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Resumo 

 

 

A crescente demanda pela melhoria operacional dos processos aliada ao 
desenvolvimento da tecnologia da informação tornam a utilização de controladores 
preditivos baseados em modelos (MPC) uma prática comum na indústria. Estes 
controladores estimam, a partir dos dados de planta e de um modelo do processo, uma 
sequência de ações de controle que levam as variáveis ao valor desejado de forma 
otimizada. Dessa forma, dentre os parâmetros de configuração de um MPC, a baixa 
qualidade do modelo é, indiscutivelmente, a mais importante fonte de degradação de seu 
desempenho. Este trabalho propõe uma série de metodologias para a avaliação da 
qualidade do modelo do controlador preditivo, as quais consideram sua velocidade em 
malha fechada. Tais metodologias são baseadas na filtragem dos erros de simulação a 
partir função nominal de sensibilidade, e possuem a capacidade de informar o impacto 
dos problemas de modelagem no desempenho do sistema, além de localizar as variáveis 
controladas que estão com tais problemas e se os mesmos são provenientes de uma 
discrepância no modelo ou de um distúrbio não medido. As técnicas ainda possuem a 
vantagem de serem independentes do setpoint, o que as torna flexível de também serem 
utilizadas em controladores nos quais as variáveis são controladas por faixas. A 
abordagem proposta foi testada em dois estudos de caso simulados, sendo eles: a 
Fracionadora de Óleo Pesado da Shell e a Planta de Quatro tanques Cilíndricos. As 
técnicas também foram avaliadas em dados de processo da Unidade de Coqueamento 
Retardado de uma refinaria. Os resultados indicam que as mesmas apresentam 
resultados coerentes, corroborando seu elevado potencial de aplicação industrial.  

 

 

 

Palavras-chave: Controle preditivo baseado em modelo, monitoramento, diagnóstico, 
função de sensibilidade, discrepância de modelo, distúrbio não medido. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Abstract 

 

The growing demand for operational improvement and the development of 
information technology make the use of model predictive controllers (MPCs) a common 
practice in industry. This kind of controller uses past plant data and a process model to 
estimate a sequence of control actions to lead the variables to a desired value following 
an optimal policy. Thus, the model quality is the most important source of MPC 
performance degradation. This work proposes a series of methods to investigate the 
controller model quality taking into account its closed loop performance. The methods 
are based on filtering the simulation errors using the nominal sensitivity function. They 
are capable detect the impact of modeling problems in the controller performance, and 
also to locate the controlled variables that have such problems and if it is caused by a 
model-plant mismatch or unmeasured disturbance. The techniques have the advantage 
to be setpoint independent, making them flexible to be also used in MPCs with controlled 
variables working by range. The proposed approach was tested in two simulated case 
studies The Shell Heavy Oil Fractionator Process and The Quadruple-tanks Process. The 
methods are also evaluated in process data of the Delayed Coking Unit of a Brazilian 
refinery. Results indicate that the method is technically coherent and has high potential 
of industrial application.  

 

Keywords: model predictive control, monitoring, diagnosis, sensitivity function, 
model-plant mismatch, unmeasured disturbance 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

“Sem sonhos, a vida não tem brilho.  
Sem metas, os sonhos não têm alicerces.  

Sem prioridades, os sonhos não se tornam reais.” 
 (Augusto Cury) 
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  Introdução  Capítulo 1 –

1.1 Motivação 

De uma forma geral, a operação de plantas industriais envolve a utilização de 
estratégias capazes de controlar as variáveis de processo. As únicas estruturas disponiveis 
até poucas décadas eram baseadas no PID. Contudo, os avanços tecnológicos, ao mesmo 
tempo em que promoveram a elevação da complexidade destes processos, permitiram 
que novas técnicas de controle fossem desenvolvidas, surgindo o controle avançado de 
processos. Dentre as técnicas de controle avançado existentes, os controladores 
preditivos baseados em modelos (MPCs) são os mais utilizados atualmente em termos 
industriais. Os primeiros conceitos referente ao tema surgiram na década de 60. Porém o 
interesse pelo assunto só se intensificou ao final da década de 70, com o surgimento dos 
algoritmos IDCOM (Identification and Comand) e DMC (Dynamic Matrix Control) . Esses 
algoritmos impactaram de forma significativa no âmbito industrial e acadêmico, sendo 
utilizados até os dias atuais e servindo como base para muitos dos algoritmos existentes 
(Holkar & Waghmare,2010; Morari & Lee, 1999). 

A Figura 1.1 ilustra o funcionamento de um MPC típico. A cada ciclo de execução este 
sistema executa as seguintes ações: a partir das medições dos valores passados, o 
controlador estima o comportamento inercial das variáveis controladas, i.e., o 
comportamento que teriam caso nenhuma ação de controle fosse tomada ao longo de 
um horizonte de controle. Em seguida um algoritmo de otimização determina uma 
sequência de ações de controle que levam as variáveis controladas ao seu setpoint de 
forma otimizada.  
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Figura 1.1:  Diagrama Representativo de um MPC Típico 

A capacidade preditiva destes controladores é uma de suas maiores virtudes, já que 
viabiliza a definição de ações de controle que respeitem as várias restrições do processo. 
Sua aplicação permite a otimização operacional, pois impacta na redução da variabilidade 
do sistema, levando o mesmo a operar próximo destas restrições, o que significa 
maximizar rentabilidade, minimizar custos, melhorar qualidade dos produtos, operar de 
forma mais segura e reduzir a geração de resíduos. Campos et al. (2013) estima que 
ganhos da ordem de 2% a 10% possam ser alcançados com a implementação de um MPC, 
através da  maximização da recuperação de produtos nobres, aumento da capacidade de 
processamento da planta e minimização do consumo de energia no processo.  

Após a correta e eficiente implantação de um MPC, os ganhos mencionados são 
evidentes. Porém, com o passar do tempo as condições de operação da unidade se 
alteram, o que reflete diretamente no desempenho do controlador. Com isso, estes 
sistemas passam a operar de forma limitada e muitas vezes acabam sendo desativados 
pela equipe de operação, caso não seja realizada a sua manutenção. A Figura 1.2 ilustra a 
um ciclo de vida típico de um MPC com e sem suporte. 

 

Figura 1.2:  Ciclo de vida de um sistema de controle avançado.  
Fonte: Campos et al.,2013 
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Embora sejam de fundamental importância, o monitoramento e diagnóstico de 
controladores preditivos ainda não é um tópico com uma solução completamente 
eficiente. Atualmente, o monitoramento é realizado, em sua maioria, com base em 
indicadores gerenciais, que fonecem um panorama da utilização do sistema de controle, 
indicando, por exemplo o número de variáveis controladas e manipuladas que estão em 
seus limites (PCAT e PMAT), percentual de tempo em que o controlador permanece 
ligado (FATOP), percentual de tempo em que as variáveis manipuladas permanecem em 
malha fechada (GUT), benefício econômico, dentro outros (Zanin et al., 2014). Embora 
muito úteis para fornecer um panorama geral do controlador, estes indicadores são 
insuficientes, pois são incapazes de fornecer qualquer tipo de informação técnica a 
respeito do seu real comportamento bem como das fontes de sua degradação.  

A avaliação dos MPCs sob um ponto de vista técnico ainda é um desafio, dada a sua 
natureza multicausal. A grande quantidade de parâmetros de sintonia, forte dependência 
com o modelo do processo, diversidade dos algoritmos de controle comerciais existentes 
são as principais dificuldades. Existe uma série de trabalhos acadêmicos propondo 
técnicas para o monitoramento e diagnóstico. Embora estas técnicas sejam diferentes, 
elas possuem aspectos em comum, não só relativos a sua finalidade, mas também em 
relação ao conteúdo de informações do processo necessário e as ferramenas 
matemáticas e estatísticas utilizadas para processar as informações. A Figura 1.3 resume 
tais aspectos.  

 

Figura 1.3:  Aspectos em comum às técnicas de avaliaçao de MPCs 

A partir da combinação dos diferentes aspectos ilustrados na Figura 1.3, cada 
metodologia é fundamentada, de modo que, o resultado final se resume a uma série de 
indicadores para avaliar a eficiência econômica do MPC,  monitorar o seu desempenho 
global ou ainda detectar e quantificar as possíveis fontes de degradação de performance 
do controlador (sintonia, qualidade dos modelos, restrições do processo, falhas em 
equipamentos, etc). 

Dentre as fontes de degradação mencionadas, a baixa qualidade dos modelos é a mais 
importante, visto que modelos ruins podem ocasionar ações de controles muito aquém 
daquelas que levam o processo a sua condição ótima, ou mesmo tornar o controlador 
instável. Sun et al. (2013) estima que mais de 80% do tempo de projeto de um 
controlador preditivo seja gasto na identificação deste modelo, dada a sua importância. 
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Levando em conta que o modelo é obtido em uma determinada condição de operação, 
qualquer alteração no processo pode ser suficiente para degradar a sua 
representatividade. Isso deixa evidente a necessidade de ser constantemente 
monitorado.  

Muitas das técnicas disponíveis na literatura tem o objetivo de avaliar a qualidade dos 
modelos para o MPC (por exemplo Badwe et. al, 2009;  Sun et al., 2013; Kano et al., 2010; 
Schäfer & Cinar, 2004; etc). Embora sejam eficientes, a maioria delas são pouco viáveis de 
serem aplicadas na indústria já que são embasada em estruturas de controle preditivo 
convencionais (i. e., que possuem setpoints fixos, conforme à apresentada na Figura 1.1), 
utilizando o setpoint das CVs como ferramenta para a avaliação. Na indústria, é comum a 
inexistência de graus de liberdade suficientes para manter todas as variáveis controladas 
em um único valor predefinido e por isso o MPC é configurado por faixas e tem o objetivo 
de manter as CVs dentro destes limites. Além disso, alguns controladores  possuem uma 
camada de otimização em tempo real que estima o valor ótimo das variáveis manipuladas 
(Targets) sob o ponto de vista econômico, e estes Targets são variáveis da função 
objetivo do MPC. Dessa forma, o controlador não possui explicitamente setpoints para as 
variáveis controladas e por isso técnicas que utilizam o setpoint acabam sendo 
inadequadas para o seu diagnóstico. Com isso constatou-se a a necessidade do 
desenvolvimento de métricas para avaliar modelos de controladores preditivos para 
serem utilizadas em controladores industriais.   

1.2 Objetivos 

Com base no que foi descrito, a presente tese tem o objetivo de desenvolver uma 
ferramenta para a avaliação da qualidade dos modelos de controladores preditivos. O 
foco é que esta metodologia seja flexível à maioria das características inerentes aos 
controladores indústriais além de ser numericamente simples, de fácil aplicação e 
interpretação, utilizando apenas as perturbações normalmente empregadas durante a 
operação do controlador. Dessa forma, espera-se que a técnica seja capaz de:  

- O1: Realizar o diagnóstico de modelos de MPCs que operem por faixas.  

- O2: Quantificar o efeito dos problemas de modelagem no desempenho do MPC. 

- O3: Localizar as variáveis cujos modelos possuem problemas relevantes. 

- O4: Distinguir entre problemas oriundos de distúrbios não medidos e discrepância 
de modelos.  

1.3 Estrutura do trabalho 

Este trabalho está dividido em oito capítulos, nos quais seis deles estão estruturados 
na forma de artigos científicos, conforme a Resolução 093/2007 de 12/06/2007 da 
Câmara de Pós-Graduação da Universidade Federal do Rio Grande do Sul (UFRGS). No 
primeiro capítulo, é apresentada uma breve introdução e motivação a respeito do tema, 
bem como os principais objetivos deste trabalho e as contribuições resultantes da sua 
execução. 

O Capítulo 2 apresenta uma revisão sobre avaliação de desempenho de controladores 
preditivos. Um overview sobre o tema é apresentado e as principais técnicas disponíveis 
na literatura são listadas e classificadas de acordo com seus objetivos e suas 
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características mais relevantes. Em seguida as premissas sugeridas por Hugo (2002) para a 
seleção de métricas ideais de avaliação de desempenho de controladores são discutidas. 
Algumas das técnicas são selecionadas de acordo com tais premissas para serem 
detalhadas e testadas. Dois estudos de caso simulados são utilizados nos teste 
comparativos das metodologias: A Fracionadora de Óleo Pesado da Shell (Prett & Morari, 
1987) utilizando um controlador preditivo clássico e o Processo de Quatro Tanques 
Cilíndricos (Johanson, 2000) utilizando um MPC por faixas. Este capítulo também conta 
com uma breve apresentação das metodologias desenvolvidas neste trabalho, as quais 
são aprimoradas ao longo dos capítulos subsequentes. Ressalta-se que a demonstração 
matemática e o detalhamento das metodologias desenvolvidas nesta tese são 
apresentadas detalhadamente nos capítulos 3, 4 e 5. No capítulo 2, elas apenas foram 
parcialmente introduzidas de forma simplificada para permitir uma comparação com as 
metodologias mais promissoras encontradas na literatura. 

No capítulo 3, uma técnica para a quantificação do impacto dos problemas de 
modelagem no desempenho do controlador é apresentada a qual é embasada no 
comportamento nominal do sistema em malha fechada. A dedução matemática da 
mesma é apresentada. O Processo de Quatro Tanques Cilíndricos (Johanson, 2000) é 
utilizado como estudo de caso a partir de diferentes configurações para o MPC e para a 
planta. Os resultados da técnica proposta são comparados com a metodologia proposta 
por Badwe et al. (2010).  

No capítulo 4, uma extensão da metodologia apresentada no capítulo 3 é proposta 
com objetivo de localizar as variáveis controladas com os problemas de modelagem 
responsáveis pela degradação de desempenho do controlador. Esta técnica é útil 
especialmente em sistemas com elevado grau de acoplamento entre as variáveis, onde 
pequenos problemas de modelagem podem levar todo o sistema próximo a sua 
instabilidade.   A metodologia é avaliada a parti de dois estudos de caso simulados: Uma 
coluna de destilação de alta pureza (Skogestad & Postlethwaite, 1996) e a Fracionadora 
de Óleo Pesado da Shell (Prett & Morari, 1987). Os resultados obtidos são comparados 
com a metodologia proposta por Sun et al. (2013). 

No capítulo 5, uma metodologia que visa identificar se a degradação do modelo é 
proveniente de uma discrepância no mesmo ou de um distúrbio não medido é 
apresentada. Esta metodologia utiliza alguns dos conceitos apresentados nos capítulos 3 
e 4 e tem o objetivo de comparar estatisticamente os erros de modelagem com o 
comportamento nominal do sistema. Um MPC SISO é utilizado para ilustrar os resultados 
gerados para avaliar qual o melhor indicador dentre uma série de hipóteses sugeridas. Em 
seguida, a metodologia é avaliada a partir de dois estudos de caso: A Fracionadora de 
Óleo Pesado da Shell (Prett & Morari, 1987) e o Processo de Quatro Tanques Cilíndricos 
(Johanson, 2000). 

No capítulo 6 todas as metodologias desenvolvidas neste trabalho são testadas em 
um controlador preditivo por faixas, configurado na Fracionadora de Óleo Pesado da Shell 
(Prett & Morari, 1987). Testes exaustivos são gerados aleatoriamente a fim de quantificar 
o percentual de falha das técnicas. Além disso, um estudo é realizado para se avaliar o 
grau de incerteza admitido na função representativa do comportamento nominal do 
sistema.  
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No capítulo 7, as metodologias desenvolvidas são aplicadas a um controlador 
preditivo real da Unidade de Coqueamento Retardado da REFAP. O capítulo 8 apresenta 
as principais conclusões, bem como os aspectos a serem abordados em trabalhos futuros.  

Nos apêndices A1, A2 e A3 são apresentados os principais detalhes relativos ás 
implementações das metodologias discutidas ao longo do trabalho. 

1.4 Produção científica 

Este trabalho resultou em uma série de artigos já aceitos ou submetidos para 
publicação em revistas científicas, os quais correspondem aos capítulos de conteúdo 
técnico. Além disso, as metodologias desenvolvidas fizeram parte de publicações em 
congressos e contribuíram para a realização de outros trabalhos desenvolvidos pelo 
grupo de pesquisa. A seguir são listadas as principais produções resultantes deste estudo. 

1.4.1 Artigos Científicos 

Capítulo 2: BOTELHO, V., TRIERWEILER, J., FARENZENA, M., DURAISKI, R. Perspectives 
and Challenges in Performance Assessment of Model Predictive Control. The Canadian 
Journal of Chemical Engineering. Status: Aceito para publicação. 

Capítulo 3: BOTELHO, V., TRIERWEILER, J., FARENZENA, M., DURAISKI, R. A 
methodology for detecting model-plant mismatches affecting MPC performance. 
Industrial & Engineering Chemistry Research. Status: Aceito para publicação. 

Capítulo 4: BOTELHO, V., TRIERWEILER, J., FARENZENA, M., DURAISKI, R. A. MPC 
model assessment of highly coupled systems. Industrial & Engineering Chemistry 
Research. Status: Submetido para publicação. 

Capítulo 5: BOTELHO, V., TRIERWEILER, J., FARENZENA, M., DURAISKI, R. A. MPC 
Diagnosis of poor performance in model predictive controllers: Unmeasured Disturbance 
versus Model-Plant Mismatch. Industrial & Engineering Chemistry Research. Status: 
Submetido para publicação. 

Capítulo 6: BOTELHO, V., TRIERWEILER, J., FARENZENA, M., DURAISKI, R. A. MPC 
Performance Assessment and Diagnosis of MPCs with Control Ranges. Control 
Engineering Practice. Status: Submetido para publicação. 

Capítulo 7: BOTELHO, V., TRIERWEILER, J., FARENZENA, M., LONGHI, L., DURAISKI, R. 
A. MPC Model Assessment of an Industrial MPC. Control Engineering Practice. Status: 
Submetido para publicação. 

1.4.2 Trabalhos completos publicados em anais de congresso 

BOTELHO, V., TRIERWEILER, J., FARENZENA, M., MULLER, G. Desafios e perspectivas 
na auditoria de MPCs. Congresso Brasileiro de Engenharia Química – COBEQ. 
Florianópolis, 2014.  

http://pubs.acs.org/journal/iecred
http://pubs.acs.org/journal/iecred
http://pubs.acs.org/journal/iecred
http://pubs.acs.org/journal/iecred
http://www.journals.elsevier.com/control-engineering-practice/
http://www.journals.elsevier.com/control-engineering-practice/
http://www.journals.elsevier.com/control-engineering-practice/
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1BOTELHO, V., TRIERWEILER, J., FARENZENA, M., DURAISKI, R. Assessment of Model-
Plant Mismatch by the Nominal Sensitivity Function for Unconstrained MPC. International 
Symposium on Advanced Control of Chemical Process – ADCHEM. British Columbia, 2015.    

CLARO, E., BOTELHO, V., TRIERWEILER, J., FARENZENA, M. Model performance 
assessment of a predictive controller for propylene/propane separation. Symposium on 
Dynamics and Control of Process Systems –DYCOPS. Trondheim, 2016. Submetido.  

1.4.3 Co-orientações em trabalhos de conclusão de curso.  

Caetano Bevilacqua Kichel (2015). Auditoria e Diagnóstico de Malhas SISO a partir da 
Resposta Nominal Estimada. Orientador: Prof. Jorge Trierweiler, Co-orientadora: MSc. 
Viviane Botelho. Trabalho de diplomação em Engenharia Química – UFRGS. 

1.4.4 Apoio em dissertações de mestrado 

Érica Claro (defesa prevista para 2016). Auditoria de Modelos de Controladores 
Preditivos Industriais: Estudo de caso para um sistema de fracionamento de propeno. 
rientador: Prof. Dr. Jorge Trierweiler, Co-orientador: Prof. Dr. Marcelo Farenzena. 
Mestrado em Engenharia Química – UFRGS. 

1.5 Contribuições 

Pode-se listar como principais contribuições deste trabalho os seguintes pontos: 

C1: Levantamento das metodologias disponíveis na literatura e avaliação da sua 
potencilidade de aplicação em MPCs por faixa. 

C2. Desenvolvimento de uma metodologia para a estimação do comportamento do 
sistema isento de problemas de modelagem. 

C3: Avaliação de métricas para avaliar impacto dos erros de modelagem com base no 
comportamento nominal do sistema. 

C4. Desenvolvimento de metodologia para localizar as variáveis controladas com 
problemas de modelagem. 

C5: Desenvolvimento de metodologia para avaliar estatisticamente a fonte dos 
problemas de modelagem (discrepância no modelo ou distúrbio não medido) 

C6. Avaliação das metodologias propostas em MPCs por faixa. 

C7. Aplicação das técnicas desenvolvidas em um sistema real. 

1.6 Resumo gráfico 

A Figura 1.4 apresenta um resumo gráfico desta Tese de Doutorado, relacionando os 
objetivos e contribuições descritos nas seções 1.2 e 1.5 com os capítulos da tese. A partir 

                                                      

1 Trabalho reconhecido como melhor apresentação oral da sessão 
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desta figura é possivel se ter uma visão geral de como este trabalho está estruturado, e 
de como as etapas do desenvolvimento se interligam, levando a conclusão do estudo. 

 

 

Figura 1.4: Resumo gráfico da tese 

 

 

 



 

 

 

 Perspectives and Challenges in Capítulo 2 –
Performance Assessment of Model 
Predictive Control 

 

Abstract 2 : The longevity of each MPC application is strongly related to its 
performance maintenance. This work provides an overview of the methodologies 
available to fulfill this task including a discussion about some special requirements of 
performance assessment methodologies for typical industrial MPC applications. The 
available methodologies were compared using these requirements. The best approaches 
were selected and compared to a new method proposed by the authors. These 
techniques have been applied in two case studies: the Shell benchmark process and The 
Quadruple-tank process. The results show that the control policy (setpoint, soft 
constraints, targets) followed in the MPC application should be the determining factor in 
the selection of the methodology for performance assessment. 

 

Keywords: Model Predictive Control, Model Plant Mismatch, Model Quality, Control 
Performance Assessment 

 

 

                                                      

2 Aceito para publicação no periódico ”The Canadian Journal of Chemical Engineering”. 
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2.1 Introduction 

The increasing demand for operational improvement and the fast development of 
information technology are turning the use of model-based predictive control (MPC) into 
common practice in the industry. The use of these controllers allows operational 
optimization, which leads to maximized profit, safer operations and reduced waste 
generation. These benefits become evident after proper implementation of an MPC; 
however, the process conditions inevitably change over time, directly influencing 
controller performance. Thus, the longevity of a MPC application is strongly dependent of 
it maintenance and, given its importance, several methods are available in literature for 
monitoring and diagnosing a model predictive control.   

Despite the wide diversity of techniques for MPC assessment, most of them can be 
grouped according to some common features, which relate to the information provided, 
as well as to the required input information. For example, a group of methods is based in 
comparisons of current data with a historical benchmark (e.g., Schäfer & Cinar, 2004; 
AlGhazzawi & Lennox, 2009; Agarwal & Huang, 2007), some methods rely on Minimal 
Variance Controller (MVC) as a benchmark (e.g. Huang & Thornhill, 2006; Zhao et al., 
2010). Others are focused on investigating the quality of the process model using the 
prediction error (e.g., Jiang et al., 2012; Pannocchia & Luca, 2012), etc. Depending on 
these characteristics, a method can be adapted for industrial applications. Section 2 
presents a “big picture” of the available techniques in literature, guiding the selection of 
an advisable method for a given application. This section also discusses desirable 
characteristics of a method for controller assessment in industrial applications, according 
to the criteria defined by Hugo (2010). Based on this analysis, three methods were 
deemed the most promising: the Sun et al. (2013) method, the Badwe et. al. (2009) 
method and the Yu & Qin (2008a and b) method. These three methods are then further 
compared against our approach, which can detect any modeling inconsistencies and 
whether these are due to a model-plant mismatch or unmeasured disturbance.  

Even though model-based predictive controllers have core theoretical fundamentals, 
each industrial application of commercial MPCs has its particularities. For example a MPC 
can have hard and/or soft constraints, it may or not include an economic cost function, it 
can based in different kinds of models. An effective method for MPC assessment must 
have the ability to manage all these diferent policies. Section 3 discusses these policies 
and the challenges for a flexible method for MPC assessment. 

Through the case study presented in Section 4, we assess the potential as well as the 
limitations of each selected technique in Section 2 and of the proposed one as well. Using 
two case studies: the Shell benchmark process (Prett & Morari, 1987) and the quadruple-
tank process (Johanson, 2000), we set an MPC considering some control policies common 
to industrial processes, such as the existence of soft constraints and economic 
optimization.  

Since 2001, our research group, GIMSCOP / UFRGS, has been developing research in 
control loop performance assessment and diagnosis to meet a demand from the most 
important refining industry of Brazil. The results of our work culminated in the 
development of an industrial tool, which is nowadays the default solution adopted by  
any companies for control loop performance assessment and diagnosis. Currently, there 
are over 12,000 control loops being monitored. 
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2.2 Assessment, monitoring, and diagnosis methodologies for 
MPCs 

2.2.1 A brief overview of the literature 

There is no clear consensus which is the best solution for performance assessment of 
predictive controllers. The difficulty associated with monitoring and diagnosing MPC is a 
direct consequence of the algorithm´s complexity. The dynamic process model lies at the 
heart of a MPC. Based on this model, outputs are predicted considering a set of control 
actions that are optimized along the control horizon. The optimization problem is 
restarted at each sample interval, according to a moving horizon approach. To set the 
optimization problems, constraints and weighting matrices are added to the control and 
prediction horizon. All these can be considered tuning parameters. Due to the spread of 
possible causes for poor MPC performances, finding the source of degradation in the 
controller is not a simple task. The existence of unmeasured disturbances further 
complicates this effort.  

Industrial and academic interest in MPC assessment has grown significantly in the last 
decades, and several techniques have emerged. Some of these rely on Minimal Variance 
Controller (MVC) as a benchmark despite the fact that many authors consider the MVC an 
extremely unattainable benchmark for most MPCs applications. An extension of MVC is 
the linear quadratic Gaussian (LQG) curve, which displays the minimal achievable variance 
of the controlled variable versus the variance of the manipulated variable (MV). The LQG 
curve is a more suitable reference than MVC when applied in predictive controllers 
because it considers the variance of MVs. Nevertheless, for most real applications, the 
LQG curve is still not a practical reference, due to its complexity and computational 
demand for estimating states and for the solution of the Ricatti algebraic equations, in 
addition to the requirement of a complete state space process model. (Jelali, 2006; Zhang 
& Shaoyunan, 2006) 

Despite the adversities associated with the use of the MVC or LQG as a benchmark, 
several works have been developed considering these approaches. Lee et al. (2008) 
suggested a method based on MVC, which consists of evaluating the sensitivity of the 
process variables in order to determine which one has a greater economic impact. 
Harrison & Qin (2009) proposed a minimum variance map based on LQG to verify the 
effects of constraints in the controller's operational quality. Zhao et al. (2009) developed 
an economic benchmark based on LQG controller, solving an optimization problem to 
determine the economic potential of the controller and compare it with the current 
performance. Zhang et al. (2013) proposed an improvement of LQG for multivariable 
systems, in which the multivariable system is deconstructed into multiple MISO (multiple-
input single-output) subsystems. Then, the LQG is obtained for each subsystem. Huang & 
Thornhill (2006) suggested assessing the potential for reducing the variability by 
comparing different prediction levels using a moving average model identified from plant 
data. Zhao et al. (2010) expanded on this concept, but considering multi-steps ahead 
prediction in order to avoid problems arising from underestimated minimum variance.  

As an alternative to MVC and LQG performance benchmarks, many authors proposed 
using as historical references periods in which good performance of the controller is 
known beforehand. Schäfer & Cinar (2004) proposed a methodology for MPC monitoring 
and evaluation based on a comparison of the current objective function with a reference 
value and with the achievable performance for the controller designed. The authors 
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suggest that the reference value can be calculated using LQG or historical data. Yu & Qin 

(2008a and b) proposed a methodology based on the investigation of the covariance of 
the reference periods and current data in order to determine whether the variability 
increased or not, which is verified with statistical tests. For detecting MPC irregularities in 
real time, AlGhazzawi & Lennox (2009) suggest using a comparison with a PCA (Principal 
Component analysis) or PLS (Partial Least Square) model obtained previously from a set of 
reference data. Tian et al. (2011) proposed a methodology based on dynamic PCA 
similarity measure, where the actual operating data is decomposed and compared with a 
historical benchmark. The Zhang & Shaoyuan (2006) method proposed a similar 
framework, where the actual PCA model is compared with a historical benchmark. If a 
decline in performance is detected, the Baseville (1998) criterion is used for diagnosis. 
Alcala & Qin (2009, 2011) use PCA and PLS as a diagnostic tool, suggesting new indicators 
for monitoring performance. Qi & Huang (2011) have introduced a class of methods based 
on building a Bayesian network to recognize patterns. 

Many methods focus on investigating the quality of the process model used by the 
MPC, since this is one of the most important and critical points for the predictive 
controller operation. Sun et al. (2013) estimated that 80% of time spent on the design of 
an MPC is dedicated to obtaining a model. Among the methods available, Conner & 
Seborg (2005) proposed using the Akaike information criterion to assess the need for re-
identification of the model. Badwe et al (2009) presented the evaluation of the partial 
correlation between inputs and residuals to identify the channels with significant model-
plant mismatch. Sun et al. (2013) introduced a model quality index where the impact of 
stochastic disturbance is estimated and compared with the measured data.   

Table 2.1 shows the most cited methods available in the literature following general 
attributes found in different approaches. These attributes relate to: each method´s 
applicability (i.e., whether the method is useful to evaluate system variability, model 
quality, controller tuning or detect problems based on pre-defined patterns), to the need 
for MPC information (such as controller model and tuning parameters), to whether the 
method is specific for MPC and to the need of intrusive tests and data-based model 
identification. 
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Table 2.1: Classification of Methods for MPC Assessment 

Utility Ref. Specific Objective *(a) *(b) *(c) *(d) *(e) *(f) 

Evaluate 
System 

Variability 

Huang & 
Thornhill (2006)

 
Monitor and diagnose CV with 

increased variability 
No No Yes No MVC Yes 

Yu & Qin       
(2008a and b) 

Monitor and diagnose CV with 
increased variability 

No No No No HIST No 

Zhao et al.     
(2009) 

Evaluate Economical Potential 
considering a variability 

reduction 
Yes No Yes No LQG No 

Zhao et al.     
(2010) 

Investigate potential of 
variability reduction 

No No Yes No MVC Yes 

Zhang et al.     
(2013) 

Monitor and diagnose CV with 
increased variability 

Yes No No No LQG No 

Evaluate 
Model Quality 

Huang et al. 
(2003) 

Model validation Yes No Yes No No Yes 

Conner & Seborg 
(2005) 

Evaluate the need for model re-
identification 

Yes No No Yes No Yes 

Badwe et al.     
(2009) 

Identify MV versus CV model-
plant mismatch 

Yes No Yes No No Yes 

Jiang & Huang 
(2009) 

Validation and global model-
plant mismatch detection  

Yes No No No No Yes 

Badwe et al.     
(2010) 

Evaluate the impact of model-
plant mismatch on MPC 

performance 
Yes Yes Yes No No  Yes 

Kano et al.     
(2010) 

Identify MV versus CV model-
plant mismatch 

Yes No Yes No No Yes 

Whang et al.     
(2012) 

Identify MV versus CV model-
plant mismatch 

Yes No Yes No No Yes 

Ji et al.            
(2012) 

Identify MV versus CV model-
plant mismatch 

No Yes Yes Yes No No 

Jiang et al.     
(2012) 

Prediction quality under several 
levels 

Yes No Yes No No No 

Pannocchia & 
Luca (2012) 

Evaluate deterministic portion of 
prediction error 

Yes No Yes No No Yes 

Sun et al.     
(2013) 

Identify CV with model-plant 
mismatch 

Yes No Yes No No Yes 

Pattern 
Classification 

 

Loquasto & 
Seborg (2003) 

Identify MPC problems by 
comparing data with a simulated 

database 
Yes Yes Yes No No No 

Huang & Qi     
(2011) 

Probability of failure causes using 
Bayesian criteria 

No No Yes No HIST Yes 

Tian et al.       
(2011) 

Identify MPC problems 
comparing data with a historical 

database 
No No No No HIST No 

He et al.         
(2012) 

Identify MPC problems 
comparing data with a simulated 

database 
Yes No Yes No No No 

AlGhazzawi & 
Lennox (2009) 

Detect irregularities from 
comparison of a PCS/PLS model 

Yes No Yes No HIST No 

MPC Tuning 

Schäfer & Cinar 
(2004) 

Monitor and diagnosis of Model 
X Tuning problem 

Yes Yes Yes No HIST No 

Argawal & Huang 
(2007a and b) 

Evaluate variable constraints No No Yes No HIST Yes 

Harrison & Qin 
(2009) 

Evaluate variable constraints Yes Yes Yes No LQG No 

*(a) Use controller model?   *(b) Use controller tuning parameters?    *(c) Specific for MPC?    *(d) Intrusive?    * (e) 
Based in a Benchmark? (minimum variance controller: MVC, linear quadratic Gaussian: LQG and historical data: HIST)  * 
(f) Needs any data-model identification? 
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2.2.2 Guidelines for method selection 

Despite the significant number of methods available to evaluate multivariable 
controllers, their industrial applicability is limited due to several constraints. Hugo (2002) 
recommends the following requirements for a universal metric: 

 Sensitivity to tuning, model mismatch or equipment failures; 

 Impact of disturbances or setpoint changes should be minimal; 

 Non-intrusive; 

 Ability to assess performance automatically, with minimal intervention; 

 Should use an absolute benchmark; 

 Should not require the actual process dynamics; 

 Diagnose the cause of the bad performance; 

 Quantify the economic impact of poor performance; 

Additionally, an ideal method should be able to handle large datasets with strong 
correlation between variables without requiring much pretreatment. Finally, we feel 
confident that the ideal method ensures a simple and intuitive interpretation of controller 
problems. We selected some methodologies that meet most of these requirements, 
which are presented below for further evaluation. 

