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Resumo

A crescente demanda pela melhoria operacional dos processos aliada ao
desenvolvimento da tecnologia da informacdo tornam a utilizagdo de controladores
preditivos baseados em modelos (MPC) uma pratica comum na industria. Estes
controladores estimam, a partir dos dados de planta e de um modelo do processo, uma
sequéncia de a¢bes de controle que levam as varidveis ao valor desejado de forma
otimizada. Dessa forma, dentre os parametros de configuracdo de um MPC, a baixa
gualidade do modelo é, indiscutivelmente, a mais importante fonte de degradacdo de seu
desempenho. Este trabalho propde uma série de metodologias para a avaliacdo da
gualidade do modelo do controlador preditivo, as quais consideram sua velocidade em
malha fechada. Tais metodologias sdo baseadas na filtragem dos erros de simulacdo a
partir funcdo nominal de sensibilidade, e possuem a capacidade de informar o impacto
dos problemas de modelagem no desempenho do sistema, além de localizar as varidveis
controladas que estdo com tais problemas e se os mesmos sdo provenientes de uma
discrepancia no modelo ou de um disturbio ndo medido. As técnicas ainda possuem a
vantagem de serem independentes do setpoint, o que as torna flexivel de também serem
utilizadas em controladores nos quais as varidveis sdao controladas por faixas. A
abordagem proposta foi testada em dois estudos de caso simulados, sendo eles: a
Fracionadora de Oleo Pesado da Shell e a Planta de Quatro tanques Cilindricos. As
técnicas também foram avaliadas em dados de processo da Unidade de Coqueamento
Retardado de uma refinaria. Os resultados indicam que as mesmas apresentam
resultados coerentes, corroborando seu elevado potencial de aplicagdo industrial.

Palavras-chave: Controle preditivo baseado em modelo, monitoramento, diagnéstico,
funcao de sensibilidade, discrepancia de modelo, disturbio ndo medido.






Abstract

The growing demand for operational improvement and the development of
information technology make the use of model predictive controllers (MPCs) a common
practice in industry. This kind of controller uses past plant data and a process model to
estimate a sequence of control actions to lead the variables to a desired value following
an optimal policy. Thus, the model quality is the most important source of MPC
performance degradation. This work proposes a series of methods to investigate the
controller model quality taking into account its closed loop performance. The methods
are based on filtering the simulation errors using the nominal sensitivity function. They
are capable detect the impact of modeling problems in the controller performance, and
also to locate the controlled variables that have such problems and if it is caused by a
model-plant mismatch or unmeasured disturbance. The techniques have the advantage
to be setpoint independent, making them flexible to be also used in MPCs with controlled
variables working by range. The proposed approach was tested in two simulated case
studies The Shell Heavy Oil Fractionator Process and The Quadruple-tanks Process. The
methods are also evaluated in process data of the Delayed Coking Unit of a Brazilian
refinery. Results indicate that the method is technically coherent and has high potential
of industrial application.

Keywords: model predictive control, monitoring, diagnosis, sensitivity function,
model-plant mismatch, unmeasured disturbance






“Sem sonhos, a vida ndo tem brilho.

Sem metas, os sonhos ndo tém alicerces.

Sem prioridades, os sonhos ndo se tornam reais.”
(Augusto Cury)
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Capitulo 1 — Introducgao

1.1 Motivagao

De uma forma geral, a operacdo de plantas industriais envolve a utilizacdo de
estratégias capazes de controlar as varidveis de processo. As Unicas estruturas disponiveis
até poucas décadas eram baseadas no PID. Contudo, os avancos tecnoldgicos, ao mesmo
tempo em que promoveram a elevagao da complexidade destes processos, permitiram
que novas técnicas de controle fossem desenvolvidas, surgindo o controle avancado de
processos. Dentre as técnicas de controle avancado existentes, os controladores
preditivos baseados em modelos (MPCs) sdo os mais utilizados atualmente em termos
industriais. Os primeiros conceitos referente ao tema surgiram na década de 60. Porém o
interesse pelo assunto so se intensificou ao final da década de 70, com o surgimento dos
algoritmos IDCOM (Ildentification and Comand) e DMC (Dynamic Matrix Control) . Esses
algoritmos impactaram de forma significativa no ambito industrial e académico, sendo
utilizados até os dias atuais e servindo como base para muitos dos algoritmos existentes
(Holkar & Waghmare,2010; Morari & Lee, 1999).

A Figura 1.1 ilustra o funcionamento de um MPC tipico. A cada ciclo de execuc¢do este
sistema executa as seguintes acdes: a partir das medi¢gdes dos valores passados, o
controlador estima o comportamento inercial das varidveis controladas, i.e., o
comportamento que teriam caso nenhuma ag¢do de controle fosse tomada ao longo de
um horizonte de controle. Em seguida um algoritmo de otimizacdo determina uma
sequéncia de acbes de controle que levam as varidaveis controladas ao seu setpoint de
forma otimizada.
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_Passado Futuro

Predigdo em setpoint
"""""""" o mamatecnaqa | T

k2

Horizonte de controle

Horizonte de predigao

Figura 1.1: Diagrama Representativo de um MPC Tipico

A capacidade preditiva destes controladores é uma de suas maiores virtudes, ja que
viabiliza a definicdo de acdes de controle que respeitem as varias restricées do processo.
Sua aplicacdo permite a otimizacdo operacional, pois impacta na reducdo da variabilidade
do sistema, levando o mesmo a operar préximo destas restrigdes, o que significa
maximizar rentabilidade, minimizar custos, melhorar qualidade dos produtos, operar de
forma mais segura e reduzir a geracdao de residuos. Campos et al. (2013) estima que
ganhos da ordem de 2% a 10% possam ser alcancados com a implementac¢do de um MPC,
através da maximizacdo da recuperacao de produtos nobres, aumento da capacidade de
processamento da planta e minimiza¢ao do consumo de energia no processo.

Apds a correta e eficiente implantacdo de um MPC, os ganhos mencionados sdo
evidentes. Porém, com o passar do tempo as condi¢des de operacdo da unidade se
alteram, o que reflete diretamente no desempenho do controlador. Com isso, estes
sistemas passam a operar de forma limitada e muitas vezes acabam sendo desativados
pela equipe de operagdo, caso nao seja realizada a sua manutencdo. A Figura 1.2 ilustra a
um ciclo de vida tipico de um MPC com e sem suporte.

Melhoria continua com

Controle uma boa manutengdo
adequado ao /
/ processo \
Fase de
implantagdo T Diagnostico e manutengdo

Controle ndo adequado
a0 processo

Ganhos do controle preditivo

Risco de desativagdo

Tempo

Figura 1.2: Ciclo de vida de um sistema de controle avancado.
Fonte: Campos et al.,2013
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Embora sejam de fundamental importancia, o monitoramento e diagndstico de
controladores preditivos ainda ndo é um tdpico com uma solugdo completamente
eficiente. Atualmente, o monitoramento é realizado, em sua maioria, com base em
indicadores gerenciais, que fonecem um panorama da utilizacdo do sistema de controle,
indicando, por exemplo o numero de varidveis controladas e manipuladas que estao em
seus limites (PCAT e PMAT), percentual de tempo em que o controlador permanece
ligado (FATOP), percentual de tempo em que as varidveis manipuladas permanecem em
malha fechada (GUT), beneficio econémico, dentro outros (Zanin et al., 2014). Embora
muito Uteis para fornecer um panorama geral do controlador, estes indicadores sao
insuficientes, pois sdo incapazes de fornecer qualquer tipo de informacdo técnica a
respeito do seu real comportamento bem como das fontes de sua degradacao.

A avaliagao dos MPCs sob um ponto de vista técnico ainda é um desafio, dada a sua
natureza multicausal. A grande quantidade de parametros de sintonia, forte dependéncia
com o modelo do processo, diversidade dos algoritmos de controle comerciais existentes
sdo as principais dificuldades. Existe uma série de trabalhos académicos propondo
técnicas para o monitoramento e diagndstico. Embora estas técnicas sejam diferentes,
elas possuem aspectos em comum, ndo s relativos a sua finalidade, mas também em
relacio ao conteudo de informagbes do processo necessario e as ferramenas
matemadticas e estatisticas utilizadas para processar as informagdes. A Figura 1.3 resume
tais aspectos.

X . =
O que esta sendo avaliado? e S T T

utilizadas para a avaliagdo?
Erro de Erro de controle 44 objetivo do
(Setpoint - CV a0 0bJ

simulagao/predigéao medida) controlador Estatistica Bayesiana, Redes
Neurais, PCA, PLS
Qual a quantidade de Quais informagoes sao
: ‘ . . (Variabilidade, correlagdo
Conjunto de dados avaliados eiancetel IAEckss cruzada, valores singulares...)
Setpoints Restricdes

Conjunto de dados de referéncia
(Historico ou Simulado)
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Figura 1.3: Aspectos em comum as técnicas de avaliacao de MPCs

A partir da combinacdo dos diferentes aspectos ilustrados na Figura 1.3, cada
metodologia é fundamentada, de modo que, o resultado final se resume a uma série de
indicadores para avaliar a eficiéncia econémica do MPC, monitorar o seu desempenho
global ou ainda detectar e quantificar as possiveis fontes de degradacao de performance
do controlador (sintonia, qualidade dos modelos, restricdes do processo, falhas em
equipamentos, etc).

Dentre as fontes de degradacdao mencionadas, a baixa qualidade dos modelos é a mais
importante, visto que modelos ruins podem ocasionar a¢des de controles muito aquém
daquelas que levam o processo a sua condi¢cdo 6tima, ou mesmo tornar o controlador
instavel. Sun et al. (2013) estima que mais de 80% do tempo de projeto de um
controlador preditivo seja gasto na identificacdo deste modelo, dada a sua importancia.
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Levando em conta que o modelo é obtido em uma determinada condi¢cdo de operacao,
qualquer alteracdo no processo pode ser suficiente para degradar a sua
representatividade. Isso deixa evidente a necessidade de ser constantemente
monitorado.

Muitas das técnicas disponiveis na literatura tem o objetivo de avaliar a qualidade dos
modelos para o MPC (por exemplo Badwe et. al, 2009; Sun et al., 2013; Kano et al., 2010;
Schafer & Cinar, 2004; etc). Embora sejam eficientes, a maioria delas sdo pouco vidveis de
serem aplicadas na industria ja que sdo embasada em estruturas de controle preditivo
convencionais (i. e., que possuem setpoints fixos, conforme a apresentada na Figura 1.1),
utilizando o setpoint das CVs como ferramenta para a avaliagdo. Na industria, é comum a
inexisténcia de graus de liberdade suficientes para manter todas as variaveis controladas
em um Unico valor predefinido e por isso o MPC é configurado por faixas e tem o objetivo
de manter as CVs dentro destes limites. Além disso, alguns controladores possuem uma
camada de otimizacdo em tempo real que estima o valor 6timo das varidveis manipuladas
(Targets) sob o ponto de vista econdmico, e estes Targets sdo varidveis da funcao
objetivo do MPC. Dessa forma, o controlador ndo possui explicitamente setpoints para as
variaveis controladas e por isso técnicas que utilizam o setpoint acabam sendo
inadequadas para o seu diagndstico. Com isso constatou-se a a necessidade do
desenvolvimento de métricas para avaliar modelos de controladores preditivos para
serem utilizadas em controladores industriais.

1.2 Objetivos

Com base no que foi descrito, a presente tese tem o objetivo de desenvolver uma
ferramenta para a avaliacdo da qualidade dos modelos de controladores preditivos. O
foco é que esta metodologia seja flexivel a maioria das caracteristicas inerentes aos
controladores industriais além de ser numericamente simples, de facil aplicacdo e
interpretacdo, utilizando apenas as perturbagdes normalmente empregadas durante a
operacao do controlador. Dessa forma, espera-se que a técnica seja capaz de:

- 01: Realizar o diagndstico de modelos de MPCs que operem por faixas.
- 02: Quantificar o efeito dos problemas de modelagem no desempenho do MPC.
- 03: Localizar as variaveis cujos modelos possuem problemas relevantes.

- O4: Distinguir entre problemas oriundos de disturbios ndo medidos e discrepancia
de modelos.

1.3 Estrutura do trabalho

Este trabalho esta dividido em oito capitulos, nos quais seis deles estao estruturados
na forma de artigos cientificos, conforme a Resolu¢do 093/2007 de 12/06/2007 da
Camara de Pés-Graduacdo da Universidade Federal do Rio Grande do Sul (UFRGS). No
primeiro capitulo, é apresentada uma breve introducdo e motivacdo a respeito do tema,
bem como os principais objetivos deste trabalho e as contribui¢cdes resultantes da sua
execugao.

O Capitulo 2 apresenta uma revisdo sobre avaliacdo de desempenho de controladores
preditivos. Um overview sobre o tema é apresentado e as principais técnicas disponiveis
na literatura s3ao listadas e classificadas de acordo com seus objetivos e suas
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caracteristicas mais relevantes. Em seguida as premissas sugeridas por Hugo (2002) para a
selecdo de métricas ideais de avaliacdo de desempenho de controladores sdo discutidas.
Algumas das técnicas sdo selecionadas de acordo com tais premissas para serem
detalhadas e testadas. Dois estudos de caso simulados sao utilizados nos teste
comparativos das metodologias: A Fracionadora de Oleo Pesado da Shell (Prett & Morari,
1987) utilizando um controlador preditivo cldssico e o Processo de Quatro Tanques
Cilindricos (Johanson, 2000) utilizando um MPC por faixas. Este capitulo também conta
com uma breve apresentacdo das metodologias desenvolvidas neste trabalho, as quais
sdo aprimoradas ao longo dos capitulos subsequentes. Ressalta-se que a demonstracao
matematica e o detalhamento das metodologias desenvolvidas nesta tese sdo
apresentadas detalhadamente nos capitulos 3, 4 e 5. No capitulo 2, elas apenas foram
parcialmente introduzidas de forma simplificada para permitir uma compara¢do com as
metodologias mais promissoras encontradas na literatura.

No capitulo 3, uma técnica para a quantificacdo do impacto dos problemas de
modelagem no desempenho do controlador é apresentada a qual é embasada no
comportamento nominal do sistema em malha fechada. A deducdo matematica da
mesma é apresentada. O Processo de Quatro Tanques Cilindricos (Johanson, 2000) é
utilizado como estudo de caso a partir de diferentes configura¢ées para o MPC e para a
planta. Os resultados da técnica proposta sdo comparados com a metodologia proposta
por Badwe et al. (2010).

No capitulo 4, uma extensdo da metodologia apresentada no capitulo 3 é proposta
com objetivo de localizar as varidveis controladas com os problemas de modelagem
responsaveis pela degradacdo de desempenho do controlador. Esta técnica é util
especialmente em sistemas com elevado grau de acoplamento entre as variaveis, onde
pequenos problemas de modelagem podem levar todo o sistema préximo a sua
instabilidade. A metodologia é avaliada a parti de dois estudos de caso simulados: Uma
coluna de destilacdo de alta pureza (Skogestad & Postlethwaite, 1996) e a Fracionadora
de Oleo Pesado da Shell (Prett & Morari, 1987). Os resultados obtidos sdo comparados
com a metodologia proposta por Sun et al. (2013).

No capitulo 5, uma metodologia que visa identificar se a degrada¢cdo do modelo é
proveniente de uma discrepancia no mesmo ou de um disturbio ndo medido é
apresentada. Esta metodologia utiliza alguns dos conceitos apresentados nos capitulos 3
e 4 e tem o objetivo de comparar estatisticamente os erros de modelagem com o
comportamento nominal do sistema. Um MPC SISO é utilizado para ilustrar os resultados
gerados para avaliar qual o melhor indicador dentre uma série de hipdteses sugeridas. Em
seguida, a metodologia é avaliada a partir de dois estudos de caso: A Fracionadora de
Oleo Pesado da Shell (Prett & Morari, 1987) e o Processo de Quatro Tanques Cilindricos
(Johanson, 2000).

No capitulo 6 todas as metodologias desenvolvidas neste trabalho sdo testadas em
um controlador preditivo por faixas, configurado na Fracionadora de Oleo Pesado da Shell
(Prett & Morari, 1987). Testes exaustivos sao gerados aleatoriamente a fim de quantificar
o percentual de falha das técnicas. Além disso, um estudo é realizado para se avaliar o
grau de incerteza admitido na funcdo representativa do comportamento nominal do
sistema.
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No capitulo 7, as metodologias desenvolvidas sdao aplicadas a um controlador
preditivo real da Unidade de Coqueamento Retardado da REFAP. O capitulo 8 apresenta
as principais conclusdes, bem como os aspectos a serem abordados em trabalhos futuros.

Nos apéndices Al, A2 e A3 sdo apresentados os principais detalhes relativos as
implementacdes das metodologias discutidas ao longo do trabalho.

1.4 Producao cientifica

Este trabalho resultou em uma série de artigos ja aceitos ou submetidos para
publicacdo em revistas cientificas, os quais correspondem aos capitulos de contetdo
técnico. Além disso, as metodologias desenvolvidas fizeram parte de publicagdes em
congressos e contribuiram para a realizacdo de outros trabalhos desenvolvidos pelo
grupo de pesquisa. A seguir sdo listadas as principais producdes resultantes deste estudo.

1.4.1 Artigos Cientificos

Capitulo 2: BOTELHO, V., TRIERWEILER, J., FARENZENA, M., DURAISKI, R. Perspectives
and Challenges in Performance Assessment of Model Predictive Control. The Canadian
Journal of Chemical Engineering. Status: Aceito para publicacdo.

Capitulo 3: BOTELHO, V., TRIERWEILER, J., FARENZENA, M., DURAISKI, R. A
methodology for detecting model-plant mismatches affecting MPC performance.
Industrial & Engineering Chemistry Research. Status: Aceito para publica¢ado.

Capitulo 4: BOTELHO, V., TRIERWEILER, J., FARENZENA, M., DURAISKI, R. A. MPC
model assessment of highly coupled systems. Industrial & Engineering Chemistry
Research. Status: Submetido para publicacdo.

Capitulo 5: BOTELHO, V., TRIERWEILER, J., FARENZENA, M., DURAISKI, R. A. MPC
Diagnosis of poor performance in model predictive controllers: Unmeasured Disturbance
versus Model-Plant Mismatch. Industrial & Engineering Chemistry Research. Status:
Submetido para publicacao.

Capitulo 6: BOTELHO, V., TRIERWEILER, J., FARENZENA, M., DURAISKI, R. A. MPC
Performance Assessment and Diagnosis of MPCs with Control Ranges. Control
Engineering Practice. Status: Submetido para publicacdo.

Capitulo 7: BOTELHO, V., TRIERWEILER, J., FARENZENA, M., LONGHI, L., DURAISKI, R.
A. MPC Model Assessment of an Industrial MPC. Control Engineering Practice. Status:
Submetido para publicacao.

1.4.2 Trabalhos completos publicados em anais de congresso

BOTELHO, V., TRIERWEILER, J., FARENZENA, M., MULLER, G. Desafios e perspectivas
na auditoria de MPCs. Congresso Brasileiro de Engenharia Quimica — COBEQ.
Floriandpolis, 2014.


http://pubs.acs.org/journal/iecred
http://pubs.acs.org/journal/iecred
http://pubs.acs.org/journal/iecred
http://pubs.acs.org/journal/iecred
http://www.journals.elsevier.com/control-engineering-practice/
http://www.journals.elsevier.com/control-engineering-practice/
http://www.journals.elsevier.com/control-engineering-practice/
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'BOTELHO, V., TRIERWEILER, J., FARENZENA, M., DURAISKI, R. Assessment of Model-
Plant Mismatch by the Nominal Sensitivity Function for Unconstrained MPC. International
Symposium on Advanced Control of Chemical Process — ADCHEM. British Columbia, 2015.

CLARO, E., BOTELHO, V., TRIERWEILER, J., FARENZENA, M. Model performance
assessment of a predictive controller for propylene/propane separation. Symposium on
Dynamics and Control of Process Systems —DYCOPS. Trondheim, 2016. Submetido.

1.4.3 Co-orientagées em trabalhos de conclusdo de curso.

Caetano Bevilacqua Kichel (2015). Auditoria e Diagndstico de Malhas SISO a partir da
Resposta Nominal Estimada. Orientador: Prof. Jorge Trierweiler, Co-orientadora: MSc.
Viviane Botelho. Trabalho de diplomag¢dao em Engenharia Quimica — UFRGS.

1.4.4 Apoio em dissertagbes de mestrado

Erica Claro (defesa prevista para 2016). Auditoria de Modelos de Controladores
Preditivos Industriais: Estudo de caso para um sistema de fracionamento de propeno.
rientador: Prof. Dr. Jorge Trierweiler, Co-orientador: Prof. Dr. Marcelo Farenzena.
Mestrado em Engenharia Quimica — UFRGS.

1.5 Contribuigoes
Pode-se listar como principais contribuicdes deste trabalho os seguintes pontos:

C1: Levantamento das metodologias disponiveis na literatura e avaliacdo da sua
potencilidade de aplicacdo em MPCs por faixa.

C2. Desenvolvimento de uma metodologia para a estimacdo do comportamento do
sistema isento de problemas de modelagem.

C3: Avaliacdo de métricas para avaliar impacto dos erros de modelagem com base no
comportamento nominal do sistema.

C4. Desenvolvimento de metodologia para localizar as variaveis controladas com
problemas de modelagem.

C5: Desenvolvimento de metodologia para avaliar estatisticamente a fonte dos
problemas de modelagem (discrepancia no modelo ou disturbio ndo medido)

C6. Avaliacdao das metodologias propostas em MPCs por faixa.
C7. Aplicacao das técnicas desenvolvidas em um sistema real.

1.6 Resumo grafico

A Figura 1.4 apresenta um resumo grafico desta Tese de Doutorado, relacionando os
objetivos e contribui¢cdes descritos nas secdes 1.2 e 1.5 com os capitulos da tese. A partir

1 . ~ ~
Trabalho reconhecido como melhor apresentacdo oral da sessdo
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desta figura é possivel se ter uma visdo geral de como este trabalho esta estruturado, e
de como as etapas do desenvolvimento se interligam, levando a conclusdo do estudo.

Capitulo 2
(0§ Perspectives and Challenges in Performance C1
Assessment of Model Predictive Control

Capitulo 3 C2

A methodology for detecting model-plant
mismatches affecting MPC performance

c3
= Capitulo 4
MPC model assessment of highly coupled c4
systems

Capitulo 5
Diagnosis of poor performance in model cs
predictive controllers: Unmeasured
Disturbance versus Model-Plant Mismatch

03

Capitulo 6
Performance Assessment and Diagnosis of C6
MPCs with Control Ranges

04 Capitulo 7 ‘ c7
Model Assessment of an Industrial MPC

Figura 1.4: Resumo grafico da tese



Capitulo 2 — Perspectives and Challenges in
Performance Assessment of Model
Predictive Control

Abstract?: The longevity of each MPC application is strongly related to its
performance maintenance. This work provides an overview of the methodologies
available to fulfill this task including a discussion about some special requirements of
performance assessment methodologies for typical industrial MPC applications. The
available methodologies were compared using these requirements. The best approaches
were selected and compared to a new method proposed by the authors. These
techniques have been applied in two case studies: the Shell benchmark process and The
Quadruple-tank process. The results show that the control policy (setpoint, soft
constraints, targets) followed in the MPC application should be the determining factor in
the selection of the methodology for performance assessment.

Keywords: Model Predictive Control, Model Plant Mismatch, Model Quality, Control
Performance Assessment

2 (g . . . .
Aceito para publicagdo no periddico “The Canadian Journal of Chemical Engineering”.
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2.1 Introduction

The increasing demand for operational improvement and the fast development of
information technology are turning the use of model-based predictive control (MPC) into
common practice in the industry. The use of these controllers allows operational
optimization, which leads to maximized profit, safer operations and reduced waste
generation. These benefits become evident after proper implementation of an MPC;
however, the process conditions inevitably change over time, directly influencing
controller performance. Thus, the longevity of a MPC application is strongly dependent of
it maintenance and, given its importance, several methods are available in literature for
monitoring and diagnosing a model predictive control.

Despite the wide diversity of techniques for MPC assessment, most of them can be
grouped according to some common features, which relate to the information provided,
as well as to the required input information. For example, a group of methods is based in
comparisons of current data with a historical benchmark (e.g., Schafer & Cinar, 2004;
AlGhazzawi & Lennox, 2009; Agarwal & Huang, 2007), some methods rely on Minimal
Variance Controller (MVC) as a benchmark (e.g. Huang & Thornhill, 2006; Zhao et al.,
2010). Others are focused on investigating the quality of the process model using the
prediction error (e.g., Jiang et al., 2012; Pannocchia & Luca, 2012), etc. Depending on
these characteristics, a method can be adapted for industrial applications. Section 2
presents a “big picture” of the available techniques in literature, guiding the selection of
an advisable method for a given application. This section also discusses desirable
characteristics of a method for controller assessment in industrial applications, according
to the criteria defined by Hugo (2010). Based on this analysis, three methods were
deemed the most promising: the Sun et al. (2013) method, the Badwe et. al. (2009)
method and the Yu & Qin (2008a and b) method. These three methods are then further
compared against our approach, which can detect any modeling inconsistencies and
whether these are due to a model-plant mismatch or unmeasured disturbance.

Even though model-based predictive controllers have core theoretical fundamentals,
each industrial application of commercial MPCs has its particularities. For example a MPC
can have hard and/or soft constraints, it may or not include an economic cost function, it
can based in different kinds of models. An effective method for MPC assessment must
have the ability to manage all these diferent policies. Section 3 discusses these policies
and the challenges for a flexible method for MPC assessment.

Through the case study presented in Section 4, we assess the potential as well as the
limitations of each selected technique in Section 2 and of the proposed one as well. Using
two case studies: the Shell benchmark process (Prett & Morari, 1987) and the quadruple-
tank process (Johanson, 2000), we set an MPC considering some control policies common
to industrial processes, such as the existence of soft constraints and economic
optimization.

Since 2001, our research group, GIMSCOP / UFRGS, has been developing research in
control loop performance assessment and diagnosis to meet a demand from the most
important refining industry of Brazil. The results of our work culminated in the
development of an industrial tool, which is nowadays the default solution adopted by
any companies for control loop performance assessment and diagnosis. Currently, there
are over 12,000 control loops being monitored.
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2.2 Assessment, monitoring, and diagnosis methodologies for
MPCs

2.2.1 A brief overview of the literature

There is no clear consensus which is the best solution for performance assessment of
predictive controllers. The difficulty associated with monitoring and diagnosing MPC is a
direct consequence of the algorithm’s complexity. The dynamic process model lies at the
heart of a MPC. Based on this model, outputs are predicted considering a set of control
actions that are optimized along the control horizon. The optimization problem is
restarted at each sample interval, according to a moving horizon approach. To set the
optimization problems, constraints and weighting matrices are added to the control and
prediction horizon. All these can be considered tuning parameters. Due to the spread of
possible causes for poor MPC performances, finding the source of degradation in the
controller is not a simple task. The existence of unmeasured disturbances further
complicates this effort.

Industrial and academic interest in MPC assessment has grown significantly in the last
decades, and several techniques have emerged. Some of these rely on Minimal Variance
Controller (MVC) as a benchmark despite the fact that many authors consider the MVC an
extremely unattainable benchmark for most MPCs applications. An extension of MVC is
the linear quadratic Gaussian (LQG) curve, which displays the minimal achievable variance
of the controlled variable versus the variance of the manipulated variable (MV). The LQG
curve is a more suitable reference than MVC when applied in predictive controllers
because it considers the variance of MVs. Nevertheless, for most real applications, the
LQG curve is still not a practical reference, due to its complexity and computational
demand for estimating states and for the solution of the Ricatti algebraic equations, in
addition to the requirement of a complete state space process model. (Jelali, 2006; Zhang
& Shaoyunan, 2006)

Despite the adversities associated with the use of the MVC or LQG as a benchmark,
several works have been developed considering these approaches. Lee et al. (2008)
suggested a method based on MVC, which consists of evaluating the sensitivity of the
process variables in order to determine which one has a greater economic impact.
Harrison & Qin (2009) proposed a minimum variance map based on LQG to verify the
effects of constraints in the controller's operational quality. Zhao et al. (2009) developed
an economic benchmark based on LQG controller, solving an optimization problem to
determine the economic potential of the controller and compare it with the current
performance. Zhang et al. (2013) proposed an improvement of LQG for multivariable
systems, in which the multivariable system is deconstructed into multiple MISO (multiple-
input single-output) subsystems. Then, the LQG is obtained for each subsystem. Huang &
Thornhill (2006) suggested assessing the potential for reducing the variability by
comparing different prediction levels using a moving average model identified from plant
data. Zhao et al. (2010) expanded on this concept, but considering multi-steps ahead
prediction in order to avoid problems arising from underestimated minimum variance.

As an alternative to MVC and LQG performance benchmarks, many authors proposed
using as historical references periods in which good performance of the controller is
known beforehand. Schafer & Cinar (2004) proposed a methodology for MPC monitoring
and evaluation based on a comparison of the current objective function with a reference
value and with the achievable performance for the controller designed. The authors
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suggest that the reference value can be calculated using LQG or historical data. Yu & Qin
(2008a and b) proposed a methodology based on the investigation of the covariance of
the reference periods and current data in order to determine whether the variability
increased or not, which is verified with statistical tests. For detecting MPC irregularities in
real time, AlGhazzawi & Lennox(2009) suggest using a comparison with a PCA (Principal
Component analysis) or PLS (Partial Least Square) model obtained previously from a set of
reference data. Tian et al. (2011) proposed a methodology based on dynamic PCA
similarity measure, where the actual operating data is decomposed and compared with a
historical benchmark. The Zhang & Shaoyuan (2006) method proposed a similar
framework, where the actual PCA model is compared with a historical benchmark. If a
decline in performance is detected, the Baseville (1998) criterion is used for diagnosis.
Alcala & Qin (2009, 2011) use PCA and PLS as a diagnostic tool, suggesting new indicators
for monitoring performance. Qi & Huang (2011) have introduced a class of methods based
on building a Bayesian network to recognize patterns.

Many methods focus on investigating the quality of the process model used by the
MPC, since this is one of the most important and critical points for the predictive
controller operation. Sun et al.(2013) estimated that 80% of time spent on the design of
an MPC is dedicated to obtaining a model. Among the methods available, Conner &
Seborg (2005) proposed using the Akaike information criterion to assess the need for re-
identification of the model. Badwe et al (2009) presented the evaluation of the partial
correlation between inputs and residuals to identify the channels with significant model-
plant mismatch. Sun et al. (2013) introduced a model quality index where the impact of
stochastic disturbance is estimated and compared with the measured data.

Table 2.1 shows the most cited methods available in the literature following general
attributes found in different approaches. These attributes relate to: each method’s
applicability (i.e., whether the method is useful to evaluate system variability, model
quality, controller tuning or detect problems based on pre-defined patterns), to the need
for MPC information (such as controller model and tuning parameters), to whether the
method is specific for MPC and to the need of intrusive tests and data-based model
identification.
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Table 2.1: Classification of Methods for MPC Assessment

Utility Ref. Specific Objective *@) | *(b) | *(c) | *(d) *(e) | *(f)
Huang & Monitor and diagnose CV with
Thornhill (2006) increased variability No No Yes No MVC | Yes
Yu & Qin Monitor and diagnose CV with
(2008a and b) increased variability No No No No HIST No
Evaluate . .
Evaluate Economical Potential
System Zhao et al. . s
- (2009) considering a variability Yes | No | Yes | No LQG | No
Variability reduction
Zhao et al. Investigate potential of
(2010) variability reduction No No Yes No MVC | Yes
Zhang et al. Monitor and diagnose CV with
(2013) increased variability Yes No No No LQG No
Huang et al. N
(2003) Model validation Yes No Yes No No Yes
Conner & Seborg Evaluate the need for model re-
(2005) identification Yes | No | No | Yes | No | Yes
Badwe et al. Identify MV versus CV model-
(2009) plant mismatch ves No | Yes No No ves
Jiang & Huang Validation and global model-
(2009) plant mismatch detection Yes No No No No Yes
Badwe et al Evaluate the impact of model-
(2010) ’ plant mismatch on MPC Yes | Yes | Yes No No Yes
| performance
Evaluate
. Kano et al. Identify MV versus CV model-
M | | Y N Y N N Y,
odel Quality (2010) plant mismatch es ° e ° ° es
Whang et al. Identify MV versus CV model-
Y N Y N N Y,
(2012) plant mismatch es ° s © © es
Jietal. Identify MV versus CV model-
N Y Y Y N N
(2012) plant mismatch © s s es © °
Jiang et al. Prediction quality under several Yes No Yes No No No
(2012) levels
Pannocchia & Evaluate deterministic portion of
Y N Y N N Y,
Luca (2012) prediction error es ° e ° ° es
Sun et al. Identify CV with model-plant
(2013) mismatch Yes No Yes No No Yes
I ify MP I
Loquasto & den.tl y MPC p.rob er.ns by
comparing data with a simulated | Yes | Yes | Yes No No No
Seborg (2003)
database
Huang & Qi Probability of fallurg ca.uses using | o No | Yes No HIsT | Yes
(2011) Bayesian criteria
Pattern ) Identify MPC problems
e . Tian et al. . . . .
Classification comparing data with a historical No No No No HIST | No
(2011)
database
Identify MPC problems
Heetal. . . .
comparing data with a simulated | Yes No Yes No No No
(2012)
database
AlGhazzawi & Detect irregularities from
Lennox (2009) comparison of a PCS/PLS model Yes No | Yes No HIST | No
Schéafer & Cinar Monitor and diagnosis of Model
(2004) X Tuning problem Yes Yes | Yes No HIST No
MPC Tunin Argawal & Huang Evaluate variable constraints No No Yes No HIST | Yes
J (2007a and b)
Harrison & Qin Evaluate variable constraints Yes | Yes | Yes No LQG No
(2009)
*(a) Use controller model? *(b) Use controller tuning parameters?  *(c) Specific for MPC?  *(d) Intrusive? * (e)

Based in a Benchmark? (minimum variance controller: MVC, linear quadratic Gaussian: LQG and historical data: HIST) *
(f) Needs any data-model identification?
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2.2.2 Guidelines for method selection

Despite the significant number of methods available to evaluate multivariable
controllers, their industrial applicability is limited due to several constraints. Hugo (2002)
recommends the following requirements for a universal metric:

e Sensitivity to tuning, model mismatch or equipment failures;

e Impact of disturbances or setpoint changes should be minimal;

e Non-intrusive;

e Ability to assess performance automatically, with minimal intervention;

e Should use an absolute benchmark;

e Should not require the actual process dynamics;

e Diagnose the cause of the bad performance;

e Quantify the economic impact of poor performance;

Additionally, an ideal method should be able to handle large datasets with strong
correlation between variables without requiring much pretreatment. Finally, we feel
confident that the ideal method ensures a simple and intuitive interpretation of controller
problems. We selected some methodologies that meet most of these requirements,
which are presented below for further evaluation.

Sun et al. (2013) method

This technique focuses on evaluating MPC model quality. It is based on residual
assessment and feedback invariant principle, whereby disturbance innovations are not
affected by the feedback controller. It allows the estimation of stochastic disturbance
error e?(k) from the identification of a stable High Order Autoregressive Exogenous
Model (HOARX) using the setpoints Y. (k) and the measured outputs y(k), according to

MO1 MO2

y(k) = ;Aoiy(k —0)+ ;Boiyset(k — D) +ed(k) ~ Z A0y (k — i) + Z BOysee(k — i) +et(k)  (2.1)

where AO and BO are the parameters of ARX model and MO1 and MO2 are the model
orders.

