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RESUMO 

 

O objetivo deste artigo é avaliar previsões da inflação brasileira a partir do método não-

paramétrico de Análise Espectral Singular (SSA). O exercício de previsão utiliza o esquema 

de janelas rolantes. Diferentes estratégias de combinação de previsões e procedimentos de 

seleção de variáveis para métodos multivariados foram contempladas. Para robustez, cinco 

horizontes de previsão foram utilizados. A avaliação das previsões considera diversos 

procedimentos e medidas estatísticas para oferecer conclusões confiáveis, incluindo razões de 

erro quadrático médio de previsão, teste de igualdade condicional de habilidade preditiva, 

diferenças de erro quadrático médio de previsão cumulativas e Model Confidence Set. Os 

resultados mostram que o SSA supera consistentemente os métodos competidores. Quase 

todas as previsões SSA superam os competidores em termos de erro quadrático médio de 

previsão, e em vários casos, com significância estatística. A análise da porção fora da amostra 

indica superioridade em performance relativa do SSA, especialmente no período de choque 

nos preços de energia elétrica. Adicionalmente, métodos SSA sempre foram incluídos no 

conjunto superior do Model Confidence Set. A falta de estudos relacionados com previsão da 

inflação brasileira e a relativa escassez de análises de previsões via métodos não-paramétricos 

ressaltam a relevância deste artigo. Não existem pesquisas na literatura de previsão de 

inflação brasileira aplicando SSA. Uma das estratégias de combinação de previsões aplicadas 

neste artigo não é comumente encontrada na literatura, na medida em que envolve 

combinações de diferentes especificações para cada método de previsão. Adicionalmente, 

restrições de parâmetros foram impostas nas previsões SSA, uma prática não reportada na 

literatura. 

 

Palavras-chave Inflação. Análise espectral singular. Previsão. Brasil. 

 

 
  



 

 

ABSTRACT 

 

The purpose of this paper is to evaluate Brazilian inflation forecasts produced by the 

nonparametric method Singular Spectrum Analysis (SSA). This forecasting exercise employs 

rolling windows scheme. Different strategies of forecast combinations and variable selection 

procedures for multivariate methods were contemplated. For robustness, five forecast 

horizons were used. The forecast evaluation considers several statistical measures and 

procedures to offer reliable conclusions, including mean squared forecast error ratios, tests of 

equal conditional predictive ability, cumulative square forecast error difference and Model 

Confidence Set. The results show that SSA consistently outperforms the competitive methods. 

Almost all SSA forecasts outperforms the competitors in the mean squared forecast error 

sense, and several with statistical significance.  Analysis of the out-of-sample portion 

indicates relative superior performance of SSA, especially over the period of electricity shock 

of prices. SSA methods were always included in the superior set of Model Confidence Set 

procedures. The lack of studies related to Brazilian inflation forecasting and the relative 

scarcity of nonparametric methods of forecasting analysis highlights the relevance of this 

paper. There is no research in Brazilian inflation literature applying SSA. One of the forecast 

combination strategies applied in this paper is not commonly found in the literature, as it 

involves combinations of different specifications for each forecast method. Additionally, 

parameter restrictions on SSA forecasts were imposed, a practice which is not reported in the 

literature. 

 

Keywords Inflation. Singular Spectrum Analysis. Forecasting. Brazil. 

  



 

 

LISTA DE FIGURAS 

 

Figure 1 – IPCA Series Autocorrelation Function...................................................................18 

Figure 2 – CSFED (1-step ahead forecast).............................................................................. 28 

Figure 3 – CSFED (3-step ahead forecast).............................................................................. 29 

Figure 4 – CSFED (6-step ahead forecast).............................................................................. 30 

Figure 5 – CSFED (9-step ahead forecast).............................................................................. 31 

Figure 6 – CSFED (12-step ahead forecast)............................................................................ 32 

Figure 7 – RMSSAu selected variables…............................................................................... 33 

Figure 8 – RMSSAu selected variables…............................................................................... 33 

 

 

 



 

 

LISTA DE TABELAS 

 

Table 1 – MSFE ratios (1-step ahead forecasts)...................................................................... 26 

Table 2 – MSFE ratios (3-step ahead forecasts)...................................................................... 26 

Table 3 – MSFE ratios (6-step ahead forecasts)...................................................................... 27 

Table 4 – MSFE ratios (9-step ahead forecasts)...................................................................... 27 

Table 5 – MSFE ratios (12-step ahead forecasts).................................................................... 27 

Table 6 – Model Confidence Sets............................................................................................ 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

SUMÁRIO 

 

 

1 INTRODUCTION ............................................................................................................. 8 

2 METHODOLOGY .......................................................................................................... 11 

2.1 Decomposition: Embedding .............................................................................................. 11 

2.2 Decomposition: Singular Value Decomposition (SVD) .................................................... 11 

2.3 Reconstruction: Grouping ................................................................................................. 12 

2.4 Reconstruction: Diagonal Averaging................................................................................ 12 

3 FORECASTING ............................................................................................................. 14 

3.1 Recurrent Forecast ............................................................................................................ 14 

3.2 Vector Forecast ................................................................................................................. 15 

3.3 Multichannel Singular Spectrum Analysis ........................................................................ 16 

4 FORECASTING EXERCISE AND PERFORMANCE EVALUATION .................. 17 

5 RESULTS ......................................................................................................................... 20 

6 CONCLUSIONS ............................................................................................................. 22 

 REFERENCES ................................................................................................................ 23 

 APPENDIX A – MEAN SQUARED FORECAST ERROR RATIOS ....................... 26 

APPENDIX B – CUMULATIVE SQUARED FORECAST ERROR 

DIFFERENCES ............................................................................................................... 28 

 APPENDIX C – ADDITIONAL RESULTS ................................................................. 33 

 APPENDIX D – DATA ................................................................................................... 34 

 

 

 

 

 



8 

 

1 INTRODUCTION 

 

Inflation is one of the most important macroeconomic variables, especially to Brazil, 

which has experienced hyperinflation between the decades of 1980’s and 1990’s.  