Sun et al. (2013) method 

This technique focuses on evaluating MPC model quality. It is based on residual 
assessment and feedback invariant principle, whereby disturbance innovations are not 
affected by the feedback controller. It allows the estimation of stochastic disturbance 
error       from the identification of a stable High Order Autoregressive Exogenous 
Model (HOARX) using the setpoints         and the measured outputs     , according to  

     ∑           ∑                  

 

   

 

   

  ∑            ∑                   

   

   

   

   

 (2.1) 

where    and    are the parameters of ARX model and MO1 and MO2 are the model 
orders. 

The prediction error       is obtained based on the one-step-ahead prediction (Ljung, 
1999) which is the optimal prediction of the output given the past output measurement. 
For a process with identified disturbance model    ,      is calculated according to: 

 ̂       
                 [     

     ]       (2.2) 

       ̂           (2.3) 
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where     is the process model. In cases where the disturbance model is not available, 
Ljung (1999) suggested projecting a filter (predictor) to capture the disturbance effect (i.e, 
       

    ). The author suggests a performance indicator for model quality (   ), 
defined by: 

     
∑          

       
   

∑                   
   

 (2.4) 

where    are controlled variables weights in MPC controller and    is the number of 

sampled data. The     varies between 0 and 1, such that       means that all error 
is due to stochastic disturbance and the model is perfect. 

Badwe et al. (2009) method 

This method aims to identify channels, i.e., sub-models involving controlled variable 
(CV) versus manipulated variable (MV) with significant model-plant mismatch. It is based 
on the investigation of partial correlation between the manipulated variables and residual 
of model output prediction. The use of partial correlation is necessary to avoid false 
detection of model mismatches given by the causal relation between the variables. 

Considering that the input and output are noise filtered, the first step is to isolate the 
effect of each MV. This is accomplished by the identification of an Output-Error model 
(OE) between each MV over the others, according to: 

          
         (2.5) 

where       is the evaluated MV,     
 are the OE model parameters,       is the matrix 

of remaining MVs and     is the component of the evaluated MV uncorrelated with the 
others. Similarly, it is necessary to isolate the effect of each CV from all MVs, except the 
one being evaluated. This is done by identifying an OE model between the prediction 
error of evaluated CV and the remaining MVs, expressed as:  

           
            

  (2.6) 

where       is the prediction error of evaluated CV,      
  are the OE model parameters, 

      is the matrix of remaining MVs and      
  is the evaluated CV prediction error under 

the sole effect of the evaluated MV. Model mismatch is detected through the regular 
correlation of     and      

 . A strong correlation between these variables is an indicator of 

a mismatch in the MPC model        . 

Yu & Qin (2008a and b) method 

This methodology is useful to monitor multivariable controllers based on the 
inspection of CV variability. This evaluation is done by comparing the actual operational 
data with a historical benchmark data, in which the controller performs in an acceptable 
or in the desired manner. The global variability    is computed as follows:  

   

        [          
] 

        [        
] 

 (2.7) 
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where    refers to monitored data and   to benchmark.    value greater than one means 
an increase in variability and probably decline in performance, while    less than one 
means a variability decrease. Covariance (   ) investigation is also an auxiliary tool for 
process diagnosis. Considering the generalized eigenvalue problem (GEVP):  

              
                

   (2.8) 

where   are the eigenvalues and   the corresponding eigenvector. High eigenvalues ( ) 
mean that there is a difference in the variability (when compared with the benchmark) in 
that corresponding eigenvector direction ( ). In order to produce reliable results, a 
statistical inference is constructed. Considering the quadratic asymptotic statistics 
proposed by Desborough and Harris (1992): 
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  (2.9) 

Where sub-index   refers to dataset (I for benchmark and II to monitored),         

represent the autocorrelation coefficients of data along the eigenvector direction   at lag 

  and    is the number of sampled data. From   
   

 the confidence interval of each 

eigenvalue are calculated: 
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where      is the critical value of a standard normal distribution  at           

confidence level. In practice,        and        greater than one means a performance 
deterioration in the corresponding eigenvector direction,        and        smaller the 
one represent a performance improvement. Finally           and          means 
no significant difference between the evaluated data and benchmark. 

Based on the direction of performance decline/improvement, it is possible to identify 
the associated controlled variable. First, the subspaces of deterioration/improvement are 
constructed (   and   ), grouping the correspondent eigenvector.   

 is the angle 
between these subspaces and each individual controlled variable (represented by the unit 
vector    ) and is an indicator of the canonical correlation between the controlled 
variable and the subspace. It is calculated as follows: 

   (  
 )  ‖     

        
    ‖ (2.12) 

   (  
 )  ‖     

    
    

    ‖ (2.13) 

Since   and    are calculated from sample covariance, the confidence limit for         
helps to determine the statistic significance of each controlled variable contribution. 
Considering a cutting factor of 45º, it is defined according to: 
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   √
 

 
 

    

√   

 (2.14) 

where    is the geometric mean between sample size of benchmark and monitored 

dataset. In practice,    (  
 ) and    (  

 ) larger than   means that the corresponding 

controlled variable contributes significantly to the subspace     and   , contributing to 
performance decline/improvement. 

2.2.3 Proposed methods for MPC model assessment 

This section presents our contributions towards the assessment of model-plant 
mismatch for MPC models. We are focused on developing a tool for industrial 
applications in accordance with the guidelines described in Section 2.2.2.   

A process under MPC control shown in Figure 2.1 is initially considered, where    is 
the controller     is the identified process model (nominal model),   is the real process 
model,     is the model-plant mismatch,    is the unknown disturbance 
model,      correspond to the setpoints,   are the manipulated variables,   are the 
measured outputs,    are the nominal outputs,      are the simulated outputs of the 
nominal model perturbed by the actual control action  ,   are sequences of independent 
random variables and    are the unmeasured disturbance signals. Based on this 
information, the methods are discussed below.   is the closed-loop model, called 
complementary sensitivity function of the real system and     is the nominal 
complementary sensitivity function.  

 

  
Figure 2.1:  Schematic diagram of closed-loop (a) nominal system, (b) with model-

plant mismatch and (c) with unmeasured disturbance.  

Model quality evaluation for MPC using the nominal output sensitivity function 

The method is based on the premise that an effective model should represent the real 
system at the frequency where the MPC works. Thus, to assess the real impact of model-
plant mismatch, the closed-loop performance must be considered. The following 
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definitions for the closed loop behavior can be found in many control textbooks (e.g., 
Skogestad & Postlethwaite,1996):  

          (2.15) 

                             (2.16) 

        (2.17) 

              (2.18) 

Where    is the nominal sensitivity funcion and   is the identity matrix. The nominal 
output    (i.e., the output of the system in the absence of model-plant mismatch and 
unmeasured disturbance) could be estimated according to: 

                   (2.19) 

The complete mathematical description as well as the theorem proof can be found in 
Botelho et al. (2015a/cap. 3)3. The expression (2.19) shows that it is possible to estimate 
the nominal closed-loop output from the controller model as well as plant input and 
output data. Since    is an estimate of the output process in the absence of a model-plant 
mismatch or unmeasured disturbance, it could be considered a benchmark for controller-
model output response. The main advantage is that, unlike of MVC/LQG, it is a realistic 
reference of the process model. It is important to emphasize that the diagnosis using    
relates merely to the process model quality or presence of unmeasured disturbance, 
being unaffected by poor tuning. Based on this reference, any output dependent on 
performance indicator could be applied. For example, a useful indicator is the comparison 
of output variances, called variance index (    ), based in the indicator presented by 
Badwe et al. (2010) and expressed as : 

     
       ̅ 

        ̅  
 (2.20) 

where  ̅ and  ̅  are the mean value of   and   , respectively. An        means that 
there is no modeling problem affecting the corresponding CV, since the variance of   and 
   are similar. The output sensitivity function (  ) can be obtained analytically from the 
nominal process model (  ) and controller model ( ), as shown in (2.16) and (2.17). 
However, given the complexity of MPC formulation, it is simpler and more 
straightforward to obtain    from a simulation of the controller considering no model-
plant mismatch and a sufficiently excited closed loop data. Then, the closed-loop model is 
identified based on the simulated data. Note that it is only necessary to apply this 
procedure again if the MPC tuning or nominal model is changed. 

                                                      

3 Botelho et al. (2015a/cap. 3) refere-se ao artigo correspondente ao capítulos 3 desta tese. 
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Diagnosis of poor MPC model: Unmeasured Disturbance vs. Model-Plant Mismatch 

Once the modeling problem in MPC is detected, it is desirable to identify its cause. A 
key issue is to determine whether the decline in performance is due to MPM or 
unmeasured disturbance. The former occurs when the process model cannot adequately 
describe the relations between model input and output variables and a re-identification is 
required. An unmeasured disturbance occurs when there is a deterministic unknown 
signal affecting output behavior. The effects of a MPM and unmeasured disturbance (UD)  
in the process outputs are very similar, thus, they are not easily distinguished. Botelho et 
al. (2015c/cap. 5)4 proposed an alternative route to this diagnosis.  The main idea is to 
compare the nominal outputs    with the nominal error      , defined as: 

                   (2.21) 

Considering that       is the estimated output free from model-plant mismatches 
and unmeasured disturbances,       can be interpreted as the effect of the modeling 
problems in the loop. When the process output is under a MPM,       will be dependent 
on the references changes (setpoint or soft constraint), as well as      , causing their 
variation to be similar. However, when the process output is under an unmeasured 
disturbance       will be independent of references changes, since the disturbances 
come from an external source. Nonetheless,       continues to be dependent from 
them. This means that the variation of       and       are uncorrelated. Therefore, the 
comparison between       and       patterns can be used to discriminate between 
model-plant mismatch and unmeasured disturbances. 

The diagnosis procedure to distinguish between MPM and unmeasured disturbances 
consists of the statistical analysis of the distribution of        and       along a moving 
window (  ). The main advantage of this approach is its capability to better capture the 
dataset tendency. It means that the method capture how       and       are changing 
along the time. Botelho et al. (2015c/cap. 5)4 show that this approach is more robust than 
the use of regular correlation because the regular correlation is a linear quantifier. Thus, 
when the process has some nonlinearity, the relation between       and       will also 
be nonlinear and the indicator will be misleading. The statistical distribution is evaluated 
by the skewness (   ) and kurtosis (   ) coefficients: 

     
  

(√  )
  (2.22) 

     
  

 √    
 (2.23) 

where   ,    and    are the second, third and fourth order central moment, defined as: 

   
∑      ̅    

   

  
         (2.24) 

                                                      

4 Botelho et al. (2015c/cap. 5) refere-se ao artigo correspondente ao capítulos 5  desta tese. 
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Where    is the evaluated dataset (   or   ) and  ̅ is it corresponding mean. A high value 
of kurtosis means that the data presents a large number of recordings away from the 
mean, when compared with a normal distribution. The sample skewness provides an 
indicator of how asymmetric is the distribution. A positive value of skewness means that 
there is a higher concentration of values below the mean. Figures Figure 2.2 and Figure 
2.3 illustrate the skewness and kurtosis of a hypothetical case with MPM and 
unmeasured disturbance, respectively.  

   
(a) (b) (c) 

Figure 2.2: Hypothetical case with MPM: (a) measured      and estimation of       and 
      , (b) kurtosis along a moving window and (c) skewness along a moving window. 

 

   
(a) (b) (c) 

Figure 2.3: Hypothetical case with unmeasured disturbance: (a) measured      and 
estimation of       and       , (b) kurtosis along a moving window and (c) skewness 

along a moving window. 

The comparison of       and       are based on the kurtosis and skewness scatter. 
To quantify it, we have used a linear regression. The angular coefficient of the linear 
approximation        and its coefficient of determination    provide an indicator of 
model-plant mismatch.  The distribution of       and       become more similar closer 
to       and when   =1. Thus, this is indicative of the presence of a model-plant 
mismatch, as shown in Figure 2.4. 

A similar procedure is based on the confidence ellipse scatter. The ellipse is 
constructed considering the covariance matrix of       and       kurtosis and skewness. 
The angle of the largest eigenvalue corresponds to the ellipse inclination ( ). The ellipse 
diameters are given by the square root of the largest and the lowest eigenvalues 
multiplied by the critical chi-square value (     

 ) associated with a given probability level 
(Santos-Fernández, 2012). The confidence ellipse is less circular and more diagonal when 
the correlation between the statistical distributions of       and        is more 
significant, indicating the presence of a model-plant mismatch.  Figure 2.4 shows the 
expected behavior of linear and elliptical approximation under MPM and unmeasured 
disturbance, respectively. 

http://link.springer.com/search?facet-author=%22Edgar+Santos-Fern%C3%A1ndez%22
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Figure 2.4: Expected response of linear and elliptical approximation (a) under MPM 
and (b) under unmeasured disturbance. 

2.3 Industrial issues of MPC applications 

Although predictive controllers rely on a solid theoretical foundation, most of the 
industrial application and commercial use MPCs use their own control policy (see Holkar 
& Waghmare, 2010; Qin & Badgwell, 2003). This means that they use different 
combinations of operational pratices, algorithms and variable considerations. MPC 
assessment techniques must be designed to manage this diversity of control policies. 
However, it is not simple because the mathematical formulation of the MPC is different 
for each case and most methods require adaptations in order to incorporate it into the 
assessment procedure.  

The first adversity faced in MPC performance assessment is with regards to the 
process model. There are several model types used by the commercial controllers, which 
can be linear or non-linear, with empirical and phenomenological basis. Among the linear 
type, for example, it is common to formulate the model using transfer functions, step 
response, autoregressive models, impulse response, and state space. However, several 
MPC assessment techniques rely only on the analysis of transfer functions or state space 
models, so its application to other kinds of models will depend on some model 
conversion, which may corrupt the quality of analysis.  

Another common industrial practice is the simplified real-time optimization layer. This 
structure has the objective of calculating the best operational region based in a steady 
state simulation, taking into consideration economic aspects and operational process 
constraints. Thus, the process model available should perform accordingly, both at 
controller frequency and in steady-state to complete the optimization layer (Campos et 
al., 2013). Most of model evaluation techniques consider the modeling problems under a 
unified concept and do not take into account any aspect of the controller tuning, 
structure and objectives. 

Another industrial practice that restricts the application of MPC assessment methods 
is the use of soft constraints, where the number of monitored variables is usually larger 
than the manipulated ones. Moreover, in some cases, the same controller has separate 
politics for different variables (setpoints and soft constraints). Thus, depending on the CVs 
prediction, the control problem can vary (change the set of controlled and manipulated 
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variable), in square or non-square scenarios. Most MPC assessment techniques use the 
setpoints as reference; however, for this kind of controller, there is no setpoint associated 
with the controller objective. 

Additionally, there is a series of factors associated with plant operation, such as 
unmeasured disturbances (i.e., non-modeled deterministic variables), discontinuous 
disturbances and nonlinearities that hinder the development of a tool for monitoring and 
diagnosis.   

2.4 Case Studies  

2.4.1 Shell Benchmark Process 

System Description 

This Process was proposed by Prett & Morari (1987) and is composed by a heavy oil 
fractionator, as represented in Figure 2.5. The main feature of this process is the high 
interaction among the variables as well as large time delays. 

 

Figure 2.5: Schematic Representation of Shell Heavy Oil Fractionator 
 (Maciejowski, 2002). 

The control system is originally composed by 7 measured outputs, 4 manipulated 
inputs and 2 disturbances.  In this case study the problem is reduced to a 3 X 3 structure 
and a linear MPC controller was configured in MatlabTM/SimulinkTM. The objective is to 
control the top composition (  ), the side composition (  ) and the bottom reflux 
temperature (  ) by the manipulation of the top draw (  ), side draw (  ) and bottom 
reflux duty (  ). The process model (  ) and the MPC cost function are: 



Capítulo 2 – Perspectives and Challenges in Performance Assessment of Model Predictive Control 23 

   

[
 
 
 
 
 

    

     
     

    

     
     

    

     
     

    

     
     

    

     
     

   

     
     

    

     
     

    

     
     

   

     
     

]
 
 
 
 
 

 (2.25) 

  

   
    |            |  

∑ {∑[|        |   |
 
   

]

  

   

 ∑[ |        |           |   |
 

   
]

  

   

}

    

   

 

      
    

   
       

   

     

      
       

       
   

 

(2.26) 

where    is the horizon control,    is the prediction horizon,    is the number of 
available MVs,    is the number of CVs,    is the setpoint weighting of outputs,     is 

the move suppression,      
   ,      

   , ,      
   ,      

    are the upper and lower constraint of 
CVs and MVs, respectively. The tuning parameters are presented in Table 2.2. 

Table 2.2: MPC original tuning parameters: Shell Benchmark Problem 

Sample Time 2min 

Prediction Horizon (  ) 20 

Control Horizon (  ) 4 

Move Suppression (   )                    

CV Weight   
 
)                    

CV upper limit (     
   )       

          
   =      

   =5 

CV lower limit (     
   )       

          
   =      

   =-5 

MV upper limit (     
   )       

          
   =      

   =20 

MV lower limit (     
   )       

          
   =      

   =-20 

To compare the methods discussed in this paper, some inconsistencies were 
generated, including model-plant mismatch, unmeasured disturbance and changing 
tuning parameters (see Table 2.3). These inconsistencies were applied in the system and 
the simulations were performed, considering variations in the setpoints, according to 
Figure 2.7.   
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Table 2.3: Inconsistency Configuration: Shell Benchmark Problem 

 Type Value 

M0 None --- 

M1 
Model-Plant Mismatch in    versus 

   
     

    

     
      

M2 Unmeasured disturbance in    According to Figure 2.6 

M3 Bad Tuning in            

 

 

Figure 2.6: Unmeasured Disturbance in y2: Shell Benchmark Problem 

 

Figure 2.7: Step changes in each controlled variable setpoint:  Shell Benchmark 
Problem 

Results and discussions 

The methods of Sun et al. (2013) Badwe et al. (2009) and Yu & Qin (2008a and b) as 
well the proposed method are applied in the generated data. Results are presented in 
Tables Table 2.4 and Table 2.5 and Figures Figure 2.8, Figure 2.9 and Figure 2.10. 
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Figure 2.8:  Results of Sun et al. (2013) method: Shell Benchmark Problem 

 

  
(a) 

 
(b) 

  
(c) (d) 

Figure 2.9: Results of Badwe et al. (2009) method: Partial correlation plots of Shell 
Benchmark Problem for   (a),   (b),   (c) and   (d) 
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Table 2.4: Results of Yu & Qin (2008a and b) method: Shell Benchmark Problem 

    
Worse 

Performance 
Better 

Performance 

M0 1.00 -- -- 

M1 4.76    -- 

M2 2.14    -- 

M3 2.83    -- 

 

 

Figure 2.10: Results of proposed method:      for the Shell Benchmark Problem 
 

Table 2.5:  Results of proposed method: Kurtosis and Skewness indicators for Shell 
Benchmark Problem 

 
Ellipsoid Inclination 

(degrees) 
Ellipsoid Diameter 

Ratio 
Linear Regression 

angle (degrees) 
|   (  )| 

 Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness 

M1 27.17 64.00 2.22 1.55 20.14 11.99 3.42 0.26 

M2 1.10 0.04 6.14 2.68 0.62 0.67 5.38 0.85 

 

The Sun et al. (2013) method aims to detect modeling problems in the MPC. Figure 
2.8 shows that the method is capable to ensure the correct diagnosis about the system, 
since it indicate     values smaller than one only when exist a model-plant mismatch or 
an unmeasured disturbance (   and   ).    

The Yu & Qin (2008a and b) method detects changes in the general variability of the 
system and identify the CVs responsible for it. The diagnosis is independent of the source 
(disturbance, tuning or MPM). In this case study the evaluations were performed with a 
confidence level of 95% and using    as benchmark data. Table 2.4 shows that the 
method ensures the correct diagnosis in all cases, indicating an increase in    and 
associating with the correct variable responsible. For example, in    the method indicate 
   as responsible CV and the inconsistency in this case is performed in    . 
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The Badwe et al. (2009) method detects model-plant mismatch, as presented in 
Figure 2.9. The high partial correlation in         indicates for case    indicates the 
presence of MPM in this model. For all other cases (  ,    and   ) the method 
indicates low partial correlation because they are not corrupted by a model-plant 
mismatch. 

Results of Figure 2.10 show that the proposed method has correctly detected 
irregularities in the models and it has identified the variable affected by the mismatch in 
all cases. In    there is an indication of problems in    and for    there is an indication 
of problems in   . The other cases (   and   ) have      near to one, because these 
cases do not have any modeling problem. For the cases with modeling problems (   and 
  ) the kurtosis and skewness indicators can be successfully applied to distinguish 
between model-plant mismatch and unmeasured disturbance, as presented in Table 2.5, 
since the angles (of linear approximation and ellipse) are smaller than 1.5o presence of  
unmeasured disturbance and remains between 10º and 65º when a MPM is present. The 
ellipsoid diameter ratios are different from one, indicating the non-circle format of ellipse 
and validating the interpretation of the angles.  

Thus, for this case study the methods of literature as well the proposed method, were 
adequate, generating results consistent with their assumptions. 

2.4.2 The quadruple tank process 

Process description 

This system is composed of four cylindrical tanks that have been interconnected 
according to the diagram in Figure 2.11. Water is pumped into the tanks through the 
pumps with voltages    and   . The flow of each pump is split using valves, whose 
openings are equal to    and   , respectively. More details can be found in Johanson 
(2000).  

 

Figure 2.11:  Schematic Representation of the Quadruple-Tank Process 

The mass balances around each tank are: 

   

  
   

   

  

    
      

   

  

    
      

    

  
   (2.27) 
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where    is the level of each tank,      and      are the pumps´ output flow rate,    is 
the cross-section area of each tank,     is the discharge coefficient of each tank and      
is the discharge exponent. Table 2.6 provides the model parameter values. 

Table 2.6: Original Parameter Values: The Quadruple-Tank Process 

                            

                       ⁄  

                       ⁄  

               0.5 

                       0.5 

                       0.5 

                       0.5 

MPC configuration 

For the process described above, we set a linear MPC controller in 
MatlabTM/SimulinkTM with controlled variables being the four levels (  ,       and   ) 
and  manipulated variables being the pump voltages (   and   ) and valve openings (   
and   ).  

The linear plant model used by the MPC was obtained from the linearization of the 
nonlinear model at the operating point, defined by the manipulated variables    
                    , and         and is given by: 
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 (2.31) 

The MPC used has a simple real-time optimization layer, which established the 
optimal operating point according to economic objectives. The scheme presented by 
Figure 2.12 illustrates its architecture.  
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Figure 2.12: Architecture of MPC controller with optimizer (adapted from Campos et 
al., 2013) 

The cost function of the simple real-time optimization is defined by: 
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(2.32) 

where    are the manipulated variables costs,       are the setpoints (corresponding to 

the closed-loop steady-state prediction of CVs),      
    and      

    are the soft constraints of 

controlled variables,      
    

 and      
    

 are the constraints of MVs and      are the MVs 

targets.  

The optimal values calculated from the optimizer (     and      ) are transferred to 

the MPC optimization problem formulated as follows:  
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(2.33) 

where    is the horizon control,    is the prediction horizon,    is the number of 
available MVs,    is the target weighting of MVs,     is the move suppression,    is the 
slack variable to soft the constraints of CV,     is the penalization of CV soft constraint 

violation,      
    and      

    are the hard constraints of CVs. 

It is important to emphasize that, as shown in (2.33), this MPC controller is configured 
in terms of manipulated variables, so that the CVs are penalized only in cases of soft 
constraint violations (given that, when there is no soft constraint violation,     ). This 
allows operation in a scenario where the number of controlled variables is greater than 
the number of manipulated variables, as discussed in Section 2.3. The tuning parameters 
for the controller are defined in Table 2.7. 
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Table 2.7: MPC original tuning parameters: The Quadruple-Tank Process 

Sample Time 10s 

Prediction Horizon  48 

Control Horizon  12 

MV Cost   
  

  
  

     ;  
  

  
  

     

MV Target Weight                     

Move Suppression                         

Penalization of the constraints violation                            

Scenarios Configuration  

Different scenarios are defined for simulating the system described above. They are 
configured by the manipulation of CVs and MVs constraints.  

 Scenario 1:  4x4 System 

This scenario illustrates a square system, i.e., the number of controlled variable and 
available manipulated variable is equal. In terms of control, this is the simplest situation, 
since there are enough degrees of freedom to keep all controlled variables in the optimal 
condition. The direction provided by the optimizer (equation 2.32) results in keeping the 
levels at their maximum limits. The behavior of this system is similar to a classical fixed 
setpoint case. Figure 2.13 shows the results when there is no modeling error. 

  
Figure 2.13: Expected behavior in Scenario 1: The Quadruple-Tank Process 

 Scenario 2:    and    saturated at the upper limit 

This scenario is created by reducing the upper limits of    and    and the soft 
constraint of    and    to a lower level, as shown in Figure 2.14. In this case, the valve 
openings remain saturated most of the time, which means that the system has only two 
manipulated variables (   and     available to control the four levels. The result is that 
two CVs are maintained at the optimal soft constraint and the others remain within the 
soft constraint. 
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Figure 2.14: Expected behavior of Scenario 2: The Quadruple-Tank Process 

Controller Inconsistencies Configuration 

To compare the methods, several controller inconsistencies are performed, including 
model-plant mismatch, unmeasured disturbance and inappropriate tuning parameters, as 
presented in Table 2.8. These inconsistencies were applied in the system and the 
simulation was performed considering each scenario described above.  

Table 2.8: Inconsistencies Configuration: The Quadruple-Tank Process 

 Type Value 

M0 None --- 

M1 Model-Plant Mismatch          

M2 Model-Plant Mismatch         

M3 Model-Plant Mismatch          

M4 Unmeasured Disturbance      
 

     
 

M5 Unmeasured Disturbance      
 

    
 

M6 Model-Plant Mismatch          

M7 Model-Plant Mismatch           

M8 Tuning Modification                    

M9 Tuning Modification                         

 

Results and discussions 

 Sun et al. (2013) method 

The main objective of this method is to identify problems in the MPC model. The 
indicator proposed by the author is based in the weight of CVs (see equation 2.4). 
However, the MPC configured in this case study does not include a term for controlled 
variable penalization (considering that they are inside the range) in the cost function. 
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Therefore, in this case, the direct application of the indicator is not useful. An alternative 
is to evaluate the     for each CV, individually. Figure 2.15 and Figure 2.16 illustrate the 
results.   

 

Figure 2.15:  Results of Sun et al. (2013) method for Scenario 1 under model 
inconsistencies -     of controlled variables: The Quadruple-Tank Process 

 

Figure 2.16: Resuls of Sun et al. (2013) method for Scenario 2 under model 
inconsistences -      of controlled variables: The Quadruple-Tank Process 

According to the method, the model performs better when the     is near 1. An 
empirical tolerance limit of 0.85 was considered (dash line in figures), which means that 
    greater or equal to 0.85 does not indicate significant model-plant mismatch. Values 
below this tolerance are an indicator of poor model quality. Figure 2.15 shows that, for 
Scenario 1, the method correctly captures model mismatches or non-measured 
disturbance presence. For example, from phenomenological model (2.27) to (2.30) a 
mismatch on     (M1) only affects   , whereas a mismatch in     (M3) will affect    
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and   . This conclusion is correctly captured by the method for scenario 1. Similarly, a 
tuning mismatch does not lead to any indication, as shown in cases M8 and M9.  

However, when the CVs are inside the range, the method does not perform as 
expected, according to Figure 2.16. This occurs because, in this case, the calculated 
setpoint (2.32) is just a result of the optimal control actions, not being strictly associated 
with the control objective (2.33). In practical terms, this means that the CV moves are not 
a direct consequence of setpoint changes, as estimated by the HOARX model suggested 
for the method (2.1).  

 Yu & Qin (2008) method 

The main objective of the method is to evaluate the general variability of the 
controlled variables and identify those responsible for changes in performance. The 
evaluations were performed using a confidence level of 95%. The benchmark data are 
from Scenario 1 without mismatch (M0), since it is the dataset closest to the design case, 
where the system has enough levels of freedom to optimize all CVs. Table 2.9 summarizes 
the results obtained. 

Table 2.9: Results of Yu & Qin method: The Quadruple-Tank Process 

 Scenario 1 Scenario 2 

    
Worse 

Performance 
Better 

Performance 
   

Worse 
Performance 

Better 
Performance 

M0 1.00 -- -- 0.08             

M1 4.90          -- 0.042       -- 

M2 9.85    -- 2.74          -- 

M3 4.3          0.22          -- 

M4 473.5             -- 5.8e3          -- 

M5 178.7          -- 0.83             

M6 2.04          0.16          

M7 1.4 -- -- 0.037          

M8 4.12    -- 0.29       -- 

M9 1.52          0.0068             

 

Table 2.9 shows that, for Scenario 1 the model-plant mismatch or non-measured 
disturbance weaken the system´s performance in all cases, since    is bigger than 1. 
However, the variable associated with performance decline is not necessarily the same 
affected by the mismatch. This is to be expected given the mismatch impact on the MVs 
and the fact that this effect is captured for all CVs.  
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For Scenario 2, the method indicates improved performance of some CVs in all cases, 
except M4. This happens because, in the benchmark data, the setpoints are constant and 
remain in the optimal limit for the most part (Figure 2.13). However, when the CVs are 
inside the range (   and    in Figure 2.14), the setpoints (from the optimizer) capture the 
noise effect and the measured CV is closer to its value. In this case, the method provides 
an erroneous indication of improved performance. Thus, the MPC analysis using the Yu & 
Qin (2008a and b) method is inconclusive when the CVs are operating by range, since the 
method is setpoint dependent. 

 Badwe et al. (2009) method 

The main objective of this method is to identify the model channels (i.e. pair MV 
versus CV) that have significant model-plant mismatch. The method was applied in the 
generated data for each scenario and model inconsistences. It is important to emphasize 
that the saturated manipulated variables (Scenario 2) are removed of the evaluation 
procedure, to ensure the quality of OE models identification. This method is capable of 
identifying the model mismatches independent of the scenario evaluated. This result is 
consistent, since this method essentially evaluates the expected response of CVs given 
the MVs values, not relying on any aspect of controller objectives. Figure 2.17 exemplifies 
the results from Scenario 2. When a mismatch in      occurs (M6), models directly 
associated with    and    indicate a problem. When a tuning mismatch occurs (M9), the 
model produces some indicative of high partial correlation, which means that there is no 
model-plant mismatch in this case. 

  

(a) (b) 

Figure 2.17:   Results of Badwe et al. (2009) method: Partial correlation plot of (a) 
Scenario 2 – M6 and (b) Scenario 2 – M9: The Quadruple-Tank Process 

Although the success of this method is independent of the control strategy used, the 
dynamic partial correlation analysis is not easily applied in practical terms. The first issue 
presented by the author is the need for enough MV and CV moves for the estimation of 
consistent OE models. This requires an extensive investigation of historical data to find 
operational conditions that satisfy this requirement. Another issue, presented by Carlsson 

(2010), is that many parameters need to be carefully chosen. For example, Figure 2.18 
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illustrates OE models estimated for Scenario 1 – M1, considering different orders. It is 
possible to see the poor OE model quality if a wrong order model is selected, which make 
automatic utilization of this method difficult. 

