5 146 4.0 109 4.1 105 1.2
CMT7 909.7 72 44 351 34 70 48 332 3.0 74 57 21.8 45
CMTS 8659 125 52 758 3.6 150 8.8 70.1 6.0 15.0 8.0 70.6 5.2
CMT9 11625 108 7.0 191.0 56 140 109 1217 93 127 89 167.1 6.6
CMTI10 13958 102 7.8 2664 6.7 139 106 2804 90 139 11.3 3182 10.5
CMTI11 1042.1 25 25 00 25 70 64 728 6.0 23.0 203 108.3 16.0
CMTI12 819.6 1.7 09 22 09 122 84 70.2 6.7 19.7 17.2 62.7 16.6
CMT13 1541.1 33 1.5 757 1.0 33 14 846 1.1 33 1.5 68.6 14
CMT14 8664 1.1 09 107 08 64 4.7 30.7 45 16.6 128 522 124
E072-04f 2419 59 42 156 22 115 94 404 85 9.6 96 26 92
E076-07u  690.8 69 2.9 204 22 63 4.0 343 29 11.0 5.7 36.5 4.6
E076-08s  742.6 7.0 2.9 286 1.8 96 7.1 209 55 123 84 36,6 5.6
E135-07f 11629 48 27 1016 25 60 5.0 829 50 147 13.8 1003 13.8
E241-22k  666.8 14.8 13.4 421.0 129 23.1 220 449.7 21.5 26.7 244 4858 23.7
E484-19k 11372 11.8 8.9 20566 8.6 17.6 16.1 2117.0 159 174 13.8 20234 133
Average 9153 79 46 1915 3.7 11.7 86 2045 75 147 108 2092 9.5
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In the results of set S1 we can see that our algorithm is not far from the classical
VRP solutions with results 4.6% worse in average, although it has not been designed for
this problem. The results obtained for set S3 show that splitting the vehicle capacity and
the customers demands in different ratios makes different routes necessary to attend all
customers. This happens since one of the compartments can get full and forces the vehicle
go back to depot even when other compartment still has a residual capacity. The solution
of set S3 are in average 8.6% above the best-known values for the VRP. (Note that the
optimal values in this case are probably higher than the best known values for the VRP.)

Looking at the results of instance set S4 we can see that when splitting the com-
partments in a more unbalanced way cause the total time of the routes tends to increase,
which results in solutions with more routes. In this instance set, the solutions are on av-
erage 10.7% worse than the best-known values for the VRP. We can also notice a slight
increase in the average time to find the best value from 204.45 to 209.23 seconds.

(REED; YIANNAKOU; EVERING, 2014) present results only for the instance
CMTI with vehicle capacity and customers demands split in the same way as instance
sets S3 and S4. They have obtained a total route length of 560.74 and 564.04 for split-
ting methods S3 and S4, respectively. For these instances we were able to improve their
results. We obtain a total length of 553.76 in average for splitting method S3, and a total
length of 556.91 in average for splitting method S4. The best found solutions were with
total length of 550.62 for splitting method S3 and 549.51 for splitting method S4.

In Table 4.2 we report the results for instance set S2 and compare them with the
results of (El Fallahi; PRINS; Wolfler Calvo, 2008). For each instance the table reports the
best known value obtained by (EIl Fallahi; PRINS; Wolfler Calvo, 2008), and the relative
deviations from this best known values in percent (columns “Cost”) and the time to find
them (columns “Time”) for their Memetic Algorithm (MA) as well as their Tabu search
Algorithm (TS). These are the only known results for this set of MC-VRP instances. The
last two columns give the same results obtained by running our Tabu search algorithm
ten times for each VRP instance with demands and capacities randomly generated as
described above for instance set S2. The times reported are total execution times. In
our case the execution time has been limited to n?/300 seconds, for an instance with n
customers. This time has been chosen to provide a fair comparison, considering that the
results of (El Fallahi; PRINS; Wolfler Calvo, 2008) have been obtained on a Pentium
4 processor running at 2.4GHz. This processor is about a factor two slower than the

processor of our machine. The comparison is further complicated by the fact that (EI
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Fallahi; PRINS; Wolfler Calvo, 2008) report the result of only a single random instance.
In our experiments we have found a considerable variation of the results for different

demand splittings of the same instance.

Table 4.2: Results of Tabu search on instances S2 compared to (El Fallahi; PRINS;
Wolfler Calvo, 2008).

(El Fallahi; PRINS; Wolfler Calvo, 2008) This work

MA TS
Name BKV Cost Time(s) Cost Time(s) Cost Time(s)
CMTI1 556.1 0.5 174 0.0 153 -1.8 8.3
CMT2 863.6 2.9 255 00 13.9 0.9 18.5
CMT3 837.6 4.9 21.8 0.0 39.8 1.4 33.0
CMT4 1070.7 1.7 939 0.0 109.7 2.0 74.3
CMT5 13614 3.5 1159 0.0 208.4 2.3 130.7
CMT6 563.4 1.1 16.5 0.0 102  -0.8 8.3
CMT7 949.0 0.6 39.2 0.0 220 -0.5 18.5
CMTS8 916.2 4.7 187 0.0 183 -1.6 33.0
CMT9 1262.7 0.0 98.7 2.2 8.6 -4.2 74.3
CMT10 1490.2 1.3 140.2 0.0 190.3 0.2 130.8
CMT11 11229 0.0 478 7.0 27.9 1.8 47.5
CMT12 926.5 0.0 182 0.8 15.8 -44 33.0
CMT13 15424 0.0 764 2.6 21.9 1.1 47.5
CMTI14 966.5 0.0 233 18.1 357 -3.5 33.0
E072-04f 2623 0.5 1.7 0.0 56 -12 17.0
E076-07u  697.8 0.6 15,1 0.0 16.5 0.0 19.1
E076-08s 7722 2.8 154 0.0 13.9 1.6 19.1
E135-07t 12332 0.0 473 0.2 51.9 1.6 59.1
E241-22k  787.8 1.1 504.5 0.0 202.9 -1.5 190.2
E484-19k 11773 54 1643.6 0.0 2122.5 5.6 770.6
Average 9680 1.6 1496 1.5 157.6 -0.05 88.3

