
CORPO EDITORIAL: AntÔn i o Carlos d a Rocha Co sta

Carla Maria Da l Sasso Freitas

· Basi c Techniques of Gate Level Simulation

- A Tut orial -

Flávio Rech Wagner

· RT n º 12 CPGCC/UFHGS outubro 1984

UNIVERSIDADE FEDERAL DO RI O GRANDE DO SUL
/

/

CURSO DE PÓS-GRADUAÇAO EM CIÊNCIA DA COMPUTAÇAO

Cx. Posta l 1501 -Telex (0 5 1) 2680

Av. Osval do Ar anha , 99- Fone : 21.8499

90.000-PORTO ALEGRE-RS-BRASIL

\J F H G ~

BIBUOTECA
CPO/PGCC

ABSTRACT

Gate level simulators are those which simulate

digital logic circuits composed only of basic gates such

as NAND ' s, NOR's , etc . There are two basic types of gate

level simulators: compiled ones, in which the logic structure

is directly translated into a sequenc e of instructions of

the host computer, and table-driven ones, in which the

logic structure is translated into a table structure, which

is then inte rpreted by a simulation program. Table-driven

simulators can assume any delay values for the gates. Not

only single propagation delay s can be considered , but also

more complicated mode ls, which include inertial delays,

differing transition times, rise and fall times, etc.

Accurate design verification can be obtained only if

multiplP-valued logic is used .

Key-words: Gate level simulation , compi l er-driven and tabl~

-driven simulation, timing models, simulation

algorithm.

RESUMO

Simuladores a nível de portas lógicas são aqueles

que simulam circuitos lógicos digitais compostos apenas de

portas lógicas elementares como NANDs, NORs , etc . Existem ~

dois tipos básicos de simuladores: compilados, nos quais a

estrutura lógica e traduzida diretamente para uma sequência

de instruções do computador hospedeiro, e dirigidos por ta­

bela, nos quais a estrutura lógica é traduzida para uma es­

trutura de tabelas, que é então interpretada por um progra­

ma simulador. Simuladores dirigidos por tabela podem assu­

mir quaisquer valores para os tempos de propagação das por­

tas lógicas. Não apenas tempos de propagação simples podem

ser considerados, mas também modelos mais complicados, que

incluem tempos de propagaçao inerciais, difererites tempos

de transição, tempos de subida e descida, etc. Verificação

acurada do projeto só pode ser obtida se lógica com múlti­

plos valores for usada.

Palavras-chave: Simulação a nível de portas lógicas, simul~
ção de código compilado e dirigida por tab~
las, modelos de comportamento temporal, al­
goritmo de simulação.

SUM~-1A:.RY

1. INTRODUCTION • 01

2. ZERO DELAY SIMULATION •.••.•••••••••••••••• ..•.• .. 02

3. COMPILE R-DRIVEN SIMUJ;,ATORS . • 05

4. STIMULUS BYPASS • • • • • • • • • • • • • • . • • • • • • • . • • • • • • • • • • 06

5. SELECTIVE TRACE • 07

6. TABLE-DRIVEN SIMULATORS • . • • • • • 09

7. UNIT DELAY SH1ULATION • 11
I

8. ASSIGNABLE DELAY AND TIME FLOW MECHANISM •• ••••• •• 14

9. TIME-~~PPING v •••••••••• • •••••••••• f •

9 .1 T~ming whee1•.

9.2 i':.t-1oop • ...

10. TIMING MODELS ••••••• .••.•••••••••• • •••••••.•• •• ••.

10.1 Propagation de1ay ·

10. 2 Inertia1 de1ay•.............

10.3 Differing transition times •.................

10. 4 Ambigui ty region•...............

10.5 Rise and fa11 times •........................

11. PARALLEL SIMULATION •••••••••••••••••••••••••••••

12. ELEMENT EVALUATION •••••••••••••••••••••••••••••••

13. INITIALIZATION •••••••••••••••••••••••.••••••.•.••

14. THREE-VALUED REPRESENTATION AND SIMULATION •••••••

15. TABLE STRUCTURES AND SIMULATION ALGORITHMS

15.1 Simp1e tab1e structure

15.2 Descriptor based t ab 1e structure

REFERENCES

1 5

1 6

18

20

20

22

23

2 6

31

33

34

37

39

4 5

45

48

01

1 • INTRODUCTION

This paper is a tutorial about techniques employed

in gate leve1 simulators. It tries to present in a simple

way the models, algorithms and data strucutures which are

currently (or were} used.

No considerations are made about system characteristics,

like implementation language, input description language {to

specify elements and interconnections of the circuit) and

translation (to gene rate the data structures to be processed) .

These features are mainly dependent on the user needs and on

the facilities offered in the instal lation where the simulator

is implemented. Other surveys cover these aspects [BRE 76]

[SZY 75].

Furthermore~ no emphasis is placed on hazard and

race considerations .. because this is the subj ect of digi ·tal

logic texts. The reader which knows these concepts wil be

able to ·::orrectly choosé the simula tion model, among those

described in this paper, to meet his needs. More sophisticated

techniques of hazard and race detection, using 5- and 8-valued

logicr can be found in the references [BRE 76] [WAG 84]

Finally, this paper does not cover simulation

techniques for the functional level [SZY 73] [CHA 74] , which

is considered as an abstraction of the gate leve l, because

this level imposes some severe modification in the models

employed at the gate level.

02

2. ZERO DELAY SIMULATION

In zero delay simulators [HAR 67] [SES 62] the

propagation time through all devices is assumed to be zero.

As a consequence, only a logic verification of the circuit

can be made, i.e., the boolean equations which correspond to

the circuit are evaluated. No timing analysis is made, and

so problerns like race s and haza r ds cannot be detecte d. For

example, consider the simple circuit shown in Fig. 1. Due

to the propagation del ay of the inverter, when the input A

switches from O to 1 a short O pulse could be gene rated at

the output C. However the zero delay model wiil not predict

such hazard.

o) on exomple circuit

B ~ t
1

!-==_ __ _
I I

c~
--i>i t2t<-

b) the octuol behovior

Figure l - Zero delay simulation

c

c) the predicted behovior
in o zero deloy simulotor

The circuit must be levelized to provide a correct

ordering ~n the boolean equation evaluation. Levelizing

consists in assigning a level number to each eleme nt in the

circuit. If Li is the level of element i, and if an element

a has inputs from elements b, c and d, then La = 1 + max {Lb,

~c, ~d). Further.more, all feedback loops must be identified

and broken. The circuit is modeled in a canonical fo~m like

in Fig. 2. The level O is assigned to all primary inputs Xi.

An example of a levelized circuit is shown in Fig. 3.

x,
input !ines

Xn
.

yl

~

03

combinotional

circuit

. . .