The prediction error e (k) is obtained based on the one-step-ahead prediction (Ljung,
1999) which is the optimal prediction of the output given the past output measurement.
For a process with identified disturbance model G, e? (k)is calculated according to:

P(k) = Gao "(@)Go(@ulk — 1) +[1 = G " (@)]yk — 1) (2.2)

eP (k) = y(k) — y(k) (2.3)
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where G, is the process model. In cases where the disturbance model is not available,
Ljung (1999) suggested projecting a filter (predictor) to capture the disturbance effect (i.e,
Gao(q)e?(k)). The author suggests a performance indicator for model quality (MQI),
defined by:

iz et (k)" Qe (k)

ML= sms oo (0T Q, v (k)

(2.4)

where Qy are controlled variables weights in MPC controller and ns is the number of

sampled data. The MQI varies between 0 and 1, such that MQI = 1 means that all error
is due to stochastic disturbance and the model is perfect.

Badwe et al. (2009) method

This method aims to identify channels, i.e., sub-models involving controlled variable
(CV) versus manipulated variable (MV) with significant model-plant mismatch. It is based
on the investigation of partial correlation between the manipulated variables and residual
of model output prediction. The use of partial correlation is necessary to avoid false
detection of model mismatches given by the causal relation between the variables.

Considering that the input and output are noise filtered, the first step is to isolate the
effect of each MV. This is accomplished by the identification of an Output-Error model
(OE) between each MV over the others, according to:

u; (k) = V1,U(k) + €1; (2.5)

where u; (k) is the evaluated MV, V1; are the OE model parameters, U(k) is the matrix
of remaining MVs and €1; is the component of the evaluated MV uncorrelated with the
others. Similarly, it is necessary to isolate the effect of each CV from all MVs, except the
one being evaluated. This is done by identifying an OE model between the prediction
error of evaluated CV and the remaining MVs, expressed as:

where ej(k) is the prediction error of evaluated CV, V2, ; are the OE model parameters,
Ut(k) is the matrix of remaining MVs and €2, ; is the evaluated CV prediction error under

the sole effect of the evaluated MV. Model mismatch is detected through the regular
correlation of €1; and €2, ;. A strong correlation between these variables is an indicator of

a mismatch in the MPC model ;X y; .

Yu & Qin (2008a and b) method

This methodology is useful to monitor multivariable controllers based on the
inspection of CV variability. This evaluation is done by comparing the actual operational
data with a historical benchmark data, in which the controller performs in an acceptable
or in the desired manner. The global variability I,, is computed as follows:

det{COV[YII - yset”]}
= det{cov[y; — Vser, |}

(2.7)
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where II refers to monitored data and I to benchmark. I,, value greater than one means
an increase in variability and probably decline in performance, while I, less than one
means a variability decrease. Covariance (cov) investigation is also an auxiliary tool for
process diagnosis. Considering the generalized eigenvalue problem (GEVP):

cov (Vi — Yset; )P = HCOV (Y[ — Vser )P (2.8)

where | are the eigenvalues and p the corresponding eigenvector. High eigenvalues ()
mean that there is a difference in the variability (when compared with the benchmark) in
that corresponding eigenvector direction (p). In order to produce reliable results, a
statistical inference is constructed. Considering the quadratic asymptotic statistics
proposed by Desborough and Harris (1992):

nsq .
M _ J 2
fa'=1+2 Z (1 - E) Pa(,j (2.9)
]=

Where sub-index d refers to dataset (I for benchmark and Il to monitored), pg(;),;
represent the autocorrelation coefficients of data along the eigenvector direction i at lag
j and ns is the number of sampled data. From fd(i) the confidence interval of each
eigenvalue are calculated:

0 0]

UL(w) = u: |1 - 2 L I 2.10

(.u'l) Ui Zx /2 ns; — 1 + ns; — 1 ( )
£0 ® \|

LL(u) = u; [1 2 I 1 2.11

(.ul) Hi + Zx /2 <n51 1 + ns;; — 1 ( )

where z,, is the critical value of a standard normal distribution at (1—)100%
confidence level. In practice, UL(y;) and LL(u;) greater than one means a performance
deterioration in the corresponding eigenvector direction, UL(u;) and LL(u;) smaller the
one represent a performance improvement. Finally UL(u;) > 1 and LL(y;) < 1 means
no significant difference between the evaluated data and benchmark.

Based on the direction of performance decline/improvement, it is possible to identify
the associated controlled variable. First, the subspaces of deterioration/improvement are
constructed (P, and P, ), grouping the correspondent eigenvector. 6, is the angle
between these subspaces and each individual controlled variable (represented by the unit
vector evy) and is an indicator of the canonical correlation between the controlled
variable and the subspace. It is calculated as follows:

COS(QkW) = ||PW(PWTPW)_1PWTevk|| (2.12)
cos(6,") = ||Po(P,"Py) 1P, evy || (2.13)

Since P and 0, are calculated from sample covariance, the confidence limit for cos(6;)
helps to determine the statistic significance of each controlled variable contribution.
Considering a cutting factor of 459, it is defined according to:
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(2.14)

where ng is the geometric mean between sample size of benchmark and monitored

dataset. In practice, cos(8),") and cos(8,”) larger than 8 means that the corresponding
controlled variable contributes significantly to the subspaces B, and P,, contributing to
performance decline/improvement.

2.2.3 Proposed methods for MPC model assessment

This section presents our contributions towards the assessment of model-plant
mismatch for MPC models. We are focused on developing a tool for industrial
applications in accordance with the guidelines described in Section 2.2.2.

A process under MPC control shown in Figure 2.1 is initially considered, where C is
the controller, G, is the identified process model (nominal model), G is the real process
model, AG is the model-plant mismatch, G; is the unknown disturbance
model, y,.; correspond to the setpoints, u are the manipulated variables, y are the
measured outputs, y, are the nominal outputs, yg;, are the simulated outputs of the
nominal model perturbed by the actual control action u, v are sequences of independent
random variables and y; are the unmeasured disturbance signals. Based on this
information, the methods are discussed below. T is the closed-loop model, called
complementary sensitivity function of the real system and ,T, is the nominal
complementary sensitivity function.

1
1
1
1
1
|
Yset ! + u
|
1
1
1
1
1

Figure 2.1: Schematic diagram of closed-loop (a) nominal system, (b) with model-
plant mismatch and (c) with unmeasured disturbance.

Model quality evaluation for MPC using the nominal output sensitivity function

The method is based on the premise that an effective model should represent the real
system at the frequency where the MPC works. Thus, to assess the real impact of model-
plant mismatch, the closed-loop performance must be considered. The following
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definitions for the closed loop behavior can be found in many control textbooks (e.g.,
Skogestad & Postlethwaite,1996):

Yo = ToYset (2.15)
To = GoC(I + GoC)™1 = (I + GyC) ™16, C (2.16)
So+Ty=1 (2.17)
Ysim = Gou (2.18)

Where S, is the nominal sensitivity funcion and I is the identity matrix. The nominal
output y, (i.e., the output of the system in the absence of model-plant mismatch and
unmeasured disturbance) could be estimated according to:

Yo —Y) =S80 Ysim—Y) (2.19)

The complete mathematical description as well as the theorem proof can be found in
Botelho et al. (2015a/cap. 3)%. The expression (2.19) shows that it is possible to estimate
the nominal closed-loop output from the controller model as well as plant input and
output data. Since y, is an estimate of the output process in the absence of a model-plant
mismatch or unmeasured disturbance, it could be considered a benchmark for controller-
model output response. The main advantage is that, unlike of MVC/LQG, it is a realistic
reference of the process model. It is important to emphasize that the diagnosis using y,
relates merely to the process model quality or presence of unmeasured disturbance,
being unaffected by poor tuning. Based on this reference, any output dependent on
performance indicator could be applied. For example, a useful indicator is the comparison
of output variances, called variance index (I,,-), based in the indicator presented by
Badwe et al. (2010) and expressed as:

Ivar = M (2.20)
var(yo — ¥o)

where y and y, are the mean value of y and y,, respectively. An [,,- = 1 means that
there is no modeling problem affecting the corresponding CV, since the variance of y and
Yo are similar. The output sensitivity function (Sy) can be obtained analytically from the
nominal process model (G,) and controller model (C), as shown in (2.16) and (2.17).
However, given the complexity of MPC formulation, it is simpler and more
straightforward to obtain Sy from a simulation of the controller considering no model-
plant mismatch and a sufficiently excited closed loop data. Then, the closed-loop model is
identified based on the simulated data. Note that it is only necessary to apply this
procedure again if the MPC tuning or nominal model is changed.

3 . P
Botelho et al. (2015a/cap. 3) refere-se ao artigo correspondente ao capitulos 3 desta tese.
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Diagnosis of poor MPC model: Unmeasured Disturbance vs. Model-Plant Mismatch

Once the modeling problem in MPC is detected, it is desirable to identify its cause. A
key issue is to determine whether the decline in performance is due to MPM or
unmeasured disturbance. The former occurs when the process model cannot adequately
describe the relations between model input and output variables and a re-identification is
required. An unmeasured disturbance occurs when there is a deterministic unknown
signal affecting output behavior. The effects of a MPM and unmeasured disturbance (UD)
in the process outputs are very similar, thus, they are not easily distinguished. Botelho et
al. (2015¢/cap. 5)* proposed an alternative route to this diagnosis. The main idea is to
compare the nominal outputs y, with the nominal error ey (k), defined as:

eo(k) = yo(k) — y(k) (2.21)

Considering that y,(k) is the estimated output free from model-plant mismatches
and unmeasured disturbances, e, (k) can be interpreted as the effect of the modeling
problems in the loop. When the process output is under a MPM, e, (k) will be dependent
on the references changes (setpoint or soft constraint), as well as y,(k), causing their
variation to be similar. However, when the process output is under an unmeasured
disturbance e, (k) will be independent of references changes, since the disturbances
come from an external source. Nonetheless, y,(k) continues to be dependent from
them. This means that the variation of y,(k) and e, (k) are uncorrelated. Therefore, the
comparison between y,(k) and e, (k) patterns can be used to discriminate between
model-plant mismatch and unmeasured disturbances.

The diagnosis procedure to distinguish between MPM and unmeasured disturbances
consists of the statistical analysis of the distribution of y,(k) and ey,(k) along a moving
window (MW). The main advantage of this approach is its capability to better capture the
dataset tendency. It means that the method capture how y,(k) and e, (k) are changing
along the time. Botelho et al. (2015c/cap. 5)* show that this approach is more robust than
the use of regular correlation because the regular correlation is a linear quantifier. Thus,
when the process has some nonlinearity, the relation between y, (k) and ey (k) will also
be nonlinear and the indicator will be misleading. The statistical distribution is evaluated
by the skewness (skn) and kurtosis (kts) coefficients:

skn = ——— (2.22)

(Yms)’

kts = (2.23)

my
(Vmy)*
where m,, ms and my are the second, third and fourth order central moment, defined as:

_ X =X

m; i ,1=2,34 (2.24)

4 . P
Botelho et al. (2015c¢/cap. 5) refere-se ao artigo correspondente ao capitulos 5 desta tese.
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Where X; is the evaluated dataset (y, or ey) and X is it corresponding mean. A high value
of kurtosis means that the data presents a large number of recordings away from the
mean, when compared with a normal distribution. The sample skewness provides an
indicator of how asymmetric is the distribution. A positive value of skewness means that
there is a higher concentration of values below the mean. Figures Figure 2.2 and Figure
2.3 illustrate the skewness and kurtosis of a hypothetical case with MPM and
unmeasured disturbance, respectively.

- Yo 6 Yo
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Figure 2.2: Hypothetical case with MPM: (a) measured y(k) and estimation of y,(k) and
eo(k) , (b) kurtosis along a moving window and (c) skewness along a moving window.
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Figure 2.3: Hypothetical case with unmeasured disturbance: (a) measured y(k) and
estimation of y,(k) and ey (k) , (b) kurtosis along a moving window and (c) skewness
along a moving window.

The comparison of y,(k) and ey (k) are based on the kurtosis and skewness scatter.
To quantify it, we have used a linear regression. The angular coefficient of the linear
approximation cos(x) and its coefficient of determination R? provide an indicator of
model-plant mismatch. The distribution of y,(k) and ey(k) become more similar closer
to = 45° and when R?=1. Thus, this is indicative of the presence of a model-plant
mismatch, as shown in Figure 2.4.

A similar procedure is based on the confidence ellipse scatter. The ellipse is
constructed considering the covariance matrix of y,(k) and ey (k) kurtosis and skewness.
The angle of the largest eigenvalue corresponds to the ellipse inclination (y). The ellipse
diameters are given by the square root of the largest and the lowest eigenvalues
multiplied by the critical chi-square value (xcit2) associated with a given probability level
(Santos-Fernandez, 2012). The confidence ellipse is less circular and more diagonal when
the correlation between the statistical distributions of y,(k) and ey(k) is more
significant, indicating the presence of a model-plant mismatch. Figure 2.4 shows the
expected behavior of linear and elliptical approximation under MPM and unmeasured
disturbance, respectively.


http://link.springer.com/search?facet-author=%22Edgar+Santos-Fern%C3%A1ndez%22
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Figure 2.4: Expected response of linear and elliptical approximation (a) under MPM
and (b) under unmeasured disturbance.

2.3 Industrial issues of MPC applications

Although predictive controllers rely on a solid theoretical foundation, most of the
industrial application and commercial use MPCs use their own control policy (see Holkar
& Waghmare, 2010; Qin & Badgwell’ 2003). This means that they use different
combinations of operational pratices, algorithms and variable considerations. MPC
assessment techniques must be designed to manage this diversity of control policies.
However, it is not simple because the mathematical formulation of the MPC is different
for each case and most methods require adaptations in order to incorporate it into the
assessment procedure.

The first adversity faced in MPC performance assessment is with regards to the
process model. There are several model types used by the commercial controllers, which
can be linear or non-linear, with empirical and phenomenological basis. Among the linear
type, for example, it is common to formulate the model using transfer functions, step
response, autoregressive models, impulse response, and state space. However, several
MPC assessment techniques rely only on the analysis of transfer functions or state space
models, so its application to other kinds of models will depend on some model
conversion, which may corrupt the quality of analysis.

Another common industrial practice is the simplified real-time optimization layer. This
structure has the objective of calculating the best operational region based in a steady
state simulation, taking into consideration economic aspects and operational process
constraints. Thus, the process model available should perform accordingly, both at
controller frequency and in steady-state to complete the optimization layer (Campos et
al., 2013). Most of model evaluation techniques consider the modeling problems under a
unified concept and do not take into account any aspect of the controller tuning,
structure and objectives.

Another industrial practice that restricts the application of MPC assessment methods
is the use of soft constraints, where the number of monitored variables is usually larger
than the manipulated ones. Moreover, in some cases, the same controller has separate
politics for different variables (setpoints and soft constraints). Thus, depending on the CVs
prediction, the control problem can vary (change the set of controlled and manipulated
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variable), in square or non-square scenarios. Most MPC assessment techniques use the
setpoints as reference; however, for this kind of controller, there is no setpoint associated
with the controller objective.

Additionally, there is a series of factors associated with plant operation, such as
unmeasured disturbances (i.e., non-modeled deterministic variables), discontinuous
disturbances and nonlinearities that hinder the development of a tool for monitoring and

diagnosis.

2.4 Case Studies

2.4.1 Shell Benchmark Process

System Description

This Process was proposed by Prett & Morari (1987) and is composed by a heavy oil
fractionator, as represented in Figure 2.5. The main feature of this process is the high

interaction among the variables as well as large time delays.
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Figure 2.5: Schematic Representation of Shell Heavy Qil Fractionator

(Maciejowski, 2002).

The control system is originally composed by 7 measured outputs, 4 manipulated
inputs and 2 disturbances. In this case study the problem is reduced to a 3 X 3 structure
and a linear MPC controller was configured in Matlab™/Simulink™. The objective is to
control the top composition (y1), the side composition (y2) and the bottom reflux
temperature (y3) by the manipulation of the top draw (ul), side draw (u2) and bottom
reflux duty (u3). The process model (G,) and the MPC cost function are:
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438 o 442, T2,
335 + 1 44s + 1 195 + 1

ph-1 (nu ny
. . 2 . _ . 2
PO 1. A Z {Z [IQuAu(k+ ilk) | i,j] +;[|Qy(y(k+ ilk) = ysee (ke + ilk) | u]}

i=0 \j=1

(2.26)

max min
Uhard Zu = Uhard

s.t.

Yhard ZY Z Yhara
where mh is the horizon control, phis the prediction horizon, nuis the number of
available MVs, ny is the number of CVs, Qy is the setpoint weighting of outputs, Qay is

the move suppression, yiax, ymin = ymax ,min are the upper and lower constraint of

CVs and MVs, respectively. The tuning parameters are presented in Table 2.2.

Table 2.2: MPC original tuning parameters: Shell Benchmark Problem

Sample Time 2min
Prediction Horizon (ph) 20
Control Horizon (mh) 4
Move Suppression (Qa.) Quu1 = Quuz = Qauz = 0.2

CV Weight (Qy) Q1 = 1, Qyp = 6,0Qy3 =2
CV upper limit (ygrg Y1hara = Y2hara=Y3hara=
CV lower limit (yjer, Y1iara = Y2 hara=y3hara=-5
MV upper limit (upaiy ulpd = u2ar =u3ne =20
MV lower limit (u%", ulpr, = w2t =u3per,=-20

To compare the methods discussed in this paper, some inconsistencies were
generated, including model-plant mismatch, unmeasured disturbance and changing
tuning parameters (see Table 2.3). These inconsistencies were applied in the system and
the simulations were performed, considering variations in the setpoints, according to
Figure 2.7.
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Table 2.3: Inconsistency Configuration: Shell Benchmark Problem

Type Value
MO None
M1 Model-Plant Mismatch in y1 versus G = 405 ..
ul Y17 80s +1
M2 Unmeasured disturbance in y2 According to Figure 2.6
M3 Bad Tuningin y3 Qy3 =0.2

Disturbance Signal

0 200 400 600 800 1000 1200 1400 1600 1800
Time [min]

Figure 2.6: Unmeasured Disturbance in y2: Shell Benchmark Problem
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Figure 2.7: Step changes in each controlled variable setpoint: Shell Benchmark
Problem

Results and discussions

The methods of Sun et al. (2013) Badwe et al. (2009) and Yu & Qin (2008a and b) as
well the proposed method are applied in the generated data. Results are presented in
Tables Table 2.4 and Table 2.5 and Figures Figure 2.8, Figure 2.9 and Figure 2.10.
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Figure 2.8: Results of Sun et al. (2013) method: Shell Benchmark Problem

(d)
Figure 2.9: Results of Badwe et al. (2009) method: Partial correlation plots of Shell
Benchmark Problem for M0(a), M1(b), M2(c) and M3(d)
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Table 2.4: Results of Yu & Qin (2008a and b) method: Shell Benchmark Problem

I Worse Better
v Performance Performance
MO 1.00 - -
M1 4.76 y1 -
M2 2.14 y2 -
M3 2.83 y3 -
(3“ 5 T T T T
5, M [y Iy 3
: s
£
B2
s, Il _____ ]
f o
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MO M1
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Figure 2.10: Results of proposed method: Ivar for the Shell Benchmark Problem

Table 2.5: Results of proposed method: Kurtosis and Skewness indicators for Shell
Benchmark Problem

Ellipsoid Inclination
(degrees)

Ellipsoid Diameter
Ratio

Linear Regression
angle (degrees)

|log(R?)]

Kurtosis Skewness

Kurtosis Skewness

Kurtosis Skewness

Kurtosis Skewness

M1 27.17 64.00

M2 1.10 0.04

2.22 1.55

6.14 2.68

20.14 11.99

0.62 0.67

3.42 0.26

5.38 0.85

The Sun et al. (2013) method aims to detect modeling problems in the MPC. Figure
2.8 shows that the method is capable to ensure the correct diagnosis about the system,
since it indicate MQI values smaller than one only when exist a model-plant mismatch or
an unmeasured disturbance (M1 and M2).

The Yu & Qin(2008a and b) method detects changes in the general variability of the
system and identify the CVs responsible for it. The diagnosis is independent of the source
(disturbance, tuning or MPM). In this case study the evaluations were performed with a
confidence level of 95% and using M0 as benchmark data. Table 2.4 shows that the
method ensures the correct diagnosis in all cases, indicating an increase in [, and
associating with the correct variable responsible. For example, in M3 the method indicate
y3 as responsible CV and the inconsistency in this case is performed in Q3.
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The Badwe et al. (2009) method detects model-plant mismatch, as presented in
Figure 2.9. The high partial correlation in ul x y1 indicates for case M1 indicates the
presence of MPM in this model. For all other cases (M0, M2 and M3) the method
indicates low partial correlation because they are not corrupted by a model-plant
mismatch.

Results of Figure 2.10 show that the proposed method has correctly detected
irregularities in the models and it has identified the variable affected by the mismatch in
all cases. In M1 there is an indication of problems in y1 and for M2 there is an indication
of problems in y2. The other cases (M0 and M3) have [,,,,- near to one, because these
cases do not have any modeling problem. For the cases with modeling problems (M1 and
M?2) the kurtosis and skewness indicators can be successfully applied to distinguish
between model-plant mismatch and unmeasured disturbance, as presented in Table 2.5,
since the angles (of linear approximation and ellipse) are smaller than 1.5° presence of
unmeasured disturbance and remains between 102 and 652 when a MPM is present. The
ellipsoid diameter ratios are different from one, indicating the non-circle format of ellipse
and validating the interpretation of the angles.

Thus, for this case study the methods of literature as well the proposed method, were
adequate, generating results consistent with their assumptions.

2.4.2 The quadruple tank process

Process description

This system is composed of four cylindrical tanks that have been interconnected
according to the diagram in Figure 2.11. Water is pumped into the tanks through the
pumps with voltages vl and v2. The flow of each pump is split using valves, whose
openings are equal to x1 and x2, respectively. More details can be found in Johanson
(2000).

ha

Iz
-

Water Reservoir

Figure 2.11: Schematic Representation of the Quadruple-Tank Process

The mass balances around each tank are:

dhy  cd
dt A

cd xk
(h)®PL + == (hy)exP3 4 21y (2.27)
A, A,
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dh, cd, cdy X, ko

— = __%(h exp2 —(h exp4 2.28
dt 4, (hy) + 4, (hy) + A, ) ( )
dh3 Cd3 ex (1 - xZ)kz

= 2 p3 4 27 2 2.29
dt A, (h3) + A, VU, ( )
dh, cd, ox (1— x1)k,

—r_ __= p4 4 - -Z - 2.30
i a, (hy) + A, %1 ( )

where h; is the level of each tank, k,;v; and k,v, are the pumps” output flow rate, 4; is
the cross-section area of each tank, cd; is the discharge coefficient of each tank and expi
is the discharge exponent. Table 2.6 provides the model parameter values.

Table 2.6: Original Parameter Values: The Quadruple-Tank Process

Ay 28 cm? cdy, 2.525cm?%/s
A, 32 cm? ki 3.14 cm3/Vs
Ag 28 cm? k, 329 cm3/Vs
Ay 32 cm? expl 0.5
cd;, 3.145cm?%/s | exp2 0.5
cd, 2.525cm?%/s | exp3 0.5
cd; 3.145cm?%/s | exp4 0.5
MPC configuration
For the process described above, we set a linear MPC controller in

Matlab™/Simulink™ with controlled variables being the four levels (hy, h, h3 and hy)
and manipulated variables being the pump voltages (v; and v,) and valve openings (x;
and x,).

The linear plant model used by the MPC was obtained from the linearization of the
nonlinear model at the operating point, defined by the manipulated variables vl =
3.2,v2 = 3.15,x1 = 0.43, and x2 = 0.34 and is given by:

r 0.048 0.0025 0.35 —0.0096
s+0.016 s240.028s+ 0.0002 s+ 0.015 52+ 0.41s + 0.0004
0.0009 0.035 —0.0055 0.323
G(s) = s+0.016 s+ 0.011 52+ 0.024s + 0.0002 s+ 0.011 (2.31)
0.078 -0.37
0 0.028s + 0.25 0 s+ 0.026
0.045 -0.31
ls +0.018 0 s+ 0.018 0

The MPC used has a simple real-time optimization layer, which established the
optimal operating point according to economic objectives. The scheme presented by

Figure 2.12 illustrates its architecture.
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MPC Structure

Simplified real-time Targets Control Actions
economic optimization Calculations
Actual MV and CV MV

Process <

Figure 2.12: Architecture of MPC controller with optimizer (adapted from Campos et
al., 2013)

The cost function of the simple real-time optimization is defined by:

nu
min z ((puutgt)l
Utgt 4
=1
max min (2.32)
:Vsoft = Vset = ysoft
s.t.

max min
Upara = Utgt = Unara

where ¢@,, are the manipulated variables costs, y..; are the setpoints (corresponding to

the closed-loop steady-state prediction of CVs), iy and ym7: are the soft constraints of

controlled variables, up,;y and upyyq are the constraints of MVs and u, 4 are the MVs
targets.

The optimal values calculated from the optimizer (u;4; and yg,.) are transferred to
the MPC optimization problem formulated as follows:

ph-1 ((nu
. . 2 . _ . 2 2
. S} {Z (1@t + 1)) 1, + | QuCull + 1) = tangec(k +ilK) |*, |+ 7,8, }
j:

i=0

max min
Unhard 2u = Unhgrd (2-33)
max min
s.t. yhard = y = yhard

max min __
ysoft+6y =y 2ysoft Sy
6,20

where mh is the horizon control, phis the prediction horizon, nu is the number of
available MVs, @, is the target weighting of MVs, @,, is the move suppression, s, is the
slack variable to soft the constraints of CV, z, is the penalization of CV soft constraint

violation, M4 and y™" are the hard constraints of CVs.

It is important to emphasize that, as shown in (2.33), this MPC controller is configured
in terms of manipulated variables, so that the CVs are penalized only in cases of soft
constraint violations (given that, when there is no soft constraint violation, s, = 0). This
allows operation in a scenario where the number of controlled variables is greater than
the number of manipulated variables, as discussed in Section 2.3. The tuning parameters
for the controller are defined in Table 2.7.
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Table 2.7: MPC original tuning parameters: The Quadruple-Tank Process

Sample Time 10s
Prediction Horizon 48
Control Horizon 12
MV Cost ®, =¥, =-350;¢0  =¢, , =+50
MV Target Weight Quv1 = Q2 = Qx1 = Qx2 = 10
Move Suppression Qav1 = Qavz = Qax1 = Qaxz =50
Penalization of the constraints violation Tpi = Tha = Tpz = Tpa = 1.25E5

Scenarios Configuration

Different scenarios are defined for simulating the system described above. They are
configured by the manipulation of CVs and MVs constraints.

e Scenario 1: 4x4 System

This scenario illustrates a square system, i.e., the number of controlled variable and
available manipulated variable is equal. In terms of control, this is the simplest situation,
since there are enough degrees of freedom to keep all controlled variables in the optimal
condition. The direction provided by the optimizer (equation 2.32) results in keeping the
levels at their maximum limits. The behavior of this system is similar to a classical fixed
setpoint case. Figure 2.13 shows the results when there is no modeling error.
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Figure 2.13: Expected behavior in Scenario 1: The Quadruple-Tank Process
e Scenario 2: x1 and x2 saturated at the upper limit

This scenario is created by reducing the upper limits of x1 and x2 and the soft
constraint of h3 and h4 to a lower level, as shown in Figure 2.14. In this case, the valve
openings remain saturated most of the time, which means that the system has only two
manipulated variables (v, and v,) available to control the four levels. The result is that
two CVs are maintained at the optimal soft constraint and the others remain within the
soft constraint.



Capitulo 2 — Perspectives and Challenges in Performance Assessment of Model Predictive Control

31

JEr—Y
o oo o,

h1 [cm]

h3 [cm]
N R oo

o

E‘15
210
s
____________________ 0 U gy g p——
0 5000 10000 0 5000 10000
Time [s] Time [s]
6
I “| T4
A=A
. ) = 2 .
——————————————————————— 0_‘_‘_._._‘_‘_‘_._._._‘_
0 5000 10000 0 5000 10000
Time [s] Time [s]
‘_‘_"ysoﬁ_y_yset

04
02

_______________________ 10_._._._._‘_‘_‘_._._._‘_
=
o™ 5 F: "
> - -
f 0 ]
0 5000 10000 0 5000 10000
Time [s] Time [s]
- W
04
%02
_______________________ oF—-—————————
0 5000 10000 0 5000 10000
Time [s] Time [s]
‘_'_‘-uhard utarget u

Figure 2.14: Expected behavior of Scenario 2: The Quadruple-Tank Process

Controller Inconsistencies Configuration

To compare the methods, several controller inconsistencies are performed, including
model-plant mismatch, unmeasured disturbance and inappropriate tuning parameters, as
presented in Table 2.8. These inconsistencies were applied in the system and the
simulation was performed considering each scenario described above.

Table 2.8: Inconsistencies Configuration: The Quadruple-Tank Process

Type Value
MO None ---
M1 Model-Plant Mismatch cd, = 6.47
M2 Model-Plant Mismatch A; =182
M3 Model-Plant Mismatch cd; =7.86
M4 Unmeasured Disturbance Gdp, = m
M5 Unmeasured Disturbance Gdp, = L
55+ 1
M6 Model-Plant Mismatch exp3 = 0.1
M7 Model-Plant Mismatch exp2 = 0.85
M8 Tuning Modification Qvi =0y =0y =0, =80
M9 Tuning Modification Q1 = Quz = Qux1 = Quxz = 150

Results and discussions

Sun et al. (2013) method

The main objective of this method is to identify problems in the MPC model. The
indicator proposed by the author is based in the weight of CVs (see equation 2.4).
However, the MPC configured in this case study does not include a term for controlled
variable penalization (considering that they are inside the range) in the cost function.
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Therefore, in this case, the direct application of the indicator is not useful. An alternative
is to evaluate the MQI for each CV, individually. Figure 2.15 and Figure 2.16 illustrate the
results.
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Figure 2.15: Results of Sun et al. (2013) method for Scenario 1 under model
inconsistencies - MQI of controlled variables: The Quadruple-Tank Process
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Figure 2.16: Resuls of Sun et al. (2013) method for Scenario 2 under model
inconsistences - M QI of controlled variables: The Quadruple-Tank Process

According to the method, the model performs better when the MQI is near 1. An
empirical tolerance limit of 0.85 was considered (dash line in figures), which means that
MQI greater or equal to 0.85 does not indicate significant model-plant mismatch. Values
below this tolerance are an indicator of poor model quality. Figure 2.15 shows that, for
Scenario 1, the method correctly captures model mismatches or non-measured
disturbance presence. For example, from phenomenological model (2.27) to (2.30) a
mismatch on cd2 (M1) only affects h2, whereas a mismatch in cd3 (M3) will affect hl
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and h3. This conclusion is correctly captured by the method for scenario 1. Similarly, a
tuning mismatch does not lead to any indication, as shown in cases M8 and M9.

However, when the CVs are inside the range, the method does not perform as
expected, according to Figure 2.16. This occurs because, in this case, the calculated
setpoint (2.32) is just a result of the optimal control actions, not being strictly associated
with the control objective (2.33). In practical terms, this means that the CV moves are not
a direct consequence of setpoint changes, as estimated by the HOARX model suggested
for the method (2.1).

e Yu & Qin (2008) method

The main objective of the method is to evaluate the general variability of the
controlled variables and identify those responsible for changes in performance. The
evaluations were performed using a confidence level of 95%. The benchmark data are
from Scenario 1 without mismatch (MO), since it is the dataset closest to the design case,
where the system has enough levels of freedom to optimize all CVs. Table 2.9 summarizes
the results obtained.

Table 2.9: Results of Yu & Qin method: The Quadruple-Tank Process

Scenario 1 Scenario 2
I Worse Better I Worse Better
v Performance Performance v Performance Performance
Mo 1.00 -- - 0.08 h2,h3, h4 h1
M1 4.90 h2,h3, h4 - 0.042 h2,h3 -
M2 9.85 h2 - 2.74 h2,h3, h4 -
M3 4.3 h2,h3 h1 0.22 h2,h3, h4 -
M4 473.5 hl,h2,h3,h4 - 5.8e3 h1,h2,h3 -
M5 178.7 h1, h3, h4 - 0.83 h2,h3, h4 h1
M6 2.04 h2,h3 h1 0.16 h2,h3 h1
M7 1.4 -- - 0.037 h2,h3 h1
M8 4.12 h2 -- 0.29 h2,h3 -
M9 1.52 h2, h4 h1 0.0068 h2,h3, h4 h1

Table 2.9 shows that, for Scenario 1 the model-plant mismatch or non-measured
disturbance weaken the system’s performance in all cases, since I, is bigger than 1.
However, the variable associated with performance decline is not necessarily the same
affected by the mismatch. This is to be expected given the mismatch impact on the MVs
and the fact that this effect is captured for all CVs.
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For Scenario 2, the method indicates improved performance of some CVs in all cases,
except M4. This happens because, in the benchmark data, the setpoints are constant and
remain in the optimal limit for the most part (Figure 2.13). However, when the CVs are
inside the range (h1 and h2 in Figure 2.14), the setpoints (from the optimizer) capture the
noise effect and the measured CV is closer to its value. In this case, the method provides
an erroneous indication of improved performance. Thus, the MPC analysis using the Yu &
Qin (2008a and b) method is inconclusive when the CVs are operating by range, since the
method is setpoint dependent.

e Badwe et al. (2009) method

The main objective of this method is to identify the model channels (i.e. pair MV
versus CV) that have significant model-plant mismatch. The method was applied in the
generated data for each scenario and model inconsistences. It is important to emphasize
that the saturated manipulated variables (Scenario 2) are removed of the evaluation
procedure, to ensure the quality of OE models identification. This method is capable of
identifying the model mismatches independent of the scenario evaluated. This result is
consistent, since this method essentially evaluates the expected response of CVs given
the MVs values, not relying on any aspect of controller objectives. Figure 2.17 exemplifies
the results from Scenario 2. When a mismatch in exp3 occurs (M6), models directly
associated with h1 and h3 indicate a problem. When a tuning mismatch occurs (M9), the
model produces some indicative of high partial correlation, which means that there is no
model-plant mismatch in this case.
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Figure 2.17: Results of Badwe et al. (2009) method: Partial correlation plot of (a)
Scenario 2 — M6 and (b) Scenario 2 — M9: The Quadruple-Tank Process

Although the success of this method is independent of the control strategy used, the
dynamic partial correlation analysis is not easily applied in practical terms. The first issue
presented by the author is the need for enough MV and CV moves for the estimation of
consistent OE models. This requires an extensive investigation of historical data to find
operational conditions that satisfy this requirement. Another issue, presented by Carlsson
(2010), is that many parameters need to be carefully chosen. For example, Figure 2.18
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illustrates OE models estimated for Scenario 1 — M1, considering different orders. It is
possible to see the poor OE model quality if a wrong order model is selected, which make
automatic utilization of this method difficult.
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Figure 2.18: OE models estimated for Scenario 1 — M1 considering different orders:
The Quadruple-Tank Process

e Proposed methods

The main objective of the method is to identify the controlled variables that have
significant impact of modeling errors, using the nominal simulation as reference, and
detect if the source is a model-plant mismatch or an unmeasured disturbance. The
indicator used is the variance of outputs (2.20). The skewness and kurtosis indicator was
performed for the CVs that suffered the greatest impact in each case. Figures Figure 2.19
and Figure 2.20 and Tables Table 2.10 and Table 2.11 summarize the results.
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Figure 2.19: Ivar for Scenario 1: The Quadruple-Tank Process
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Figure 2.20: Ivar for Scenario 2: The Quadruple-Tank Process

Table 2.10: Kurtosis and Skewness indicators for Scenario 1: The Quadruple-Tank
Process

Ellipsoid Inclination | Ellipsoid Diameter Linear Regression

2
(degrees) Ratio angle (degrees) |log(R?)]