On average, our tabu search is able to find results that are about 1.5% better than
those of (El Fallahi; PRINS; Wolfler Calvo, 2008) in a comparable time. The actual
differences in solution quality may vary for the instances used in the experiments of (El
Fallahi; PRINS; Wolfler Calvo, 2008), but we observe that in 10 of the 20 instances our
method consistently obtains equal or better solution values, so we expect this result to
be robust. Our results show that a much simpler Tabu search can obtain comparable
results, but also show that there is still a potential for an improvement. Another interesting
observation is that the overall gain of about 1.5% is of the same order of the improvement
that (El Fallahi; PRINS; Wolfler Calvo, 2008) obtain by allowing the splitting of routes,
i.e. the demand of a customer for different product types can be satisfied by multiple

vehicles.
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4.4 Conclusion

We have proposed a constructive heuristic based on the savings method of (CLARKE;
WRIGHT, 1964) and a Tabu search to the MCVRP-WS. We have presented results for
twenty different VRP instances on four different sets of MC-VRP with instances of two
compartments. Our algorithm has generated good results compared to existing algo-
rithms, but still has potential for improvement in performance and neighborhood ex-
ploration. It would be interesting, in particular, to find a heuristic which combines the
advantages of our approach and that of (EI Fallahi; PRINS; Wolfler Calvo, 2008) and to
study the potential gain of our method by allowing the satisfaction of customer demand

for different product types in separate routes.
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5 AN ITERATED TABU SEARCH FOR THE MCVRP

The heuristic we propose to solve the MCVRP is inspired by the iterated tabu
search (ITS) algorithm for vehicle routing problems of (CORDEAU; MAISCHBERGER,
2012), which is considered one of the best performing metaheuristics for the CVRP (VI-
DAL et al., 2013). (CORDEAU; MAISCHBERGER, 2012) introduce a general heuristic
that is applicable to periodic, multi-depot, or side-dependent VRPs and their variants with
time windows.

An iterated tabu search (ITS) starts from some local minimum and repeatedly
applies a perturbation to escape from it followed by a tabu search to find another local
minimum, until some stopping criterion is satisfied. An acceptance criterion decides if
the new local minimum is accepted, or the search continues from some previously visited
solution. The initial local minimum can be obtained by applying any local search to
an initial solution. An ITS can be seen as a generalization of an iterated local search,
replacing the local search by a tabu search.

Our ITS is detailed in Algorithm 3. It constructs an initial solution, and applies the
tabu search to it. Then, for I iterations, the ITS perturbs the current solution and applies
the tabu search. At the end of iteration ¢ the new solution is accepted with probability
1 — (i/I)*. Otherwise the search continues from the incumbent s*, which is updated
during the search (not shown in the algorithm), and returned at the end. The acceptance
criterion was chosen to diversify the search at the beginning and intensify it around the
best solution towards the end.

We represent a route by a sequence of visits, where in each visit a vehicle attends
the demand of one or more products of a client. A client can be visited several times in
different routes, but at most once per route.

The initial solution is the better of two constructions. The first is the angular sweep
algorithm of (WREN, 1971; GILLETT; MILLER, 1974). We use a backward-sweep and
insert single demands into the current route. If an insertion violates the length or capacity
constraints a new route is created, unless the limit of the number of routes is reached.
In this case all the remaining customers are inserted into the last route. The second is
the savings method of (CLARKE; WRIGHT, 1964) which has been extended to handle
multiple compartments. For the case of split demands, Clarke and Wright’s algorithm
works on each demand separately.

To perturb a solution a random client is chosen and removed from its route, to-
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Algorithm 3 Iterated tabu search
1: function ITS()

2: s < better of sweepConstruction(), ClarkeWrightConstruction()
3 s < tabuSearch(s)

4 fori:=1,..., 1 iterations do

5: s’ < perturb(s)

6: s < tabuSearch(s’)

7: with probability (i/1)?: s < s*

8: end for

9:

return the best solution s* found during search
10: end function

gether with its 7 nearest neighbors, where for each perturbation 7 is randomly chosen in
[0, [v/n]]. The removed clients are reinserted in a random order into the solution. Each
client is inserted into the route and position within the route which minimizes the increase
in the total routing cost.

We use the generalized insertion procedure (GENI) proposed by (GENDREAU;
HERTZ; LAPORTE, 1992) for the traveling salesman problem and widely used in VRP
heuristics to insert visits into routes or remove visits from routes. Together with the
insertion or removal of a vertex, GENI applies a subset of 3-opt and 4-opt moves to the
route. The selection of the edges in these moves is limited to contain one of the g-nearest
vertices of the vertex to be inserted, and has time complexity O(ng* + n?). We apply
GENI only when a complete visit is inserted or removed from a route. If a single product
demand is added to an existing visit or removed from a visit which attends other demands
GENI is not applied, since the route does not change.

We explain the tabu search algorithm next.

5.1 Tabu search algorithm

Tabu search is a meta-heuristic which guides a local search through the search
space. It allows non-improving moves and avoids cycling by storing recent moves in a
short-term memory and declaring moves that return to previous solutions tabu (GLOVER;
LAGUNA, 1997). It is one of the most successful heuristics for vehicle routing prob-
lems (CORDEAU et al., 2002). The performance of a tabu search depends on the neigh-
borhood structure, the handling of unfeasible solutions, and the design of the short-term
memory.

The proposed tabu search starts from some initial solution and repeatedly moves
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Algorithm 4 Tabu search.

Input: A solution s.
Output: A local minimum s*.

a1, 1
2: while the incumbent improved in the last /(I — 4)7 iterations do
3 s <— bestShiftMove(s)
4 Every n, iterations: s <— refinement(s)
5: updatePenalties(«, )
6
7
8

updateTabuList()
. end while
: return s*

to the best non-tabu neighbor. Every n, iterations a refinement procedure is applied to
the current solution. The current solution may exceed the capacity or length constraints.
For a set of routes s = {Ry,..., R, } we define its time (or distance) excess D" (s) =
> res max{d(R) — D, 0}, and its capacity excess C* = >, max{max;cjm Ac;, 0},

for Ac = ¢(R) — C. The objective value of solution s then is
F(s) = d(s) + aC"(s) + D™ (s)

where o and [ are penalties for each unit of capacity and time excess. Initially, o =
B = 1. Every time the current solution exceeds the capacity or time constraints, the
corresponding penalty is increased by a factor 1 4 v; otherwise it is decreased by a factor
1 —~. The value of  is chosen uniformly randomly in [0, 1] at the start of the tabu search.
If the value of the incumbent s* does not improve for \/m iterations the search
stops. Algorithm 4 summarizes the main steps of the tabu search.

In the following sections we present the neighbourhood and the tabu list, the di-

versification strategy, and the intra-route refinement procedure.

5.1.1 Neighbourhood and tabu list

The neighborhood consists of a single kind of move: relocating a non-empty sub-
set of the demands of a visit to another route. A move is defined by a tuple (s, d, v, p),
where s is the source route, d is the destination route, v € s is a visit in the source route,
and p C P(v) is a subset of the demands attended by visit v.

If the subset p contains all demands, visit v is removed entirely from the source

route s, and the GENI procedure is applied to optimize the source route. Otherwise,
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Figure 5.1: Example of a move which creates a new visit in the destination route (left)
and a move where the visits already exists in the destination route.

the visit is split into two demands. Demands P(v) \ p remain in visit v in the source
route s, which does not need to be optimized. The selected demands p are inserted into
the destination route d. If client VV(v) does exist in the destination route, demands p(v)
are simply added to the existing visits, and the route does not need to be optimized.
Otherwise, a new visit (v(V), p) is created and inserted into the destination route. In this
case the GENI procedure is applied to optimize the destination route. Figure 5.1 illustrates
a move of all demands of a visit, and a move of a proper subset. GENI insertion procedure
is applied in the moves a, b, ¢ of the example in the left side. GENI removal procedure is
applied in the move a of the example on the left side and in the move c in the example on
the right.