Several reasons make inflation forecasting important. Once the decisions of Central 

Banks’ monetary policy have a forward-looking nature, reliable forecasts are required. Fund 

managers use inflation forecasts as an auxiliary tool to define macroeconomic scenes and to 

anticipate interest rates that are likely to be fixed by the monetary authority. This is of interest 

to pension fund managers because a substantial part of federal public debt are indexed to 

inflation (National Treasury Notes – Series B, or NTN-B, as an example) due to strategic 

changes of Brazilian National Treasure on prioritizing this type of emission rather than bonds 

indexed to Selic interest rates from 2005 ownwards. Inflation forecasts are also important to 

adjust wages, to contracts that include future prices and to the investor’s real returns. Clearly, 

producing accurate inflation forecasts has its practical relevance. 

Most of the literature about inflation forecasting has focused on Phillips Curve model. 

Stock and Watson (1999) showed the improvements of using Phillips Curve based on 

measures of real aggregate activity over the traditional model based on unemployment rate. 

The preeminent study of Atkeson and Ohanian (2001) brought out that none of the standard 

Phillips Curve forecasting models outperforms a simple random walk model which motived 

the emergence of further studies (CHEN; TURNOVSKY; ZIVOT, 2014; GROEN; PAAP; 

RAVAZZOLO, 2013; STOCK; WATSON, 2007, 2008). 

Studies regarding Brazilian inflation mostly focus on its determinants rather than on 

forecasting. This latter literature is growing, despite being relatively scarce.  

Arruda, Ferreira and Castelar (2011) did a comparative study between linear and 

nonlinear models, and showed that the Phillips Curve model with a threshold effect had a 

relatively better forecasting performance. Figueiredo (2010) showed that factor models with 

targeted predictors performed well in context of a large data set. Medeiros, Vasconelos and 

Freitas ([2015]) estimated LASSO models and found relative out-of-sample superiority for 

short-horizons. Moreover, they found that variables selected by LASSO relate to government 

debt and money. Ferreira and Palma (2015) dealt with model and parameter uncertainty using 

Dynamic Model Averaging and found advantages for longer forecast horizons. Caldeira, 

Moura and Santos (2015) analyzed forecasts of macroeconomic variables using time-varying 

parameter vector autoregressive (TVP-VAR) and drew attention to TVP-VAR with Dynamic 
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Model Averaging. Particularly, they reported good results to inflation forecasting using TVP-

VAR, Bayesian VAR and Factor-Augmented VAR models. 

This study aims to evaluate the accuracy of Brazilian inflation forecasts using a 

nonparametric method called Singular Spectrum Analysis (SSA). Empirical studies applying 

this method in economic literature are quite recent, almost all from the mid 2000’s, and have 

been calling attention due to appealing forecast results. The lack of studies related to Brazilian 

inflation forecasting and the relative scarcity of applications of nonparametric forecasting 

methods highlights the relevance of this paper. To the best of our knowledge, there is yet no 

research in Brazilian inflation literature applying this methodology. 

SSA is a nonparametric method originated by the papers of Broomhead and King 

(1986a, 1986b) and Broomhead et al. (1987). Subsequently, SSA became a regular tool in 

some fields of natural sciences. Recently, the method started to take place in economic studies 

(HASSANI, 2007; HASSANI; THOMAKOS, 2010; HASSANI; ZHIGLJAVSKY, 2009). 

Several studies using a multivariate extension of SSA called Multichannel Singular Spectrum 

Analysis (MSSA) reported forecast improvements, for examples, on North American inflation 

(HASSANI; SOOFI; ZHIGLJAVISKY, 2013), European industrial production (HASSANI; 

HERAVI; ZHIGLJAVSKY, 2009), US’ home sales (HASSANI et al., 2014) and exchange 

rates (HASSANI; SOOFI; ZHIGLJAVISKY, 2009). 

Many econometric methods devised for forecasting time series depend on validity of 

restrictive assumptions like nonstationarity and normality. The SSA do not suffer from the 

criticism of these assumptions and works well with time series with linear or nonlinear 

behavior. Furthermore, it is known that noise can reduce the accuracy of time series 

prediction. Instead of forecast the series ignoring the presence of the noise component, the 

SSA initiates with filtering the noisy series in order to forecast the new data (HASSANI; 

THOMAKOS, 2010). 

We consider the official Brazilian inflation measure IPCA and 17 additional variables 

as candidates to be included in the multivariate methods, for a period from March 2003 to 

December 2015, at monthly frequency. Several econometric methods and survey-based 

measures of market inflation expectations were used as potential competitors of SSA. Under 

rolling windows scheme, various forecasting strategies were taken into account, including 

combined forecasts of different methods and forecast combinations of different specifications 

(or parameters) of a single method. The latter kind of forecast combinations is not commonly 

seen into the literature. We extend the idea behind forecast combinations, usually applied to 

parsimonious parametric regressions when dealing with model uncertainty, to the situation 
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where we focus on a single method and combine different specifications of this method. 