. . .
f--

zl
output tines
ZP

feedbock tines

Figure 2 - Círcuit model in a zero delay simulation

leve i O levei I leve i 2 levei 3

Figure 3 - A levelized circuit

Silnulation is carried out by the following

algorithm. All level l e l ements are evaluated first , then

all level 2 elements and so on . After all elements have been

e valuated , the values of feedback signals are interrogated to

determine if they have changed . Al l logic levels ahead of a

04

feedback break point which changed must be evaluated again.

This process is repeated until the circuit has stabilized.

After that a new input vector is taken and processed.

It is easy to imagine that an oscillation can occur,.

and the circuit does not stabilize, i.e., after each simulation

pass through all levels some feedback line has different values

(alternates between O and 1). A solution to the problem is to

stop the evaluation after a period of time specified by the

user, to print a warning message and to abandone the current

input vector. Another solution is, when the oscillation is

detected, to assign a value "unknown" to the lines vlhich are

oscillating and to proceed with the simulation. We will see

3-valued logic techniques in sections 13 and 14.

05

3. COMPILER-DRIVEN SIMULATORS [HAR 67] [SES 62]

In general, zero delay simulators are of the

compiled variety, in which the · evaluation of the boolean

expression is compiled into instructions of the host computer .

In Fig. 4 we have an example of a simple logic circuit and

the computer instructions generated to simulate this circuit

in an hypothetical computer. We see that levelizing is

needed to obtain the correct ordering of the instructions.

LOAD A
AND B

~==0-x z STORE X
OR c
STORE y

c COM
o l the circuit STO RE z

b) the compiled c:ode

Figure 4 - Compiler-driven simulation

The structure of the simulator is shown in Fig. 5.

The preprocessor must identify and break the feedback lines

and levelize the circuit. It receives the circuit description

in some appropriated input language. The code generator

converts the yet levelized circuit description into a sequence

of host machine instructions. After that, the description will

be treated as any other computer program, which can be loaded

and executed.

system
descríptio

preprocessar c ode loader
n generotor

Figure 5 - Structure of a compiler-driven simulator

el<ecutoble
network

description

06

4. STIMULUS BYPASS

Stimulus bypass is a technique developed by Hardie

and Suhokie [HAR 67] for a compiler-driven simulator, and

consists in the bypassing of specific computer instruc·tions

which correspond to a logic block for which it can be

determined that no state change will occur. For example,

suppose the flip-flop of Fig. 6a. If it i s known that inputs

S and R are in their inactive states (value O), then all

instructions which correspond to the evaluation of signals

N1 and N2 do not need to be executed, because the flip-flop

certainly cannot change its state. Obviously, we will need

some instructions to test the bypass condition . This little

loss of memory, however, wil l be compensated by a great time

saving. Fig. 6b shows the compiled code for the flip-flop,

where the .E irst three ins ·tructions test the bypass condi ticn.

LOAD

=~2 J
bypass s OR
condition SKIP IF ZERO

p~ Nl LOAD Pl
AND N2
OR s
COM
ANO P2

P2
OR R

N2 COM
R ·STORE N2

AND Pl
o) flip-flop OR s

COM
STORE Nl

b) the compiled code
Figure 6 - Stimulus bypass

07

5. SELECTIVE TRACE [ULR 69]

Let us define the active part o f a circuit as those

circuit elements whose inputs are changing at a determined

moment. In Fig . 7, be A1 the active part of circuit N at t1.

Usually this active part is between 2 and 10 % of the total

numbe r of elements in the circuit [BRE 76), but a ratio of

1% was also reported [HAR 67]. The outputs of elements in

A1 are connected to the inputs of another elements, which

forro the subset B1 of N. However, the activity which takes

place in A1 will affect only a subset of B1 at t2, say A2.

This subset will be the new active part of N. So, "logical

activity may be viewed as a vehicle which trave ls on narrowl y

confined but continuously shifting paths of activity through

an otherw~ se idle digital network" [ULR 69]. Such paths of

activity suggest a simulation technigue which follows these

paths and avoids idle elements. Ulrich [ULR 69) has called

it "exclusive simulation of activity", but it is nowadays

often called "selective trace" [SZY 75]. It would be wasteful

to simulate all the logic when only a small portion of the

circuit is going to cha nge.

N

ti

Figure 7 -

N N

fz t3

Exclusive simulation of activity

Let us define an event as a change in value of a

signal line. The output of a stable element will only change

value when one or more of its inputs change value. Hence, an

element needs only be simulated when an event occurs at one

08

of its inputs. For this reason, this technique is also

called "event-directed simulation"
ctUV\-'\1-t V'\

[BRE 76] .

Almost the totality of simulators developed in

the l ast decade use this technique. As we shall see later

(section 8) , it needs some scheduling mechanism to arder ·

the events in some data structure and to search for the

next event to be executed . Bening [BEN 79] alerts that,

depending on the kind of logic network organization, the

event management can cause such time overhead that l evelized

logic evaluation would b e faster for this network. This would

be true for pipelined logic networks, where over 90% of their

gates must be evaluated b e tween each clock period.

09

6. TABLE-DRIVEN SIMULATORS

There is a basic requirernent for the irnplernentation

·of the selective trace technique . We rnust know what are the

elernents connected to the output of an element (let us call

these elernents as the 11 fan-out elernents") to see what is

the effect of an event occuring at the output of this element.

In Fig. 8, when an event occurs at the output of element i,

we have to evaluate elernent J, but then also the other

inputs to elernent j, say elernents k and l, need to be

known ~ Hence, we need also a fan-in list for each elernent

(let us call the fan-in elernents as those connected to

the inputs of a certain element). For these reasons, event­

-dire cted sirnulators ernploy a special data or table structure,

to reflect the interconnections of the circuit, and are

called then "table -driven'1
•

k------_j
1--------'

Figure 8 - Fan-in and fan- out lists

fan-out list i = { j}

fan-in list j ={i,k,l}

This table structure allows the simulation control

prograrn to identify and schedule for future evaluation only

the elernents which are affected by the currently active

elernents. This technique seerns like the stirnulus bypass

adopted in cornpiler-driven sirnulation because both avoid the

evaluation of inactive elernents. However, in the stirnulus

bypass technique we need to evaluate a few instructions which

corre spond to the inactive elernent to se e that it does not

need to be evaluated at all. Here, because of the table

structure, the paths of potential activity are autornatically

followed, since idle elernents receive no input signals and

consequently are not scheduled for evaluation. In compiler­

driven sirnulators we rnake a static levelizing, before the

U f R
81t _y·_, ~r~ C

10

simulation begins. Here, the table structure forces the

evaluation of the e l e me nts in the correct order automatically,

and for this reason we speak about a "dynami c levelizing"

[BRE 7 6] •

In compiler-driven simulators, the network structure

is interspersed within the instructions which evaluate the

element outputs . In table-dr iven simulators, the structure

is given in form of tables, which contain fan-in a nd fan-oút

lists for each e l ement. The eva luation routine for each

element (see section 12) is separated from the network

structure , and needs a pointer to it in the t able structure,

together with the fan~in and fan-out l is ts.