A move is limited to insert the demands into a few nearest routes. A list of nearest
routes is maintained for each client 7. Let v be the total number of visits of the current
solution, and d = d(s)/v the average distance between visits. Demands of client i are
relocated only to routes which have a visit at a distance at most 2d from ¢. If the list of
nearest routes empty, then the distance is increased by 20% until it contains at least one
destination route.

When at move is applied to the current solution all solutions that have one of the
demands p of customer V' (v) in source route s are tabu for 7 iterations. The tabu tenure
7 is chosen randomly in |1, vnl | at the beginning of each tabu search. If a move is able
to improve the incumbent it satisfies the aspiration criterion and is performed even when

tabu.
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Diversification

To diversify the search, we penalize frequent moves each time a local minimum
is reached. If the current solution is a local minimum for F', we choose the best move

according to the modified objective function

F'(s, M) = F(s)(1+¢>_ f(V(v),p)/i) (5.1)

p'ep
for a move M = (s,d, v, p) of demands p of visit v into destination route d, and current
iteration i. Here f(V'(v), p’) is the number of times demand p’ € P of client V' (v) entered

route d before, and ( is randomly chosen from [0, 1] at the beginning of each tabu search.

5.1.2 Route refinement

The tabu search algorithm also has a route refinement that is applied to each route
every n, iterations. The procedure is based on the US algorithm proposed by (GEN-
DREAU; HERTZ; LAPORTE, 1994) for the traveling salesman problem. For each route
the algorithm removes and reinserts the visit which leads to the largest reduction in route
length, if any. For removals and insertions the GENI procedure with a larger neighbor-

hood size of ¢’ = 2¢ is used.

5.2 Computational Experiments

In this section we report the results of computational experiments with the ITS.
We first test our code without compartments on well-known instances of the VRP prob-
lem to establish a baseline compared to state-of-the-art heuristics. We next analyze the
performance of ITS on instances with 2 to 5 compartments, and compare them to the
results of (El Fallahi; PRINS; Wolfler Calvo, 2008), (MUYLDERMANS; PANG, 2010)
and (DERIGS et al., 2010). We finally study the impact of split demands.
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Table 5.1: Computational environments.

Reference Instances Strat. Environment

(El Fallahi; PRINS; Wolfler Calvo, 2008) CMT S1,S2  Pentium 4, 2.4 GHz
(DERIGS et al., 2010) CMT,, GWKC, S1 Pentium D 3.0 GHz processor
(MUYLDERMANS; PANG, 2010) CMT,, GWKC, S1 Pentium M740, 1.73 GHz
(LAPORTE; ROPKE; VIDAL, 2014) - - Core i7 2.93 GHz
(ABDULKADER; GAJPAL; ELMEKKAWY, 2015) CMT S3,S4 2.1 GHz processor

This work CMT, GWKC S1-S4 AMD FX 8150, 3.6 GHz

5.2.1 Experimental methodology

The ITS has been implemented in C++ and tested on a PC with an AMD FX-8150
processor with 8 cores running at 3.4 GHz, and with 32 GB of main memory. For the tests
only one core has been used. The instances and detailed results reported in this work can
be found at <www.inf.ufrgs.br/algopt/MCVRP>.

Table 5.1 summarizes the instances and division strategies used in the literature
and the computing environment in which the corresponding results have been obtained.
Instance set CMT, and GWKC, are the subsets of instances without route length con-
straints, which are used by (DERIGS et al., 2010) and (MUYLDERMANS; PANG, 2010).
For comparing running times, we consider the environment of (El Fallahi; PRINS; Wolfler
Calvo, 2008) four times slower, that of (DERIGS et al., 2010) three times slower, and that
of MUYLDERMANS; PANG, 2010) two times slower, and that of (ABDULKADER;
GAJPAL; ELMEKKAWY, 2015) about the same. These are conservative estimates, based
on the PassMark benchmark.

The quality of a solution of value v is measured by its relative deviation 100(v —
v*)/v* in percent from the best known value v*. Since our algorithm is stochastic, all
experiments have been replicated 10 times with different random seeds, and in the tables
below we report average relative deviations over the 10 replications (“Avg.”) and the rela-
tive deviation of the best solution found (“Best”), if not stated otherwise. The refinement
period n, has been set to 200. For the neighborhood size GENI values ¢ € {3,4, 5} have

been tested, and we have found ¢ = 4 to perform best.

5.2.2 Experiment 1: Performance on VRP instances

In our first experiment we evaluate the performance of our algorithm on standard

VRP instances, and its scaling behaviour by applying division strategy S1 with m &
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Table 5.2: Computational results of the best metaheuristics for the VRP according to
(LAPORTE; ROPKE; VIDAL, 2014).

CMT GWKC
Reference Configuration Avg. t(s) Avg. t(s)
(NAGATA; BRAYSY, 2009) Best of 10 runs 0.0 361 0.2 9290
(SUBRAMANIAN; UCHOA; OCHI, 2013) Best of 10 runs 0.0 720 0.4 28130
(GROER; GOLDEN; WASIL, 2011) 129 threads, best of 5 runs 0.0 99214 0.1 99214
(VIDAL et al., 2012) Average of 10 runs, 50K it. 0.0 254 0.2 2419
(NAGATA; BRAYSY, 2009) Average of 10 runs 0.0 36 0.3 929
(MESTER; BRAYSY, 2007) Best configuration 0.0 62 0.3 559
(GROER; GOLDEN; WASIL, 2011) 8 threads, best of 5 runs 0.0 2930 0.3 6050
(VIDAL et al., 2012) Average of 10 runs, 10K it. 0.1 58 0.3 744
(GROER; GOLDEN; WASIL, 2011) 4 threads, best of 5 runs 0.1 1465 04 3025
(PRINS, 2009) - 0.1 6 0.6 166
(MESTER; BRAYSY, 2007) Fast configuration 0.1 1 1.2 5
(SUBRAMANIAN; UCHOA; OCHI, 2013) Average of 10 runs 0.1 72 04 2813
(PISINGER; ROPKE, 2007) Best of 10 runs, 50K it. 0.1 424 0.8 2616
(TARANTILIS, 2005) Standard configuration 0.2 15 09 121
(GROER; GOLDEN; WASIL, 2010) Set partitioning 0.3 5 13 31
(GROER; GOLDEN; WASIL, 2010) Ejection — random 0.3 12 1.2 7
(PISINGER; ROPKE, 2007) Average of 10 runs, 50K it. 0.3 42 14 261
(CORDEAU et al., 2001) - 0.6 378 1.8 862
(TOTH; VIGO, 2003) - 0.6 4 32 15

Table 5.3: Results of the ITS with 103, 10*, 10° and 10° iterations on instances with one
compartment.

