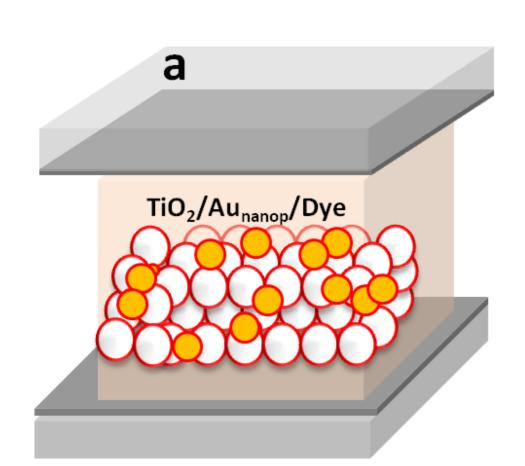


Estudo do Efeito de Nanoparticulas Metálicas nas Propriedades Ópticas e Fotoeletroquímicas do TiO₂

M. C. de Oliveira, M. J. L. Santos

matheuscdeoliveira@gmail.com



Introdução

Nanopartículas metálicas com diâmetro menor que o comprimento de onda incidente, apresentam ressonância de plasmon de superfície localizada, resultante da interação dos elétrons da partícula com o campo eletromagnético incidente (luz). A separação de carga no interior da partícula resulta em propriedades ópticas extraordinárias, relacionadas com a melhoria da absorção e espalhamento da luz incidente. Considerando nanopartículas metálicas isoladas, o comportamento do modo plasmônico pode ser descrito pela teoria de Mie, contudo analisando nanopartículas em um filme, a teoria eletromagnética desenvolvida por Maxwell é mais apropriada, uma vez que devido a pequena distância entre as nanopartículas o acoplamento de modos plasmônicos deve ser levado em consideração. Com objetivo de investigar o efeito de um campo externo fornecido por nanopartículas de ouro, sobre a eficiência de células solares sensibilizada por corante (DSSC), neste trabalho foram estudados duas configurações diferentes de DSSC: i) nanopartículas de ouro depositadas entre o semicondutor (TiO₂) e o sensibilizador (Complexo de rutênio) (TiO₂/Au_{nanop}/Dye) e ii) nanopartículas de ouro depositadas sobre o semicondutor previamente sensibilizado (TiO₂/Corante/Au_{nanop}).

Metodologia

Nanopartículas de TiO₂ foram síntetizadas através da hidrólise do isopropóxido de titânio.^[1] O crescimento das nanopartículas é obtido sob condições hidrotérmicas em autoclave, de forma a sintetizar nanopartículas com a distribuição média de tamanho de aproximadamente 20 nm. O filme mesoporoso de TiO₂ foi sensibilizado por imersão em uma solução 3x10⁻⁴ M do corante N3. Este sensibilizador/corante apresenta amplo espectro de absorção e rápida injeção de elétrons fotoexcitados para a banda de condução do TiO₂.^[2] Nanopartículas de ouro com diâmetro médio de 16-23 nm foram sintetizadas pela redução de cloreto de ouro (III) em citrato de sódio. Os dispositivos foram montados de acordo com metodologia previamente descrita na literatura.^[1]