11

7. UNIT DELAY SIMULATION

bnit delay simulators assume that the propagat i on

delay time i s non- zero and the same for all d e vices . They :

ope r a t e with two q ueues , one fo r the elements which are to

be evaluate d a t the c ur r e nt simu l a t e d time , and othe r for .

thos e to be evalua t e d a t the nex t time ste p . :The e l e me nts

in the curre nt time ste p que ue (CTSQ) are e v a luate d and i~

fan-out e l e me nts a re put in the n ext time s tep que ue (NTSQ) .

Whe n .all e lement s in the CTSQ were evalua t e d , the s imu l ated

time is increme nted , the NTSQ becomes the CTSQ, a nd the old

CTSQ is cleared t o be c ome now the new NTSQ. The selective

trace t echnique is naturally emp loyed, ·and s o also ~the table­

-driven a pproach .

As with zero d e l ay ·simula tors, the n e twork s is

e xp e cte d to stabili z e be t ween a pplica tion of .input pat tern s .

If thié doe s not occur, it me ans t ha t a n o scilla t ion i s

pre s e nt due to some timing proble m.

In Fig. 9 we h a v e the simula tion a lgorithm o f a

unit d e lay simula tor IBRE 761. La is the CTSQ and Lb the

NTSQ. The switching of these two que ues a t e a ch time s tep

is made by the vari a ble s :· a and b which alte rna t e b e tween O

and 1. The simulator works with two que ue s LO and L1. Each

entry in ·a que ue is a pair (i, v'(i)), where i is an

active e lement (possibly a pointe r to some e ntry in a tabl e ,

whe r e is conta ine d informa tion about the e l eme nt, such as

its t yp e , its fan-in list, its fan-out U(i) and its pre sent

output logic value v(i)) and v' (i) is its n e w logic v a lue ,

to be as s igne d at the n e xt time step . Oscilla tion is a ssume d

if a and b are interchange d more than K times b e tween

application of two cons e cutive input patte rrt s , where K is

specifie d by the user. Fig. 10 shows a simple circuit,

with the computations carrie d out by the simulation

algorithm and the resulting timing diagram.

12

2 Reod in inir iol stote informotion

3 Reod in new input pottern

4

Yes

Scon Lo. For eoch i in Lo, evoluote eoch element j
6 of U(i). lf element j chonges stote, put (j,v'(j)) on

list Lb . De.;tro La

7

No oscillation

Figure 9 - Simulati on algorithm for
unit delay model

In Fig. 1 we have seen that the zero delay model

is not · ·capable o f detecting even a simple hazard. In F ig. 1 1

we see the same circuit as in Fig. 1, assumed to have a

unit d e lay in all gates, and the computations carried out by

the algorithm of Fi9. 9. We see that the hazard is corre ctly

predicted in line C, corresponding to the O to 1 transition

in line A. So, since there is a finite delay associated with

each gate, the unit delay model allows some race and hazard

analysis · to be performed. However, the most hazards and races

are due to the difference in propagation delays of gate s,

and this kind of timing condition cannot~~etetecd by this

model [WAG 84L. ,

U' f R G
Bl ~ UOTE CA
CPO/PG

o) example circuit

I
I 1--_,.: _ _ j
I I

.--;-1~
I j L___
I I I

2 3

c) timing diogram

13

lnitialization
. a-o. b+-1

2. V(I)-I, V(2)-0, V (3)-0, V (4)-1
time= I

3. v'(1 l-O, v'(2)-l
4 . Lo= { (1,0), (2,1)}
5. V(I)-0, V(2)-l

6 . L1= {(3,1)}, Lo={}
7 . a-1, b+-0

time= 2
5. v(3)+-l
6 . Lo= {(4,ol}, L•={}
7 . a-o. b- 1

time= 3
5 . v (4)--0
6 . L•={}, Lo={}
7 . a+- I, b--0

b) computat ions (numbers occording
to the blocks in Fi _·ure 9)

Figure lO - Simulation run example for the unit rlelay model

c

a) example circuit

2 3

c) timing diogrom

lnitiolization
. a-o. b-1

2 . v(A)-0, v(s)-1, v(c)-1
time= I

3. v'(A)- t
4 . Lo={(A,I)}
5 . v(A)-1
6. L1 = { (s.o),(c,o)}, Lo= {}
7. a-t, b-0

time= 2
5 . v(s)-0, v(c)-0
6. Lo= {(c, I)}, LI= {}
7 . a-o, b-1

time= 3
5.v(c)-l
6. L1= {},Lo={ 1
7. a-1. b-0

b) computotions (numbers ac:.cording
to the blocks in Figure 9)

Figure 11 - Hazard detection in unit delay simulation

14

8. ASSIGNABLE DELAY AND TIME FLOW MECHANISM

The unit delay model can handle some simple cases

of hazards and races. However, for a more precise design

verification, we n~ed mo~e accurate and realistic timing

models. The actual delays in a circuit are distributed

over a wide~range of values, which can depend on the number ·

of dev±êe fan-ins and/or fan-outs or in differences in

device technology. In an assignable delay- ·model, we can

assign different delays to each d ev ice in the network. This .

has many consequences: 1) the user has to assign these

delays in the network input description (or assume that

each kind of device has always the same delay, what is not

a very realistic assumption); 2) the delay of each device

has to be stored in the table structure which represents the

network, together wi th other infor:.1ation about the device;

and 3) we need another simulation algorithms.

The assignable delay model implies a simulation

algorithm much different from those used in zero and unit

delay simulators. When an element i is processed becaus e

one of its inputs has changed value (selective trace) and

it is determined that its output line will change its value,

then this output ·line must be scheduled to change at time

te + D, where te is the current _simulated time and D the

delay associated with the element. This corresponds to an

event being placed in a space for future events, and of

course this space will have at some moment events scheduled

for many different future times. Furthemore, as time

proceeds, we must access the next event to be executed, it

rneans, the event in this space which has the smallest

schedule time. The technique used to schedule and unsche dule

events (we shall see in section 10 that this is also

necessary in some cases) and to access the next event is

called the scheduling mechanism, or the time flow rnechanism.