103 10% 10° 109
Inst. Avg. Best t(s) Avg. Best t(s) Avg. Best t(s) Avg. Best t(s)

CMT 19 11 02 09 04 68 04 02 701 02 01 6989
GWKC 50 43 31 32 25 321 1.9 12 3067 12 0.7 30359
Avg. 37 30 19 23 16 217 13 08 2093 08 04 2073.6

{2,3,4,5} compartments. Table 5.2 gives an overview over the most successful heuristics
for the VRP. The table comes from the recent survey of (LAPORTE; ROPKE; VIDAL,
2014) that compares more than 18 metaheuristics in terms of solution quality, speed,
simplicity, flexibility and parameter sensitivity. (LAPORTE; ROPKE; VIDAL, 2014)
have normalized the running times to an Intel Core i7 CPU running at 2.93 GHz. The
times in our table are normalized to be comparable to our computational environment
(see Table 5.1).

Table 5.3 shows the results of running our algorithm for 103, 104, 105, 10° itera-
tions, and with only one compartment on instances CMT and GWKC. We can see that the
solution quality improves with an increasing number of iterations and the running time is,
as expected, proportional to the number of iterations. The solution quality obtained with
10° to 10° iterations is comparable to that of the lower third of the best heuristics for the

VRP, but our implementation is somewhat slower than most of them. This may be due
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Table 5.4: Results of the ITS with 102, 10*, 10° and 10° iterations on instances with two
compartments and division strategy S1. Split demands are allowed.

103 104 10° 108
Inst. Avg. Best Vis. t(s) Avg. Best Vis. t(s) Avg. Best Vis. t(s) Avg. Best Vis. t(s)

CMT 26 15 0208 1.0 05 01115 05 02 00 1167 02 0.1 0.0 11950
GWKC 52 42 0.1 52 35 26 01517 21 15 004895 12 0.8 0.0 4681.1

Avg. 41 3.1 0134 25 1.7 01352 15 1.0 0.0 3360 0.8 0.5 0.0 3245.7

Table 5.5: Results of the ITS with 10° iterations and two to five compartments and split-
ting strategy S1. Split demands are allowed.

m =2 m =3 m=4 m =25
Inst. Avg. Best Vis. t(s) Avg. Best Vis. t(s) Avg. Best Vis. t(s) Avg. Best Vis. t(s)

CMT 0.6 02 0.0 1377 06 02 002532 09 03 0.1 4976 09 03 0.1 999.8
GWKC 1.7 1.1 0.1 5382 20 12 049403 20 13 05 1777.8 22 1.4 0.8 34759

Avg. 1.2 0.8 0.03733 14 08 026574 15 09 03 1250.7 1.7 1.0 0.5 2456.3

to some missing optimizations, and is partly due to the overhead for considering multiple
compartments. Since our algorithm was not designed for the standard VRP, and must
handle multiple compartments and multiple visits, we consider these results demonstrate

a reasonable baseline performance.

5.2.3 Experiment 2: Performance on MCVRP instances

In our second experiment, we evaluate the performance our algorithm and its scal-
ing behaviour on the MCVRP instances generated from instances CMT and GWKC using
strategy S1, with two to five compartments. For the most common case of two compart-
ments, we have run experiments with 102, 104, 10°, and 10° iterations. For the remaining
cases we have fixed the number of iterations at 10°. The results are shown in Tables 5.4
and 5.5. Since split demands are allowed, we additionally present the average relative
deviation of the number visits from the number of customers.

Comparing the results for one compartment in Table 5.3 to those with two com-
partments we find that the performance of the algorithm is about the same for the same
number of iterations. The running time however, increases by about 70%. This comes
from the additional handling of the multiple compartments. We can also see that allowing
multiple visits seems to have no or little advantage for instances generated by strategy
S1, since the average percentage of additional visits is small and tends to zero, for an

increasing number of iterations.
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These observations continue to hold for the results with more than two compart-
ments in Table 5.5. For each additional compartment, the average and best solution quality
increases slightly, and the running approximately doubles. The increase in running can
be explained by the additional combinations of subsets of demands that must be consid-
ered. For a practical number of compartments, the running times still remain acceptable.
However, for a large number of compartments, or a tight time budget, heuristic methods
for selecting demands of compartments when splitting would be necessary. As in the case
of two compartments, the results show that for the instances generated with strategy S1

there seems to be very little advantage of split demands.

5.2.3.1 Comparison to the results from the literature

In Table 5.6 we compare our results to those of (El Fallahi; PRINS; Wolfler Calvo,
2008), (MUYLDERMANS; PANG, 2010), and (DERIGS et al., 2010) for the instances
with two products obtained by division strategy S1. The table shows the average rel-
ative deviation and the average time for each instance, which was solved by at least

one approach. For the missing entries (

(MUYLDERMANS; PANG, 2010) and (DERIGS et al., 2010) the missing entries are

) no results were reported. In the case of

the instances with route length restrictions. The table also provides averages for different
groups. Group 1 contains the instances for which all authors report results, Group 2 the
instances used by (EIl Fallahi; PRINS; Wolfler Calvo, 2008), and Group 3 those used by
(MUYLDERMANS; PANG, 2010) and (DERIGS et al., 2010). All approaches, except
that of (El Fallahi; PRINS; Wolfler Calvo, 2008) respect the fleet size, so we do not re-
port the number of vehicles in the solution. For completeness we also provide overall
averages.

We find that ITS with 10* iterations performs better than both the tabu search and
the memetic algorithm of (El Fallahi; PRINS; Wolfler Calvo, 2008) and is about a factor
4 faster. This holds overall and for all 16 instances individually. Exceptions are CMTS5,
GWKC12, which take more iterations, but are still faster with a mean time of 69s and
185 s, respectively, to reach the same relative deviation, and CMT13, where ITS produces
solution with a relative deviation of 0.2% higher in the same time.

Algorithm GLS of (MUYLDERMANS; PANG, 2010) quickly finds good solu-
tions, but improves little over time: the mean relative deviation of 3.6% for 300K iter-
ations improves with 1200K iterations only to 3.0%. We can also see that the time per

iteration increases only slightly with the number of clients, which leads to higher relative
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Table 5.6: Comparison to the results of (El Fallahi; PRINS; Wolfler Calvo, 2008), (MUYLDERMANS; PANG, 2010) and (DERIGS et al., 2010).