 

Figure 2.18: OE models estimated for Scenario 1 – M1 considering different orders: 
The Quadruple-Tank Process 

 Proposed methods 

The main objective of the method is to identify the controlled variables that have 
significant impact of modeling errors, using the nominal simulation as reference, and 
detect if the source is a model-plant mismatch or an unmeasured disturbance. The 
indicator used is the variance of outputs (2.20). The skewness and kurtosis indicator was 
performed for the CVs that suffered the greatest impact in each case.  Figures Figure 2.19 
and Figure 2.20 and Tables Table 2.10 and Table 2.11 summarize the results.  

 

Figure 2.19:      for Scenario 1: The Quadruple-Tank Process 
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Figure 2.20:       for Scenario 2: The Quadruple-Tank Process 

 

 Table 2.10: Kurtosis and Skewness indicators for Scenario 1: The Quadruple-Tank 
Process 

 
Ellipsoid Inclination 

(degrees) 
Ellipsoid Diameter 

Ratio 
Linear Regression 

angle (degrees) 
|   (  )| 

 Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness 

M1 30.90 37.43 1.78 2.31 20.25 29.26 1.48 0.79 

M2 32.45 37.72 1.47 1.87 16.16 25.36 2.16 1.20 

M3 35.49 40.74 2.05 2.78 25.90 34.39 1.03 0.52 

M4 12.59 15.33 2.37 2.99 10.32 13.58 1.91 1.15 

M5 2.44 4.78 1.78 1.84 1.67 3.3768 5.91 4.45 

M6 35.89 53.59 1.31 1.54 15.59 23.89 2.72 1.87 

M7 38.72 37.56 1.65 1.65 22.38 21.95 1.57 1.57 
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Table 2.11: Kurtosis and Skewness indicators for Scenario 2: The Quadruple-Tank 
Process 

 
Ellipsoid Inclination 

(degrees) 
Ellipsoid Diameter 

Ratio 
Linear Regression 

angle(degrees) 
|   (  )| 

 Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness Skewness Kurtosis 

M1 38.42 37.48 2.55 2.27 31.45 28.99 0.65 0.83 

M2 36.67 26.35 1.43 1.71 16.77 16.78 2.20 1.78 

M3 34.82 38.19 2.02 3.01 25.15 33.21 1.08 0.47 

M4 6.74 15.78 2.34 2.68 5.51 13.52 3.05 1.32 

M5 6.54 1.55 1.57 2.30 3.87 1.26 4.51 5.97 

M6 26.12 60.11 2.99 1.14 51.05 16.48 0.64 4.39 

M7 40.29 38.13 2.32 2.66 31.36 31.80 0.77 0.59 

 

Results of Figure 2.19 and Figure 2.20 show that, considering a      tolerance of ±0.1 
(due to noise), the system nonlinearity does not interfere significantly in MPC 
performance, since      is close to one for all variables. The method has correctly 
detected irregularities in the models and it has identified the variable affected by the 
mismatch in all cases. For example, in both scenarios, for M1 there is an indication of 
problems in   . This case corresponds to a mismatch in parameter    , which is 
associated to this level. In the presence of a tuning modification, the method does not 
indicate any variable affected, as expected.  

Table 2.10 and Table 2.11 demonstrate that the kurtosis and skewness indicators can 
be successfully applied to distinguish between model-plant mismatch and unmeasured 
disturbance. The linear regression and ellipsoids approximation approaches provide 
similar results, so that, in general, the angles (of straight and ellipse) remain between 15o 
and 55o in presence of model-plant mismatch and exceed these limits when the process is 
under an unmeasured disturbance. It is not simple to define a relation between the 
ellipsoid diameter ratio and the source of discrepancy problem if this index is analyzed 
separately as well with as |       |, however, combined with the angle investigation, a 
good estimation of data distribution is provided. Finally, to ensure reliable results, a good 
practice is also to investigate the skewness and kurtosis. They produce even better and 
conclusive results. Figure 2.21 and Figure 2.22 make evident the dependence relation of  
      and       in case of model-plant mismatch, since the peaks in the data occur at the 
same instant and have similar magnitude. However, this does not occur in presence of 
unmeasured disturbance. These figures also show the capacity of the proposed indicators 
to correctly indicate the kind of modeling problem considering the shape and inclination 
of ellipse and linear approximation. 
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Figure 2.21: Scenario 2 – M1:  (a) estimation of        , (b) estimation of       and (c) 

scattering of          vs.         : The Quadruple-Tank Process 

 

 

 
(c) 

(a) 
 

 
(b) 

Figure 2.22:  Scenario 2 – M5:  (a) estimation of        , (b) estimation of       and (c) 
scattering of          vs.          : The Quadruple-Tank Process 

2.5 Conclusions 

In this paper an overview concerning MPC performance assessment and diagnosis was 
accomplished. These techniques have been evaluated considering industrial premises, as 
proposed by Hugo (2002). Considering them, we selected the following methods: Sun et 
al. (2013) aim to point out the variables with strong impact of disturbances or model 
mismatch; Badwe et al. (2009) evaluate the model plant mismatch and isolate the 
channels that should be identified to improve the model quality; and the Yu & Qin (2008a 
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and b) method, that identifies the controlled variables that provide the major 
contributions to variability changes. 

These techniques have been applied in two case studies: The Shell benchmark process 
and The Quadruple-tank process. 

The Shell benchmark process is configured with a linear plant and MPC. The main 
objective of the controller is to maintain the controlled variables at their setpoints. A 
model-plant mismatch, an unmeasured disturbance and a bad tuning have been inserted 
to evaluate the methodologies. The results show that all methods presented in this paper 
were capable to ensure the correct diagnosis of the system in the evaluated cases.   

In the quadruple-tank plant a linear MPC is applied in the (nonlinear) process. The 
controlled variables are supervised using soft constraints instead of setpoints, a common 
scenario in industrial applications. Several mismatches have been inserted to evaluate the 
methodologies. The Sun et al. (2013) and (2008a and b) methods provide reliable results 
when the controller has enough degrees of freedom to achieve all desired values. 
However, when the controlled variables remain inside the soft constraints, these 
methods failed, because of the absence of a specific setpoint. The method proposed by 
Badwe et al. (2009) is insensitive to the control strategy, because it requires only input 
and output data. The main limitation is that it requires a rich dataset to ensure correct 
identifications. This requirement can restrict the industrial application. 

Since the MPC model is the most important source of controller degradation, we 
propose new a methodology for detecting modeling problems. This new approach allows 
evaluating the model-plant mismatch (MPM) impact specific to the actual controller 
performance, considering the output sensitivity function, which is a reasonable 
benchmark for MPC assessment. Moreover, its simplicity facilitates application in real 
plant data (online or offline), regardless of the control algorithm assumed. The proposed 
method was capable of indicating the impact of the modeling inconsistences in the 
system behavior, independent of the controller strategy used. 

Another key issue for the modeling quality assessment is to determine whether the 
cause of poor performance comes from a model-plant mismatch or an unmeasured 
disturbance. This paper proposed an approach to distinguish between these two sources 
of degradation. The main idea was to compare the estimated behavior of the system in 
the absence of model-plant mismatch with the estimated modeling error. The 
comparison was made considering the statistical distribution (Kurtosis and Skewness 
coefficients) along a moving window. The diagnosis procedure is based on a linear 
approximation and the confidence ellipse of the statistical distributions. The proposed 
approach could detect the source of the discrepancy for all analyzed scenarios, 
independent of controller configuration. 
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 A methodology for detecting Capítulo 3 –
model-plant mismatches affecting MPC 
performance 

 

Abstract5: The model quality for a model predictive control (MPC) is critical for the 
control loop performance. Thus, assessing the effect of model-plant mismatch (MPM) is 
fundamental for performance assessment and monitoring the MPC. This paper proposes 
a method for evaluating model quality based on the investigation of closed-loop data and 
the nominal output sensitivity function, which facilitates the assessment procedure for 
the actual closed-loop performances. The effectiveness of the proposed method is 
illustrated by a multivariable case study, considering linear and nonlinear plants. 

 

Keywords: Model Predictive Control, Model-Plant Mismatch, Model Quality, Control 
Performance Assessment 

 

 

 

 

                                                      

5 Aceito para publicação no periódico ”Industrial & Engineering Chemistry Research”. 
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3.1 Introduction 

MPC is the consensual solution when an advanced controller is necessary. This status 
is based on more than 20 years of its successful application in many fields (Qin & 
Badgwell, 2003). The complex behavior and multivariable nature of chemical plants justify 
MPC proliferation. In each execution cycle, these controllers are capable of estimating a 
sequence of control actions that directs the process towards ideal operational conditions. 
Further details of MPC characteristics are provided in Camacho & Bordons (2004), 
Maciejowski (2002) and Rawlings & Mayne (2009). The “heart” of these controllers is the 
plant model, whose predictions are used to optimize control actions, which allows it to 
operate close to optimal conditions.  

All processes are susceptible to external degradation factors that cause the plant to 
operate differently from that which is foreseen in the MPC design, such as sensors and 
equipment failure, variability of raw material, changes in product specifications and 
seasonal influence, reducing its profitability. As a consequence, assessing controller 
performance is essential to ensure controller longevity. Nonetheless, this remains a 
difficult task due to the processes’ multi-factorial nature and complex structure. 
According to Sun et al.(2013), there are many sources of performance degradation, 
including tuning parameters (horizon length, weight parameters, time of control cycles, 
etc.), poor model quality, inappropriate constraint setup and the presence of unmeasured 
disturbances. 

Industrial and academic interest in MPC assessment grew significantly in the last 
decades, giving rise to several techniques. Some of these are based on the concept of 
Minimal Variance Control (MVC) and/or its Linear Quadratic Gaussian (LQG) extension. 
For example, Lee et al.(2008) suggests a method based on MVC, which evaluates the 
sensitivity of variables in order to verify their contribution to the economic performance 
of the controller. Harrison & Qin (2009) suggest a minimal variance map to evaluate the 
effect of constraints. Zhao et al. (2010) propose an economic benchmark based on LQG. 
Zhang et al. (2013) suggested a deconstruction of a MIMO system in MISO subsystem to 
evaluate each controlled variable independently. Some authors, however, disagree on 
using LQG/MVC for MPC assessment, as they deem it an unattainable model for most 
real-life applications (Jelali, 2013). Alternatively, some authors proposed techniques that 
use historical benchmarks, such as Schäfer & Cinar (2004), who evaluated plant data 
based on MPC cost function. Other methods (e.g., Alcala & Qin, 2009 and 2011; 
AlGhazzawi & Lennox, 2009; Tian et al., 2011; Zhang & Shaoyuan, 2006) are based on the 
construction of PCA/PLS models to identify sources of controller degradation.  

A significant number of methods focus exclusively on investigating the model’s 
quality, given that it is the neuralgic component of MPC. Such is the case in Conner and 
Seborg (2005), who use the Akaike Information Criteria to asess the need for re-
identification. Badwe et al. (2009) evaluated the partial correlation between input and 
output residuals to detect model discrepancies. Sun et al. (2013) measured model 
qualities based on the deconstruction of model residuals onto an orthogonal basis. Jiang 
et al. (2012) proposed an indicator, which compares residuals under different levels of 
prediction. Most of the available methods for model quality assessment focus on 
investigating the predictive capacity of the models in an open-loop approach. However, 
the model error effect on MPC performance is not only dependent on the mismatches, 
but also is function of the controller tuning and disturbances.  
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Badwe et al. (2010) incorporate this concept and propose the identification of the 
design plant behavior in closed-loop, also called design sensitivity (  ) to quantify the 
impact of model-plant mismatch in MPC performance. A brief description of this method 
is presented below. 

Consider the IMC structures presented in Figure 3.1, where   is the IMC controller,   
is the real process model,     is the identified process model,    are the stationary 
disturbances entering the loop,   are the model residual feedback and   are the 
controller inputs. The designed sensitivity (   ) supposes that the plant dynamics were 
exactly captured by the model (i.e.,       as illustrated in Figure 3.1, and is defined as: 

         (3.1) 

Badwe et al. (2010) suggest that the     should be identified by an Output-Error (OE) 
model using the measured plant outputs ( ), the setpoints (    ) and the predicted 
outputs ( ̂). Considering the achieved loop shown in Figure 3.1, the controller inputs ( ) 
are: 

          ̂ (3.2) 

So, the designed sensitivity model can be identified as follow: 

             (3.3) 

The outputs of the designed closed loop (Figure 3.1) are called designed outputs or 
nominal outputs (       

). They are defined as: 

       
                  (3.4) 

The authors suggest that        
 could be estimated through    and the process 

data. Therefore, it is necessary to identify another OE model to determine      where 
   is the model-plant mismatch (i.e.,        as following: 

    ̂       (3.5) 

The controller inputs ( ) presented in equation 3.2 can also be written as: 

                                   (3.6) 

Finally, solving for           in (3.6) and substituting the result in (3.4) the designed 
output (       

) can be calculated by: 

       
                                     (3.7) 
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Figure 3.1: The IMC structure for the achieved and designed control loop (adapted 
from Badwe et al., 2010) 

Although the method proposed by Badwe et al.,2010 can produce good results, it has 
limited application, as it is setpoint dependent, being inappropriate for MPCs that work 
with soft constraints, for example. Furthermore the method requires two data-based 
model identifications. In order to avoid these drawbacks, we propose a new approach 
that is independent of setpoint perturbation and the data-based identification procedure. 
This method relies on the nominal output sensitivity function for MPM evaluation. The 
next section describes our approach. 

3.2 The nominal sensitivity method for MPM 

Initially, suppose a multivariable feedback control system, as shown in Figure 3.2, with 
a MPC controller   and nominal model   , which represents the real plant  . The 
mismatch magnitude is   . The theoretical system without mismatch is shown in Figure 
3.2a, for which nominal closed loop outputs are         is the nominal complementary 
sensitivity function. The real system, in a scenario subject to mismatch, is shown in Figure 
3.2b, where      corresponds to the setpoints,   are the manipulated variables,   are the 
measured outputs,      are the simulated outputs of the nominal model perturbed by 
the actual control actions  , and   is the complementary sensitivity function. 

 

Figure 3.2: Schematic diagram of closed-loop system without model-plant mismatch 
(a) and with model-plant mismatch (b) 

Merely investigating simulation residuals is not an appropriate metric to assess MPC 
model quality due to the feedback effect, in that large residuals are not necessarily an 
indicator of bad MPC model. A good model should represent the real system at the 
frequency in which the MPC works. For example, consider a typical unconstrained MPC 
cost function, given by:  
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 (3.8) 

Where    is the number of controller inputs,    is the number of controller outputs, 
   is the prediction horizon,    is the control horizon,    are the controller inputs 
changes,    is the weight of output   setpoint deviation and     is the move suppression 

of input on the variable  . If a small     and a large    are used MPC will work to lead the 

output variable to the setpoint with few but intense control actions. Similarly, if a large 
    and a small    are used  the MPC will work to lead the output variable to the 

setpoint with a large amount of small control actions. Thus, considering the corrective 
feedback effect and using the open loop dynamics as reference, two main different 
scenarios can be analyzed:  

- The faster the tuning: The controller is less sensitive to stationary model-plant 
mismatch, but it is very sensitive to mismatches in the initial model dynamics. 

- The slower the tuning: All dynamic models are relevant, but the sensitivity to 
mismatches is smaller, because the control actions are slower. 

The previous considerations make evident the fact that a model-plant mismatch limits 
the attainable performance of a given system and its effect will be dependent on the 
current controller configuration (Trierweiler et al., 1997). Thus, the nominal closed-loop 
performance must be considered in order to investigate the real effect of model-plant 
mismatch. Based on this idea, a method is proposed that uses closed-loop nominal 
sensitivity. The output sensitivity function concentrates information on controller tuning, 
providing the speed of response from each control loop. The following theorem is the 
kernel of the method. 

Theorem: The nominal closed loop output    (cf. Figure 3.2a) can be estimated by 

[          ]        [            ] (3.9) 

where       is the nominal output sensitivity transfer matrix,   are the measured 
outputs, and      are the simulated outputs of the nominal model perturbed by the 
actual control actions  , as illustrated in Figure 3.2b.  

Before proving the theorem, it is important to remember some simple and standard 
expressions between the different signals depicted in Figure 3.2, which can easily be 
found in process control textbooks (e.g., Skogestad and Postlethwaite,1996). To simplify 
the notation, the argument     associated with the transfer matrices and signals has been 
dropped. 

The closed-loop transfer matrix    , also referred to as complementary output 
sensitivity transfer matrix, is defined by:  

         (3.10) 

                        (3.11) 

The corresponding sensitivity transfer matrix is given by: 
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           (3.12) 

and the term “complementary” comes from the following expression: 

      (3.13) 

Analogously, for the nominal case (i.e., free from model-plant mismatch, as shown in 
Figure 3.2a):  

          (3.14) 

                             (3.15) 

             (3.16) 

        (3.17) 

The manipulated variables ( ) are: 

          (3.18) 

whereby the open-loop simulated outputs are given by: 

              (3.19) 

Proving the Theorem:  

To prove the theorem, we must substitute (3.10) and (3.19) in (3.9), which gives us: 

                   (3.20) 

Substituting   in (3.20) with (3.18), we arrive at: 

                        

                                     

                                   

 (3.21) 

Based on the matrix property called push-through rule (Skogestad and 
Postlethwaite,1996),                               and combining with equation 
3.15, the last equation can be rewritten as: 

                        

                                    
 

(3.22) 

Now, replacing   and    with (3.13) and (3.17), respectively, and using once more the 
definitions (3.10) and (3.14), finally, we arrive at: 

      [               ]      

                                                          
                                                              

            Q.E.D. (3.23) 
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The previous relation is derived from a loop free from disturbances. However, it can 
also apply to a more realistic case with external unknown perturbations. Figure 3.3 
illustrates a system with unmeasured disturbance, where   are sequences of independent 
random variables,    is the unknown disturbance model and    are the disturbance 
signals. The effect of a disturbance on outputs is similar to that of a model-plant 
mismatch.  

 

Figure 3.3: Schematic diagram of a closed-loop system with disturbance 

To distinguish between them, the nominal error     =       can be compared with 
the nominal outputs (  ).  When a process output is under a MPM,    will be dependent 
of the input movements, as well as   , resulting in a similar variation frequency. However, 
when the process output is under an unmeasured disturbance,    will be independent 
because the disturbances come from an external source. Nonetheless,    is still 
dependent of the input variables movements. This means that the frequency of variation 
of    and    are uncorrelated.  

Considering that real processes often have unmeasured disturbances and MPM acting 
simultaneously, the simple investigation of the correlation between the signals is not 
satisfactory. Thus, we propose the comparison between the statistical distributions of    
and    in order to capture the source of poor performance (MPM or disturbance). Then, 
the distributions are compared using a confidence ellipse scatter or a linear 
approximation. Figure 3.4 illustrates the expected result when a system is under MPM 
and unmeasured disturbance. More details of this approach will be explored in future 
work. 

 

Figure 3.4: Expected response of linear and elliptical approximation (a) under 
unmeasured disturbance and (b) under MPM 
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The information that must be known to apply the method proposed in this study are: 
the nominal process model (  ), which is the same as that which was configured in the 
controller, the input ( ) and output ( ) measured data and the sensitivity function (  ). 
This function can be obtained analytically from the nominal process model (  ) and 
controller model ( ), as shown in equation (3.16). However, given the complexity of MPC 
formulation, knowing the controller model ( ) is not a trivial task. In this case, it is simpler 
and more straightforward to obtain    from a simulation of the controller, considering no 
model-plant mismatch and a sufficiently excited closed loop data. Then, the closed-loop 
model is identified based on the simulated data. It is important to note that this 
procedure should only be repeated if the MPC tuning or nominal model has changed (see 
appendix A3). 

Given that    is an estimation of the output process when there is no model-plant 
mismatch or unmeasured disturbance, it can be considered a benchmark for controller-
model output response. The main advantage is that, unlike of the MVC/LQG, it is a more 
realistic reference of the process model. It is important to emphasize that the diagnosis 
using    pertains only to model quality or the presence of unmeasured disturbance, 
remaining unaffected by poor tuning. Furthermore, this benchmark allows any output 
performance indicators to be applied. The diagnosis flowchart is represented by Figure 
3.5, where    is the performance indicator for the measured data and     is the 
performance indicator for the estimated nominal data. 

 

Figure 3.5: Diagnosis procedure according to the proposed methodology 

As shown in Figure 3.5, the main idea of the procedure is to calculate the nominal 
output from the process information. Then, performance indicators for   and    are 
calculated and compared. A situation where    is worse than     means that the behavior 
of the real case is worse than the nominal case. Thus, there is a modeling problem 
impairing the controller. Similarly, if    is better than     , this means that the behavior of 
the real case is better than the nominal case. In this case, there is a modeling problem 
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improving the controller. Case    and     are similar, in that there is no modeling 
problem and the existence of undesirable behavior is a result of bad tuning. A useful 
indicator is the comparison of control error variances, as Badwe et al. (2010) suggested:  

     
           

              
 (3.24) 

Another possibility is the analysis of autocorrelation function (ACF) of control errors 
(i.e.,         and         . A high value of ACF means that the current control error is 
strongly correlated with past errors. The ACF curves are useful to analyze the effect of 
MPM in MPC performance indicating, for example, how these problems are affecting the 
MPC speed of response. In this case, the comparison of the decay rates of ACF( ) and 
ACF(  ) indicates whether the MPC is slower or faster than was designed. The ACF also 
can be used to identify oscillatory behavior in control loops (Huang & Shah, 1999). 

3.3 Case Study: The Quadruple-Tank Process 

3.3.1 Process Description 

The system (Johanson, 2000) is composed of four cylindrical tanks connected 
according to Figure 3.6. Water is pumped into the tanks through the pumps with voltages 
   and    . The flow from each pump is split through valves, with openings equal to    
and   , respectively. The external flows      and      enter tanks 1 and 2, respectively. 
Mass balances around each tank are shown in the equations (3.25 to 3.28) and Table 3.1 
provides the parameters used in this case study. 
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Figure 3.6: The Quadruple-Tank Process: Schematic diagram of the system 

Where    is the level of each tank,      and      are the pumps’ output flows,    is 
the cross-section area of each tank,     is the discharge coefficient of each tank and      
is the discharge exponent. 

Table 3.1: The Quadruple-Tank Process: Original Parameters 
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To illustrate the proposed approach, we simulated a MPC in Matlab/Simulink using 
the four levels as controlled variables (  ,       and   ), the pump voltages (   and   ) 
and valve openings (   and   ) as the manipulated variables.  

The linear plant model used was obtained from the linearization of the nonlinear 
model at the operating point, defined by manipulated variables            
             , and        , given by: 
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 (3.29) 

The controller was configured considering the cost function presented in equation 
3.30, where    ,         and     are the upper and lower constraints of controlled and 
manipulated variable, respectively. The tuning values, computed according to RPN 
methodology (Trierweiler & Farina, 2003), and the controller constraints are shown in 
Table 3.2. 
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Table 3.2: MPC controller tuning parameters and constraints 

Sample Time (  ) 10s 

Prediction Horizon (  ) 48 

Control Horizon (  ) 12 

Controlled Variable Weight ( )     =             = 10 

MV Lower Limits (   )        ,        ,        ,         

MV Upper Limits (   )      ;      ;     ;      

CV Lower Limits (   )     ;     ;     ;      

CV Upper Limits (   )      ;      ;      ;       

Move Suppression (  ) of Tuning A (fast)      =                = 0 

Move Suppression (  ) of Tuning B (slow)      =                = 50 

 

The analysis is divided into three parts. In the first, both plant and controller use linear 
models. In the second, plant and controller use linear models but constraints activation is 
included. In the third, a linear controller is used to control a nonlinear plant. 
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3.3.2 Linear Plant Model without Constraint Activation 

In this example, the controller and the plant are initially configured using the model 
presented in equation 3.29. There is no constraint activation of controlled and 
manipulated variables. Mismatches are added in the plant model       , which is the 
response of the output    to the input   . The first one (referred to as MPM 1) is a gain 
mismatch, but the initial dynamic behavior of the plant model is identical to the controller 
model; whereas the other (referred to as MPM 2) has a compatible steady state, but 
mismatches in dynamics. Figure 3.7 illustrates the responses for MPM1 and MPM2. For 
each mismatch, two MPC tuning modes were set (referred to as slow and fast), using the 
corresponding Move Suppression Parameters presented in Table 3.2. Figure 3.8 shows 
the complementary sensitivity function (  ) for these tunings, and exposes the difference 
between the speed of response for each tuning. 

 

Figure 3.7: Step Response of plant model   for the    vs.    pair: Linear plant without 
constraint activation case 

 

Figure 3.8: Step response of complementary output sensitivity function (  ) for fast 
tuning (a) and slow tuning (b):  Linear plant without constraint activation case 
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Combining the tunings and models, different scenarios are set according to Table 3.3. 
The controller is configured using the Original Model in all scenarios. Basis scenarios BF 
and BS correspond to situations without model-plant mismatches, with fast and slow 
tunings, respectively. Simulations are performed considering a series of step changes in 
the controlled variable setpoints, as illustrated in Figure 3.9. The external flows      and 
     are maintained equal to zero. No disturbance or noise was added. Figure 3.10 
shows the simulation residuals (i.e.,       ) for each scenario and Figure 3.11 compares 
the behavior of    with and without model-plant mismatch. The results are presented 
only for the variable    because this is the only output directly affected by the model-
plant mismatches. The remaining outputs do not have MPM, meaning that the plant 
model is perfect and the simulation residuals are equal to zero.  

Table 3.3: Scenarios Configuration: Linear plant without constraint activation case 

Scenario Name 
Controller 

Model 
Controller 

Tuning 
Plant Model 

Basis Slow (BS) Original Model Tuning B (slow) Original Model 

Basis Fast (BF) Original Model Tuning A (fast) Original Model 

Model 2 Slow (M1S) Original Model Tuning B (slow) MPM 1 

Model 2 Fast (M1F) Original Model Tuning A (fast) MPM 1 

Model 3 Slow (M2S) Original Model Tuning B (slow) MPM 2 

Model 3 Fast (M2F) Original Model Tuning A (fast) MPM 2 

 

 

Figure 3.9: changes in each controlled variable setpoint 
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Figure 3.10 : Simulation residual (      ) of    for the different scenarios: Linear 
plant without constraint activation case 

 

Figure 3.11: Comparative results of    for the different scenarios:  Linear plant 
without constraint activation case 

The joint analysis of Figures 3.10 and 3.11 elucidates the expectation that model-plant 
mismatches cause different effects depending on the tuning of the system even if the 
simulation residual is significant. In Figure 3.11, there is no significant effect from model-
plant mismatch in scenario M2S, because the controller tuning is slow and Model 2 has a 
steady behavior compatible with the Original Model, generating a result very similar to 
BS. Analogously, M1F and BF expectedly show similar results because Model 1 and the 
Original Model do not have dynamics mismatch. The model-plant mismatch in scenarios 
M2F causes an oscillatory behavior in   . In the scenario M1S, the model-plant mismatch 
makes the    response slightly slower.   
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The nominal output (    was estimated considering both Badwe et al.(2010) and our 
proposed approach. The models from the Badwe et al. (2010) method were identified 
using output-error (OE) parametric models and varying the orders between 3 and 7 and 
the best were used to generate   . The results are compared with the basis cases for each 
tuning, according to:  

      ∑ √(          
)
 
 

       

   

 (3.31) 

where   is the approach used for    estimation and        is the data from the 
corresponding basis case. Table 3.4 summarizes the comparison. 

Table 3.4: Comparison of      for the proposed and Badwe et al. (2010) methods: 
Linear plant without constraint activation case 

Scenario    
             

M1F 
Badwe et al. (2010) 6.20 6.64 4.52 4.81 

Proposed Method 0.75 0.06 0.27 0.60 

M1S 
Badwe et al. (2010) 55.43 45.82 121.02 198.14 

Proposed Method 1.34 0.92 0.72 0.52 

M2F 
Badwe et al. (2010) 30.6 7.62 6.33 8.05 

Proposed Method 1.30 0.18 0.41 1.12 

M2S 
Badwe et al. (2010) 19.7 64.8 5.8 3.8 

Proposed Method 0.24 0.13 0.14 0.13 

 

Table 3.4 shows that both approaches provide good approximations to      However, 
the proposed method has superior results when compared with Badwe et al. (2010), since 
it produces results that are closer to the basis cases (i.e., small     error). This is a result 
of the two identification steps in Badwe et al. (2010), where model quality is strongly 
dependent on data quality and input excitation. Table 3.5 substantiates this statement, 
since there are cases where the best model fit is less than 50%. The best model fit index 
(      ) is the indicator used to evaluate the quality of identified model and is defined as: 

          (  
‖      ‖

‖   ̅‖
) (3.32) 

where      is the output predicted by the OE model and  ̅ is the mean of the measured 
data. Furthermore, the best model order must be determined, which may be considered 
an additional drawback of the Badwe et al. (2010) method.  
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Table 3.5: Best OE models fit of Badwe et al. (2010) method: Linear plant without 
constraint activation case 

 Scenario             

     of    
estimation 

M1F 80.94 77.42 84.5 83.3 

M2F 41.2 79.2 84.3 78.16 

M1S 99.9 99.8 99.9 99.5 

M2S 99.8 99.9 99.9 99.9 

     of     
estimation 

M1F 99.6 67.9 68.4 68.3 

M2F 77.1 82.0 64.9 58.1 

M1S 99.9 81.35 75.5 82.4 

M2S 99.8 59.6 36.7 46.1 

 

The Variance Index (equation 3.24) and ACF curves are calculated considering the     
estimated by the proposed approach and for the Badwe et al. (2010) method. Results are 
shown in Table 3.6 and Figure 3.12. 

Table 3.6: Relative Variance Index (      : Linear Plant without constraint activation 
case 

 Proposed Method Badwe et al. (2010) 

                         

M1F 0.99 1.00 1.00 1.00 1.03 0.95 1.03 1.04 

M1S 1.14 1.00 1.00 1.02 1.29 0.99 0.89 1.08 

M2F 3.26 1.00 1.00 1.00 0.13 0.82 0.41 0.85 

M2S 1.04 0.99 0.99 1.00 0.98 0.93 1.00 0.98 
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Figure 3.12: Comparative ACF of         ,            estimated by the proposed 
method and         ) estimated by the Badwe et al. (2010) method: Linear plant 

without constraint activation case 

The result shows that the proposed method was capable of detecting the real effect 
of model-plant mismatch affecting in the system. According to Table 3.6, the      of    is 
equal to 1.14 and 3.26 in the M1S and M2F, respectively, indicating that there is MPM 
increasing the variance of this output. For all the others variables and scenarios, 
the       is close to 1. The ACF (Figure 3.12) of    in M2F have an oscillatory behavior for 
        , which does not occur in           , denoting that    is oscillating due to 
MPM. Similarly, in M1S the decay of          is slower than the decay of           , 
indicating that the MPM is affecting the speed of MPC. These results are compatible with 
the comparison with the basis cases, presented in Figure 3.11. The proposed method has 
superior results when compared with Badwe et al.(2010), which provides some 
misleading results of      and ACF. 

3.3.3 Linear Plant Model with Constraint Activation 

In this scenario, the system is configured using the model shown in equation 3.29. The 
controller was tuned according to the slow tuning (Tuning B) of Table 3.2, except for 
   upper limit (    ), which is set to     , in this analysis. A model-plant mismatch 
(called MPM3) is added in the plant model    vs.   , as illustrated in Figure 3.13. 
Simulations are performed considering the same step changes in setpoints used in the 
previous case study (Figure 3.9). Due to this MPM, the constraints of    remain active in 
some instances, as shown in Figure 3.14.  
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Figure 3.13: Step response of the plant model   for the pair    vs.    : Linear plant 
with constraint activation case 

 

Figure 3.14: Behavior of   : Linear plant with constraint activation case 

As shown in Figure 3.14, a saturation of    occurs over part of the time. Considering 
that the MPC is a linear time varying controller, when a variable becomes saturated the 
configuration of controller changes. In this case, the sensitivity function (    compatible 
with the current local linearity must be used. Figure 3.15 presents the    obtained with 
saturated   . 

The nominal output (    was obtained through the proposed approach, considering 
the following: 

-  Assumption A: Using only the    for inactive    constraint case   (Figure 3.8b) 

-  Assumption B: Using only the    for active    constraint case   (Figure 3.15) 

-  Assumption C: Analyzing the inputs and using the compatible    (Figure 3.8b or 
Figure 3.15, depending on    condition) 
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Figure 3.15: Step response of complementary output sensitivity function (  ):  Linear 
plant with constraint activation case. 