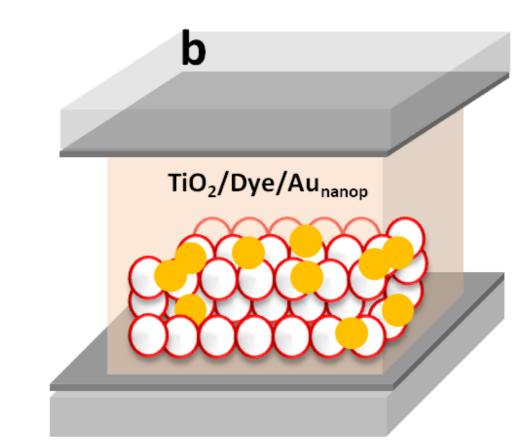
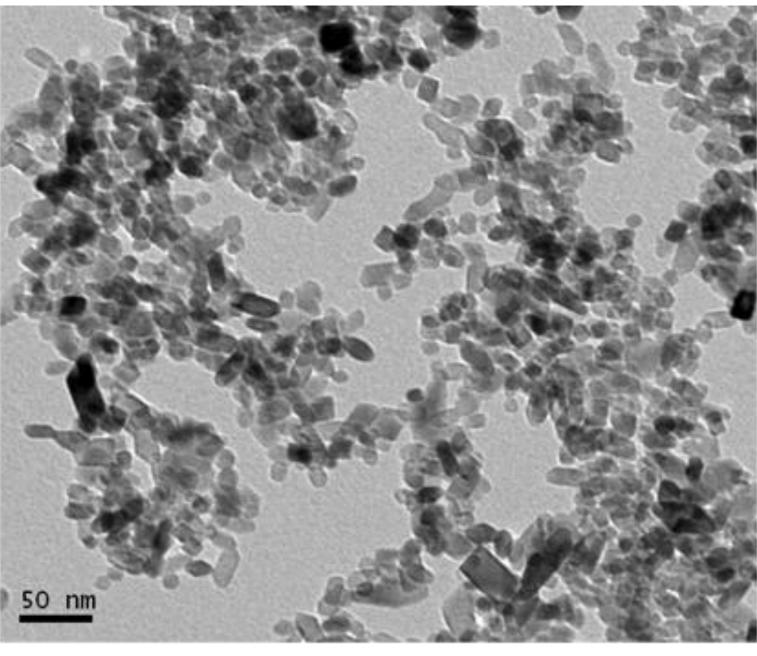
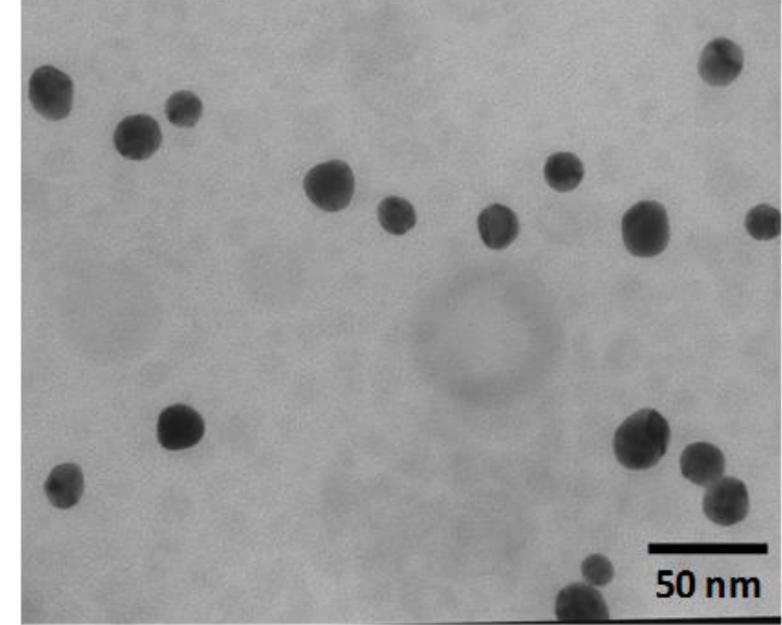
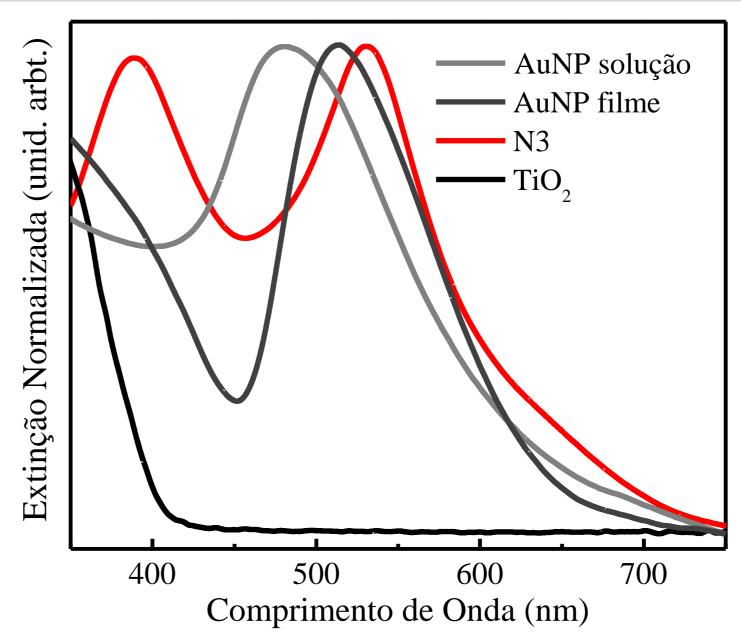