MA TS GLS 300K GLS 600K GLS 1200K 5min 10min 20min 60min 103 10* 10° 106
Inst. BKV Avg. t(s) Avg. t(s) Avg. t(s) Avg. t(s) Avg. t(s) Avg. Avg. Avg. Avg. Avg. t(s) Avg. t(s) Avg. t(s) Avg. t(s)
CMT1 5246 00 59 0.0 40 00 61.8 0.0 1236 0.0 269.1 02 0.2 0.0 00 00 00 00 58 0.0 615 00 6269
CMT2 8353 09 138 2.0 54 09 639 03 1269 03 2583 05 04 0.3 02 2901 05 82 01 80 00 8317
CMT3 826.1 33 156 1.1 238 04 699 04 1395 04 2823 05 04 0.3 02 17 10 05 97 03 993 02 986.7
CMT4 10284 4.1 518 26 1028 1.1 714 1.1 1479 1.1 3033 1.2 0.9 0.7 04 43 10 23 141 14 1465 04 14492
CMTS5 12913 3.0 1026 45 2023 3.0 753 2.1 1488 1.8 3060 2.7 25 2.1 1.7 56 20 37 23.0 2.1 2280 1.2 22653
CMT6 5554 07 48 0.8 35 - - - - - - - - - - 0300 00 43 00 498 0.0 4880
CMT7 909.7 20 115 3.0 135 - - - - - - - - - - 0803 03 85 00 860 0.0 869.6
CMTS 866.0 3.0 142 33 263 - - - - - - - - - - 1303 10 88 05 913 -0.0 9075
CMT9 11625 32 393 19 989 - - - - - - - - - - 5310 16 148 0.5 1520 0.2 15153
CMT10 13958 4.7 1252 5.1 989 - - - - - - - - - - 48 20 22 212 1.6 2122 1.1 23054
CMTI11 1042.1 02 316 02 162 0.6 627 0.6 1212 0.6 2499 0.1 0.1 0.1 00 06 1.0 02 13.0 0.1 1306 0.0 1317.0
CMT12 819.6 00 192 03 87 00 648 00 1362 0.0 2793 00 0.0 0.0 00 01 00 00 63 0.0 658 00 730.7
CMT13 1541.1 0.0 349 0.1 419 - - - - - - - - - - 76 1.0 22 106 0.1 977 0.1 1038.1
CMT14 866.4 0.0 139 0.1 105 - - - - - - - - - - 06 1.0 00 124 0.0 130.1 0.0 1399.1
GWKC9 579.7 - - - - 6.0 999 52 1932 45 391.8 52 4.1 32 26 69 29 47 324 24 3186 1.1 2698.7
GWKC10  735.7 - - - - 58 1074 48 2073 4.8 4242 59 5.1 4.0 30 83 3.6 52 39.0 3.0 4032 1.3 35485
GWKC11 9120 - - - - 6.1 1185 59 2298 59 470.1 7.6 6.1 52 43 92 47 55 507 3.7 5249 15 46823
GWKCI12 1101.5 9.3 5140 43 16149 92 1374 73 269.1 6.5 5439 84 7.5 6.2 49 82 6.7 52 621 34 6225 1.8 59383
GWKC13  857.2 - - - - 44 732 42 1476 3.2 3027 42 3.5 33 28 59 30 3.6 327 20 3094 14 30772
GWKC14 1080.5 - - - - 51 762 5.0 151.8 4.2 3096 4.7 4.1 3.5 32 6.0 40 4.0 426 24 3975 13 39146
GWKC15 13379 - - - - 5.1 813 51 1587 5.1 3234 5.7 4.5 4.1 38 72 54 41 525 23 4992 1.6 4861.9
GWKC16 1611.6 - - - - 55 861 521698 5.0 3405 69 6.1 5.1 46 53 68 42 67.8 3.1 6523 1.6 62279
GWKC17 707.8 5.1 766 47 2014 22 798 1.7 1593 1.7 329.1 2.7 22 1.9 1.7 60 36 28 354 0.8 299.0 03 279.1
GWKCI18  995.1 - - - - 49 87.6 47 1689 4.1 351.0 3.1 2.2 2.0 1.3 57 67 46 599 23 4429 1.6 4030.3
GWKC19 1365.6 - - - - 33 906 33 1809 29 3690 38 34 32 23 64 98 5.0 1056 2.0 853.0 0.9 6768.6
GWKC20 1817.6 - - - — 45 999 44 1986 44 4044 58 4.8 4.2 30 73 88 55 694 32 6457 1.4 63132
Avg. grp. 1 8444 19 359 1.7 632 09 679 0.7 1363 0.7 2829 09 0.8 0.6 05 2310 1.1 135 05 1306 0.2 12923
Avg. grp. 2 967.1 25 672 21 1546 - - - - - - - - - - 3113 14 161 0.7 1597 0.3 1591.6
Avg. grp. 3 1024.7 - - - - 36 846 32 1673 3.0 3425 3.6 3.1 2.6 21 51 37 33 384 1.8 357.0 0.9 33192
Avg. 1029.5 - - - - - - - - - - - - - - 45 3.0 27 312 14 2924 0.7 27534
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deviations in larger instances. ITS with 10? iterations has a smaller average relative devi-
ation compared to GLS with 300K iterations, in about half the time, and finds solutions
of comparable quality to GLS with 600K iterations, a factor four faster. GLS with 1200K
and ITS with 10° iterations run in a comparable time, but ITS finds solutions with an av-
erage relative deviation of 1.8% compared to 3.0% of GLS. These observations hold also
for most the of individual instances. Exceptions are instances CMT4,5, and GWCK19,20,
where ITS takes in some of the time scales a factor of two to five longer to reach the same
solution quality. Since (MUYLDERMANS; PANG, 2010) find solutions of average rela-
tive deviation of 0.79% for standard CVRP instances, the performance of their approach
seems not to transfer well to multiple compartments.

(DERIGS et al., 2010) present results for 5, 10, 20, and 60 minutes, which corre-
spond to 100, 200, 400 and 1200 seconds, respectively, in our environment. Looking at
the runs with 5 and 20 minutes, which can be safely compared to the runs of ITS with 10*
and 10° iterations, we see that ITS finds for the majority of the instances better solutions
in less time, especially on the large instances. The average time for ITS to reach the same
solution quality as the runs with 5, 10, 20, and 60 minutes, is 60, 137, 171, and 302 sec-
onds, respectively. Exceptions to the average are instances CMT4,5,11 and GWKC18,19,
which need in some of the time scales up to a factor five more time. Also, even after 10°
iterations ILS does not reach the solution quality of 1.3% for GWKC18 that the algorithm
of (DERIGS et al., 2010) obtains after 60 minutes.

In summary, for each time scale and algorithm considered, ITS finds better values
in less time in average, and also for the majority of the individual instances. Excep-
tions are some of the results of (MUYLDERMANS; PANG, 2010) for 300K iterations,
where GLS finds solutions faster, and particularly instances CMT4,5 and GWKC17-19,
for which other algorithms are frequently faster.