15

9. TIME-MAPPING

-There are no references about d istribution of

events over time in digital logic simulation. Hovewer,

compare d to another kind of systems, it can b e said that

digital systems require in general a large numbe r of events ,

and that they present adense distribution, i.e. , ther e are

events at n e arly all time steps and it can occur any numb e r

of simulta neous events at each time step. This kind of

distribution leads to a special kind of time flow me chanism

which is wel l suited to digital logic (see Fig. 12). The

events are stored in lists, one for each time step, and

these lists are pointed out by a linear list (the Time Queue

ISZY 751), where consecutive nades point to consecutive time

steps. Thus, each node in the Time Queue is called a time

slot.

ti-l
ti
ti+ I

event n I - 1event n+J J~

list of simultaneous event at t

Figure 12 - . Time-Mapping technique

~event n+m[XJ

As time proceeds, events yet executed are no more

needed. A dynamic allocation of memory IKNU 681 is probably

needed in association with this time flow mechanism. The

events use space from a commom free area, and after they

are processed, the space they occupied is returned to this

area.

16

The scheduling mechanism used here is a time-to­

-address mapping technique. Be dx the delay of the simulated

element which output line is detected to change and thus

must be scheduled in the Time Queue. Be t the basic time

interval between time slots, selected as the greatest

commo n divisor of all element delays. Since d x is a multiple

of t, dx/ t is directly added to the current time te and

the result is both the time of the predicted signal change

and the address of the time slot into which the corresponding

event must be inserted. We will refer us to this time flow

mechanism as the time-mapping technique [ULR 69].

Now we have a problem. How long must be the Time

Queue, in order to handle all the events which can occur

in a complete simulation run ? Thj.s certainly will be a

prohibitive memory space. We have to limit the Time Queue

to some extent, and adopt some algorithm to map events which

are scheduled to occur out of the c-rrent time frame of the

Time Queue. We will describe two basic approaches to the

solution. Recently, more sophisticated time flow mechanisms

have been proposed, like the converging lists data structure

[ULR 76], but they will not be covered here.

9.1. Timing Wheel

The timing wheel [BRE 76] is a cyclic list of

lenght L. Limiting the list length to L, we have a time

frame of the timing wheel (i.e., the time interval which

currently corresponds to the time slots) from t to t+L-1,

.where t is the current time associated witn the first time slot

of the wheel. For events which are to be scheduled out of

this time frame, an entry must be made in an overflow events

list. Whenever one full rotation of the timing wheel is

completed, two things are done: 1) the time frame is

17

adjusted to t+L -to t+2L-1, and 2) the overflow list is

scanned and any entries which can nON be placed · onto the

timing wheel are transferred.

As simulated time proceeds, and a time slot t' is reached

the time slots from t to t' are no more needed in this cycle.

As t' approaches t+L, -less time slo·ts in the curre nt time

frame are _useful and more events must be scheduled in

the overflow list. A solution to avoid this inefficiency

is to re-scale the time associated with the time slots each

half revolution around the timing wheel. Thus, when t'

reaches t+L/2, the time associated with the first half of

the wheel is re-scaled to correspond to t+L to t+3L/2-1.

An implemented example of this concept is the

Time Queue of the TEGAS-2 system [szy 75]. It is a list

with 2~Z entries (see Fig. 13). Each entry is a pointer to

an Event Notice List. The current time slot is pointed by

PT (Prese nt Time). The number of cycles yet occurred through

the Time Queue is stored in MTC. Each cycle is a pass throegh

the first Z time slots of the Time Queue. Thus, the current ·

simulated time since the beginning of the simulation run

is ST = MTC * Z + PT- 1.

The current time frame of the time Queue goes from

MTC*Z to MTC*Z + 2*Z-1. Events which are to be schedule out

of this frame are stored in the MTEL (Macro Time Event List),

together with their simulated time, and ordered by

increasing time. The first event in the Event Notice List

at time slot Z+1 is always a special event MTEL UPDATE. When

PT reaches Z+1 the MTEL UPDATE is executed and cause the

following actions:

a} pointers from Z+1 to 2*Z replaces pointers from

1 to Z;

b} pointers from Z+1 to 2*Z are cleared;

J

I

·~ PT

z
z +I

2Z

18

c) MTC is incremented;

d) PT is set to 1;

e) a new MTEL UPDATE is scheduled at Z+1;

f) the MTEL is scanned. Each event found which

will be in the new time frame of the Time Queue

is removed from the MTEL and stored in the

Event Notice List which corresponds to the time

slot for the event.

Event Notice List

I 14-

MTEL UPDATE I ... z~----1
PT~Z+It------4

2Z.__ ___ ...J

o) Time Queue b) octivity ot PT= Z+l

Figure 13- Time Queue in the TEGAS-2 system

9.2. 6t-loop

The Llt-loop [uLR 69] · · is also a circular list, where

each time slot points to a list of simultaneous events.

However, the length L of the loop is made equal to the greater

delay in the network divided by ~t, the basic time step. Thus,

if ti is the current time, and dx the delay associated with

an element x to be be scheduled, the time slot is found by

the addition of ti and dx/ ôt, using a modulo L addition,

and this time is always within the current time frame, which

19

goes from ti to ti+L-1. The mechanism really does an

automatic and permanent re-scaling of the time associated

with the time slots, in contrast with the timing wheel,

where the re-scaling is made once each L/2 time steps.

The ~t-loop offers two advantages over the timing

wheel. First, there is no need of an overflow list, and

therefore we gain in space. Second, there is no need of a

special event which transfers events from the overí low list

to the timing wheel. This event (the MTEL UPDATE in the

TEGAS-2 system) causes a.n overhead of time which does not

exist in the ~t-loop. However, there could be one drawback

in the .6t-loop approach, name.ly, how great must be L? I f

it is too great, there could be an advantage in the timing

wheel, where we have a compromise between time and memory.

Determination of values for ~t and L is left to the

user. It's wise to follow these basic rules:

1. all element delays must be of the forro dx=Dx* t,

where Dx is a positive integer and serves as a delay constant

for element x.

2. the Greatest Common Divisor (GCD) of the element

delays is the optimum (largest) value for D.t.

3. the maximum element delay constant drnax should

not exceed L.

4. L should be kept as small as possible.

.,.-f R O
BIBL'' . ; -- ~

cPD/ PGCC

20

10. TIMING MODELS

10.1 Propagation de1ay

This is the simp1est timing condition which can be

processed, and is the one we are considering so far in the

assignab1e de1ay mode1. The input signa1 change to a gate

is considered to propagate through the gate, and the

change appears at the output on1y tp time units 1ater, as we

see in Fig. 14. The signa1 transitions are assumed to be

instantaneous. A11 the inputs have the sarne time effect on

the output, that is, a11 have the same propagation de1ay.