FIGURA 1: Ilustração esquemática que mostra a arquitetura dos dispositivos (a) nanopartículas de ouro depositadas sobre o filme mesoporoso de TiO₂ (TiO₂/Au_{nanop}/corante) e (b) nanopartículas de ouro depositadas sobre o filme de TiO₂ previamente sensibilizado por N3 (TiO₂/Corante/Au_{nanop}).

Resultados e Discussões

A Figura 2 mostra as imagens de TEM das nanopartículas de TiO₂ e das nanopartículas de ouro com diâmetro médio de 25 e 30 nm, respectivamente. Nanopartículas de ouro com este diâmetro apresentam modo plasmônico dentro da região do visível, sobrepondo o espectro de absorção do sensibilizador N3 (Figura 3a). Adicionalmente, de acordo com McFarland et al^[3] elétrons com energia de ~1 eV acima do nível de Fermi do ouro tem caminho livre de cerca de 20-150 nm no ouro e em outros metais com orbitais d preenchidos. Portanto, em dispositivos com configuração TiO₂/Au_{nanop}/Dye, os elétrons fotoexcitados no corante devem passar através das nanopartículas de ouro e serem injetadas na banda de condução do TiO₂ (Figura 3b).




FIGURA 2: Imagens de TEM (a) nanopartículas de TiO₂ e (b) nanopartículas de ouro.

Com o objetivo de melhor avaliar a contribuição das nanopartículas de ouro para a eficiência das células solares, os dispositivos foram modelados eletricamente utilizando a equação de Schockley, que descreve o comportamento de um diodo. Para a geração do modelo, a temperatura de funcionamento do dispositivo foi considerando como $22 \, {}^{\circ}\text{C}$ e n = 2.

$$I = I_L - I_S \cdot e^{\left[\frac{V + I \cdot R_S}{(n \cdot V_t)}\right]} - \frac{(V + I \cdot R_S)}{R_p}$$

Utilizando Matlab e resolvendo a equação de Schockley foram obtidas as resistências em série R_s e em paralelo R_p para os dispositivos (Tabela 1). As curvas obtidas através de simulação (Figura 4b) apresentam um bom ajuste com os dados experimentais. Como pode ser observado embora o dispositivo com configuração $TiO_2/Au_{nanop}/Dye$ apresente a maior fotocorrente, também apresenta a maior R_s e menor R_p que o dispositivo TiO_2/Dye , enquanto o dispositivo $TiO_2/Dye/Au_{nanop}$ apresenta maior R_s e levemente menor R_p . É importante ressaltar que para células solares desejamos dispositivos com R_p infinita e R_s igual a zero.

