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Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magneto-

plasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa dis-

tribution and positron content on the dispersion relation has been highlighted; it is found that

strong superthermality (low value of j) and addition of positrons lowers the phase velocity via

decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent

nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions

(boundedness) in the context of superthermality and positron concentrations are discussed. Second,

in case of scalar nonlinearity, a Korteweg–de Vries-type equation is obtained, which admit solitary

wave solution. It is found that both compressive and rarefactive solitons are formed in the present

model. The present work may be useful to understand the low frequency electrostatic modes in in-

homogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as

those found in the pulsar magnetosphere. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4896346]

I. INTRODUCTION

Ion acoustic and drift waves are the two fundamental

modes of magnetized inhomogeneous plasma in the low fre-

quency limit, i.e., x� Xi ¼ eB0

mic
. Ion acoustic waves are ba-

sically electrostatic longitudinal perturbations and can

propagate in homogeneous unmagnetized plasmas as well

through the intermediary of the electric field. On the other

hand, drift waves are low frequency electrostatic waves,

which propagates in the perpendicular direction to the exter-

nal magnetic field, i.e., in the y-axis (say) with k? � kk,
while x-axis being the direction of density gradients and the

external magnetic field B0 is along the z-axis. Drift waves

are similar to ion acoustic waves in a way that electrons pro-

vide elasticity through the pressure and ions provide the iner-

tia. The main difference between the ion acoustic and drift

wave is that energy equipartition between the ion kinetic and

potential holds for ion acoustic wave, while for the case of

long wavelength drift mode, it does not hold and rather the

ion kinetic energy is subdominant; therefore, the potential

energy of the ions mainly contribute in the energy density of

the system. For large parallel wave vector ðkkÞ; drift wave

can turn into ion acoustic waves.1

Electrostatic waves with Maxwellian particle distribu-

tion have been studied since long ago; however, it is well

established now by evidence from both space2–5 and labora-

tory6,7 plasmas that non-Maxwellian particle distributions

are required to model efficiently the role of energetic par-

ticles, associate with long-tailed (superthermal) velocity dis-

tributions. Such particles (electrons and positrons in our

case) can be modeled by kappa or generalized Lorentzian ve-

locity distribution function, which imply the Maxwellian

core and a high energy tail component of the power law

form. The form of the kappa distribution was first postulated

by Vasyliunas in 19682 to fit observational solar wind data.

By now, the kappa distribution has been employed to explain

many astrophysical and space plasma situations, e.g., in the

auroral zone,8 in the Earth’s magnetosphere,9 in the interstel-

lar medium,10 and the solar wind.11 Interestingly, non-

Maxwellian energetic particles are also observed in the

lab.6,7 The three dimensional isotropic kappa velocity distri-

bution function for superthermal particles can be written as2

fj vð Þ ¼ nj0

pjh2ð Þ3=2

C jþ 1ð Þ
C j� 1=2ð Þ 1þ v2

jh2

� �
;

where h ¼ fðj� 3=2Þ=jg1=2ð2kBTe=meÞ1=2
represent the

effective or modified speed of the superthermal particles

having thermal speed or the most probable speed in

Maxwellian plasmas as vte ¼ ð2kBTe=meÞ1=2
. The spectral

index j measures the slope of the energy spectrum of the

superthermal particles at the tail of the distribution function

such that smaller (larger) values of j represent high (low)

concentrations of superthermal particles in the tail of the dis-

tribution function and j > 3=2 should hold for a physically

valid solution. Other parameters include CðxÞ, which repre-

sent gamma function and nj0 is the equilibrium density of the

jth species. In the limit of j !1, the above distribution

function reduces to Maxwellian limit.

The drift waves were theoretically predicted by

Rudakov and Sagdeev,12 while experimentally verified by

D’Angelo and Motley13 decades ago. It is well established

now that magnetized plasma system contains regions of

inhomogeneity, which can cause a variety of drift
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oscillations. The interest in these modes is due to their im-

portance in the anomalous transport of a plasma in the per-

pendicular direction to a magnetic field. Low frequency

coupled ion acoustic and drift waves are fundamental linear

modes of inhomogeneous magnetized plasmas. However, the

nonlinearities present in the system can give rise to coherent

nonlinear structures such as solitons, vortices, shocks, etc.