The OE models of the Badwe et al. (2010) method were identified by varying the 
orders between 3 and 7 and the best were used to generate the   . The results were 
compared with the basis cases for each tuning, according to equation 3.31. Table 3.7 
summarizes the comparison. The Variance Index (equation 3.24) is also calculated 
considering all approaches of   . The results are shown in Table 3.8. The ACF curves are 
performed for the Badwe et al. (2010) method and for the proposed approach 
considering the Assumption C, according to Figure 3.16. 

Table 3.7: Comparison of    : Linear plant with constraint activation case. 

   
             

Badwe et al. (2010) 69.05 8.88 96.27 353.09 

Proposed Method: 
Assumption A 

50.74 7.94 71.53 56.36 

Proposed Method: 
Assumption B 

17.11 4.72 21.17 17.58 

Proposed Method: 
Assumption C 

3.85 2.70 5.13 4.50 
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Table 3.8: Relative Variance Index (    ) : Linear plant with constraint activation case 

   
             

Badwe et al. (2010) 1.89 0.98 1.12 0.31 

Proposed Method: 
Assumption A 

1.83 0.98 1.08 0.97 

Proposed Method: 
Assumption B 

0.80 0.99 0.16 0.54 

Proposed Method: 
Assumption C 

2.27 0.98 0.94 1.20 

Basis Case 2.21 0.97 0.94 1.28 

 

 

Figure 3.16: Comparative ACF of         ,            estimated from Assumption 
C and         ) estimated by the Badwe et al. (2010) method: Linear plant with 

constraint activation case 

The similar results between Assumption C and the Basis Case presented in Tables 3.7 
and 3.8 are evidence that the proposed method is capable of correctly detecting the 
effect of MPM even when a change in the control structure of MPC occurs (saturation 
of   , in this case). The comparison between ACF        ) and ACF         in Figure 
3.16 makes evident the fact that the model-plant mismatch affects the speed of response 
of    . The other outputs are also affected by the mismatch due to the interaction 
between the variables, but its effect is smaller. The method presents superior results 
when compared with that of Badwe et al. (2010), since in this case, the     and      are 
further from the basis case.  

Results also show that, for this case study, the use of the compatible sensitivity 
function was fundamental for the success of the method (see Assumption A and B in 
Tables 3.7 and 3.8). However, it should be noted that the estimation of    is quite a 
simple procedure, relying only on a closed-loop simulation.  

3.3.4 Nonlinear Phenomenological Plant Model 

In this case study, the plant model used was the dynamic phenomenological version, 
described in equations 3.25 to 3.28. Scenarios containing mismatches were generated by 
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the variation of model parameters in the plant model and the addition of unmeasured 
disturbance (Table 3.9). The datasets for model assessments were generated inserting 
step changes on the controlled variable setpoints. A white noise with magnitude 2% was 
added on measurements. The proposed and Badwe et al. (2010) methods were 
confronted using    Variance Index (equation 3.24) and ACF curves. The results are 
summarized on Table 3.10 and Figure 3.17. 

Table 3.9: Scenarios configuration: Non-linear plant case 

Mistake in 
the plant 

(MP) 
Parameter Value 

Variables affected by 
the MP (according to 

equations 3.25 to 
3.28) 

0 -- -- --- 

1                     

2                     and    

3               

4             and    

5 
Unmeasured disturbance 

in    

 

     
    and    

6 
Unmeasured disturbance 

in    

 

    
    

7            and    

8              
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Table 3.10: Relative Variance Index (      : Non-linear plant case 

 Proposed Method Badwe et al. (2010) 

MP                         

0 0.96 1.02 1.15 1.14 1.11 0.85 1.12 1.18 

1 1.33 0.98 1.18 0.97 1.45 1.17 1.04 0.78 

2 1.84 1.01 1.6 1.06 2.11 0.44 1.36 1.19 

3 1.07 4.49 1.17 1.19 0.96 4.68 1.83 1.27 

4 0.98 0.97 1.15 1.24 0.99 1.03 1.00 1.32 

5 0.96 1.02 1.15 1.74 1.35 1.13 1.25 2.75 

6 0.99 7.42 1.13 1.19 1.05 1.15 0.01 0.82 

7 1.63 0.94 1.51 1.11 1.82 1.01 1.66 1.14 

8 1.15 1.16 1.19 1.18 1.46 0.91 1.10 1.27 

 

The results from Table 3.10 and Figure 3.17 show that, considering a       tolerance 
of ±0.2 (due to noise presence) the system nonlinearity does not interfere significantly in 
MPC performance, since      is close to one and the ACF of        and         are 
similar in scenario MP0. The Badwe et al. (2010) method provided a misleading indication 
in over 60% of the cases. For example, in MP6, the      and ACF suggest a modeling 
problem in    despite the fact that this variable is not mismatched in these scenarios. The 
proposed method has correctly detected abnormalities in the models and has identified 
the variable affected by the mismatch in all scenarios. For example, in scenario MP2, 
there is an indication of problems in    and   . This scenario corresponds to a mismatch 
in parameter    , which is associated to these levels. The method also detected the 
effect of unmeasured disturbance, although it could not be distinguished among the 
causes of the problem according to results from scenarios MP5 and MP6. It is important 
to emphasize that, in this case, the nonlinearity does not significantly affect controller 
performance. However, in cases when the plant is strongly nonlinear and linear MPC is 
used, the method will indicate the presence of a MPM.  
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Figure 3.17: Comparative ACF of          ,             estimated by the proposed 
method and         )  estimated by Badwe et al. (2010) method: Non-linear plant case 

 

3.3.5 Linear Plant Model with MPC using soft constraints 

A significant part of industrial MPC applications does not have enough degrees of 
freedom to control all the outputs. It means that the number of manipulated variables is 
usually smaller than the number of controlled variables and it is not possible to maintain 
all of them in a fixed setpoint. The alternative is to control the outputs by range, were the 
MPC works to maintain all the controlled variables inside a band, called soft constraint 
(Campos et al., 2013). This case study considers this kind of control structure. The 
controller was configured considering the cost function presented in equation 3.33, were 
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 and    
    

 are the upper and lower soft constraints of controlled variables,    is the 

slack variable to soft the constraints of CV and   is the penalization of soft constraint 
violation. The tuning parameters and the controller constraints are shown in Table 3.11. 
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(3.33) 

 

Table 3.11: MPC using soft constraints tuning parameters and constraints 

Sample Time (  ) 10s 

Prediction Horizon (  ) 48 

Control Horizon (  ) 12 

Penalization of Soft Constraint 

Violation ( ) 

    =             = 120 

Move Suppression (  )      =                   = 350 

MV Lower Limits (   )        ;        ;        ;         

MV Upper Limits (   )      ;      ;     ;      

CV Lower Limits (   )     ;     ;     ;      

CV Upper Limits (   )      ;      ;      ;       

Upper Soft Constraints (   
    

)      ;      ;       ;        

Upper Soft Constraints (   
    

)      ;      ;       ;        

 

Simulations are performed considering step changes in the external flows      
and     , according to Figure 3.18. These perturbations make the system violate the soft 
constraints and the MPC acts to bring the variable back to the desired range, as illustrated 
in Figure 3.19. 
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Figure 3.18: Step changes in the external flows: Linear plant model whit MPC with soft 
constraints 

 

Figure 3.19:  Expected behavior of outputs: Linear plant model whit MPC with soft 
constraints 

Since this controller does not have setpoint, the complementary sensitivity function is 
defined in terms of the soft constraints violation. Figure 3.20 shows    for this case. It is 
important to emphasize that    is valid only when the variables are violating the soft 
constraints. When the variable is inside the range, there is no feedback effect of 
controller, so all the simulation error is conserved (     

    and the effect on the other 

outputs is null (     
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Figure 3.20: Step Response of Complementary Output Sensitivity Function (  ):  Linear 
plant model with MPC using soft constraints 

Scenarios containing mismatches were generated by the variation of the linear 
models in the Figure 3.21. The datasets for model assessments were generated inserting 
step changes on controlled external flows      and     , according to Figure 3.18. The 
estimation of    was performed using the proposed method only, since Badwe et al. 
(2010) is dependent of setpoints (equations 3.1 to 3.7) which would not be viable in this 
case. The Variance Index (equation 3.24) and ACF curves are calculated and adapted for 
the steady state value (   ) of each output instead of     . Results are summarized in 
Table 3.12 and Figure 3.22. 

 

Figure 3.21:  Scenarios Configuration: Linear plant model with MPC using soft constraints. 
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Table 3.12: Relative Variance Index (    ): Linear plant model with MPC using soft 
constraints 

 Proposed Method Basis case 

MP                         

1 0.87 1.04 1.82 1.01 1.01 1.05 1.75 0.99 

2 1.33 1.02 1.07 0.96 1.29 1.01 1.15 1.04 

3 0.96 2.15 0.98 094 1.12 2.61 1.02 0.97 

 

 h1 h2 h3 h3 
 
 

MPM1 

 

 
 
 
 

MPM2 

 
 

MPM3 

Figure 3.22: Comparative ACF of         and            estimated by the proposed 
method: Linear Plant Model whit MPC using soft constraints 

 

The results from Table 3.12 and Figure 3.22 show that the proposed method has 
correctly detected abnormalities in the models and has identified the variable affected by 
the mismatch in all scenarios, generating results very similar to the basis case. For 
example, in scenario MP3, there is an indication of problems in     because the      of 
this variable is far from one and the ACF indicate a difference between the settling times 
of   and     curves. This scenario corresponds to a mismatch in the model       . These 
results make evident the capacity of the method to evaluate models of MPCs without a 
fixed setpoint. 

3.4 Conclusions 

This paper proposes a methodology for detecting model-plant mismatch affecting 
MPC performance. This new approach allows the evaluation of how the model-plant 
mismatch (MPM) affects the actual controller performance, considering the output 
sensitivity function, which is a more reasonable benchmark for MPC assessment. From 
this result, it is possible to detect and evaluate the need to re-identify the process 
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models. Moreover, its simplicity allows for easy application in real plant data (online or 
offline) regardless of the control algorithm used.  

Two versions of the quadruple-tank system were evaluated as case studies. In the 
first, a linear plant was used and model-plant mismatches were added in a model 
channel. Simulations were performed considering a fast and a slow MPC tuning and 
constraint activation/deactivation. A MPC working by range (i.e, with soft constraints) 
was also configured. The second version considers a phenomenological plant model with 
modifications to original plant parameters and the addition of unmeasured disturbance 
signals to generate the scenarios. The results show that the effect of the model-plant 
mismatch is dependent on the controller tuning.  

The proposed method is capable of correctly estimating   , since the results obtained 
are very similar to the cases where there are no model-plant mismatches. However, the 
use of a sensitivity function compatible with the current feedback controller is 
fundamental. Although the method has this constraint, the estimation of    is quite a 
simple procedure, relying solely on a closed-loop simulation.  

The quality of     is superior to that in the Badwe et al (2010) approach, since it is 
independent of online closed-loop model identifications. Besides, the proposed method is 
independent of setpoint, which makes it flexible to different MPCs structures. The use of 
    as a model benchmark is capable of indicating the effect of the model-plant mismatch 
in the system’s behavior. 

The results also show that the proposed method can detect the effect in closed-loop 
produced by unmeasured disturbances, due to its similarities with MPM.  



 

 

 

 MPC model assessment of Capítulo 4 –
highly coupled systems  

Abstract6: Systems with strong interactions among the variables are frequent in the 
chemical industry and the use of MPC is a standard control tool in these scenarios. 
However, model assessment in this case is more complex when compared with fairly 
coupled systems, because these interactions make all the system sensitive to 
uncertainties, which mask the detection of the model problem roots. This paper presents 
and extension for highly coupled systems of the method proposed by Botelho et al. 
(2015a/cap. 3) for model-plant mismatch evaluation in MPC applications, based on the 
use of the diagonal elements of the output sensitivity matrix. The effectiveness of the 
proposed method is illustrated by two cases studies: a high purity distillation column and 
the Shell Heavy Oil Fractionator.  

 

Keywords: Model Predictive Control, Model-Plant Mismatch, Model quality, 
Unmeasured Disturbance, MPC performance assessment, highly coupled systems. 

 

 

 

 

                                                      

6 Submetido para publicação no periódico ”Industrial & Engineering Chemistry Research”. 
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4.1 Introduction 

Model predictive control is the most used advanced control solution in the industry, 
allowing the improvement of the operational performance, since the variability of the 
system can be reduced. According to Campos et al. (2013), the following gains are 
typically obtained with a MPC: 

- Maximization of high valuable products recovery: 2-10%; 

- Increase the plant capacity in presence of operational constraints: 5%; 

- Minimize the energy consumption: 2-10%. 

After the controller implantation, the improvements described above are evident, 
however, in the course of time the process change and the MPC performance is reduced. 
Thus, to ensure MPC efficiency, the application of techniques for controller monitoring 
and diagnosis are essential, although it is still not an easy task, due to the multi-cause 
nature and complex structure. There are many sources of MPC performance degradation, 
including tuning parameters (horizon length, weight parameters, sampling time, etc.), 
poor model quality, inappropriate constraint setup and presence of unmeasured 
disturbances.  

Among the sources of performance degradation, the low quality of process model is 
one of the most frequent. Sun et al. (2013) attested the high cost of a good model in MPC 
configuration, where more than 80% of the time is spent in model identification. Thus, 
the precise model assessment is essential for MPC longevity. It is known that a model is 
an abstraction of the real system behavior, so that model-plant mismatch (MPM) will 
always be present. However, sometimes these MPMs are very strong that the closed loop 
cannot achieve good performance. Thus, it is necessary quantifying the MPM, which 
cannot be compensated by feedback controller, and, therefore, will deteriorate the 
corresponding closed loop behavior (Wang & Song, 2012). Many methods are available in 
literature to investigate the quality of the process model used by the MPC.  For example, 
Huang et al. (2003) and Jiang et al. (2009) proposed techniques to assess the need for 
model re-identification. Others methods (e.g., Badwe et al., 2009; Kano et al., 2010; Ji et 
al., 2012) have the objective to identify the pair (i.e., controlled versus manipulated 
variables) with model-plant mismatch.  There are also methods that evaluate the 
predictive capacity of the model (e.g., Jiang et al., 2012).  

Some industrial processes show strong interaction among process variables (e.g. high 
purity distillation columns). In this case, the use of MPC is advised, because of its strong 
multivariable nature. However, a small model-plant mismatch can lead the controller to a 
very poor performance, or even to instability, requiring an effective controller 
performance monitoring. Although this is a common problem in the industry, the 
methods of model assessment usually do no address this situation. Thus, their 
effectiveness when the processes are close to instability cannot be guaranteed. 

This paper presents a method for MPC model assessment of highly coupled systems. 
It is an extention of the method proposed by Botelho et. al. (2015a/cap,. 3), which 
provides the estimation of the closed loop behavior in absence of model-plant mismatch 
(called nominal output), indicating the variable disrupted by modeling problems. The 
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proposed extension aims to   indicate the controled variables (CVs) with poor model and 
their impact in the others process variables. 

Sun et al. (2013) also proposed a method capable to detect the CVs with poor model. 
It is based on residual assessment and feedback invariant principle, whereby disturbance 
innovations are not affected by the feedback controller. It allows the estimation of 
stochastic disturbance error       from the identification of a stable High Order 
Autoregressive Exogenous Model (HOARX) using the setpoints         and the measured 
outputs     , according to:  

     ∑           ∑                  

 

   

 

   

  ∑            ∑                   

   

   

   

   

 (4.1) 

where    and    are the parameters of ARX model and MO1 and MO2 are the model 
orders. 

The disturbance errors (  ) are compared with the one-step-ahead prediction errors 
(  ) (Ljung, 1999). The author suggests a performance indicator for model quality (   ), 
which provides the effect of modeling error as a whole, considering the variables costs in 
the controller, which is defined by: 
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where    are controlled variables weights in MPC controller and    is the length of the 

evaluated dataset. Alternatively, is possible to evaluate the modeling error of each CV as 
follow: 
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where    is the evaluated CV. The      and     varies between 0 and 1, such that 
values near to one means that all the prediction errors are due to stochastic disturbance 
and the model is perfect.  

4.2 Proposed method  

4.2.1 Brief description of the original methodology  

Botelho et al. (2015a/cap. 3) proposed a method for MPC model assessment based on 
the closed loop response, whose main idea is to compare the behavior of measured 
outputs with the nominal expected outputs, i.e., the outputs obtained in absence model-
plant mismatch. 

Consider the control loops illustrated in Figure 4.1, with a MPC controller   and 
nominal model   , which represents the real plant  . The model-plant mismatch (MPM) 
magnitude is   . The theoretical system without mismatch is shown in Figure 4.1a, in 
which nominal closed loop outputs are    and     is the nominal complementary 
sensitivity function. The real system, in a scenario subject to MPM, is shown in 
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Figure 4.1b, where      corresponds to the setpoints,   are the manipulated variables,   
are the measured outputs,      are the simulated outputs of the nominal model 
perturbed by the actual control actions  , and   is the complementary sensitivity 
function.  

 
 

(a) (b) 

Figure 4.1: Schematic diagram of closed-loop system: (a) nominal system (b) with 
model-plant mismatch. 

An effective model should represent the real system at the frequency where the MPC 
works. Thus, to assess the real impact of model-plant mismatch, the closed-loop 
performance must be considered. The expression for these variables can be found in 
many classical control books (e.g., Skogestad and Postlethwaite,1996):  

          (4.4) 

                             (4.5) 

        (4.6) 

              (4.7) 

where    is the nominal sensitivity funcion and   is the identity matrix. Botelho et al. 
(2015a/ cap. 3), proposed that the nominal output    (i.e., the output of the system in the 
absence of modeling errors) could be estimated according to: 

                  (4.8) 

The authors suggest that, although the equations above are deduced for a MPC with 
model-plant mismatch (MPM), the same can be derived for cases where unmeasured 
disturbances (UD) are presented. The control loop of Figure 4.2 illustrates this scenario, 
where   are sequences of independent random variables,    is the unknown disturbance 
model and    are the disturbance signals. The effect of    on outputs is similar to that of 
a model-plant mismatch. 
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Figure 4.2:  Schematic diagram of closed-loop system with unmeasured disturbance. 

Since    is an estimative of the output process considering inexistence of model-plant 
mismatch or unmeasured disturbance, it could be used as a benchmark for controller-
model output response. From this benchmark, any output dependent performance 
indicator could be applied. For example, the comparison of control errors variances called 
variance index (    ), as suggest by Badwe et al. (2010), can be used: 

     
           

              
 

(4.9) 

Variances index far from 1 mean that the measured data have a different behavior of 
the nominal case, meaning a model problem. 

The autocorrelation function (ACF) of control errors (i.e.,         and          is 
also an indicator of MPC performance. A high value of ACF means that the current control 
error is strongly correlated with past errors. The ACF curves are also useful to analyze the 
effect of MPM in MPC performance evaluation. In this case, the comparison of the decay 
rates of ACF( ) and ACF(  ) indicates whether the MPC is slower or faster than was 
designed. The ACF also can be used to identify oscillatory behavior (Huang & Shah, 1999).  

4.2.2 Extension for Model Assessment of Coupled System 

An important issue in industrial MPC applications is its behavior for coupled systems 
when the model has inconsistencies. First, let us consider the controlled variables     
and     of a hypothetical highly coupled 2x2 system, whose output variables are shown 
in Figure 4.3. Note that both outputs have an oscillatory behavior with similar amplitude 
and frequency. The application of Botelho et al. (2015a/cap. 3) method (equation 4.8) 
indicates that the oscillatory behavior come from a model-plant mismatch (MPM) or 
unmeasured disturbance (UD) because the nominal outputs (  ) are not oscillating 
(compare   and    curves in Figure 4.3). However, it is not possible to know which 
controlled variable (or both) has the modeling problem. 
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(a) (b) 

Figure 4.3: Hypothetical coupled system with modeling problems. 

To locate the modeling problems an extension of Botelho et al. (2015a/cap. 3) 
method is proposed. It aims to exclude the coupling effect and isolate the modeling errors 
of each CV. The method, as Botelho et al. (2015a/ cap. 3), is centered in the nominal 
sensitivity function (  ). This function is a square matrix whose dimension is equal to the 
number of outputs. Its diagonal elements (      

) give the closed loop response of each 

output when its reference (setpoint or soft-constraints) is changed.  The remaining 
elements provide the impact of this reference change in the others outputs.  Thus, the 
off-diagonal elements of    will be greater as coupled as the system is. Based on these 
concepts, we propose the estimation of the diagonal nominal outputs (      

) as an 

extension of equation 4.8 as follow: 

      
       

             (4.10) 

The simulation error (     , the nominal error (  ) and the nominal diagonal error 
(      

) are defined respectively as: 

            (4.11) 

         (4.12) 

      
       

    (4.13) 

The       
 works as a softening for the simulation error (    ), and retains only the 

part that is not removed by the controller feedback and is impacting in the performance 
of corresponding output. Thus, variables without significant MPM or UD will 
have        

   (because       ). The     provides the complete diagnosis of the 

model, showing the effect of the MPMs or UDs in the corresponding output and how it is 
impacting in the others. Thus    

   even for variables without significant MPM or UD. 

Considering the existence of MPM or UD, this difference will be amplified by the coupling 
between the variables.  

Given that    and       
 are related with the process outputs when there is no 

model-plant mismatch or unmeasured disturbances, they can be considered as 
benchmarks for controller-model output response. Furthermore, these benchmarks allow 
any output MPC performance indicators (  ) to be applied. The diagnosis procedure 
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starts with the comparison of the performance indicator of the real (  ) and the nominal 
(   ) outputs. The greater is the difference between    and    , higher is the incidence of 
performance deterioration due to modeling problems. To locate it, a comparison 
between      and        

 is performed. A similar behavior between them means that the 

modeling problem is located in the own CV.  Otherwise, the performance deterioration of 
the corresponding CV is due to an error in another CV model. Figure 4.4 summarizes the 
procedure.  

Similarly with the Variance Index described in equation 4.9, the Diagonal Variance 
Index is useful for the model assessment and is defined as: 

         
           

          
      

  

 (4.14) 

The      and          works as a ratio between    versus     and     versus        
, 

respectively. Thus, the closer to 1 they are, higher is the similarity between the related 
variances.   

The autocorrelation function (ACF) of control errors may also be applied for the 
diagonal nominal output (i.e.,        

       and compared with results of nominal and 

real cases. 

 

Figure 4.4: Diagnosis procedure for each output variable according to the proposed 
methodology. 
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4.3 Case Studies  

4.3.1 High Purity Distillation Column 

This process is originally presented by Skogestad & Postlethwaite (1996) and refers to 
a high purity binary distillation column. The feed ( ) is an equimolar liquid mixture with 
relative volatility of 1.5. The pressure is assumed constant and the operating variables are 
such that we nominally have 99% purity for each product. This kind of distillation process 
is usually difficult to control because of strong interaction between its variables.  

In this case study, a LV-control configuration was considered: i.e., the manipulated 
variables are the reflux ( ) and the boilup ( ). The controlled outputs are the top and the 
bottom product composition (   and   ). The linear process model is: 

   
 

     
[
         
           

] (4.15) 

This system was implemented in Matlab/Simulink and a MPC was configured. The 
controller was tuned according with the RPN methodology (Trierweiler & Farina, 2003) 
whose parameters are shown in Table 4.1: 

Table 4.1: High purity distillation column case: Tuning Parameters of MPC 

Sample Time 8 min 

Prediction Horizon 30 

Control Horizon 6 

Controlled Variable Weight                  

Move Suppression             

 

The estimation of the output sensitivity function (  ) was performed from a 
simulation of the system considering a perfect model (    ) and the tuning of Table 
4.1. From these results, the    model was identified considering a Box-Jenkins model.  

The coupling of a system could be measured through the diagonal elements of the 
dynamic Relative Gain Array (RGA) matrix. According to Luyben & Luyben (1997), when 
they are far from 1 there is an indicative of high interaction among the variables. The 
diagonal elements of the dynamic RGA in the frequency domain for this case study is 
shown in Figure 4.5.  We compare the dynamic RGA with the RPN weight function 
(Trierweiler et al., 1997), given by: 

         ̅[            ] (4.16) 

where  ̅ is the maximum singular value. The maximum of RPN weight function occurs in 
the neighborhood of the controller frequency work.  Figure 4.6 illustrates the RPN 
function for this case study.  
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Figure 4.5:  High purity distillation column case: dynamic RGA. 

 

Figure 4.6: High purity distillation column case: RPN weight function. 

From Figures 4.5 and 4.6 is possible to observe that in the frequency of the controller 
actuation (           ) the diagonal elements of the RGA are approximately equal to 
35, which means that the coupling between the variables is very strong for the considered 
tuning.  

For the described system, scenarios were generated considering step changes in the 
setpoints (    ) and the addition of model-plant mismatches (MPM), unmeasured 
disturbances (UD), as described in Table 4.2.  A white noise with zero mean and variance 
10-3 was added in the measured outputs. Figure 4.7 show the generated outputs for the 
nominal case (i.e., in absence of MPM and UD) and Figure 4.8 the outputs of each 
scenario.  

Table 4.2: High purity distillation column case: Scenarios configuration 

Scenario Type Description 

Scen1 MPM in             
     

     
 

Scen2 MPM in             
     

     
 

Scen3 UD in    
Sinusoidal signal with frequency 0.02/min and 

amplitude ±0.2 

Scen4 MPM in        and UD    Scen1 + Scen3 

Scen 5 MPM in        and UD    Scen1 + Integrator signal (     ) 
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Figure 4.7: High purity distillation column case: System outputs of nominal case 

 

 

 

 

 

 

Figure 4.8: High purity distillation column case: System outputs of each scenario 
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Figure 4.8 shows that in all scenarios the outputs    and    have oscillatory behavior 
with similar magnitude. To check the existence of modeling problems, the methods 
presented in sections 4.2.1 and 4.2.2 were applied as well the Sun et al. (2013) method.  
The square sum of simulation errors (   ) were also evaluated, according to: 

     √∑[            ] 
  

   

 (4.17) 

The variances indexes (I    and          ),    ,      and     of each scenario are 

presented in Table 4.3. The corresponding ACF are presented in Figure 4.9. 

 

 

 

 

 

Figure 4.9: High purity distillation column case: ACF of the scenarios 
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Table 4.3: High purity distillation column case: Results of the model assessment 

        

Scen1 

(   =8e-5) 

    27.33 0.96 

      23.81 2.12 

         23.81 1.00 

     0.007 0.94 

Scen2 

(    3e-3) 

    19.12 1.17 

      2.80 2.00 

         2.80 1.00 

     0.04 0.91 

Scen3 

(   =2e-3) 

    0.98 14.77 

      1.42 3.46 

         1.00 3.46 

     1.00 0.04 

Scen4 

(   =1e-3) 

    28.77 14.77 

      26.35 5.88 

         20.55 1.62 

     0.03 0.07 

Scen5 

(   =1e-4) 

    28.27 13.75 

      23.65 2.22 

         23.68 0.99 

     0.01 0.81 

 

Table 4.3 shows that the proposed method captures the variable affected by the 
modeling problems and its effect in the other output. In all cases the      of    and    
is far from one, which means that the variables are affected by a modeling problem. The 
         of    in Scen1 and Scen2 as well as    in Scen3 are equal to one, showing that 

the models of these variables do not have problems. In both cases, the     is near to 
zero, also denoting the inexistence of modeling problem in the corresponding variables.  
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In Scen5 the     is high for both variables even the          of    being near to one. 

It means that there is a modeling error in    model, but it is not impacting the MPC 
performance. It could be confirmed by the similarity between the outputs of this scenario 
with Scen1. The Scen2 makes evident that the method is paring independent, since the 
result obtained was in accordance with the added MPM. These results corroborate the 
fact that the evaluate de modeling error is not appropriated for the assessment of MPC 
models.  

The Scen4 show that both variables have modeling problems (high         ) and the 

modeling of each is impacting in the other, since               for    and   .  

The Sun et al. (2013) method provided results similar to the proposed method. The 
existence of MPM in the system was captured by the small values of     in all scenarios. 
The      interpretation is compatible with the         , such that are always higher 

than 0.8 in the controlled variables without modeling errors. 

The ACF (Figure 4.9) also capture the existence of a oscillatory behavior in outputs 
due to modeling problems since, for all scenarios, ACF( ) have oscillatory behavior and 
ACF(      

) do not have. The similarity between ACF(  ) and ACF(      
) indicates the 

existence of modeling problem in the corresponding variable (i.e,    in Scen1 and Scen4 
and    in Scen2). For Scen4 the ACF make evident that both variables have modeling 
problems, since ACF(  )≠ ACF(      

)≠ ACF( ) for    and   . 

4.3.2 Shell Heavy Oil Fractionator 

The Shell Heavy Oil Fractionator is a problem originally presented by Prett e Morari 
(1987). This system is characterized by high interaction among the variables as well large 
time delays.  Figure 4.10 illustrate the system. 

 

Figure 4.10: Schematic representation of Shell Heavy Oil Fractionator 
 (Maciejowski ,2002). 
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This system was implemented in Matlab/Simulink and a MPC was configured, based 
on Farenzena (2008). The main objective is to control the top composition (  ), the side 
composition (  ) and the bottom reflux temperature (  ) in the respective setpoint by 
the manipulation of the top draw (  ), side draw (  ) and bottom reflux duty (  ). The 
process model (  ) is presented in equation 4.18 and the controller tuning parameters in 
Table 4.4. 
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]
 
 
 
 
 

 (4.18) 

 

Table 4.4: The Shell heavy oil fractionator case: MPC Tuning Parameters 

Sample Time  2 min 

Prediction Horizon  20 

Control Horizon  4 

Controlled Variable Weight              ,       

Move Suppression                     

MVs upper limits       
          

          
      

MVs lower limits       
          

          
       

 

The estimation of the output sensitivity function (  ) was performed from a 
simulation of the system considering a perfect model (    ). From the results, the    
model was identified considering a Box-Jenkins model. Several model orders were 
evaluated and the best result (5th order) was considered.  

For the process model (equation 4.18), the diagonal elements of dynamic RGA are 
presented in Figure 4.11. The RPN weight functions are shown in Figure 4.12.  

 

Figure 4.11:  The Shell heavy oil fractionator case: dynamic RGA 
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Figure 4.12: The Shell heavy oil fractionator case: RPN weight function 

Figures 4.11 and 4.12 make evident that in the frequency of the controller actuation 
(           ) all diagonal elements of the RGA are approximately equal to 2, which 
means that there is a coupling between the variables.  

Scenarios were generated considering step changes in the setpoints (    ) and the 
addition of model-plant mismatches (MPM), unmeasured disturbances (UD) and 
variations in the controller tuning. A white noise with zero mean and standard deviation 
of 0.02 was added to the measured outputs. Figure 4.13 shows the generated data for the 
nominal case (i.e., in absence of MPM and UD), where      are the constraints of the 
manipulated variables.  

Figure 4.13: The Shell heavy oil fractionator case:  Inputs and outputs of the nominal case 

Each scenario was evaluated according the indicators presented in sections 4.2.1 and 
4.2.2 as well as by the Sun et al. (2013) method.  The square sum of simulation errors 
(   ) were also evaluated, according to equation (4.17).  The results are discussed below. 

Scenario 1: Moderate MPM 

This scenario considers a model-plant mismatch in the time constant of pair        , 
according to equation 4.19. Figure 4.14 present the inputs ( ) and outputs ( ) when steps 
in the setpoints (    ) were performed, showing that    is not adequately controlled.  The 
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model assessment methods were in this data and results are presented in Figure 4.15 and 
Table 4.5. 

       
    

     
     (4.19) 

 
Figure 4.14:  The Shell heavy oil fractionator case: Inputs and Outputs for Scenario 1  

 

Figure 4.15: The Shell heavy oil fractionator case: ACF for Scenario 1  
 

Table 4.5: :  The Shell heavy oil fractionator case: Indicators Results for Scenario 1 

           

   =0.64 

    439.9 18.7 17.9 

      4.54 1.02 0.99 

         4.54 1.02 1.00 

     0.58 0.84 0.85 
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From Table 4.5, it is possible to observe that the proposed method captures the 
expected behavior, indicating the existence of an impactful modeling problem in   , 
because       is large and         . This modeling problem only affects     ince 

variance indexes (    ) of    and    are near to one. The values of       and       

could be attributed to the white noise effect.  The difference between the ACF decay ratio 
of     and    (Figure 4.15) indicates that the modeling problem make the system 
response slower than the nominal case. 