Moreover, our SSA combination strategy puts restrictions on the set of possible parameters to 

reduce the forecast volatility. The results indicates strong evidence of superiority for SSA – 

MSSA over the alternative methods to forecast the Brazilian inflation rates along all the time 

horizons analyzed in this paper, especially to longer terms.  

This paper is organized as follows: Section 2 describes the basic SSA algorithm; 

Section 3 describes the main SSA-forecast algorithms; Section 4 presents the data, the 

alternative methods, the forecasting strategies and the evaluation tools considered in this 

study. Section 5 discuss the empirical results. We conclude in Section 6. 

  



11 

 

2 METHODOLOGY 

 

The main idea of SSA is to decompose the original series into a sum of other series, so 

that we can identify each one properly, i.e., trend, periodicity, quasi-periodicity or noise. The 

method does not rely on assumptions like stationarity or normality. Basically, the mechanism 

of SSA involves two stages: decomposition and reconstruction. Firstly, we transfer our series 

to a Hankel real matrices space and then apply singular value decomposition. Secondly, we 

select appropriate components and reconstruct them as new series. 

 

2.1 Decomposition: Embedding 

 

The first step at the decomposition stage is to obtain a matrix with Hankel structure 

from the series at hand, known as trajectory matrix.  

Consider a nonzero series               
 ,    , and a window length  , 

     .  Also, consider the lagged vectors                  
 ,     , where 

       . Denote      as the (i,j)th element of a     real matrix and define the linear 

operator        , which satisfies 

       ,         ,      ,                                           

where    is the set of all ordered  -tuples of real numbers and    is the space of the 

    real matrices with Hankel structure. The trajectory matrix   is obtained by applying 

 
 
  , 

           .                                                         

 

 

 

2.2 Decomposition: Singular Value Decomposition (SVD) 

 

At the SVD step, the trajectory matrix   is decomposed into a sum of elementary 

matrices   ,        , where   is the rank of  . These elementary matrices have properties 

such as being rank-one and biorthogonal.  

Define      . Let          be eigenvalues of  and         its corresponding 

eigenvectors, such that            and           form an orthonormal set. The SVD 

of the trajectory matrix   is defined as 
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where                       and     
       . Since each elementary 

matrix is completely determined by the triple            , it is often referred as eigentriple. 

Among all the rank   matrices     ,    , the matrix    
 
    provides the best 

approximation to the trajectory matrix   in the sense that the Frobenius norm         
 

 is 

minimum. This optimal property is desirable if few elementary matrices are selected as 

representative of the trajectory matrix. 

 

2.3 Reconstruction: Grouping 

 

The grouping step aims to form separate groups of elementary matrices so that we 

could identify them as meaningful components. Once SVD is applied, we partition the set of 

indices         into   subsets         such that           , ...,           . Thus, 

we get 

     

 

   

                                                                    

It is desirable that the resulting grouped matrices, or briefly components, are separated 

from each other. Achieving separability is crucial to SSA. The theory of separability is well 

explained in literature (GOLYANDINA; NEKRUTKIN; ZHIGLJAVSKY, 2001). 

Grouping eigentriples generally requires the analyst’s interaction. Useful 

recommendations are found in Golyandina and Zhigljavsky (2013). 

 

2.4 Reconstruction: Diagonal Averaging 

 

In the last step, we transform the components into Hankel matrices and convert them 

into reconstructed series. In practice, the components are not likely to be exactly separable, 

implying that the inner product between each pair of components is not exactly zero (non w-

orthogonal). Thus, we need an optimal procedure to bring arbitrary matrices to the Hankel 

matrices space of the same dimensions. 

Let           ,                          and        . Moreover, 

let     
       if     and     

       otherwise. Denote the spaces of arbitrary     matrices 

and     Hankel matrices by      and     
   

, respectively. The hankelization operator 

           
   

 is defined as  
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Applying the hankelization operator leads to 

                                                                      

where         and    
   

 is the (i,j)th element of    ,                  . 

The operator   can be viewed as an orthogonal projection of    onto     
   

 space, 

which means that     is the nearest matrix to    in the Frobenius norm sense. 

Naturally, each     is the trajectory matrix of a series    
   
     

   
      

   
 ,   

     . Therefore, we can write our original series as  
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3 FORECASTING 

 

There are two main algorithms to forecast time series using SSA: recurrent forecast 

and vector forecast. The difference between them is that the former considers a continuation 

of a linear recurrence relation (LRR) obtained from the reconstructed series and the latter 

applies a continuation of a given component into its column space before the diagonal 

averaging step. 

Consider the series              and the trajectory matrix            . 

Applying the basic SSA procedure we have the components         and the corresponding 

reconstructed series           
         

                 
         

                . 

We shall call the space spanned by the L-lagged vectors, the L-trajectory space of  ,      

             . If             , then           . Also, denote by         and 

    
    vectors of the first and the last     elements of     , respectively. 

 

3.1 Recurrent Forecast  

 

The recurrent forecast rely on the following theorem
1
.  