Resultados e Discussões

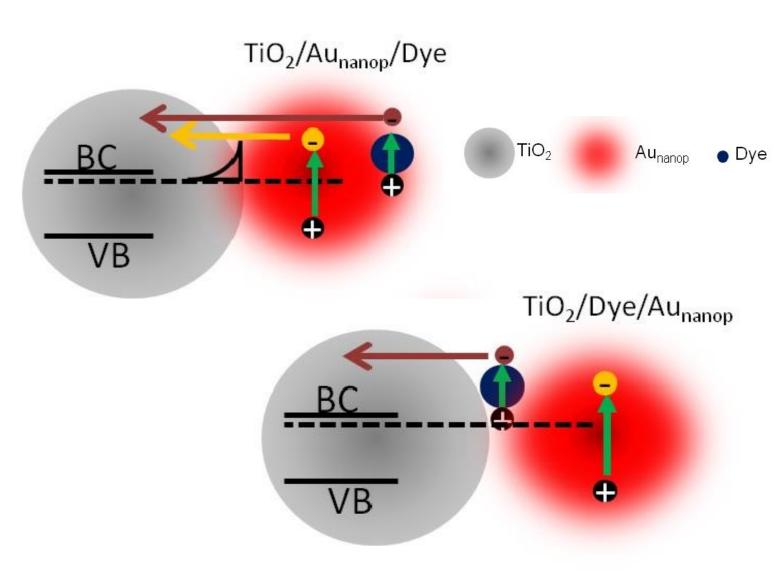
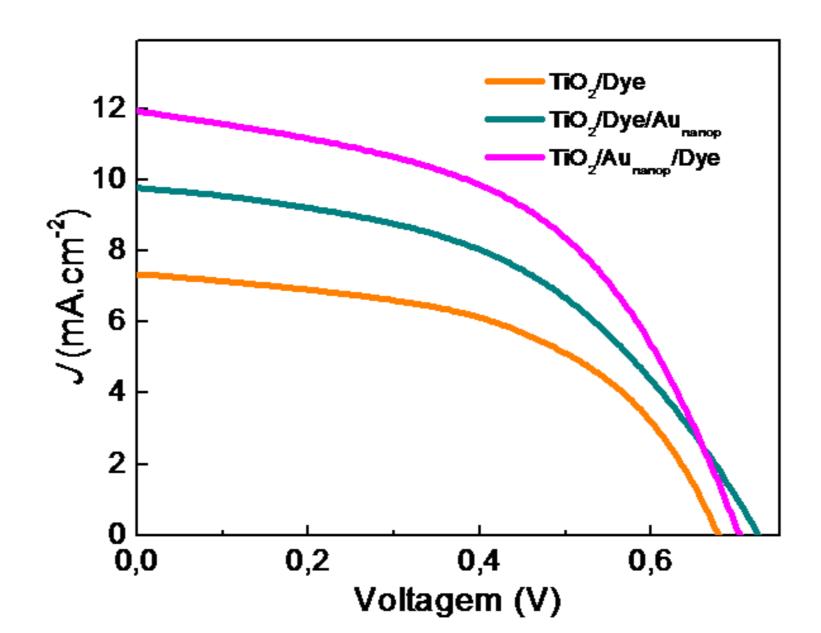



FIGURA 3: (a) Espectro de absorção do N3, do filme mesoporoso de TiO₂, das nanopartículas de ouro em solução e do filme de nanoparticulas de ouro. (b) Esquema mostrando a excitação plasmônica e os mecanismos que contribuem para o aumento da eficiência dos dispositivos.

