

| Evento     | Salão UFRGS 2015: SIC - XXVII SALÃO DE INICIAÇÃO<br>CIENTÍFICA DA UFRGS       |
|------------|-------------------------------------------------------------------------------|
| Ano        | 2015                                                                          |
| Local      | Porto Alegre - RS                                                             |
| Título     | OBTENÇÃO DE FILMES FINOS DE TIO2 E DE TIO2/WO3 PARA APLICAÇÃO EM FOTOCATÁLISE |
| Autor      | GUSTAVO DA ROSA CUNHA                                                         |
| Orientador | CARLOS PEREZ BERGMANN                                                         |

## OBTENÇÃO DE FILMES FINOS DE TiO<sub>2</sub> E DE TiO<sub>2</sub>/WO<sub>3</sub> PARA APLICAÇÃO EM FOTOCATÁLISE

Cunha, G.R.<sup>1</sup>; Bergmann, C.P.<sup>1</sup> Universidade Federal do Rio Grande do Sul

O dióxido de titânio vêm recebendo considerável atenção como fotocatalisador, devido ao seu bom desempenho na descontaminação de poluentes ambientais e orgânicos. Entretanto, devido ao fato de suas estruturas serem ativadas somente sob irradiação UV, limitando o aproveitamento da luz solar, várias alternativas estão sendo buscadas visando superar esta limitação. Dentre elas, a construção de filmes bicomponentes de TiO<sub>2</sub> (3,0-3,2 eV) acoplados a um semicondutor de menor band gap, como o WO<sub>3</sub> (2,5-2,8 eV), pois esses óxidos propriedades eletrônicas, óticas fotoeletroquímicas semicondutores possuem complementares, formando um filme com possibilidade de fotoexcitação em uma região mais ampla do espectro. Neste trabalho nanofilmes de TiO<sub>2</sub> e de TiO<sub>2</sub>/WO<sub>3</sub> foram obtidos por spincoater a sua fotoatividade foi avaliada através da fotocatálise heterogênea. A técnica de difração de raios X (DRX) foi empregada na determinação da estrutura cristalina formada e tamanho de cristalito e a morfologia dos filmes foi analisada através de microscopia eletrônica de varredura (MEV). Como resultados preliminares os filmes finos de TiO<sub>2</sub> e de TiO<sub>2</sub>/WO<sub>3</sub>, mostraram-se eficazes no processo de fotodegradação do corante alaranjado de metila.