Theorem 1. Let         be an orthonormal base of a linear space    and 

       
      

     
 . Furthermore, denote    as the last element of the vector        

       and      
      

 . Suppose that          
                and 

     . Then the following LRR is valid  

                  

   

   

                                              

where the coefficients are defined by 

             
  

 

    
     

 

 

   

                                    

If we focus on forecast the (j)th component of the time series  , the recurrent forecast 

defines the time series                                 as 

    

 
 
 

 
    

   
                                                

       

   

   

             
                                     

                                                 
1
 Proof can be found in Golyandina, Nekrutkin and Zhigljavsky (2001, p. 247). 
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where the coefficients           is given by   . 

The basic recurrent forecast uses the left eigenvectors provided by SSA as the 

orthonormal basis for the linear space   . For a given  , suppose       where   is the 

signal term and   is related to the noise. Denote by       the L-trajectory space of the series 

 . If (strong) separability is achieved, then the continuation of the LRR that governs the 

reconstructed series is the same of those results produced by the basic recurrent forecast, ie., 

    
    and the recurrent algorithm does not produce error by using the wrong LRR. In 

practice, approximate separability is required to carry out problems related to the differences 

between    and     , and errors contained in the reconstructed series which affects the initial 

data of the algorithm. 

 

3.2 Vector Forecast  

 

The series   admits L-continuation in      if there exists a unique number       such 

that all the L-lagged vectors of                       belong to     . The vector forecast, 

firstly, do L-continuation and then reconstruct the series. 

Consider the same notation of Theorem and that      . Define the linear operator 

           as 

       
   
    

                                                            

where       
               

    and       
      

  . The operator   can 

be viewed as an orthogonal projection          
 . But since       

  and it’s assumed 

that      , then there is a unique vector       which the last element is given by     . 

Focusing on the (j)th component           
                , define 

    
                                

                       
                                 

Making the diagonal averaging of the matrix                   we obtain the 

series                                 where               form the   terms of the 

vector forecast. Again, as in the basic recurrent forecast case we can use the left eigenvectors 

provided by SSA.  If    belongs to                  and strong separability is achieved, 

then recurrent and vector forecasts coincide with the exact continuation of the series      

because    equals the trajectory space of     , consequently, the matrix   is the identity 

matrix and   has Hankel structure. 
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3.3 Multichannel Singular Spectrum Analysis 

 

The extension of the model to the multivariate case is straightforward. The main 

difference relies on the trajectory matrix where we use a stacked version. For a given window 

length  , assume a multivariate series       
        

    , where        . Denote the 

trajectory matrices of the individual series    
 
 
   

 
 as     ,         . The trajectory matrix 

of the multivariate series can be defined as 

   
    

 
    

                                                                    

Note that the eigentriples reflect information of the entire set of variables, including 

the cross products 
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4 FORECASTING EXERCISE AND PERFORMANCE EVALUATION 

 

Our forecasting analysis is based on 18 variables (see APPENDIX D) between March 

2003 and December 2015, a total of       monthly observations. The accuracy of SSA 

forecasts will be analyzed considering alternative models, including: Autoregressive model 

(AR); Random Walk (RW); Seasonal Autoregressive Integrated Moving Average model 

(SARIMA); Exponential Smoothing in State Space model (ETS); Neural Networks 

Autoregressive model (NNAR); Unobservable Components model (UCM); Generalized 

Phillips Curve model
2
 (GPC); and Vector Autoregressive model (VAR).  

The evaluation of the forecast methods mentioned above will be conducted by 

measures of Mean Squared Forecast Error (MSFE) ratios, Cumulative Square Forecast Error 

Difference (CSFED) as those used by Welch and Goyal (2008), Giacomini and White (2006) 

tests
3
 and the Model Confidence Set (MCS) procedure proposed by Hansen, Lunde and Nason 

(2011). 

Our focus relies on rolling windows forecasts. We split the sample according to the 

theoretical viewpoint of SSA. For relatively short time series, if we know the period   of the 

periodic component of a time series of length  , then     must be proportional to   to 

satisfy conditions of separability (GOLYANDINA; ZHIGLJAVSKY, 2013, p. 50). For 

monthly data, generally period 12 is natural (see Figure 1). Therefore, avoiding small window 

lengths to properly capture data structures, we choose an estimation window of length
4
 

    . In our exercise, the model parameters are selected by cross validation with a 

validation period of length     .  Finally, the in-sample portion has length        

    and the out-of-sample portion has length         . Regardless the forecast 

horizon  , the estimation window and the number of out-of-sample forecasts produced will 

always be the same, but the number of forecasts produced in the validation period will be 

       . Thus, the longer the forecast horizon, the less will be the information used for 

parameter or model selection. We choose this way because of the equal predictive ability test 

asymptotics and the fact that our time series is short. 

 

 

                                                 
2
 We consider a bivariate version of that used by Koop and Korobilis (2012). 

3
 Under rolling windows framework, Giacomini and White (2006) test of equal conditional predictive ability is 

adequate to treat nested and nonnested models, and general estimation procedures including Bayesian, semi- 

and nonparametric methods. 
4
 The associated results (not reported) of this window length are robust to      and      . 
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Figure 1 - IPCA Series Autocorrelation Function  

 
  Source: elaborated by the author (2016). 

 

To deal with model uncertainty, we consider combinations of different forecast 

methods and combinations of different specifications of the same forecast method. The former 

uses the simple arithmetic mean combination and the latter uses a weighted average based on 

the mean squared forecast error obtained from the validation period. In respect to SSA 

forecasts, we restrict the set of possible eigentriples to be chosen such that only those relevant 

remains (explaining 85% of the data variation). By doing this, we expect less volatile 

forecasts. In practice, for noisy series, considering just the main eigentriples prevent us from 

noise-signal mixing as well as turn the algorithm computationally faster. 