Structures associated with drift waves can only exist in mag-

netized plasmas having inhomogeneity (e.g., in density, tem-

perature, magnetic field, etc.), while acoustic type nonlinear

structures can be present both in magnetized and un-

magnetized homogenous plasmas.14

Mirza et al.15 studied low frequency electrostatic waves

in a magnetized plasma in the presence of sheared flow.

They showed that, for specific profiles of the equilibrium

shear flow, the linear equations admit a tripolar vortex solu-

tion; similarly, electromagnetic vortices have been reported

in electron positron ion plasmas in the Ref. 16. Mushtaq

et al.17 reported the linear and nonlinear coupled drift and

ion acoustic waves with Maxwellian electrons in a colli-

sional magnetoplasma. Masood and Ahmad investigated the

linear modes of coupled dispersive drift acoustic modes in

nonuniform plasmas in the presence of nonthermal particle

distributions18 while Shan and Haque19 traced out nonlinear

dipolar and monopolar vortex solutions in the presence of

superthermal electrons. Recently, Mahmood et al.20 studied

electrostatic vortex structures in a multicomponent plasma.

They discussed dispersion relation in both localized and non-

localized limits and found the condition for the existence of

dipolar vortex structures in a magnetized rotating electron-

positron plasma with stationary ions.

Electron positron ion (e-p-i) plasmas have been exten-

sively studied in the recent years21–26 due to their existence

in the astrophysical environments, example includes, magne-

tosphere of neutron stars,27 in active galactic cores,28 and in

solar flare plasma.29 Importantly, these three component

plasmas have also been produced in the laboratory,30–32 and

the existence of positrons in other laboratory plasmas has

been confirmed.33–35 The process of pair production (electro-

n–positron) can occur during the interaction of a strong laser

pulse with plasmas,36–39 as well as by the interaction of

superthermal electrons with high-Z material.40 The produc-

tion of positrons in the laboratory having energies in the

mega electron volts has lead to more antimatter research,

including the investigation of the physics underlying various

astrophysical phenomena such as gamma ray bursts, positro-

nium production, and Bose-Einstein condensates.41,42 The

properties of the conventional electron-ion plasma changes

due to the presence of positrons, as it reduces the ion number

density in the system. On the same time scale, the dynamics

of electrons and positrons could be the same, the two having

the same mass (but different charge). Therefore, kappa distri-

bution can be assumed for physical environments having

excess superthermal (high-energy) charged particles.

Importantly, the interaction of high energy gamma ray pho-

tons with the atoms/molecules leads to the generation of

high energy electrons and positrons in the interstellar me-

dium43 and earth upper atmosphere.44–47 Similarly, the

plasma sheet boundary of earth magneto-tail also contains

such energetic particles (nonthermal) originating partially

from the pulsar into the low density interstellar plasma.48–50

In this manuscript, we have analyzed linear and nonlinear

waves in a magnetized e-p-i plasma having inertial cold ions,

kappa distributed electrons, and positrons. In the linear re-

gime, we emphasized on the effects of kappa distribution and

positron content on the phase velocity of the coupled drift ion

acoustic waves in the presence of density inhomogeneity and

discussed various possible limits of the dispersion relation. In

the nonlinear regime, first, we obtained stationary solutions in

the form of a dipolar and monopolar vortices, highlighting the

role of kappa distribution and plasma configurations on the

formation of vortices solutions. Second, in the case of weak

dispersion (low frequency perturbations) and scalar nonlinear-

ity, we presented the formation of drift solitary waves and dis-

cussed the importance of spectral index (j) on the solitary

structures in an inhomogeneous magnetized plasma.

II. BASIC MODEL EQUATIONS

We consider an inhomogeneous, three component mag-

netoplasma consisting of inertial cold ions, kappa distributed

electrons, and positron. The external magnetic field is uni-

form and taken along the ẑ-axis, i.e., ~B ¼ B0ẑ. The plasma

number densities have gradients in their equilibrium values

along the negative x̂-axis and is given by �dnj0=dx. The dy-

namics of drift ion acoustic waves in a magnetoplasma can

be described by the following sets of equations:

@tni þ ~r � ðni~viÞ ¼ 0; (1)