The Sun et al. (2013) captures the existence of MPM by the    . The      
interpretation is compatible with the         , such that are higher than 0.8 in the 

controlled variables without modeling errors (   and   ) and 0.58 for   . 

Scenario 2: MPM make the system oscillatory  

This scenario considers model-plant mismatch in the steady-state gain and time delay 
of pair        , according to equation 4.20. Figure 4.16 presents the inputs ( ) and 
outputs ( ) when steps in the setpoints (    ) were performed, showing that all the 
outputs are oscillating.  The oscillating behavior makes the inputs track around their 
constraints.  The results of the model assessment are presented in Figure 4.17 and Table 
4.6. 

       
    

     
     (4.20) 

 

Figure 4.16:  The Shell heavy oil fractionator case: Inputs and Outputs for Scenario 2  
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Figure 4.17: The Shell heavy oil fractionator case: ACF for Scenario 2  

 

Table 4.6:  The Shell heavy oil fractionator case: Indicators for Scenario 2 

           

   =0.02 

    18.3 655.4 18.8 

      1.30 8.01 2.1 

         1.00 8.01 1.00 

     0.89 0.12 0.96 

 

Results of Table 4.6 indicates that a modeling problem is impacting in all system 
variables, because the      of all outputs are higher than 1. The modeling problem is only 
in    since this is the only variable with           far from one. The ACF (Figure 4.17) 

makes evident that the oscillatory behavior of outputs come from a modeling problem, 
since ACF( ) has oscillatory behavior and ACF(      

) does not oscillate significantly in all 

outputs. The modeling problem is in    because        
       . 

The Sun et al. (2013) captures the existence of MPM by the small value of    . The 
     interpretation is compatible with the         , such that are higher than 0.8 in the 

controlled variables without modeling errors (   and   ) and 0.12 for   . 

Scenario  3: Non-impactful MPM  

This scenario considers model-plant mismatch in the pair        , according to 
equation 4.21. Figure 4.18 present the inputs ( ) and outputs ( ) when steps in the 
setpoints (    ) were performed, showing that the MPM does not have effect in the 
system behavior (see Figure 4.13). Table 4.7 and Figure 4.19 present the results of the 
model assessment for this scenario. 

       
          

              
     (4.21) 
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Figure 4.18:  The Shell heavy oil fractionator case: Inputs and Outputs for Scenario 3 

 

Figure 4.19: The Shell heavy oil fractionator case: ACF for Scenario 3  
 

Table 4.7: Shell heavy oil fractionator case:  Indicators Results for Scenario 3 

           

   =0.82 

    17.58 18.16 196.04 

      1.02 1.02 1.04 

         1.03 1.02 1.05 

     0.87 0.87 0.89 

 

From Table 4.7 and Figure 4.19, it is possible to confirm that there is a modeling 
problem in     because       has a high value, but it does not have significant effect in 

the controller performance since all       are near to one and the ACF of  ,    and       
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are similar. The Sun et al. (2013) provides similar results, since     and all       are 
higher than 0.8, indicating the inexistence of significant modeling problems. 

Scenario 4:  Non-impactful MPM and Bad Tuning  

This scenario combines a model-plant mismatch in the pair         (equation 4.21) 
with the following change in MPC tuning parameters:                    and  

  
 

  . Figure 4.20 presents the inputs ( ) and outputs ( ) of this scenario, showing that    
has a performance problem. Table 4.8 and Figure 4.21 present the results of the model 
assessment. It is important to emphasizes that, for this case, a new estimation of    was 
performed, considering the current tuning. 

 
Figure 4.20:  The Shell heavy oil fractionator case: Inputs and outputs for Scenario 4  

 

Figure 4.21: The Shell heavy oil fractionator case: ACF for Scenario 4  
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Table 4.8: The Shell heavy oil fractionator case: Indicators for Scenario 4 

           

   =0.81 

    18.18 17.77 221.92 

      1.00 1.00 1.05 

         1.00 1.01 1.05 

     0.86 0.86 0.82 

 

 Table 4.8 shows that there is a modeling error (high value of      ) but the  bad 

performance of    is not due to a modeling problem, since all the variances indexes are 
near to one. Similarly to scenario 3, the modeling problem in    does not have significant 
effect in the controller performance. The similar behavior of  ,    and       

 ACFs (Figure 

4.21) also show that there is no significant modeling problem in this scenario. The Sun et 
al. (2013) provides similar results, since     and all       are higher than 0.8, indicating 
the inexistence of significant modeling problems. 

 

Scenario 5:  Moderate unmeasured disturbance in    

This scenario considers unmeasured disturbance added in   . Figure 4.22 show the 
disturbance signal. Figure 4.23 show the inputs ( ) and outputs ( ) of this scenario. It is 
evident that only    has a performance problem. Table 4.9 and Figure 4.24 present the 
model assessment results for the scenario. 

 

Figure 4.22 The Shell heavy oil fractionator case: Unmeasured Disturbance Added in 
   for Scenario 5 
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Figure 4.23: The Shell heavy oil fractionator case: Inputs and outputs for Scenario 5 

 

Figure 4.24:  The Shell heavy oil fractionator case: ACF for Scenario 5  

 

Table 4.9: The Shell heavy oil fractionator case: Indicators Results for Scenario 5 

           

   =0.54 

    18.00 18.11 378.6 

      1.01 1.04 2.16 

         1.01 1.04 2.16 

     0.87 0.88 0.70 

 

Table 4.9 shows that the method indicates the existence of an impactful modeling 
problem in   , because       is large and         . This modeling problem only 
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affects     ince variance indexes (    ) of    and    are near to one.  The difference 
between the ACF of     and    (Figure 4.24) indicates that the modeling problem causes 
oscillation in this variable. 

The Sun et al. (2013) captures the existence of MPM by the small value of    . The 
     interpretation is compatible with the         , such that are higher than 0.8 in the 

controlled variables without modeling errors (   and   ) and 0.70 for   . 

Scenario 6: Unmeasured disturbance in    make the system oscillatory 

In this scenario an unmeasured disturbance added in the signal   . Figure 4.25 
presents the disturbance and Figure 4.26 the inputs and outputs of this scenario, showing 
that all the output variables have performance problem. Table 4.10 and Figure 4.27 
present the model assessment results. 

 

Figure 4.25:  The Shell heavy oil fractionator case: Unmeasured Disturbance Added in 
   for Scenario 6 

 

Figure 4.26: The Shell heavy oil fractionator case: Inputs and outputs of Scenario 6  
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Figure 4.27:  The Shell heavy oil fractionator case: ACF for Scenario 6  

Table 4.10: The Shell heavy oil fractionator case: Indicators Results for Scenario 6 

           

   =0.49 

    18.39 1063 18.93 

      1.30 10.1 1.28 

         1.02 10.07 1.02 

     0.98 0.69 0.98 

 

Results of Table 4.10 indicate that a modeling problem is impacting in all system 
variables, because the      of all outputs are different from 1. The modeling problem is 
only in    since this is the only variable with           far from one. The ACF (Figure 4.27) 

makes evident that the oscillatory behavior of outputs come from a modeling problem, 
since ACF( ) have oscillatory behavior and ACF(      

) do not oscillate significantly in all 

outputs. The modeling problem is in    because        
       . 

The Sun et al. (2013) captures the existence of MPM by the small value of    . The 
     interpretation is compatible with the         , such that are higher than 0.8 in the 

controlled variables without modeling errors (   and   ) and 0.69 for   . 

Scenario 7:  Scenario 2 + Scenario 5 

This scenario combines a model-plant mismatch in the pair         (equation 4.20) 
with an unmeasured disturbance added in    (Figure 4.22). Figure 4.28 presents the 
inputs and outputs of this scenario, showing that all outputs have strong performance 
problems. Table 4.11 and Figure 4.29 present the model assessment results for the 
scenario. 
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Figure 4.28: The Shell heavy oil fractionator case: Inputs and outputs of Scenario 7 

 

Figure 4.29: The Shell heavy oil fractionator case: ACF of Scenario 7 
 

Table 4.11: The Shell heavy oil fractionator case: Indicators Results for Scenario 7 

           

   =0.04 

    18.68 929.3 397.4 

      1.26 12.96 2.94 

         1.01 12.96 1.68 

     0.95 0.16 0.84 

Table 4.11 shows that all variables are affected by modeling problems, since all      
are different from 1. The model of    do not have problems, because            of    is 

near to one. The    has modeling problems and its performance deterioration is 
exclusively due to a problem in its own model, since               .    also has 

modeling problems, but part of its performance deterioration come from the problem in 
  , because               . The similar behavior between ACF(  ) and ACF(       
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as well as ACF(       
) and ACF(   ) confirm the described conclusions, as illustrated by 

Figure 4.29. 

The Sun et al. (2013) captures the existence of MPM by the small value of    . 
However, the method was incapable to detect the modeling problem in   , showing a  
     smaller than 0.8 only for   . The constraint activation of the inputs in some instants 
(see Figure 4.28) make the outputs loss the setpoint dependency (due to the loss of one 
degree of freedom). Since the estimation of the HORX model (equation  4.1) is setpoint 
dependent, the estimation of    is bad and make the method fail. 

Scenario 8:  Scenario 1 + Scenario 6 

This scenario combines a model-plant mismatch in the pair         (equation 4.19) 
with an unmeasured disturbance added in    (Figure 4.25). Figure 4.30 presents the 
inputs and outputs of this scenario, showing that all outputs have performance problems. 
Table 4.12 and Figure 4.31 present the model assessment results for the scenario. 

 

Figure 4.30:  The Shell heavy oil fractionator case: Inputs and output for Scenario 8  

 

Figure 4.31:  The Shell heavy oil fractionator case: ACF for Scenario 8 
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Table 4.12: The Shell heavy oil fractionator case: Indicators Results for Scenario 8 

           

   =0.49 

    734.8 778,7 17.99 

      10.41 8.85 1.32 

         8.83 8.85 1.00 

     0.86 0.69 0.98 

 

Table 4.12 shows that all variables are affected by modeling problems, since all      
are different from 1. The model of    does not have problems, because            of    is 

near to one. The    have modeling problems and it performance deterioration is 
exclusively due to a problem in its own model, since               .    also has 

modeling problems, but part of its performance deterioration comes from the problem in 
  , because               . The similar behavior between ACF(  ) and ACF(       

  

as well ACF(       
) and ACF(   ) confirm the described conclusions, as illustrated by 

Figure 4.31. 

Similarly to the previous scenario, the Sun et al. (2013) captures the existence of MPM 
by the small value of    . However, the method was incapable to detect the modeling 
problem in   , showing a       smaller than 0.8 only for   .  

4.4 Conclusions 

In this paper, an extension of the methodology proposed by Botelho et al. 
(2015a/cap. 3) is introduced, whose main contribution is to detect the location and the 
source of modeling problems and investigate how it impacts in all the process, for highly 
coupled systems. We propose the estimation of the nominal outputs and residuals 
considering only the diagonal elements of sensitivity matrix and the comparative 
evaluation with the conventional approach.  

The method was compared with Sun et al. (2013) through two case studies: a high 
purity distillation column and The Shell heavy oil fractionator. Several scenarios were 
performed, containing MPM and/or unmeasured disturbances and bad tuning. The 
results show that the method is capable to precisely detect the presence of modeling 
problems in all considered cases, indicating the interaction effect caused by this problems 
and diagnosis the root. The results are superior of Sun et al. (2013), since this method fail 
when more than one modeling problem is present and input constraint activation occurs.  
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 Diagnosis of poor performance Capítulo 5 –
in model predictive controllers: 
Unmeasured Disturbance versus Model-
Plant Mismatch 

 

Abstract7: Poor model quality in model predictive controller (MPC) is often an 
important source of performance degradation. A key issue in MPC model assessment is to 
identify whether the bad performance comes from model-plant mismatches (MPM) or 
unmeasured disturbances (UD). This paper proposes a method for distinguishing between 
such degradation sources, where the main idea is to compare the statistical distribution 
of the estimated nominal outputs with the actual modeling error. The proposed approach 
relies on the assessment of three case studies: a simple SISO Linear MPC and two 
multivariable cases, where the linear controller is subject to a linear and nonlinear plant, 
respectively. Results show that the proposed method provides a good indicator of the 
model degradation source, even when both effects are present but one of them is 
dominant. 

Keywords: model predictive control, model-plant mismatch, unmeasured 
disturbance, model quality assessment 

 

 

                                                      

7 Submetido para publicação no periódico ”Industrial & Engineering Chemistry Research”. 
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Model-Plant Mismatch 

5.1 Introduction 

Model predictive controllers (MPCs) are the standard solution of the supervisory 
control layer, since they can work with multivariable complex dynamic systems. The MPC 
uses a dynamic process model to predict the behavior of controlled variables (CVs) along 
the future horizon, based on past control actions and disturbances. From this result, an 
optimization algorithm calculates the control actions that lead the process toward its 
optimal trajectory, respecting the constraints. The maintenance of MPC is an important 
and challenging problem, since performance degradation may stem from many different 
sources, such as: bad tuning (control and prediction horizon, weighting matrices, 
sampling time, etc.), poor model quality, poor disturbance rejection, and inappropriate 
constraint setup (Sun et al., 2013). Among all these sources, poor model quality is the 
most frequent and impactful. Considering that a model is an abstraction of the real 
system behavior, modeling inconsistences will always be present. However, sometimes 
these inconsistences are so strong that the closed loop cannot achieve good 
performance. Therefore, it is necessary to quantify the modeling error, which cannot be 
compensated by feedback controller and, therefore, will deteriorate the corresponding 
closed loop behavior (Wang et al., 2012).  

Several methods are focused on model quality investigation. Some of them are based 
on model validation metrics and investigate the need for a model re-identification (e.g., 
Huang et al.,2003; Conner & Seborg,2005; Jiang et al.,2012). Other approaches (e.g., 
Badwe et al.,2009; Kano et al., 2010; Ji et al., 2012) are focused on identifying which 
portion of the model (i.e. controlled variable or pair-controlled versus manipulated 
variable) is degraded.  

A key issue of MPC model assessment is to identify the source of a modeling 
inconsistency, which could be a model-plant mismatch (MPM) or an unmeasured 
disturbance (UD). The first occurs when the model cannot adequately describe the 
relations between its input and output variables and a re-identification is required. An UD 
is characterized by the absence of an input variable in the process model. Both cause 
similar effects in the process and isolating each effect is not trivial. 

Several methods for disturbance detection were proposed. Tornhill & Horch (2007) 
provide an overview of the most important. According to their work, different approaches 
are needed depending on whether the disturbance is oscillating or non-oscillating. For the 
first case, the methods fall into three main classes, namely those which use the time 
domain, those using auto-covariance functions, and spectral peak detection. Most of the 
methods are off-line and exploit these advantages, such as the use of the entire data 
history. In the case of non-oscillatory, spectral decomposition methods as principal 
component analysis (PCA), independent component analysis (ICA), and non-negative 
matrix factorization (NNMF) have been used to find significant spectral features.  

This paper proposed a new data-based approach for MPC model assessment. The 
method complements an extensive class and techniques available in literature (e.g., 
Schafer & Cinar, 2004; Badwe et al., 2010; Sun et al.,2013; Botelho et al., 2015/cap.3; 
Botelho et al., 2015/cap.4), which detect lack of quality in the prediction model. Once an 
unconformity between the model prediction and the actual outputs is detected, it is 
necessary to diagnosis its causes, which can be related to MPM and/or UD. Here, we 
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propose a statistical approach to identify whether the performance degradation is related 
to MPM or UD.  

5.2 Proposed method 

The proposed method is based on the statistical comparison between the system 
outputs in the absence of MPM and UD (called nominal output) and the error between 
this value and actual outputs. The next sections describe the fundamental concepts of the 
proposed approach. 

5.2.1 Estimation of nominal outputs 

The first step in our approach consists of the nominal output estimation following the 
method proposed by Botelho et al. (2015a/cap. 3) and Botelho et al. (2015b/cap. 4). We 
assume the control loops illustrated in Figure 5.1, with a MPC controller   and nominal 
model   , which is used in the MPC to describe the real plant  . The model-plant 
mismatch (MPM) magnitude is   . The theoretical system without mismatch is shown in 
Figure 5.1a, for which nominal closed-loop outputs are         is the nominal 
complementary sensitivity function. The real system, in a scenario subject to MPM, is 
shown in Figure 5.1b, where      corresponds to the setpoints,   are the manipulated 
variables,   are the measured outputs,      are the simulated outputs of the nominal 
model perturbed by the actual control actions  , and   is the actual complementary 
sensitivity function. Figure 5.1c illustrates the case with an unmeasured disturbance (UD), 
where   is a sequence of independent random variables,    is the unknown disturbance 
model, and    are the disturbance signals. 

 

  
Figure 5.1: Schematic diagram of closed-loop (a) nominal case, (b) system with model-

plant mismatch (MPM), and (c) system with unmeasured disturbance (UD) 

Botelho et al. (2015a/cap. 3) define the nominal output      as the output of the 
system in the absence of MPM or UD. This can be estimated according to: 

                  (5.1) 
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    is the nominal sensitivity funcion, given by: 

             (5.2) 

The nominal sensitivity function (  ) is a square transfer matrix that characterizes the 
system response in closed loop. Its dimensions are equal to the number of outputs. The 
diagonal elements (      

) give the closed-loop behavior of the outputs when their 

references (setpoints or soft constraints) are changed. The remaining elements provide 
the impact of these reference variations on the other outputs. Thus, Botelho et al. 
(2015b/cap. 4) suggest the estimation of the nominal output considering only the 
diagonal sensitivity function (      

) to locate the controlled variable (CV) with model 

errors. For this case, equation (5.1) can be rewritten as:  

      
       

            (5.3) 

       
 produces a softening effect on the simulation residuals (      ) and retains 

only the part not removed by the controller feedback that is impacting the performance 
of the corresponding output. Thus, CVs without significant MPM or UD will have       

 

 , because their simulation errors are close to zero.     provides the complete diagnosis 
of the model, showing the effect of the MPMs or UDs in the corresponding output as well 
as how it is propagating onto the others. Thus    

   even for variables without 

significant MPM or UD, considering the existence of MPM or UD in another CV model. 
The stronger the coupling between the channels, the larger the difference between 
   

    . 

5.2.2 Relation between nominal outputs and modeling errors 

According to Botelho et al. (2015a/cap. 3),    is the estimated output free from 
modeling errors, which includes model-plant mismatches and unmeasured disturbances. 
Defining the nominal error    as the effect of the modeling problems in the loop, we 
have:  

   
    

    (5.4) 

The outputs of a system with MPM and UD are (Skogestad & Postlethwaite, 1996):  

              (5.5) 

were    is the disturbance signal entering in the loop. First, let us consider a system 
under a model-plant mismatch only (Figure 5.1b). In this case,      and equation 5.5 is 
reduced to: 

         (5.6) 

Analogously, the nominal output is (see Figure 5.1a): 

   
        (5.7) 

and equation 5.4 becomes: 
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                                   (5.8) 

From (5.7) and (5.8) we can observe that the relation between the nominal error (  ) 
and nominal output (  ) in the presence of model-plant mismatch are a function of the 
same input signal (i.e.,     ) passing through two different functions (   and    ). 
Although these functions are different,   and     are functions of  , making them 
dependent. Therefore, the statistical behavior of    and    are correlated.  

Now, let us consider a system under unmeasured disturbance only (Figure 5.1c). In 
this case,     , so      and     . Then the measured output could be written as: 

               (5.9) 

And the nominal error is: 

           - (            )   -          (5.10) 

From (5.7) and (5.10) we can observe that the relation between the nominal error (  ) 
and nominal output (  ) in the presence of unmeasured disturbance is given by two 
independent signals (      and    ) passing through a “single function” (and its 
complementary, i.e.,    and -  ), which means that the variations of    and    will also be 
independent.   

In sum, when a process output is under a MPM, the control objectives (    ) are the 
only signals showing that    and    are dependent, which explains why their variation 
have similarities. However, when a process output is under UD,    will be dependent 
solely on the external signal   , while    is dependent solely on the control objectives. 
This means that the variation of    and     do not bear resemblance. Therefore, 
considering that the process is sufficient excited, the similarity between the variations of 
   and    are indicative of MPM presence.  

Remark 1: 

Although the premise of the method is the evaluation of similarity between    and   , 
the direct application of Person correlation is not ideal to compare them because both 
signals are estimated through    (see equations 5.7, 5.8, and 5.10). This means that the 
correlation tends to be high in the presence of any MPM, even when its impact is 
negligible compared to an UD present in the same output. Since most real processes have 
MPM, its influence will mask the effect of UD, even when the importance is high. Then, 
we proposed the comparison of the statistical distribution along a moving window, which 
will be described below.  

Remark 2: 

Taking into account that the objective is to know the MPMs and UDs contained in 
each output, it is more appropriate to compare       

 (equation 5.3) and       
 , since 

they capture the isolated effect of each de modeling error, disregarding the effects of 
interaction between the CVs (see Botelho et al., 2015b/cap. 4). The       

 is defined by: 

       
        

    (5.11) 
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Thus, using       
 and       

 , it is possible to locate the modeling problem in each 

output. 

5.2.3 Statistical Distribution in a Moving Window 

Our proposed diagnosis procedure to distinguish between model-plant mismatches 
and unmeasured disturbances consists in a comparative analysis of the statistical 
distributions. A moving window (  ) is defined and the statistical distribution of       

 

and       
 is determined for each subset. Figure 5.2 illustrates the procedure, where    

is the sampling time. 

 

Figure 5.2: Illustration of a moving window evaluation procedure 

The statistical distribution is evaluated by the skewness (   ) and kurtosis (   ) 
coefficients. These indexes show how far the signal is from a normal distribution. It is 
important to note that the data is seldom normally distributed, so we consider these 
indicators merely as a reference.  

The kurtosis coefficient (   ) provides the shape of the probability density function. A 
high value of kurtosis means that the data has a large number of observations far from 
the mean, when compared with a normal distribution. The sample skewness (   ) 
provides an indicator of how asymmetric the dataset is. A positive value of skewness 
means that there is a higher concentration of values smaller than the mean (Adams & 
Lawrence, 2015). These coefficients are calculated as follows: 

     
    

  

(√  )
  (5.12) 

     
    

  

 √    
 (5.13) 

where   ,   , and    are the second, third, and fourth order central moment, defined 
as: 
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∑      ̅    

   

  
         (5.14) 

Where    is the evaluated dataset (      
 or       

) and  ̅ is its corresponding mean 

value. Figures 5.3 and 5.4 illustrate the expected result for a hypothetical case. When a 
MPM is present, the variation of statistical distributions of        

and        
shows the 

major variation at the same time (see the peaks), which does not occur when a UD is 
present. 

   

(a) (b) (c) 

Figure 5.3: Hypothetical case with MPM: (a) measured  , estimated       
 , and       

 ; 

(b) kurtosis coefficients along a moving window; and (c) skewness coefficients along a 
moving window 

   

(a) (b) (c) 

Figure 5.4: Hypothetical case with UD: (a) measured  , estimated       
 and       

 ; (b) 

kurtosis coefficients along a moving window; and (c) skewness coefficients along a 
moving window 

5.2.4 Diagnosis Procedure 

As described in section 5.2.2, the diagnosis of MPM and UD is grounded on the 
comparison of the nominal output and corresponding nominal error. Two approaches 
based on the data scatter are considered for quantifying the relation between the 
variations of the statistical distributions. The first one is based on the Pearson correlation 
coefficients of skewness and kurtosis of       

 and       
 signals. A scan is performed 

varying    size in the neighborhood of the prediction horizon (we suggest from       
to    , where    is the MPC’s prediction horizon). This scan is necessary to ensure that 
all the inconsistencies in the work frequency of MPC will be considered. The correlation 
indicator (   ) is based on the mean of absolute correlation between the statistical 
distributions: 
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∑ |    (       

          
  )|

   
        

   
 (5.15) 

where     is the number of scanned   ,      is the Pearson correlation coefficient, 
and   is the evaluated coefficient (    or    ). With the increase in the    , higher is the 
probability of a model-plant mismatch dominance. 

Another similar procedure is based on confidence ellipse scatter. A scan is performed 
varying    size in the neighborhood of the prediction horizon and for each evaluated 
   the ellipses are constructed considering the covariance matrix of 

(       

  )  (       

  ), where   is the evaluated coefficient (    or    ). The angle of the 

largest eigenvalue corresponds to the ellipse inclination (  
  ). The ellipse’s major axis 

(  
  ) and minor axis (  

  ) are given, respectively, by the square root of the largest and 
the lowest eigenvalues multiplied by the critical chi-square value (     

 ) associated with a 
given probability level (Santos-Fernadéz, 2012). Figure 5.5 illustrates the expected 
behavior for each scenario: the confidence ellipse is less circular (i.e., the greater is 
  

     
  ) and more diagonal (the nearest to   ⁄  is   

  ) when the similarity between 

statistical distributions is more significant, indicating the presence of a model-plant 
mismatch.  

  

(a) (b) 

Figure 5.5: Expected response of linear and elliptical approximation (a) under UD and 
(b) under MPM 

The indicators based on the ellipse angle ( ̅ ) and ellipse dimensions ratio (  ̅̅ ̅̅
 ) are 

based on the mean of the resulting ellipses: 

 ̅ =∑    
      

         (5.16) 

  ̅̅ ̅̅
 =∑ (

  
  

  
  )   

         (5.17) 

The confidence ellipse indicator (   ), which considers simultaneously the shape and 
the inclination of the ellipse is defined below: 

      

∑ (
   

  

 
√  

  
  

  
  )

   
        

   
 

(5.18) 
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where     are the numbers of scanned   . The   
   must be reduced to half of the 

first quadrant (i.e., 0 <  
    

 ⁄ ) to calculate the indicator. Increasing values of     

means a higher probability of a model-plant mismatch dominance. 

To emphasize the differences between MPM and UD we also suggest quantifying the 
differentiated statistical distributions, since the derivatives are capable to better capture 
the tendency of the signals (Trierweiler & Machado, 2004). The indicators based on the 
derivative ellipse angle ( ̅  ) and dimensions ratio (  ̅̅ ̅̅

  ), as well the correlation 
derivative indicator (    ), and confidence ellipse derivative indicator (    ) are defined 
by: 

 ̅  =∑     
      

         (5.19) 

  ̅̅ ̅̅
  =∑ (

   
  

   
  )   

         (5.20) 

       
∑ |    (

 

  
       

   
 

  
       

  )|
   
        

   
 (5.21) 

       

∑ (
   

  

 
√  

   
  

   
  )

   
        

   
 

(5.22) 

where    
      

  , and    
   are, respectively, the inclination, the major axis and the 

minor axis of the ellipses constructed considering the covariance matrix of 

(
 

  
       

  )  (
 

  
       

  ). According to our experience, after several tests considering the 

proposed method, if at least one of the indicators (kurtosis or skewness) is higher than 
0.1, is indicative of MPM dominance.  

5.3 Case Studies 

5.3.1 Simple MPC SISO 

This case study illustrates the method applied to a simple case study. A SISO MPC was 
configured in MATLABTM, whose tuning parameters of the controlled variable (CV) and 
manipulated variable (MV) are shown in Table 5.1. Three scenarios are evaluated. In the 
first (Scenario 1), there is a model-plant mismatch (MPM) and no unmeasured 
disturbance was considered. In the second (Scenario 2), the measured output is corrupted 
by an unmeasured disturbance (UD) and the plant model is perfect (i.e., the process 
behavior is equal to controller prediction model). The last scenario (Scenario 3), contains 
both MPM and UD. Table 5.2 shows the disturbance model    and the plant model, 
whose behaviors are shown in Figure 5.6. 
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Table 5.1: MPC SISO case: Tuning parameters of MPC 

Sample Time 10s 

Prediction Horizon 11 

Control Horizon 3 

CV weight 5500 

Move suppression weight 3000 

Controller Model       
          

           
 

MV lower variable limit -10 

MV upper variable limit 10 

 

Table 5.2: MPC SISO case: Scenarios definitions 

Unmeasured disturbance 
      

         
 

Model-plant mismatch      
           

           
 

 

  

(a) (b) 

Figure 5.6:  MPC SISO case: (a) UD signal and (b) step response of plant model versus 
controller model 

The scenarios described were simulated under perturbation of controlled variable 
setpoint (    ), where two frequencies of excitation were considered in order to evaluate 
the dependency of method with the perturbation pattern. Figure 5.7 illustrates the 
performed perturbation and respective nominal signal (  ), i.e., the output obtained 
without model-plant mismatch.  
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(a) less frequent setpoint changes (b)  more frequent setpoint changes 

Figure 5.7:  MPC SISO case:  Perturbations in the setpoint and respective nominal 
response 

A white noise with mean 0 and standard deviation 2% of the variable range was added 
to the measured output. Data were generated for three considered scenarios and the 
proposed method was applied.  The results of Scenarios 1, 2, and 3 with less frequent 
setpoint changes are presented in Figures 5.8, 5.9, and 5.10, respectively. To illustrate the 
method, the kurtosis derivative confidence ellipses were constructed for these scenarios 
considering the       (     ), as shown in Figure 5.11.  

  

(a) (b) 

Figure 5.8:  MPC SISO case:  (a) measured output ( ) and (b) estimated        
 

and       
 for Scenario 1 with less frequent setpoint changes 

  

(a) (b) 

Figure 5.9: MPC SISO case:  (a) measured output ( ) and (b) estimated        
 

and       
 for Scenario 2 with less frequent setpoint changes 
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(a) (b) 

Figure 5.10: MPC SISO case:  (a) measured output ( ) and (b) estimated        
 and       

 

for Scenario 3 with less frequent setpoint changes 

   

(a) (b) (c) 

Figure 5.11: MPC SISO case:  Kurtosis derivative confidence ellipses for (a) Scenario 1, 
(b) Scenario 2, and (c) Scenario 3 with less frequent setpoint changes 

The comparison of Figures 5.8a and 5.9a with Figure 5.7 demonstrates that both 
scenarios cause changes in MPC performance. Figure 5.8b illustrates the dependence 
relation of        and        in case of MPM, since the peaks in the data occur at the 

same instant and have similar magnitudes. However, this behavior does not occur in 
presence of unmeasured disturbance (Figures 5.9b). For the scenario with MPM and UD 
(Figure 5.10), the effect of the model-plant mismatch is most significant. The ellipse shape 
(Figure 5.11) captures the dominant effect, since the shape tends to be more inclined 
with MPM dominance and to have a horizontal orientation when an UD is dominant.  

We calculated the indices presented in section 5.2.4 considering a moving window 
size (  ) varying from 6 to 22 (      to    ). Tables 5.3 and 5.4 summarize the results. 
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Table 5.3: MPC SISO case:  Indices calculated for scenarios with less frequent setpoint 
changes 

           

Scenario Indicator                         

MPM 
(Scenario 1) 

 ̅  28.8 37.5 41.3 37.7 

  ̅̅̅̅̅
  0.50 0.52 0.52 0.56 

    0.45 0.59 0.60 0.55 

    0.53 0.55 0.52 0.53 

UD 
(Scenario 2) 

 ̅  9.1 20.9 3.40 7.19 

  ̅̅̅̅̅
  0.60 0.75 0.58 0.66 

    0.08 0.20 0.03 0.07 

    0.06 0.12 0.03 0.05 

MPM+UD 
(Scenario 3) 

 ̅  23.1 42.6 32.7 33.7 

  ̅̅̅̅̅
  0.52 0.53 0.56 0.53 

    0.36 0.63 0.48 0.46 

    0.47 0.55 0.47 0.41 
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Table 5.4: MPC SISO case:  Indices calculated for scenarios with more frequent 
setpoint changes 

           

Scenario Indicator                         

MPM 
(Scenario 1) 

 ̅  29.4 36.2 40.7 36.8 

  ̅̅̅̅̅
  0.51 0.41 0.52 0.54 

    0.46 0.63 0.60 0.57 

    0.51 0.70 0.56 0.54 

UD 
(Scenario 2) 

 ̅  7.16 8.01 2.81 3.58 

  ̅̅̅̅̅
  0.53 0.65 0.51 0.57 

    0.11 0.10 0.06 0.04 

    0.18 0.12 0.08 0.06 

MPM+UD 
(Scenario 3) 

 ̅  23.6 34.1 40.9 36.0 

  ̅̅̅̅̅
  0.56 0.52 0.62 0.65 

    0.55 0.56 0.56 0.49 

    0.43 0.38 0.45 0.40 

 

Considering the kutosis and skewness evaluation, when the system is under a single 
model inconsistency (i.e., unmeaseured disturbance or model-plant mismatch) the use of 
the raw signal or its derivatives are capable to detect the source of the modeling problem. 
However, as expected, the indices based on derivatives can better capture the tendency 
of the modeling problem, showing sharper and clearer decision values and threshold for 
the cases with MPM or UD.  For example, using the derived signals, the mean angles ( ̅  ) 
do not exced 7.5o in Scenario 2 and are higher than 35o in Scenario 1. When the raw 
signals are considered, these limits ( ̅ ) are 21o and 28.5o. Similarly,       and      are 
smaller than 0.08 in the presence of UD and higher than 0.53 in the presence of MPM, 
while the     and     limits are 0.20 and 0.45.  