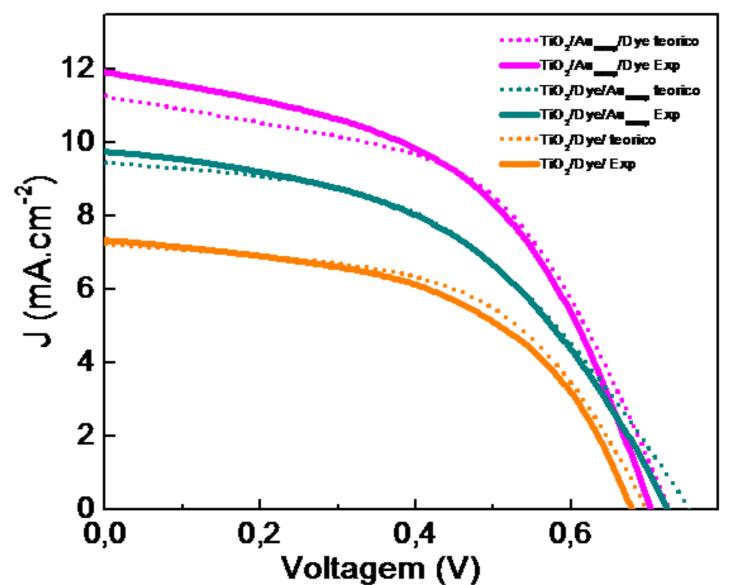


FIGURA 4: Curvas de corrente *versus* potencial dos três dispositivos (a). (b) Comparação entre dados experimentais e simulados por modelagem elétrica.

Em ambos os dispositivos TiO₂/Au_{nanop}/Dye e TiO₂/Dye/Au_{nanop}, o espalhamento de luz relacionado ao plasmon resulta em um caminho mais longo para a luz dentro do dispositivo, aumentando a probabilidade da absorção da luz. Adicionalmente, estudos experimentais e teóricos descrevem que transferências ultrarrápidas de elétrons entre nanoparticulas metálicas e TiO₂ são induzidas por plasmons. Estas transferências podem em tempos de até (<240 fs) . Considerando as duas configurações estudadas neste trabalho, nos podemos assumir que na configuração TiO₂/Au_{nanop}/Dye os elétrons fotoexcitados no corante podem ser injetados diretamente na banda de condução do TiO₂ e ainda os elétrons fotoexcitados no ouro, que apresentam alta energia (*hotelectrons*), podem também ser transferidos para a banda de condução do TiO₂ (Figura 3b), contribuindo para a fotocorrente. Por outro lado, no dispositivo TiO₂/Dye/Au_{nanop}, embora um aumento em fotocorrente tenha sido observado, nos sugerimos que este resultado está principalmente relacionado ao espalhamento de luz e que somente uma pequena fração de elétrons fotoexcitados no ouro pode ser transferido para o TiO₂.

TABELA 1: Parâmetros Elétricos e eficiência dos dispositivos.

	I _{sc} (mA)	$V_{oc}(V)$	<i>FF</i> (%)	η (%)	Rs (Ω)	$Rp(\Omega)$
TiO ₂ /Dye	7,3	0,68	52	2,6	11,7	671
TiO ₂ /Dye/Aunanop	9,8	0,73	48	3,4	21,2	649
TiO ₂ /Aunanop/Dye	11,9	0,71	50	4,3	14,8	261

Conclusões

A contribuição do plasmon para a eficiência global de conversão de energia é dependente da interface em que o material plasmônico esta presente. A contribuição do material plasmônico para a eficiência da DSSC é uma soma de: aumento do espalhamento de luz (aumentando a captura de luz por efeitos de campo próximo), e a transferência de *hot electrons* (aumentando a densidade de elétrons que atingem a barreira Schottky). Estas contribuições são fortemente dependentes da configuração usada para montar a DSSC, uma vez que a interface Au_{nanop}/TiO₂ é mais apropriada para possibilitar a injeção de elétrons fotoexcitados no corante e *hot electrons* do ouro para a banda de condução do TiO₂.

Referências

¹C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, *J. Am. Ceram. Soc*, 1997, 80, 3157.

²B.O'Reagan and M.Grätzel, *Nature*, *1991*, *353*, *737*.

³E. W. McFarland, J. Tang, in *Nature*, vol. 421, pp. 616-618, 2003

Agradecimentos

Os autores agradecem ao CNPq e FAPERGS, pelo apoio financeiro e a bolsas de estudo. Matheus C. de Oliveira agradece a UFRGS pela bolsa BIC.