Kurtosis Skewness | Kurtosis Skewness | Kurtosis Skewness | Kurtosis Skewness

M1 30.90 37.43 1.78 231 20.25 29.26 1.48 0.79
M2 32.45 37.72 1.47 1.87 16.16 25.36 2.16 1.20
M3 35.49 40.74 2.05 2.78 25.90 34.39 1.03 0.52
M4 12.59 15.33 2.37 2.99 10.32 13.58 1.91 1.15
M5 2.44 4.78 1.78 1.84 1.67 3.3768 5.91 4.45
M6 35.89 53.59 131 1.54 15.59 23.89 2.72 1.87

M7 38.72 37.56 1.65 1.65 22.38 21.95 1.57 1.57
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Table 2.11: Kurtosis and Skewness indicators for Scenario 2: The Quadruple-Tank

Process
Ellipsoid Inclination | Ellipsoid Piameter Linear Regression |log(R2)|
(degrees) Ratio angle(degrees)

Kurtosis Skewness | Kurtosis Skewness | Kurtosis Skewness | Skewness Kurtosis
M1 38.42 37.48 2.55 2.27 31.45 28.99 0.65 0.83
M2 36.67 26.35 1.43 1.71 16.77 16.78 2.20 1.78
M3 34.82 38.19 2.02 3.01 25.15 33.21 1.08 0.47
M4 6.74 15.78 2.34 2.68 5.51 13.52 3.05 1.32
M5 6.54 1.55 1.57 2.30 3.87 1.26 4.51 5.97
M6 26.12 60.11 2.99 1.14 51.05 16.48 0.64 4.39
M7 40.29 38.13 2.32 2.66 31.36 31.80 0.77 0.59

Results of Figure 2.19 and Figure 2.20 show that, considering a Ivar tolerance of +0.1
(due to noise), the system nonlinearity does not interfere significantly in MPC
performance, since Ivar is close to one for all variables. The method has correctly
detected irregularities in the models and it has identified the variable affected by the
mismatch in all cases. For example, in both scenarios, for M1 there is an indication of
problems in h2. This case corresponds to a mismatch in parameter cd2, which is
associated to this level. In the presence of a tuning modification, the method does not
indicate any variable affected, as expected.

Table 2.10 and Table 2.11 demonstrate that the kurtosis and skewness indicators can
be successfully applied to distinguish between model-plant mismatch and unmeasured
disturbance. The linear regression and ellipsoids approximation approaches provide
similar results, so that, in general, the angles (of straight and ellipse) remain between 15°
and 55° in presence of model-plant mismatch and exceed these limits when the process is
under an unmeasured disturbance. It is not simple to define a relation between the
ellipsoid diameter ratio and the source of discrepancy problem if this index is analyzed
separately as well with as [log(R?)|, however, combined with the angle investigation, a
good estimation of data distribution is provided. Finally, to ensure reliable results, a good
practice is also to investigate the skewness and kurtosis. They produce even better and
conclusive results. Figure 2.21 and Figure 2.22 make evident the dependence relation of
Vo (k) and ey (k) in case of model-plant mismatch, since the peaks in the data occur at the
same instant and have similar magnitude. However, this does not occur in presence of
unmeasured disturbance. These figures also show the capacity of the proposed indicators
to correctly indicate the kind of modeling problem considering the shape and inclination
of ellipse and linear approximation.
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Figure 2.21: Scenario 2 — M1: (a) estimation of y,(k), (b) estimation of e,(k) and (c)
scattering of kts(y,) vs. kts(ep) : The Quadruple-Tank Process
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Figure 2.22: Scenario 2 — M5: (a) estimation of y,(k), (b) estimation of e, (k) and (c)
scattering of skn(y,) vs. skn (ey) : The Quadruple-Tank Process

2.5 Conclusions

In this paper an overview concerning MPC performance assessment and diagnosis was
accomplished. These techniques have been evaluated considering industrial premises, as
proposed by Hugo (2002). Considering them, we selected the following methods: Sun et
al. (2013) aim to point out the variables with strong impact of disturbances or model
mismatch; Badwe et al. (2009) evaluate the model plant mismatch and isolate the
channels that should be identified to improve the model quality; and the Yu & Qin (2008a
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and b) method, that identifies the controlled variables that provide the major
contributions to variability changes.

These techniques have been applied in two case studies: The Shell benchmark process
and The Quadruple-tank process.

The Shell benchmark process is configured with a linear plant and MPC. The main
objective of the controller is to maintain the controlled variables at their setpoints. A
model-plant mismatch, an unmeasured disturbance and a bad tuning have been inserted
to evaluate the methodologies. The results show that all methods presented in this paper
were capable to ensure the correct diagnosis of the system in the evaluated cases.

In the quadruple-tank plant a linear MPC is applied in the (nonlinear) process. The
controlled variables are supervised using soft constraints instead of setpoints, a common
scenario in industrial applications. Several mismatches have been inserted to evaluate the
methodologies. The Sun et al. (2013) and (2008a and b) methods provide reliable results
when the controller has enough degrees of freedom to achieve all desired values.
However, when the controlled variables remain inside the soft constraints, these
methods failed, because of the absence of a specific setpoint. The method proposed by
Badwe et al. (2009) is insensitive to the control strategy, because it requires only input
and output data. The main limitation is that it requires a rich dataset to ensure correct
identifications. This requirement can restrict the industrial application.

Since the MPC model is the most important source of controller degradation, we
propose new a methodology for detecting modeling problems. This new approach allows
evaluating the model-plant mismatch (MPM) impact specific to the actual controller
performance, considering the output sensitivity function, which is a reasonable
benchmark for MPC assessment. Moreover, its simplicity facilitates application in real
plant data (online or offline), regardless of the control algorithm assumed. The proposed
method was capable of indicating the impact of the modeling inconsistences in the
system behavior, independent of the controller strategy used.

Another key issue for the modeling quality assessment is to determine whether the
cause of poor performance comes from a model-plant mismatch or an unmeasured
disturbance. This paper proposed an approach to distinguish between these two sources
of degradation. The main idea was to compare the estimated behavior of the system in
the absence of model-plant mismatch with the estimated modeling error. The
comparison was made considering the statistical distribution (Kurtosis and Skewness
coefficients) along a moving window. The diagnosis procedure is based on a linear
approximation and the confidence ellipse of the statistical distributions. The proposed
approach could detect the source of the discrepancy for all analyzed scenarios,
independent of controller configuration.
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Capitulo3— A methodology for detecting
model-plant mismatches affecting MPC
performance

Abstract®: The model quality for a model predictive control (MPC) is critical for the
control loop performance. Thus, assessing the effect of model-plant mismatch (MPM) is
fundamental for performance assessment and monitoring the MPC. This paper proposes
a method for evaluating model quality based on the investigation of closed-loop data and
the nominal output sensitivity function, which facilitates the assessment procedure for
the actual closed-loop performances. The effectiveness of the proposed method is
illustrated by a multivariable case study, considering linear and nonlinear plants.

Keywords: Model Predictive Control, Model-Plant Mismatch, Model Quality, Control
Performance Assessment
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3.1 Introduction

MPC is the consensual solution when an advanced controller is necessary. This status
is based on more than 20 years of its successful application in many fields (Qin &
Badgwell, 2003). The complex behavior and multivariable nature of chemical plants justify
MPC proliferation. In each execution cycle, these controllers are capable of estimating a
sequence of control actions that directs the process towards ideal operational conditions.
Further details of MPC characteristics are provided in Camacho & Bordons (2004),
Maciejowski (2002) and Rawlings & Mayne (2009). The “heart” of these controllers is the
plant model, whose predictions are used to optimize control actions, which allows it to
operate close to optimal conditions.

All processes are susceptible to external degradation factors that cause the plant to
operate differently from that which is foreseen in the MPC design, such as sensors and
equipment failure, variability of raw material, changes in product specifications and
seasonal influence, reducing its profitability. As a consequence, assessing controller
performance is essential to ensure controller longevity. Nonetheless, this remains a
difficult task due to the processes’ multi-factorial nature and complex structure.
According to Sun et al.(2013), there are many sources of performance degradation,
including tuning parameters (horizon length, weight parameters, time of control cycles,
etc.), poor model quality, inappropriate constraint setup and the presence of unmeasured
disturbances.

Industrial and academic interest in MPC assessment grew significantly in the last
decades, giving rise to several techniques. Some of these are based on the concept of
Minimal Variance Control (MVC) and/or its Linear Quadratic Gaussian (LQG) extension.
For example, Lee et al.(2008) suggests a method based on MVC, which evaluates the
sensitivity of variables in order to verify their contribution to the economic performance
of the controller. Harrison & Qin (2009) suggest a minimal variance map to evaluate the
effect of constraints. Zhao et al. (2010) propose an economic benchmark based on LQG.
Zhang et al. (2013) suggested a deconstruction of a MIMO system in MISO subsystem to
evaluate each controlled variable independently. Some authors, however, disagree on
using LQG/MVC for MPC assessment, as they deem it an unattainable model for most
real-life applications (Jelali, 2013). Alternatively, some authors proposed techniques that
use historical benchmarks, such as Schafer & Cinar (2004), who evaluated plant data
based on MPC cost function. Other methods (e.g., Alcala & Qin, 2009 and 2011;
AlGhazzawi & Lennox, 2009; Tian et al., 2011; Zhang & Shaoyuan, 2006) are based on the
construction of PCA/PLS models to identify sources of controller degradation.

A significant number of methods focus exclusively on investigating the model’s
quality, given that it is the neuralgic component of MPC. Such is the case in Conner and
Seborg (2005), who use the Akaike Information Criteria to asess the need for re-
identification. Badwe et al. (2009) evaluated the partial correlation between input and
output residuals to detect model discrepancies. Sun et al. (2013) measured model
gualities based on the deconstruction of model residuals onto an orthogonal basis. Jiang
et al. (2012) proposed an indicator, which compares residuals under different levels of
prediction. Most of the available methods for model quality assessment focus on
investigating the predictive capacity of the models in an open-loop approach. However,
the model error effect on MPC performance is not only dependent on the mismatches,
but also is function of the controller tuning and disturbances.
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Badwe et al. (2010) incorporate this concept and propose the identification of the
design plant behavior in closed-loop, also called design sensitivity (S;) to quantify the
impact of model-plant mismatch in MPC performance. A brief description of this method
is presented below.

Consider the IMC structures presented in Figure 3.1, where K is the IMC controller, G
is the real process model, G, is the identified process model, v are the stationary
disturbances entering the loop, d are the model residual feedback and € are the
controller inputs. The designed sensitivity ( S;) supposes that the plant dynamics were
exactly captured by the model (i.e., G = G,) as illustrated in Figure 3.1, and is defined as:

S, =1—GoK (3.1)

Badwe et al. (2010) suggest that the S, should be identified by an Output-Error (OE)
model using the measured plant outputs (y), the setpoints (ys.¢) and the predicted
outputs (y). Considering the achieved loop shown in Figure 3.1, the controller inputs (€)
are:

E=Yset —Y+ (3.2)
So, the designed sensitivity model can be identified as follow:
(Vser —Y) = Sq€ (3.3)

The outputs of the designed closed loop (Figure 3.1) are called designed outputs or
nominal outputs (Yo ., ) They are defined as:

Yogapwrg = Yset — Sd(yset - vs) (3.4)

The authors suggest that yo,,,,,; could be estimated through S and the process

data. Therefore, it is necessary to identify another OE model to determine AGK, where
AG is the model-plant mismatch (i.e., G — G,), as following:

(y —9) = AGKe (3.5)
The controller inputs (€) presented in equation 3.2 can also be written as:
e=U+ AGK)_I(yset — V) (3.6)

Finally, solving for (yser — vs) in (3.6) and substituting the result in (3.4) the designed
output (Yo, ,py5) €N be calculated by:

yOBADWE = YVset — Sd(I + AGK)E (37)
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Figure 3.1: The IMC structure for the achieved and designed control loop (adapted
from Badwe et al., 2010)

Although the method proposed by Badwe et al.,2010 can produce good results, it has
limited application, as it is setpoint dependent, being inappropriate for MPCs that work
with soft constraints, for example. Furthermore the method requires two data-based
model identifications. In order to avoid these drawbacks, we propose a new approach
that is independent of setpoint perturbation and the data-based identification procedure.
This method relies on the nominal output sensitivity function for MPM evaluation. The
next section describes our approach.

3.2 The nominal sensitivity method for MPM

Initially, suppose a multivariable feedback control system, as shown in Figure 3.2, with
a MPC controller C and nominal model G,, which represents the real plant G. The
mismatch magnitude is AG. The theoretical system without mismatch is shown in Figure
3.2a, for which nominal closed loop outputs are y,. Ty is the nominal complementary
sensitivity function. The real system, in a scenario subject to mismatch, is shown in Figure
3.2b, where y,,; corresponds to the setpoints, u are the manipulated variables, y are the
measured outputs, Y, are the simulated outputs of the nominal model perturbed by
the actual control actions u, and T is the complementary sensitivity function.

u Go Ysim
! -T' ------ = 'I_'_'_-_'_-_'_'_'_-_I' »
: [ !
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e 8 C i G, LY
i |
i
I

Figure 3.2: Schematic diagram of closed-loop system without model-plant mismatch
(a) and with model-plant mismatch (b)

Merely investigating simulation residuals is not an appropriate metric to assess MPC
model quality due to the feedback effect, in that large residuals are not necessarily an
indicator of bad MPC model. A good model should represent the real system at the
frequency in which the MPC works. For example, consider a typical unconstrained MPC
cost function, given by:
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ph [ ny 5 nu
. g i . _ . . 2
Au(k)..gldgﬁmh) Z Z w; [y] (i+k) ysetj(l + k)] + Z MS;[Au;(i + k)] (3.8)
i=1]j= =

Where nu is the number of controller inputs, ny is the number of controller outputs,
phis the prediction horizon, mhis the control horizon, Au are the controller inputs
changes, W; is the weight of output j setpoint deviation and MS; is the move suppression
of input on the variable L. If a small MS,; and a large W; are used MPC will work to lead the
output variable to the setpoint with few but intense control actions. Similarly, if a large
MS; and a small W; are used the MPC will work to lead the output variable to the
setpoint with a large amount of small control actions. Thus, considering the corrective
feedback effect and using the open loop dynamics as reference, two main different
scenarios can be analyzed:

- The faster the tuning: The controller is less sensitive to stationary model-plant
mismatch, but it is very sensitive to mismatches in the initial model dynamics.

- The slower the tuning: All dynamic models are relevant, but the sensitivity to
mismatches is smaller, because the control actions are slower.

The previous considerations make evident the fact that a model-plant mismatch limits
the attainable performance of a given system and its effect will be dependent on the
current controller configuration (Trierweiler et al., 1997). Thus, the nominal closed-loop
performance must be considered in order to investigate the real effect of model-plant
mismatch. Based on this idea, a method is proposed that uses closed-loop nominal
sensitivity. The output sensitivity function concentrates information on controller tuning,
providing the speed of response from each control loop. The following theorem is the
kernel of the method.

Theorem: The nominal closed loop output y, (cf. Figure 3.2a) can be estimated by

[¥0($) = ¥(s)] = So ($)[Ysim(s) — ¥(s)] (3.9)

where S (s) is the nominal output sensitivity transfer matrix, y are the measured
outputs, and yy;,,, are the simulated outputs of the nominal model perturbed by the
actual control actions u, as illustrated in Figure 3.2b.

Before proving the theorem, it is important to remember some simple and standard
expressions between the different signals depicted in Figure 3.2, which can easily be
found in process control textbooks (e.g., Skogestad and Postlethwaite,1996). To simplify
the notation, the argument (s) associated with the transfer matrices and signals has been
dropped.

The closed-loop transfer matrix (T), also referred to as complementary output
sensitivity transfer matrix, is defined by:

Y = TYset (3.10)
T=GC{+ GC)_1 =+ GC)_lGC (3.12)

The corresponding sensitivity transfer matrix is given by:
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S=U+G6C)1 (3.12)
and the term “complementary” comes from the following expression:
S+T=1 (3.13)

Analogously, for the nominal case (i.e., free from model-plant mismatch, as shown in
Figure 3.2a):

Yo = ToYset (3.14)
To = GoC(I + GoC)™r = (I + GoC)™1G,C (3.15)
So=(U+Gy0)? (3.16)
So+To=1 (3.17)

The manipulated variables (u) are:
U= CSYget (3.18)
whereby the open-loop simulated outputs are given by:
Ysim = Gou (3.19)
Proving the Theorem:

To prove the theorem, we must substitute (3.10) and (3.19) in (3.9), which gives us:

Yo =Y = So(Gou — Tyser) (3.20)

Substituting u in (3.20) with (3.18), we arrive at:

Yo—)Y = SO(GOCSyset - Tyset)
= S5(GoCS — T)Yser (3.21)
= (S0GoCS — SoT)Yset

Based on the matrix property called push-through rule (Skogestad and
Postlethwaite,1996), (I + Go,C) ™! GoC = G,C(I + G,C)~ and combining with equation
3.15, the last equation can be rewritten as:

Yo=Y = (GoCSoS — SoT)Yset (3.22)
= (TOS - SOT)yset

Now, replacing S and S, with (3.13) and (3.17), respectively, and using once more the
definitions (3.10) and (3.14), finally, we arrive at:

Yo—y = [T —=T)—U=To)T]yset
= (Ty—T)Vser Q.E.D. (3.23)
= Yo~y
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The previous relation is derived from a loop free from disturbances. However, it can
also apply to a more realistic case with external unknown perturbations. Figure 3.3
illustrates a system with unmeasured disturbance, where v are sequences of independent
random variables, G4 is the unknown disturbance model and y,; are the disturbance
signals. The effect of a disturbance on outputs is similar to that of a model-plant
mismatch.

—
Al BT
1 T 1 G 1y
: i Gg | 1|
| : o |
yseti c u E Go G : :I y
T e e Ay
i I
! I
1 I
! I
e e e e e e e e o I

Figure 3.3: Schematic diagram of a closed-loop system with disturbance

To distinguish between them, the nominal error e, =y — y, can be compared with
the nominal outputs (y,). When a process output is under a MPM, e, will be dependent
of the input movements, as well as y,, resulting in a similar variation frequency. However,
when the process output is under an unmeasured disturbance, e, will be independent
because the disturbances come from an external source. Nonetheless, y, is still
dependent of the input variables movements. This means that the frequency of variation
of y, and e, are uncorrelated.

Considering that real processes often have unmeasured disturbances and MPM acting
simultaneously, the simple investigation of the correlation between the signals is not
satisfactory. Thus, we propose the comparison between the statistical distributions of y,
and e in order to capture the source of poor performance (MPM or disturbance). Then,
the distributions are compared using a confidence ellipse scatter or a linear
approximation. Figure 3.4 illustrates the expected result when a system is under MPM
and unmeasured disturbance. More details of this approach will be explored in future
work.

Data I 8 Data
= Ellipse aprox. || = Ellipse aprox.
= Linear aprox || = Linear aprox ||

Statistical Distribution of )

Statistical Distribution of &
A L N A O a4 N w s 0 o

5 4 3 2 4 0 1 2 3 4 5§ s 4 2 0 2 ¢ & 8
Statistical Distribution of Yo Statistical Distribution of Yo

(a)

Figure 3.4: Expected response of linear and elliptical approximation (a) under
unmeasured disturbance and (b) under MPM
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The information that must be known to apply the method proposed in this study are:
the nominal process model (G,), which is the same as that which was configured in the
controller, the input (y) and output (1) measured data and the sensitivity function (S,).
This function can be obtained analytically from the nominal process model (G,) and
controller model (C), as shown in equation (3.16). However, given the complexity of MPC
formulation, knowing the controller model (C) is not a trivial task. In this case, it is simpler
and more straightforward to obtain T, from a simulation of the controller, considering no
model-plant mismatch and a sufficiently excited closed loop data. Then, the closed-loop
model is identified based on the simulated data. It is important to note that this
procedure should only be repeated if the MPC tuning or nominal model has changed (see
appendix A3).

Given that y, is an estimation of the output process when there is no model-plant
mismatch or unmeasured disturbance, it can be considered a benchmark for controller-
model output response. The main advantage is that, unlike of the MVC/LQG, it is a more
realistic reference of the process model. It is important to emphasize that the diagnosis
using y, pertains only to model quality or the presence of unmeasured disturbance,
remaining unaffected by poor tuning. Furthermore, this benchmark allows any output
performance indicators to be applied. The diagnosis flowchart is represented by Figure
3.5, where IP is the performance indicator for the measured data and [P, is the
performance indicator for the estimated nominal data.

— /N7 Open-loop

\) Simulation :
W Vsim Estimation of

Theorem e Nominal

%) (equation 3.9) BEhaVior

Performance Indicators Performance Indicators
(IP) (1Po)
- Performance :
[P, better IPyworse There is no Eval . :
than [P than IP significant MPM valuation

Yes Yes

There is a MPM damaging

controller performance controller performance

| There is a MPM helping

I I T

Figure 3.5: Diagnosis procedure according to the proposed methodology

As shown in Figure 3.5, the main idea of the procedure is to calculate the nominal
output from the process information. Then, performance indicators for y and y, are
calculated and compared. A situation where IP is worse than [P, means that the behavior
of the real case is worse than the nominal case. Thus, there is a modeling problem
impairing the controller. Similarly, if IP is better than [P, , this means that the behavior of
the real case is better than the nominal case. In this case, there is a modeling problem
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improving the controller. Case IP and IP, are similar, in that there is no modeling
problem and the existence of undesirable behavior is a result of bad tuning. A useful
indicator is the comparison of control error variances, as Badwe et al. (2010) suggested:

var(y —
Ivar = O = Yser) (3.24)

Var()’o - yset)

Another possibility is the analysis of autocorrelation function (ACF) of control errors
(i.e., ¥ — ¥Yser and Yo — Vger). A high value of ACF means that the current control error is
strongly correlated with past errors. The ACF curves are useful to analyze the effect of
MPM in MPC performance indicating, for example, how these problems are affecting the
MPC speed of response. In this case, the comparison of the decay rates of ACF(y) and
ACF(y,) indicates whether the MPC is slower or faster than was designed. The ACF also
can be used to identify oscillatory behavior in control loops (Huang & Shah, 1999).

3.3 Case Study: The Quadruple-Tank Process

3.3.1 Process Description

The system (Johanson, 2000) is composed of four cylindrical tanks connected
according to Figure 3.6. Water is pumped into the tanks through the pumps with voltages
vl and v2 . The flow from each pump is split through valves, with openings equal to x1
and x2, respectively. The external flows Fex1 and Fex2 enter tanks 1 and 2, respectively.
Mass balances around each tank are shown in the equations (3.25 to 3.28) and Table 3.1
provides the parameters used in this case study.

dhl Cd1 ex Cd3 x1k1 Fex1 (325)
_——— p1l __3 exp3

dt A (hy) + A, (hs3) + m vt A,

dh,  cd exp2 cd, exp4 Xy ko Fex2 (3.26)
A, (hp)®P= + A, (hy)®P* + a, 2 + a,

dh3 Cd3 ex (1 - XZ)kz (327)
2 p3 4 >~ el e

dt A (hs3) + A, V2

dh4 _ Cd4, (h4)exp4 + (1 - xl)kl v (328)

dt A, a4, ¢



50 capitulo 3 — A methodology for detecting model-plant mismatches affecting MPC performance
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Fex1

Fex2

v2

Water Reservoir

Figure 3.6: The Quadruple-Tank Process: Schematic diagram of the system

Where h; is the level of each tank, k,v; and k,v, are the pumps’ output flows, 4; is
the cross-section area of each tank, cd; is the discharge coefficient of each tank and expi
is the discharge exponent.

Table 3.1: The Quadruple-Tank Process: Original Parameters

Ay 28 cm? cdy, 2.525cm?%/s
A, 28 cm? k; 333 cm3/Vs
Ag 32 cm? k, 335 cm3/Vs
Ay 32 cm? expl 0.5
cd; 3.145cm?%/s | exp2 0.5
cd, 2.525cm?*5/s | exp3 0.5
cd; 3.145cm?%/s | exp4 0.5

To illustrate the proposed approach, we simulated a MPC in Matlab/Simulink using
the four levels as controlled variables (hy, h,, h3 and h,), the pump voltages (v, and v5)
and valve openings (x; and x,) as the manipulated variables.

The linear plant model used was obtained from the linearization of the nonlinear
model at the operating point, defined by manipulated variables vl = 3.2,v2 =
3.15,x1 = 0.43, and x2 = 0.34, given by:
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r 0.048 0.0025 0.35 —0.0096
s+ 0.016 s%2+40.028s+ 0.0002 s+ 0.015 s2 4+ 0.41s + 0.0004
0.0009 0.035 —0.0055 0.323
s+ 0.016 s+0.011 524 0.024s + 0.0002 s+0.011
Go(s) = 2
o(s) o 0.078 . —0.37 (3.29)
0.028s + 0.25 s+ 0.026
0.045 0 —-0.31 0
s +0.018 s+0.018

The controller was configured considering the cost function presented in equation

3.30, where yy;, y11 Uy, and u;;, are the upper and lower constraints of controlled and
manipulated variable, respectively. The tuning values, computed according to RPN
methodology (Trierweiler & Farina, 2003), and the controller constraints are shown in

Table 3.2.

ph [ ny

nu

2
i v (i — ; , 2
.99 3 ) IR ES AR I WA
j:

i=1

Uy =U = U
s.t.

Yur 2Y 2VL

=1

(3.30)

Table 3.2: MPC controller tuning parameters and constraints

Sample Time (T's)

Prediction Horizon (ph)

Control Horizon (mh)

Controlled Variable Weight (W)

MV Lower Limits (u;;)

MV Upper Limits (uy;)

CV Lower Limits (y;;)

CV Upper Limits (yy;)

Move Suppression (MS) of Tuning A (fast)

Move Suppression (MS) of Tuning B (slow)

10s
48
12
Whi = Wha = Wpz = Wy =10
vl > 0.01, v2 > 0.01, x1 > 0.01, x2 > 0.01
11 <10;v2<10;x1<1;x2<1
hl1>0;h2>0;h3>0;h4 >0
hl < 20; h2 < 20; h3 < 20; h4 < 20
MS,1 =MS,, = MS,,y = MS,,=0

MSUl = MS‘UZ = Mle = MSXZ =50

The analysis is divided into three parts. In the first, both plant and controller use linear
models. In the second, plant and controller use linear models but constraints activation is
included. In the third, a linear controller is used to control a nonlinear plant.
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3.3.2 Linear Plant Model without Constraint Activation

In this example, the controller and the plant are initially configured using the model
presented in equation 3.29. There is no constraint activation of controlled and
manipulated variables. Mismatches are added in the plant model G(1,3), which is the
response of the output h; to the input x;. The first one (referred to as MPM 1) is a gain
mismatch, but the initial dynamic behavior of the plant model is identical to the controller
model; whereas the other (referred to as MPM 2) has a compatible steady state, but
mismatches in dynamics. Figure 3.7 illustrates the responses for MPM1 and MPM2. For
each mismatch, two MPC tuning modes were set (referred to as slow and fast), using the
corresponding Move Suppression Parameters presented in Table 3.2. Figure 3.8 shows
the complementary sensitivity function (T) for these tunings, and exposes the difference

between the speed of response for each tuning.

Figure 3.7: Step Response of plant model G for the x; vs. h; pair: Linear plant without
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tuning (a) and slow tuning (b): Linear plant without constraint activation case
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Combining the tunings and models, different scenarios are set according to Table 3.3.
The controller is configured using the Original Model in all scenarios. Basis scenarios BF
and BS correspond to situations without model-plant mismatches, with fast and slow
tunings, respectively. Simulations are performed considering a series of step changes in
the controlled variable setpoints, as illustrated in Figure 3.9. The external flows Fex1 and
Fex2 are maintained equal to zero. No disturbance or noise was added. Figure 3.10
shows the simulation residuals (i.e., ¥ — Ysi;,) for each scenario and Figure 3.11 compares
the behavior of h1 with and without model-plant mismatch. The results are presented
only for the variable h1 because this is the only output directly affected by the model-
plant mismatches. The remaining outputs do not have MPM, meaning that the plant
model is perfect and the simulation residuals are equal to zero.

Table 3.3: Scenarios Configuration: Linear plant without constraint activation case

Controller

Controller

ioN Plant Model
Scenario Name Model Tuning ant Mode
Basis Slow (BS) Original Model Tuning B (slow)  Original Model
Basis Fast (BF) Original Model Tuning A (fast) Original Model
Model 2 Slow (M1S)  Original Model Tuning B (slow) MPM 1
Model 2 Fast (M1F) Original Model Tuning A (fast) MPM 1
Model 3 Slow (M2S)  Original Model Tuning B (slow) MPM 2
Model 3 Fast (M2F) Original Model Tuning A (fast) MPM 2
20 T T T T T
‘ hﬂset h2se! haset I h4set
18
16+ |
14+
12
:\:g 10
8,
6l
4_
2
UU 1 C;OU 2600 SOIDO 4UIDO 5600 GUIDO 7000
Time [s]

Figure 3.9: changes in each controlled variable setpoint
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Figure 3.10 : Simulation residual (y — y¢im) of hy for the different scenarios: Linear
plant without constraint activation case
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Figure 3.11: Comparative results of h; for the different scenarios: Linear plant
without constraint activation case

The joint analysis of Figures 3.10 and 3.11 elucidates the expectation that model-plant
mismatches cause different effects depending on the tuning of the system even if the
simulation residual is significant. In Figure 3.11, there is no significant effect from model-
plant mismatch in scenario M2S, because the controller tuning is slow and Model 2 has a
steady behavior compatible with the Original Model, generating a result very similar to
BS. Analogously, M1F and BF expectedly show similar results because Model 1 and the
Original Model do not have dynamics mismatch. The model-plant mismatch in scenarios
M2F causes an oscillatory behavior in h1. In the scenario M1S, the model-plant mismatch
makes the h1 response slightly slower.
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The nominal output (y,) was estimated considering both Badwe et a/.(2010) and our
proposed approach. The models from the Badwe et al. (2010) method were identified
using output-error (OE) parametric models and varying the orders between 3 and 7 and
the best were used to generate y,. The results are compared with the basis cases for each
tuning, according to:

nsample

SQR; = Z J(YBasis—YOz)z (3.31)

i=1

where z is the approach used for y, estimation and yg,sis is the data from the
corresponding basis case. Table 3.4 summarizes the comparison.

Table 3.4: Comparison of SQR for the proposed and Badwe et al. (2010) methods:
Linear plant without constraint activation case

Scenario Yo, h1 h2 h3 h4
Badwe et al. (2010) 6.20 6.64 4.52 4.81
M1F
Proposed Method 0.75 0.06 0.27 0.60
Badwe et al. (2010) 55.43 45.82 121.02 198.14
M1S
Proposed Method 1.34 0.92 0.72 0.52
Badwe et al. (2010) 30.6 7.62 6.33 8.05
M2F
Proposed Method 1.30 0.18 0.41 1.12
Badwe et al. (2010) 19.7 64.8 5.8 3.8
M2S

Proposed Method 0.24 0.13 0.14 0.13

Table 3.4 shows that both approaches provide good approximations to y,. However,
the proposed method has superior results when compared with Badwe et al. (2010), since
it produces results that are closer to the basis cases (i.e., small SQR error). This is a result
of the two identification steps in Badwe et al. (2010), where model quality is strongly
dependent on data quality and input excitation. Table 3.5 substantiates this statement,
since there are cases where the best model fit is less than 50%. The best model fit index
( 9% Fit) is the indicator used to evaluate the quality of identified model and is defined as:

ly — yest”)

3.32
Iyl (3.32)

% Fit = 100 (1 -

where y,4; is the output predicted by the OE model and y is the mean of the measured
data. Furthermore, the best model order must be determined, which may be considered
an additional drawback of the Badwe et al. (2010) method.
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Table 3.5: Best OE models fit of Badwe et al. (2010) method: Linear plant without
constraint activation case

Scenario hl h2 h3 h4

M1F 80.94 77.42 845 83.3

YoFit of S, M2F 412 79.2 84.3 78.16
estimation M1S 99.9 99.8 99.9 99.5
M2S 99.8 99.9 99.9 99.9

M1F 99.6 67.9 68.4 63.3

wFitof AGe ~ MF 77.1 82.0 64.9 58.1
estimation M1S 99.9 81.35 75.5 82.4
M2S 99.8 59.6 36.7 46.1

The Variance Index (equation 3.24) and ACF curves are calculated considering the y,
estimated by the proposed approach and for the Badwe et al. (2010) method. Results are
shown in Table 3.6 and Figure 3.12.

Table 3.6: Relative Variance Index (Ivar) : Linear Plant without constraint activation
case

Proposed Method Badwe et al. (2010)

h1 h2 h3 h4 h1 h2 h3 h4

M1F 0.99 1.00 1.00 1.00 1.03 0.95 1.03 1.04

M1S 1.14 1.00 1.00 1.02 1.29 0.99 0.89 1.08

M2F 3.26 1.00 1.00 1.00 0.13 0.82 0.41 0.85

M2S 1.04 0.99 0.99 1.00 0.98 0.93 1.00 0.98
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Figure 3.12: Comparative ACF of (¥ — Vset),( Yo — Yser) €Stimated by the proposed
method and (Y, — Yse¢) €stimated by the Badwe et al. (2010) method: Linear plant
without constraint activation case

The result shows that the proposed method was capable of detecting the real effect
of model-plant mismatch affecting in the system. According to Table 3.6, the Ivar of hl is
equal to 1.14 and 3.26 in the M1S and M2F, respectively, indicating that there is MPM
increasing the variance of this output. For all the others variables and scenarios,
the Ivar is close to 1. The ACF (Figure 3.12) of h1 in M2F have an oscillatory behavior for
(¥ = Yset), Which does not occur in (Y, — Vser), denoting that hl is oscillating due to
MPM. Similarly, in M1S the decay of (y — ys.t) is slower than the decay of ( vy — Vset),
indicating that the MPM is affecting the speed of MPC. These results are compatible with
the comparison with the basis cases, presented in Figure 3.11. The proposed method has
superior results when compared with Badwe et al.(2010), which provides some
misleading results of Ivar and ACF.

3.3.3 Linear Plant Model with Constraint Activation

In this scenario, the system is configured using the model shown in equation 3.29. The
controller was tuned according to the slow tuning (Tuning B) of Table 3.2, except for
x1 upper limit (x1;.), which is set to 0.35, in this analysis. A model-plant mismatch
(called MPM3) is added in the plant model x; vs. h;, as illustrated in Figure 3.13.
Simulations are performed considering the same step changes in setpoints used in the
previous case study (Figure 3.9). Due to this MPM, the constraints of x1 remain active in
some instances, as shown in Figure 3.14.
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Figure 3.13: Step response of the plant model G for the pair x; vs. hy : Linear plant
with constraint activation case
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Figure 3.14: Behavior of x;: Linear plant with constraint activation case

As shown in Figure 3.14, a saturation of x1 occurs over part of the time. Considering
that the MPC is a linear time varying controller, when a variable becomes saturated the
configuration of controller changes. In this case, the sensitivity function (S,) compatible
with the current local linearity must be used. Figure 3.15 presents the T,, obtained with
saturated x1.