Finally, we offer a summarized view of the results using performance profiles (DOLAN;
MORE, 2002) in Figure 5.2. The plots show the probability P(r < 7) of reaching a fixed
quality in a time at most a factor 7 slower than the fastest algorithm. In particular, for
7 = 1 we obtain the probability that the algorithm is the fastest, and for 7 — oo the prob-
ability of reaching the target quality at all. We have excluded the algorithm of (EI Fallahi;
PRINS; Wolfler Calvo, 2008), since they report only one time scale, and the shorter runs
of ITS with 103 and 10* iterations, since we have no data for the other algorithms on these
short time scales. Consistent with our observations, we can see that ITS, for each 7 has a

higher probability of finding a solution of a given quality, except for a relative deviation
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Figure 5.2: Performance profiles for GLS of (MUYLDERMANS; PANG, 2010), the al-
gorithm of (DERIGS et al., 2010), and ITS, for reaching a relative deviation of 1% (left)
and 3% (right).
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of 1% and a short time scale, where GLS has a slightly higher probability.

5.2.4 Experiment 3: The single-visit MCVRP

In this section we focus on the single-visit MCVRP (or MCVRP without splitting,
MCVRP-WS), a variant of the MCVRP where the demand of the clients for all product
types must be attended in a single visit. We compare our algorithm in this setting to the
two current best approaches from the literature: the MA and TS of (El Fallahi; PRINS;
Wolfler Calvo, 2008), and the hybridized ant colony algorithm HCA of (ABDULKADER;
GAJPAL; ELMEKKAWY, 2015). Following the literature, in this section limit on the
fleet size have been ignored.

The comparison to the results of (El Fallahi; PRINS; Wolfler Calvo, 2008) on
instances with division strategy S2 is shown in Table 5.7. For their MA and TS it reports
the relative deviation from the best known values (“R.d.”) of the single run provided by
the authors and the run time in seconds (“t(s)”). The best known values are those reported
by (EI Fallahi; PRINS; Wolfler Calvo, 2008). Thus, negative relative deviations indicate
new best solutions.

(EI Fallahi; PRINS; Wolfler Calvo, 2008) find significant gains for multiple visits
compared to single ones. For ITS such differences exist, but are much smaller. Gains
are strongly correlated with more visits, and for a subset of instances, e.g. CMT11, gains
remain significant. It is evident from the negative relative deviations that ITS for both sin-
gle and multiple visits, finds almost always better solutions, in comparable, often shorter
running time. (EI Fallahi; PRINS; Wolfler Calvo, 2008) report the value of a single run

only, however even the worst of our 10 replications is better than the best known value
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Table 5.7: Comparison to the results of (El Fallahi; PRINS; Wolfler Calvo, 2008) on
instances with division strategy S2.

MA TS ITS

Single Mult. Single Mult. Single Mult.
Inst. BKV R.d. t(s) Rid. t(s) Vis. Avg. t(s) Avg. t(s) Vis. Avg. Best t(s) Avg. Best Vis. t(s)

CMT1 5484 19 43 00 56 20 14 38 04 32 0.0 -25 41 50 23 41 26 6.0
CMT2 863.6 29 64 13 113 00 00 35 12 140 00 -0.6 -14 6.8 -05 -1.9 48 9.8
CMT3 8329 55 55 1.3 230 00 06 99 00 397 00 -0.0 -04 112 02 -04 1.1 153
CMT4 1070.7 1.7 235 0.7 3977 0.0 00 274 05 86.7 0.7 -0.8 -2.0 16.0 -0.6 -1.8 2.3 233
CMT5 13614 3.5 290 05 121.8 0.0 0.0 521 0.1 977 0.0 -06 -14228 -03 -1.2 3.3 329
CMT6 5586 19 41 00 68 00 09 25 00 75 0.0 -05 -06 58 -05 -0.6 00 5.0
CMT7 9490 0.6 98 1.1 45 00 00 55 04 84 2.7 -27 -37 7.0 -28 -3.6 1.1 10.5
CMTS8 890.1 7.7 4.7 00 253 10 29 46 05 283 00 -1.5 -27 9.7 -1.8 -2.7 0.2 10.3
CMT9 1186.2 6.5 247 33 385 00 88 21 00 776 0.7 -02 -1.0125 -0.2 -1.1 0.1 189
CMTI0 14758 23 350 0.0 103.1 00 1.0 476 1.7 920 1.0 -24 -3316.6 -2.5 -3.4 0.3 26.2
CMT11 11134 09 119 00 237 1.7 79 70 38 199 08 -02 -54 11.0 -2.0 -5.8 3.8 13.6
CMTI2 9069 22 45 00 84 10 3.0 40 00 228 00 -19 -4412.1 -2.1 44 2416.2
CMTI3 15412 0.1 19.1 00 353 0.8 27 55 0.1 41.1 1.7 03 0.1 7.8 1.8 0.1 0.012.6
CMTI14 9347 34 58 00 154 10221 89 0.7 133 00 -0.6 -2.2 13.0 -03 -2.1 03 9.1
GWKCI12 11755 5.6 4109 4.1 386.5 04 0.2 530.6 0.0 969.6 0.2 -04 -1.149.8 1.0 -0.2 2.8 779
GWKC17 7712 3.3 126.1 2.8 147.1 04 2.2 50.7 0.0 229.8 04 -2.5 -3.6 23.0 -3.2 -43 4.9 33.2
E072-04f 2623 05 29 0.1 3.1 00 00 14 02 34 00 -35-51 72 -50 -68 32 73
E076-07u 697.8 0.6 3.8 1.1 127 0.0 00 41 02 53 00 -03 -06 7.3 -0.2 -0.7 0.4 10.1
E076-08s 7484 6.0 39 1.1 10.7 13 32 35 00 131 00 0.7 -01 7.2 02 -04 23 94
E135-07f 12332 0.0 11.8 19 179 15 02 13.0 12 651 00 -0.1 -22 185 -1.0 -2.6 3.3 22.7

Avg. 956.1 2.8 374 1.0 520 0.6 2.8 394 05 919 04 -10 -23 135 -1.1 -24 2.0 185

in 25 of the 38 instances, so it is unlikely that the better performance of ITS is due to a
particularly bad run of the MA or the TS.

The comparison to the results of (ABDULKADER; GAJPAL; ELMEKKAWY,
2015) on instances with division strategies S3 and S4 is shown in Tables 5.8 and 5.9,
which report the same values as the previous table. (ABDULKADER; GAJPAL; ELMEKKAWY,
2015) also report only the value of a single run.