Because of this, the gate can be mode1ed as in Fig. 15,

with a functiona1 part free from de1ay and a de1ay part

associated on1y with the output. When an input change

occurs, the ga.te is irnmedia.tely evaluated and the new

output va1ue is schedu1ed as an event at the current time

plus the propagation delay.

chonging
input ---'

output ~ 0-+1

a) a switching gota b) woveforms

Figure 14 - Propagation delay model

input s
pu r e pu r e

function deloy
output

Figure 15 - Gate model with propagation delay

21

Some gate level simulators allow the representation

of flip-flops [EVA 78]. Flip-flops, however, have inputs with

different functional and time effects on the output.

For example , the clear input forces the output to O after

a propagation delay te, the prése t input forces the

output to 1 after a propagation delay tp, and the clock

input causes the output to follow the input afte r a

propagation delay tck. It is obvious that the model of Fig.

15 cannot be us e d, beca use the output delay is different

for each input. A more realistic model woulá associate the

delays with the inputs, as in Fig. 16. Furthermore, flip­

-flops have other timing conditions such as data setup and

hold times and minimum pulse widths for clock, clear and

preset inputs. These conàitions will not oe covered nere.

Evans [EVA 78] presents a general algorithm for processing

flip-flop~ with all these conditions. In general , gate level

simulators adopt a gate equivalent r epresentation for flip­

-flops .

function I

output

in pu t n -.-;~rldi;;e!;l o;-;y~nl--;,f functi on n

figure 16 _ Model for inputs with different time and functional
effects at the output

22

10.2 Inertial delay

An input signal must have some minimum width to

give a device the needed energy in arder to force an output

change. This minimum width is cal1ed the inertia1 de1ay

[BRE 76) ~I of the device. In Fig. 17 we see the effect of

the inertia1 de1ay on a device. If the input signa1 width

is greater than ÓI, the device behaves as it had a

propagation de1ay ÃI. If, however, the input signa1 time

width is smaller than AI, the event yet scheduled to occur

at ti+ÁI must be unsche du1ed and the output remains unchanged.

cancelled event

a) input pulse width > Lll b) input pulsa width< Lll

Figure 17 - lnertial delay model

Here a complication arises in our simu1ation

algorithm. When the input goes back to O at tj, we must

know: 1) that an event is schedu1ed at ti+6I, and 2) that

this event must be cancelled. The answer to the second

question is easy: a1ways when an input transition makes

the future output va1ue equa1 to the present va1ue. The

answer to the first question requires an improvernent in

the data structure which represents the network and the

event. This is shown in the next section.

This inertial delay model is a very simp1ified one.

It can be shown that it does not give the response given by a

real gate, when the input changes in very sma11 .intervals,

sisternatically smaller than the gate inertial delay.

23

10.3 Differing transition de1ay times [CHA 71]

An improvement in the propagation de1ay model towards

a more rea1istic modeling is the possibility of assigning

different de1ays to the negative-going and positive-going

transitions. Thes e parameters, given in data sheets as tphl

and tplh, respective1y, are shown in Fig. 18. They are not

difficu1t to model in event-driven simulators. According to

the output change direction, an event is scheduled after tphl

or tplh time units. However, this model introduces a

possibi1ity which is i1ustrated in Fig. 19, where some device

(with non-inverting logic) has a tplh of 10 time units and

a tph1 of 5 times units . Suppose that the device receives

an input signal 1ike in Fig. 19b. At t1 the input goes from

O to 1. A corresponding O to 1 transition is scheduled to

occur in the output at tl+10. At tl+3, however, the input

goes back to O. This would requi re a 1 to O transition in the

output scheduled to t1+3+5 = t1+8. At this point, hovewer, the

output will be still O. In other words, the input pulse is

narrower than necessary to switch the output. Thus, the event

at t1+8 is not scheduled, and the previous scheduled event

at t1+10 must be cancelled.

inpuf _j

I I; .___I_
~ tplh ~ --1 tphl 1--

output

Figure 18- Different transition delay times

.,
-4

input

tplh=IO
tphl = 5

output

a) a non-inverting device with
different tronsition deloys

24

. ;nput -r f\)
output L-31 tphl f'- .I

+3 t1+e
tplh

)
ti f tl+d19 .

b a con l1ctmg t1m1ng con 1t1qn

Figure 19 - A conflicting timing condition in a non-inverting de vice

with different transition de!ay times

This e~ent cancellation problem can be stated with

three questions:

l. when do we know that a possible existing future

event must be cance lled?

2) how do we know that there is a scheduled future

event for this output? and

3) how do we find the scheduled future event for

the output, which must be unscheduled? This event is in some

list pointed out by some time slot of the Time Queue, and a

linear search through the Time Queue would be time consuming.

We present a solution adapted from Tokoro et al [TOK 78].

The events in the Time Queue which belong to the same

signal are chained together and a pointer to the beginning of

the chain is maintained in the entry corresponding to the

signal in the circuit description table (see Fig. 20). The

place where a new event must be inserted in the chain is

found. To accomplish this objectiv~, each event also has

stored the time associated with it. Be PV (Preceding Value) the

25

value of this signal in the event irnrnedi a tely b efore the

place where the new event rnust be inserted. If there is no

such event, PV is the current output value. Be SV (Scheduling

Value) the value of the signal in the new event to be

inserted. If PV = SV, then the new event is not scheduled and

any subsequent events in the chain for this signal are

cancelled.

A very sirnple solution to the task of unscheduling

events is, instead of rernoving the nodes (that is, adjusting

pointers), only to rnark the cancelled events with a flag.

When the corresponding time slot is processed, the flag is

detected in the node and the event is just skipped.

ti

tj

Time Queue

signo!
n

fan-in

Circuit Description Table

Figure 20- Table and event structure for event cancellation

U r H G S
I I.JOTEC

f'Pn to~"''"'~

26

10.4 Ambiguity region

The propagation de1ay model presented in section

10.1 allows the user to select a different delay for each

gate. We know from the data sheets that mininum and maximurn

propagation delays are specified for each type of gate. In

simu1ating a network with rnany gates of the same type, we

could assign for each one a different delay, within the

range found in the d a ta sheets. However, before the circuit

is built, we do not know what is the exact delay of each

gate of the s a me type, and hazard pulses and races can appear

exactly due to unexpected relations among delays in the circuit.