The nominal output (y,) was obtained through the proposed approach, considering
the following:

- Assumption A: Using only the T, for inactive x1 constraint case (Figure 3.8b)
- Assumption B: Using only the T, for active x1 constraint case (Figure 3.15)

- Assumption C: Analyzing the inputs and using the compatible T, (Figure 3.8b or
Figure 3.15, depending on x1 condition)
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Figure 3.15: Step response of complementary output sensitivity function (T;): Linear
plant with constraint activation case.

The OE models of the Badwe et al. (2010) method were identified by varying the
orders between 3 and 7 and the best were used to generate the y,. The results were
compared with the basis cases for each tuning, according to equation 3.31. Table 3.7
summarizes the comparison. The Variance Index (equation 3.24) is also calculated
considering all approaches of y,. The results are shown in Table 3.8. The ACF curves are
performed for the Badwe et al. (2010) method and for the proposed approach
considering the Assumption C, according to Figure 3.16.

Table 3.7: Comparison of SQR: Linear plant with constraint activation case.

Yo, h1 h2 h3 h4
Badwe et al. (2010) 69.05 8.88 96.27  353.00
Proposed Method: 50.74 7.94 7153  56.36
Assumption A
Proposed Method: 17.11 4.72 2117  17.58
Assumption B
Proposed Method: 3.85 2.70 5.13 4.50

Assumptio

nC
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Table 3.8: Relative Variance Index (Ivar) : Linear plant with constraint activation case

Yo, h1 h2 h3 h4
Badwe et al. (2010) 1.89 0.98 1.12 0.31
Proposed Method: 1.83 0.98 1.08 0.97
Assumption A
Proposed Method: 0.80 0.99 0.16 0.54
Assumption B
Proposed Method: 2.27 0.98 0.94 1.20
Assumption C
Basis Case 2.21 0.97 0.94 1.28
; h1 [cm] 73 h2 [cm] . h3 [cm] i h4 [cm]
— ysel p—y ysel — ysﬂ f— yset
‘ YOgaowe ~ Yeet ! YOgaome ~ Yeet ! Y0uaowe ~ Yeet
08 —Y0- Yeer 08 —Y0- Yser 08 —y0- Yser

Figure 3.16: Comparative ACF of (¥ — Vset),( Yo — Vser) €stimated from Assumption
Cand (Yo — Vset) €stimated by the Badwe et al. (2010) method: Linear plant with
constraint activation case

The similar results between Assumption C and the Basis Case presented in Tables 3.7
and 3.8 are evidence that the proposed method is capable of correctly detecting the
effect of MPM even when a change in the control structure of MPC occurs (saturation
of x1, in this case). The comparison between ACF(yg — Vser) and ACF(y — V) in Figure
3.16 makes evident the fact that the model-plant mismatch affects the speed of response
of hl. The other outputs are also affected by the mismatch due to the interaction
between the variables, but its effect is smaller. The method presents superior results
when compared with that of Badwe et al. (2010), since in this case, the SQR and Ivar are
further from the basis case.

Results also show that, for this case study, the use of the compatible sensitivity
function was fundamental for the success of the method (see Assumption A and B in
Tables 3.7 and 3.8). However, it should be noted that the estimation of S, is quite a
simple procedure, relying only on a closed-loop simulation.

3.3.4 Nonlinear Phenomenological Plant Model

In this case study, the plant model used was the dynamic phenomenological version,
described in equations 3.25 to 3.28. Scenarios containing mismatches were generated by
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the variation of model parameters in the plant model and the addition of unmeasured
disturbance (Table 3.9). The datasets for model assessments were generated inserting
step changes on the controlled variable setpoints. A white noise with magnitude 2% was
added on measurements. The proposed and Badwe et al. (2010) methods were
confronted using y, Variance Index (equation 3.24) and ACF curves. The results are
summarized on Table 3.10 and Figure 3.17.

Table 3.9: Scenarios configuration: Non-linear plant case

Variables affected by

Mistake in the MP (according to
the plant Parameter Value .
(MP) equations 3.25 to
3.28)
0 - -- —
1 cd, 7.86 cm?S /s h1
2 cds 1.05 cm?5/s h1 and h3
3 A, 256 cm? h2
4 A, 4 cm? h2 and h4
i 8
5 Unmeasur.ed disturbance h2 and ha
in h4 70s + 1
6 Unmeasur.ed disturbance 5 W
in h2 55+ 1
7 exp3 0.1 hland h3
8 exp2 0.75 h2
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Table 3.10: Relative Variance Index (Ivar) : Non-linear plant case

Proposed Method Badwe et al. (2010)

MpP h1 h2 h3 h4 h1l h2 h3 h4
0 0.96 1.02 1.15 1.14 1.11 0.85 1.12 1.18
1 1.33 0.98 1.18 0.97 1.45 1.17 1.04 0.78
2 1.84 1.01 1.6 1.06 2.11 0.44 1.36 1.19
3 1.07 4.49 1.17 1.19 0.96 4.68 1.83 1.27
4 0.98 0.97 1.15 1.24 0.99 1.03 1.00 1.32
5 0.96 1.02 1.15 1.74 1.35 1.13 1.25 2.75
6 0.99 7.42 1.13 1.19 1.05 1.15 0.01 0.82
7 1.63 0.94 1.51 1.11 1.82 1.01 1.66 1.14
8 1.15 1.16 1.19 1.18 1.46 0.91 1.10 1.27

The results from Table 3.10 and Figure 3.17 show that, considering a Ivar tolerance
of +0.2 (due to noise presence) the system nonlinearity does not interfere significantly in
MPC performance, since [var is close to one and the ACF of y — Y.t and yg — Yser are
similar in scenario MPO. The Badwe et al. (2010) method provided a misleading indication
in over 60% of the cases. For example, in MP6, the Ivar and ACF suggest a modeling
problem in h3 despite the fact that this variable is not mismatched in these scenarios. The
proposed method has correctly detected abnormalities in the models and has identified
the variable affected by the mismatch in all scenarios. For example, in scenario MP2,
there is an indication of problems in h1 and h3. This scenario corresponds to a mismatch
in parameter cd3, which is associated to these levels. The method also detected the
effect of unmeasured disturbance, although it could not be distinguished among the
causes of the problem according to results from scenarios MP5 and MP6. It is important
to emphasize that, in this case, the nonlinearity does not significantly affect controller
performance. However, in cases when the plant is strongly nonlinear and linear MPC is
used, the method will indicate the presence of a MPM.
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Figure 3.17: Comparative ACF of (¥ — Vset) , (Vo — Vser) €Stimated by the proposed
method and (yy — yse:) estimated by Badwe et al. (2010) method: Non-linear plant case

3.3.5 Linear Plant Model with MPC using soft constraints

A significant part of industrial MPC applications does not have enough degrees of
freedom to control all the outputs. It means that the number of manipulated variables is
usually smaller than the number of controlled variables and it is not possible to maintain
all of them in a fixed setpoint. The alternative is to control the outputs by range, were the
MPC works to maintain all the controlled variables inside a band, called soft constraint
(Campos et al., 2013). This case study considers this kind of control structure. The
controller was configured considering the cost function presented in equation 3.33, were
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soft
YuL

and y 2/t

are the upper and lower soft constraints of controlled variables, § is the
slack variable to soft the constraints of CV and 7 is the penalization of soft constraint

violation. The tuning parameters and the controller constraints are shown in Table 3.11

st Tillesmn) z ZMSl [Aw, (i + k)]? + 2 05,

Uy, =2 U =Yy,
+6 >y>ysoft
6 =0
Yur =Y 2L

(3.33)
sty

+6

Table 3.11: MPC using soft constraints tuning parameters and constraints

Sample Time (T's) 10s
Prediction Horizon (ph) 48
Control Horizon (mh) 12
Penalization of Soft Constraint Th1 =Thy = Tpz = Tpe =120
Violation (T)

Move Suppression (MS) MS,, =MS,, =50,MS,; = MS,, =350
MV Lower Limits (1;;) vl > 0.01; v2 > 0.01; x1 > 0.01; x2 > 0.01

MV Upper Limits (uy;) v1<10;1v2<10;x1<1;x2<1
CV Lower Limits (y;;) h1>0;h2>0;h3>0;h4>0
CV Upper Limits (yy)

hl < 20; h2 < 20; h3 < 20; h4 < 20

Simulations are performed considering step changes in the external flows Fex1
and Fex2, according to Figure 3.18. These perturbations make the system violate the soft
constraints and the MPC acts to bring the variable back to the desired range, as illustrated
in Figure 3.19.



Capitulo 3 — A methodology for detecting model-plant mismatches affecting MPC performance 65

Fex1
— Fex2

3l — —_— ]

LT

0 1000 2000 3000 4000 5000 6000 7000
Time [s]

Fex

Figure 3.18: Step changes in the external flows: Linear plant model whit MPC with soft
constraints
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Figure 3.19: Expected behavior of outputs: Linear plant model whit MPC with soft
constraints

Since this controller does not have setpoint, the complementary sensitivity function is
defined in terms of the soft constraints violation. Figure 3.20 shows T for this case. It is
important to emphasize that T is valid only when the variables are violating the soft
constraints. When the variable is inside the range, there is no feedback effect of
controller, so all the simulation error is conserved (Soi,i = 1) and the effect on the other

outputs is null (Soij = 0).
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Figure 3.20: Step Response of Complementary Output Sensitivity Function (T,): Linear
plant model with MPC using soft constraints

Scenarios containing mismatches were generated by the variation of the linear
models in the Figure 3.21. The datasets for model assessments were generated inserting
step changes on controlled external flows Fex1 and Fex2, according to Figure 3.18. The
estimation of y, was performed using the proposed method only, since Badwe et al.
(2010) is dependent of setpoints (equations 3.1 to 3.7) which would not be viable in this
case. The Variance Index (equation 3.24) and ACF curves are calculated and adapted for
the steady state value (y,s) of each output instead of y,,.;. Results are summarized in
Table 3.12 and Figure 3.22.

MP1 MP2 MP3

oM
Gia

h3 [em]
h1 [em]
h2 [em]

'i'ime (seconds) Time (seconds)

Time (seconds)

Figure 3.21: Scenarios Configuration: Linear plant model with MPC using soft constraints.
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Table 3.12: Relative Variance Index (Ivar): Linear plant model with MPC using soft
constraints

Proposed Method Basis case
MP h1 h2 h3 h4 h1 h2 h3 h4
1 0.87 1.04 1.82 1.01 1.01 1.05 1.75 0.99
2 1.33 1.02 1.07 0.96 1.29 1.01 1.15 1.04
3 0.96 2.15 0.98 094 1.12 2.61 1.02 0.97

s ! 5 s ! 5
g\ — ¥, || B 2 — ¥, || §
® % ; ® ® ™ . ]
£ 05} Yo¥es £ £ 05} o VoY |i £
g 8 8§ : 8
2 £ -] 2
MPM1 z E Z o e SN
r 2 2 - e ]
E E E E
= & 5 5
L v 05 - @ 05 @
5 10 15 20 5 10 15 20
Lag Lag
5 g ! s '~ 5
2 £ . — ¥, 2 N Y, £
® ® B ® °
E & ~— YgY, 3 Yy, E
MPM2 5o\ Tl 30 N\ Tell
E R el § L E
0 Swe | of
2 2 e 2 - 2
g B g g
& 5 g H
? 05 @ 05 9 .05 @ |
5 10 15 20 5 10 15 20 S 10 15 20
Lag Lag Lag
s ‘N - § 'T ) g T ] 5
g |\ v | # - AN ¥ || 2
3 2 s 3
£ 05 % Yo Vs £ 05| £ 05 N Yo¥ss =
MPM3 - ' : : ™ :
5 5 5 N 5
2 2 i 3 S — 3
® e OL s O B SE———
: £ : £
w95 v 05 @ 05 @ g5
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 B 10 15 20
Lag Lag Lag Lag

Figure 3.22: Comparative ACF of (y — ys) and ( yg — yss) estimated by the proposed
method: Linear Plant Model whit MPC using soft constraints

The results from Table 3.12 and Figure 3.22 show that the proposed method has
correctly detected abnormalities in the models and has identified the variable affected by
the mismatch in all scenarios, generating results very similar to the basis case. For
example, in scenario MP3, there is an indication of problems in h2, because the Ivar of
this variable is far from one and the ACF indicate a difference between the settling times
of y and y, curves. This scenario corresponds to a mismatch in the model G, ,,. These
results make evident the capacity of the method to evaluate models of MPCs without a
fixed setpoint.

3.4 Conclusions

This paper proposes a methodology for detecting model-plant mismatch affecting
MPC performance. This new approach allows the evaluation of how the model-plant
mismatch (MPM) affects the actual controller performance, considering the output
sensitivity function, which is a more reasonable benchmark for MPC assessment. From
this result, it is possible to detect and evaluate the need to re-identify the process
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models. Moreover, its simplicity allows for easy application in real plant data (online or
offline) regardless of the control algorithm used.

Two versions of the quadruple-tank system were evaluated as case studies. In the
first, a linear plant was used and model-plant mismatches were added in a model
channel. Simulations were performed considering a fast and a slow MPC tuning and
constraint activation/deactivation. A MPC working by range (i.e, with soft constraints)
was also configured. The second version considers a phenomenological plant model with
modifications to original plant parameters and the addition of unmeasured disturbance
signals to generate the scenarios. The results show that the effect of the model-plant
mismatch is dependent on the controller tuning.

The proposed method is capable of correctly estimating y,, since the results obtained
are very similar to the cases where there are no model-plant mismatches. However, the
use of a sensitivity function compatible with the current feedback controller is
fundamental. Although the method has this constraint, the estimation of S, is quite a
simple procedure, relying solely on a closed-loop simulation.

The quality of y, is superior to that in the Badwe et al (2010) approach, since it is
independent of online closed-loop model identifications. Besides, the proposed method is
independent of setpoint, which makes it flexible to different MPCs structures. The use of
Yo as a model benchmark is capable of indicating the effect of the model-plant mismatch
in the system’s behavior.

The results also show that the proposed method can detect the effect in closed-loop
produced by unmeasured disturbances, due to its similarities with MPM.
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highly coupled systems

Abstract®: Systems with strong interactions among the variables are frequent in the
chemical industry and the use of MPC is a standard control tool in these scenarios.
However, model assessment in this case is more complex when compared with fairly
coupled systems, because these interactions make all the system sensitive to
uncertainties, which mask the detection of the model problem roots. This paper presents
and extension for highly coupled systems of the method proposed by Botelho et al.
(2015a/cap. 3) for model-plant mismatch evaluation in MPC applications, based on the
use of the diagonal elements of the output sensitivity matrix. The effectiveness of the
proposed method is illustrated by two cases studies: a high purity distillation column and
the Shell Heavy Oil Fractionator.

Keywords: Model Predictive Control, Model-Plant Mismatch, Model quality,
Unmeasured Disturbance, MPC performance assessment, highly coupled systems.
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4.1 Introduction

Model predictive control is the most used advanced control solution in the industry,
allowing the improvement of the operational performance, since the variability of the
system can be reduced. According to Campos et al. (2013), the following gains are
typically obtained with a MPC:

- Maximization of high valuable products recovery: 2-10%;
- Increase the plant capacity in presence of operational constraints: 5%;
- Minimize the energy consumption: 2-10%.

After the controller implantation, the improvements described above are evident,
however, in the course of time the process change and the MPC performance is reduced.
Thus, to ensure MPC efficiency, the application of techniques for controller monitoring
and diagnosis are essential, although it is still not an easy task, due to the multi-cause
nature and complex structure. There are many sources of MPC performance degradation,
including tuning parameters (horizon length, weight parameters, sampling time, etc.),
poor model quality, inappropriate constraint setup and presence of unmeasured
disturbances.

Among the sources of performance degradation, the low quality of process model is
one of the most frequent. Sun et al. (2013) attested the high cost of a good model in MPC
configuration, where more than 80% of the time is spent in model identification. Thus,
the precise model assessment is essential for MPC longevity. It is known that a model is
an abstraction of the real system behavior, so that model-plant mismatch (MPM) will
always be present. However, sometimes these MPMs are very strong that the closed loop
cannot achieve good performance. Thus, it is necessary quantifying the MPM, which
cannot be compensated by feedback controller, and, therefore, will deteriorate the
corresponding closed loop behavior (Wang & Song, 2012). Many methods are available in
literature to investigate the quality of the process model used by the MPC. For example,
Huang et al. (2003) and Jiang et al. (2009) proposed techniques to assess the need for
model re-identification. Others methods (e.g., Badwe et al., 2009; Kano et al., 2010; Ji et
al.,, 2012) have the objective to identify the pair (i.e., controlled versus manipulated
variables) with model-plant mismatch. There are also methods that evaluate the
predictive capacity of the model (e.g., Jiang et al., 2012).

Some industrial processes show strong interaction among process variables (e.g. high
purity distillation columns). In this case, the use of MPC is advised, because of its strong
multivariable nature. However, a small model-plant mismatch can lead the controller to a
very poor performance, or even to instability, requiring an effective controller
performance monitoring. Although this is a common problem in the industry, the
methods of model assessment usually do no address this situation. Thus, their
effectiveness when the processes are close to instability cannot be guaranteed.

This paper presents a method for MPC model assessment of highly coupled systems.
It is an extention of the method proposed by Botelho et. al. (2015a/cap,. 3), which
provides the estimation of the closed loop behavior in absence of model-plant mismatch
(called nominal output), indicating the variable disrupted by modeling problems. The
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proposed extension aims to indicate the controled variables (CVs) with poor model and
their impact in the others process variables.

Sun et al. (2013) also proposed a method capable to detect the CVs with poor model.
It is based on residual assessment and feedback invariant principle, whereby disturbance
innovations are not affected by the feedback controller. It allows the estimation of
stochastic disturbance error e?(k) from the identification of a stable High Order
Autoregressive Exogenous Model (HOARX) using the setpoints yg.; (k) and the measured
outputs y(k), according to:

Mo1 MO2

y(k) = ZAoly(k —0+ ZBolyset(k ) +eo(k) ~ Z A0y (k - 1) + Z BOWse(k =) +e()  (4.1)

where AO and BO are the parameters of ARX model and MO1 and MO2 are the model
orders.

The disturbance errors (e?) are compared with the one-step-ahead prediction errors
(eP) (Ljung, 1999). The author suggests a performance indicator for model quality (MQI),
which provides the effect of modeling error as a whole, considering the variables costs in
the controller, which is defined by:

Zk 1 ed(k)Tded(k)
e? (k)T Qye? (k)

MQI = (4.2)
where Qy are controlled variables weights in MPC controller and ns is the length of the

evaluated dataset. Alternatively, is possible to evaluate the modeling error of each CV as
follow:

JElesoor
JE [en o]

where yi is the evaluated CV. The iMQI and MQI varies between 0 and 1, such that
values near to one means that all the prediction errors are due to stochastic disturbance
and the model is perfect.

IMQIL,; = (4.3)

4.2 Proposed method

4.2.1 Brief description of the original methodology

Botelho et al. (2015a/cap. 3) proposed a method for MPC model assessment based on
the closed loop response, whose main idea is to compare the behavior of measured
outputs with the nominal expected outputs, i.e., the outputs obtained in absence model-
plant mismatch.

Consider the control loops illustrated in Figure 4.1, with a MPC controller C and
nominal model G,, which represents the real plant G. The model-plant mismatch (MPM)
magnitude is AG. The theoretical system without mismatch is shown in Figure 4.1a, in
which nominal closed loop outputs are y, and T, is the nominal complementary
sensitivity function. The real system, in a scenario subject to MPM, is shown in
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Figure 4.1b, where y,,; corresponds to the setpoints, u are the manipulated variables, y
are the measured outputs, y;, are the simulated outputs of the nominal model
perturbed by the actual control actions u, and T is the complementary sensitivity
function.

(a) (b)

Figure 4.1: Schematic diagram of closed-loop system: (a) nominal system (b) with
model-plant mismatch.

An effective model should represent the real system at the frequency where the MPC
works. Thus, to assess the real impact of model-plant mismatch, the closed-loop
performance must be considered. The expression for these variables can be found in
many classical control books (e.g., Skogestad and Postlethwaite,1996):

Yo = ToYset (4.4)
Ty = GoC(I + GoC)™t = (I + GoC)~1G,yC (4.5)
So+Ty=1 (4.6)
Ysim = GouU (4.7)

where S, is the nominal sensitivity funcion and I is the identity matrix. Botelho et al.
(2015a/ cap. 3), proposed that the nominal output y, (i.e., the output of the system in the
absence of modeling errors) could be estimated according to:

Yo =S50 Wsim—y) ty (4.8)

The authors suggest that, although the equations above are deduced for a MPC with
model-plant mismatch (MPM), the same can be derived for cases where unmeasured
disturbances (UD) are presented. The control loop of Figure 4.2 illustrates this scenario,
where v are sequences of independent random variables, G, is the unknown disturbance
model and y, are the disturbance signals. The effect of y; on outputs is similar to that of
a model-plant mismatch.
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u Ysim
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Figure 4.2: Schematic diagram of closed-loop system with unmeasured disturbance.

Since y, is an estimative of the output process considering inexistence of model-plant
mismatch or unmeasured disturbance, it could be used as a benchmark for controller-
model output response. From this benchmark, any output dependent performance
indicator could be applied. For example, the comparison of control errors variances called
variance index (I,4,-), as suggest by Badwe et al. (2010), can be used:

var(y - yset) (4-9)
Uar()’o - yset)

Ivar =

Variances index far from 1 mean that the measured data have a different behavior of
the nominal case, meaning a model problem.

The autocorrelation function (ACF) of control errors (i.e., ¥ — Vgsor and Vo — Vser) iS
also an indicator of MPC performance. A high value of ACF means that the current control
error is strongly correlated with past errors. The ACF curves are also useful to analyze the
effect of MPM in MPC performance evaluation. In this case, the comparison of the decay
rates of ACF(y) and ACF(y,) indicates whether the MPC is slower or faster than was
designed. The ACF also can be used to identify oscillatory behavior (Huang & Shah, 1999).

4.2.2 Extension for Model Assessment of Coupled System

An important issue in industrial MPC applications is its behavior for coupled systems
when the model has inconsistencies. First, let us consider the controlled variables CV1
and CV2 of a hypothetical highly coupled 2x2 system, whose output variables are shown
in Figure 4.3. Note that both outputs have an oscillatory behavior with similar amplitude
and frequency. The application of Botelho et al. (2015a/cap. 3) method (equation 4.8)
indicates that the oscillatory behavior come from a model-plant mismatch (MPM) or
unmeasured disturbance (UD) because the nominal outputs (y,) are not oscillating
(compare y and y, curves in Figure 4.3). However, it is not possible to know which
controlled variable (or both) has the modeling problem.
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Figure 4.3: Hypothetical coupled system with modeling problems.

To locate the modeling problems an extension of Botelho et al. (2015a/cap. 3)
method is proposed. It aims to exclude the coupling effect and isolate the modeling errors
of each CV. The method, as Botelho et al. (2015a/ cap. 3), is centered in the nominal
sensitivity function (S;). This function is a square matrix whose dimension is equal to the
number of outputs. Its diagonal elements (Sodiag) give the closed loop response of each

output when its reference (setpoint or soft-constraints) is changed. The remaining
elements provide the impact of this reference change in the others outputs. Thus, the
off-diagonal elements of S, will be greater as coupled as the system is. Based on these
concepts, we propose the estimation of the diagonal nominal outputs (yodiag) as an

extension of equation 4.8 as follow:
Yogiag = Soaiag Fsim —¥) + (4.10)

The simulation error (eg;,,), the nominal error (ey) and the nominal diagonal error

(eodiag) are defined respectively as:
€sim = Vsim — Y (4.11)
€ =Yoo~y (4.12)
eodiag = yOdiag -y (4.13)

The SOdiag works as a softening for the simulation error (eg;;,), and retains only the
part that is not removed by the controller feedback and is impacting in the performance

of corresponding output. Thus, variables without significant MPM or UD will
have €0diag = 0 (because ey, = 0). The S, provides the complete diagnosis of the

model, showing the effect of the MPMs or UDs in the corresponding output and how it is
impacting in the others. Thus e, # 0 even for variables without significant MPM or UD.
Considering the existence of MPM or UD, this difference will be amplified by the coupling
between the variables.

Given that y, and Yodiag '€ related with the process outputs when there is no

model-plant mismatch or unmeasured disturbances, they can be considered as
benchmarks for controller-model output response. Furthermore, these benchmarks allow
any output MPC performance indicators (IP) to be applied. The diagnosis procedure
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starts with the comparison of the performance indicator of the real (IP) and the nominal
(IPy) outputs. The greater is the difference between IP and IP,, higher is the incidence of
performance deterioration due to modeling problems. To locate it, a comparison
between [P, and IPOdiag is performed. A similar behavior between them means that the

modeling problem is located in the own CV. Otherwise, the performance deterioration of
the corresponding CV is due to an error in another CV model. Figure 4.4 summarizes the
procedure.

Similarly with the Variance Index described in equation 4.9, the Diagonal Variance
Index is useful for the model assessment and is defined as:

var(y - yset)
var(yodiag - yset)

Ivargigg = (4.14)

The [var and Ivary;,4 works as a ratio between IP versus [P, and P, versus IPOdiag'

respectively. Thus, the closer to 1 they are, higher is the similarity between the related
variances.

The autocorrelation function (ACF) of control errors may also be applied for the
diagonal nominal output (i.e., Yodiag ~ Vsetr) and compared with results of nominal and

real cases.
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Figure 4.4: Diagnosis procedure for each output variable according to the proposed
methodology.
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4.3 Case Studies

4.3.1 High Purity Distillation Column

This process is originally presented by Skogestad & Postlethwaite (1996) and refers to
a high purity binary distillation column. The feed (F) is an equimolar liquid mixture with
relative volatility of 1.5. The pressure is assumed constant and the operating variables are
such that we nominally have 99% purity for each product. This kind of distillation process
is usually difficult to control because of strong interaction between its variables.

In this case study, a LV-control configuration was considered: i.e., the manipulated
variables are the reflux (L) and the boilup (V). The controlled outputs are the top and the
bottom product composition (yD and xB). The linear process model is:

1 87.8 —86.4

- 4.15
Go 75s + 11108.2 —109.6 (4.15)

This system was implemented in Matlab/Simulink and a MPC was configured. The
controller was tuned according with the RPN methodology (Trierweiler & Farina, 2003)
whose parameters are shown in Table 4.1:

Table 4.1: High purity distillation column case: Tuning Parameters of MPC

Sample Time 8 min
Prediction Horizon 30
Control Horizon 6
Controlled Variable Weight Qyp = 0.5,Q0,5 = 0.3
Move Suppression Qar = Qay =05

The estimation of the output sensitivity function (S,) was performed from a
simulation of the system considering a perfect model (G = G,) and the tuning of Table
4.1. From these results, the S, model was identified considering a Box-Jenkins model.

The coupling of a system could be measured through the diagonal elements of the
dynamic Relative Gain Array (RGA) matrix. According to Luyben & Luyben (1997), when
they are far from 1 there is an indicative of high interaction among the variables. The
diagonal elements of the dynamic RGA in the frequency domain for this case study is
shown in Figure 4.5. We compare the dynamic RGA with the RPN weight function
(Trierweiler et al., 1997), given by:

RPN(jw) = [So(jw)To(fw)] (4.16)

where & is the maximum singular value. The maximum of RPN weight function occurs in
the neighborhood of the controller frequency work. Figure 4.6 illustrates the RPN
function for this case study.
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Figure 4.5: High purity distillation column case: dynamic RGA.
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Frequency [rad/min]

10
Frequency [rad/min]

Figure 4.6: High purity distillation column case: RPN weight function.

From Figures 4.5 and 4.6 is possible to observe that in the frequency of the controller
actuation (= 1072 rad/s) the diagonal elements of the RGA are approximately equal to
35, which means that the coupling between the variables is very strong for the considered

tuning.

For the described system, scenarios were generated considering step changes in the
setpoints (Vse:) and the addition of model-plant mismatches (MPM), unmeasured
disturbances (UD), as described in Table 4.2. A white noise with zero mean and variance
10" was added in the measured outputs. Figure 4.7 show the generated outputs for the
nominal case (i.e., in absence of MPM and UD) and Figure 4.8 the outputs of each

scenario.
Table 4.2: High purity distillation column case: Scenarios configuration
Scenario Type Description
Scenl MPM inyd x L Gy 1= 1519
Y LI7 75541
—-86.4
Scen2 MPM inyd x V Gy, = ———
Y 127735 +1
Scen3 UD in xB Sinusoidal signal Wlth frequency 0.02/min and
amplitude 0.2
Scend MPMinyd x L and UD xB Scenl + Scen3

Scen 5

MPM in yd x L and UD xB

Scenl + Integrator signal (5e~°t)
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Figure 4.7: High purity distillation column case: System outputs of nominal case
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Figure 4.8: High purity distillation column case: System outputs of each scenario
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Figure 4.8 shows that in all scenarios the outputs yD and xD have oscillatory behavior
with similar magnitude. To check the existence of modeling problems, the methods
presented in sections 4.2.1 and 4.2.2 were applied as well the Sun et al. (2013) method.
The square sum of simulation errors (SSE) were also evaluated, according to:

ns

SSE= | ) V0) = YsimGV? (417)

j=1

The variances indexes (lvar and Ivarg;,g ), SSE, iMQI and MQI of each scenario are
presented in Table 4.3. The corresponding ACF are presented in Figure 4.9.
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Figure 4.9: High purity distillation column case: ACF of the scenarios
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Table 4.3: High purity distillation column case: Results of the model assessment

yD xB

SSE 27.33 0.96

Scenl Ivar 23.81 2.12
(MQI=8e-5) Ivargi,, 23.81 1.00
iMQlI 0.007 0.94

SSE 19.12 1.17

Scen2 Ivar 2.80 2.00
(MQI 3e-3) Ivarg,, 2.80 1.00
iMQI 0.04 0.91

SSE 0.98 14.77

Scen3 Ivar 1.42 3.46
(MQI=2e-3) Ivargi,, 1.00 3.46
iMmQI 1.00 0.04

SSE 28.77 14.77

Scen4 Ivar 26.35 5.88
(MQI=1e-3) Ivarg,, 20.55 1.62
iMQI 0.03 0.07

SSE 28.27 13.75

Scen5 Ivar 23.65 2.22
(MQI=1e-4) Ivar,, 23.68 0.99
iMmQlI 0.01 0.81

Table 4.3 shows that the proposed method captures the variable affected by the
modeling problems and its effect in the other output. In all cases the Ivar of yD and xB
is far from one, which means that the variables are affected by a modeling problem. The
[vargiqq of xB in Scenl and Scen2 as well as yD in Scen3 are equal to one, showing that
the models of these variables do not have problems. In both cases, the SSE is near to
zero, also denoting the inexistence of modeling problem in the corresponding variables.
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In Scen5 the SSE is high for both variables even the Ivar;,, of xB being near to one.
It means that there is a modeling error in xB model, but it is not impacting the MPC
performance. It could be confirmed by the similarity between the outputs of this scenario
with Scenl. The Scen2 makes evident that the method is paring independent, since the
result obtained was in accordance with the added MPM. These results corroborate the
fact that the evaluate de modeling error is not appropriated for the assessment of MPC
models.

The Scen4 show that both variables have modeling problems (high Ivary;,4) and the
modeling of each is impacting in the other, since [vary;q, # Ivar for yD and xB.

The Sun et al. (2013) method provided results similar to the proposed method. The
existence of MPM in the system was captured by the small values of MQI in all scenarios.
The iMQI interpretation is compatible with the Ivary;,q, such that are always higher
than 0.8 in the controlled variables without modeling errors.

The ACF (Figure 4.9) also capture the existence of a oscillatory behavior in outputs
due to modeling problems since, for all scenarios, ACF(y) have oscillatory behavior and
ACF(yOdiag) do not have. The similarity between ACF(y,) and ACF(yOdiag) indicates the
existence of modeling problem in the corresponding variable (i.e, yD in Scenl and Scen4
and xD in Scen2). For Scen4 the ACF make evident that both variables have modeling
problems, since ACF(y,)# ACF(yOdiag);t ACF(y) for yD and xB.

4.3.2 Shell Heavy Oil Fractionator

The Shell Heavy Oil Fractionator is a problem originally presented by Prett e Morari
(1987). This system is characterized by high interaction among the variables as well large
time delays. Figure 4.10 illustrate the system.
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Figure 4.10: Schematic representation of Shell Heavy Qil Fractionator
(Maciejowski ,2002).
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This system was implemented in Matlab/Simulink and a MPC was configured, based
on Farenzena (2008). The main objective is to control the top composition (y1), the side
composition (y2) and the bottom reflux temperature (y3) in the respective setpoint by
the manipulation of the top draw (ul), side draw (u2) and bottom reflux duty (u3). The
process model (G,) is presented in equation 4.18 and the controller tuning parameters in

Table 4.4.

r 4.05

50s +1°
5.39

50s +1°
438

335+ 1°

Table 4.4: The Shell heavy oil fractionator case: MPC Tuning Parameters

B
60s + 1

e 572
60s + 1

o 442
44s + 1

—28

-14

—-22

5.88 8_27‘
50s+1

6.9 15
40s + 1

7.2 19
19s +1 .

(4.18)

Sample Time
Prediction Horizon

Control Horizon

Controlled Variable Weight

Move Suppression
MVs upper limits

MVs lower limits

max
ul hard

2 min

20

4

le =1, Qy2 =6, Qy3 =2

QAul = QAuZ = QAuZ =0.2

min
ulhard -

min  _
uzhard =u3

max

= U2p47q

max

= U3jarq =

min

hard —

3

-3

The estimation of the output sensitivity function (S,) was performed from a
simulation of the system considering a perfect model (G = G,). From the results, the S,
model was identified considering a Box-Jenkins model. Several model orders were
evaluated and the best result (5th order) was considered.

For the process model (equation 4.18), the diagonal elements of dynamic RGA are
presented in Figure 4.11. The RPN weight functions are shown in Figure 4.12.

RGAZ2

10° 10° 10"
Frequency [rad/min]

10°

10* 10°
Frequency [rad/m

10° 10"

0
in]

10°

10°
Frequency [rad/m

107 10"

0
in]

Figure 4.11: The Shell heavy oil fractionator case: dynamic RGA
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Figure 4.12: The Shell heavy oil fractionator case: RPN weight function

Figures 4.11 and 4.12 make evident that in the frequency of the controller actuation
(= 1071 rad/s) all diagonal elements of the RGA are approximately equal to 2, which
means that there is a coupling between the variables.

Scenarios were generated considering step changes in the setpoints (ys.:) and the
addition of model-plant mismatches (MPM), unmeasured disturbances (UD) and
variations in the controller tuning. A white noise with zero mean and standard deviation
of 0.02 was added to the measured outputs. Figure 4.13 shows the generated data for the
nominal case (i.e., in absence of MPM and UD), where u;;,, are the constraints of the
manipulated variables.
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Figure 4.13: The Shell heavy oil fractionator case: Inputs and outputs of the nominal case

Each scenario was evaluated according the indicators presented in sections 4.2.1 and
4.2.2 as well as by the Sun et al. (2013) method. The square sum of simulation errors
(SSE) were also evaluated, according to equation (4.17). The results are discussed below.