In respect to the forecast combination of specifications of the same method, the 

number of possible combinations of parameters in SSA and MSSA is huge. Then, we only 

choose the 5% best models to produce the final combined forecasts. For SARIMA, AR, 

SETAR and NNAR models, we set the maximum parameter values equal to 6. For all the 

univariate techniques, except SSA, we consider the 50% best models to calculate the final 

forecast combinations. Even so, the number of SSA models remains greater than each of these 

univariate cases. 

There are four different forecast combination strategies in this work. The first strategy 

uses forecast combinations of different specifications of a given univariate method. Denote 

    as the j-th   -tuple of parameters of the method  , which defines the model used to 

produce forecasts. In addition, let  

                             
 
         

 

    

                             

where                is the error between the forecasted value produced by the method   using 

parameters    , at time  , in the validation period that stands from    to  . The final forecast 

of the first strategy can be written as  
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where    is the number of possible   -tuple combinations. One can see that those models 

associated with lower MSEs in the validation period receive higher weights.  

The second strategy applies the same scheme of forecast combination previously 

mentioned, but in a bivariate framework. The bivariate model associated with the lowest 

MSE, in the first validation window, defines the secondary variable that is going to be used in 

the remaining forecasting exercise. The third strategy is similar to the second, with the 

difference that possibly new secondary variables can be selected as the estimation window 

rolls, depending on the performance over the validation periods. That is, the third strategy is a 

variable-updating strategy whereas the second is a variable-fixed strategy. The fourth strategy 

corresponds to the simple arithmetic mean of a set of different final forecast methods. 

As explained above, there are two algorithms for the SSA or MSSA to produce 

forecasts: vector forecast (V) and recurrent forecast (R). The model RSSA and VSSA 

corresponds to the univariate SSA forecasts; RMSSA and VMSSA are related to MSSA 

forecasts under the variable-fixed strategy; RMSSAu and VMSSAu also corresponds to 

MSSA forecasts, but under variable-updating selection scheme. Additionally, GPC and VAR 

forecasts consider the variable-updating strategy.  

For horizon τ, the FOCUS forecast is the median of expectations from the last day of 

the previous τ-month.  

The following forecasts belongs to the fourth forecast strategy. COMB1 is the mean of 

all forecasts produced in our exercise, except those related to SSA or MSSA. COMB2 is 

similar to COMB1, but includes SSA and MSSA. SSAb averages basic univariate recurrent 

and vector forecasts, without combinations of specifications and without eigentriple’s 

restrictions. SSAm is the mean of all forecasts associated with SSA or MSSA, excluding 

SSAb. The last two forecasts can be thought as a representative forecast of a very basic SSA 

setup and as representative of the general SSA – MSSA methodology, respectively. 
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5 RESULTS 

 

In general, out-of-sample performance evaluation shows appealing results for SSA and 

MSSA methods. Under sliding forecasts scheme, the method is able to incorporate the new 

data structure more efficiently. 

Tables 1-5 (APPENDIX A) present MSFE ratios of relevant pairs of models and 

indicates superiority of SSA-MSSA against the alternative methods, which can be seen in the 

rectangular blocks with dashed border in each table. Inside these blocks, almost all MSFE 

ratios are less than unity in magnitude, and statistically less in several cases, indicating that 

SSA – MSSA forecasts outperform the competitor’s methods. Particularly, FOCUS showed a 

relatively good out-of-sample ability when aiming one-step ahead forecasting despite not 

being statistically significant. For other forecast horizons, SSA and MSSA methods 

consistently indicates performance gains over all alternative methods, especially in 12-steps 

ahead case where statistical significances were found against FOCUS. In addition, note that 

the first line of each table indicates relative gains of using the forecast combination strategies 

presented in this paper over the basic SSAb.  

For every horizon, COMB2 outperformed COMB1 in MSE sense. With the exception 

of the one-step ahead horizon, the performance gains were statistically significant, which 

means that the inclusion of SSA-MSSA forecasts in the global average improves the final 

forecasts. 

Figures 2-6 (APPENDIX B) plots the differences between the cumulative square 

forecast error (CSFE) of the SSAm forecasts and the CSFE of the alternative methods. This 

kind of plot offers special advantages because it allows us to evaluate the forecasting 

performance over the whole out-of-sample period and to identify periods of relative gains. 

When the curves in each plot increases, the SSAm outperforms the alternative methods. 

Viewing SSAm as representative of SSA and MSSA methods, the first impression is that the 

plots have in general positively sloped curves. 

The CSFED plots bring out a distinct behavior over the period between January 2015 

and March 2015, characterized by shocks of administered prices. During this post-election 

period, government decided to raise fuel taxes and primarily unfreeze electricity prices, 

resulting in a great elevation of inflation rates. SSAm forecasts exhibit strong relative gains 

over the period, especially for longer horizons. We refer to this period as the Electricity 

Shock. 
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The CSFED patterns are rather similar, with the exception of the FOCUS behavior for 

one-step ahead case. The key aspect of the CSFEDs is that they are generally increasing, 

sometimes slowly and sometimes rapidly. This increase means that SSAm performs well not 

just in a unique time interval, but also in the entire out-of-sample period. We could also 

mention the reasonable degree of smoothness of the CSFEDs, with the exclusion of the 

electricity shock period. It indicates that the performance behavior is reliable and is not so 

erratic over time. To illustrate the robustness of SSAm, we displayed the CSFEs for other 

(estimation) window lengths. We see that the behavior of these CSFEs remains quite 

homogeneous. Despite being visual features, these aspects offer robustness to SSA-MSSA 

methods. 