@t~vi þ ~vi � ~r
� �

~vi ¼ �
e

mi

~E � e

mic
~vi � B0ẑð Þ; (2)

ne ¼ ne0 1� e/
Te je � 3=2ð Þ

� ��jeþ1=2

; (3)

and

np ¼ np0 1þ e/

Tp jp � 3=2
� �

" #�jpþ1=2

: (4)

To get the expression for the ion perpendicular velocity

under low frequency limit, i.e., j d
dt j � Xi, by taking the vec-

tor product of Eq. (2) with ẑ, we have

~vi? ¼
c

B0

E� ẑ þ mic

B0e

d

dt
ẑ �~við Þ ¼~vE þ~vp;

where d
dt ¼ ð@t þ~vi:~rÞ and d

dt ẑ �~viÞð means d
dt ẑ �~vi?Þ
�

and

ẑ �~viz ¼ 0:
Here, the first term ~vE ¼ c

B0
E� ẑ represent the E�B

drift, whereas the second term ~vp ¼ mic
B0e

d
dt ẑ �~viÞð is the

polarization drift containing the perturbed velocity.

The assumption that~vE �~vp being consistent with our

assumption j d
dt j � Xi in the drift approximations and can

give us the following:

~vi? ¼
c

B0

~E � ẑ þ mic

B0e

d

dt
ẑ �~vEð Þ;
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~vi? ¼
c

B0

~E � ẑ þ mic

B0e

c

B0

d

dt
ẑ � ~E � ẑð Þ;
�

~vi? ¼
c

B0

~E � ẑ þ c

B0Xi

d

dt
~E � Ezẑ
� �

;

~vi? ¼
c

B0

~E � B0ẑ þ c

Xi

d

dt
E?ð Þ;

where Xi ¼ eB0

mic
and E? ¼ ~E � Ezẑ, so

~vi? ¼
c

B0

~E � ẑ þ c

B0Xi

d

dt
E?;

~vi? ¼
c

B0

ẑ � ~r?/�
c

B0Xi

d

dt
~r?/;

where d
dt ¼ ð@t þ~vi:~rÞ ¼ @t þ~vi? � ~r? þ vz@z

� �
and under

low frequency limit, j d
dt j � Xi, i.e.,~vE �~vp, one can obtain

the following result:

~vi? ¼
c

B0

ẑ � ~r?/ �
c

B0Xi
@t þ~vE � ~r? þ vz@z

� �
~r?/:

(5)

The ion gyro-frequency is defined as Xi ¼ eB0

mic
, while /

denotes the electrostatic potential defined in the current

model. Here, for simplicity, we analyze the plasma dynamics

in two-dimension (2D), since only two direction are of rele-

vance, say fk;?g ¼ fz; yg, viz. r ¼ ð0; @y; @zÞ. In other

words, excitations are assumed to evolve and propagate in

the yz -plane, with no loss of generality. Then, ion continuity

equation takes the form

@tni þ ~r? � ðni~vi?Þ þ @zðnivizÞ ¼ 0: (6)

Assuming small deviations from the equilibrium state,

i.e., U ¼ e/
Te

� 	
� 1, the superthermal particle densities can

be expressed as

ne ’ df1þ c1Uþ c2U
2 þOðU3Þg; (7)

and

np ’ pf1� d1Uþ d2U
2 þOðU3Þg; (8)

with expansion parameters c1, c2, d1, and d2 are functions of

the j, given below

c1 ¼
je � 1=2

je � 3=2

� �
; c2 ¼

c1

2

je þ 1=2

je � 3=2

� �
;

d1 ¼ r
jp � 1=2

jp � 3=2

 !
; d2 ¼

rd1

2

jp þ 1=2

jp � 3=2

 !
: (9)

The system is closed with plasma approximation or neu-

trality hypothesis

ni þ np � ne: (10)

Charge balance at equilibrium requires ni0 þ np0 ¼ ne0

) d ¼ 1þ p, with d ¼ ne0=ni0 and p ¼ ne0=ni0 are defined.