Scenario 1: Moderate MPM

This scenario considers a model-plant mismatch in the time constant of pair y1 X ul,
according to equation 4.19. Figure 4.14 present the inputs (1) and outputs (y) when steps
in the setpoints (yg.:) were performed, showing that y1 is not adequately controlled. The



84  Capitulo 4 — MPC model assessment of highly coupled systems

model assessment methods were in this data and results are presented in Figure 4.15 and

Table 4.5.
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Figure 4.14: The Shell heavy oil fractionator case: Inputs and Outputs for Scenario 1

v

Sample Autocorrelation

_yod\ag
- =y H

0z

E
Lag

m 15

2

30

35

40

Sample Autocorrelation

y2
12
yUdiag
1 —.—‘-yo H
Y
0.8
0B
0.4
02
0 o
2 . . . . . . .
5 0 15 20 25 30 33 40
Lag

Sample Autocorrelation

Figure 4.15: The Shell heavy oil fractionator case: ACF for Scenario 1

y3
1.2
yodiag
1 —.—.-yo H
N
0.8
0.6
0.4
0.2
0 N =
a2z . . . . . . .
5 m 15 20 25 30 35
Lag

Table 4.5:: The Shell heavy oil fractionator case: Indicators Results for Scenario 1

y1 y2 y3
SSE 439.9 18.7 17.9
Ivar 4.54 1.02 0.99
MQI=0.64
Ivargiag 4.54 1.02 1.00
iMQlI 0.58 0.84 0.85

40
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From Table 4.5, it is possible to observe that the proposed method captures the
expected behavior, indicating the existence of an impactful modeling problem in y1,
because SSE,,; is large and Ivar,; > 1. This modeling problem only affects y1, since
variance indexes (Ivar) of y3 and y2 are near to one. The values of SSE,; and SSE,,
could be attributed to the white noise effect. The difference between the ACF decay ratio
of y1, and y1 (Figure 4.15) indicates that the modeling problem make the system
response slower than the nominal case.

The Sun et al. (2013) captures the existence of MPM by the MQI. The iMQI
interpretation is compatible with the [varg;,4, such that are higher than 0.8 in the
controlled variables without modeling errors (y2 and y3) and 0.58 for y1.

Scenario 2: MPM make the system oscillatory

This scenario considers model-plant mismatch in the steady-state gain and time delay
of pair y2 X ul, according to equation 4.20. Figure 4.16 presents the inputs (u) and
outputs (y) when steps in the setpoints (ys.:) were performed, showing that all the
outputs are oscillating. The oscillating behavior makes the inputs track around their
constraints. The results of the model assessment are presented in Figure 4.17 and Table
4.6.
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Figure 4.16: The Shell heavy oil fractionator case: Inputs and Outputs for Scenario 2
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Figure 4.17: The Shell heavy oil fractionator case: ACF for Scenario 2

Table 4.6: The Shell heavy oil fractionator case: Indicators for Scenario 2

y1 y2 y3
SSE 18.3 655.4 18.8
Ivar 1.30 8.01 2.1
MQI=0.02
Ivar giq, 1.00 8.01 1.00
iMQI 0.89 0.12 0.96

Results of Table 4.6 indicates that a modeling problem is impacting in all system
variables, because the Ivar of all outputs are higher than 1. The modeling problem is only
in y2 since this is the only variable with [vary;.4 far from one. The ACF (Figure 4.17)
makes evident that the oscillatory behavior of outputs come from a modeling problem,
since ACF(y) has oscillatory behavior and ACF(yodl.ag) does not oscillate significantly in all

outputs. The modeling problem is in y2 because yZOdiag = y2y # y2.

The Sun et al. (2013) captures the existence of MPM by the small value of MQI. The
IMQI interpretation is compatible with the Ivary;,g4, such that are higher than 0.8 in the
controlled variables without modeling errors (y1 and y3) and 0.12 for y2.

Scenario 3: Non-impactful MPM

This scenario considers model-plant mismatch in the pair y3 X u3, according to
equation 4.21. Figure 4.18 present the inputs (1) and outputs (y) when steps in the
setpoints (ys.;) were performed, showing that the MPM does not have effect in the
system behavior (see Figure 4.13). Table 4.7 and Figure 4.19 present the results of the
model assessment for this scenario.

54955 + 12.2
G(3,3) = —-19 421
(33) = 1255052 7 7695 1 1°¢ (4.21)
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Figure 4.18: The Shell heavy oil fractionator case: Inputs and Outputs for Scenario 3
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Figure 4.19: The Shell heavy oil fractionator case: ACF for Scenario 3

Table 4.7: Shell heavy oil fractionator case: Indicators Results for Scenario 3

y1 y2 y3
SSE 17.58 18.16 196.04
Ivar 1.02 1.02 1.04
MQI=0.82
Ivariq, 1.03 1.02 1.05
iMQI 0.87 0.87 0.89

From Table 4.7 and Figure 4.19, it is possible to confirm that there is a modeling
problem in y3, because SSE, 3 has a high value, but it does not have significant effect in
the controller performance since all [var are near to one and the ACF of , y, and Yodiag
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are similar. The Sun et al. (2013) provides similar results, since MQI and all iMQIs are
higher than 0.8, indicating the inexistence of significant modeling problems.

Scenario 4: Non-impactful MPM and Bad Tuning

This scenario combines a model-plant mismatch in the pair y3 X u3 (equation 4.21)
with the following change in MPC tuning parameters: Qa,; = Qauz = Qaus = 10 and Q, =

60. Figure 4.20 presents the inputs (u) and outputs (y) of this scenario, showing that y1
has a performance problem. Table 4.8 and Figure 4.21 present the results of the model
assessment. It is important to emphasizes that, for this case, a new estimation of S, was
performed, considering the current tuning.
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Figure 4.20: The Shell heavy oil fractionator case: Inputs and outputs for Scenario 4

y1 y2 y3
—¥0g
.yo
c c X unEmee Y c
2 E=l o
= = =
o o ®
] © @
£ £ =
=] Q [=]
5] Q %]
L e =]
=] =2 =2
< < <
<@ o2 @
o o (=8
£ £ £
] © 3]
v W 0]
0.2 -0.2
0 20 30 40 50 60 7TFO &0 10 20 30 40 50 60 7O 80 10 20 30 40 50 60 70 &0
Lag Lag Lag

Figure 4.21: The Shell heavy oil fractionator case: ACF for Scenario 4
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Table 4.8: The Shell heavy oil fractionator case: Indicators for Scenario 4

y1 y2 y3
SSE 18.18 17.77 221.92
Ivar 1.00 1.00 1.05
MQI=0.81
Ivar giqq 1.00 1.01 1.05
iMQlI 0.86 0.86 0.82

Table 4.8 shows that there is a modeling error (high value of SSE, ;) but the bad
performance of y1 is not due to a modeling problem, since all the variances indexes are
near to one. Similarly to scenario 3, the modeling problem in y3 does not have significant
effect in the controller performance. The similar behavior of y, y, and Yodiag ACFs (Figure

4.21) also show that there is no significant modeling problem in this scenario. The Sun et
al. (2013) provides similar results, since MQI and all iMQIs are higher than 0.8, indicating
the inexistence of significant modeling problems.

Scenario 5: Moderate unmeasured disturbance in y3

This scenario considers unmeasured disturbance added in y3. Figure 4.22 show the
disturbance signal. Figure 4.23 show the inputs (y) and outputs (u) of this scenario. It is
evident that only y3 has a performance problem. Table 4.9 and Figure 4.24 present the
model assessment results for the scenario.
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Figure 4.22 The Shell heavy oil fractionator case: Unmeasured Disturbance Added in
y3 for Scenario 5
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Figure 4.23: The Shell heavy oil fractionator case: Inputs and outputs for Scenario 5
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Figure 4.24: The Shell heavy oil fractionator case: ACF for Scenario 5

Table 4.9: The Shell heavy oil fractionator case: Indicators Results for Scenario 5

y1 y2 y3
SSE 18.00 18.11 378.6
Ivar 1.01 1.04 2.16
MQI=0.54
Ivar g4, 1.01 1.04 2.16
iMQI 0.87 0.88 0.70

Table 4.9 shows that the method indicates the existence of an impactful modeling
problem in y3, because SSE, 3 is large and [var,; > 1. This modeling problem only
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affects y3, since variance indexes (Ivar) of y1 and y2 are near to one. The difference
between the ACF of y3, and y3 (Figure 4.24) indicates that the modeling problem causes
oscillation in this variable.

The Sun et al. (2013) captures the existence of MPM by the small value of MQI. The
IMQI interpretation is compatible with the Ivarg;,g4, such that are higher than 0.8 in the
controlled variables without modeling errors (y1 and y2) and 0.70 for y3.

Scenario 6: Unmeasured disturbance in y2 make the system oscillatory

In this scenario an unmeasured disturbance added in the signal y2. Figure 4.25
presents the disturbance and Figure 4.26 the inputs and outputs of this scenario, showing
that all the output variables have performance problem. Table 4.10 and Figure 4.27
present the model assessment results.
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Figure 4.25: The Shell heavy oil fractionator case: Unmeasured Disturbance Added in
y2 for Scenario 6
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Figure 4.26: The Shell heavy oil fractionator case: Inputs and outputs of Scenario 6
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Figure 4.27: The Shell heavy oil fractionator case: ACF for Scenario 6

Table 4.10: The Shell heavy oil fractionator case: Indicators Results for Scenario 6

y1 y2 y3
SSE 18.39 1063 18.93
Ivar 1.30 10.1 1.28
MQI=0.49
Ivar i, 1.02 10.07 1.02
iMQI 0.98 0.69 0.98

Results of Table 4.10 indicate that a modeling problem is impacting in all system
variables, because the Ivar of all outputs are different from 1. The modeling problem is
only in y2 since this is the only variable with [varg;,, far from one. The ACF (Figure 4.27)
makes evident that the oscillatory behavior of outputs come from a modeling problem,
since ACF(y) have oscillatory behavior and ACF(yodl.ag) do not oscillate significantly in all

outputs. The modeling problem is in y2 because yzodiag = y2, # y2.

The Sun et al. (2013) captures the existence of MPM by the small value of MQI. The
IMQI interpretation is compatible with the Ivarg;,g4, such that are higher than 0.8 in the
controlled variables without modeling errors (y1 and y3) and 0.69 for y2.

Scenario 7: Scenario 2 + Scenario 5

This scenario combines a model-plant mismatch in the pair y2 X ul (equation 4.20)
with an unmeasured disturbance added in y3 (Figure 4.22). Figure 4.28 presents the
inputs and outputs of this scenario, showing that all outputs have strong performance
problems. Table 4.11 and Figure 4.29 present the model assessment results for the
scenario.
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Figure 4.28: The Shell heavy oil fractionator case: Inputs and outputs of Scenario 7
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Figure 4.29: The Shell heavy oil fractionator case: ACF of Scenario 7

Table 4.11: The Shell heavy oil fractionator case: Indicators Results for Scenario 7

y1 y2 y3
SSE 18.68 929.3 397.4
Ivar 1.26 12.96 294
MQI=0.04
Ivargiqg 1.01 12.96 1.68
iMQlI 0.95 0.16 0.84

Table 4.11 shows that all variables are affected by modeling problems, since all Ivar
are different from 1. The model of y1 do not have problems, because [varg;,q of y1is
near to one. The y2 has modeling problems and its performance deterioration is
exclusively due to a problem in its own model, since [vary,, = Ivar.y3 also has
modeling problems, but part of its performance deterioration come from the problem in
y2, because [vargi,q < Ivar. The similar behavior between ACF(y1) and ACF(lediag)
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as well as ACF()’Zodiag) and ACF(y2,) confirm the described conclusions, as illustrated by
Figure 4.29.

The Sun et al. (2013) captures the existence of MPM by the small value of MQI.
However, the method was incapable to detect the modeling problem in y3, showing a
iMQI smaller than 0.8 only for y2. The constraint activation of the inputs in some instants
(see Figure 4.28) make the outputs loss the setpoint dependency (due to the loss of one
degree of freedom). Since the estimation of the HORX model (equation 4.1) is setpoint
dependent, the estimation of e? is bad and make the method fail.

Scenario 8: Scenario 1 + Scenario 6

This scenario combines a model-plant mismatch in the pair y1 X ul (equation 4.19)
with an unmeasured disturbance added in y2 (Figure 4.25). Figure 4.30 presents the
inputs and outputs of this scenario, showing that all outputs have performance problems.
Table 4.12 and Figure 4.31 present the model assessment results for the scenario.
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Figure 4.30: The Shell heavy oil fractionator case: Inputs and output for Scenario 8
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Figure 4.31: The Shell heavy oil fractionator case: ACF for Scenario 8
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Table 4.12: The Shell heavy oil fractionator case: Indicators Results for Scenario 8

y1 y2 y3
SSE 734.8 778,7 17.99
Ivar 10.41 8.85 1.32
MQI=0.49
Ivar giqq 8.83 8.85 1.00
iMQlI 0.86 0.69 0.98

Table 4.12 shows that all variables are affected by modeling problems, since all Ivar
are different from 1. The model of y3 does not have problems, because [varg;,q of y3is
near to one. The y2 have modeling problems and it performance deterioration is
exclusively due to a problem in its own model, since [vary,, = Ivar.ylalso has
modeling problems, but part of its performance deterioration comes from the problem in
y2, because Ivaryi,qg < Ivar. The similar behavior between ACF(y3) and ACF(yBOdiag)

as well ACF(yZOdl.ag) and ACF(y2,) confirm the described conclusions, as illustrated by
Figure 4.31.

Similarly to the previous scenario, the Sun et al. (2013) captures the existence of MPM
by the small value of MQI. However, the method was incapable to detect the modeling
problem in y1, showing a iMQI smaller than 0.8 only for y2.

4.4 Conclusions

In this paper, an extension of the methodology proposed by Botelho et al
(2015a/cap. 3) is introduced, whose main contribution is to detect the location and the
source of modeling problems and investigate how it impacts in all the process, for highly
coupled systems. We propose the estimation of the nominal outputs and residuals
considering only the diagonal elements of sensitivity matrix and the comparative
evaluation with the conventional approach.

The method was compared with Sun et al. (2013) through two case studies: a high
purity distillation column and The Shell heavy oil fractionator. Several scenarios were
performed, containing MPM and/or unmeasured disturbances and bad tuning. The
results show that the method is capable to precisely detect the presence of modeling
problems in all considered cases, indicating the interaction effect caused by this problems
and diagnosis the root. The results are superior of Sun et al. (2013), since this method fail
when more than one modeling problem is present and input constraint activation occurs.
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Capitulo 5 — Diagnosis of poor performance
in model predictive controllers:
Unmeasured Disturbance versus Model-
Plant Mismatch

Abstract’: Poor model quality in model predictive controller (MPC) is often an
important source of performance degradation. A key issue in MPC model assessment is to
identify whether the bad performance comes from model-plant mismatches (MPM) or
unmeasured disturbances (UD). This paper proposes a method for distinguishing between
such degradation sources, where the main idea is to compare the statistical distribution
of the estimated nominal outputs with the actual modeling error. The proposed approach
relies on the assessment of three case studies: a simple SISO Linear MPC and two
multivariable cases, where the linear controller is subject to a linear and nonlinear plant,
respectively. Results show that the proposed method provides a good indicator of the
model degradation source, even when both effects are present but one of them is
dominant.

Keywords: model predictive control, model-plant mismatch, unmeasured
disturbance, model quality assessment
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5.1 Introduction

Model predictive controllers (MPCs) are the standard solution of the supervisory
control layer, since they can work with multivariable complex dynamic systems. The MPC
uses a dynamic process model to predict the behavior of controlled variables (CVs) along
the future horizon, based on past control actions and disturbances. From this result, an
optimization algorithm calculates the control actions that lead the process toward its
optimal trajectory, respecting the constraints. The maintenance of MPC is an important
and challenging problem, since performance degradation may stem from many different
sources, such as: bad tuning (control and prediction horizon, weighting matrices,
sampling time, etc.), poor model quality, poor disturbance rejection, and inappropriate
constraint setup (Sun et al.,, 2013). Among all these sources, poor model quality is the
most frequent and impactful. Considering that a model is an abstraction of the real
system behavior, modeling inconsistences will always be present. However, sometimes
these inconsistences are so strong that the closed loop cannot achieve good
performance. Therefore, it is necessary to quantify the modeling error, which cannot be
compensated by feedback controller and, therefore, will deteriorate the corresponding
closed loop behavior (Wang et al., 2012).

Several methods are focused on model quality investigation. Some of them are based
on model validation metrics and investigate the need for a model re-identification (e.g.,
Huang et al.,2003; Conner & Seborg,2005; Jiang et al.,2012). Other approaches (e.g.,
Badwe et al.,2009; Kano et al., 2010; Ji et al., 2012) are focused on identifying which
portion of the model (i.e. controlled variable or pair-controlled versus manipulated
variable) is degraded.

A key issue of MPC model assessment is to identify the source of a modeling
inconsistency, which could be a model-plant mismatch (MPM) or an unmeasured
disturbance (UD). The first occurs when the model cannot adequately describe the
relations between its input and output variables and a re-identification is required. An UD
is characterized by the absence of an input variable in the process model. Both cause
similar effects in the process and isolating each effect is not trivial.

Several methods for disturbance detection were proposed. Tornhill & Horch (2007)
provide an overview of the most important. According to their work, different approaches
are needed depending on whether the disturbance is oscillating or non-oscillating. For the
first case, the methods fall into three main classes, namely those which use the time
domain, those using auto-covariance functions, and spectral peak detection. Most of the
methods are off-line and exploit these advantages, such as the use of the entire data
history. In the case of non-oscillatory, spectral decomposition methods as principal
component analysis (PCA), independent component analysis (ICA), and non-negative
matrix factorization (NNMF) have been used to find significant spectral features.

This paper proposed a new data-based approach for MPC model assessment. The
method complements an extensive class and techniques available in literature (e.g.,
Schafer & Cinar, 2004; Badwe et al., 2010; Sun et al.,2013; Botelho et al., 2015/cap.3;
Botelho et al., 2015/cap.4), which detect lack of quality in the prediction model. Once an
unconformity between the model prediction and the actual outputs is detected, it is
necessary to diagnosis its causes, which can be related to MPM and/or UD. Here, we
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propose a statistical approach to identify whether the performance degradation is related
to MPM or UD.

5.2 Proposed method

The proposed method is based on the statistical comparison between the system
outputs in the absence of MPM and UD (called nominal output) and the error between
this value and actual outputs. The next sections describe the fundamental concepts of the
proposed approach.

5.2.1 Estimation of nominal outputs

The first step in our approach consists of the nominal output estimation following the
method proposed by Botelho et al. (2015a/cap. 3) and Botelho et al. (2015b/cap. 4). We
assume the control loops illustrated in Figure 5.1, with a MPC controller € and nominal
model Gy, which is used in the MPC to describe the real plant G. The model-plant
mismatch (MPM) magnitude is AG. The theoretical system without mismatch is shown in
Figure 5.1a, for which nominal closed-loop outputs are y,. Ty is the nominal
complementary sensitivity function. The real system, in a scenario subject to MPM, is
shown in Figure 5.1b, where y,,,; corresponds to the setpoints, u are the manipulated
variables, y are the measured outputs, yg;,, are the simulated outputs of the nominal
model perturbed by the actual control actionsu, and T is the actual complementary
sensitivity function. Figure 5.1c illustrates the case with an unmeasured disturbance (UD),
where v is a sequence of independent random variables, G, is the unknown disturbance
model, and y, are the disturbance signals.

1
1
|
1
1
1
Yser ! + u
1
1
1
1
1
1

Figure 5.1: Schematic diagram of closed-loop (a) nominal case, (b) system with model-
plant mismatch (MPM), and (c) system with unmeasured disturbance (UD)

Botelho et al. (2015a/cap. 3) define the nominal output (y,) as the output of the
system in the absence of MPM or UD. This can be estimated according to:

Yo =S50 Wsim—y) +y (5.1)
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S is the nominal sensitivity funcion, given by:

The nominal sensitivity function (S,) is a square transfer matrix that characterizes the
system response in closed loop. Its dimensions are equal to the number of outputs. The
diagonal elements (Sodiag) give the closed-loop behavior of the outputs when their
references (setpoints or soft constraints) are changed. The remaining elements provide
the impact of these reference variations on the other outputs. Thus, Botelho et al.
(2015b/cap. 4) suggest the estimation of the nominal output considering only the
diagonal sensitivity function (yodl.ag) to locate the controlled variable (CV) with model

errors. For this case, equation (5.1) can be rewritten as:
Yogiag = S0aiag Wsim = ¥) +y (5.3)

Sodiag produces a softening effect on the simulation residuals (ys;;; — ¥) and retains

only the part not removed by the controller feedback that is impacting the performance
of the corresponding output. Thus, CVs without significant MPM or UD will have Yogiag =

y, because their simulation errors are close to zero. S, provides the complete diagnosis
of the model, showing the effect of the MPMs or UDs in the corresponding output as well
as how it is propagating onto the others. Thus y, # y even for variables without
significant MPM or UD, considering the existence of MPM or UD in another CV model.
The stronger the coupling between the channels, the larger the difference between

Yo €Y.
5.2.2 Relation between nominal outputs and modeling errors

According to Botelho et al. (2015a/cap. 3), y, is the estimated output free from
modeling errors, which includes model-plant mismatches and unmeasured disturbances.
Defining the nominal error ¢, as the effect of the modeling problems in the loop, we
have:

€ =Yoo — Y (5.4)
The outputs of a system with MPM and UD are (Skogestad & Postlethwaite, 1996):

Y =TYset + SYa (5.5)

were y, is the disturbance signal entering in the loop. First, let us consider a system
under a model-plant mismatch only (Figure 5.1b). In this case, y; = 0 and equation 5.5 is
reduced to:

Y= TYset (5.6)

Analogously, the nominal output is (see Figure 5.1a):

Yo = ToYset (5.7)

and equation 5.4 becomes:
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eo = (To—T) Yser = AT Yset (5.8)

From (5.7) and (5.8) we can observe that the relation between the nominal error (e;)
and nominal output (y,) in the presence of model-plant mismatch are a function of the
same input signal (i.e., ys.t) passing through two different functions (AT and Tj).
Although these functions are different, T and T, are functions of C, making them
dependent. Therefore, the statistical behavior of e, and y, are correlated.

Now, let us consider a system under unmeasured disturbance only (Figure 5.1c). In
thiscase, G = Gy, s0T =Ty and S = S,. Then the measured output could be written as:

Y =ToYset + SoVa (5.9)

And the nominal error is:

eo = ToYset - (ToYser + SoYa) =-SoVa (5.10)

From (5.7) and (5.10) we can observe that the relation between the nominal error (e;)
and nominal output (y,) in the presence of unmeasured disturbance is given by two
independent signals (Vs and y;) passing through a “single function” (and its
complementary, i.e., Ty and -S,), which means that the variations of ¢, and y, will also be
independent.

In sum, when a process output is under a MPM, the control objectives (ys.;) are the
only signals showing that e, and y, are dependent, which explains why their variation
have similarities. However, when a process output is under UD, e, will be dependent
solely on the external signal y;, while y, is dependent solely on the control objectives.
This means that the variation of y, and ¢, do not bear resemblance. Therefore,
considering that the process is sufficient excited, the similarity between the variations of
Yo and e are indicative of MPM presence.

Remark 1:

Although the premise of the method is the evaluation of similarity between e, and y,,
the direct application of Person correlation is not ideal to compare them because both
signals are estimated through T, (see equations 5.7, 5.8, and 5.10). This means that the
correlation tends to be high in the presence of any MPM, even when its impact is
negligible compared to an UD present in the same output. Since most real processes have
MPM, its influence will mask the effect of UD, even when the importance is high. Then,
we proposed the comparison of the statistical distribution along a moving window, which
will be described below.

Remark 2:

Taking into account that the objective is to know the MPMs and UDs contained in
each output, it is more appropriate to compare Yo diag (equation 5.3) and €0 diag ’ since

they capture the isolated effect of each de modeling error, disregarding the effects of
interaction between the CVs (see Botelho et al., 2015b/cap. 4). The €0 diag is defined by:

eodiag = yodiag -y (5.11)
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Thus, using Yodiag and €0diag ’ it is possible to locate the modeling problem in each
output.

5.2.3 Statistical Distribution in a Moving Window

Our proposed diagnosis procedure to distinguish between model-plant mismatches
and unmeasured disturbances consists in a comparative analysis of the statistical
distributions. A moving window (MW) is defined and the statistical distribution of €04iag

and Yodiag is determined for each subset. Figure 5.2 illustrates the procedure, where T's
is the sampling time.

TS5 —>

o

05k

evaluated dataset

100 200 300 400 500 600 700 800
Time [s]

Figure 5.2: lllustration of a moving window evaluation procedure

The statistical distribution is evaluated by the skewness (skn) and kurtosis (kts)
coefficients. These indexes show how far the signal is from a normal distribution. It is
important to note that the data is seldom normally distributed, so we consider these
indicators merely as a reference.

The kurtosis coefficient (kts) provides the shape of the probability density function. A
high value of kurtosis means that the data has a large number of observations far from
the mean, when compared with a normal distribution. The sample skewness (skn)
provides an indicator of how asymmetric the dataset is. A positive value of skewness
means that there is a higher concentration of values smaller than the mean (Adams &
Lawrence, 2015). These coefficients are calculated as follows:

Mw _

(ms)’

m
sknliW = ——2_ (5.13)

(Vmz)*

where m,, ms, and my are the second, third, and fourth order central moment, defined
as:
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_ T =X

,1=2,34
MW

m, (5.14)
Where X; is the evaluated dataset (yodiag or eodl.ag) and X is its corresponding mean

value. Figures 5.3 and 5.4 illustrate the expected result for a hypothetical case. When a
MPM is present, the variation of statistical distributions of €0diag and Yodiag shows the

major variation at the same time (see the peaks), which does not occur when a UD is
present.
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Figure 5.3: Hypothetical case with MPM: (a) measured y, estimated Yodiag ’ and €0gdiag ’

(b) kurtosis coefficients along a moving window; and (c) skewness coefficients along a
moving window
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Figure 5.4: Hypothetical case with UD: (a) measured y, estimated Yodiag and €0diag ’ (b)

kurtosis coefficients along a moving window; and (c) skewness coefficients along a
moving window

5.2.4 Diagnosis Procedure

As described in section 5.2.2, the diagnosis of MPM and UD is grounded on the
comparison of the nominal output and corresponding nominal error. Two approaches
based on the data scatter are considered for quantifying the relation between the
variations of the statistical distributions. The first one is based on the Pearson correlation
coefficients of skewness and kurtosis of €0diag and Yodiag signals. A scan is performed

varying MW size in the neighborhood of the prediction horizon (we suggest from 0.5ph
to 2ph, where ph is the MPC’s prediction horizon). This scan is necessary to ensure that
all the inconsistencies in the work frequency of MPC will be considered. The correlation

indicator (co;) is based on the mean of absolute correlation between the statistical
distributions:
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2ph MW MW
_ ZMW=0-5Ph‘COTT(Zeodiag' yOdiag)| (5.15)
coy

nyw

where nyy, is the number of scanned MW, corr is the Pearson correlation coefficient,
and Z is the evaluated coefficient (kts or skn). With the increase in the co,, higher is the
probability of a model-plant mismatch dominance.

Another similar procedure is based on confidence ellipse scatter. A scan is performed
varying MWW size in the neighborhood of the prediction horizon and for each evaluated
MW the ellipses are constructed considering the covariance matrix of

(Zggffmg)x (Z%‘Z’iag), where Z is the evaluated coefficient (kts or skn). The angle of the

largest eigenvalue corresponds to the ellipse inclination (a"). The ellipse’s major axis
(a¥™) and minor axis (bXW) are given, respectively, by the square root of the largest and
the lowest eigenvalues multiplied by the critical chi-square value (xrt) associated with a
given probability level (Santos-Fernadéz, 2012). Figure 5.5 illustrates the expected
behavior for each scenario: the confidence ellipse is less circular (i.e., the greater is
ay’ /b}") and more diagonal (the nearest to '/, is a}") when the similarity between
statistical distributions is more significant, indicating the presence of a model-plant
mismatch.

Data I B Data
= Ellipse aprox. [| | = Ellipse aprox.

diag

Z
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Figure 5.5: Expected response of linear and elliptical approximation (a) under UD and
(b) under MPM

The indicators based on the ellipse angle (@) and ellipse dimensions ratio (DR,) are
based on the mean of the resulting ellipses:

— h

Tz=Ywo0.5pn(@™) (5.16)
R 2ph aIZVIW

DR,=32Pt_ o son (bM_W) (5.17)

The confidence ellipse indicator (cez), which considers simultaneously the shape and
the inclination of the ellipse is defined below:

Zth 4-aIZVIW 1_DIZVIW
MW=0.5ph T aIZVIW (518)

nyw

Cez =
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where 1y, are the numbers of scanned MW. The a¥" must be reduced to half of the
first quadrant (i.e., 0 <a}V < 7T/4) to calculate the indicator. Increasing values of ce;

means a higher probability of a model-plant mismatch dominance.

To emphasize the differences between MPM and UD we also suggest quantifying the
differentiated statistical distributions, since the derivatives are capable to better capture
the tendency of the signals (Trierweiler & Machado, 2004). The indicators based on the
derivative ellipse angle (@,;) and dimensions ratio (DR;;), as well the correlation
derivative indicator (co,z), and confidence ellipse derivative indicator (ce,;;) are defined
by:

=~ _\'2ph MW
adZ‘ZMW=0.5ph(“dz ) (5.19)
MwW
_\'2ph Adz
DRdZ_ZMW=0.5ph (béww) (5.20)
Zz
2ph d _Mw d _mMw
_ z:MW=0-5ph|COTr(EZ‘?Odiag’Ezyodiag)| (521)
COq4q7 = ——
MW
Zzph 4ayW 1_bdz
MW=0.5ph T alc\i/IZW (522)
Ceyy =
z nyw

where afV,a¥W  and b} are, respectively, the inclination, the major axis and the

minor axis of the ellipses constructed considering the covariance matrix of

d d . . L
(— 7w ) x (— zMw ) According to our experience, after several tests considering the
dt “Odiag dt “Yodiag

proposed method, if at least one of the indicators (kurtosis or skewness) is higher than
0.1, is indicative of MPM dominance.

5.3 Case Studies

5.3.1 Simple MPC SISO

This case study illustrates the method applied to a simple case study. A SISO MPC was
configured in MATLAB™, whose tuning parameters of the controlled variable (CV) and
manipulated variable (MV) are shown in Table 5.1. Three scenarios are evaluated. In the
first (Scenario 1), there is a model-plant mismatch (MPM) and no unmeasured
disturbance was considered. In the second (Scenario 2), the measured output is corrupted
by an unmeasured disturbance (UD) and the plant model is perfect (i.e., the process
behavior is equal to controller prediction model). The last scenario (Scenario 3), contains
both MPM and UD. Table 5.2 shows the disturbance model Gd and the plant model,
whose behaviors are shown in Figure 5.6.
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Table 5.1: MPC SISO case: Tuning parameters of MPC

Sample Time 10s
Prediction Horizon 11
Control Horizon 3

CV weight 5500

Move suppression weight 3000

—100s + 3.04
Controller Model Go(s) = 30552 7 405 £ 1

MV lower variable limit -10
MV upper variable limit 10

Table 5.2: MPC SISO case: Scenarios definitions

Unmeasured disturbance

Model-plant mismatch

0.3s+ 2
100s2 + 30s

—100s + 18.25

G(s) =
() = 30552 205 7 1

0 500 1000 1500 2000 2500 3000
Time [s]

(a)

Ampitude

Plant Modlel
——MPC model

[ 0 100 150 200 250
Time (secon: ds)

(b)

Figure 5.6: MPC SISO case: (a) UD signal and (b) step response of plant model versus
controller model

The scenarios described were simulated under perturbation of controlled variable
setpoint (Vset), Where two frequencies of excitation were considered in order to evaluate
the dependency of method with the perturbation pattern. Figure 5.7 illustrates the
performed perturbation and respective nominal signal (y,), i.e., the output obtained
without model-plant mismatch.
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Figure 5.7: MPC SISO case: Perturbations in the setpoint and respective nominal
response

A white noise with mean 0 and standard deviation 2% of the variable range was added
to the measured output. Data were generated for three considered scenarios and the
proposed method was applied. The results of Scenarios 1, 2, and 3 with less frequent
setpoint changes are presented in Figures 5.8, 5.9, and 5.10, respectively. To illustrate the
method, the kurtosis derivative confidence ellipses were constructed for these scenarios
consideringthe MW = 11 (MW = ph), as shown in Figure 5.11.

—— 0y

cv

Q 560 1 DIUQ 1 5'00 20‘00 25‘00 30‘00 o 500 1000 1500 2000 2500 3000
Time [s] Time [s]

(a) (b)

Figure 5.8: MPC SISO case: (a) measured output (y) and (b) estimated Yodiag
and €0diag for Scenario 1 with less frequent setpoint changes

560 1 DIUO 1 5‘00 2ulua 25‘00 30‘00 : o 500 1000 1500 2000 2500 3000
Time [s] Time [s]

(a) (b)

Figure 5.9: MPC SISO case: (a) measured output (y) and (b) estimated Y0 diag
and €0diag for Scenario 2 with less frequent setpoint changes
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Time [s] Time [s]
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Figure 5.10: MPC SISO case: (a) measured output (y) and (b) estimated Yodiag and €04diag
for Scenario 3 with less frequent setpoint changes

dikts_)fct
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(a) (b) (c)

Figure 5.11: MPC SISO case: Kurtosis derivative confidence ellipses for (a) Scenario 1,
(b) Scenario 2, and (c) Scenario 3 with less frequent setpoint changes

The comparison of Figures 5.8a and 5.9a with Figure 5.7 demonstrates that both
scenarios cause changes in MPC performance. Figure 5.8b illustrates the dependence
relation of y04;44 and e04;44 in case of MPM, since the peaks in the data occur at the
same instant and have similar magnitudes. However, this behavior does not occur in
presence of unmeasured disturbance (Figures 5.9b). For the scenario with MPM and UD
(Figure 5.10), the effect of the model-plant mismatch is most significant. The ellipse shape
(Figure 5.11) captures the dominant effect, since the shape tends to be more inclined
with MPM dominance and to have a horizontal orientation when an UD is dominant.