Table 6 (APPENDIX C) shows the results of the Hansen, Lunde and Nason (2011) 

procedure to summarize the relative performance of an entire set of methods. The advantage 

of the MCS is that we do not need a benchmark to generate the set of best models with a 

given confidence level. Practically, every method considered statistically superior was related 

on SSA or MSSA. 

Figures 7-8 (APPENDIX C) offer insights about what kind of additional variables the 

MSSA methodology have selected, under the mentioned variable-updating forecasting. Along 

all forecast horizons, Recurrent and Vector MSSA have selected variables related to other 

existing consumer price indexes such as IPC_FIPE, IPC_FGV and IPC_M. 
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6 CONCLUSIONS 

 

We investigate the relative performance of SSA methodology to forecast Brazilian 

inflation rates.  

We find that SSA consistently outperforms the competitor’s forecasts over the entire 

out-of-sample period, especially in the Electricity Shock, from January 2015 to March 2015, 

using measures of MSFE, Giacomini-White tests and MCS procedures. Performance 

superiority were more evident for longer horizons. Particularly, for 12-step ahead horizon, 

some SSA and MSSA strategies showed to be statistically more accurate than the 

expectations of Brazilian market analysts.  

Performance gains on using forecast combinations and restrictions on eigentriples 

rather than using forecasts without such strategies were found. Advantages on including SSA 

– MSSA in the average of all forecast methods were found. Additionally, the most selected 

type of variable, in the SSA bivariate methods, relate to alternative consumer price indexes. 
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APPENDIX A – MEAN SQUARED FORECAST ERROR RATIOS 

 
Table 1 - MSFE ratios (1-step ahead forecasts) 

h=1 SSAm RSSA VSSA RMSSA VMSSA RMSSAu VMSSAu COMB2 COMB1 SARIMA ETS NNAR UCM AR PHILLIPS VAR RW FOCUS 

SSAb 1,19 1,11 1,14 1,01 1,3 1,1 1,19 1,15 1,01 0,96* 0,82* 0,62 0,9 0,87* 0,84** 0,84** 0,84 1,34 

SSAm 
 

0,93 0,96 0,85 1,09 0,93* 1 0,97 0,85 0,81 0,69 0,52* 0,76 0,73* 0,7 0,7 0,71 1,13 

RSSA 
  

1,03 0,91 1,18 1 1,07 1,04 0,91 0,87 0,74 0,56 0,81 0,79 0,76 0,76 0,76 1,21 

VSSA 
   

0,89 1,14 0,97 1,04 1,01 0,89 0,85 0,72 0,55 0,79 0,77 0,74 0,74 0,74 1,18 

RMSSA 
    

1,29 1,09 1,17 1,14 1 0,95 0,81 0,61 0,89 0,86 0,83 0,83 0,83 1,33 

VMSSA 
     

0,85 0,91 0,89 0,77 0,74 0,63 0,48* 0,69 0,67** 0,64** 0,64** 0,64 1,03 

RMSSAu 
      

1,08 1,05 0,91 0,87 0,75 0,56* 0,82 0,79 0,76 0,76 0,76 1,21 

VMSSAu 
       

0,97 0,85 0,81 0,69 0,52* 0,76 0,74 0,71 0,71 0,71 1,13 

COMB2 
        

0,87 0,83* 0,71 0,54** 0,78 0,76*** 0,73** 0,73** 0,73 1,16 

Note: This table presents statistics on out-of-sample errors for inflation forecasts. The statistics are the mean squared forecast errors (MSFE) ratios between methods in 

the columns and in the rows. A MSFE ratio less than one (cross-hatching cells) means that the method in the row is more accurate in magnitude than the method in the 

column. Asterisks “***”, “**” and “*” indicates rejection of Giacomini-White’s null hypothesis of equal conditional predictive ability of forecasts at the 1%, 5% and 

10% level of significance, respectively. The rectangle with dashed border brings a clearer view of the relative performance between the set of SSA and MSSA methods 

and the alternative methods. 

Source: elaborated by the author (2016). 

 

 
Table 2 - MSFE ratios (3-steps ahead forecasts) 

h=3 SSAm RSSA VSSA RMSSA VMSSA RMSSAu VMSSAu COMB2 COMB1 SARIMA ETS NNAR UCM AR PHILLIPS VAR RW FOCUS 

SSAb 1,1 1,08 0,99 1,02** 1,15 1,08 1,08 0,87 0,61 0,54** 0,34*** 0,32*** 0,69 0,52** 0,59 0,66 0,34*** 0,79 
SSAm   0,98 0,9* 0,93 1,05 0,99 0,98 0,79 0,56* 0,49** 0,3*** 0,29** 0,63 0,47** 0,54 0,6 0,31*** 0,72 

RSSA     0,92 0,95 1,07 1 1 0,8 0,57 0,5** 0,31*** 0,3** 0,64 0,48** 0,55 0,61 0,31*** 0,73 

VSSA       1,03 1,16 1,09* 1,09 0,88 0,62 0,55 0,34*** 0,33** 0,69 0,52* 0,6 0,67 0,34*** 0,8 

RMSSA         1,13 1,06 1,05 0,85 0,6* 0,53** 0,33*** 0,32** 0,67 0,51** 0,58 0,65 0,33*** 0,77 
VMSSA           0,94** 0,93 0,75* 0,53* 0,47** 0,29*** 0,28** 0,6 0,45** 0,51* 0,57 0,29*** 0,68 