When the system is under unmeasured disturbance and model-plant mismatch at the 
same time (Scenario 3), the method indicates the dominant effect of the MPM, because 
the indicators (    and    ) are higher than 0.35 and the angles ( ̅ )  are higher than 23o. 
The results are analoguos in both cases of setpoint changes, which means that the 
method does not depend on a steady state condition in the dataset. In all cases, the 
ellipse dimension (  ̅̅ ̅̅

 ) does not provide any useful information when evaluated alone. 
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To illustrate a case with the dominanect of an UD, a new scenario was generated 
(Scenario 4), using the gain from the disturbance model (Table 5.2) five times higher. 
Figure 5.12 illustrates the results for the measurements and kurtosis confidence ellipses 
with      . 

   

(a) (b) (c) 

Figure 5.12: MPC SISO case: (a) measured output ( ), (b) estimated         

and       , (c) kurtosis confidence ellipse for Scenario 4 with less frequent setpoint 

changes 

The comparison of Figure 5.12a with Figure 5.7 highlights the fact that Scenario 4 
cause changes in MPC performance. Figure 5.12b illustrates a small dependence relation 
between        and        and highlights the dominance of an UD. The circular tendency 

of the ellipses (Figure 5.12c) captures the dominant UD effect. Table 5.5 show the indexes 
described in section 5.2.4 for a moving window size (  ) varying between 6 and 22. 

Table 5.5: MPC SISO case:  Indices calculated for Scenario 4 

           

setpoint 
change 

Indicator 
 
     

                  

Less 

frequent 

 ̅  37.4 27.9 17.7 13.4 

  ̅̅̅̅̅
  0.71 0.65 0.85 0.92 

    0.44 0.35 0.12 0.08 

    0.32 0.34 0.06 0.03 

More 

frequent 

 ̅  16.36 13.06 16.36 13.06 

  ̅̅̅̅̅
  0.76 0.80 0.83 0.88 

    0.36 0.21 0.14 0.09 

    0.24 0.11 0.10 0.04 

 



112    Capítulo 5 – Diagnosis of poor performance in model predictive controllers: Unmeasured Disturbance versus 

Model-Plant Mismatch 

Table 5.5 shows that, for Scenario 4, the use of the derived signals generates superior 
results when compared with the use of the raw signals, since      and      do not 
exceed 0.15 while     and     reach values greater than 0.4, even with a dominant effect 
of UD (see Figure 5.12). Results also show that, although  ̅   are high, the ellipses 
dimension rate   ̅̅ ̅̅

   is also high, denoting its circular trend. Therefore, it is necessary to 
evalute both dimensions for a correct diagnosis. Consequently, the analysis based on      
or      is simpler, conclusive, and relies on a direct comparison with the recommended 
threshold. 

5.3.2 The Shell Heavy Oil Fractionator 

The Shell Heavy Oil Fractionator is a problem originally presented by Prett & Morari 
(1987). The main feature of this process is the high coupling among all channels as well as 
large time delays. The fractionator is characterized by three product draws and three side 
pumparounds. The heat requirement of the column enters with the feed, which is a 
gaseous stream. Product specifications for the top and side draw streams are determined 
by economics and operating requirements. There is no product specification for the 
bottom draw, but there is an operating constraint on the temperature in the lower part of 
the column. The three circulating loops remove heat to achieve the desired product 
separation.  Figure 5.13 illustrates the process. 

 

Figure 5.13: Schematic representation of Shell Heavy Oil Fractionator. (Maciejowski, 
2002) 

This system was implemented in Matlab/Simulink and a MPC was configured. The 
main objective was to control the top composition (  ), the side composition (  ), and 
the bottom reflux temperature (  ) in the respective setpoint by the manipulation of the 
top draw (  ), side draw (  ), and bottom reflux duty (  ). The process model (  ) is 
given by: 
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 (5.23) 

The tuning was set based on Farenzena (2008), whose parameters are presented in 
Table 5.6. Four MPMs are defined for        

, which are shown in Figure 5.14. Four UD 

signals are also defined (Figure 5.15) and added in   .  

Table 5.6: Shell heavy oil fractionator case: Tuning Parameters of MPC 

Sample Time 2 min 

Prediction Horizon 20 

Control Horizon 4 

Controlled Variable Weight             ,       

Move Suppression                    

 

 

Figure 5.14: Shell heavy oil fractionator case: Step response of MPMs in        
 

 

Figure 5.15: Shell heavy oil fractionator case: UD signals added in   . 

Figure 5.16 shows the setpoint perturbations used in the diagnosis procedure applied 
to the different scenarios containing MPMs and UDs. For the generated data, the indices  
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     and      were calculated with moving windows (  ) varying from 10 to 40. Here, 
only the indices based on the derivatives were used, once they have shown a better 
result, as presented in section 5.3.1. Table 5.7 summarizes this analysis. The evaluation 
was performed only for    since the MPMs and UDs were only added in this CV. 

 

Figure 5.16: Shell heavy oil fractionator case: Perturbations in the setpoints. 

Table 5.7: Shell heavy oil fractionator case: Indicators for Scenario containing MPM or 
UD in    

                             

MPM1 0.03 0.10 0.11 0.22 

MPM2 0.05 0.13 0.08 0.21 

MPM3 0.21 0.43 0.36 0.52 

MPM4 0.02 0.11 0.03 0.18 

UD1 0.016 0.024 0.031 0.036 

UD2 0.018 0.044 0.025 0.036 

UD3 0.015 0.031 0.021 0.039 

UD4 0.10 0.11 0.038 0.039 

 

Results in Table 5.7 show that, for all evaluated cases, at least one of the statistical 
distributions indicates MPM when it was present. The highest      for each scenario is 
superior to 0.1 when a MPM is present and does not exceed 0.05 when an unmeasured 
disturbance occurs, except for UD4, where            . The      works in all scenarios, 
indicating at least one      higher than 0.18 when a MPM is present and not exceeding 
0.04 in cases with UD. Based on this evaluation, we can conclude that the      is more 
reliable than     . Furthermore, the difference in the      between the cases with MPM 
and UD is higher, allowing an easier and more conclusive the interpretation. Moreover, 
for the success of the method, it is fundamental to evaluate both kurtosis and skewness. 
As the method is a statistical approach, it is not always possible to detect the similarities 



Capítulo 5 – Diagnosis of poor performance in model predictive controllers: Unmeasured Disturbance versus Model-

Plant Mismatch 115 

between the statistical distributions for both coefficients. Thus, when more coefficients 
are evaluated, the greater the likelihood of finding the MPM effects.  

We also simulated and applied the method to scenarios containing MPM and UD at 
the same time. To evaluate the method efficiency, we estimate the real dominant effect 
(MPM or UD) and compare the results with the corresponding      and     . The real 
dominant effect is determined by comparison of the Variance Index (Botelho et al., 
2015a/cap. 3) of the data generated only with MPM, only with UD and with both. The 
Variance Index is defined as: 

      
           

            
 (5.24) 

Thus, the      was calculated for the data generated only with MPM (       ) and 
only with UD (      ). The results were compared with the Variance Index for the case 
with MPM+UD (          ). The closer the         or        of            , the 
higher the dominance of the corresponding effect. Table 5.8 shows the results. The 
evaluation was performed only for    since the MPMs and UDs were added in this CV. 

Table 5.8: Shell heavy oil fractionator case: Indices for the scenarios containing MPM 
and UD in    

 MPM1+UD1 MPM2+UD2 MPM3+UD3 MPM4+UD4 

        3.21 1.24 9.72 1.48 

       1.19 2.67 1.25 3.02 

           3.07 3.46 9.78 3.09 

       0.09 0.03 0.46 0.06 

       0.31 0.04 0.35 0.08 

       0.16 0.04 0.58 0.03 

       0.35 0.03 0.43 0.04 

 

The results in Table 5.8 show that the method is capable to detect the dominant 
effect when both model-plant mismatches and unmeasured disturbances are occurring at 
the same time. For the case MPM1+UD1, the            is nearest of        , 
indicating that the MPM is dominant. The        and        are equal to 0.31 and 0.35, 
respectively. For the case MPM4+UD4, the            is nearest to       , indicating 
that the UD is dominant. The        and        are equal to 0.08 and 0.04, respectively.   

5.3.3 The Quadruple-Tank Process 

This case study aims to illustrate the application of the method in a nonlinear plant. 
The system is composed of four cylindrical tanks connected according to Figure 5.17. 
Water is pumped into the tanks through the pumps with voltages    and    . The flow of 
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each pump is split up using the valves, with openings equal to    and   , respectively. 
More details can be found in Johanson (2002).   

 

Figure 5.17:  Diagram of the Quadruple-Tank Process case study. 

The Mass balances around each tank are: 
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   (5.27) 

   

  
   

   

  

    
      

        

  
   (5.28) 

Where    is the level of each tank,      and      are the pump output flows,    is the 
cross-section area of each tank,     is the discharge coefficient of each tank, and      is 
the discharge exponent. Table 5.9 provides the model parameters. 
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Table 5.9: The Quadruple-Tank Process case: model parameter values 

                            

                      ⁄  

                      ⁄  

               0.5 

                       0.5 

                       0.5 

                       0.5 

 

To illustrate the proposed approach, a MPC controller was simulated in 
Matlab/Simulink, whose controlled variables are the four levels (  ,       and   ) and 
the manipulated variables are pump voltages (   and   ) and valve openings (   and   ).  

The linear model, used by the MPC, was obtained from the linearization of the 
nonlinear model at the operating point defined by the manipulated variables        
                , and        , given by: 
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 (5.29) 

The controller was tuned using RPN methodology (Trierweiler &  Farina, 2003), whose 
values are shown in Table 5.10.  

Table 5.11 shows the different scenarios evaluated in this case study. Case 0 is the 
nominal case, without MPM and unmeasured disturbances. Cases 1 to 4 and 7 to 10 show 
a MPM whereas the others have unmeasured disturbances. The data used in this study 
was simulated using a sequence of step setpoint changes (Figure 5.18) and including a 
white noise with magnitude 2% of the variables range was added on the output 
measurements. The plant is simulated considering the nonlinear model of equations 5.25 
to 5.28.  
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Table 5.10: The Quadruple-Tank Process case: MPC tuning parameters 

Sample Time 10s 

Prediction Horizon 48 

Control Horizon 12 

CVs Weights     =             = 10 

Move Suppression     =             = 50 

MVs lower limits       
   =       

    0.1          
          

         

MVs upper limits       
   =       

    10          
          

         

CVs lowe limits       
          

          
          

      

CVs upper limits       
          

          
          

       

 

 

Figure 5.18: The Quadruple-Tank Process Case Study: Perturbations in the Setpoints 
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Table 5.11: The Quadruple-Tank Process case: Scenarios Configuration 

MI Parameter Value 

0 -- -- 

1                  

2                  

3            

4          

5 Unmeasured disturbance in    
 

     
 

6 Unmeasured disturbance in    
 

    
 

7          

8           

9     *2.5 

10     *1/3 

11 Unmeasured disturbance in    
          

   
 

12 Unmeasured disturbance in    
  

     
 

13 Unmeasured disturbance: Extra flow to  tank 1 
          

   
 

14 Unmeasured disturbance: Extra flow to  tank 2 
  

     
 

 

The method was applied in the most affected controlled variable for each scenario. 
This selection was made considering the corresponding CV with the highest variance of 
     (equation 5.24). For each selected CV, the confidence ellipses considering  
      are presented in Figures 5.19 and 5.20. Table 5.12 shows the      and      for 
a moving windows size (  ) varying from 10 to 40 
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Table 5.12: The Quadruple-Tank Process case:       and      for each scenario 

MI 
Evaluated 

CV 
                            

1    0.44 0.79 0.30 0.83 

2    0.28 0.63 0.23 0.70 

3    0.17 0.14 0.34 0.30 

4    0.33 0.68 0.20 0.64 

5    0.01 0.00 0.03 0.01 

6    0.01 0.00 0.02 0.02 

7    0.27 0.57 0.23 0.67 

8    0.27 0.60 0.31 0.78 

9    0.34 0.72 0.36 0.88 

10    0.52 0.59 0.52 0.62 

11    0.01 0.00 0.03 0.01 

12    0.04 0.01 0.11 0.08 

13    0.01 0.01 0.03 0.02 

14    0.01 0.01 0.05 0.04 

 

 

Figure 5.19:  The Quadruple-Tank Process Case Study: Kurtosis derivative confidence 
ellipse for       
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Figure 5.20:  The Quadruple-Tank Process Case Study:  Skewness derivative 
confidence ellipse for       

The results show that the indices based on skewness and kurtosis evaluation allows us 
to distinguish the root cause of the problem and points to the channel with mismatch, in 
all scenarios. The ellipses (Figure 5.19 and 5.20) tend to be more sloped when a MPM is 
present. Table 5.12 shows the highest      superior to 0.17 when a MPM is present and 
not exceeding 0.04 when a UD occurs. The highest      is superior to 0.23 when a MPM is 
present and does not exceed 0.04 when a UD occurs. In the simulated scenarios, the 
nonlinearity of the plant does not impact the system behavior, since the diagnosis was 
compatible with the added MPM/UD. However, when the nonlinearity is significant, the 
diagnosis will indicate a MPM. 

5.4 Conclusions 

This paper proposed an approach to distinguish between model-plant mismatch or 
unmeasured disturbance impacting in the performance of model predictive controllers. 
The idea behind the method is to compare the nominal system outputs with the nominal 
error. When a MPM is responsible for the performance degradation, these signals have 
similarities because both are dependent on the control actions. However, when a UD is 
present, the nominal error depends on the disturbance signal, which comes from an 
external source. Thus, the nominal error does not have relation with the nominal output.  

The comparison between the nominal error and nominal output was performed 
considering the statistical distribution of the signals along moving windows. The statistical 
distribution is defined from the kurtosis and skewness coefficients. Four indicators were 
proposed: one was based on the Person’s correlation coefficient (  ), another based in 
the confidence ellipse of the statistical distributions (  ), beyond the average ellipses 
angles ( ̅) and average size of the generated ellipses (  ̅̅ ̅̅ ). Besides, we also proposed the 
evaluation of the indicators using the derivative of statistical distributions.  

Firstly, a SISO Linear MPC case study was presented to illustrate the method and 
verify the best approach among the suggested indices. The results show that, although 
both alternatives provide similar results in most cases, the use of statistical distribution 
derivatives is more conclusive than the use of the raw signals, since it is superior in 
capturing dataset tendency. Among the indices, the      and      are the most 
recommended, since the angle   ̅     and the dimensions (  ̅̅ ̅̅

  ) must be analyzed in 
combination, once the MPM or UD indicator depends on the shape and inclination of the 
confidence ellipses. When the system contains MPM and UD at the same time, the 
method is capable of detecting the dominant effect, indicating higher values of       and 
    , as the effect of the MPM is more evident. 



122    Capítulo 5 – Diagnosis of poor performance in model predictive controllers: Unmeasured Disturbance versus 

Model-Plant Mismatch 

Two MIMO case studies are also discussed: the Shell heavy oil fractionator and the 
Quadruple-tanks process. Various scenarios were generated for both cases, considering 
only model-plant mismatches, only unmeasured disturbances, and both at the same time. 
The results show that the proposed method is capable of distinguishing between MPM or 
UD in all simulated experiments. The      was more reliable than     , not failing in any 
case. Its value does not exceed 0.1 when a UD is present and is always superior to this 
amount when a MPM is present. Results also show that, when a MPM occurs, kurtosis 
and skewness do not necessarily both have indicator values higher than 0.1.  Thus, the 
analysis of kurtosis and skewness are complementary, and just one of them indicating 
MPM is necessary for this diagnosis be true. 



 

 

 

 Performance Assessment and Capítulo 6 –
Diagnosis of MPCs with Control Ranges 

 

Abstract8: Many industrial model predictive control applications use as reference a 
range where the variable should be kept inside, instead of a specific value (setpoint). 
Although assess the model quality of these controllers is fundamental, most available 
MPC assessment techniques require setpoints as reference, providing misleading results 
when they are unavailable. The methods proposed by Botelho et al. (2015a/cap. 3), 
Botelho et al. (2015b/cap. 4)  and Botelho et al. (2015c/cap. 5) allows the MPC model 
assessment and diagnosis for both setpoint and control range MPC configurations. This 
paper shows the application of these methods in a MPC where the variables are 
controlled by control range. The Shell Heavy Oil Process is used as case study, showing 
that the method was capable to estimate the effect of modeling problems and indicate 
the controlled variable associated as well as if the problem is due to a model-plant 
mismatch or unmeasured disturbance.  

Keywords: model predictive control, model assessment, model-plant mismatch, 
unmeasured disturbance, soft constraints. 

 

 

 

                                                      

8 Submetido para publicação no periódico ”Control Engineering Practice”. 
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6.1 Introduction 

Model predictive controllers (MPCs) have been widely used in the process industry 
over the last decades.  They uses a dynamic process model to predict the behavior of 
controlled variables (CVs) along the future horizon, based on past control actions. From 
this result, an optimization algorithm calculates the control actions that lead the process 
to the optimal trajectory. The maintenance of MPC is an important and challenging 
problem, since the performance degradation can come from many different sources, such 
as: wrong tuning parameters (i.e., control and prediction horizon, weighting matrices, 
sampling time, etc.), poor model quality, poor disturbance rejection, and inappropriate 
constraint setup (Sun et al., 2013).  

Although predictive controllers rely on a solid theoretical foundation, the industrial 
and commercial MPCs have their own control policy (see Holkar & Waghmare, Qin & 
Badgwell, 2003) This means that they use different combinations of operational pratices, 
algorithms and variable considerations. Among these policies, the MPCs with variables 
controlled by range is a needed pratice in the most real process. Usually, these controllers 
have the number of monitored variables larger than the manipulated ones. Therefore, the 
MPC do not have degrees of freedom enough to maintain all the monitored variables in 
the setpoints and the control objective is to keep them inside a range instead of 
setpoints. The range limits (soft-constraints) can be violated but a penalization term is 
included in the MPC cost function when it occurs. In some cases, the same controller has 
separate strategies for different variables (setpoints and soft-constraints).  

Regardless the applied control strategy, monitoring and evaluating the quality of the 
MPC’s model is fundamental, since this is one of the most important and critical points 
for the controller operation. Several techniques are available in literature (e.g. Huang et 
al., 2003; Conner & Seborg, 2005; Jiang et al., 2012; Badwe et al., 2009; Badwe et al. 
2010; Sun et al. 2013; Kano et al., 2010, Ji et al., 2012). Although most of them are 
efficient for the case with setpoints, they cannot working with control range variables and 
when they are applied on these cases, they  produce misleading and inconclusive results.  

Botelho et al. (2015a/cap. 3), Botelho et al. (2015b/cap. 4)  and Botelho et al. 
(2015c/cap. 5) proposed a series of methods for MPC model assessment for detecting  
the controlled variable (CV) with performance problems and, in the case of bad 
performance, diagnose if it come from a model-plant mismatch (MPM) or unmeasured 
disturbance (UD). The main advantage of these methods is the setpoint independence.  
Moreover, the methods are simple to apply and interpret. These characteristics make the 
methodologies flexible to several controller formulations, including MPCs by range, 
facilitating their industrial application for controllers assessment. 

“Real” MPC applications have available models with all channels corrupted in different 
levels, demanding, thus, methods for assessment that are able to deal with this diversity, 
and point the variables that really impact the final performance. Therefore, this paper 
aims to make an exhaustive test for the methods and verify their efficiency under a 
diversity of modeling errors. Hundreds of random scenarios were generated considering a 
MPC by range applied in the Shell Heavy Oil Fractionator process. The paper also presents 
an evaluation of the amount of uncertainties allowed in the nominal sensitivity function 
without diagnosis quality loss. 
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6.2 Methods for MPC model assessment  

This section summarizes the method proposed by Botelho et al. (2015a/cap. 3, b/cap. 
4 and c/cap. 5), which considers a control loop as shown in Figure 6.1, where   is the MPC 
controller,    the nominal model, and   the real plant. The model-plant mismatch (MPM) 
magnitude is   . The theoretical system without mismatch is shown in Figure 6.1a, for 
which nominal closed loop outputs are         is the nominal complementary sensitivity 
function. The real system, in a scenario subject to MPM, is shown in Figure 6.1b, where 
     corresponds to the setpoints,   are the manipulated variables,   are the measured 
outputs,      are the simulated outputs of the nominal model perturbed by the actual 
control actions  , and   is the complementary sensitivity function. Figure 6.1c shows the 
real system subject to an unmeasured disturbance (UD), where   is the sequence of 
independent random variables,    is the unknown disturbance model and    are the 
disturbance signals. 

 

  
Figure 6.1: Schematic diagram of closed-loop (a) nominal system, (b) with model-plant 

mismatch (MPM) and (c) with unmeasured disturbance (UD) 

The method is based on the premise that an effective model should represent the real 
system at the frequency where the MPC works. Thus, to assess the real influence of the 
model-plant mismatch, the closed-loop performance must be considered. The following 
definitions can be found in many classical control books (e.g., Skogestad & Postlethwaite, 
1996):  

          (6.1) 

                             (6.2) 

        (6.3) 

           (6.4) 

where    is the nominal sensitivity funcion and   is the identity matrix. Botelho et al. 
(2015a/cap. 3) show that the nominal output    (i.e., the output of the system in the 
absence of MPM or UD) could be estimated according to: 
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                 (6.5) 

The nominal sensitivity function (  ) is a square transfer matrix that characterizes the 
system response in closed loop (see equations 6.1, 6.2 and 6.3). Its dimensions are equal 
to the number of outputs. The diagonal elements (      

) give the closed loop behavior 

of the outputs when their references (setpoints or soft constraints) are changed. The 
remaining elements provide the impact of these references variation in the others 
outputs. Thus, Botelho et al. (2015b/cap. 4) suggest an extension of equation 6.5, as 
follow:  

      
         

          (6.6) 

The       
 works as a softening for the simulation residuals (      ), and retains 

only the part that is not removed by the controller feedback and is impacting in the 
performance of corresponding output. Variables without significant MPM or UD will 
have       

  , because their simulation errors are near to zero. Applying      instead of 

      
 can be used to verify how the outputs affect each other. In this case,     

   can 

occur even for variables without any significant MPM or UD. This difference is produced 
by a MPM and/or UD in another output variable and is transmitted to the other channels 
by coupling in   . The stronger is the coupling among the variable, the larger is the 
difference    

  , considering the existence of MPMs or UDs in the system. 

Since    and       
 are estimations of the process outputs in the absence of a model-

plant mismatch or unmeasured disturbance, they could be considered benchmarks for 
controller-model output response, indicating how the modeling errors are being 
propagated and were they are located, respectively.  A useful index is the comparison of 
output variances in nominal and real case: 

      
       ̅ 

        ̅  
 (6.7) 

         
       ̅ 

          
  ̅     

 
 (6.8) 

If         means that there is no modeling problem and unmeasured disturbances 
affecting the corresponding output, on the other hand, when         and           , 

the corresponding output has a MPM or UD. Otherwise, when         and          

  the corresponding output does not have trouble in their models, but its variance is 
being affected by MPM or UD that originates at other outputs. 

Another possibility is to analyze the autocorrelation function (ACF) of     ̅     ̅    
and       

  ̅     
. A high value of ACF means that the current signal value is strongly 

correlated with the past values. The ACF curves are useful to analyze the effect of MPMs 
and UDs in MPC speed of response or to detect oscillatory behavior (Huang & Shah, 
1999). 

Once the outputs with modeling problem were detected, it is desirable to identify the 
cause. A key issue is to determine whether the decline in performance is due to MPM or 
UD. The former occurs when the process model cannot adequately describe the relations 
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between model input and output variables and a re-identification is required. On the 
other hand, an unmeasured disturbance occurs when there is a deterministic unknown 
signal influencing the output behavior. The effects of a MPM and UD in the process 
outputs are very similar (see Figures 6.1b and 6.1c), thus, they are not easily 
distinguished. To overcome this problem, Botelho et al. (2015c/cap. 5) proposed a 
systematic for identifying if the dominant effect is related to MPM or UD.  The main idea 
is quantify the correlation distribution between the nominal diagonal outputs       

 with 

the nominal error       
 defined by: 

      
        

     (6.9) 

Considering that       
 is the estimated output free from model-plant mismatch and 

unmeasured disturbances,       
 can be interpreted as the effect of the modeling 

problems in the output. When an output is under a MPM, the error come from the 
model, then       

 will be dependent of the inputs ( ), as well as       
, causing a similar 

frequency pattern. When an output is under an unmeasured disturbance,       
 is 

independent of   because the disturbances come from an external source. Nonetheless, 
      

 continues to be dependent on the input variables movements. This means that the 

frequency of variation of       
 and       

 are uncorrelated. Therefore, the comparison 

between       
 and       

 patterns can be used to discriminate between model-plant 

mismatch and unmeasured disturbances. According to the author, the method uses the 
      

 instead    because the diagonal terms allow the location of the modeling problem 

in each output. 

The diagnosis procedure to distinguish between MPM and UD consists of the analysis 
of the statistical distribution of        

 and       
 along a moving window (  ). The 

statistical distribution is evaluated by the skewness (   ) and kurtosis (   ) coefficients: 

     
    

  

(√  )
  (6.10) 

     
    

  

 √    
 (6.11) 

where   ,    and    are the second, third and fourth order central moment, defined as: 

   
∑      ̅    

   

  
         (6.12) 

Where    is the evaluated dataset (      
 or       

) and  ̅ is it corresponding mean. 

A high value of kurtosis means that the data present a large number of recordings away 
from the mean, when compared with a normal distribution. The sample skewness 
provides an indicator of how asymmetric is the dataset. Figures 6.2 and 6.3 illustrate the 
expected result for a hypothetical case. When a MPM is present, the variation of 
statistical distributions of        

and        
shows the major variation at the same time 

(see the peaks), which does not occur when a UD is present. 



128    Capítulo 6 – Performance Assessment and Diagnosis of MPCs with Control Ranges 

   

(a) (b) (c) 

Figure 6.2: Illustrative situation with MPM: (a) measured  , estimated       
, 

and       
 ; (b) kurtosis coefficients along a moving window; and (c) skewness 

coefficients along a moving window 

   

(a) (b) (c) 

Figure 6.3: Illustrative situation with UD: (a) measured  , estimated       
 and       

 

; (b) kurtosis coefficients along a moving window; and (c) skewness coefficients along a 
moving window 

Botelho et al. (2015c/cap. 5) analyze different approaches to compare       
 and 

      
. The most reliable alternative is based on the Pearson’s  correlation coefficients of 

skewness and kurtosis derivatives. A scan is performed varying    size in the 
neighborhood of the prediction horizon (      to    , where    is the MPC’s prediction 
horizon). The indicators (       and       ) are based in the mean of absolute correlation 
between the derivatives of statistical distributions: 
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where     are the number of scanned   ,      is the Pearson's correlation coefficient. 
The larger the values of        and       , the higher is the probability of a model-plant 
mismatch dominance. It enough one of these indices be high for classifying the 
performance issue caused by MPM. Thus,      is defined by: 

                       (6.15) 
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6.3 MPC by Control Range 

The square controllers are characterized by a system with the same number of 
manipulated variables (MVs) as controlled variables (CVs), leading to a control problem 
with a unique solution (Qin, 2003). Thus, the controller has enough degrees of freedom to 
keep each CV in the corresponding setpoints. Although this ideal case is the most studied 
in the literature, it is an uncommon industrial MPC implementation.  

There are two kinds of rectangular systems. The best situation corresponds to the fat 
plant cases, where the number of MVs is higher than CVs. In this case, the  extra degrees 
of freedom available are used to optimize the operation and targets for the manipulated 
variables are usually applied to achieve the economic performance (Qin, 2003). 
Unfortunately, the usual case for a nonsquare configuration is with more CVs than MVs 
(thin plant case). Here, it is not possible to meet all of the control objectives, so that, the 
most common strategy consists of defining operational bands for CVs instead of a fixed 
setpoint (Campos et al., 2013; Qin, 2003). We can also call these control bands as 
fatpoints and the MPC with control range. It is possible to operate the MPC purely by 
range or maintain some CVs with fix setpoint and the others with range, depending on 
the process objectives. 

Soft constraints are commonly used to replace setpoints in control algorithms. Rather 
than maintain all CVs to a specific value, upper and lower limits are specified. The control 
algorithm tries to maintain the control variable within these limits unless necessity forces 
it to relax the constraints (Yuan & Lennox, 2006). A straightforward way for softening the 
constraints is to introduce slack variables which are defined such that they are non-zero 
only if the corresponding constraint is violated (Kerrigan & Maciejowski, 2000). The term 
of the soft constraint in the MPC cost function is defined as: 

   
 

∑      
 

    

   

 

          
       

    
       

      

     
 

(6.16) 

where    is the prediction horizon,      
    and      

    are the upper and upper lower of soft 

constraint,   is the penalization of soft constraint violation and   is the slack variable. 
When    , the constraint is satisfied and no penalization is inserted in the cost 
function.   

Usually, MPC by control range is combined with a simple real time optimization layer, 
which set the optimal steady state value for MVs (targets) according to economic 
objectives. Figure 6.4 shows the typical architecture of these systems. 
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Figure 6.4:  Architecture of MPC controller with optimizer (adapted from  
Campos et al., 2013) 

Thus, when some CV violates its soft constraints, the MPC will use its degrees of 
freedom (MVs available) to take the CV back to its control range. In a normal situation, 
the controller will work to lead the process to the optimal cost. In the most cases, it 
means maintain some CVs with a soft constraint active, whose maximum number must 
equal to the number of available MVs. In this situation, the plant is reduced to a square 
sub-system and the active soft constraints works as “pseudo-setpoints”. 

The method presented in section 6.2 has the benefit to be independent of control 
policy (setpoint or soft-constraints), allowing its utilization, for example, in MPCs whose 
variables are controlled by control range. The core of the method is the analysis of the 
nominal sensitivity function (  ) and the corresponding complementary sensitivity 
function (  ), i.e. the nominal closed loop response (equation 6.3). By definition, these 
functions are related with the setpoints (see equation 6.1). Thus, some considerations 
need to be defined when the controller is setpoint independent, which are described 
below. 

Firstly, considering a system where all the CVs have fixed setpoint, it is expected that 
the diagonal of complementary nominal sensitivity function (      

) be a model with 

static gain equal to one and the remaining models with a zero at the origin (i.e., null static 
gain). Now let us consider a MPC whose variables are controlled by range, where the 
following situations may occur: 

- The evaluated CV have an active soft constraint: in this case, its behavior is very similar 
to a fixed setpoint case. Thus, the static gains of the corresponding       

 will be 1. The 

effect of this CV in another variable with active soft constraint will generate an off-
diagonal     with a zero at the origin (i.e., null static gain). The effect of this CV in a 
variable inside the range will generate an off-diagonal    with static gain different from 
zero, because this variable will assume a new steady state value. 

- The evaluated CV is inside the range: in this case, the variable does not have any 
influence in the control actions. It means that the effect of the controller feedback in this 
variable is null. Thus,       (diagonal and off-diagonal models) and equation 6.6 is 
reduced to: 

      
       (6.17) 
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Figure 6.5 summarizes the previous discussion illustrating the complementary 
nominal sensitivity function of a hypothetical MPC by range. 

 

Figure 6.5: Complementary nominal sensitivity function (  ) of a hypothetical MPC by 
range 

6.4 Case Study 

The Shell Benchmark Process was proposed by Prett &  Morari (1987) and is 
composed by a heavy oil fractionator, as represented in Figure 6.6. The main feature of 
this process is the high interaction among the variables as well as large time delays. The 
fractionator is characterized by three product draws and three side circulating loops. The 
heat requirement of the column enters with the feed, which is a gaseous stream. Product 
specifications for the top and side draw streams are determined by economics and 
operating requirements. There is no product specification for the bottom draw, but there 
is an operating constraint on the temperature in the lower part of the column. The three 
circulating loops remove heat to achieve the desired product separation.  
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Figure 6.6: Schematic representation of Shell Heavy Oil Fractionator  
(Maciejowski, 2002) 

A linear MPC was configured based on Maciejowski (2002). The controller is 
composed by 7 controlled variables (CVs), 3 manipulated variables (MVs) and 2 measured 
disturbances (MDs), which are presented in Table 6.1.  