Using Eqs. (5) and (10) in ion continuity Eq. (6), one can

obtained the following equation:

d

dt
dc1 þ pd1ð ÞUþ dc2 � pd2ð ÞU2


 �
þ v�

@U
@y

�q2
s

d

dt
r2
?Uþ

@viz

@z
¼ 0; (11)

where d
dt ¼ @t þ~vE � ~r? þ vz@z; v� ¼ cTe

eB0
jjnj:

q2
s ¼

c2
s

X2
i

;U ¼ e/
Te

� 	
, jn ¼ � 1

n0i

@n0i

@x , and cs ¼ Te

mi

� 	1=2

have been defined. The parallel component of the ion

momentum equation can be expressed in normalized form as

@t þ~vE � ~r? þ vz@z

� �
viz ¼ �c2

s

@U
@z

: (12)

III. LINEAR ANALYSIS

The linear dispersion relation (DR) is obtained by

assuming small perturbations �eiðkyyþkzz�xtÞ, i.e., Fourier

analyzing Eqs. (11) and (12) and can be written as

1þ q2
s

dc1 þ pd1

k2
y

 !
x2 � x�

dc1 þ pd1

x� c2
s

dc1 þ pd1

k2
z ¼ 0:

(13)

The structure of the DR is self-explanatory: one can see

the effect of superthermality through c1, d1 (recovering a

Maxwellian limit for je;p !1) and positron content

through p; further to this, it is evident from the above DR,

that the gyroradius qs ¼ cs

Xi
, the frequency of the drift waves,

x� ¼ v�ky, and the ion sound speed cs ¼ Te

mi

� 	1=2

have been

modified. One can re-write Eq. (13) in the following form:

ð1þ q2
sjk2

yÞx2 � x�jx� c2
sjk2

z ¼ 0; (14)

with

qsj ¼
qsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dc1 þ pd1

p ;

x�j ¼
x�

dc1 þ pd1

; and

csj ¼
csffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dc1 þ pd1

p �

(15)

Equation (15) essentially reflect that superthermality and

positron content tighten up the gyroradius, reduces the fre-

quency of the drift waves and ion sound speed with respect

to a Maxwellian limit for je;p !1.

For pure acoustic mode, i.e., ky¼ 0, one can reduce

Eq. (14) to the following limit in superthermal e-p-i plasma:

x ¼ csjkz: (16)

While on the other hand, for pure drift waves, i.e.,

kz ¼ 0, Eq. (14) takes the following form:

x ¼ x�j
1þ q2

sjk2
y

� � : (17)

The dispersion relation obtained here can be reduced to

the work of Ref. 19 based on superthermal electron-ion

plasma by setting p ¼ 0 and d ¼ 1; similarly, for
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Maxwellian electron-ion plasma case, one can recover the

textbook limit1 by taking je;p !1 in our dispersion rela-

tion. The work of Haque and Saleem51 on electron positron

ion plasma with Maxwellian distribution can also be deduced

from Eq. 14 by putting je;p !1.

In Figure 1, we have shown the effect of superthermality

and positron content on the frequency of drift ion acoustic

waves based on Eq. (14). In Figure 1(a), one can see that for a

fixed value of ky, increasing the value of j makes the frequency

of the drift ion acoustic waves to escalate, while on the other

hand, increasing positron content in the system makes the fre-

quency to suppress. Here, it is important to mention the follow-

ing realities: (i) the frequency of pure drift waves (at kz¼ 0) in

Figure 1 decreases with strong superthermality (low value of j)

as well as with positron content through increasing p. (ii) The

effect of finite larmor radius is visible on the curves shown in

Figure 1. The above two statements are in agreements with

Eq. (15). Similarly, in Figure 2, we have plotted the dispersion

relation (14) against ky for a fixed value of kz (very small but

nonzero) such that ky > kz. One can see in Figure 2, the effect

of kappa distribution and positrons on the dispersion relation

when the effect of drift waves is dominant over the acoustic

waves in our present model.

IV. NONLINEAR VORTICAL STRUCTURES IN
SUPERTHERMAL PLASMA

In this section, we anticipate the formation of coherent

nonlinear structure in the form of vortices, for this, we adopt

the standard procedure. We assume a co-moving frame of

reference ðx; gÞ with constant velocity u such that

g ¼ yþ az� ut, where a ð0 < a < 1Þ is the wave coupling

parameter. The parallel component of ion momentum Eq.