RMSSAu             0,99 0,8 0,57* 0,5** 0,31*** 0,3** 0,64 0,48** 0,55 0,61 0,31*** 0,73 

VMSSAu               0,81 0,57 0,5** 0,31*** 0,3** 0,64 0,48** 0,55 0,61 0,31*** 0,73 

COMB2                 0,71*** 0,62*** 0,39*** 0,37** 0,79 0,6*** 0,68 0,76 0,39*** 0,91 

Source: elaborated by the author (2016). 
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Table 3 - MSFE ratios (6-steps ahead forecasts) 
h=6 SSAm RSSA VSSA RMSSA VMSSA RMSSAu VMSSAu COMB2 COMB1 SARIMA ETS NNAR UCM AR PHILLIPS VAR RW FOCUS 

SSAb 1,29* 1,28** 1,28** 1,31** 1,16 1,29* 1,35** 0,95* 0,68* 0,65 0,31*** 0,63** 0,65* 0,68** 0,62** 0,88 0,31*** 1,02 

SSAm   0,99 0,99* 1,02 0,9*** 1 1,04 0,73* 0,53 0,5 0,24*** 0,49* 0,5** 0,53** 0,48*** 0,68** 0,24*** 0,79 

RSSA     1 1,03 0,91** 1,01 1,05 0,74* 0,53 0,5* 0,24*** 0,49 0,51** 0,53* 0,49*** 0,69** 0,24*** 0,79 

VSSA       1,03 0,91*** 1,01 1,05 0,74** 0,54 0,51 0,24*** 0,5* 0,51* 0,53*** 0,49*** 0,69** 0,24*** 0,8 

RMSSA         0,88*** 0,98 1,02 0,72* 0,52 0,49* 0,24*** 0,48 0,5** 0,52* 0,47*** 0,67** 0,23*** 0,77 
VMSSA           1,11** 1,16*** 0,82 0,59 0,56 0,27*** 0,54* 0,56* 0,59*** 0,54*** 0,76 0,26*** 0,88 

RMSSAu             1,04 0,74* 0,53 0,5* 0,24*** 0,49 0,51** 0,53* 0,48*** 0,68** 0,24*** 0,79 

VMSSAu               0,71** 0,51 0,48* 0,23*** 0,47* 0,49** 0,51** 0,46*** 0,65** 0,23*** 0,76 

COMB2                 0,72*** 0,68*** 0,33*** 0,67** 0,69* 0,72** 0,66** 0,93 0,32*** 1,07 

Source: elaborated by the author (2016). 

 
Table 4 - MSFE ratios (9-steps ahead forecasts) 
h=9 SSAm RSSA VSSA RMSSA VMSSA RMSSAu VMSSAu COMB2 COMB1 SARIMA ETS NNAR UCM AR PHILLIPS VAR RW FOCUS 

SSAb 1,18 1,23 1,2 1,07 1,02 1,21 1,24 0,93 0,74 0,75 0,47*** 0,41* 0,86* 0,62** 0,36*** 0,72* 0,43*** 0,91 
SSAm   1,04** 1,02 0,91*** 0,87*** 1,03 1,05 0,79*** 0,63*** 0,64*** 0,4*** 0,35* 0,73*** 0,53** 0,31*** 0,61* 0,37*** 0,77 

RSSA     0,98 0,87*** 0,83*** 0,98 1,01 0,76*** 0,61*** 0,61*** 0,39*** 0,33* 0,7** 0,51** 0,3*** 0,58** 0,35*** 0,74 

VSSA       0,89*** 0,85* 1 1,03 0,78** 0,62** 0,63** 0,4*** 0,34* 0,72** 0,52** 0,3*** 0,6* 0,36*** 0,76 
RMSSA         0,95 1,13* 1,16** 0,87** 0,7*** 0,7*** 0,44*** 0,38* 0,81** 0,58** 0,34*** 0,67* 0,4*** 0,85 

VMSSA           1,18** 1,22*** 0,92* 0,73** 0,74** 0,47*** 0,4* 0,85* 0,61* 0,36*** 0,7 0,43*** 0,89 

RMSSAu             1,03 0,77*** 0,62*** 0,62*** 0,39*** 0,34* 0,72** 0,52** 0,3*** 0,59** 0,36*** 0,75 
VMSSAu               0,75** 0,6** 0,61*** 0,38*** 0,33* 0,7*** 0,5** 0,29*** 0,58* 0,35*** 0,73 

COMB2                 0,8*** 0,8*** 0,51*** 0,44 0,93 0,67** 0,39*** 0,77 0,46*** 0,98* 

Source: elaborated by the author (2016). 