The linear model for this process is given by:   
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 (6.18) 

where each row represents a CV (   to   ), the first three columns are the MVs (   to 
  ) and the others are the MDs (   and   ). 
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Table 6.1: MPC Variables 

Role Name Description 

Manipulated 
Variables (MVs) 

   Top Draw 

   Side Draw 

   Bottoms Reflux Duty 

Measured 
Disturbances (MDs) 

   
Intermediate Reflux 

Duty 

   Upper Reflux Duty 

Controlled Variables 
(CVs) 

   Top End Point 

   Side End Point 

   Top Temperature 

   
Upper Reflux 
Temperature 

   Side Draw Temperature 

   
Intermediate Reflux 

Temperature 

   
Bottoms Reflux 
Temperature 

 

The linear MPC controller was configured in MatlabTM/SimulinkTM. The MPC used has 
a simple real-time optimization layer, which set the optimal operating point according to 
economic objectives. The scheme presented by Figure 6.4 illustrates its architecture.  The 
cost function of the simple real-time optimization is defined by: 
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(6.19) 

where    are the manipulated variables costs,       are the corresponding to the closed-

loop steady-state prediction of CVs,      
    and      

    are the soft constraints of controlled 

variables,      
    

 and      
    

 are the constraints of MVs and      are the MVs targets.  

The optimal values calculated from the optimizer (    ) are transferred to the MPC 

optimization problem. Since the system contains more CVs than MVs, all the CVs of the 
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controller was configured by range. In this case, the MPC works to maintain all the 
controlled variables inside the soft constraint.  The MPC cost function is formulated as 
follows:  
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 (6.20) 

where    is the control horizon,    is the prediction horizon,    is the number of 
available MVs,    is the target weighting of MVs,     is the move suppression,    is the 
slack variable for soft the constraints,     is the penalization weight of soft constraint 

violation,      
    and      

    are the hard constraints of CVs. Table 6.2 summarizes the 

controller tuning and constraints used in this case study. 

The described system was simulated considering step changes in the measured 
disturbances (MDs) according to Figure 6.7. The generated inputs and outputs (in absence 
of MPM and UD) are presented in Figures 6.8 and 6.9, respectively. The Basis Case 
corresponds to these results, which are the references for comparison along of this study. 

 

Figure 6.7: Step changes in the measured disturbances. 
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Table 6.2: Tuning parameters and constraints of the MPC 

Sample Time 4min 

Prediction Horizon 
 (  ) 

75 

Control Horizon  
(  ) 

15 

MV Cost 
 (  ) 

     ,      ,       

MV Target Weight 
      

              

Move Suppression 
 (   ) 

                  

Weight of soft the 
constraints violation 

      

                                      

MV hard constraints 
(     

    
and      

    
  

      
    

       
          

        

      
          

          
         

CV hard constraints 
(     

    
and      

    
  

      
    

       
          

          
    

       
          

          
      

      
    

       
          

          
    

       
          

          
       

CV soft constraints 
(     

    
and      

    
  

      
    

       
          

          
    

       
          

       ,       
      

      
    

       
     ,       

          
    

       
          

          
         

 

 

Figure 6.8: Manipulated Variables for the Basis Case. 
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Figure 6.9: Controlled Variables for the Basis Case 

Figures 6.8 e 6.9 show that, for the considered perturbations, all the MVs are available 
(i.e., not saturated). Thus, the MPC works to keep    and    in their lower limits (     

   ) 

and    in its upper limit (     
   ). The others CVs remain between      

    and      
   . As discussed 

in section 6.3, variables whose predictions not have influence in the controller feedback 
and the modeling errors are preserved (    ). When a soft constraint is active, the 
controller feedback eliminates part of the modeling error. Based on this, the output 
sensitivity function (  ) consistent with the Basis Case was identified, and is illustrated in 
Figure 6.10. 

 

Figure 6.10: Output sensitivity function (  ) 
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6.5 Results and discussions  

6.5.1 Scenarios pre-defined 

Table 6.3 shows ten different scenarios containing model-plant mismatches and 
unmeasured disturbances that are analyzed in this section for the Shell fractionator case 
study.  The scenarios are composed by model-plant mismatches added in the models MV 
x CV (type MPM), unmeasured disturbances added in the CVs signals (type UD) and 
model-plant mismatches added in the feed-forward models, i.e., models MD x CV (type 
MPM-FF). 

Table 6.3: Scenarios Configuration 

Name Type 
Affected 
Output 

Affected 
Input 

Description 

Scen0 *** ** ** Basis Case 

Scen1 MPM     
   Do not impact the closed-loop 

behavior 

Scen2 MPM       Impact in    only (optimized CV) 

Scen3 MPM      ,   and    Impact in    only (CV in range) 

Scen4 MPM       Impact all over the system 

Scen5 UD    ** Impact in    only (optimized CV) 

Scen6 UD    ** Do not impact in the system 

Scen7 UD    ** Impact in    only (CV in range) 

Scen8 UD    ** Impact all over the system 

Scen9 MPM + UD    and      ,   and    Scen8 + Scen 3 

Scen10 MPM +UD    and       Scen4 + Scen 5 

Scen11 MPM –FF       Impact all over the system 

Scen12 MPM – FF        Impact in    only (CV in range) 

 

Each scenario was simulated considering the step changes in MDs presented in Figure 
6.7. A noise with magnitude 1% was added in the measurements. The methods described 
in section 6.2 were applied in the generated data. The model fit is captured by the 
modeling error            , which can be totalized by the      (total sum of 
squared simulation errors) defined by: 
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      ∑√ ∑          

       

   

  

   

 (6.21) 

where    is the number of outputs and         is the number of sampled data. Figure 
6.11 shows the      for all scenarios. The       (equation 6.7) quantifies the influence  of 
MPMs or UDs in the output variances, which cannot be compensated by MPC. The results 
of this index are presented in Figure 6.12.   

 

Figure 6.11:  Results of      

 

Figure 6.12: Results of      . The values outside the threshold lines (dot lines ) indicate 
that the MPC performances were different than the expected behavior 

Figure 6.11 makes evident that all scenarios contain modeling errors, since      is 
higher than the Basis Case. However, not always these errors affect the controller 
performance, as shown in Scen1 and Scen6, where       is near to one although of      
is high. The interpretation of       is coherent with the reality of each scenario (see Table 
6.3), showing that the problems in Scen4, Scen8, Scen9 and Scen10 affects all the CVs and 
in Scen2, Scen3 and Scen7 affect manly one CV. The main conclusion of this indicator is 
that all scenarios, (except Scen1 and Scen6) have modeling problems impacting in the 
outputs variances.  

To detect in which variables the modeling problem is concentrated, the          is 

used. Figure 6.13 shows the results for         .   
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Figure 6.13: Results of         . The values outside the threshold lines (dot lines) 

indicate that the MPC performances were different than the expected behavior. 

Results from Figure 6.13 show that          can detect the variables with model 

inconsistences responsible for the increase/decrease of the system variance pointed by 
     . In Scen4 and Scen8, a modeling problem in    affect all others CVs. When a single 
variable is affected (e.g., Scen2, Scen3, Scen5 and Scen7) the diagnosis of          and 

      are analogous. When more than one CV suffers a performance degradation as 
shown in Scen9 and 10,          is capable to point correctly all the variables responsible 

for the bad performance.  

Figures 6.13 and 6.14 make evident that the method is also capable to detect the 
modeling inconsistences when they are present in the measured disturbance models 
(feed-forward models), since the of       for Scen11 and Scen12 are coherent with the 
reality of each scenario (see Table 6.3) and the          can detect the variables with 

model inconsistences responsible for the increase/decrease of the system variance 
pointed by      . 

The comparison of ACF functions of  ,     and        are shown in Figure 6.14. This 

analysis is less sensitive than the     . However it allows a more complete diagnosis, 
because can detect oscillatory behaviors or changes in the speed of response. For 
example, in Scen5 the ACF make evident that    has an oscillatory behavior due to a 
modeling problem, since       and this error is in the own variable (  ), because 
       

is similar to    .  
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Figure 6.14: Results of ACF functions 

After the identification of the variables with modeling inconsistences the next step is 
to detect their source. The method described in section 6.2 is applied and the results for 
kurtosis(      )  and skewness (      ) are shown in Figure 6.15.  
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Figure 6.15: Correlation indicator of Skewness (      ) and Kurtosis (      ) 

Figure 6.15 shows the accuracy of the proposed indices to find the cause of the 
problem. In presence of MPM, at least one of indicators (kurtosis or skewness) tends to 
indicate higher values (Scen2 to Scen4, Scen9 for    and Scen10 for   ). In presence of 
UD both indicators are low (Scen5 to Scen8, Scen9 for    and Scen10 for   ). The method 
can also detect the presence of model-plant mismatches in the measured disturbance 
models (Scen11 and Scen12). 

6.5.2 Exhaustive tests 

CV affected by a MPM or UD 

The method was exhaustively tested to evaluate its effectivity, where 300 
experiments were performed, in which 150 contain only model-plant mismatches. The 
channels (i.e., pair CV versus MV) affected for the MPM in each experiment as well as the 
corrupted parameter of the model (static gain, time delay or time constant) and it value 
were randomly selected. The remaining 150 experiments were generated considering 
only unmeasured disturbances. The CV affect for each disturbance as well the disturbance 
model    (Figure 6.1) are also randomly selected. Table 6.4 summarizes the possible 
range of each random parameter. The random selection generates MPM and disturbance 
of different frequencies and magnitudes, where some examples are shown in Figure 6.16. 

Table 6.4: Range of random parameters 

  

Static Gain Multiplied by 0.3 to 1.5 

Time Constant Multiplied by 0.3 to 3 

Time Delay Added to -2 to 2 

   
(first order model) 

Static Gain Equal to 0.1 to 3 

Time Constant Equal to 30 to 300 

 



142    Capítulo 6 – Performance Assessment and Diagnosis of MPCs with Control Ranges 

  

(a) (b) 

Figure 6.16: Examples of (a) four different MPM in      (dot line is the nominal model) 
and (b) four different UD randomly generated for    

Simulations were performed considering step changes in the MD variables (   and 
  ), according to Figure 6.17. Firstly, the nominal system (i.e., without MPM or 
unmeasured disturbance) was simulated and designated as Basis Case. Each random 
experiment was also simulated and the methods of model assessment applied in the 
generated data. A noise of magnitude 1% was added in the measurements. Considering 
that the simulations are randomly generated, some experiments resulted in infeasible 
conditions. These cases corresponded to 4% of the total of experiments and were 
excluded of the evaluation procedure.  

 

Figure 6.17: Measured disturbances step changes for the exhaustive tests 

The full variance indexes        (equation 6.7) are compared with the Basis Case, 
considering the          :  

          
       ̅ 

            ̅      
 (6.22) 

The results are summarized in Figure 6.18. The points in the plot represent 
          versus       for each CV in each experiment.  
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(a) MPM (b) UD 

Figure 6.18:            versus       for all CVs in each random experiment with (a) 
MPM and (b) with UD 

Figure 6.18 show a linear tendency between the           and      . The 
determination coefficients (  ) were 0.80 and 0.78 for the MPM and UD cases, 
respectively. It means that the method provide an estimative of MPM or UD effects in the 
system variance compatible with the reality.  

The next steps consist in the detection of the variables and the sources responsible for 
the MPC degradation. In this study we consider non-impactful MPMs or UDs when     
         . Values inside these limits represent small effects in the variables due the 
noise or to small numerical error. Figure 6.19 shows two experiments affecting    were 
      are 1.09 and 1.23, respectively. In the first case,   and     are very similar and do 
not make sense search for modeling problems. In the second, there is some detachment 
between   and    . 

  

(a) (b) 

Figure 6.19: Behavior of    in an random experiment with (a)      =1.09 and (b) 
           

Considering cases with impactful modeling problems (          and          ) we 
use the          (equation 6.8) to detect the variable affect by the MPM or UD. The 

selected variable in each case was the one with the          farthest from 1. The 

indicated CV were confronted with the CV that, in fact, we add the MPM or UD during the 
data generation. This comparison was performed using the confusion matrix, presented in 
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Figure 6.20. A confusion matrix illustrates the number of correct classifications (at this 
case, the CV truly affected) versus the predicted classifications (at this case, the CV 
indicated by the         ). The numbers of hit for each variable are located in the 

diagonal of the matrix while the off-diagonal elements represent the errors (except the 
last row and column, which are the summarization of the results). The results show that 
the          was capable to correctly indicate the variable affected by the modeling 

problem in 100% of the evaluated cases. 

  

(a) MPM (b) UD 

Figure 6.20: Confusion matrix of random experiments with impactful (a) MPM and (b) 
UD: Indicator based in          versus truly CV affected 

The last step of the method is to verify if the CVs indicated by          are corrupted 

by a MPM or UD. The results considering the      indicator (equations 6.10 to 6.15) are 
presented in Figure 6.21. 

 

Figure 6.21:      indicator for the valid random experiments with MPM or UD. 
Threshold value corresponds to the dashed line (         ) 

Figure 6.21 shows that the method was capable to discern between MPM and UD in 
the most cases. In 97.5% of experiments with UD the      was smaller than 0.1. The 
highest value was 0.13, the lowest was 0.035 and the mean was 0.065. For the 
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experiments with MPM, in 92.3% of cases the      was larger than 0.1. The lowest value 
was 0.075, the highest was 0.5 and the mean was 0.18. 

 

CV affected by a MPM and UD 

In most real process, it is common that the variables are affected by MPMs and UDs at 
the same time. Thus, the method of model assessment must to be capable to capture the 
dominant effect. To illustrate, 100 random experiments containing MPM and UD were 
performed, considering the ranges of Table 6.4. Simulations were performed considering 
step changes in the MD variables (   and   ), according to Figure 6.17. Each experiment 
was simulated three times: Firstly only with MPM, next only with UD and finally with 
both. Noise with magnitude of 1% was added in the measurements. The experiments that 
resulted in infeasible conditions are excluded of the evaluation procedure. The        for 
each scenario (i.e., with MPM and UD) is compared with the          , as shown in Figure 
6.22. 

 

Figure 6.22:            versus       for all CVs in each random experiment with MPM 
and UD 

Figure 6.22 shows a linear relation between the           and      , with 
determination coefficients (  ) of 0.78, showing that the method provide an estimative 
of modeling inconsistences effects in the system variance compatible with the reality. 
Considering cases with impactful modeling problems (          and          ) we use 
the          (equation 6.8) to detect the variable affect. The selected variable in each 

case was the one with the          farthest to 1. The indicated CV were confronted with 

the CV that, in fact, we add the MPM and UD during the data generation. This comparison 
was performed using a confusion matrix, presented in Figure 6.23. The results show that 
the          was capable to correctly indicate the variable affected by the modeling 

problem in 100% of the evaluated cases. 

 



146    Capítulo 6 – Performance Assessment and Diagnosis of MPCs with Control Ranges 

 

Figure 6.23: Confusion matrix of random experiments with MPM and UD: Indicator 
based in          versus truly CV affected 

The last step of the method is to verify if the CVs indicated by          are dominantly 

corrupted by a MPM or UD. The dominant effect was determinate according to: 

                
        

      

        
                 

   (6.23) 

were         
    and         

   are the         
  for the experiments generated only with 

MPM and UD respectively and i is the affected CV. These results are confronted with the 
     in Figure 6.24. 

 

Figure 6.24: Dominance of MPM versus      of random experiments with MPM and 
UD 

Figure 6.24 shows that the      becomes higher as more dominant is the MPM. 
When both effects are similar (                ) the      is near to 0.1. Cases 
where the UD is much more evident (                ) the      tends to be 
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smaller than 0.05. Similarly, when a MPM is much more evident (                ) 
the      tends to be higher than 0.2. These results prove that the method is capable to 
assess the MPC model even when more than one modeling inconsistence is present. 

Sensitivity of    

The heart of proposed method is the sensitivity function (   , which provides the 
system closed loop response. Considering that the studied MPC is based in the 
optimization problem presented equation 6.19 and 6.20, it has a varying control 
structure. It means that the closed loop response of the system will not depend solely of 
the tuning, but also of the active soft constraints as well of the manipulated variables that 
are available.  Therefore, there is not a single    that characterizes the proposed MPC.   

Although the estimation of the sensitivity function is a simple procedure, it is 
desirable to evaluate the impact of uncertainty in    , which is the scope of this section. 
The evaluation is restricted to the diagonal     

Considering the diagonal elements    of   ,    and    (Figure 6.10), which are the 
CVs that have active constraints in the basis case. Each diagonal model was approximated 
by the following second order model:  

  
        

 

                 
 (6.24) 

Modifications are performed in the   
      by multiplication of     and     for a 

constant varying from 0.2 to 2. Figures 6.25 and 6.26 compared the real model (      
) 

with the modified (          
). 

   

(a) (b) (c) 

Figure 6.25:           
 by     variation in the diagonal of sensitivity   (a),   (b) and 

  (c) 
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(a) (b) (c) 

Figure 6.26:           
 by   

   variation in the diagonal sensitivity of   (a),   (b) and 

  (c) 

Considering all the 400 random experiments described in section 6.5.2, the ones were 
the affected CV are   ,    and    were selected. For each experiment, equation 6.8 was 
applied considering all modified models. The obtained relation of          of modified 

and true models (             and         ) are presented in Figures 6.27, 6.28 and 6.29, 

where each line is associated with a different experiment. 

  

(a) (b) 

Figure 6.27: Relation between the          of true and modified    for    

 

  

(a) (b) 

Figure 6.28: Relation between the          of true and modified    for    
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(a) (b) 

Figure 6.29: Relation between the          of true and modified    for    

Figures 6.27, 6.28 and 6.29 show that an uncertainty of 25% in    (i.e., multipliers 
between 0.75 and 1.25) causes an increment of ±0.2 in the         , when compared 

with the true result, which is the acceptable tolerance in the variance of this system (see 
Figure 6.19). Multipliers far from these limits cause an increment in the          which 

could affect the result of the methodology. The question now is, how much a change in 
the MPC control structure impact in     

Suppose a hypothetical case where    is unavailable (i.e., it is fixed). In this condition 
one degree of freedom is lost, and now 2 CVs (   and   ) are optimized while    remains 
inside the soft constraints. Figures 6.30 and 6.31 illustrate the expected behavior when a 
step disturbance is added in   . The diagonal    for    was estimated considering the 
described scenario. Figure 6.32 illustrate the result. 

 

Figure 6.30: Expected behavior of MVs when    is fixed 

 

Figure 6.31: Expected behavior of CVs when    is fixed 
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Figure 6.32: Estimated diagonal    for    considering    fixed and    avaliable 

Figure 6.32 show that, although a significant change in the control structure has 
occurred, the sensitivity of the system has a small change. The multiplayer of    

 and 
    are 1.03 and 1.18, respectively. This result illustrates that the method allow a certain 
degree of uncertainty in    which is compatible with a change in the control structure of 
the MPC. 

6.6 Conclusions 

This paper aims to evaluate the effectiveness of the methods proposed by Botelho et 
al. (2015a/cap. 3, b/cap. 4 and c/ cap. 5) for MPC model assessment in controllers where 
range variables (i.e. soft constraints) are used. This control policy is a common practice in 
industry due to the absence of degrees of freedom in the most real plants and because of 
optimization layer. The independence of setpoint is one the advantages of the method 
that allow its application in these systems. 

The methods have been applied in the Shell Heavy Oil Fractionator case study. The 
configured controller contains 7 controlled variables, 3 manipulated variables and two 
measured disturbance. The objective of the MPC is to operate the system in the best 
profit and keep the CVs inside of the soft constraints.  

Twelve scenarios containing MPMs and UDs were selected to represent some 
common effects of modeling problems in MPCs. The results show that, in all cases, the 
proposed method was capable to providing the diagnosis compatible with the 
corresponding scenario, indicating the effect of the modeling problems in all variables, 
pointing the affected variable and if the problem come from a MPM or UD. The method 
also works for evaluating modeling problems in feed-forward models. 

The method was also exhaustively tested performing 400 experiments were, in which 
150 only contained MPM and 150 only contained UD and 100 contained both. Firstly, the 
variance index of estimated nominal output was compared with the basis case (i.e., data 
generated without MPM or UD). The results show a linear relation between them 
(       , indicating that the method is capable to estimate the effect of a MPM in the 
variance of the system. For the cases where the variance of the system suffered 
significant variance increase, the method indicates in 100% what is the CV were the 
modeling problem is contained. The method was capable of indicating if the modeling 
problem is a MPM or DV, indicating in 95% of experiments that contain MPM or DV the 
correct problem. When both effects are available, the method shows a coherent result, 
showing a higher indicative of MPM as the effect of this problem is more dominant.  
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The sensitivity of       
 was evaluated considering the 400 random experiments 

previously generated. The results shows that the method allow an uncertainty of 25% in 
the       

 and that this value was compatible with the change in control structure tested. 
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 Model Assessment of an Capítulo 7 –
Industrial MPC 

Abstract9: The poor model quality is one of the most frequent causes of performance 
deterioration in Model Predictive Controllers. So, a frequent model evaluation and 
correction is a fundamental. Several methods of model assessment are available in 
literature, but most of them are not able to deal with Model Predictive Controllers (MPCs) 
without fixed setpoints for the controlled variables. Botelho et al. (2015a/cap.3, b/cap.4 
and c/cap.5) proposed a series of methods for assessment of MPC models, which 
consider the controller tuning in the assessment procedure. Their main advantage is the 
setpoint independence. This paper presents the application of these methods in an 
industrial MPC that operate by range. The system is a MPC of a fractionating column from 
a delayed coke unit of a refinery locate in Brazil. The results illustrate that the method can 
correctly quantify the effect of modeling problems and identify it come from a model-
plant mismatch or unmeasured disturbance. 

Keywords: model predictive control, model assessment, model-plant mismatch, 
unmeasured disturbance. 

 

 

 

 

                                                      

9 Submetido para publicação no periódico ”Control Engineering Practice”. 
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7.1 Introduction 

The operation of industrial chemical plants is dependent of strategies to control the 
process variables. A few decades ago the unique existent control structures were 
grounded in classical policies, as PID. However, the technological advances promoted the 
rise of the complexity of the processes, and required the development of more 
elaborated control systems, emerging the Advanced Process Control. Among the 
advanced techniques, the model predictive controllers (MPCs) are the most used in the 
industry (Holkar e Waghmare, 2010). 

The frequent maintenance of a MPC is fundamental so that it operate properly. 
However, this task still is a challenge due to the multi-causal nature of these controllers. 
The high number of tuning parameters, the strong dependency of the process model and 
the high diversity of commercial MPC algorithms are the major difficulties. Several works 
are available in literature (Huang et al., 2003; Conner & Seborg, 2005; Badwe et al., 2009; 
Jiang et al., 2009; Kano et al., 2010; Ji et al., 2012; Jiang et al., 2012, among others) which 
proposes methods for MPC monitoring and diagnosis. However, most of them are based 
in the classical MPC structures (i.e., with fixed setpoint). Industrial processes often do not 
have degrees of freedom enough to keep all the controlled variables (CVs) in a unique 
setpoint, and the MPCs must be configured with CVs by range. At these cases the control 
objective is to keep the CVs inside a limit. Therefore, the setpoints dependent techniques 
for MPC assessment are inadequate.  

Among the sources of MPC deterioration, the presence of model-plant mismatch 
(MPM) and/or unmeasured disturbances (UD) are the most impactful. Bad or incomplete 
models could generate control actions very far from the optimal ones. Sun et al. (2013) 
estimate that more than 80% of the time of a MPC project is spent in the identification of 
the models, due to its importance. Hence, assess and maintaining the model quality is 
fundamental. 

Botelho et al. (2015a/cap. 3), Botelho et al. (2015b/cap. 4)  and Botelho et al. 
(2015c/cap. 5) proposed a series of methods for MPC model assessment for detecting  
the controlled variable (CV) with performance problems and, in the case of bad 
performance, diagnose if it come from a model-plant mismatch (MPM) or unmeasured 
disturbance (UD). The main advantage of these methods is the setpoint independence.  
Moreover, the methods are simple to apply and interpret. These characteristics make the 
methodologies flexible to several controller formulations, including MPCs with CVs by 
range, facilitating their industrial application for controller’s assessment.  

This paper presents the application of these methods in an industrial MPC where the 
CVs are controlled by range. The system is a fractionating column from a delayed coke 
unit of a refinery, located in Brazil. A description of the methods is presented in section 
7.2. Section 7.3 presents the evaluated process. The results of the methods application 
are presented in section 7.4.  

7.1 Methods for MPC model assessment  

This section summarizes the method proposed by Botelho et al. (2015a/cap. 3, b/cap. 
4 and c/cap. 5), which considers a control loop as shown in Figure 7.1, where   is the MPC 
controller,    the nominal model, and   the real plant. The model-plant mismatch (MPM) 
magnitude is   . The theoretical system without mismatch is shown in Figure 7.1a, for 



Capítulo 7 – Model Assessment of an Industrial MPC 155 

which nominal closed loop outputs are         is the nominal complementary sensitivity 
function. The real system, in a scenario subject to MPM, is shown in Figure 7.1b, where 
     corresponds to the setpoints,   are the manipulated variables,   are the measured 
outputs,      are the simulated outputs of the nominal model perturbed by the actual 
control actions  , and   is the complementary sensitivity function. Figure 7.1c shows the 
real system subject to an unmeasured disturbance (UD), where   is the sequence of 
independent random variables,    is the unknown disturbance model and    are the 
disturbance signals. 

 

  
Figure 7.1: Schematic diagram of closed-loop (a) nominal system, (b) with model-plant 

mismatch (MPM) and (c) with unmeasured disturbance (UD) 

The method is based on the premise that an effective model should represent the real 
system at the frequency where the MPC works. Thus, to assess the real influence of the 
model-plant mismatch, the closed-loop performance must be considered. The following 
definitions can be found in many classical control books (e.g., Skogestad & Postlethwaite, 
1996):  

          (7.1) 

                             (7.2) 

        (7.3) 

           (7.4) 

where    is the nominal sensitivity funcion and   is the identity matrix. Botelho et al. 
(2015a/cap. 3) show that the nominal output    (i.e., the output of the system in the 
absence of MPM or UD) could be estimated according to: 

                 (7.5) 

The nominal sensitivity function (  ) is a square transfer matrix that characterizes the 
system response in closed loop (see equations 7.1, 7.2 and 7.3). Its dimensions are equal 
to the number of outputs. The diagonal elements (      

) give the closed loop behavior 
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of the outputs when their references (setpoints or soft constraints) are changed. The 
remaining elements provide the impact of these references variation in the others 
outputs. Thus, Botelho et al. (2015b/cap. 4) suggest an extension of equation 7.5, as 
follow:  

      
         

          (7.6) 

The       
 works as a softening for the simulation residuals (      ), and retains 

only the part that is not removed by the controller feedback and is impacting in the 
performance of corresponding output. Variables without significant MPM or UD will 
have       

  , because their simulation errors are near to zero. Applying      instead of 

      
 can be used to verify how the outputs affect each other. In this case,     

   can 

occur even for variables without any significant MPM or UD. This difference is produced 
by a MPM and/or UD in another output variable and is transmitted to the other channels 
by coupling in   . The stronger is the coupling among the variable, the larger is the 
difference between    

and  , considering the existence of MPMs or UDs in the system. 

Since    and       
 are estimations of the process outputs in the absence of a model-

plant mismatch or unmeasured disturbance, they could be considered benchmarks for 
controller-model output response, indicating how the modeling errors are being 
propagated and were they are located, respectively.  A useful index is the comparison of 
output variances in nominal and real case: 

      
       ̅ 

        ̅  
 (7.7) 

         
       ̅ 

          
  ̅     

 
 (7.8) 

If         means that there is no modeling problem and unmeasured disturbances 
affecting the corresponding output, on the other hand, when         and           , 

the corresponding output has a MPM or UD. Otherwise, when         and          

  the corresponding output does not have trouble in their models, but its variance is 
being affected by MPM or UD that originates at other outputs. 

Another possibility is to analyze the autocorrelation function (ACF) of     ̅     ̅    
and       

  ̅     
. A high value of ACF means that the current signal value is strongly 

correlated with the past values. The ACF curves are useful to analyze the effect of MPMs 
and UDs in MPC speed of response or to detect oscillatory behavior (Huang & Shah, 
1999). 

Once the outputs with modeling problem were detected, it is desirable to identify the 
cause. A key issue is to determine whether the decline in performance is due to MPM or 
UD. The former occurs when the process model cannot adequately describe the relations 
between model input and output variables and a re-identification is required. On the 
other hand, an unmeasured disturbance occurs when there is a deterministic unknown 
signal influencing the output behavior. The effects of a MPM and UD in the process 
outputs are very similar (see Figures 7.1b and 7.1c), thus, they are not easily 
distinguished. To overcome this problem, Botelho et al. (2015c/cap. 5) proposed a 
systematic for identifying if the dominant effect is related to MPM or UD.  The main idea 
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is quantify the correlation distribution between the nominal diagonal outputs       
 with 

the nominal error       
 defined by: 

      
        

     (7.9) 

Considering that       
 is the estimated output free from model-plant mismatch and 

unmeasured disturbances,       
 can be interpreted as the effect of the modeling 

problems in the output. When an output is under a MPM, the error come from the 
model, then       

 will be dependent of the inputs ( ), as well as       
, causing a similar 

frequency pattern. When an output is under an unmeasured disturbance,       
 is 

independent of   because the disturbances come from an external source. Nonetheless, 
      

 continues to be dependent on the input variables movements. This means that the 

frequency of variation of       
 and       

 are uncorrelated. Therefore, the comparison 

between       
 and       

 patterns can be used to discriminate between model-plant 

mismatch and unmeasured disturbances. According to the author, the method uses the 
      

 instead    because the diagonal terms allow the location of the modeling problem 

in each output. 

The diagnosis procedure to distinguish between MPM and UD consists of the analysis 
of the statistical distribution of        

 and       
 along a moving window (  ). The 

statistical distribution is evaluated by the skewness (   ) and kurtosis (   ) coefficients: 

     
    

  

(√  )
  (7.10) 

     
    

  

 √    
 (7.11) 

where   ,    and    are the second, third and fourth order central moment, defined as: 

   
∑      ̅    

   

  
         (7.12) 

Where    is the evaluated dataset (      
 or       

) and  ̅ is it corresponding mean. 

A high value of kurtosis means that the data present a large number of recordings away 
from the mean, when compared with a normal distribution. The sample skewness 
provides an indicator of how asymmetric is the dataset.  

Botelho et al. (2015c/cap. 5) analyze different approaches to compare       
 and 

      
. The most reliable alternative is based on the Pearson’s  correlation coefficients of 

skewness and kurtosis derivatives. A scan is performed varying    size in the 
neighborhood of the prediction horizon (      to    , where    is the MPC’s prediction 
horizon). The indicators (       and       ) are based in the mean of absolute correlation 
between the derivatives of statistical distributions: 

         
∑ |    (

 

  
         

   
 

  
         

  )|
  
        

   
 (7.13) 
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 (7.14) 

where     are the number of scanned   ,      is the Pearson's correlation coefficient. 
The larger the values of        and       , the higher is the probability of a model-plant 
mismatch dominance. It enough one of these indices be high for classifying the 
performance issue caused by MPM. Botelho et al. (2015c/cap. 5) suggests that values 
higher than 0.1 characterize MPM dominance.   

7.2 Case Study 

7.2.1 Process description  

The evaluated system is a delayed coke unit of a petroleum refinery located in Brazil.  
The process has the objective to convert heavy fractions of petroleum in light fractions 
with higher added-value through a thermal cracking. In parallel to the reactions of 
cracking occurs the reaction of coking, which produces a solid by-product with high 
molecular weight and high content of carbon (called coke) that have low commercial 
value (Mattos & Longhi, 2013). Figure 7.2 illustrates the system. 