A rnode1 suggested to accurately handle ' this delay

interval specified in data sheets assumes, as shown in Fig. 21,

that the output response of a device is unknown (or ambiguGus)

during the interval between the rninimum and max imum possible

delays. This is known as the delay arnbiguity model [SZY 70]

[CHA 71}. This model requires that we represent, instead of

two-valued signals (binary O and l) , three-valued signals

(0, l and unknown, which we will represent by u), and also

that we have a algebra to perform logical operations among

signals. This algebra is depicted through 3 operators (AND,

OR, NOT) in Fig. 22. , The internal representation and evaluation

of three-valued signa1s is considered in section 14.

deloy min = t:. 1

delaymax= t:.2

o) a non-inverting device

input----',

'

OmbiQUOUS
OUfpuf------~-~----~re~gi~O~n~

h2_j
b) timing diogrom for the ombiguity

region model

Figure21- Ambiguity region model

-'- ·

AND

o

o

o

o

o

I

u

o

u

OR

o

27

o u

o I u o u

I I I

o u u u u u I u

Figure 2 2 - Three-valued algebra

A simple example (adapted from [SZY 70]) shows that

the ambiguity region rnodel can detect a hazard. In the network

of Fig. 23a, the inverters are supposed to have a minimum delay

of 4 and a maximum delay of 6 time units, while the AND gate

has respectively 3 and 5 time units. A O to 1 transition

occurs in line A at t=O, and a 1 to O transition in line B

at t=l. Fig. 23b shows the resulting timing diagram if a

nominal delay is used for the devices (5 for the inverters and

4 for the AND gate) . We see that no output is expected at line

E. Fig. 23c shows what happens when we apply the ambiguity

region model. A hazard is predicted to line E between times 8

and 11, that is, a hazard pulse could happen in this interval

if inverter C had a delay 2 time units greater than inverter D.

The ambiguity region model has one serious drawback.

It gives erroneous results (too pessimistic) depending on the

network [BRE 76] [BEN 79].

The errar is due to two factors:

1. the actual delays of the gates are constant,

between the minimum and maximum values. The model, however,

implies that the gate, during the same simulation run, can

have different values.

A ---i
o~r at t=o

8 -~
1-+0 at t= I

delay=(4 .. 6)

a) circuit to be simulated

A_j

8~~
c

I I D r

28

E

A

8 I
c

I I ~ D I w-~
E I I I E I I I I I I ~

I I I I I I I I I
o 5 6 o I 4 5 6 7 8 11

b) predicted behavior with nominal c) predicted behavior with ambiguity
delays region model

Figure 23 - Hazard detection with ti1e ambiguity region model

2. a signal transition at some point occurs at a w~ll

determined moment ·within the ambiguity region. The model,

however, allows that a signal transition affects different

paths whibh emanate from this point as it occurred at

different moments for each path.

This can be seen in the network of Fig. 24a , where

all inverters are supposed to have a delay between 2 and 3

time units . Due to the simulation of the previous logic, the

input signal A carries with it an ambiguity region. In Fig. 24b

we suppose that this region has a width of l time unit . We see

that no signal change is predicted at output E . In Fig . 24d,

however, we assume an ambiguity region of 2 time units for

signal A. A hazard is predicted at the output E between times

6 and 8. Tnus, this hazard prediction depends on the input

29

ambiguity interval. This happens because the network has a

point of reconvergent fan-out: the output E in this case

is the union of two paths ernanating frorn the sarne source.

If the input transition occurs at t=O , signal C can appear

earlier at t =4; if the input transition occurs at t=2,

signal D can appear later at t=S. Thus, this coincidence of

signals C and D between t =4 and t=S can exist only if the

input transition occurs at different rnornents for each path,

what is irnpossible in reality but is allowable by the rnodel.

o) circuit to be simulated
(delays=2 .. 3)

A~
I I

8

I I
w~
~~ c

I I I D

I I
!'?"~

I I I E

o 2 4 7

b) predicted behovior with input
ambiguity region of l time unit

E

A ~
I

8 t:í0WM
c I w~~

I I I D W".a%1
I I I I

E ~
I I I I I

o 2 4 5 6 8

c) predicted behovior with input
ambiguity region of 2 time units

Figure 24 - Pessimistic results using the ambiguity region model

Breuer and Friedrnan [~RE 76] suggest an alternative

to process rninirnurn and rnaxirnurn delays, using a Monte Carlo

approach [GOR 78] . The propagation delay of each type of device

is given by some statistic distribution. ·The delay of each

gate could be selected randornly between the rninirnurn and rnaxirnurn

values. For each set of randornly selected delays would be carried

30

out a simulation run. Of course this rnethod would oe exhaustive

and time consuming. Magnhagen [MAG 77] snows a rnuch more

sophisticated implernentation, in which each signal delay is

given by a probability function and the gates are evaluated

accordingly by a probabilistic calculation.

31

10.5 ·Rise and fall times

A further improvement towards a more realistic rnodeling

is to represent and process rise and fall times. In Fig. 25a we

have the definition of these two times. A way of rnodeling them

is to assume that, during the transition time, the signal is

in the unknown state (yet defined in the last section) , as

in Fig. 25b.

risetime l
--------~~----u--_j

~---- a) actuat
fali t ime r waveform

u I ._ __
o o

Figure 25 - Modeling rise and fali times

b) mode!ed
woveform

A solution to include rise and fall times in the

scheduling mechanism is proposed by Tokoro et al [TOK 78] ,

in conjunction with differing transition delays. All changing

signals are supposed to pass through the unknown state. The

model, according to Fig. 26 (suppose a non-inverting device),

allows the user to assign different values for the delays Al,

~2, ~3 and A4, which are respectively the propagation delays

for the O to u, u to l, l to u and u to O transitions (not

appropriately, these delays are called in the model,

respectively, minimum rise time, maximum rise time, minimurn

fall time and maximum fall .time). It _is easy to see that the

predicted output rise time will be

~rise óut = t4- t3 = t2 + ~2 (tl + .61) = t2-tl + (.6.2-{ü)

~ rise out = ~rise in + (À2 - .Al)

and also that

~ fall out = ~fall in + (.A4 - LU).

32

In other words, the output rise (fall) time is equal

to the input rise (fall) time plus some specified value

~2 ~ ~1 (~4 - ~3) , which can be even equal to zero, if

A 1 = ~ 2 (A3 = A4) •

input O I

I u r-
output O I j

~L'. I _J~-.,.k-Arise
--J t. risein j._ I ~k

u
input

u I ~, ____ O;::._

1 H u l2_
{).3 llfall-{

fclll in l~--J

output

t, t2 1'3 t4

o) scheduling the output rise time b) scheduling the output foll time

Figure 26- lncluding ri se and fall times in the scheduling mechanism

This model, however, is not accurate, because

actually the output transition time is not dependent on the

input transition time in such a way . It was suggested [BEN 79]

[KOC 69] a much more precise modeling, in which the output

transition time for each device type is obtained from a table

as a function of the input transition time and the number of

loads on the output, as in Fig. 2 7. One such a table is needed

for each transition direction.

output loods
2 3 m

x, XII x,2 x,3 x,m
input x2 X21 X22 X23 X 2m

tronsition X3 x3, X32 X33 X3m
time

Xn Xnt Xn2 Xn3 Xnm

Figure 27 - Output transition time table

33

11. PARALLEL SIMULATION

In gate level simulation, each signal has only 2

possible values (excepting three-valued simulation, which

we shall see in section 14), and thus can be stored in

only one bit of the host computer. To avoid lost of space,

we could think, for a computer with B bits per word, in

storing B signals in a word. This, however, would difficult

the simulation, because many bit string manipulations would

be required, and the processing would be time consuming.