 
Table 5 - MSFE ratios (12-step ahead forecasts) 
h=12 SSAm RSSA VSSA RMSSA VMSSA RMSSAu VMSSAu COMB2 COMB1 SARIMA ETS NNAR UCM AR PHILLIPS VAR RW FOCUS 

SSAb 4,29** 4,17** 3,92** 3,93 4,3*** 4,22** 4,23** 3,47 2,84 2,83 3,42* 1,9 3,42 2,1** 1,4 2,38** 3,08* 3,04 

SSAm   0,97 0,91** 0,92* 1 0,98** 0,98*** 0,81*** 0,66*** 0,66*** 0,8 0,44** 0,8 0,49*** 0,33*** 0,55*** 0,72 0,71 

RSSA     0,94*** 0,94*** 1,03 1,01 1,01*** 0,83*** 0,68*** 0,68*** 0,82 0,46** 0,82 0,5*** 0,34*** 0,57*** 0,74 0,73* 

VSSA       1** 1,1 1,08*** 1,08 0,88** 0,72*** 0,72** 0,87 0,48** 0,87 0,54*** 0,36*** 0,61*** 0,79 0,78* 
RMSSA         1,09* 1,07*** 1,07** 0,88** 0,72** 0,72*** 0,87 0,48** 0,87 0,53*** 0,36*** 0,6*** 0,78 0,77* 

VMSSA           0,98 0,98* 0,81*** 0,66*** 0,66*** 0,79 0,44** 0,79 0,49*** 0,32*** 0,55*** 0,72 0,71 

RMSSAu             1*** 0,82** 0,67*** 0,67*** 0,81 0,45** 0,81 0,5*** 0,33*** 0,56*** 0,73 0,72 
VMSSAu               0,82*** 0,67*** 0,67*** 0,81 0,45** 0,81 0,5*** 0,33*** 0,56*** 0,73 0,72 

COMB2                 0,82*** 0,81*** 0,98 0,55*** 0,99 0,61*** 0,4*** 0,69*** 0,89 0,88 

Source: elaborated by the author (2016). 
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APPENDIX B – CUMULATIVE SQUARED FORECAST ERROR 

DIFFERENCES 

        
Figure 2 - CSFED (1-step ahead forecast) 

 
Note: This figure presents the CSFEs, similar to those used by Welch and Goyal (2008). An increase in 

line indicates superior performance to SSAm over the alternative method.  In addition to the case where 

the estimation window has length 97, the CSFEs for estimation windows of lengths 85 and 109 are 

displayed to give notions of robustness. For each plot, the values between parentheses inside the legend 

are MSE ratios of the corresponding pairwise methods. The gray period in the plots indicates shocks of 

unfreezing administered prices (basically electricity). 

Source: elaborated by the author (2016). 
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Figure 3 - CSFED (3-step ahead forecast) 

 

 
 
Source: elaborated by the author (2016). 
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Figure 4 - CSFED (6-step ahead forecast) 

 

 
 

Source: elaborated by the author (2016). 
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Figure 5 - CSFED (9-step ahead forecast) 

 

 
 

Source: elaborated by the author (2016). 
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Figure 6 - CSFED (12-step ahead forecast) 

 

 
 

Source: elaborated by the author (2016). 

 

 



33 

 

 

APPENDIX C – ADDITIONAL RESULTS 

 
Table 6 - Model Confidence Sets 

Horizons 1 3 6 9 12 

 
VMSSA SSAb SSAm RSSA SSAm 

  FOCUS SSAm RSSA VSSA RSSA 

    RSSA VSSA RMSSAu VSSA 

 Models   VSSA RMSSA VMSSAu RMSSA 

    RMSSA RMSSAu   RMSSAu 

    VMSSA VMSSAu   VMSSAu 

    RMSSAu       

    VMSSAu       

Note: This table presents the model confidence sets obtained by Hansen, Lunde 

and Nason (2011) procedure, for a confidence level of 20%. 

Source: elaborated by the author (2016). 

 

Figure 7- RMSSAu selected variables

 
                   Source: elaborated by the author (2016). 

 

Figure 8 - VMSSAu selected variables 

 
                  Source: elaborated by the author (2016). 
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APPENDIX D – DATA 

 

Variables Data Source Transformations 

IPCA Extended National Consumer Price Index IBGE Δ% 

INPC National Consumer Price Index IBGE Δ% 

IPC_FGV Consumer Price Index FGV Δ% 

IPC_FIPE Consumer Price Index  Fipe Δ% 

IPC_M Consumer Price Index - Market FGV Δ% 

UNEMP Unemployment rate - six largest metropolitan areas IBGE X-12 ARIMA+diff_log 

SELIC Selic accumulated in the month in annual terms  BCB diff_log 

ICU Installed capacity utilization, seasonaly adjusted CNI diff_log 

IBCbr Brazilian Economic Activity Index, seasonally adjusted BCB diff_log 

M1_PIB M1  money supply, end-of-period balance (% GDP) BCB X-12 ARIMA+diff_log 

NFSP Borrowing requirements of central government, total debt 
STN 

IGP-DI deflation+X-12 

ARIMA+diff_log 

M1 M1 money supply, working day balance average 
BCB 

IGP-DI deflation+X-12 

ARIMA+diff_log 

M2 M2 broad money supply, end-of-period balance 
BCB 

IGP-DI deflation+X-12 

ARIMA+diff_log 

EMP Industrial employment index, seasonaly adjusted CNI diff_log 

DEB_F Fiscal net debt (% GDP) BCB diff_log 

DEB_I Net public debt (% GDP) - Internal - public sector BCB diff_log 

PROD 
Quantum index of industrial physical production, seasonaly 

adjusted 
IBGE diff_log 

Constructed 

variables 
Comments 

XR 

Exchange rate pass-through constructed from exchange (sell) rate (BCB) and seasonally adjusted 

finished goods PPI (U.S. Bureau of Labor Statistics) data. The variable is calculated as the sum of 

the log-differenced exchange rate and the north american PPI.  

 

 

 