(12) can be written in the new transformed frame with the

assumption,~vE � ~r? � vz@z
1

d

dt
viz ¼ ac2

s

@

@g
þ cTe

ueB0

@gU@x � @xU@gð Þ
� �

U; (18)

where d
dt ¼ uD/ with D/ ¼ @

@gþ
cTe

ueB0
@gU@x � @xU@gð Þ

� 	
:

Similarly, one can write the Eq. (11) in the transformed

coordinate with the following approximations: In the polar-

ization drift, we assumed ~vE � ~r? � vz@z and taking only

first order term in the plasma neutrality hypothesis, i.e.,
ni1

ni0
	 ðdc1 þ pd1ÞU:

d

dt
r2
? � dc1 þ pd1ð Þ


 �
Uþ v�

@U
@g
þ @viz

@g
¼ 0: (19)

Here, it is important to elaborate the structure of Eq. (19)

based on our plasma model: The first term in Eq. (19) arises

due to the ion polarization drift, the second term represent the

plasma configurations, while the third and fourth are the den-

sity gradient and ion parallel motion terms, respectively. In

Eq. (19), r has been normalized with ion gyroradius qs, elim-

inating viz with the help of Eq. (18), one can write it as

D/½r2
?U� A2U
 ¼ 0: (20)

FIG. 1. Frequency of coupled drift ion acoustic waves is plotted against kz

for different values of superthermality parameter and positron content. Plot

(a): x versus kz with p¼ 0.2 for je ¼ jp ¼ 2 (solid blue curve), je ¼ jp ¼
3 (dotted–dashed red curve), je ¼ jp ¼ 5 (dashed green curve), and je ¼
jp ¼ 10 (dotted blue curve). Plot (b): x versus kz with je ¼ jp ¼ 3 for

p¼ 0 (solid blue curve), p¼ 0.2 (dotted–dashed red curve), p¼ 0.4 (dashed

green curve), and p¼ 0.6 (dotted blue curve). The values of other parameters

are ky ¼ 0:02 and jn ¼ ky=5:

FIG. 2. Frequency of coupled drift ion acoustic waves is plotted against ky

for different values of superthermality parameter and positron content. Plot

(a): x versus ky with p¼ 0.2 for je ¼ jp ¼ 2 (solid blue curve), je ¼ jp ¼
3 (dotted–dashed red curve), je ¼ jp ¼ 5 (dashed green curve), and je ¼
jp ¼ 7 (dotted blue curve). Plot (b): x versus ky with je ¼ jp ¼ 3 for p¼ 0

(solid blue curve), p¼ 0.2 (dotted–dashed red curve), p¼ 0.4 (dashed green

curve), and p¼ 0.6 (dotted blue curve). The values of other parameters are

kz ¼ 10�10 and jn ¼ 10�6.
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Equation (20) is a modified Hasegawa-Mima (HM) equation

with A2 ¼ dc1 þ pd1 � v�
u �

a2c2
s

u2 . One can see the explicit

dependence of je;p through c1 and d1 and effect of positron

content appear through the density ratio p. In order to

construct Eq. (20), the role of ion polarization drift is manda-

tory, while A2 always contains the plasma configurational

terms.

In order to find the solution of Eq. (20), we assume a so-

lution of the form

r2
?U� A2U ¼ f U� ueB0

cTe
x

� �
; (21)

where f ðU; xÞ is an arbitrary function and under linear

approximation can take the form

r2
?U� A2U ¼ C1 U� uXi

c2
s

x

� �
; (22)

with C1 represent some constant. In polar coordinate system,

we have position vector r ¼ ðx2 þ g2Þ1=2
and b ¼ tan�1 g

x

� �
;

therefore, it is important to divide the plane ðr; bÞ into an

outer region r > r0 and inner region r < r0 of a circle of ra-

dius r0, such that the two solutions of Eq. (22) in the above

mentioned regions should agree at r ¼ r0.

For outer region, Eq. (22) can be solved with a separa-

tion of variable technique, with C1 ¼ 0 as r !1 and can be

represented as

Uoutðr; bÞ ¼ Q1K1ðArÞ cos b; (23)

where Q1 is the integration constant and can be determined

with the help of boundary conditions and K1 is the modified

Bessel function of first order and second kind. For physical

justification of the above localized solution, it is important

that A should be greater than zero for large r
ðA > 0 at r !1Þ, as K1 � 1

r

� �1=2
expð�ArÞ. It is evident

from Eq. (23) that argument of Bessel function contains A,

and hence, the effect of kappa and positron along with the

acoustic and drift speed will affect the characteristics of vor-

tex. For the sake of reference, it is important to mention that

our results (see Sec. IV) are in complete agreement with the

work of Shan and Haque19 in the limit of electron-ion plasma.