Many alternatives have been suggested to efficiently

use all host computer word bits. We could think in processing

the same network for B different input patterns in parallel,

or for B different ini tial states in parallel [BRE 76] • Another

efficient and more useful solution is to process B faults in

parallel [THO 75] . Fault simulation is needed for test

generation and is normally provided in gate level simulators.

All these three alternatives suppose the same network being

processed for B different conditjons. The simulation is

carried out as if we had B different machines. For these reason,

signal values asso6iated with one machine cannot affect the

processing of the other machines, and thus we cannot use

arithmetic operators (which have carry effect) in the element

evaluation, only logical operators which maintain the

independence among word bits.

Another solution is used in functional simulation

[SZY 73]. In this context, signals are normally associated with

values stored in registers of X bits. Since in general all bits

of a register are transformed in the same way by the circuit,

it would be wasteful to consider each register bit as an

independent signal and to process it separately from the others.

It is quite natural to store all X bits in a single word and

to process them in parallel. Of course we need X ~ B, and we will

not use the remaining B - X bits.

12. ELEMENT EVALUATION

Always when an output change occurs at a gate, all

gates connected to it (its fan-out elements) must be

evaluated. There are three basic methods which are used to

evaluate gate functions.

The first and more obvious method is to develop

a special subroutine (written in assembler or any high-level

language) for each device type, as shown in Fig. 28 for an

AND gate. The subroutine receives parameters like a pointer

to the gate fan-in list, the number of gate inputs and the

output signal name. A pointer to the subroutine exists in

the table structure, in the entry corresponding to the gate

in the circuit description table (see section 15). This

rnethod allows parallel simulation (see section 11) , but the

evaluation time required increases 1inear1y with the number

·of gate inputs.

ANV (numbe~-o6-lnput~, 6an-ln-ll~t, output-name);
lntege~ numbe~-o6-input~;

a~~ay 6an-ln-ll~t;

boolean output-name;
begln

end;

lnteg e~ l, x.;

l ~ numbe~-o6-lnput~; X~ 1;
whlle i I ~

do begln
X (-X and 6an-in-ll~t [l};

l ~ l - 1

end;
output-name ~X

FIGURA 28 - Evaluation subroutine for an AND gate

u
t..... : ... ·

35

The second method counts the number of dominant

inputs to the gate [SCH 72]. For example, a O input is

dominant in an AND gate. If we know how many inputs are

equal to zero, we know the outp ut value. This method does

not require a fan-in list associated with each gate, only

a variable where the dominant input count is stored. The

subroutine for an AND gate see~s like in Fig. 29. It receives

as parameters the input count, the new input value which

propagates to the gate, and the output signal name. This method

does not allow parallel evaluation, but the evaluation time

required is independent of the number of gate inputs.

ANV (inpu~-~oun~ , new-input-ualue, output-name);
integ en input-~ount;

boolean new-input-ualue, output-~ame;

begin

e.nd;

:!:_1 new-input-ualue = O
the.n input-~ount ~input-~oun~ +

el.ó e input- ~o un~ <:- input- ~o U.ll!.t - 1,

i6 input- ~o un~ = O
then outpu~-name ~ 1
el.óe qutput-name ~ O

FIGURE 29 - Input count evaluation for an AND gate

The third method is the fastest, but will require a

large amount of memory. It uses a table look-up [ULR 72J. Input

parameters to the evaluation subroutines, like gate type, new

input state and current output state, are compressed into a

n-bit argument and used as a pointer to a table, where for each

argument value is found an action to be takeh. Fig. 30 shows

a simple example. We suppose that we have two possible gate

types (AND and OR), with only two inputs. A 4-bit argument

is formed. The first bit is the gate type, the following bit

is the current output value and the last two bits are the new

input value. A 16-entry table is then formed. This table can

36

be much more sophisticated. For example, if we include in

the argument information about whethe.r the gate is yet

scheduled or not, we could make inertial delay processing.

For a device like a flip-flop, with timing considerations

such as data setup and hold times and minimum pulse widths

and with inputs with different functional effects (clock,

clear, preset), a table could be built which could include

several s6hedule and unschedule actions. A further advantage

of this method is that all devices in the circuit are

evaluated. by a:n unique subroutine.

a1L9_Ume.11-t ac.Léo 11

o o o o 110 -t h i 119

o o o 1 11o-thi11g
o o 1 o 11o.thi11g
o o 1 .6 c. hedu.f e ou-tpu.t= 1 a-t .tc.+-tpf h (ANV)
o 1 o o .6 c.heduf e ou.tput=O a.t .tc.+.tphf (ANV)
o o 1 "
o 1 o "
o 1 11o.thi11g
1 o o o 110-t hi 119

o o 1 .6c.hedu.te ou-tpu-t=1 a-t -t c. + -t pfh (OR)

o 1 o "
o 1 1 "
1 o o ~.>c.hedufe ou.tpu.t=O a-t .t c. + -tph.t (O R)

1 o no-thi11g
1 o no-thing
1 1 11o.thi 119

l~ L 11e:w inpu.t vafue
·C.UIL!Len.t ou-tpu.t value

{O: ANV .
1 : OR

FIGURE 30 - Table look-up evaluation

37

-1 3. INITIALI ZATION

To begin a simulation run, the network must be in

some specified initial state. Each signal in the network must

be assigned some value. One solution would be to assign the

same value (O or 1) to all signals, but this could lead to

some inconsistencies, like the input and output of an inver ter

set to the same value. The other solution would be a _consistent

assignment to all signals, but this approach would be very

hard to accomplish by the user in large circuits.

One intermediate solution is to assign spe cified values

only to the input signals [EVA 78]. A zero delay simulation is

then performed as initialization phase, until the circuit has

reached a stable state. After stabilization, the circuit state

is displa~~d and the user can see if a value assignment was

rnade for all signals.

A better and more realistic solution is to assign

some spec i fied values (O or 1) to selected signals in the

circuit, and automatically set to u ("unknown") all remaining

signals [ULR 72]. As before, a zero delay s~mulation i~

performed from this initial state. After stabilization, the user

can see if any signals remain at the undefined state. An

alternative to avoid a too long initialization is to allow

each signal to emit a single u to O or u to 1 transition.

It can happen, however, that some specified state is

destroyed by the signal propagation during initialization. This

can be seen in Fig. 31. If the user assigns a value O to signal

c, signals A, B and D would be suposed equal to u. After a single

transition in each gate, signal D would be set to 1 (a dominant

input equal to O) and signal C to u (inputs 1 and u, output u

according to the rules in Fig. 22), and thus the user specified

C=O would be destroyed.