 

Figure 7.2:  Schematic representation of the delayed coke process  
(Adapted from Mattos & Longhi, 2013) 

The system’s inlet (V-01) is composed by heavy fractions of petroleum coming from 
the residuals of vacuum distillation unit, stored in the TQ-01 and a recycle stream. It is 
sent to a preheating furnace (F-01), where its temperature reaches 500oC. Water steam is 
injected, increasing the flow speed to retard the reaction of coking and avoid the 
generation of coke inside the furnace. The outlet of F-01 feeds the coke drums (R-01 and 
R-02). These reactors operate alternately in batch, each one with execution cycles of 24 
hours. It is necessary to remove de coke accrued inside the drums. Thus, after each 
execution cycle the reactors are exchanged (i.e., the flow is deviated from the drum in 
operation to the other drum) and the reactor out of operation is cleaned (i.e., the coke is 
removed) and prepared for another cycle. A fractionating column (T-01) separate the 
products of the cracking  (Mattos & Longhi, 2013; Longhi et al., 2008). 
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The assessed control structure is the MPC of the fractionating column (T-01). This 
MPC has a simple real-time optimization layer, which established the optimal operating 
point according to economic objectives. The scheme presented by Figure 7.3 illustrates its 
architecture.  

 

Figure 7.3:  Architecture of MPC controller with optimizer 
 (adapted from Campos et al.,2013) 

The optimizer determines best values of MVs (    ) and corresponding steady state 

solution of the CVs (     ) based in the operational costs and process limits. The optimal 
values from the optimizer (     and     ) are the base for the control actions calculations. 

This MPC operates fully by range, which means that the controller cost function is 
configured in terms of manipulated variables. The CVs are penalized only in cases of soft 
constraint violation (     ). 

The MPC is composed by 12 controlled variables (CVs) operating by range and 7 
manipulated variables (MVs). Besides there are two measured disturbances (DVs) which 
come from the operation of exchange and preparation of the coke drums. 

7.2.2 Data characterization 

For the described system, two datasets were selected, which are called Period 1 and 
Period 2. These periods are approximately 40 days apart from each other and either have 
about 3 days of operational plant data. Figures 7.4 illustrates the measured values of CVs 
( ) and its respective optimal values (    ) and soft constraints (     ). Figure 7.5 presents 

de measured MVs ( ) and respective optimal values (    ) and constraints (     ). Figure 

7.6 shows the measured disturbances. 
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(a) 

 
(b) 

 
Figure 7.4:  Controlled Variables of (a) Period 1 and (b) Period 2. 
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(a) 

 
(b) 

 
Figure 7.5: Manipulated Variables of (a) Period 1 and (b) Period 2. 
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(a) 

 

 
(b) 

Figure 7.6: Measured Disturbances of (a) Period 1 and (b) Period 2. 

Figure 7.6 shows that the selected periods include at least one complete execution 
cycle. Besides, according to Figure 7.5, the controller works with two degrees of freedom 
(    and    ) at most of time. It allows that      and      to have their upper soft 
constraints actives (Figure 7.4).  The other CVs remain inside the range. Thus, we assume 
this scenario to estimate the closed loop response. The complementary sensitivity 
function (   

) of each controlled variable (CV) of an MPC by range is defined as follows:  

- The evaluated CV have an active soft constraint: in this case, its behavior is very similar 
to a fixed setpoint case. Thus, the static gains of the corresponding       

 will be 1. The 

effect of this CV in another variable with active soft constraint will generate an off-
diagonal     with a zero in the origin (i.e., null static gain). The effect of this CV in a 
variable inside the range will generate an off-diagonal    with static gain different from 
zero, because this variable will assume a new steady state value. 

- The evaluated CV is inside the range: in this case, the variable does not have any 
influence in the control actions. It means that the effect of the controller feedback in this 
variable is null. Thus,       (diagonal and off-diagonal models) and all the simulation 
error is preserved.  

Based on the considerations described above, the     to      have     , since 
they are inside the range. The complementary sensitivity function of      and      are 
presented in Figure 7.7. They are obtained from a simulation of the controller (see 
appendix A3). 
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Figure 7.7: Step response of    for      and      as input. 

Figure 7.7 shows that, for the considered scenario,      is the variable with greater 
interaction, since it impacts in the most CVs (except    ,     and    ).  The      
impacts in the behavior of     to     and    . All others CVs do not interact because 
they are inside the range.  Therefore, they have none influence in the controller feedback.   

7.3 Results and discussions 

The methods presented in section 7.1 were applied in the selected datasets. Firstly 
the Variance Indexes (equations 7.7 and 7.8) were calculated. The results are presented in 
Table 7.1. According to this table, and considering the premise presented by Botelho et al. 
(2015d/cap. 6), that an important modeling problem occurs when          or 
         , in both periods     is the single variable that do not suffer effect of 
modeling problems.    ,    ,     ,      and      are affected by modeling problems 
and they are in its own models, since              .     and       have problem in 

their models, but they are even more affected by modeling problems coming from other 
CVs, because the      is farther to one than         . Some disparity was founded in the 

results of    ,    ,     and     between the datasets. In these cases the          of 

one period is near to one while the other period it is significant. It means that the 
modeling problem not always is evident for these variables.   
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Table 7.1: Variances Indexes 

 Period 1 Period 2 

                             

    0.24 1.15 0.13 0.37 

    0.18 0.73 0.30 0.78 

    1.04 1.07 0.99 1.07 

    0.21 0.53 0.42 1.00 

    0.22 0.97 0.47 2.03 

    0.48 0.53 0.26 0.28 

    0.89 0.89 1.70 1.70 

    1.89 2.07 1.88 1.97 

    1.87 1.88 2.41 2.41 

     0.52 0.77 0.41 0.51 

     0.53 0.56 0.76 0.77 

     0.69 0.78 0.64 0.62 

 

The ACFs were estimated and the results are presented in Figure 7.8. In some cases, 
the ACF shows the effect of modeling errors in the CVs decay ratio through the difference 
between   and    (for example   ,      and    ). Besides, this indicator also shows 
that the modeling problems affecting    ,    ,    ,      and      are in the own 
variables, since           
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(a) 

 

(b) 

Figure 7.8:  ACF for (a) Period 1 and (b) Period 2. 
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For the variables with significant         , the sources of the dominant modeling 

problems were evaluated. The kurtosis and skewness indicators (equations 7.13 and 14) 
as well as the corresponding diagnosis are presented in Table 7.2.  

 
Table 7.2: Kurtosis and skewness indicators 

 Period 1 Period 2 

               Diagnosis               Diagnosis 

    -- -- -- 0.33 0.45 MPM 

    0.07 0.12 MPM 0.21 0.31 MPM 

    -- -- -- -- -- -- 

    0.05 0.09 UD -- -- -- 

    -- -- -- 0.07 0.14 MPM 

    0.06 0.25 MPM 0.2 0.42 MPM 

    -- -- -- 0.05 0.06 UD 

    0.03 0.03 UD 0.09 0.08 UD 

    0.01 0.02 UD 0.01 0.01 UD 

     0.45 0.48 MPM 0.25 0.06 MPM 

     0.23 0.25 MPM 0.13 0.19 MPM 

     0.17 0.05 MPM 0.20 0.14 MPM 

 

Results of Table 7.2 show that     and     are clearly been affected by a UD 
while    ,     ,      and      have MPM. The     in Period 1 and     in Period 2 
are being affected by a UD, denoting that some punctual disturbance may have occurred 
in this dataset. The     and     in Period 2 have a MPM.  Comparing Figure 7.5a and 
7.5b is observed that the behavior of MVs is different between the periods. Hence the 
MPM diagnoses are evident only in Period 2. This fact highlights the importance of a good 
data selection as well as the execution of several tests, to have a reliable diagnosis of the 
model. 

Considering that Table 7.2 indicated a significant MPM in      and this is the variable 
with highest impact in the rest of the system (see Figure 7.7), the re-identification of its 
model was performed. As example, only a channel (i.e., a pair MV versus CV) 
            was re-identified. Table 7.3 compare the indicators (                     

and       ) for      before and after the model re-identification.  
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Table 7.3: Indicators for      before and after             model re-identification 

 Period 1 Period 2 

 Before After Before After 

     0.53 0.73 0.76 1.11 

         0.56 0.73 0.77 1.11 

       0.23 0.17 0.13 0.06 

       0.25 0.20 0.19 0.12 

 

Results of Table 7.3 show that the re-identification of             model improves 
the performance of     , since its       and          are nearest to one in both datasets 

when the new model is considered. Besides, a reduction in values of        and        
occurs. It means that the new model contributes to reduce the incidence of MPM in 
    . 

To evaluate the effect of the new model in the remains CVs we compare the      
after and before the model update with the corresponding         . The diagonal 

indicator of these CVs has not changed with the new model because the new model is 
only of     .  Thus, when closer are           and     , smaller is the interaction due to 

the modeling errors. Figure 7.9 illustrate the results.   

 

(a) 

 

(b) 

Figure 7.9:            and      of the remain CVs before and after 

                  re-identification for (a) Period 1 and (b) Period 2. 
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Results of Figure 7.9 show that the      of the variables after the 
                  re-identification tends to be closer to           than      before 

the re-identification. Thus, the improvement of      had a beneficial effect in all system. 
This result is more evident in Period 1 than in Period 2 because the     varies less in the 
second dataset.  

7.4 Conclusions 

This paper presented the application of the methods proposed by Botelho et al. (2015 
a/cap.3, b/cap.4 and c/cap.5) for the assessment of MPC models of a fractionating 
column from a delayed coke unit of a refinery located in Brazil.  

Results show that the methods are capable of indicating the model errors impacting in 
the controller performance based only in process data and in the response in closed loop. 
The methods indicate the effect of the modeling problems in the own controlled variable 
as well as how each CV are being affected by problems coming from other models. The 
methods also allow the diagnosis the root of the modeling problem, discerning between 
model-plant mismatches or unmeasured disturbances. It must be emphasized that the 
method has the advantage to work with MPCs by range, which make it flexible to the 
most of industrial applications.  

Additionally, the methods allow to verify the benefits achieved after a model re-
identification. This approach opens another field for the methods, which complements 
the model identification procedure, so that the identified models can be assessed before 
they are implanted in the controller.  
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8.1 Conclusões 

Este trabalho teve como objetivo principal o desenvolvimento de uma ferramenta 
para avaliação de modelos de controladores preditivos. Tal ferramenta é capaz de 
fornecer diagnósticos compatíveis com as características dos controladores industriais 
reais, destacando-se os sistemas de controle não quadrados, onde o número de variáveis 
controladas é maior que o número de manipuladas e, consequentemente, a operação por 
faixas é necessária. 

Uma revisão dos principais métodos disponíveis na literatura foi realizada. Constatou-
se que, embora exista uma vasta gama de metodologias, a maioria delas possui pouca 
aplicabilidade prática, principalmente por serem baseadas em referências incompatíveis 
com os MPCs reais (como LQG, MVC, etc.) ou por necessitarem de testes intrusivos na 
planta. As técnicas de maior potencial foram testadas em dois controladores hipotéticos: 
um deles com a configuração clássica de um MPC e o outro com as CVs operando por 
faixas. Os resultados obtidos indicaram que as mesmas não são capazes de promover um 
diagnóstico confiável dos modelos quando o sistema de controle não possui setpoints 
fixos para as variáveis controladas. 

Esta tese de doutorado desenvolveu uma metodologia que leva em conta a sintonia 
do controlador na investigação dos problemas operacionais de MPCs. Os resultados 
mostraram que o emprego da sensibilidade nominal da malha, que é a base da 
metodologia proposta, é capaz de detectar corretamente o impacto dos problemas de 
modelagem no desempenho do MPC. Os resultados foram comparados com o método de 
Badwe et al. (2010) e se mostraram superiores, já que, ao contrário do método de Badwe 
et al. (2010), a metodologia proposta independe dos setpoints e de identificações de 
modelos baseada em dados de processo. 

Uma extensão da metodologia anteriormente descrita foi desenvolvida, cujo objetivo 
consiste na localização das variáveis controladas com os erros de modelagem 
responsáveis pela degradação do desempenho. Esta técnica é especialmente útil para 
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sistemas com elevado grau de acoplamento, de modo que pequenos erros de modelagem 
podem levar todo o sistema muito próximo a sua instabilidade. A técnica proposta foi 
comparada com o método de Sun et al. (2013) através de dois estudos de caso, a qual 
mostrou resultados superiores, especialmente nos casos onde as variáveis manipuladas 
oscilam nas suas restrições e existe mais de um problema de modelagem ocorrendo ao 
mesmo tempo. 

Para complementar a ferramenta, mais uma metodologia foi desenvolvida. Seu 
objetivo consiste na detecção da causa da degradação do modelo, indicando se a mesma 
é proveniente de uma discrepância no modelo ou de um distúrbio não modelado ou 
medido. A metodologia se baseia na comparação entre a distribuição estatística do 
comportamento nominal do sistema com os erros de modelagem. Diversos indicadores 
foram sugeridos. Os resultados mostraram que a técnica é capaz de discernir entre o 
problema dominante (MPM ou UD) de forma adequada e que a avaliação da derivada dos 
coeficientes de assimetria e curtose é o indicador mais eficiente. 

A ferramenta completa (i.e, as técnicas de detecção do impacto dos erros de 
modelagem, localização das CVs responsáveis e identificação da fonte de degradação) foi 
aplicada a um sistema simulado, no qual contou com um MPC configurado por faixas e 
camada de otimização dinâmica. A ferramenta foi testada exaustivamente a partir de 
centenas de experimentos aleatórios que geraram dados contendo discrepâncias de 
modelos e distúrbios não medidos. Concluiu-se que a taxa de acertos no diagnóstico dos 
modelos é superior a 90%. Neste mesmo estudo de caso, testes foram realizados a fim de 
se quantificar o grau de incerteza admitido na função de sensibilidade. Constatou-se que 
erros da ordem de 20% são admitidos, o que indica que a mesma é flexível a pequenas 
mudanças na estrutura de controle (devido à saturação das MVs, ou mudança de 
restrição ativa das CVs, por exemplo) sem que    precise ser atualizado.  

A ferramenta também foi aplicada ao controlador preditivo da Unidade de 
Coqueamento Retardado da REFAP. A qualidade dos resultados obtidos foi similar aos 
estudos de casos testados até então. As metodologias propostas foram capazes de 
detectar discrepâncias de modelos e distúrbios não medidos. Adicionalmente, elas 
permitiram que se analisasse a qualidade da solução proposta, o que permite a sua 
utilização na solução dos problemas, indo além das etapas de auditoria e diagnóstico. 

Pode-se concluir que o presente trabalho levou a resultados coerentes e conclusivos 
em todas as aplicações estudadas. Ainda há muito a ser desenvolvido, dada à 
complexidade do assunto, porém espera-se que este seja a base de uma ferramenta 
funcional, que possa fornecer um diagnóstico efetivo dos MPCs reais, desenvolvida com 
enfoque em controle preditivos normalmente empregados na indústria. 

8.2 Sugestões para trabalhos futuros. 

Um grande esforço está sendo realizado para que esta metodologia vire um padrão 
viável de aplicação industrial. Isso significa que, além de ser flexível às diversas estruturas 
de controle existentes na indústria, ela deve exigir pouca carga computacional e gerar 
resultados de fácil interpretação. Resultados preliminares já indicaram que os métodos 
desenvolvidos possuem potencial de serem aplicados na prática, contudo, ainda existem 
alguns aspectos a serem aperfeiçoados.  
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Dentre os aspectos a serem estudados está à obtenção da função de sensibilidade 
nominal. Alguns estudos indicaram que as técnicas propostas admitem certo grau de 
incerteza nesta propriedade.  Entretanto, é necessário se avaliar o quão realista é esse 
grau de incerteza e se o mesmo é semelhante para a maioria dos processos.  Deve-se 
também estudar qual é a hipótese de se utilizar um identificador online para   , o qual 
deve detectar a condição atual do processo (i.e., quais variáveis estão com suas restrições 
ativas) e identificar os modelos nestas condições. Como    é obtido a partir de dados 
simulados, os parâmetros do modelo bem como as perturbações que favorecem sua 
obtenção podem ser configurados previamente, o que torna a identificação destes 
modelos um processo relativamente simples. 

Também é desejável que a ferramenta indique, não só a variável controlada, mas 
também o par          cujo modelo está com problemas. Indo além, almeja-se que 
sejam sugeridas variáveis candidatas a serem incluídas na matriz de modelos do MPC. 
Ressalta-se que estudos desta natureza estão em desenvolvimento no grupo de pesquisa 
e resultados promissores vêm sendo obtidos.   
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Apêndice A1: Diretrizes para a 
implementação das metodologias da 
literatura 

Neste apêndice são detalhados os procedimentos empregados para implementar as 
metodologias disponíveis na literatura que foram estudas na seção 2 deste trabalho. 

A1.1 Método de Sun 

1) Estimar os distúrbios estocásticos (  ) contidos nas CVs através da identificação de 

um modelo ARX de elevada ordem entre as saídas ( ) e os setpoints ( 
   

): 

      ∑            ∑                   

   

   

   

   

 (A1.1) 

onde M01 e MO2 são as ordens (parâmetro de ajuste do método) e     e    são 
os parâmetros do modelo ARX. 

2) Determinar a predição um passo a frente para as CVs ( ̂) a partir das entradas ( ) 

e saídas ( ) medidas: 

 ̂       
           [     

  ]       (A1.2) 

onde    é o modelo do processo e     é o modelo de distúrbio.  Caso     seja 
desconhecido, deve-se projetar um filtro (predictor) capaz de capturar o efeito do 
distúrbio (Ljung, 1999). 

3) Determinar o erro de predição: 

       ̂          (A1.3) 
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4) Calcular o indicador de qualidade do modelo (   ), o qual relaciona o erro 

proveniente dos distúrbios estocásticos com o erro de predição. 

     
∑          

       
   

∑                   
   

 (A1.4) 

onde   é o peso de cada CV configurado no MPC. 

    pode variar entre 0 e 1, de modo que quando maior for o seu valor, melhor é o 
modelo, já que a maior parte do erro de predição é decorrente dos distúrbios 
estocásticos.  

A1.2 Método de Badwe et al. (2009) 

1) Remover o ruído das entradas ( ) e saídas ( ). 

2) Calcular a predição das saídas ( ̂) e respectivo erro de predição (    ̂    ) 

3) Descorrelacionar cada MV das demais MVs: Obter o efeito isolado de cada 

entrada (   ) através da identificação de um modelo OE (Output-Error) entre cada 

entrada   (  ) em relação às entradas restantes (  ). 

          
         (A1.5) 

onde     é o vetor de parâmetros do modelo OE. 

4) Similarmente, descorrelacionar o efeito de cada MV nos erros de predição: Obter 

o efeito isolado de cada entrada no erro de predição (     ) através da 

identificação de um modelo OE (Output-Error) entre o erro de predição da saída   

(  
   e as entradas restantes (  ), isto é, todas as entradas, exceto   . 

  
           

           (A1.6) 

5) Calcular a correlação cruzada entre     e      . Valores de correlação elevados 

indicam a presença de erro no modelo do canal        . 

A1.3 Método de Yu & Qin (2008 a e b)  

Passo 1: Análise da variabilidade global 

1) Selecionar um conjunto de dados históricos de referência (   e      
), onde o 

desempenho do controlador seja o desejável. 
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2) Determinar o índice de variabilidade global: 

   

        [          
] 

        [        
] 

 (A1.7) 

 onde     e       
referem-se aos dados avaliados.  

Quanto mais distante de 1 for o valor de   , maior a diferença entre a variabilidade 
dos dados de referência e dos dados avaliados.  

Passo 2: Avaliar direções de melhora e piora de desempenho 

1) Determinar os autovalores ( ) e autovetores ( ) do seguinte problema de 

autovalor generalizado (GEVP):  

              
                

   (A1.8) 

2) Calcular as projeções (            ) dos erros de controle (      ) na direção de 

cada autovetor ( ). 

3) Calcular a autocorrelação das projeções              (             ; 

4) Construir uma inferência estatística para os dados           : 

  
   

    ∑(  
 

   
)

   

   

       
  (A1.9) 

onde o sub-índice ‘d’ se refere ao conjunto de dados (  ou   ),     é o número de 
amostras e   representa cada um dos autovetores e   cada lag da autocorrelação.  

5) Determinar o intervalo de confiança de cada autovalor: 

         [      √ (
  

   

     
 

   
   

      
)]

  

 (A1.10) 

         [      √ (
  

   

     
 

   
   

      
)]

  

 (A1.11) 

onde    e    são os limites inferiores e superiores de confiança,      é o valor 

crítico de uma distribuição normal com nível de confiança          .  

Caso    e    sejam maiores que 1, o desempenho dos dados avaliados é pior na 
direção do autovetor correspondente, se    e    sejam menores que 1, o desempenho 
dos dados avaliados é melhor. 
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Passo 3: Localizando as variáveis responsáveis pela mudança de desempenho 

1) Construir um subespaço agrupando todos os autovetores que indicarem piora 

(   e    maiores que 1) e melhora (   e    menores que 1), denominados    e 

  , respectivamente. 

2) Calcular o ângulo entre cada saída e os subespaços (  
  e   

 ). 

   (  
 )  ‖     

        
    ‖E (A1.12) 

   (  
 )  ‖     

    
    

    ‖E (A1.13) 

onde     é o vetor unitário representativo de cada saída 

3) Determinar o limite de confiança dos ângulos: 

   √
 

 
 

    

√   

 (A1.14) 

onde    é a média geométrica entre o número de amostras dos dados de 

referência e dos dados avaliados.  

Quando os valores de    (  
 )  ou    (  

 )  foram maiores que  ,a saída 

correspondente é a responsável pela alteração no desempenho do controlador. 

 



 

 

 

Apêndice A2: Diretrizes para a 
implementação da metodologia proposta 

A metodologia proposta tem o objetivo de avaliar a existência de erros de modelagem 
que impactem no desempenho do MPC. Ela pode ser dividia em três etapas sequenciais. 
Na primeira, o objetivo é verificar o efeito global dos erros de modelagem. Na segunda, as 
variáveis controladas nas quais os erros de modelagem estão contidos são localizadas. A 
última etapa consiste em caracterizar os erros, determinando se os mesmos provêm de 
uma discrepância de modelo ou de um distúrbio não medido. A seguir, as diretrizes para a 
aplicação de cada uma das etapas será apresentada. Ressalta-se que ao longo do trabalho 
diversos indicadores foram sugeridos. Neste apêndice serão apresentados apenas os 
melhores indicadores de cada etapa. 

Etapa 1: Determinação do impacto global dos erros de modelagem 

A partir do modelo do processo (  ), dos valores medidos das variáveis de entrada ( ) 
e saída ( ), da função de sensibilidade nominal (  ) e com base no desenvolvimento 
apresentado na seção 3, a primeira etapa da metodologia pode ser aplicada da seguinte 
forma: 

1) Simular o modelo do processo: 

         (A2.1) 

2) Estimar a saída nominal: 

                (A2.2) 

3) Calcular os indicadores de qualidade do modelo para cada uma das CVs. 

Os indicadores de qualidade do modelo devem relacionar a saída medida ( ) com a 
saída nominal estimada (  ), já que    representa as saídas do sistema na ausência de 
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erros de modelagem. Neste trabalho foram sugeridos dois indicadores. Um deles é o 
índice de variância (    ), o qual consiste na razão entre as variâncias de   e   : 

     
           

            
 (A2.3) 

Onde     representa o setpoint da variável controlada correspondente.  Para casos 
onde as CVs não possuem setpoints fixos (controladores por faixas), o      pode ser 
definido como: 

     
       ̅ 

        ̅  
 (A2.4) 

Onde  ̅ e  ̅  representam os valores médios dos vetores correspondentes. Quando o 
     de uma CV for diferente de 1, significa que a variância da mesma está sendo 
impactada por problemas de modelagem.  

Outro indicador sugerido é a comparação das funções de autocorrelação de   e   . A 
ideia consiste em avaliar graficamente as ACF obtidas para ambos os conjuntos de dados. 
A partir da disparidade entre as curvas é possível detectar oscilações ou diferenças nas 
velocidades de respostas causadas por problemas de modelagem, conforme ilustrado na 
Figura A2.1. 

  

(a) (b) 

Figura A2.1: Avaliação baseada na função de autocorrelação 

A Figura A2.1 apresenta o comportamento típico da função de autocorrelação quando 
há problemas de modelagem. No primeiro caso (Figura A2.1a) é possível detectar que a 
CV avaliada possui comportamento oscilatório decorrente de um problema no modelo, já 
que ACF( ) oscila mas ACF(    não oscila. Já no segundo caso (Figura A2.1b) há um erro 
de modelagem tornando a resposta da CV avaliada mais lenta, já que ACF( ) decai mais 
lentamente que ACF(   . 

É importante mencionar que, especialmente quando o acoplamento entre as variáveis 
do sistema é elevado, o erro no modelo de uma única variável pode ser capaz de 
degradar o desempenho de todas as outras CVs.  Dessa forma, após a determinação do 
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impacto global dos erros de modelagem fornecido pela etapa 1,  é necessário localizar em 
quais variáveis estes erros estão contidos, sendo esta a próxima etapa do método. 

Etapa 2: Localização dos erros de modelagem  

Esta etapa é realizada logo após a etapa 1, quando a mesma indica a presença de 
erros de modelagem significativos.  Seu objetivo consiste em localizar quais as CVs 
possuem erros em seus modelos. A partir do modelo do processo (  ), dos valores 
medidos das variáveis de entrada ( ) e saída ( ), da função de sensibilidade nominal (  ) 
e com base no desenvolvimento apresentado na seção 4, a segunda etapa da 
metodologia pode ser aplicada da seguinte forma: 

1) Simular o modelo do processo (equação A2.1) 

2) Obter a matriz de sensibilidade nominal diagonal (      
), a qual consiste em uma 

matriz contendo apenas os elementos da diagonal principal de   . 

3) Estimar a saída nominal diagonal: 

      
         

         (A2.5) 

4) Calcular os indicadores de qualidade do modelo para cada uma das CVs 

Os indicadores desta etapa são análogos aos apresentados na etapa 1 (     e ACF), 
porém calculados em relação a       

: 

         
           

          
      

 (A2.6) 

ou: 

         
       ̅ 

          
  ̅     

 
 (A2.7) 

Quando o          de uma CV for diferente de 1, significa que existem erros em seu 

modelo. Quanto maior a similaridade entre          e     , menor é a influência dos 

erros de modelagem das demais CVs impactando na CV analisada.   

De forma similar, quando houver disparidade entre as curvas de autocorrelação (  e 
      

) de uma CV, significa que existem erros em seu modelo. Quanto maior a 

similaridade entre ACF(      
) e ACF(  ), menor é a influência dos erros de modelagem 

das demais CVs impactando na CV analisada.   

Etapa 3: Caracterização dos erros de modelagem  

Após a localização da variável controlada contendo erro de modelagem através da 
etapa 2, a última etapa da metodologia consiste em caracterizar os erros, informando se 
os mesmo provém de uma discrepância de modelo ou de um distúrbio não medido. A 
partir das saídas medidas ( ), das saídas nominais diagonais (      

, equação A2.5) e com 
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base no desenvolvimento apresentado na seção 5, a terceira etapa da metodologia pode 
ser aplicada da seguinte forma: 

1) Calcular o erro nominal diagonal: 

      
       

   (A2.8) 

2) Definir um vetor contendo diferentes tamanhos de janelas móveis a serem 

avaliadas. O primeiro elemento do vetor (menor janela móvel) deve ser em torno 

da metade do horizonte de predição e o último elemento (maior janela móvel) 

deve ser aproximadamente o dobro do horizonte de predição. 

3) Definir o tamanho da janela móvel (  ) igual ao primeiro elemento do vetor de 

janelas móveis. 

4) Calcular os coeficientes de assimetria e curtose para cada subconjunto de       
, 

considerando um horizonte deslizante de tamanho    (         

   e          

  ). 

5) Calcular os coeficientes de assimetria e curtose para cada subconjunto de       
, 

considerando um horizonte deslizante de tamanho    (         

   e          

  ). 

6) Calcular a derivada dos vetores contendo coeficientes de assimetria e curtose 

originados nos itens 4 e 5. 

7) Calcular o coeficiente de correlação entre a derivada dos coeficientes de 

assimetria de       
 e       

: 

        
     (

 

  
         

   
 

  
         

  ) (A2.9) 

8) Calcular o coeficiente de correlação entre a derivada dos coeficientes de curtose 

de       
 e       

: 

        
     (

 

  
         

   
 

  
         

  ) (A2.10) 

9) Repetir os itens de 4 à 8 considerando todos os tamanhos de janela móvel 

definidos no item 2. 

10) Calcular a média aritmética de         
 e         

, considerando todos os 

tamanhos de janela móvel avaliados (       e       ). 

Se pelo menos um dos indicadores (       ou       ) for elevado (maior que 0.1), 
significa que há a dominância de uma discrepância de modelo. Caso contrário, o erro de 
modelagem é proveniente de um distúrbio não medido.  



 

 

 

Apêndice A3: Determinação 
experimental da função de sensibilidade 
nominal 

Teoricamente, a função de sensibilidade nominal pode ser obtida analiticamente a 
partir do modelo do controlador, conforme discutido na seção 3. Entretanto, no caso dos 
controladores preditivos, a obtenção do modelo do controlador não é trivial, já que o 
mesmo é configurado a partir de um problema de otimização. Neste caso, a alternativa é 
se obter uma estimativa da função de sensibilidade nominal experimentalmente, a partir 
de uma simulação do controlador considerando o modelo do processo utilizado pelo MPC 
no lugar do planta real. O procedimento empregado será discutido a seguir. 

Passo 1 - Configurando a simulação 

O controlador deve ser configurado de acordo com o comportamento típico do 
processo nos dados de planta a serem avaliados, conforme as seguintes etapas: 

a. Definir quais variáveis manipuladas (MVs) estão disponíveis e quais estão 

saturadas ou em modo manual.   

b. Configurar o simulador mantendo constante o valor das MVs indisponíveis. 

Relaxar as restrições das MVs disponíveis para garantir que as mesmas não irão 

saturar ao longo da simulação. 

c. Definir quais variáveis controladas (CVs) possuem setpoints fixos, quais operam 

dentro de uma faixa e quais possuem uma restrição ativa.  

d. Configurar o simulador relaxando os limites das CVs que estão dentro da faixa. 

Isso irá garantir que as mesmas irão permanecer dentro da faixa durante a 

simulação. 
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e. Configurar uma condição inicial para a simulação de acordo com as definições dos 

itens a e c. 

Passo 2 - Determinando    para CVs com setpoints fixos 

Caso existam CVs com setpoints fixos, o seguinte procedimento deve ser realizado 
para cada uma delas. Caso elas não existam, avançar para o item j. 

f. Partir a simulação. 

g. Depois de transcorrido um pequeno tempo de simulação, garantindo que o 

sistema esteja em estado estacionário e respeitando as definições dos itens a e c, 

realizar uma perturbação do setpoint da CV avaliada (    
 ). 

h. Simular até que o sistema esteja em estado estacionário. 

i. Utilizando um modelo Box-Jenkins, realizar uma identificação SIMO (single input 

multiple output) do seguinte modelo: 

       
     

  (A3.1) 

onde      é a matriz contendo todos as saídas da simulação e    
  representa a linha 

da matriz complementar de sensibilidade (  
 ) referente a perturbações no setpoint da 

variável  . 

Passo 3 - Determinando    para CVs por faixa com restrições ativas 

Caso existam CVs operando por faixas e com restrições ativas, o seguinte 
procedimento deve ser realizado para cada uma delas. Caso elas não existam, avançar 
para o item n. 

j. Partir a simulação 

k.  Depois de transcorrido um pequeno tempo de simulação, garantindo que o sistema 

esteja em estado estacionário e respeitando as definições dos itens a e c, realizar uma 

perturbação do na restrição ativa da CV avaliada (     
 

   
). 

l. Simular até que o sistema esteja em estado estacionário. 

m. Utilizando um modelo Box-Jenkins, realizar uma identificação SIMO (single input 

multiple output) do seguinte modelo: 

       
      

 

   
 (A3.2) 

onde      é a matriz contendo todos as saídas da simulação e    
  representa a linha 

da matriz complementar de sensibilidade referente a perturbações na restrição ativa da 
variável  . 
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Passo 4 - Determinando    para CVs por faixa com restrições ativas 

Caso existam CVs operando dentro das faixas, o seguinte procedimento deve ser 
realizado para cada uma delas. Caso elas não existam, avançar para o item o. 

n. Definir   
  como um vetor nulo de dimensões igual ao número de CVs, já que variáveis 

dentro da faixa não influenciam nas ações de controle do MPC. 

Passo 5: Gerando a matriz de sensibilidade nominal     

 A partir dos modelos   
  identificados,    pode ser determinado da seguinte forma: 

o. Gerar a matriz de modelos MIMO    a partir da combinação de todos os vetores de 

modelos SIMO   
  gerados através dos itens i, m e n. 

p. Obter    a partir de   : 

        (A3.3) 

onde I é a Matriz Identidade.  

 

 

 

 

 

 

 

 

 

 

 

 