We calculated the indices presented in section 5.2.4 considering a moving window
size (MW) varying from 6 to 22 (0.5ph to 2ph). Tables 5.3 and 5.4 summarize the results.
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Table 5.3: MPC SISO case: Indices calculated for scenarios with less frequent setpoint
changes

V=127 9=dZ

Scenario Indicator Z =kts Z=skn Z=kts Z = skn

ay 28.8 37.5 41.3 37.7

MPM DR, 0.50 0.52 0.52 0.56
(Scenario 1) ., 0.45 0.59 0.60 0.55
oy 0.53 0.55 0.52 0.53

ay 9.1 20.9 3.40 7.19

UD DR, 0.60 0.75 0.58 0.66
(Scemario2) ., 0.08 0.20 0.03 0.07
oy 0.06 0.12 0.03 0.05

as 23.1 42.6 32.7 33.7

vpmsup  DRs 0.52 0.53 0.56 0.53
(Scenario3) o 0.36 0.63 0.48 0.46

Coy 0.47 0.55 0.47 0.41
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Table 5.4: MPC SISO case: Indices calculated for scenarios with more frequent
setpoint changes

V=12 Y =dZ

Scenario Indicator Z =kts Z=skn Z =kts Z = skn

a, 29.4 36.2 40.7 36.8

MPM DR, 0.51 0.41 0.52 0.54
(Scenario1) ., 0.46 0.63 0.60 0.57
co, 0.51 0.70 0.56 0.54

a, 7.16 8.01 2.81 3.58

D DR, 0.53 0.65 0.51 0.57
(Scenario 2) o 0.1 0.10 0.06 0.04
co, 0.18 0.12 0.08 0.06

a, 23.6 34.1 40.9 36.0

vemsup DR 0.56 0.52 0.62 0.65
(Scenario 3) .,/ 0.55 0.56 0.56 0.49
co, 0.43 0.38 0.45 0.40

Considering the kutosis and skewness evaluation, when the system is under a single
model inconsistency (i.e., unmeaseured disturbance or model-plant mismatch) the use of
the raw signal or its derivatives are capable to detect the source of the modeling problem.
However, as expected, the indices based on derivatives can better capture the tendency
of the modeling problem, showing sharper and clearer decision values and threshold for
the cases with MPM or UD. For example, using the derived signals, the mean angles (@;)
do not exced 7.5° in Scenario 2 and are higher than 35° in Scenario 1. When the raw
signals are considered, these limits (@) are 21° and 28.5°. Similarly, cey; and co,; are
smaller than 0.08 in the presence of UD and higher than 0.53 in the presence of MPM,
while the ce; and co; limits are 0.20 and 0.45.

When the system is under unmeasured disturbance and model-plant mismatch at the
same time (Scenario 3), the method indicates the dominant effect of the MPM, because
the indicators (cog and cey) are higher than 0.35 and the angles (@) are higher than 23°.
The results are analoguos in both cases of setpoint changes, which means that the
method does not depend on a steady state condition in the dataset. In all cases, the
ellipse dimension (DRy) does not provide any useful information when evaluated alone.
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To illustrate a case with the dominanect of an UD, a new scenario was generated
(Scenario 4), using the gain from the disturbance model (Table 5.2) five times higher.
Figure 5.12 illustrates the results for the measurements and kurtosis confidence ellipses
with MW = 11.

0 500 1000 1500 2000 2500 3000 o 500 1000 1500 2000 2500 3000 2 )

) 0
Time [s] Time [s] d(kts )/t

(a) (b) (c)

Figure 5.12: MPC SISO case: (a) measured output (y), (b) estimated y04;44
and e0g;4g4, (c) kurtosis confidence ellipse for Scenario 4 with less frequent setpoint
changes

The comparison of Figure 5.12a with Figure 5.7 highlights the fact that Scenario 4
cause changes in MPC performance. Figure 5.12b illustrates a small dependence relation
between y0444 and 04,44 and highlights the dominance of an UD. The circular tendency
of the ellipses (Figure 5.12c) captures the dominant UD effect. Table 5.5 show the indexes
described in section 5.2.4 for a moving window size (MW) varying between 6 and 22.

Table 5.5: MPC SISO case: Indices calculated for Scenario 4

v9=12 9=dZ

s:htg ::;net Indicator i kis Z=skn Z=kts Z=skn
ay 37.4 27.9 17.7 13.4
Less DRy 0.71 0.65 0.85 0.92
frequent cey 0.44 0.35 0.12 0.08
Coy 0.32 0.34 0.06 0.03
ay 16.36 13.06 16.36 13.06
More DRy 0.76 0.80 0.83 0.88
frequent cey 0.36 0.21 0.14 0.09

COy 0.24 0.11 0.10 0.04
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Table 5.5 shows that, for Scenario 4, the use of the derived signals generates superior
results when compared with the use of the raw signals, since ce;; and co,; do not
exceed 0.15 while ce; and co; reach values greater than 0.4, even with a dominant effect
of UD (see Figure 5.12). Results also show that, although @, are high, the ellipses
dimension rate DR is also high, denoting its circular trend. Therefore, it is necessary to
evalute both dimensions for a correct diagnosis. Consequently, the analysis based on ce;,
or cogz is simpler, conclusive, and relies on a direct comparison with the recommended
threshold.

5.3.2 The Shell Heavy Oil Fractionator

The Shell Heavy Oil Fractionator is a problem originally presented by Prett & Morari
(1987). The main feature of this process is the high coupling among all channels as well as
large time delays. The fractionator is characterized by three product draws and three side
pumparounds. The heat requirement of the column enters with the feed, which is a
gaseous stream. Product specifications for the top and side draw streams are determined
by economics and operating requirements. There is no product specification for the
bottom draw, but there is an operating constraint on the temperature in the lower part of
the column. The three circulating loops remove heat to achieve the desired product
separation. Figure 5.13 illustrates the process.

Top
Temperalure
7= Top
il
Upper i T
Reflux Duty )
Top End Point
Upper Composition
Reflux Temperature
Intermediate
Reflux Duty
Intermediate @L _____ -
Reflux Temperature ; .
x femperaly &3 Draw
| X]—»
Bottoms Side End Point
Reflux Duty Composition
Side Draw
Boftoms Temperature
Reflux Temperature ; <

Feed

Figure 5.13: Schematic representation of Shell Heavy Qil Fractionator. (Maciejowski,
2002)

This system was implemented in Matlab/Simulink and a MPC was configured. The
main objective was to control the top composition (y1), the side composition (y2), and
the bottom reflux temperature (y3) in the respective setpoint by the manipulation of the
top draw (ul), side draw (u2), and bottom reflux duty (u3). The process model (G,) is
given by:
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405, 177 . 588
50s +1 60s+1 50s+1
5.39 5.72 6.9
G = -18 -14 -15 5.23
1505 +1°  60s+1°  40s+1° (5.23)
438 L, 442 L, 72,
133s + 1 445 + 1 19s +1

The tuning was set based on Farenzena (2008), whose parameters are presented in
Table 5.6. Four MPMs are defined for Goy1 u2? which are shown in Figure 5.14. Four UD

signals are also defined (Figure 5.15) and added in y1.

Table 5.6: Shell heavy oil fractionator case: Tuning Parameters of MPC

Sample Time 2 min
Prediction Horizon 20
Control Horizon 4
Controlled Variable Weight Qy1 =10y, =6,0Qy3=2
Move Suppression Qpur = Qauz = Q3 = 0.2

MPM1
MPM2
MPM3
— MPM4
MPC Model

Amplitude

05 I I L 1 I
0 50 100 150 200 250 300

Time [min]

Figure 5.14: Shell heavy oil fractionator case: Step response of MPMs in Goy1 w2
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Figure 5.15: Shell heavy oil fractionator case: UD signals added in y1.

Figure 5.16 shows the setpoint perturbations used in the diagnosis procedure applied
to the different scenarios containing MPMs and UDs. For the generated data, the indices
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ceyz and co,, were calculated with moving windows (MW) varying from 10 to 40. Here,
only the indices based on the derivatives were used, once they have shown a better
result, as presented in section 5.3.1. Table 5.7 summarizes this analysis. The evaluation
was performed only for y1 since the MPMs and UDs were only added in this CV.
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Figure 5.16: Shell heavy oil fractionator case: Perturbations in the setpoints.

Table 5.7: Shell heavy oil fractionator case: Indicators for Scenario containing MPM or

UDinyl

Ceqpts Ceqskn COgkts COgdskn
MPM1 0.03 0.10 0.11 0.22
MPM2 0.05 0.13 0.08 0.21
MPM3 0.21 0.43 0.36 0.52
MPM4 0.02 0.11 0.03 0.18
uUD1 0.016 0.024 0.031 0.036
uUD2 0.018 0.044 0.025 0.036
uD3 0.015 0.031 0.021 0.039
uD4 0.10 0.11 0.038 0.039

Results in Table 5.7 show that, for all evaluated cases, at least one of the statistical
distributions indicates MPM when it was present. The highest ce;, for each scenario is
superior to 0.1 when a MPM is present and does not exceed 0.05 when an unmeasured
disturbance occurs, except for UD4, where ce gk, = 0.11. The co,; works in all scenarios,
indicating at least one co,; higher than 0.18 when a MPM is present and not exceeding
0.04 in cases with UD. Based on this evaluation, we can conclude that the cog; is more
reliable than ce,;;. Furthermore, the difference in the co,; between the cases with MPM
and UD is higher, allowing an easier and more conclusive the interpretation. Moreover,
for the success of the method, it is fundamental to evaluate both kurtosis and skewness.
As the method is a statistical approach, it is not always possible to detect the similarities
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between the statistical distributions for both coefficients. Thus, when more coefficients
are evaluated, the greater the likelihood of finding the MPM effects.

We also simulated and applied the method to scenarios containing MPM and UD at
the same time. To evaluate the method efficiency, we estimate the real dominant effect
(MPM or UD) and compare the results with the corresponding co,; and ce;;. The real
dominant effect is determined by comparison of the Variance Index (Botelho et al.,
2015a/cap. 3) of the data generated only with MPM, only with UD and with both. The
Variance Index is defined as:

var(y —
Ivar = O = Yser) (5.24)

Var()’o - yset)

Thus, the Ivar was calculated for the data generated only with MPM (Ivarypy) and
only with UD (Ivaryp). The results were compared with the Variance Index for the case
with MPM+UD (lvarypy+up)- The closer the Ivarypy or lvary, of lvarypysyp , the
higher the dominance of the corresponding effect. Table 5.8 shows the results. The
evaluation was performed only for y1 since the MPMs and UDs were added in this CV.

Table 5.8: Shell heavy oil fractionator case: Indices for the scenarios containing MPM
and UDinyl

MPM1+UD1 MPM2+UD2 MPM3+UD3 MPM4+UD4

Ivarypy 3.21 1.24 9.72 1.48
Ivaryp 1.19 2.67 1.25 3.02
Ivarypy.up 3.07 3.46 9.78 3.09
Ceants 0.09 0.03 0.46 0.06
Ceaskn 0.31 0.04 0.35 0.08
COgkes 0.16 0.04 0.58 0.03
COgsin 0.35 0.03 0.43 0.04

The results in Table 5.8 show that the method is capable to detect the dominant
effect when both model-plant mismatches and unmeasured disturbances are occurring at
the same time. For the case MPM1+UD1, the Ivarypyyyp is nearest of Ivarypy,
indicating that the MPM is dominant. The ce gy, and co,sn are equal to 0.31 and 0.35,
respectively. For the case MPM4+UD4, the Ivarypy+yp is nearest to Ivaryp, indicating
that the UD is dominant. The ce gk, and cogskn are equal to 0.08 and 0.04, respectively.

5.3.3 The Quadruple-Tank Process

This case study aims to illustrate the application of the method in a nonlinear plant.
The system is composed of four cylindrical tanks connected according to Figure 5.17.
Water is pumped into the tanks through the pumps with voltages v1 and v2 . The flow of
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each pump is split up using the valves, with openings equal to x1 and x2, respectively.
More details can be found in Johanson (2002).

e —
h3 h4

a N 1 e

1 v2

\:f-il- P25 —0—;3]

= hl h2

Water Reservoir

Figure 5.17: Diagram of the Quadruple-Tank Process case study.

The Mass balances around each tank are:

= SR+ e (5.25)
%= _%(hz)expz n %(h4)exp4 (5.26)
% _ _%(hg)expB n %vz (5.27)
% = _%(h4)exp4 + (1_A—j1)k1v1 (5.28)

Where h; is the level of each tank, k;v; and k,v, are the pump output flows, 4; is the
cross-section area of each tank, cd; is the discharge coefficient of each tank, and expi is
the discharge exponent. Table 5.9 provides the model parameters.
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Table 5.9: The Quadruple-Tank Process case: model parameter values

To

Ay 28 cm? cd, 2.525cm?%/s
A, 28 cm? kq 3.33 cm3/s

As 32 cm? k, 3.35 cm3/s

Ay 32 cm? expl 0.5

cd, 3.145 cm?® /s | exp2 0.5

cd, 2.525 cm?5/s | exp3 0.5

cds 3.145 cm?%/s | exp4 0.5

illustrate the proposed approach, a MPC controller was simulated in

Matlab/Simulink, whose controlled variables are the four levels (hq, h,, h; and h,) and
the manipulated variables are pump voltages (v; and v,) and valve openings (x; and x5).

The linear model, used by the MPC, was obtained from the linearization of the
nonlinear model at the operating point defined by the manipulated variables vl = 3.2,
v2 = 3.15,x1 = 0.43, and x2 = 0.34, given by:

- 0.048 0.0025
s+0016 sZ+0.028s+ 0.0002
0.0009 0.035
s+ 0.016 s+ 0.011
Go(s) = 0.078
0 0.028s + 0.25
0.045 .
s +0.018

0.35
s+ 0.015
—0.0055

524+ 0.024s + 0.0002
0

-0.31
s+ 0.018

—0.0096
52+ 0.41s + 0.0004
0.323
s+ 0.011
-0.37
s+ 0.026

(5.29)

0

The controller was tuned using RPN methodology (Trierweiler & Farina, 2003), whose
values are shown in Table 5.10.

Table 5.11 shows the different scenarios evaluated in this case study. Case 0 is the
nominal case, without MPM and unmeasured disturbances. Cases 1 to 4 and 7 to 10 show
a MPM whereas the others have unmeasured disturbances. The data used in this study
was simulated using a sequence of step setpoint changes (Figure 5.18) and including a
white noise with magnitude 2% of the variables range was added on the output
measurements. The plant is simulated considering the nonlinear model of equations 5.25

to 5.28.
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Table 5.10: The Quadruple-Tank Process case: MPC tuning parameters

Sample Time 10s

Prediction Horizon 48

Control Horizon 12
CVs Weights Qn1 = Cnz = Qnz = Qna =10
Move Suppression Qy,1=0y, = Q41 = Q=50

MVs lower limits vt =v2pet, =0.1, x1740% = x2p", = 0.05

[ max _ max __ max __ max __
MVs upper limits viya= V2haea =10, x1300 = x2p07q = 0.95
. min _ min _ min _ min _
CVs lowe limits hlyara = h2hara = h3hara = hhgra = 0
e max __ max __ max __ max __
CVs upper limits h1yvy = h2yia = h3hara = hanara = 20
20 ' ' ‘;h1 PR S —" T
18k set set sel‘
o | [ I —
141 | —
. 12 b
>.$ 10+ b
sl |
oL |
4} 4
) [[(Y— ' —
I
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Figure 5.18: The Quadruple-Tank Process Case Study: Perturbations in the Setpoints
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Table 5.11: The Quadruple-Tank Process case: Scenarios Configuration

Mi Parameter Value
0 - -
1 cd, 7.86 cm?° /s
2 cds 1.05 cm?5 /s
3 A, 256 cm?
4 A, 4 cm?
. . 8
5 Unmeasured disturbance in h4
70s + 1
. . 5
6 Unmeasured disturbance in h2
5s+1
7 exp3 0.1
8 exp2 0.75
9 cd, *2.5
10 cd4 *1/3
11 Unmeasured disturbance in h1 M
10s
. . 50
12 Unmeasured disturbance in h2 _
50s+1
13 Unmeasured disturbance: Extra flow to tank 1 %4_015
S
. 50
14 Unmeasured disturbance: Extra flow to tank 2 [
50s+1

The method was applied in the most affected controlled variable for each scenario.
This selection was made considering the corresponding CV with the highest variance of
Ivar (equation 5.24). For each selected CV, the confidence ellipses considering
MW = 20 are presented in Figures 5.19 and 5.20. Table 5.12 shows the ce;; and co,; for
a moving windows size (MW) varying from 10 to 40
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Table 5.12: The Quadruple-Tank Process case: co,; and ce, for each scenario

Mmi EvaI:cted Cedskn  Cedrts  COdskn  COgkts

1 hl 0.44 0.79 0.30 0.83

2 hl 0.28 0.63 0.23 0.70

3 h2 0.17 0.14 0.34 0.30

4 h4 0.33 0.68 0.20 0.64

5 h4 0.01 0.00 0.03 0.01

6 h2 0.01 0.00 0.02 0.02

7 h1 0.27 0.57 0.23 0.67

8 h2 0.27 0.60 0.31 0.78

9 h2 0.34 0.72 0.36 0.88

10 h1 0.52 0.59 0.52 0.62

11 hl 0.01 0.00 0.03 0.01

12 h2 0.04 0.01 0.11 0.08

13 hl 0.01 0.01 0.03 0.02

14 h2 0.01 0.01 0.05 0.04
NP2 L@ = P = = 1
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Figure 5.19: The Quadruple-Tank Process Case Study: Kurtosis derivative confidence
ellipse for MW = 20
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Figure 5.20: The Quadruple-Tank Process Case Study: Skewness derivative
confidence ellipse for MW = 20

The results show that the indices based on skewness and kurtosis evaluation allows us
to distinguish the root cause of the problem and points to the channel with mismatch, in
all scenarios. The ellipses (Figure 5.19 and 5.20) tend to be more sloped when a MPM is
present. Table 5.12 shows the highest ce;, superior to 0.17 when a MPM is present and
not exceeding 0.04 when a UD occurs. The highest coy, is superior to 0.23 when a MPM is
present and does not exceed 0.04 when a UD occurs. In the simulated scenarios, the
nonlinearity of the plant does not impact the system behavior, since the diagnosis was
compatible with the added MPM/UD. However, when the nonlinearity is significant, the
diagnosis will indicate a MPM.

5.4 Conclusions

This paper proposed an approach to distinguish between model-plant mismatch or
unmeasured disturbance impacting in the performance of model predictive controllers.
The idea behind the method is to compare the nominal system outputs with the nominal
error. When a MPM is responsible for the performance degradation, these signals have
similarities because both are dependent on the control actions. However, when a UD is
present, the nominal error depends on the disturbance signal, which comes from an
external source. Thus, the nominal error does not have relation with the nominal output.

The comparison between the nominal error and nominal output was performed
considering the statistical distribution of the signals along moving windows. The statistical
distribution is defined from the kurtosis and skewness coefficients. Four indicators were
proposed: one was based on the Person’s correlation coefficient (co), another based in
the confidence ellipse of the statistical distributions (ce), beyond the average ellipses
angles (@) and average size of the generated ellipses (DR). Besides, we also proposed the
evaluation of the indicators using the derivative of statistical distributions.

Firstly, a SISO Linear MPC case study was presented to illustrate the method and
verify the best approach among the suggested indices. The results show that, although
both alternatives provide similar results in most cases, the use of statistical distribution
derivatives is more conclusive than the use of the raw signals, since it is superior in
capturing dataset tendency. Among the indices, the co,, and ce;, are the most
recommended, since the angle (& 4,) and the dimensions (DR,;,) must be analyzed in
combination, once the MPM or UD indicator depends on the shape and inclination of the
confidence ellipses. When the system contains MPM and UD at the same time, the
method is capable of detecting the dominant effect, indicating higher values of co,, and
ceg,, as the effect of the MPM is more evident.
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Two MIMO case studies are also discussed: the Shell heavy oil fractionator and the
Quadruple-tanks process. Various scenarios were generated for both cases, considering
only model-plant mismatches, only unmeasured disturbances, and both at the same time.
The results show that the proposed method is capable of distinguishing between MPM or
UD in all simulated experiments. The co;, was more reliable than ce,,, not failing in any
case. Its value does not exceed 0.1 when a UD is present and is always superior to this
amount when a MPM is present. Results also show that, when a MPM occurs, kurtosis
and skewness do not necessarily both have indicator values higher than 0.1. Thus, the
analysis of kurtosis and skewness are complementary, and just one of them indicating
MPM is necessary for this diagnosis be true.



Capitulo 6 — Performance Assessment and
Diagnosis of MPCs with Control Ranges

Abstract®: Many industrial model predictive control applications use as reference a
range where the variable should be kept inside, instead of a specific value (setpoint).
Although assess the model quality of these controllers is fundamental, most available
MPC assessment techniques require setpoints as reference, providing misleading results
when they are unavailable. The methods proposed by Botelho et al. (2015a/cap. 3),
Botelho et al. (2015b/cap. 4) and Botelho et al. (2015c/cap. 5) allows the MPC model
assessment and diagnosis for both setpoint and control range MPC configurations. This
paper shows the application of these methods in a MPC where the variables are
controlled by control range. The Shell Heavy Oil Process is used as case study, showing
that the method was capable to estimate the effect of modeling problems and indicate
the controlled variable associated as well as if the problem is due to a model-plant
mismatch or unmeasured disturbance.

Keywords: model predictive control, model assessment, model-plant mismatch,
unmeasured disturbance, soft constraints.
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6.1 Introduction

Model predictive controllers (MPCs) have been widely used in the process industry
over the last decades. They uses a dynamic process model to predict the behavior of
controlled variables (CVs) along the future horizon, based on past control actions. From
this result, an optimization algorithm calculates the control actions that lead the process
to the optimal trajectory. The maintenance of MPC is an important and challenging
problem, since the performance degradation can come from many different sources, such
as: wrong tuning parameters (i.e., control and prediction horizon, weighting matrices,
sampling time, etc.), poor model quality, poor disturbance rejection, and inappropriate
constraint setup (Sun et al., 2013).

Although predictive controllers rely on a solid theoretical foundation, the industrial
and commercial MPCs have their own control policy (see Holkar & Waghmare, Qin &
Badgwell, 2003) This means that they use different combinations of operational pratices,
algorithms and variable considerations. Among these policies, the MPCs with variables
controlled by range is a needed pratice in the most real process. Usually, these controllers
have the number of monitored variables larger than the manipulated ones. Therefore, the
MPC do not have degrees of freedom enough to maintain all the monitored variables in
the setpoints and the control objective is to keep them inside a range instead of
setpoints. The range limits (soft-constraints) can be violated but a penalization term is
included in the MPC cost function when it occurs. In some cases, the same controller has
separate strategies for different variables (setpoints and soft-constraints).

Regardless the applied control strategy, monitoring and evaluating the quality of the
MPC’s model is fundamental, since this is one of the most important and critical points
for the controller operation. Several techniques are available in literature (e.g. Huang et
al., 2003; Conner & Seborg, 2005; Jiang et al., 2012; Badwe et al., 2009, Badwe et al.
2010; Sun et al. 2013; Kano et al., 2010, Ji et al., 2012). Although most of them are
efficient for the case with setpoints, they cannot working with control range variables and
when they are applied on these cases, they produce misleading and inconclusive results.

Botelho et al. (2015a/cap. 3), Botelho et al. (2015b/cap. 4) and Botelho et al.
(2015c/cap. 5) proposed a series of methods for MPC model assessment for detecting
the controlled variable (CV) with performance problems and, in the case of bad
performance, diagnose if it come from a model-plant mismatch (MPM) or unmeasured
disturbance (UD). The main advantage of these methods is the setpoint independence.
Moreover, the methods are simple to apply and interpret. These characteristics make the
methodologies flexible to several controller formulations, including MPCs by range,
facilitating their industrial application for controllers assessment.

“Real” MPC applications have available models with all channels corrupted in different
levels, demanding, thus, methods for assessment that are able to deal with this diversity,
and point the variables that really impact the final performance. Therefore, this paper
aims to make an exhaustive test for the methods and verify their efficiency under a
diversity of modeling errors. Hundreds of random scenarios were generated considering a
MPC by range applied in the Shell Heavy Qil Fractionator process. The paper also presents
an evaluation of the amount of uncertainties allowed in the nominal sensitivity function
without diagnosis quality loss.
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6.2 Methods for MPC model assessment

This section summarizes the method proposed by Botelho et al. (2015a/cap. 3, b/cap.
4 and c/cap. 5), which considers a control loop as shown in Figure 6.1, where C is the MPC
controller, G, the nominal model, and G the real plant. The model-plant mismatch (MPM)
magnitude is AG. The theoretical system without mismatch is shown in Figure 6.1a, for
which nominal closed loop outputs are y,. Ty is the nominal complementary sensitivity
function. The real system, in a scenario subject to MPM, is shown in Figure 6.1b, where
Vser COrresponds to the setpoints, u are the manipulated variables, y are the measured
outputs, ysim are the simulated outputs of the nominal model perturbed by the actual
control actions u, and T is the complementary sensitivity function. Figure 6.1c shows the
real system subject to an unmeasured disturbance (UD), where v is the sequence of
independent random variables, G4 is the unknown disturbance model and y, are the
disturbance signals.

1
1
1
1
1
1
Yset ! + u
1
1
1
1
1
1

Figure 6.1: Schematic diagram of closed-loop (a) nominal system, (b) with model-plant
mismatch (MPM) and (c) with unmeasured disturbance (UD)

The method is based on the premise that an effective model should represent the real
system at the frequency where the MPC works. Thus, to assess the real influence of the
model-plant mismatch, the closed-loop performance must be considered. The following
definitions can be found in many classical control books (e.g., Skogestad & Postlethwaite,
1996):

Yo = ToYset (6.1)
To = GoC(I + GoC)™t = (I + Go,C)~1G,C (6.2)
So+To=1 (6.3)
Ysim = Gou (6.4)

where S, is the nominal sensitivity funcion and I is the identity matrix. Botelho et al.
(2015a/cap. 3) show that the nominal output y, (i.e., the output of the system in the
absence of MPM or UD) could be estimated according to:
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Yo=Yy+S (ysim_y) (6.5)

The nominal sensitivity function (S,) is a square transfer matrix that characterizes the
system response in closed loop (see equations 6.1, 6.2 and 6.3). Its dimensions are equal
to the number of outputs. The diagonal elements (Sodiag) give the closed loop behavior

of the outputs when their references (setpoints or soft constraints) are changed. The
remaining elements provide the impact of these references variation in the others
outputs. Thus, Botelho et al. (2015b/cap. 4) suggest an extension of equation 6.5, as
follow:

yodiag =y+ Sodiag (ysim - y) (6.6)

The SOdiag works as a softening for the simulation residuals (v, — ¥), and retains

only the part that is not removed by the controller feedback and is impacting in the
performance of corresponding output. Variables without significant MPM or UD will
have Yodiag = Vs because their simulation errors are near to zero. Applying S, instead of

Sodiag can be used to verify how the outputs affect each other. In this case, y, # y can
occur even for variables without any significant MPM or UD. This difference is produced
by a MPM and/or UD in another output variable and is transmitted to the other channels
by coupling in S,. The stronger is the coupling among the variable, the larger is the

difference y, # y, considering the existence of MPMs or UDs in the system.

Since y, and Yogiag a€ estimations of the process outputs in the absence of a model-

plant mismatch or unmeasured disturbance, they could be considered benchmarks for
controller-model output response, indicating how the modeling errors are being
propagated and were they are located, respectively. A useful index is the comparison of
output variances in nominal and real case:

va -y
Ivar = LJ_]) (6.7)
var (Yo — o)
B var(y —y)
lvargiag = (6.8)

Uar()’odiag - }_]Odiag)

If Ivar = 1 means that there is no modeling problem and unmeasured disturbances
affecting the corresponding output, on the other hand, when Ivar # 1 and Ivarg;qq # 1,
the corresponding output has a MPM or UD. Otherwise, when Ivar # 1 and [var;,q =
1 the corresponding output does not have trouble in their models, but its variance is
being affected by MPM or UD that originates at other outputs.

Another possibility is to analyze the autocorrelation function (ACF) of vy — ¥, yo — ¥,
and Yodiag ~ 370diag. A high value of ACF means that the current signal value is strongly

correlated with the past values. The ACF curves are useful to analyze the effect of MPMs
and UDs in MPC speed of response or to detect oscillatory behavior (Huang & Shah,
1999).

Once the outputs with modeling problem were detected, it is desirable to identify the
cause. A key issue is to determine whether the decline in performance is due to MPM or
UD. The former occurs when the process model cannot adequately describe the relations
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between model input and output variables and a re-identification is required. On the
other hand, an unmeasured disturbance occurs when there is a deterministic unknown
signal influencing the output behavior. The effects of a MPM and UD in the process
outputs are very similar (see Figures 6.1b and 6.1c), thus, they are not easily
distinguished. To overcome this problem, Botelho et al. (2015c/cap. 5) proposed a
systematic for identifying if the dominant effect is related to MPM or UD. The main idea
is quantify the correlation distribution between the nominal diagonal outputs Yodiag with

the nominal error €0diag defined by:

eOdiag = yodiag - (6.9)

Considering that Yodiag is the estimated output free from model-plant mismatch and
unmeasured disturbances, €04iqg N be interpreted as the effect of the modeling

problems in the output. When an output is under a MPM, the error come from the
model, then €0 diag will be dependent of the inputs (u), as well as Yodiag’ causing a similar

frequency pattern. When an output is under an unmeasured disturbance, €04diag is

independent of u because the disturbances come from an external source. Nonetheless,

Yogiqg CONtinUEs to be dependent on the input variables movements. This means that the

frequency of variation of Yo diag and €0iag € uncorrelated. Therefore, the comparison
between Yodiag and €04iq4 PAtErNs can be used to discriminate between model-plant

mismatch and unmeasured disturbances. According to the author, the method uses the
Yodiag instead y, because the diagonal terms allow the location of the modeling problem

in each output.

The diagnosis procedure to distinguish between MPM and UD consists of the analysis
of the statistical distribution of Y0 diag and €0diag along a moving window (MW). The

statistical distribution is evaluated by the skewness (skn) and kurtosis (kts) coefficients:

ktsMiW = — 6.10
YD) o
MW _ My

sknify" = (Vmy)* (6.11)

where m,, ms and my are the second, third and fourth order central moment, defined as:

_ X - X!

m i =234 (6.12)

Where X; is the evaluated dataset (yodl.ag or eodiag) and X is it corresponding mean.

A high value of kurtosis means that the data present a large number of recordings away
from the mean, when compared with a normal distribution. The sample skewness
provides an indicator of how asymmetric is the dataset. Figures 6.2 and 6.3 illustrate the
expected result for a hypothetical case. When a MPM is present, the variation of
statistical distributions of €0diag and Yodiag shows the major variation at the same time

(see the peaks), which does not occur when a UD is present.



128 capitulo 6 — Performance Assessment and Diagnosis of MPCs with Control Ranges

—Y —Yodi
o 0 o Odiag ||
%o . Sodiag |
2 E ]

Kurtosis

Skewness
-

| )
.40 100 200 300 400 500 600 700 800 “o 100 200 300 400 500 800 700 ) 100 200 300 400 500 500 700
Time [min] Time [min] Time [min]

Figure 6.2: Illustrative situation with MPM: (a) measured y, estimated Yodiag’
and €0diag ’ (b) kurtosis coefficients along a moving window; and (c) skewness
coefficients along a moving window
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Figure 6.3: Illustrative situation with UD: (a) measured y, estimated Yodiag and €0diag

; (b) kurtosis coefficients along a moving window; and (c) skewness coefficients along a
moving window

Botelho et al. (2015c/cap. 5) analyze different approaches to compare Yodiag and
€0 diag" The most reliable alternative is based on the Pearson’s correlation coefficients of
skewness and kurtosis derivatives. A scan is performed varying MW size in the
neighborhood of the prediction horizon (0.5ph to 2ph, where ph is the MPC’s prediction

horizon). The indicators (cogk¢s and coggkn) are based in the mean of absolute correlation
between the derivatives of statistical distributions:

2p d,. .mMmw d,. MW )
ZMW=0_5ph|corr(dtkts

_ €0diag’dt SyOdiag 6.13
COqkts = " (6.13)
MW
2p d . Mw 4 . Mw
_ ZMW:O-Sph‘Corr(dtSkneOdiag‘dtS nyodiag)| (6.14)
COgskn =

nyw

where nyy, are the number of scanned MW, corr is the Pearson's correlation coefficient.
The larger the values of cogiss and coyqkn, the higher is the probability of a model-plant
mismatch dominance. It enough one of these indices be high for classifying the
performance issue caused by MPM. Thus, Iypy, is defined by:

Iypm = Max(Cakes, Caskn) (6.15)
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6.3 MPC by Control Range

The square controllers are characterized by a system with the same number of
manipulated variables (MVs) as controlled variables (CVs), leading to a control problem
with a unique solution (Qin, 2003). Thus, the controller has enough degrees of freedom to
keep each CV in the corresponding setpoints. Although this ideal case is the most studied
in the literature, it is an uncommon industrial MPC implementation.

There are two kinds of rectangular systems. The best situation corresponds to the fat
plant cases, where the number of MVs is higher than CVs. In this case, the extra degrees
of freedom available are used to optimize the operation and targets for the manipulated
variables are usually applied to achieve the economic performance (Qin, 2003).
Unfortunately, the usual case for a nonsquare configuration is with more CVs than MVs
(thin plant case). Here, it is not possible to meet all of the control objectives, so that, the
most common strategy consists of defining operational bands for CVs instead of a fixed
setpoint (Campos et al., 2013; Qin, 2003). We can also call these control bands as
fatpoints and the MPC with control range. It is possible to operate the MPC purely by
range or maintain some CVs with fix setpoint and the others with range, depending on
the process objectives.

Soft constraints are commonly used to replace setpoints in control algorithms. Rather
than maintain all CVs to a specific value, upper and lower limits are specified. The control
algorithm tries to maintain the control variable within these limits unless necessity forces
it to relax the constraints (Yuan & Lennox, 2006). A straightforward way for softening the
constraints is to introduce slack variables which are defined such that they are non-zero
only if the corresponding constraint is violated (Kerrigan & Maciejowski, 2000). The term
of the soft constraint in the MPC cost function is defined as:

ph—1
min Z 762
8 .
=0 (6.16)
St: Yot +0 =y Zysmo}'z—6

6=0

where ph is the prediction horizon, ysfr and y;’;}’} are the upper and upper lower of soft

constraint, Tis the penalization of soft constraint violation and § is the slack variable.
When 6 = 0, the constraint is satisfied and no penalization is inserted in the cost
function.

Usually, MPC by control range is combined with a simple real time optimization layer,
which set the optimal steady state value for MVs (targets) according to economic
objectives. Figure 6.4 shows the typical architecture of these systems.
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—-> Simple real-time economic optimization | Targets _| Control Actions
(LP or QP stationary optimization) Calculations
Actual MV and CV Process < MV

Figure 6.4: Architecture of MPC controller with optimizer (adapted from
Campos et al., 2013)

Thus, when some CV violates its soft constraints, the MPC will use its degrees of
freedom (MVs available) to take the CV back to its control range. In a normal situation,
the controller will work to lead the process to the optimal cost. In the most cases, it
means maintain some CVs with a soft constraint active, whose maximum number must
equal to the number of available MVs. In this situation, the plant is reduced to a square
sub-system and the active soft constraints works as “pseudo-setpoints”.

The method presented in section 6.2 has the benefit to be independent of control
policy (setpoint or soft-constraints), allowing its utilization, for example, in MPCs whose
variables are controlled by control range. The core of the method is the analysis of the
nominal sensitivity function (S,) and the corresponding complementary sensitivity
function (T,), i.e. the nominal closed loop response (equation 6.3). By definition, these
functions are related with the setpoints (see equation 6.1). Thus, some considerations
need to be defined when the controller is setpoint independent, which are described
below.

Firstly, considering a system where all the CVs have fixed setpoint, it is expected that
the diagonal of complementary nominal sensitivity function (Todiag) be a model with

static gain equal to one and the remaining models with a zero at the origin (i.e., null static
gain). Now let us consider a MPC whose variables are controlled by range, where the
following situations may occur:

- The evaluated CV have an active soft constraint: in this case, its behavior is very similar
to a fixed setpoint case. Thus, the static gains of the corresponding TOdiag will be 1. The

effect of this CV in another variable with active soft constraint will generate an off-
diagonal T, with a zero at the origin (i.e., null static gain). The effect of this CV in a
variable inside the range will generate an off-diagonal T, with static gain different from
zero, because this variable will assume a new steady state value.

