

Evento	Salão UFRGS 2015: SIC - XXVII SALÃO DE INICIAÇÃO CIENTÍFICA DA UFRGS
Ano	2015
Local	Porto Alegre - RS
Título	Aplicação de Tecnologias Emergentes na Extração de Compostos Bioativos do Resíduo de Acerola (Malpighia emarginata)
Autor	LUIZA STRAPASSON SPOLIDORO
Orientador	LIGIA DAMASCENO FERREIRA MARCZAK

Aplicação de Tecnologias Emergentes na Extração de Compostos Bioativos do Resíduo de Acerola (*Malpighia emarginata*)

Luiza Strapasson Spolidoro^a*, Ligia Damasceno Ferreira Marczak^a

^a Departamento de Engenharia Química da Universidade Federal do Rio Grande do Sul (UFRGS)

* Estudante de Graduação em Engenharia de Alimentos na UFRGS

O presente trabalho tem como objetivo analisar o efeito da aplicação de campo elétrico moderado (CEM) e de pré-tratamento com ultrassom na extração de compostos fenólicos e ácido ascórbico do resíduo do processamento da acerola. Este fruto, nativo do Caribe, Norte da América do Sul e América Central, contém antocianinas e é rico em vitamina C, ambos antioxidantes naturais. Todavia, sua comercialização in natura é restrita devido à sua alta perecibilidade, sendo mais comuns produtos derivados como polpa congelada e suco pasteurizado, cujos processos de fabricação geram um resíduo com potencial para a extração dos compostos de interesse. Primeiramente foi testada a aplicação de CEM, que causaria um dano às células vegetais devido aos efeitos da eletroporação, fenômeno que gera um drástico aumento na condutividade elétrica e na permeabilidade da membrana celular pela liberação de íons intracelulares. Os frutos de acerola (Malpighia emarginata) foram despolpados em laboratório em uma despolpadeira industrial, e o resíduo armazenado sob refrigeração. O experimento foi conduzido em uma célula de extração utilizando 10 g do resíduo de acerola e 200 mL de uma solução de ácido cítrico 1% (pH= 2,5) a 25°C, sob agitação. Nesta célula se davam concomitantemente a aplicação do campo elétrico e a difusão, sendo coletadas alíquotas de 10 em 10 minutos, durante uma hora. Foi utilizada tensão elétrica de 25 V (3,8 V/cm) e frequências de 10, 100 e 100.000 Hz; da mesma forma, foi realizado um experimento controle (sem aplicação de CEM). A condutividade elétrica foi monitorada durante todo o experimento, e o conteúdo de compostos bioativos, determinado pelo método de Folin-Ciocalteu. A condutividade elétrica do experimento controle não apresentou diferença significativa (p>0,05) em relação aos submetidos às frequências de 100 e 100.000 Hz ao longo dos 60 minutos. A aplicação de 10 Hz apresentou um comportamento não linear com grande variação na condutividade. A extração dos compostos bioativos foi mais eficiente nos primeiros 10 minutos (29,7 a 32,5 mg EAG/g resíduo de acerola, bs) e, independente do tempo de extração, não houve diferença significativa (p>0,05) dos experimentos com aplicação de CEM em relação ao controle. Acredita-se que a baixa tensão aplicada (de no máximo 12,3 V/cm) não tenha sido suficiente para causar o fenômeno da eletroporação. O emprego de outra tecnologia emergente, o ultrassom, foi então testado. Nesse caso, a taxa de extração é aumentada como consequência da cavitação (um efeito mecânico) e de efeitos físico-químicos, onde a criação de microfluxos gera rompimento das barreiras do líquido. Um segundo lote de acerola foi adquirido, despolpado, e o resíduo congelado em N2 líquido e armazenado a -40°C. Os experimentos consistiram de uma etapa de pré-tratamento utilizando 20 g de resíduo em 100 mL de solução aquosa de ácido cítrico 1% com a aplicação de ultrassom por 15 minutos e temperatura mantida abaixo dos 26°C por um banho termostatizado. Em seguida, foram adicionados 100 mL de etanol, e realizada uma etapa de difusão a 30°C, sob agitação, por 1 hora, coletando alíquotas a cada 10 minutos. A aplicação do ultrassom foi realizada nas potências de 283, 397 e 510 W/cm²; além de um experimento controle sob as mesmas condições, porém sem a aplicação do ultrassom. Em todos os experimentos, a extração dos compostos bioativos foi mais efetiva nos primeiros 10 minutos da etapa de difusão (58,2 a 68,6 mg EAG/g resíduo de acerola, bs), e a aplicação de ultrassom em diferentes potências não gerou aumento significativo na extração em relação ao controle (p>0,05), em quaisquer dos tempos avaliados. O emprego destas tecnologias emergentes, CEM e ultrassom, não favoreceu significativamente a extração, provavelmente pois os compostos bioativos do resíduo de acerola são facilmente extraídos da matriz sob agitação.