The relative deviations of HAC for both strategies are 0%, since they represent the
current best known values, except instance CMT12 with division strategy S3, where the
best known value has been found by (REED; YIANNAKOU; EVERING, 2014). In both
cases ITS finds in nine instances better solutions. For some instances, e.g. CMT7,8,14
the relative deviations are slightly higher, and CMT12 for strategy S4 has the highest
deviation of 1.5%. ITS reaches optimal values for these instances with a factor of at most
3 more time, and often faster. For example, the average time to find the best known value
for CMT12 and strategy S4 is 74s. In the remaining instances, the running times of ITS
are always shorter, some markedly, e.g. for instances CMT9,10, and in particular on the

larger instances. This suggests that ITS scales better. The results for ITS with multiple



62

Table 5.8: Comparison of the results of (ABDULKADER; GAJPAL; ELMEKKAWY,
2015) on instances with division strategy S3 to ITS with single and multiple visits and
10* iterations.

HAC ITS

Single Multiple
Inst. BKV Rd. t(s) Avg. Best t(s) Avg. Best Vis. t(s)

CMT1 550.7 0.0 5 0.1 0.0 47 00 00 00 64
CMT2 80.7 00 15 -18 -21 65 -10 -21 12 92
CMT3 8741 00 40 -05 -08 99 -01 -06 03 150
CMT4 1126.1 00 146 -22 -30 155 -1.7 -24 0.7 228
CMT5 14443 0.0 257 -33 -39 230 -29 35 14 326
CMT6 5575 0.0 11 00 00 38 00 00 00 438
CMT7 9282 00 28 05 -02 638 00 -02 00 99
CMT8 883.0 00 93 0.1 -07 79 14 -07 04 108
CMT9 12289 0.0 326 -1.7 -30 146 -12 -21 05 17.0
CMT10 1511.7 0.0 624 -21 -31 158 -25 -38 09 250
cMmrTitr 11105 o0 75 -02 -04 118 -01 -04 1.1 147
CMT12 9119 0.1 5 05 -07 120 -02 -06 0.7 154
CMTI13 15565 0.0 117 -05 -08 7.6 1.5 -07 00 114
CMTI14 9114 0.0 34 0.1 -0.0 119 0.1 00 07 84

Avg. 10347 0.0 128 -09 -13 108 -05 ~-12 0.6 145

visits are about the same. Instances with division strategy S3 seem to gain nothing from
multiple visits, while the average for instances with division strategy S4 is slightly better
when multiple visits are allowed. Indeed, for runs with 10* the improvement with multiple

runs reaches 0.5% for strategy S4.

5.3 Conclusion

Vehicle routing problems with multiple compartments have important practical
applications but have been little studied in the literature. In this work we have proposed
an iterated tabu search to solve this problem with single and multiple visits and have com-
pared it to existing heuristic algorithms. Different from previous approaches, demands
for different product types are can be attended in multiple visits without the overhead of
representing each demand separately.

We have shown that the ITS has a reasonable baseline performance on the VRP,
and dominates the existing approaches in average and in the majority of the instances
in solution quality and time on different sets of instances. Although the approaches of
(MUYLDERMANS; PANG, 2010) and (DERIGS et al., 2010) may have some overhead
for being general frameworks for different variants of the VRP, additional time does not

help to improve the results significantly, while ITS makes a good progress over time. The
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Table 5.9: Comparison of the results of (ABDULKADER; GAJPAL; ELMEKKAWY,
2015) on instances with division strategy S4 to ITS with single and multiple visits and
10* iterations.

HAC ITS

Single Multiple
Inst. BKV R.d. t(s) Avg. Best t(s) Avg. Best Vis. t(s)

CMT1 5519 0.0 5 -07 -07 48 -07 -07 08 59
CMT2 919.0 0.0 14 34 42 66 45 52 75 84
CMT3 8953 00 4 27 33 95 42 54 56 101
CMT4 11595 00 151 -37 -50 160 -33 -45 7.7 17.6
CMT5 15259 00 236 -66 -75 191 -76 -85 63 220
CMT6 5594 0.0 o -07 -07 48 -07 -07 00 46
CMT7 93277 00 26 03 -00 6.7 0.1 -0.1 1.5 103
CMT8 8849 0.0 95 0.8 -1.1 8.4 03 -1.1 1.0 10.7
CMT9 12266 0.0 333 -15 -29 152 -13 -22 05 170
CMT10 15260 0.0 620 -27 -33 159 -26 -34 12 254
CMTI11 12217 0.0 87 08 -15 11.8 -09 -2.0 149 146
CMTI2 9508 0.0 30 1.5 1.3 133 1.1 02 51 151
CMTI13 15501 00 123 -0.1 -04 78 37 -03 00 116
CMTI14 9658 0.0 38 04 01 134 06 02 06 103

Avg. 1062.1 00 129 -13 -21 109 -14 -24 38 13.1

results of the ITS also suggest that the value of multiple visits is rather limited, especially
when considering the additional algorithmic effort needed to permit them. It is open what

kind of instance structure makes multiple visits attractive.
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6 CONCLUSION

In this dissertation we have studied the multi-compartment vehicle routing prob-
lem (MCVRP), that is a variant of the classical vehicle routing problem (VRP), where the
customers have demands for different product types that must be kept separated during
the transportation. The VRP is a well studied problem due to its strong practical applica-
tion and many variants of this problem has been proposed in over 50 years of research.
We have presented a study of the best performing metaheuristics for the VRP. Based on
this existing methods for the VRP we were able to design an algorithm for the MCVRP.

The MCVRP introduces the co-collection or co-delivery of different types of prod-
ucts to the classical VRP. This problem has a large applicability in different industries
such as: petrol distribution, waste collection, livestock collection and groceries delivery.
In our study of the heuristics available in the literature, we have concluded that they do
not explore well the multiple visit attribute of this problem which motivates this work.

We have proposed an iterated tabu search for the MCVRP with single and multiple
visits and we have tested it against instances from 50 to 483 customers with demands for
up to 5 different product types. The results show that our algorithm is able find better
solutions in less computational time compared with the existing approaches. The principal
contribution of the proposed heuristic is that different product types can be attended in

multiple visits without the overhead of representing each demand separately.

6.1 Future work

A question that remain open after this work is what kind of instance structure
makes multiple visits attractive compared to single visit. This is interesting for real appli-
cations purposes because if we know such instances we do not need to spend computa-
tional effort searching for multiple visits solutions and instead focus in find better single
visit solutions.

Current studies on the MCVRP cannot be immediately applied to waste collection
system because of the lack of realistic constraints (LU et al., 2015). Then, a future work
is to understand these constraints and implement in the algorithm proposed to contribute
to this real world problem.