- The evaluated CV is inside the range: in this case, the variable does not have any
influence in the control actions. It means that the effect of the controller feedback in this
variable is null. Thus, T, = 0 (diagonal and off-diagonal models) and equation 6.6 is
reduced to:
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Figure 6.5 summarizes the previous discussion illustrating the complementary
nominal sensitivity function of a hypothetical MPC by range.

€ In: CV with active constraint In: CV in range In: CV with active constraint
© 15 15 15
1]
w
=
<]
o
o 1 1 1
=
©
©
£os 05 05} 1
=
3
] 0 0
=
8 0 20 40 80 80 0 20 40 60 80 0 20 40 60 80
Time Time Time
15 15
o
2
c 1 1
i
£
>
O os 05
=
=1
o ‘/\_
0 0
0 20 40 50 80 0 20 40 60 80 0 20 40 60 80
Time Time Time
-
£
g 15 15 15
w
o
o
o
o 1 1
2
k3]
®
£ 05 05
2
3
] 0
o
8 0 20 40 80 80 0 20 40 60 80 0 20 40 60 80
Time Time Time

Figure 6.5: Complementary nominal sensitivity function (T) of a hypothetical MPC by
range

6.4 Case Study

The Shell Benchmark Process was proposed by Prett & Morari (1987) and is
composed by a heavy oil fractionator, as represented in Figure 6.6. The main feature of
this process is the high interaction among the variables as well as large time delays. The
fractionator is characterized by three product draws and three side circulating loops. The
heat requirement of the column enters with the feed, which is a gaseous stream. Product
specifications for the top and side draw streams are determined by economics and
operating requirements. There is no product specification for the bottom draw, but there
is an operating constraint on the temperature in the lower part of the column. The three
circulating loops remove heat to achieve the desired product separation.
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Figure 6.6: Schematic representation of Shell Heavy Qil Fractionator
(Maciejowski, 2002)

A linear MPC was configured based on Maciejowski (2002). The controller is
composed by 7 controlled variables (CVs), 3 manipulated variables (MVs) and 2 measured
disturbances (MDs), which are presented in Table 6.1.

The linear model for this process is given by:

- 1 1
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where each row represents a CV (y1 to y7), the first three columns are the MVs (ul to

u3) and the others are the MDs (d1 and d2).
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Table 6.1: MPC Variables

Role Name Description
ul Top Draw
Manipulated u2 Side Draw

Variables (MVs)
u3 Bottoms Reflux Duty

d1 Intermediate Reflux
Measured Duty
Disturbances (MDs)

d2 Upper Reflux Duty
yl Top End Point
y2 Side End Point
y3 Top Temperature
4 Upper Reflux
Controlled Variables Y Temperature
(CVs)
y5 Side Draw Temperature
6 Intermediate Reflux
Y Temperature
Bottoms Reflux
y7

Temperature

The linear MPC controller was configured in Matlab™ /Simulink™. The MPC used has
a simple real-time optimization layer, which set the optimal operating point according to
economic objectives. The scheme presented by Figure 6.4 illustrates its architecture. The
cost function of the simple real-time optimization is defined by:

nu
minZ((puutgt)l
Utgt 4
=1
max min (6.19)
ysoft = Vset = ysoft
s.t.

max min
Upard = utgt = Upard

where ¢@,, are the manipulated variables costs, y,.; are the corresponding to the closed-

loop steady-state prediction of CVs, y ;% and y;’;}’é are the soft constraints of controlled

variables, Uy, g and uygry are the constraints of MVs and u,,, are the MVs targets.

The optimal values calculated from the optimizer (u.4) are transferred to the MPC
optimization problem. Since the system contains more CVs than MVs, all the CVs of the
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controller was configured by range. In this case, the MPC works to maintain all the
controlled variables inside the soft constraint. The MPC cost function is formulated as
follows:

i=0

ph-1 ((nu
. . 2 . _ M 2 2
. > {Z (1@t + 1) 12, + |QuGll + 1K) — ueargeek +il0) [, | + 56, }
£

max min
Uhard 2u 2 Upard

st Yhara ZY 2 Vhara (6.20)

max min __
ysoft+6y Zy 2ysoft Sy
6,20

where mh is the control horizon, phis the prediction horizon, nu is the number of
available MVs, @, is the target weighting of MVs, @,, is the move suppression, s, is the
slack variable for soft the constraints, 7, is the penalization weight of soft constraint
violation, y;"** and y;{g;’d are the hard constraints of CVs. Table 6.2 summarizes the
controller tuning and constraints used in this case study.

The described system was simulated considering step changes in the measured
disturbances (MDs) according to Figure 6.7. The generated inputs and outputs (in absence
of MPM and UD) are presented in Figures 6.8 and 6.9, respectively. The Basis Case
corresponds to these results, which are the references for comparison along of this study.

06 T T T

04

02

MD

o2 —d1 |

04 I | f I
0 500 1000 1500 2000 2500 3000

Time [min]

Figure 6.7: Step changes in the measured disturbances.
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Table 6.2: Tuning parameters and constraints of the MPC

Sample Time

4min
Prediction Horizon 7c
(ph)
Control Horizon 15
(mh)
MYV Cost
((P) Pu1 =8, 02 =3, ¢9y3 =4
u
MV Target Weight
(Q) Qui =Quz=0Quz =1
u
Move Suppression
(QA ) QAul = QA‘LLZ = QAuB = 25
u
Weight of soft the
constraints violation Ty1 = Tyo = Tyz3 = Tya = Tys = Tyg = Tyy = 100
(Ty)
max max __ max
MV hard constraints ulhara = UZhara = U3hara = 0.5
max max . . .
(Urara and Unara wAfin, = u2n, = 3R, = —0.5
CV hard constraints y zna(]'rgfi = yzl;lnard y3hard y4’hard = y5hard y6hard y ;Lnaar)fi =1
max max
and ;
(yhard Yhara Yihgra = yzhard y3hard y4hal:ld =Yy halrd y6h03}d =Yy ;Ln;;ld =-1
CV soft constraints Y1goft = Y2505t = Y3505t = Y4soft = Y5505t = Y650ft = 0.5, ¥75oft =0
max max . . . . . .
(Vhara and Yhara YU, = y2U = 0, yBU = YR = ySiih = Y6l = Y7l = ~05
0.5 0.2 05
-0.5 -0.2 -05
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Figure 6.8: Manipulated Variables for the Basis Case.
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Figure 6.9: Controlled Variables for the Basis Case

Figures 6.8 e 6.9 show that, for the considered perturbations, all the MVs are available
(i.e., not saturated). Thus, the MPC works to keep y1 and y2 in their lower limits (yz)
and y7 in its upper limit (y72%). The others CVs remain between yt and y24. As discussed
in section 6.3, variables whose predictions not have influence in the controller feedback
and the modeling errors are preserved (T, = 0). When a soft constraint is active, the
controller feedback eliminates part of the modeling error. Based on this, the output
sensitivity function (S;) consistent with the Basis Case was identified, and is illustrated in
Figure 6.10.
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Figure 6.10: Output sensitivity function (S,)
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6.5 Results and discussions

6.5.1 Scenarios pre-defined

Table 6.3 shows ten different scenarios containing model-plant mismatches and
unmeasured disturbances that are analyzed in this section for the Shell fractionator case
study. The scenarios are composed by model-plant mismatches added in the models MV
x CV (type MPM), unmeasured disturbances added in the CVs signals (type UD) and
model-plant mismatches added in the feed-forward models, i.e., models MD x CV (type

MPM-FF).

Table 6.3: Scenarios Configuration
Name Type A(;Li‘sjf Af:le;::d Description
Scen0 A *x *x Basis Case
Scenl MPM V7 u2 Do not imps:;;t;:losed-loop
Scen2 MPM y1l u3 Impact in y1 only (optimized CV)
Scen3 MPM y3 ul,u2 and u3 Impact in y3 only (CV in range)
Scen4 MPM y2 ul Impact all over the system
Scen5 ub y1l ok Impact in y1 only (optimized CV)
Scen6b ub y7 ok Do not impact in the system
Scen?7 ub v4 ok Impact in y4 only (CV in range)
Scen8 ub y2 ok Impact all over the system
Scen9 MPM+UD yZ2andy3 wul,u2andu3 Scen8 + Scen 3
Scenl0 MPM+UD y2andyl ul Scen4 + Scen 5
Scenll MPM —FF yl d2 Impact all over the system
Scenl2 MPM —FF y3 dl Impact in y3 only (CV in range)

Each scenario was simulated considering the step changes in MDs presented in Figure
6.7. A noise with magnitude 1% was added in the measurements. The methods described
in section 6.2 were applied in the generated data. The model fit is captured by the
modeling error es;m = Vsim — Y, Which can be totalized by the TSSE (total sum of
squared simulation errors) defined by:
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ny [nsample
i=i

TSSE= " | > Gaim =¥V (6.21)
=1

where ny is the number of outputs and nsample is the number of sampled data. Figure
6.11 shows the TSSE for all scenarios. The Ivar (equation 6.7) quantifies the influence of
MPMs or UDs in the output variances, which cannot be compensated by MPC. The results
of this index are presented in Figure 6.12.
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Figure 6.11: Results of TSSE
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Figure 6.12: Results of Ivar. The values outside the threshold lines (dot lines ) indicate
that the MPC performances were different than the expected behavior

Figure 6.11 makes evident that all scenarios contain modeling errors, since TSSE is
higher than the Basis Case. However, not always these errors affect the controller
performance, as shown in Scenl and Scen6, where Ivar is near to one although of TSSE
is high. The interpretation of Ivar is coherent with the reality of each scenario (see Table
6.3), showing that the problems in Scen4, Scen8, Scen9 and Scen10 affects all the CVs and
in Scen2, Scen3 and Scen7 affect manly one CV. The main conclusion of this indicator is
that all scenarios, (except Scenl and Scen6) have modeling problems impacting in the
outputs variances.

To detect in which variables the modeling problem is concentrated, the Ivary;,g is
used. Figure 6.13 shows the results for [varg;qg.
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Figure 6.13: Results of Ivary;, 4. The values outside the threshold lines (dot lines)
indicate that the MPC performances were different than the expected behavior.

Results from Figure 6.13 show that [vary;.4 can detect the variables with model
inconsistences responsible for the increase/decrease of the system variance pointed by
Ivar. In Scend and Scen8, a modeling problem in y2 affect all others CVs. When a single
variable is affected (e.g., Scen2, Scen3, Scen5 and Scen7) the diagnosis of Ivarg;,, and
Ivar are analogous. When more than one CV suffers a performance degradation as
shown in Scen9 and 10, Ivary;, is capable to point correctly all the variables responsible
for the bad performance.

Figures 6.13 and 6.14 make evident that the method is also capable to detect the
modeling inconsistences when they are present in the measured disturbance models
(feed-forward models), since the of Ivar for Scenll and Scen12 are coherent with the
reality of each scenario (see Table 6.3) and the Ivary;,, can detect the variables with
model inconsistences responsible for the increase/decrease of the system variance
pointed by Ivar.

The comparison of ACF functions of y, yo and yog;44 are shown in Figure 6.14. This
analysis is less sensitive than the Ivar. However it allows a more complete diagnosis,
because can detect oscillatory behaviors or changes in the speed of response. For
example, in Scen5 the ACF make evident that y1 has an oscillatory behavior due to a
modeling problem, since y # y0 and this error is in the own variable (y1), because
Y04iqg is similar to y0 .
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Figure 6.14: Results of ACF functions

After the identification of the variables with modeling inconsistences the next step is
to detect their source. The method described in section 6.2 is applied and the results for
kurtosis(cogkts) and skewness (co4sxn) are shown in Figure 6.15.
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Figure 6.15: Correlation indicator of Skewness (04, ) and Kurtosis (cozxts)

Figure 6.15 shows the accuracy of the proposed indices to find the cause of the
problem. In presence of MPM, at least one of indicators (kurtosis or skewness) tends to
indicate higher values (Scen2 to Scen4, Scen9 for y3 and Scen10 for y2). In presence of
UD both indicators are low (Scen5 to Scen8, Scen9 for y2 and Scen10 for y1). The method
can also detect the presence of model-plant mismatches in the measured disturbance
models (Scen11 and Scen12).

6.5.2 Exhaustive tests

CV affected by a MPM or UD

The method was exhaustively tested to evaluate its effectivity, where 300
experiments were performed, in which 150 contain only model-plant mismatches. The
channels (i.e., pair CV versus MV) affected for the MPM in each experiment as well as the
corrupted parameter of the model (static gain, time delay or time constant) and it value
were randomly selected. The remaining 150 experiments were generated considering
only unmeasured disturbances. The CV affect for each disturbance as well the disturbance
model Gd (Figure 6.1) are also randomly selected. Table 6.4 summarizes the possible
range of each random parameter. The random selection generates MPM and disturbance
of different frequencies and magnitudes, where some examples are shown in Figure 6.16.

Table 6.4: Range of random parameters

Static Gain Multiplied by 0.3 to 1.5
G Time Constant Multiplied by 0.3 to 3

Time Delay Added to-2to 2

Static Gain Equalto 0.1to 3

Gd

(first order model) 4 ~onstant Equal to 30 to 300
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Figure 6.16: Examples of (a) four different MPM in G, ; (dot line is the nominal model)
and (b) four different UD randomly generated for y1

Simulations were performed considering step changes in the MD variables (d1 and
d2), according to Figure 6.17. Firstly, the nominal system (i.e., without MPM or
unmeasured disturbance) was simulated and designated as Basis Case. Each random
experiment was also simulated and the methods of model assessment applied in the
generated data. A noise of magnitude 1% was added in the measurements. Considering
that the simulations are randomly generated, some experiments resulted in infeasible
conditions. These cases corresponded to 4% of the total of experiments and were
excluded of the evaluation procedure.
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Figure 6.17: Measured disturbances step changes for the exhaustive tests

The full variance indexes Ivar (equation 6.7) are compared with the Basis Case,
considering the Ivary,4;s:

var(y —y)

4 (6.22)
var (Ypasis — Vbasis)

Ivarygsis =

The results are summarized in Figure 6.18. The points in the plot represent
lvary,sis versus Ivar for each CV in each experiment.
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Figure 6.18: [vary,g;s versus Ivar for all CVs in each random experiment with (a)
MPM and (b) with UD

Figure 6.18 show a linear tendency between the Ivary,gs and Ivar . The
determination coefficients (R?) were 0.80 and 0.78 for the MPM and UD cases,
respectively. It means that the method provide an estimative of MPM or UD effects in the
system variance compatible with the reality.

The next steps consist in the detection of the variables and the sources responsible for
the MPC degradation. In this study we consider non-impactful MPMs or UDs when 0.8 <
Ivar < 1.2. Values inside these limits represent small effects in the variables due the
noise or to small numerical error. Figure 6.19 shows two experiments affecting y1 were
Ivar are 1.09 and 1.23, respectively. In the first case, y and y0 are very similar and do
not make sense search for modeling problems. In the second, there is some detachment
between y and y0 .
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Figure 6.19: Behavior of y1 in an random experiment with (a) /var=1.09 and (b)
Ivar = 1.23

Considering cases with impactful modeling problems (Ivar < 0.8 and Ivar > 1.2) we
use the [vary;.4 (equation 6.8) to detect the variable affect by the MPM or UD. The
selected variable in each case was the one with the [vary;,, farthest from 1. The
indicated CV were confronted with the CV that, in fact, we add the MPM or UD during the
data generation. This comparison was performed using the confusion matrix, presented in
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Figure 6.20. A confusion matrix illustrates the number of correct classifications (at this
case, the CV truly affected) versus the predicted classifications (at this case, the CV
indicated by the Ivary;qg). The numbers of hit for each variable are located in the
diagonal of the matrix while the off-diagonal elements represent the errors (except the
last row and column, which are the summarization of the results). The results show that
the Ivary;,, was capable to correctly indicate the variable affected by the modeling
problem in 100% of the evaluated cases.
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Figure 6.20: Confusion matrix of random experiments with impactful (a) MPM and (b)
UD: Indicator based in Tvary;, 4 versus truly CV affected

The last step of the method is to verify if the CVs indicated by Ivarg;,  are corrupted

by a MPM or UD. The results considering the I;;p), indicator (equations 6.10 to 6.15) are
presented in Figure 6.21.
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Figure 6.21: I};p), indicator for the valid random experiments with MPM or UD.
Threshold value corresponds to the dashed line ( I;p) = 0.1)

Figure 6.21 shows that the method was capable to discern between MPM and UD in
the most cases. In 97.5% of experiments with UD the Ij;py, was smaller than 0.1. The
highest value was 0.13, the lowest was 0.035 and the mean was 0.065. For the
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experiments with MPM, in 92.3% of cases the I};p); was larger than 0.1. The lowest value
was 0.075, the highest was 0.5 and the mean was 0.18.

CV affected by a MPM and UD

In most real process, it is common that the variables are affected by MPMs and UDs at
the same time. Thus, the method of model assessment must to be capable to capture the
dominant effect. To illustrate, 100 random experiments containing MPM and UD were
performed, considering the ranges of Table 6.4. Simulations were performed considering
step changes in the MD variables (d1 and d2), according to Figure 6.17. Each experiment
was simulated three times: Firstly only with MPM, next only with UD and finally with
both. Noise with magnitude of 1% was added in the measurements. The experiments that
resulted in infeasible conditions are excluded of the evaluation procedure. The Ivar for
each scenario (i.e., with MPM and UD) is compared with the [vary,g;s, as shown in Figure
6.22.
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Figure 6.22: Ivary,is versus Ivar for all CVs in each random experiment with MPM
and UD

Figure 6.22 shows a linear relation between the Ivary,gs and Ivar, with
determination coefficients (R?) of 0.78, showing that the method provide an estimative
of modeling inconsistences effects in the system variance compatible with the reality.
Considering cases with impactful modeling problems (Ivar < 0.8 and Ivar > 1.2) we use
the Ivary;q4 (equation 6.8) to detect the variable affect. The selected variable in each
case was the one with the Ivary;,, farthest to 1. The indicated CV were confronted with
the CV that, in fact, we add the MPM and UD during the data generation. This comparison
was performed using a confusion matrix, presented in Figure 6.23. The results show that
the Ivary;,4 Was capable to correctly indicate the variable affected by the modeling
problem in 100% of the evaluated cases.
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Figure 6.23: Confusion matrix of random experiments with MPM and UD: Indicator
based in Ivary;,q versus truly CV affected

The last step of the method is to verify if the CVs indicated by Ivary;,, are dominantly
corrupted by a MPM or UD. The dominant effect was determinate according to:

. . Ivariag ()
dominanceypy (i) = [E—rTITre Toar 0D (6.23)
VAT giag (i) + VaTgiqg
were [varyiqy' and Ivarg,, are the Ivary,,, for the experiments generated only with

MPM and UD respectively and i is the affected CV. These results are confronted with the
Iyypp in Figure 6.24.
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Figure 6.24: Dominance of MPM versus Iypy of random experiments with MPM and
ub

Figure 6.24 shows that the Iypy becomes higher as more dominant is the MPM.
When both effects are similar (dominanceypy = 0.5) the Iypy is near to 0.1. Cases
where the UD is much more evident (dominanceypy < 0.3) the Iyppy tends to be



Capitulo 6 — Performance Assessment and Diagnosis of MPCs with Control Ranges 147

smaller than 0.05. Similarly, when a MPM is much more evident (dominanceypy > 0.7)
the I;ppy tends to be higher than 0.2. These results prove that the method is capable to
assess the MPC model even when more than one modeling inconsistence is present.

Sensitivity of S,

The heart of proposed method is the sensitivity function (S;), which provides the
system closed loop response. Considering that the studied MPC is based in the
optimization problem presented equation 6.19 and 6.20, it has a varying control
structure. It means that the closed loop response of the system will not depend solely of
the tuning, but also of the active soft constraints as well of the manipulated variables that
are available. Therefore, there is not a single S, that characterizes the proposed MPC.

Although the estimation of the sensitivity function is a simple procedure, it is
desirable to evaluate the impact of uncertainty in S, , which is the scope of this section.
The evaluation is restricted to the diagonal S,

Considering the diagonal elements S, of y1, y2 and y7 (Figure 6.10), which are the
CVs that have active constraints in the basis case. Each diagonal model was approximated
by the following second order model:

1
Sl =1- 6.24
0 Tg0282 + 2T50é50S + 1 (6.24)
Modifications are performed in the Sy °* by multiplication of 75, and &g, for a

constant varying from 0.2 to 2. Figures 6.25 and 6.26 compared the real model (S,,,.,.)
with the modified (Somodiﬂed).
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Figure 6.25: Somodiﬁed by &g variation in the diagonal of sensitivity y1(a), y2(b) and
y7(c)
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Figure 6.26: Somodiﬁed by T ¢ variation in the diagonal sensitivity of y1(a), y2(b) and

y7(c)

Considering all the 400 random experiments described in section 6.5.2, the ones were
the affected CV are y1, y2 and y7 were selected. For each experiment, equation 6.8 was
applied considering all modified models. The obtained relation of Ivarg;,, of modified
and true models (Ivarygifieq and Ivary.,e) are presented in Figures 6.27, 6.28 and 6.29,
where each line is associated with a different experiment.
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Figure 6.27: Relation between the [vary;, 4 of true and modified S, for y1
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Figures 6.27, 6.28 and 6.29 show that an uncertainty of 25% in S, (i.e., multipliers
between 0.75 and 1.25) causes an increment of +0.2 in the [vary;q4, when compared
with the true result, which is the acceptable tolerance in the variance of this system (see
Figure 6.19). Multipliers far from these limits cause an increment in the Ivary;,, Which
could affect the result of the methodology. The question now is, how much a change in
the MPC control structure impact in S,?

Suppose a hypothetical case where ul is unavailable (i.e., it is fixed). In this condition
one degree of freedom is lost, and now 2 CVs (y1 and y2) are optimized while y7 remains
inside the soft constraints. Figures 6.30 and 6.31 illustrate the expected behavior when a
step disturbance is added in y1. The diagonal S, for y1 was estimated considering the
described scenario. Figure 6.32 illustrate the result.
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Figure 6.30: Expected behavior of MVs when ul is fixed
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Figure 6.31: Expected behavior of CVs when ul is fixed
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Figure 6.32: Estimated diagonal S, for y1 considering u1 fixed and u1 avaliable

Figure 6.32 show that, although a significant change in the control structure has
occurred, the sensitivity of the system has a small change. The multiplayer of 7g, and
&sp are 1.03 and 1.18, respectively. This result illustrates that the method allow a certain
degree of uncertainty in S, which is compatible with a change in the control structure of
the MPC.

6.6 Conclusions

This paper aims to evaluate the effectiveness of the methods proposed by Botelho et
al. (2015a/cap. 3, b/cap. 4 and ¢/ cap. 5) for MPC model assessment in controllers where
range variables (i.e. soft constraints) are used. This control policy is a common practice in
industry due to the absence of degrees of freedom in the most real plants and because of
optimization layer. The independence of setpoint is one the advantages of the method
that allow its application in these systems.

The methods have been applied in the Shell Heavy Oil Fractionator case study. The
configured controller contains 7 controlled variables, 3 manipulated variables and two
measured disturbance. The objective of the MPC is to operate the system in the best
profit and keep the CVs inside of the soft constraints.

Twelve scenarios containing MPMs and UDs were selected to represent some
common effects of modeling problems in MPCs. The results show that, in all cases, the
proposed method was capable to providing the diagnosis compatible with the
corresponding scenario, indicating the effect of the modeling problems in all variables,
pointing the affected variable and if the problem come from a MPM or UD. The method
also works for evaluating modeling problems in feed-forward models.

The method was also exhaustively tested performing 400 experiments were, in which
150 only contained MPM and 150 only contained UD and 100 contained both. Firstly, the
variance index of estimated nominal output was compared with the basis case (i.e., data
generated without MPM or UD). The results show a linear relation between them
(R? = 0.8), indicating that the method is capable to estimate the effect of a MPM in the
variance of the system. For the cases where the variance of the system suffered
significant variance increase, the method indicates in 100% what is the CV were the
modeling problem is contained. The method was capable of indicating if the modeling
problem is a MPM or DV, indicating in 95% of experiments that contain MPM or DV the
correct problem. When both effects are available, the method shows a coherent result,
showing a higher indicative of MPM as the effect of this problem is more dominant.
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The sensitivity OfSOdiag was evaluated considering the 400 random experiments

previously generated. The results shows that the method allow an uncertainty of 25% in
the Sodiag and that this value was compatible with the change in control structure tested.
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Capitulo 7— Model Assessment of an
Industrial MPC

Abstract’: The poor model quality is one of the most frequent causes of performance
deterioration in Model Predictive Controllers. So, a frequent model evaluation and
correction is a fundamental. Several methods of model assessment are available in
literature, but most of them are not able to deal with Model Predictive Controllers (MPCs)
without fixed setpoints for the controlled variables. Botelho et al. (2015a/cap.3, b/cap.4
and c/cap.5) proposed a series of methods for assessment of MPC models, which
consider the controller tuning in the assessment procedure. Their main advantage is the
setpoint independence. This paper presents the application of these methods in an
industrial MPC that operate by range. The system is a MPC of a fractionating column from
a delayed coke unit of a refinery locate in Brazil. The results illustrate that the method can
correctly quantify the effect of modeling problems and identify it come from a model-
plant mismatch or unmeasured disturbance.

Keywords: model predictive control, model assessment, model-plant mismatch,
unmeasured disturbance.
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7.1 Introduction

The operation of industrial chemical plants is dependent of strategies to control the
process variables. A few decades ago the unique existent control structures were
grounded in classical policies, as PID. However, the technological advances promoted the
rise of the complexity of the processes, and required the development of more
elaborated control systems, emerging the Advanced Process Control. Among the
advanced techniques, the model predictive controllers (MPCs) are the most used in the
industry (Holkar e Waghmare, 2010).

The frequent maintenance of a MPC is fundamental so that it operate properly.
However, this task still is a challenge due to the multi-causal nature of these controllers.
The high number of tuning parameters, the strong dependency of the process model and
the high diversity of commercial MPC algorithms are the major difficulties. Several works
are available in literature (Huang et al., 2003; Conner & Seborg, 2005; Badwe et al., 2009;
Jiang et al., 2009; Kano et al., 2010; Ji et al., 2012; Jiang et al., 2012, among others) which
proposes methods for MPC monitoring and diagnosis. However, most of them are based
in the classical MPC structures (i.e., with fixed setpoint). Industrial processes often do not
have degrees of freedom enough to keep all the controlled variables (CVs) in a unique
setpoint, and the MPCs must be configured with CVs by range. At these cases the control
objective is to keep the CVs inside a limit. Therefore, the setpoints dependent techniques
for MPC assessment are inadequate.

Among the sources of MPC deterioration, the presence of model-plant mismatch
(MPM) and/or unmeasured disturbances (UD) are the most impactful. Bad or incomplete
models could generate control actions very far from the optimal ones. Sun et al. (2013)
estimate that more than 80% of the time of a MPC project is spent in the identification of
the models, due to its importance. Hence, assess and maintaining the model quality is
fundamental.

Botelho et al. (2015a/cap. 3), Botelho et al. (2015b/cap. 4) and Botelho et al.
(2015c/cap. 5) proposed a series of methods for MPC model assessment for detecting
the controlled variable (CV) with performance problems and, in the case of bad
performance, diagnose if it come from a model-plant mismatch (MPM) or unmeasured
disturbance (UD). The main advantage of these methods is the setpoint independence.
Moreover, the methods are simple to apply and interpret. These characteristics make the
methodologies flexible to several controller formulations, including MPCs with CVs by
range, facilitating their industrial application for controller’s assessment.

This paper presents the application of these methods in an industrial MPC where the
CVs are controlled by range. The system is a fractionating column from a delayed coke
unit of a refinery, located in Brazil. A description of the methods is presented in section
7.2. Section 7.3 presents the evaluated process. The results of the methods application
are presented in section 7.4.

7.1 Methods for MPC model assessment

This section summarizes the method proposed by Botelho et al. (2015a/cap. 3, b/cap.
4 and c/cap. 5), which considers a control loop as shown in Figure 7.1, where C is the MPC
controller, G, the nominal model, and G the real plant. The model-plant mismatch (MPM)
magnitude is AG. The theoretical system without mismatch is shown in Figure 7.1a, for
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which nominal closed loop outputs are y,. T, is the nominal complementary sensitivity
function. The real system, in a scenario subject to MPM, is shown in Figure 7.1b, where
Yset COrresponds to the setpoints, u are the manipulated variables, y are the measured
outputs, ysim are the simulated outputs of the nominal model perturbed by the actual
control actions u, and T is the complementary sensitivity function. Figure 7.1c shows the
real system subject to an unmeasured disturbance (UD), where v is the sequence of
independent random variables, G4 is the unknown disturbance model and y, are the
disturbance signals.

1
1
1
1
1
1
Yset I+ u
1
1
1
1
1
1

Figure 7.1: Schematic diagram of closed-loop (a) nominal system, (b) with model-plant
mismatch (MPM) and (c) with unmeasured disturbance (UD)

The method is based on the premise that an effective model should represent the real
system at the frequency where the MPC works. Thus, to assess the real influence of the
model-plant mismatch, the closed-loop performance must be considered. The following
definitions can be found in many classical control books (e.g., Skogestad & Postlethwaite,
1996):

Yo = ToYset (7.1)
Ty = GoC( + GoC)™L = (I + GoC)™1G,C (7.2)
So+To=1 (7.3)
Ysim = Gou (7.4)

where S, is the nominal sensitivity funcion and I is the identity matrix. Botelho et al.
(2015a/cap. 3) show that the nominal output y, (i.e., the output of the system in the
absence of MPM or UD) could be estimated according to:

Yo=Yy+S (ysim_y) (7.5)

The nominal sensitivity function (S,) is a square transfer matrix that characterizes the
system response in closed loop (see equations 7.1, 7.2 and 7.3). Its dimensions are equal
to the number of outputs. The diagonal elements (Sodiag) give the closed loop behavior
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of the outputs when their references (setpoints or soft constraints) are changed. The
remaining elements provide the impact of these references variation in the others
outputs. Thus, Botelho et al. (2015b/cap. 4) suggest an extension of equation 7.5, as
follow:

yodiag =y+ Sodiag (ysim - y) (7.6)

The SOdiag works as a softening for the simulation residuals (v, — ¥), and retains

only the part that is not removed by the controller feedback and is impacting in the
performance of corresponding output. Variables without significant MPM or UD will
have Yodiag =V because their simulation errors are near to zero. Applying S, instead of

Sodmg can be used to verify how the outputs affect each other. In this case, y, # y can
occur even for variables without any significant MPM or UD. This difference is produced
by a MPM and/or UD in another output variable and is transmitted to the other channels
by coupling inS,. The stronger is the coupling among the variable, the larger is the

difference between y, and y, considering the existence of MPMs or UDs in the system.

Since y, and Yogiag a€ estimations of the process outputs in the absence of a model-

plant mismatch or unmeasured disturbance, they could be considered benchmarks for
controller-model output response, indicating how the modeling errors are being
propagated and were they are located, respectively. A useful index is the comparison of
output variances in nominal and real case:

Ivar = —var(y _ J_]) (7.7)
var(yYo — ¥o)
_ var(y —y)
Ivardiag = (7.8)

If Ivar = 1 means that there is no modeling problem and unmeasured disturbances
affecting the corresponding output, on the other hand, when Ivar # 1 and Ivarg;qq # 1,
the corresponding output has a MPM or UD. Otherwise, when Ivar # 1 and [varg;,q =
1 the corresponding output does not have trouble in their models, but its variance is
being affected by MPM or UD that originates at other outputs.

Another possibility is to analyze the autocorrelation function (ACF) of y — ¥, vy — Vo,
and Yodiag ~ yodiag. A high value of ACF means that the current signal value is strongly

correlated with the past values. The ACF curves are useful to analyze the effect of MPMs
and UDs in MPC speed of response or to detect oscillatory behavior (Huang & Shah,
1999).

Once the outputs with modeling problem were detected, it is desirable to identify the
cause. A key issue is to determine whether the decline in performance is due to MPM or
UD. The former occurs when the process model cannot adequately describe the relations
between model input and output variables and a re-identification is required. On the
other hand, an unmeasured disturbance occurs when there is a deterministic unknown
signal influencing the output behavior. The effects of a MPM and UD in the process
outputs are very similar (see Figures 7.1b and 7.1c), thus, they are not easily
distinguished. To overcome this problem, Botelho et al. (2015c/cap. 5) proposed a
systematic for identifying if the dominant effect is related to MPM or UD. The main idea
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is quantify the correlation distribution between the nominal diagonal outputs Yodiag with
the nominal error €0diag defined by:

€0giag = Yodiag ~ Y (7.9)

Considering that Yodiag is the estimated output free from model-plant mismatch and
unmeasured disturbances, €04iqg €N be interpreted as the effect of the modeling

problems in the output. When an output is under a MPM, the error come from the
model, then €04diag will be dependent of the inputs (u), as well as Yodiag’ causing a similar

frequency pattern. When an output is under an unmeasured disturbance, €04iag is

independent of u because the disturbances come from an external source. Nonetheless,
Yodiag continues to be dependent on the input variables movements. This means that the

frequency of variation of Yodiag and €0diqg '€ uncorrelated. Therefore, the comparison
between Yodiag and €04iqq PAttErNs can be used to discriminate between model-plant

mismatch and unmeasured disturbances. According to the author, the method uses the
Yodiag instead y, because the diagonal terms allow the location of the modeling problem

in each output.

The diagnosis procedure to distinguish between MPM and UD consists of the analysis
of the statistical distribution of Yodiag and €0diag along a moving window (MW). The

statistical distribution is evaluated by the skewness (skn) and kurtosis (kts) coefficients:

ktsiV = —= 7.10
Y m) 710
MW _ My

skny,” = ) (7.11)

where m,, ms and my are the second, third and fourth order central moment, defined as:

_ X - X!

m i ,J1=2,34 (7.12)

Where X; is the evaluated dataset (yodl.ag or eodiag) and X is it corresponding mean.

A high value of kurtosis means that the data present a large number of recordings away
from the mean, when compared with a normal distribution. The sample skewness
provides an indicator of how asymmetric is the dataset.

Botelho et al. (2015c/cap. 5) analyze different approaches to compare Yodiag and

€0 diag" The most reliable alternative is based on the Pearson’s correlation coefficients of
skewness and kurtosis derivatives. A scan is performed varying MW size in the
neighborhood of the prediction horizon (0.5ph to 2ph, where ph is the MPC’s prediction
horizon). The indicators (cogk¢s and coggkn) are based in the mean of absolute correlation
between the derivatives of statistical distributions:
212"51W=0-5Ph|COTT(%kth/(IJZIViag’% S%thi/iag)|

(7.13)

co =
dkts nuw
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2p (i Mw 4 _, MW )
ZMW=0-5Ph‘COTr dtSkneOdiag'dtS nyodiag

(7.14)

COgskn = o
where nyy, are the number of scanned MW, corr is the Pearson's correlation coefficient.
The larger the values of cogits and coyqkn, the higher is the probability of a model-plant
mismatch dominance. It enough one of these indices be high for classifying the
performance issue caused by MPM. Botelho et al. (2015c/cap. 5) suggests that values
higher than 0.1 characterize MPM dominance.

7.2 Case Study

7.2.1 Process description

The evaluated system is a delayed coke unit of a petroleum refinery located in Brazil.
The process has the objective to convert heavy fractions of petroleum in light fractions
with higher added-value through a thermal cracking. In parallel to the reactions of
cracking occurs the reaction of coking, which produces a solid by-product with high
molecular weight and high content of carbon (called coke) that have low commercial
value (Mattos & Longhi, 2013). Figure 7.2 illustrates the system.