Similarly, for the inner region r < r0, Eq. (22) gives the

solution as

Uin r; bð Þ ¼ Q2J1 vrð Þ þ
v2 þ A2

v2

 !
c2

s

uXi
r

" #
cos b; (24)

where Q2 is constant of integration and v ¼ �ðA2 þ C1Þ is

the argument of ordinary Bessel function of first order J1.

For monopolar solution, one can solve Eq. (22) in the

limit of C1 ¼ 0 and the electrostatic potential U is only de-

pendent on r,.The result can be expressed as

UmpðrÞ ¼ Q3J0ðArÞ; (25)

where Q3 is the integration constant and J0 is the Bessel

function of zeroth order. The constant of integrations Q1, Q2,

and Q3 along with v can be determined from the continuity

of electrostatic potential U across the boundary, i.e., U; @rU
and r2

?U should be same at r ¼ r0 and can be expressed as

Q1 ¼
c2

s

uXi

r0

K1 Ar0ð Þ ; Q2 ¼
c2

s

uXi
�A2

v2

 !
r0

J1 vr0ð Þ
;

K2 Ar0ð Þ
K1 Ar0ð Þ ¼ �

A

v

� �
J2 vr0ð Þ
J1 vr0ð Þ

:

V. DRIFT SOLITON IN SUPERTHERMAL PLASMA

In this section, we present the analysis of drift solitary

waves in the presence of superthermal electron and positron.

For low frequency electrostatic excitations with scalar nonli-

nearity and weak dispersion, one can assume~vE � ~r? � vz@z

(Ref. 17) in the polarization drift, which reduce the ion paral-

lel component of momentum Eq. (12) to

@t þ vz@zð Þviz ¼ �c2
s

@U
@z

: (26)

After transforming Eq. (26) into the co-moving frame, g ¼
yþ az� ut and solving for viz, one can obtain the following

expression:

viz ¼
c2

s a
u

Uþ c4
s a

3

2u3
U2: (27)

Using the above equation in Eq. (11) after transformation,

one can obtain

�u
@

@g
þ c2

s a
u

Uþ c4
s a

3

2u3
U2

� �
a
@

@g

" #

� dc1 þ pd1ð ÞUþ dc2 � pd2ð ÞU2

 �

þ v�
@U
@g

�q2
s �u

@

@g
þ c2

s a
u

Uþ c4
s a

3

2u3
U2

� �
a
@

@g

" #
@2

@g2
U

þ @

@g
c2

s a
u

Uþ c4
s a

3

2u3
U2

� �
¼ 0: (28)

After a short manipulation, one can obtain the following

nonlinear equation:

� � dc1 þ pd1ð Þ þ v�
u
þ a2 cs

u

� �2
" #

dU
dg

þ dc2 � pd2ð Þ � a2

2
dc1 þ pd1ð Þ cs

u

� �2

� a4

2

cs

u

� �4
" #

U
dU
dg

� d3U
dg3
¼ 0; (29)

which represent a KdV type equation for ion acoustic waves

coupled with drift waves in a superthermal e-p-i plasmas,

yielding solitary wave solution given as

U ¼ 3

A

� �
sec h2 g

qs

ffiffiffiffiffiffi
4B
p� �

; (30)
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where A ¼ A2=A1 and B ¼ A3=A1 with A1 ¼ � �ðdc1 þ pd1Þ½
þ v�

u þ a2ðcs

uÞ
2
,

A2 ¼ ½ðdc2 � pd2Þ � a2

2
ðdc1 þ pd1Þðcs

uÞ
2 � a4

2
cs

u

� �4
, and

A3 ¼ �1. For physically valid solution B > 0, i.e.,

½ðdc1 þ pd1Þ � v�
u � a2 cs

u

� �2
 > 0. The solitary waves

described in Eq. (30) may give either positive (compressive)

or negative (rarefactive) pulse, depending on the sign of the

nonlinearity coefficient A. One can see the role of kappa dis-

tribution through c1, d1, and the role of positrons appears

through p in the above coefficients. In Figure (3), we have

shown the effect of superthermality parameter (j), wave cou-

pling constant (a) and positrons content (p) on the nonlinear-

ity coefficient A and hence the amplitude (/m) of the solitary

waves, as the two are related by /m ¼ 3
A.