In this study we consider the vehicles where each compartment is dedicated for

one product type. A suggestion of work is to extend the proposed algorithm to allow
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the products to be loaded in any compartment respecting some loading constraint. Other
possible extensions are allow compartments with variable sizes (DERIGS et al., 2010)

and stochastic customer demands (MENDOZA et al., 2010).
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APPENDIX: RESUMO EM PORTUGUES

O problema de roteamento de veiculos com mdltiplos compartimentos (MCVRP)
estende o problema de roteamento de veiculos (VRP) classico permitindo a entrega ou
coleta de produtos que devem ser mantidos separados em diferentes compartimentos. Os
clientes tem demandas diferentes por cada tipo de produto, e os veiculos possuem com-
partimentos dedicados a um tipo de produto. Os clientes podem ser visitados mais de uma
vez, porém toda a demanda por um tipo de produto deve ser atendida em uma Unica visita.
Como no VRP classico, no MCVRP temos um udnico depdsito de onde parte uma frota
de veiculos idénticos. O objetivo € atender a demanda de todos os clientes minimizando
o tempo total das rotas necessérias. O MCVRP é NP-dificil j4 que é uma generalizagio
do VRP. Métodos exatos conseguem resolver instancias com até 50 clientes. Portanto, in-
stancias maiores ou com mais restricoes normalmente sao resolvidas com métodos heuris-
ticos.

O uso de veiculos com multiplos compartimentos se da em casos onde produtos
precisam ser mantidos separados. Alguns exemplos de uso de veiculos com multiplos
compartimentos sdo: coleta de leite de tipo, qualidade ou data de ordenha (MENDOZA
et al., 2010); coleta seletiva de lixo (REED; YIANNAKOU; EVERING, 2014), (MUYL-
DERMANS; PANG, 2010), (ELBEK; W@HLK, 2016); distribui¢io de mercadorias que
necessitam niveis de refrigeramento diferentes (CHAJAKIS; GUIGNARD, 2003); trans-
porte de animais vivos (OPPEN; KKETANGEN, 2008).

Apesar de ter uma grande aplicabilidade na indudstria 0 MCVRP nao foi ampla-
mente estudado pela literatura. Em nossa busca encontramos penas 5 trabalhos que tratam
deste problema. (EIl Fallahi; PRINS; Wolfler Calvo, 2008) foi o primeiro trabalho estu-
dar o MCVRP. Eles propuseram um conjunto de instancias e duas heuristicas: algoritmo
memético e uma busca tabu. (MUYLDERMANS; PANG, 2010) propos uma busca local
guiada para o MCVRP e demonstrou os beneficios do uso de veiculos com compartimen-
tos para fazer a co-coleta comparado com o uso de veiculos com apenas um comparti-
mento. (DERIGS et al., 2010) estudou o MCVRP e algumas variagdes como comparti-
mentos flexiveis e alocacdo de produtos a compartimentos sujeito a restri¢cdes. (REED;
YIANNAKOU; EVERING, 2014) e (ABDULKADER; GAJPAL; ELMEKKAWY, 2015)
estudaram outra variagdo do MCVRP que exige que todas as demandas do cliente sejam
atendidas em uma unica visita. Esta variacdo é conhecida como MCVRP-WS e também

¢é abordada neste trabalho.
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A heuristica que nés propomos para resolver o MCVRP foi inspirada na busca
tabu iterada (ITS) para VRP proposta por (CORDEAU; MAISCHBERGER, 2012), que
¢ considerada uma das melhores heuristicas para VRP. Uma busca local iterada comeca
num minimo local e repetidamente aplica uma perturbagcdo seguida de uma busca tabu
para encontrar outro minimo local. Um critério de aceite € utilizado para decidir se a
busca continua com a melhor solu¢do encontrada ou da dltima solucdo retornada pela
busca tabu. O algoritmo inicia construindo uma solucao inicial e aplica a busca tabu nesta
solucdo. Depois por [ iteracdes o ITS perturba a solucdo atual e aplica a busca tabu. A
probabilidade de uma nova solugfo ser aceite para a préxima iteragdo é 1 — (i/1)?, caso
contrario a melhor solucao ja encontrada € utilizada. Este critério de aceite € importante
para diversificar a busca no inicio e intensificar a busca no final do algoritmo.

Como solug¢do inicial selecionamos a melhor entre dois algoritmos construtivos
bem conhecidos do VRP que sdo: varredura angular proposto por (WREN, 1971) e
(GILLETT; MILLER, 1974); método das economias proposto em (CLARKE; WRIGHT,
1964). A perturbacio da solucgdo € feita removendo uma quantidade de clientes e rein-
serindo na solucdo de tal forma que minimize o custo. NOs utilizamos para remog¢do e
insercdo de clientes um heuristica conhecida como GENI proposta em (Gendreau, Michel
and Hertz, Alain and Laporte, 1992).

A busca tabu é uma metaheuristica que guia uma busca local através do espaco
de busca. Ela permite movimentos para solucdes piores e evita ciclos através de uma
memoria de curta duracdo e declarando movimentos que retornam a solugdes ja visitadas
como tabu. A busca tabu proposta inicia em uma solucao inicial e move para a melhor
solucdo ndo tabu. Durante essa busca solugdes ndo factiveis também sdo visitadas. A
violagdo das restri¢des de capacidade dos compartimentos e distincia maxima da rota sdo
penalizadas na funcdo objetivo. A busca tabu para depois de \/m iteragdes sem
melhorar a solu¢do incumbente. A vizinhanca consiste em apenas um tipo de movimento:
realocar um subconjunto de demandas de uma rota para outra. O tabu tenure € definido
randomicamente no inicia da busca tabu entre [1, /nm] onde n é o nimero de clientes e
m € a quantidade méxima de rotas.

Os experimentos computacionais foram feitos usando instancias com quantidade
de clientes entre 50 e 483. As instancias para MCVRP sdo geradas a partir de instancias
bem conhecidas do VRP. O algoritmo implementado foi avaliado usando 3 diferentes ex-
perimentos. No primeiro experimento comparamos nossos resultados com as melhores

heuristicas para o VRP afim de verificar o qudo longe estamos do estado da arte para
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este problema. O resultado € que nosso algoritmo encontra solu¢des com qualidade com-
paravel ao estado da arte do VRP, porém necessita de mais tempo para isso devido a falta
de alguma otimizacao ou a quantidade extra de processamento que temos por considerar
multiplos compartimentos.

Nosso experimento dois avalia o algoritmo em comparacdo com o estado da arte
do MCVRP. Nés apresentamos resultados para todas as instancias com 2 até 5 compar-
timentos. Os resultados mostram que nosso algoritmo supera os resultados existentes na
literatura tanto em termos de qualidade da solu¢do quanto em termos de tempo computa-
cional de processamento. No experimento trés avaliamos nosso algoritmo para a variagao
do MCVRP que exige que toda demanda de um cliente seja atendida em uma tinica visita.
Para esta variacdo nosso algoritmo também supera os resultados existentes na literatura
conseguindo solucdes melhores com até 4 vezes menos tempo de processamento.

Este trabalho prop6s uma busca tabu iterada para o problema de roteamento de
veiculos com multiplos compartimentos que supera todas as heuristicas encontradas na
literatura para este problema. O diferencial do algoritmo proposto € principalmente a
maneira como a vizinhanga € explorada. O resultados apresentados também mostram que
permitir multiplas visitas ndo oferece uma economia muito significativa no custo total da

rota.
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