Top
: Light
Fraction
T
N )
Medium
- " Fraction
=]
TQ-01 P
T-01 Heavy
Fraction
L
»Bottom

Water Steam

Figure 7.2: Schematic representation of the delayed coke process
(Adapted from Mattos & Longhi, 2013)

The system’s inlet (V-01) is composed by heavy fractions of petroleum coming from
the residuals of vacuum distillation unit, stored in the TQ-01 and a recycle stream. It is
sent to a preheating furnace (F-01), where its temperature reaches 500°C. Water steam is
injected, increasing the flow speed to retard the reaction of coking and avoid the
generation of coke inside the furnace. The outlet of F-01 feeds the coke drums (R-01 and
R-02). These reactors operate alternately in batch, each one with execution cycles of 24
hours. It is necessary to remove de coke accrued inside the drums. Thus, after each
execution cycle the reactors are exchanged (i.e., the flow is deviated from the drum in
operation to the other drum) and the reactor out of operation is cleaned (i.e., the coke is
removed) and prepared for another cycle. A fractionating column (T-01) separate the
products of the cracking (Mattos & Longhi, 2013; Longhi et al., 2008).
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The assessed control structure is the MPC of the fractionating column (T-01). This
MPC has a simple real-time optimization layer, which established the optimal operating
point according to economic objectives. The scheme presented by Figure 7.3 illustrates its
architecture.

MPC Structure

Simplified real-time Uege .| Control Actions
economic optimization | Y “| calculations

Actual MV and CV

Process <

Figure 7.3: Architecture of MPC controller with optimizer
(adapted from Campos et al.,2013)

The optimizer determines best values of MVs (u;4:) and corresponding steady state
solution of the CVs ( yse;) based in the operational costs and process limits. The optimal
values from the optimizer (u.4; and ys,.) are the base for the control actions calculations.
This MPC operates fully by range, which means that the controller cost function is
configured in terms of manipulated variables. The CVs are penalized only in cases of soft
constraint violation (yso¢)-

The MPC is composed by 12 controlled variables (CVs) operating by range and 7
manipulated variables (MVs). Besides there are two measured disturbances (DVs) which
come from the operation of exchange and preparation of the coke drums.

7.2.2 Data characterization

For the described system, two datasets were selected, which are called Period 1 and
Period 2. These periods are approximately 40 days apart from each other and either have
about 3 days of operational plant data. Figures 7.4 illustrates the measured values of CVs
(v) and its respective optimal values (ys.;) and soft constraints (ys,s;). Figure 7.5 presents
de measured MVs (u) and respective optimal values (u.4.) and constraints (upqrq). Figure
7.6 shows the measured disturbances.
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Figure 7.4: Controlled Variables of (a) Period 1 and (b) Period 2.
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Figure 7.5: Manipulated Variables of (a) Period 1 and (b) Period 2.
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Figure 7.6: Measured Disturbances of (a) Period 1 and (b) Period 2.

Figure 7.6 shows that the selected periods include at least one complete execution
cycle. Besides, according to Figure 7.5, the controller works with two degrees of freedom
(MV?2 and MV4) at most of time. It allows that CV11 and CV12 to have their upper soft
constraints actives (Figure 7.4). The other CVs remain inside the range. Thus, we assume
this scenario to estimate the closed loop response. The complementary sensitivity
function (T ) of each controlled variable (CV) of an MPC by range is defined as follows:

- The evaluated CV have an active soft constraint: in this case, its behavior is very similar
to a fixed setpoint case. Thus, the static gains of the corresponding TOdiag will be 1. The

effect of this CV in another variable with active soft constraint will generate an off-
diagonal T, with a zero in the origin (i.e., null static gain). The effect of this CV in a
variable inside the range will generate an off-diagonal T, with static gain different from
zero, because this variable will assume a new steady state value.

- The evaluated CV is inside the range: in this case, the variable does not have any
influence in the control actions. It means that the effect of the controller feedback in this
variable is null. Thus, T, = 0 (diagonal and off-diagonal models) and all the simulation
error is preserved.

Based on the considerations described above, the CV1 to CV10 have Ty, = 0, since
they are inside the range. The complementary sensitivity function of CV11 and CV12 are
presented in Figure 7.7. They are obtained from a simulation of the controller (see
appendix A3).
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Figure 7.7: Step response of T, for CV11 and CV12 as input.

Figure 7.7 shows that, for the considered scenario, CV11 is the variable with greater
interaction, since it impacts in the most CVs (except CV6, CV7 and CV9). The CV12
impacts in the behavior of CV1 to CV4 and CV6. All others CVs do not interact because
they are inside the range. Therefore, they have none influence in the controller feedback.

7.3 Results and discussions

The methods presented in section 7.1 were applied in the selected datasets. Firstly
the Variance Indexes (equations 7.7 and 7.8) were calculated. The results are presented in
Table 7.1. According to this table, and considering the premise presented by Botelho et al.
(2015d/cap. 6), that an important modeling problem occurs when Ivar < 0.8 or
Ivar > 1.2, in both periods CV3 is the single variable that do not suffer effect of
modeling problems. CV6, CV7, CV9, CV11 and CV12 are affected by modeling problems
and they are in its own models, since Ivar = Ivarg;aq. CV2 and CV10 have problem in
their models, but they are even more affected by modeling problems coming from other
CVs, because the [var is farther to one than Ivarg;,,. Some disparity was founded in the
results of CV1, CV4, CV5 and CV7 between the datasets. In these cases the Ivary;q, of
one period is near to one while the other period it is significant. It means that the
modeling problem not always is evident for these variables.
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Table 7.1: Variances Indexes

Period 1 Period 2

Ivar Ivargiag Ivar Ivargiag
CcV1 0.24 1.15 0.13 0.37
Ccv?2 0.18 0.73 0.30 0.78
CV3 1.04 1.07 0.99 1.07
Cr4 0.21 0.53 0.42 1.00
CV5 0.22 0.97 0.47 2.03
Ccvé 0.48 0.53 0.26 0.28
cv7 0.89 0.89 1.70 1.70
(4] 1.89 2.07 1.88 1.97
CcVo 1.87 1.88 2.41 2.41
CcV10 0.52 0.77 0.41 0.51
CVi11 0.53 0.56 0.76 0.77
CVi12 0.69 0.78 0.64 0.62

The ACFs were estimated and the results are presented in Figure 7.8. In some cases,
the ACF shows the effect of modeling errors in the CVs decay ratio through the difference
between y and y, (for exampleCV9, CV11 andCV12). Besides, this indicator also shows
that the modeling problems affecting CV6, CV7, CV9, CV11 and CV12 are in the own
variables, since ACF(yodl.ag) = ACF (yy)
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Figure 7.8: ACF for (a) Period 1 and (b) Period 2.
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For the variables with significant Ivarg;,g4, the sources of the dominant modeling
problems were evaluated. The kurtosis and skewness indicators (equations 7.13 and 14)
as well as the corresponding diagnosis are presented in Table 7.2.

Table 7.2: Kurtosis and skewness indicators

Period 1 Period 2
COg4kts CO4skn Diagnosis COgkts CO4skn Diagnosis
Ccril -- -- -- 0.33 0.45 MPM
Cv2 0.07 0.12 MPM 0.21 0.31 MPM
CV3 -- -- - - - -
Cr4 0.05 0.09 ub -- -- --
CV5 -- -- -- 0.07 0.14 MPM
CVé6 0.06 0.25 MPM 0.2 0.42 MPM
cv7 -- -- -- 0.05 0.06 ub
cvs8 0.03 0.03 ub 0.09 0.08 ub
cvo 0.01 0.02 ub 0.01 0.01 ub
CcV10 0.45 0.48 MPM 0.25 0.06 MPM
CVi11 0.23 0.25 MPM 0.13 0.19 MPM
CVi12 0.17 0.05 MPM 0.20 0.14 MPM

Results of Table 7.2 show that CV8 and CV9 are clearly been affected by a UD
while CV6, CV10, CV11 and CV12 have MPM. The CV4 in Period 1 and CV7 in Period 2
are being affected by a UD, denoting that some punctual disturbance may have occurred
in this dataset. The CV1 and CV5 in Period 2 have a MPM. Comparing Figure 7.5a and
7.5b is observed that the behavior of MVs is different between the periods. Hence the
MPM diagnoses are evident only in Period 2. This fact highlights the importance of a good
data selection as well as the execution of several tests, to have a reliable diagnosis of the
model.

Considering that Table 7.2 indicated a significant MPM in CV11 and this is the variable
with highest impact in the rest of the system (see Figure 7.7), the re-identification of its
model was performed. As example, only a channel (i.e., a pair MV versus CV)
MV5 vs.CV11 was re-identified. Table 7.3 compare the indicators (Ivar, [vargiqg, COqxes
and coggy) for CV11 before and after the model re-identification.
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Table 7.3: Indicators for CVV11 before and after CV11 vs. MV'5 model re-identification

Period 1 Period 2
Before After Before After
lvar 0.53 0.73 0.76 1.11
vargiag 0.56 0.73 0.77 1.11
COgkts 0.23 0.17 0.13 0.06
CO4skn 0.25 0.20 0.19 0.12

Results of Table 7.3 show that the re-identification of CVV11 vs. MV5 model improves
the performance of CV11, since its Ivar and [vary;q4 are nearest to one in both datasets
when the new model is considered. Besides, a reduction in values of cogy¢s and coggxn
occurs. It means that the new model contributes to reduce the incidence of MPM in
CV11.

To evaluate the effect of the new model in the remains CVs we compare the Ivar
after and before the model update with the corresponding Ivary,,. The diagonal
indicator of these CVs has not changed with the new model because the new model is
only of CV11. Thus, when closer are Ivarg;,q and [var, smaller is the interaction due to
the modeling errors. Figure 7.9 illustrate the results.
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Figure 7.9: Ivarg,4 and Ivar of the remain CVs before and after
CV11 vs. MV5 model re-identification for (a) Period 1 and (b) Period 2.
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Results of Figure 7.9 show that the Ivar of the variables after the
CV11 vs. MV5 model re-identification tends to be closer to Ivary;q, than Ivar before
the re-identification. Thus, the improvement of CV11 had a beneficial effect in all system.
This result is more evident in Period 1 than in Period 2 because the MV5 varies less in the
second dataset.

7.4 Conclusions

This paper presented the application of the methods proposed by Botelho et al. (2015
a/cap.3, b/cap.4 and c/cap.5) for the assessment of MPC models of a fractionating
column from a delayed coke unit of a refinery located in Brazil.

Results show that the methods are capable of indicating the model errors impacting in
the controller performance based only in process data and in the response in closed loop.
The methods indicate the effect of the modeling problems in the own controlled variable
as well as how each CV are being affected by problems coming from other models. The
methods also allow the diagnosis the root of the modeling problem, discerning between
model-plant mismatches or unmeasured disturbances. It must be emphasized that the
method has the advantage to work with MPCs by range, which make it flexible to the
most of industrial applications.

Additionally, the methods allow to verify the benefits achieved after a model re-
identification. This approach opens another field for the methods, which complements
the model identification procedure, so that the identified models can be assessed before
they are implanted in the controller.
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8.1 Conclusoes

Este trabalho teve como objetivo principal o desenvolvimento de uma ferramenta
para avaliacdo de modelos de controladores preditivos. Tal ferramenta é capaz de
fornecer diagndsticos compativeis com as caracteristicas dos controladores industriais
reais, destacando-se os sistemas de controle ndo quadrados, onde o nimero de varidveis
controladas é maior que o nimero de manipuladas e, consequentemente, a operagao por
faixas é necessaria.

Uma revisdo dos principais métodos disponiveis na literatura foi realizada. Constatou-
se que, embora exista uma vasta gama de metodologias, a maioria delas possui pouca
aplicabilidade pratica, principalmente por serem baseadas em referéncias incompativeis
com os MPCs reais (como LQG, MVC, etc.) ou por necessitarem de testes intrusivos na
planta. As técnicas de maior potencial foram testadas em dois controladores hipotéticos:
um deles com a configuracdo classica de um MPC e o outro com as CVs operando por
faixas. Os resultados obtidos indicaram que as mesmas ndo sao capazes de promover um
diagndstico confidvel dos modelos quando o sistema de controle ndo possui setpoints
fixos para as variaveis controladas.

Esta tese de doutorado desenvolveu uma metodologia que leva em conta a sintonia
do controlador na investigacdo dos problemas operacionais de MPCs. Os resultados
mostraram que o emprego da sensibilidade nominal da malha, que é a base da
metodologia proposta, é capaz de detectar corretamente o impacto dos problemas de
modelagem no desempenho do MPC. Os resultados foram comparados com o método de
Badwe et al. (2010) e se mostraram superiores, ja que, ao contrdrio do método de Badwe
et al. (2010), a metodologia proposta independe dos setpoints e de identificagcbes de
modelos baseada em dados de processo.

Uma extensdo da metodologia anteriormente descrita foi desenvolvida, cujo objetivo
consiste na localizacdo das varidveis controladas com os erros de modelagem
responsaveis pela degradacdo do desempenho. Esta técnica é especialmente Util para
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sistemas com elevado grau de acoplamento, de modo que pequenos erros de modelagem
podem levar todo o sistema muito proximo a sua instabilidade. A técnica proposta foi
comparada com o método de Sun et al. (2013) através de dois estudos de caso, a qual
mostrou resultados superiores, especialmente nos casos onde as varidveis manipuladas
oscilam nas suas restricdes e existe mais de um problema de modelagem ocorrendo ao
mesmo tempo.

Para complementar a ferramenta, mais uma metodologia foi desenvolvida. Seu
objetivo consiste na deteccdo da causa da degradacdo do modelo, indicando se a mesma
é proveniente de uma discrepancia no modelo ou de um distdrbio ndo modelado ou
medido. A metodologia se baseia na comparagao entre a distribuicdo estatistica do
comportamento nominal do sistema com os erros de modelagem. Diversos indicadores
foram sugeridos. Os resultados mostraram que a técnica é capaz de discernir entre o
problema dominante (MPM ou UD) de forma adequada e que a avalia¢cdo da derivada dos
coeficientes de assimetria e curtose é o indicador mais eficiente.

A ferramenta completa (i.e, as técnicas de deteccdo do impacto dos erros de
modelagem, localizagdo das CVs responsaveis e identificacdo da fonte de degradacgao) foi
aplicada a um sistema simulado, no qual contou com um MPC configurado por faixas e
camada de otimizacdo dinamica. A ferramenta foi testada exaustivamente a partir de
centenas de experimentos aleatérios que geraram dados contendo discrepancias de
modelos e disturbios ndo medidos. Concluiu-se que a taxa de acertos no diagndstico dos
modelos é superior a 90%. Neste mesmo estudo de caso, testes foram realizados a fim de
se quantificar o grau de incerteza admitido na fun¢do de sensibilidade. Constatou-se que
erros da ordem de 20% sdo admitidos, o que indica que a mesma é flexivel a pequenas

mudancas na estrutura de controle (devido a saturacdo das MVs, ou mudanca de
restrigdo ativa das CVs, por exemplo) sem que S, precise ser atualizado.

A ferramenta também foi aplicada ao controlador preditivo da Unidade de
Coqueamento Retardado da REFAP. A qualidade dos resultados obtidos foi similar aos
estudos de casos testados até entdo. As metodologias propostas foram capazes de
detectar discrepancias de modelos e disturbios ndo medidos. Adicionalmente, elas
permitiram que se analisasse a qualidade da solucdo proposta, o que permite a sua
utilizacdo na solucdo dos problemas, indo além das etapas de auditoria e diagnéstico.

Pode-se concluir que o presente trabalho levou a resultados coerentes e conclusivos
em todas as aplicacbes estudadas. Ainda ha muito a ser desenvolvido, dada a
complexidade do assunto, porém espera-se que este seja a base de uma ferramenta
funcional, que possa fornecer um diagndstico efetivo dos MPCs reais, desenvolvida com
enfoque em controle preditivos normalmente empregados na industria.

8.2 Sugestdes para trabalhos futuros.

Um grande esforco esta sendo realizado para que esta metodologia vire um padrdo
vidvel de aplicacdo industrial. Isso significa que, além de ser flexivel as diversas estruturas
de controle existentes na industria, ela deve exigir pouca carga computacional e gerar
resultados de facil interpretacdo. Resultados preliminares ja indicaram que os métodos
desenvolvidos possuem potencial de serem aplicados na pratica, contudo, ainda existem
alguns aspectos a serem aperfeicoados.
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Dentre os aspectos a serem estudados estd a obtencdo da funcdo de sensibilidade
nominal. Alguns estudos indicaram que as técnicas propostas admitem certo grau de
incerteza nesta propriedade. Entretanto, é necessario se avaliar o qudo realista é esse
grau de incerteza e se 0 mesmo é semelhante para a maioria dos processos. Deve-se
também estudar qual é a hipdtese de se utilizar um identificador online para Sy, o qual
deve detectar a condicdo atual do processo (i.e., quais varidveis estdo com suas restricoes
ativas) e identificar os modelos nestas condi¢des. Como S, é obtido a partir de dados
simulados, os parametros do modelo bem como as perturbacdes que favorecem sua
obtencdo podem ser configurados previamente, o que torna a identificacdo destes
modelos um processo relativamente simples.

Também é desejdvel que a ferramenta indique, ndo sé a varidvel controlada, mas
também o par CV vs. MV cujo modelo estd com problemas. Indo além, almeja-se que
sejam sugeridas varidveis candidatas a serem incluidas na matriz de modelos do MPC.
Ressalta-se que estudos desta natureza estdo em desenvolvimento no grupo de pesquisa
e resultados promissores vém sendo obtidos.
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Apéndice A1l: Diretrizes para a
implementacao das metodologias da
literatura

Neste apéndice sdo detalhados os procedimentos empregados para implementar as
metodologias disponiveis na literatura que foram estudas na se¢do 2 deste trabalho.

Al.1 Método de Sun

1) Estimar os disturbios estocdsticos (e?) contidos nas CVs através da identificacdo de

2)

3)

um modelo ARX de elevada ordem entre as saidas (y) e os setpoints (y_,):

MO1 MO2
y(k) = ) AOiy(k—i)+ ) BOyse(k — 1)+ e(k) (A1.1)
2 2

onde M01 e MO2 sdo as ordens (pardametro de ajuste do método) e AO e BO sdo
os parametros do modelo ARX.

Determinar a predigdo um passo a frente para as CVs (¥) a partir das entradas (u)
e saidas (y) medidas:

P(k) = Gao "Goulk — 1) + [1 = Ggo ' y(k — 1) (A1.2)

onde G, é o modelo do processo e G4y € o modelo de disturbio. Caso G, seja
desconhecido, deve-se projetar um filtro (predictor) capaz de capturar o efeito do
disturbio (Ljung, 1999).

Determinar o erro de predicdo:

eP(k) = y(k) — y(k) (A1.3)
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4)

Calcular o indicador de qualidade do modelo (MQI), o qual relaciona o erro
proveniente dos distlrbios estocasticos com o erro de predicao.

wor = ZE1et0970ye )

b (107Q,e? (k) (A1.4)

onde Q é o peso de cada CV configurado no MPC.

MQI pode variar entre 0 e 1, de modo que quando maior for o seu valor, melhor é o
modelo, jd que a maior parte do erro de predicdo é decorrente dos disturbios
estocasticos.

Al.2 Método de Badwe et al. (2009)

1)
2)

3)

4)

5)

Remover o ruido das entradas (u) e saidas (y).
Calcular a predicdo das saidas (y) e respectivo erro de predigdo (e =y — y)

Descorrelacionar cada MV das demais MVs: Obter o efeito isolado de cada
entrada (e1;) através da identificagdo de um modelo OE (Output-Error) entre cada
entrada i (u;) em relagdo as entradas restantes (UY).

u; (k) = V1;U (k) + £1; (A1.5)
onde V1, é o vetor de parametros do modelo OE.

Similarmente, descorrelacionar o efeito de cada MV nos erros de predi¢ao: Obter
o efeito isolado de cada entrada no erro de predicdo (€2;;) através da
identificagdo de um modelo OE (Output-Error) entre o erro de predigdo da saida j
(e]p) e as entradas restantes (Ui), isto é, todas as entradas, exceto u;.

ef (k) = V2,;U (k) + €2, (A1.6)

Calcular a correlagdo cruzada entre €1; e €2; ;. Valores de correlagdo elevados
indicam a presenca de erro no modelo do canal u; X y;.

Al.3 Método de Yu & Qin (2008 a e b)

Passo 1: Andlise da variabilidade global

1)

Selecionar um conjunto de dados histéricos de referéncia (y; e yg,), onde o

desempenho do controlador seja o desejavel.
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2)

Determinar o indice de variabilidade global:

det{COU[J’H - yset”]}
. det{COU[}’I - ysetl]}

(A1.7)

onde y;; € Yser,referem-se aos dados avaliados.

Quanto mais distante de 1 for o valor de I,,, maior a diferenga entre a variabilidade
dos dados de referéncia e dos dados avaliados.

Passo 2: Avaliar direcoes de melhora e piora de desempenho

1) Determinar os autovalores ([) e autovetores (p) do seguinte problema de
autovalor generalizado (GEVP):
cov(Yir = Yset; )P = HCOV(Y1 = Yser )P (A1.8)
2) Calcular as projegdes (z; , € zj; ) dos erros de controle (y — ys.;) na diregdo de
cada autovetor (p).
3) Calcular a autocorrelagdo das proje¢des z;,, € ;1 , (P1p € Pr1p);
4) Construir uma inferéncia estatistica para os dados (f; e f;;):
nsq .
j J
=142 z (1 - —) ey (A1.9)
. LY
j=1
onde o sub-indice ‘d’ se refere ao conjunto de dados (I ou II), ns é o nimero de
amostras e i representa cada um dos autovetores e j cada lag da autocorrelagao.
5) Determinar o intervalo de confianca de cada autovalor:

[0 0}
UL(w) = u; |1 — 2| = I A1.10
(:ul) Hi Zo /2 ns, — 1 + ns; — 1) ( )

f(i) ®
LL(u;) = pi |1+ z«)2 2( 1 4+ —L ) (A1.11)

ns;—1 ns;—1

onde UL e LL sdo os limites inferiores e superiores de confianga, z,,, € o valor
critico de uma distribuicdo normal com nivel de confianca (1—«)100%.

Caso UL e LL sejam maiores que 1, o desempenho dos dados avaliados é pior na
direcdo do autovetor correspondente, se UL e LL sejam menores que 1, o desempenho
dos dados avaliados é melhor.
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Passo 3: Localizando as varidveis responsdveis pela mudanca de desempenho

1) Construir um subespaco agrupando todos os autovetores que indicarem piora
(UL e LL maiores que 1) e melhora (UL e LL menores que 1), denominados P,, e
Py, respectivamente.

2) Calcular o angulo entre cada saida e os subespacos (Hyw e 0kb).
cos(6,") = ||Pv(By"Py) 1B, ey ||E (A1.12)
cos(6,”) = ||P,(P,"P,) P, evy ||E (A1.13)
onde ev,, € o vetor unitario representativo de cada saida

3) Determinar o limite de confianga dos angulos:

(A1.14)

onden; € a média geométrica entre o numero de amostras dos dados de
referéncia e dos dados avaliados.

Quando os valores de cos(HyW) ou cos(eyb) foram maiores que [ ,a saida
correspondente é a responsavel pela alteracdo no desempenho do controlador.



Apéndice A2: Diretrizes para a
implementacao da metodologia proposta

A metodologia proposta tem o objetivo de avaliar a existéncia de erros de modelagem
que impactem no desempenho do MPC. Ela pode ser dividia em trés etapas sequenciais.
Na primeira, o objetivo é verificar o efeito global dos erros de modelagem. Na segunda, as
variaveis controladas nas quais os erros de modelagem estdo contidos sdo localizadas. A
ultima etapa consiste em caracterizar os erros, determinando se os mesmos provém de
uma discrepancia de modelo ou de um disturbio ndo medido. A seguir, as diretrizes para a
aplicacdo de cada uma das etapas sera apresentada. Ressalta-se que ao longo do trabalho
diversos indicadores foram sugeridos. Neste apéndice serdo apresentados apenas os
melhores indicadores de cada etapa.

Etapa 1: Determinacdo do impacto global dos erros de modelagem

A partir do modelo do processo (G,), dos valores medidos das varidveis de entrada (u)
e saida (y), da fungdo de sensibilidade nominal (S;) e com base no desenvolvimento
apresentado na secdo 3, a primeira etapa da metodologia pode ser aplicada da seguinte
forma:

1) Simular o modelo do processo:

Ysim = Gou (A2.1)
2) Estimar a saida nominal:

Yo =Y = So(¥y = Vsim) (A2.2)
3) Calcular os indicadores de qualidade do modelo para cada uma das CVs.

Os indicadores de qualidade do modelo devem relacionar a saida medida (y) com a
saida nominal estimada (y,), ja que y, representa as saidas do sistema na auséncia de



184 Apéndice A2: Diretrizes para a implementacdo da metodologia proposta

erros de modelagem. Neste trabalho foram sugeridos dois indicadores. Um deles é o
indice de variancia (Ivar), o qual consiste na razdo entre as variancias de y e y;:

Ivar = var(y = Yser) (A2.3)
var()’o - yset)

Onde y,.trepresenta o setpoint da variavel controlada correspondente. Para casos
onde as CVs ndao possuem setpoints fixos (controladores por faixas), o Ivar pode ser
definido como:

Ivar = m (A2.4)
var(Yo — Yo)

Onde y e y, representam os valores médios dos vetores correspondentes. Quando o
Ivar de uma CV for diferente de 1, significa que a varidncia da mesma estd sendo
impactada por problemas de modelagem.

Outro indicador sugerido é a comparagao das fungdes de autocorrelagdo de y e y,. A
ideia consiste em avaliar graficamente as ACF obtidas para ambos os conjuntos de dados.
A partir da disparidade entre as curvas é possivel detectar oscilacdes ou diferencas nas
velocidades de respostas causadas por problemas de modelagem, conforme ilustrado na
Figura A2.1.
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Figura A2.1: Avaliacdo baseada na funcdo de autocorrelacao

A Figura A2.1 apresenta o comportamento tipico da funcdo de autocorrelacdo quando
ha problemas de modelagem. No primeiro caso (Figura A2.1a) é possivel detectar que a
CV avaliada possui comportamento oscilatério decorrente de um problema no modelo, ja
que ACF(y) oscila mas ACF(y,) ndo oscila. Ja no segundo caso (Figura A2.1b) had um erro
de modelagem tornando a resposta da CV avaliada mais lenta, ja que ACF(y) decai mais
lentamente que ACF(y,).

E importante mencionar que, especialmente quando o acoplamento entre as varidveis
do sistema é elevado, o erro no modelo de uma Unica varidvel pode ser capaz de
degradar o desempenho de todas as outras CVs. Dessa forma, apds a determinacdo do
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impacto global dos erros de modelagem fornecido pela etapa 1, é necessario localizar em
guais variaveis estes erros estdo contidos, sendo esta a préxima etapa do método.

Etapa 2: Localizacdo dos erros de modelagem

Esta etapa é realizada logo apds a etapa 1, quando a mesma indica a presenca de
erros de modelagem significativos. Seu objetivo consiste em localizar quais as CVs
possuem erros em seus modelos. A partir do modelo do processo (Gy), dos valores
medidos das varidveis de entrada (u) e saida (y), da funcdo de sensibilidade nominal (S;)
e com base no desenvolvimento apresentado na secdo 4, a segunda etapa da
metodologia pode ser aplicada da seguinte forma:

1) Simular o modelo do processo (equagdo A2.1)

2) Obter a matriz de sensibilidade nominal diagonal (Sodiag), a qual consiste em uma

matriz contendo apenas os elementos da diagonal principal de S.
3) Estimar a saida nominal diagonal:

Yodiag = Y ~ Soaiag(Y = Vsim) (A2.5)
4) Calcular os indicadores de qualidade do modelo para cada uma das CVs

Os indicadores desta etapa sao andlogos aos apresentados na etapa 1 (/var e ACF),
porém calculados em relagdo a Yodiag*

Tvar..  — var(y - yset) (A2 6)
dlag var(yodlag - yset) .

ou:

var(y —¥)

Ivargey = (A2.7)

Quando o Ivarg;,, de uma CV for diferente de 1, significa que existem erros em seu
modelo. Quanto maior a similaridade entre [vary;,, € Ivar, menor € a influéncia dos
erros de modelagem das demais CVs impactando na CV analisada.

De forma similar, quando houver disparidade entre as curvas de autocorrelagdo (y e

yodiag) de uma CV, significa que existem erros em seu modelo. Quanto maior a
similaridade entre ACF(yOdiag) e ACF(yq), menor é a influéncia dos erros de modelagem

das demais CVs impactando na CV analisada.

Etapa 3: Caracterizacdo dos erros de modelagem

Apds a localizacdo da varidvel controlada contendo erro de modelagem através da
etapa 2, a ultima etapa da metodologia consiste em caracterizar os erros, informando se
0s mesmo provém de uma discrepancia de modelo ou de um disturbio ndo medido. A
partir das saidas medidas (y), das saidas nominais diagonais (yodiag, equacdo A2.5) e com
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base no desenvolvimento apresentado na secdo 5, a terceira etapa da metodologia pode
ser aplicada da seguinte forma:

1)

2)

3)

4)

5)

6)

7)

8)

9)

Calcular o erro nominal diagonal:

Definir um vetor contendo diferentes tamanhos de janelas mdveis a serem
avaliadas. O primeiro elemento do vetor (menor janela movel) deve ser em torno
da metade do horizonte de predi¢dao e o ultimo elemento (maior janela moével)
deve ser aproximadamente o dobro do horizonte de predigao.

Definir o tamanho da janela moével (MW) igual ao primeiro elemento do vetor de
janelas moveis.

Calcular os coeficientes de assimetria e curtose para cada subconjunto de €0diag’

considerando um horizonte deslizante de tamanho MW (skngf)‘g’mg e ktsé‘g‘gag).

Calcular os coeficientes de assimetria e curtose para cada subconjunto de Yodiag’

MW

considerando um horizonte deslizante de tamanho MW (sknyOdia

Mw
B ktsyOdiag).
Calcular a derivada dos vetores contendo coeficientes de assimetria e curtose

originados nos itens 4 e 5.

Calcular o coeficiente de correlacdo entre a derivada dos coeficientes de
assimetria de €04iag € Yodiag*

d d
= Z oMW MW
COgskn pyy = COTT (dt skneOdiag, I sknyOdiag) (A2.9)

Calcular o coeficiente de correlagao entre a derivada dos coeficientes de curtose

de eOdiag e yodiag:

d d
COqrtspyyy = COTT (E ktsgggag, . kts%‘;"ia9> (A2.10)

Repetir os itens de 4 a 8 considerando todos os tamanhos de janela movel
definidos no item 2.

10) Calcular a média aritmética de cogi¢s yyyy € COdskn pyy,» CONSiderando todos os

tamanhos de janela mével avaliados (cogxts € COgskn)-

Se pelo menos um dos indicadores (cogxss OU COg45kn) foOr elevado (maior que 0.1),
significa que ha a dominancia de uma discrepancia de modelo. Caso contrario, o erro de
modelagem é proveniente de um disturbio ndo medido.
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experimental da fun¢ao de sensibilidade
nominal

Teoricamente, a funcdo de sensibilidade nominal pode ser obtida analiticamente a
partir do modelo do controlador, conforme discutido na se¢do 3. Entretanto, no caso dos
controladores preditivos, a obtengcdo do modelo do controlador nao é trivial, ja que o
mesmo é configurado a partir de um problema de otimiza¢do. Neste caso, a alternativa é
se obter uma estimativa da funcao de sensibilidade nominal experimentalmente, a partir
de uma simulag¢ao do controlador considerando o modelo do processo utilizado pelo MPC
no lugar do planta real. O procedimento empregado serda discutido a seguir.

Passo 1 - Configurando a simulagédo

O controlador deve ser configurado de acordo com o comportamento tipico do
processo nos dados de planta a serem avaliados, conforme as seguintes etapas:

a. Definir quais varidveis manipuladas (MVs) estao disponiveis e quais estdao
saturadas ou em modo manual.

b. Configurar o simulador mantendo constante o valor das MVs indisponiveis.
Relaxar as restricoes das MVs disponiveis para garantir que as mesmas ndo irdo
saturar ao longo da simulacdo.

c. Definir quais variaveis controladas (CVs) possuem setpoints fixos, quais operam
dentro de uma faixa e quais possuem uma restricdo ativa.

d. Configurar o simulador relaxando os limites das CVs que estdo dentro da faixa.
Isso ird garantir que as mesmas irdo permanecer dentro da faixa durante a
simulacao.
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e. Configurar uma condigado inicial para a simulagao de acordo com as defini¢gdes dos
itensaec.

Passo 2 - Determinando T, para CVs com setpoints fixos

Caso existam CVs com setpoints fixos, o seguinte procedimento deve ser realizado
para cada uma delas. Caso elas ndo existam, avangar para o item j.

f.  Partir a simulacao.

g. Depois de transcorrido um pequeno tempo de simulacdo, garantindo que o
sistema esteja em estado estacionario e respeitando as definicdes dos itens a e c,
realizar uma perturbacdo do setpoint da CV avaliada (ysiet).

h. Simular até que o sistema esteja em estado estacionario.

i. Utilizando um modelo Box-Jenkins, realizar uma identificacdo SIMO (single input
multiple output) do seguinte modelo:

Ysim = TOiysiet (A3.1)

onde y,;, é a matriz contendo todos as saidas da simulagdo e T¢ representa a linha
da matriz complementar de sensibilidade (T) referente a perturbagdes no setpoint da
varidvel i.

Passo 3 - Determinando T, para CVs por faixa com restricoes ativas

Caso existam CVs operando por faixas e com restricbes ativas, o seguinte
procedimento deve ser realizado para cada uma delas. Caso elas ndao existam, avangar
para o itemn.

j. Partir a simulacgao

k. Depois de transcorrido um pequeno tempo de simulacdo, garantindo que o sistema
esteja em estado estaciondrio e respeitando as defini¢des dos itens a e ¢, realizar uma

perturbagdo do na restri¢do ativa da CV avaliada (ysioffact)'

I.  Simular até que o sistema esteja em estado estacionario.

m. Utilizando um modelo Box-Jenkins, realizar uma identificacdo SIMO (single input
multiple output) do seguinte modelo:

YVsim = T()iysioft (A3-2)

act

onde Yy, € @ matriz contendo todos as saidas da simulagdo e Tj representa a linha
da matriz complementar de sensibilidade referente a perturbacdes na restricao ativa da
variavel i.
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Passo 4 - Determinando T, para CVs por faixa com restricoes ativas

Caso existam CVs operando dentro das faixas, o seguinte procedimento deve ser
realizado para cada uma delas. Caso elas ndo existam, avangar para o item o.

n. Definir Ty como um vetor nulo de dimensdes igual ao nimero de CVs, ja que variaveis
dentro da faixa nao influenciam nas ag¢des de controle do MPC.

Passo 5: Gerando a matriz de sensibilidade nominal S,

A partir dos modelos T¢ identificados, S, pode ser determinado da seguinte forma:

0. Gerar a matriz de modelos MIMO T, a partir da combinagao de todos os vetores de
modelos SIMO T¢ gerados através dos itens i, m e n.
p. Obter S, a partirde Ty:

onde | é a Matriz Identidade.