VI. PARAMETRIC INVESTIGATION AND
CONCLUSIONS

The theoretical results presented here are drawn for pul-

sar magnetosphere to let out the applicability of our analysis.

It is believed that magnetic field can be as high as B ¼ 0:2G
and number densities up to n � 1014 cm�3 in the vicinity of

pulsar magnetic poles having particle speed in the relativistic

regimes,52 the existence of protons around the atmosphere of

pulsar magnetosphere is also possible.22 It is important to

mention that, although the electrons and positrons are rela-

tivistic,52 the limit of nonrelativistic reasoning is still valid

as the electrons and positrons can cool down into the nonre-

lativistic state due to the cyclotron emission. Therefore, the

wave frequencies should be very less than the cyclotron one,

which is the case for ion acoustic and drift waves.53 The typ-

ical data for pulsar magnetosphere region is given by22,52,53

ni0 � 1014 �� 1015 cm�3;

ne0 � 1:50� 1014 �� 1:50� 1015 cm�3;

np0 � 0:5� 1014 �� 0:5� 1015 cm�3;

Te;p ¼ 10 eV:

A. Pair annihilation time for electron positron ion
plasma

In order to investigate the collective behavior of electron

positron ion plasma, it is important to add discussion on the

pair annihilation process for our plasma model: the electron

positron has strong tendency to annihilate, producing gamma

ray photons52

eþ þ e� ¼ cþ c0:

To ignore the annihilation process, the electron positron

plasma annihilation time, Tann must be greater than the

inverse of the characteristic frequencies of the plasma, which

constitute (xpj), i.e.,

xpj � Tann;

where xpj is the plasma frequency of the j-th species

(j ¼ e; p; i), the above inequality suggests that the time for

plasma oscillations must be greater than annihilation process.

In order to investigate the collective modes in electron

positron ion plasma, this annihilation time Tann can be larger

than 1 s for low density laboratory plasma; however, for higher

densities and temperatures, one can calculate the annihilation

time using the following procedure. In a nonrelativistic plasma,

the expression for annihilation time takes the form52

Tann ¼
4

3ne;p0rtc

Eth

1þ 6Eth

� �
;

where ne;p0 represents the equilibrium electron/positron num-

ber densities, rt is the Thomson cross section of the electron,

having numerical value equals to 6:65� 10�25 cm2. The sym-

bol c stands for the speed of light and Ethð¼ kBT
mec2Þ is the nor-

malized thermal energy, fulfilling the following threshold:52

FIG. 3. Effect of superthermality, wave coupling parameter, and positrons

on nonlinearity coefficient A. Plot (a): A versus j for p ¼ 0:2 and a ¼ 0:1
(dashed red curve), a ¼ 0:8 (solid brown curve). Plot (b): A versus a for

p¼ 0.2 and je ¼ jp ¼ 2 (dashed red curve), je ¼ jp ¼ 1 (Maxwellian

limit, solid blue curve). Plot (c): A versus p for a ¼ 0:2 and je ¼ jp ¼
3; 5; 7 for the dashed (red), dotted–dashed (green), and solid (blue) curves,

respectively. Plot (d): A versus p for a ¼ 0:9 and je ¼ jp ¼ 3; 5; 7 for the

dashed (red), dotted–dashed (green), and solid (blue) curves, respectively.

The values of other parameters are r ¼ 1; v� ¼ 0:3cs, and u ¼ 1:4v�.
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. � Eth � 1:

Here, .ð¼729� 10�3Þ represents the fine structure constant.

