

Evento	Salão UFRGS 2015: FEIRA DE INOVAÇÃO TECNOLÓGICA DA UFRGS - FINOVA
Ano	2015
Local	Porto Alegre - RS
Título	Aplicação da técnica PIV para obtenção de campos vetoriais de velocidade no estudo da formação de vórtices em tomadas d'água
Autor	MARINA MULÉ TABASNIK
Orientador	MARCELO GIULIAN MARQUES

Tomadas doágua são estruturas destinadas a captação de água de reservatórios para geração de energia elétrica ou abastecimento de água. Dentre os problemas enfrentados pelos hidráulicos, no dimensionamento das mesmas, está o desafio de evitar a presença de vórtices. Vórtices são escoamentos circulares que podem levar ar para dentro do sistema de adução de usinas hidrelétricas, reduzindo a geração de energia, e no caso de abastecimento de água, favorecendo o aparecimento da cavitação nas bombas hidráulicas. Sabendo-se que a submergência e a velocidade do escoamento são fatores que determinam a ocorrência dos vórtices, conhecer o campo instantâneo de velocidades a montante da tomada dagua pode auxiliar no entendimento da hidráulica da formação de vórtices. Para isso, está sendo utilizado um equipamento denominado PIV. Particle Image Velocimetry é um sistema de velocimetria por imagens de partículas, uma técnica que mede campos de velocidades instantâneas quando um feixe de laser em posição perpendicular ao escoamento ilumina a região que se denomina região de interesse, da qual são capturadas imagens por uma câmera de alta resolução posicionada em posição perpendicular ao plano de iluminação. Para tanto, é necessário a presença de partículas que servirão como traçadoras. A técnica pode ser dita indireta porque determina a velocidade das partículas traçadoras, e não a do fluido em si. Portanto, a escolha das partículas é muito importante e requer cuidados. As imagens são automaticamente enviadas para o computador através de uma placa de aquisição de sinais, e assim são interpretadas de acordo com o deslocamento das partículas entre duas imagens seguidas, sendo o tempo entre as imagens o determinante do campo de velocidade. O software utilizado para o processamento é o Davis da LaVision. A grande vantagem é não ter a necessidade de qualquer dispositivo mecânico no escoamento, por isso chamada de técnica não intrusiva. O modelo físico que dá suporte a aquisição dos dados é um protótipo de pequenas dimensões que consiste em três tomadas. Na primeira fase, é estudada apenas a tomada horizontal simétrica com submergência de 1D e vazões de 4.6 e 8 l/s. Os ensaios consistem na adução da vazão desejada e na calibração da câmera. Capturando imagens das partículas traçadoras pela câmera CCD, através da iluminação da luz laser no PIV, e após o processamento das imagens, é possível verificar o campo vetorial - instantâneo - de velocidades. Com tais medidas espera-se elaborar uma metodologia capaz de prever a ocorrência de vórtices baseada no campo de velocidades e na submergência a qual a tomada está submetida.

Os ensaios estão na fase inicial. Contudo, o equipamento se mostrou bastante promissor no que tange à obtenção dos campos de velocidades instantâneos a montante de tomadas dagua.