For illustration, we have used the following numerical values

to calculate the annihilation time for the nonrelativistic elec-

tron positron plasma:

ne;p0 ¼ 1014cm�3;kB ¼ 1:38� 10�16 ergs=degðKÞ;
c¼ 3� 1010 cm=sec and me ¼ 9:1� 10�28 g;Te ¼ 10 eV:

Hence,

x�1
pe ¼

4pne;p0e2

me

� ��1=2

� 1653� 10�12 secð Þ;

Tann � ð9126� 10�2 secÞ;

x�1
pe � Tann:

Here, we have shown the results numerically, it is evident

from Figure 3(a) that, for a typical plasma parameters, the

nonlinearity coefficient A invert sign against j for higher

value of a (	1), and hence, both compressive and rarefactive

solitary waves can be obtained, while on the other hand, for

small value of a (0.1), one can only obtain the rarefactive soli-

tary waves in the present model. Similarly, in Figure 3(b), we

have shown the behavior of nonlinear coefficient A versus

wave coupling parameter (a) in superthermal plasma as well

as in a Maxwellian plasma. One can see that for a < 0:6, the

nonlinear coefficient A< 0, and hence, one can have rarefac-

tive solitons in a superthermal plasma having small value of

kappa (je ¼ jp ¼ 2), while for a > 0:6, the coefficient of

nonlinearity invert sign and support the hump like structures

(compressive solitons) in the present model. It is important to

mention here that for je;p !1 (Maxwellian limit), the soli-

tons are sharper and taller, as evident from Figure 3(b). The

effect of positrons on coefficient A has been demonstrated in

Figures 3(c) and 3(d) with the effect of superthermality. It can

be seen that increasing positron in the system makes the value

of A to escalate and hence the amplitude suppresses. The role

of wave coupling parameter a is also highlighted in Figures

3(c) and 3(d), one can see that for drift waves dominated soli-

tons (a ¼ 0:2), the values of A are negatives, and hence, only

rarefactive solitons are possible. It is important to point out

that strong superthermality (low value of je;p) makes the non-

linearity coefficient A to increase and more negative. On the

other hand, for acoustic wave dominated solitons (a ¼ 0:9),

the present model supports only compressive solitary waves,

as the values A are positive and increasing with positrons. The

parametric dependence of the amplitude and width of the soli-

tary waves is well demonstrated in Figure 4. One can see that

both compressive and rarefactive solitary waves can be

obtained. The space coordinate g has been normalized with qs

which is of the order of 103 cm, the acoustic speed

cs � 106 cm=s, the ion gyrofrequency Xi � 104 rad=s, and the

soliton speed u � 106 cm=s, the parametric values shown are

in agreement with space plasma environments.22,52

In the present work, we explored the dynamics of

coupled ion acoustic and drift waves in a three-component

electron positron ion plasma with the effect of

superthermality of electrons and positrons, which can exist

in AGN and pulsars, in general, space plasma observation

reveals solitons (pulses) of either positive or negative polar-

ity. This actually depends on the plasma configuration (con-

stituents, concentration, inertial versus, e.g., stationary

species and so on). Similarly, drift waves exist universally in

magnetized plasmas, producing the dominant mechanism for

the transport of particles, energy, and momentum across

magnetic field lines.54 Here, we have found the following

realities:

(1) In the linear limit, the phase velocity of ion acoustic and

drift waves decreases with strong superthermality and

FIG. 4. Plot (a): Electrostatic potential U as a function of g and wave cou-

pling parameter a for r ¼ 1; je ¼ jp ¼ 3; p ¼ 0:2; B ¼ 0:2G; v� ¼ 0:3cs ,

and u ¼ 1:4v� Plot (b): Electrostatic potential U as a function of g and

superthermality parameter j for r ¼ 1; a ¼ 0:1; p ¼ 0:2; B ¼ 0:2G; v�
¼ 0:3cs , and u ¼ 1:4v� Plot (c): Electrostatic potential U as a function of

g and superthermality parameter j for r ¼ 1; a ¼ 0:9; p ¼ 0:2; B ¼ 0:2G;
v� ¼ 0:3cs , and u ¼ 1:4v�.
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more positron content in the system via modifying the

fundamental scales of plasma.

(2) In the nonlinear regime, first, coherent structures in the

form of dipolar and monopolar vortices have been found.

The role of superthermality and positrons has been high-

lighted. It is found that the speed of the nonlinear struc-

tures reduces with increase in the superthermality effect

(low value of j) and with the addition of more positrons

in the system.

(3) Second, in case of scalar nonlinearity and weak disper-

sion, a Korteweg–de Vries-type equation is obtained,

which support solitary wave solution. It is found that

both compressive and rarefactive solitons are formed in

the present model.

(4) We have shown our results for pulsar magnetospheric

region in space plasma environment, which contains

electron-positron-ion plasma.
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