38

Figure 31 - lnconsistent initialization

The LAMP system [CHA 74] avoids this situation using

a 4- valued simulation : O, l, 2 (non-propagating unknown) and

3 (propagating. unknown) . Value 2 is used only. in the

initialization phase. As we can see in the truth table for a

2-input NAND gate in Fig. 32a, a value 2 in one input maintains

the output equal to its previous value, except if we have a

value O (dominant) in the other input . Thus, value 2 does not

propagate through the circuit and does not destroy any user

assigned initial state. Value 3 is the normal unknown value,

as we can see in Fig. 32b, and is used during the remaining

simulation . In Fig. 31, if the user assigns a O to signal C,

and all other signals are equal to 2, D will be set to l

(NAND of 2 and O is l) , but the feedback will not change C

(NAND of 2 and l is the previous value) .

inputs output inputs output

2 o I 3 o
2 I Q 3 I 3
2 2 Q 3 2 Q
2 3 Q 3 3 3

à) non-propagating b) propagating
unknown unknown ·

Figure 32 - 4-valued logic for a stable initialization

39

14. THREE-VALUED REPRESENTATION AND SIMULATION

In this section we will present t h ree models of

internai representation of three-va1ued variab1es and

evaluation of 1ogical functions with these variab1es. Of

course, it is common to all 3 mode1s the use of two bits to

represent one 3-va1ued signa1. However, they di f fer in how

these bits are stored in the host computer words (the word

formats) , in how they are encoded and how logica1 opera tions

are performed. In al1 models we will assume para11e1

simulation, i.e., we will ~represent many signa1s in

the same host computer word (see section 11 for t:he meaning

of thes e signa1s represe nted in para11e1) .

Mode1 1 [BRE 76] [THO 75]

In the first mode1, the three 1ogica1 va1ue s are

encoded as in Fig. 33a, and one signa1 is stored in each

two adjacent bits of the host computer word, as in Fig. 33b.

If we have two parallel va1ues A and B as in Fig. 33c, we see

that we can directly eva1uate C=A.B and C=A+B to obtain logical

AND and OR, but when we try to eva1uate the 1ogica1 NOT using

bit comp1ementation, we obtain a inva1id code 10 as comp1ement

of 01. One so1ution would be, after any complementation, to

search for 10 bit pairs and change them to 01. However, this

solution requires bit string manípu1atíons and is time consuming.

A better solution is to represent the signals as in Fig. 34a, in

which the first bit of each bit pair is in the first half-word,

and the second bit in the second half-word. This representation

does not affect AND and OR operations, but now the NOT operation

is simpler, requiring only a word comp1ementation and an

interchanging of both half-words, as we see in Fig. 34b.

-·

.....

logic internai
valu e code

o o o
.> I I I

u o
not used o

a) encoding

lool11 lo1l11
signo! I sinal4

b) word format

40

A= o o o u looloolooll I I I I I o I I
B = o u I u u loollllolllllolloll

A.B = o o o u u [ooloolool11lorlo1]

A+B = o I u I u LQOQI 11lo1l11 li I lo I I

Ã= o o u l11 I I I I I I I o o I o o !([@
c) evaluating logic functions

Figure 33 - 3-va!ued logic, model I

A= o u I uI 0010 0111

Complementing I~
signall signal2 signal3 ~ignal4

o) word format

I 1101 I 1ooo

lnterchanging half-words

A= u o u I I 000 I 11 o I

b) evoluoting logicol NOT

Figure 34 - 3-valued logic, alternativa to model I

Model 2 [TOK 78] [THO 75]

In the second model, each parallel value A is stored in

two words of the host computer, the Inde terminate Flag Word Ai

and the Value Word Av, as in Fig. 35. If one bit in Ai is O,

then the corresponding bit in Av carries the logic value O or l.

If the bit in Ai is l, then the bit value is indeterminated,

no matter what is the value of the corresponding bit in Av. As

an alternative, we can use 4-valued signals [TOK 78]: O, 1, "up"

and "down". In this case, if the bit in Ai is 1, then the

41

çp~;r:-~spond;Lng bit in Av indicates "up", if equal to 1,

~r "çlown", j_f equal to O.

A O u u
(down l (upl

volue word Av !_o~J_ I_o_._l __.]

i"deterrningte flog word A i ... l _o__,_j_o_... _ _.____.

3 .. volued logic, model 2 encoding and word format

L©~ical function evaluation is a little more

~~~rli~ªt~9 than in rnodel 1. The following equations rnust be 

~ê~g ( ê~~ ~xqrnples in Fig. 36): 

~NO: Çv - Av ~v 

~i+ Ai . B.v + Bi . Av, i.e., the result is 

~n~PQWn if both values are unknown, or if one is unknown and 

tne oth~~ is equal to 1. 

0~: Cv - Av + Bv 

Bv + Bi • Av, i.e., the result is 

~pknown if both values are unknown, or if one is unknown and 

t.he Q~he~ is eq\Jal to O. In the exarnple, the terrn Ai.Bi seerns to 

be redundant, but it rnust rernain if we represent the unknown 

by lL and not by 01, as in the example. 

NOT: Çv = ~v 
Çi = Ai 



42 

Model 1 has easier AND and OR operations, while model 2 has 

an easier NOT operation and an easier translation from the 

external (user) to the internal representation (and vice versa). 

A= O O O I u Av= ooo110 Ai =I 000001 

s=o u I u u Bv= I OIOIOO Bi =I O O! O I I 

Ai.Bi 000001 
Ai~Bv 000000 
Av~Bi 000010 

C=A.B=O O O I u u Cv=Av.Bv=ioooloo 
= 

C i 000011_j 

A i.Bi 000001 
+-

A i.Bv 000001 
-+ 
Av. Bi 001001 

C=A"'B=O I u I u Cv=Av+Bv=j 010110 
= 

C i 001001 

C= A= I o o u c v= Av =I I I I 00 I C i= A i I 000001 

Figure 36 - 3-valued logic, model 2, evatuating logic functions 

Model 3 [ALI 78] 

Model 3 also uses two words to represent a parallel 

value, with corresponding bits in the words representing one 

signal. The enconding is shown in Fig. 37. This enconding allows 

a simple logical evaluation, according to the following equations: 

= al bl, cO AND: cl 

OR: cl = al + bi, cO 

= aO + bO 

= aO bO 

NOT: cl = aO , cO = al. 

Fig. 38 shows the corre ctness bf these expressions. 



43 

volue ao oi 

o I o 
·o 

u 
not used o o 

Figure 37- 3-vatued togic, modet 3 encoding 

a =o o o I I u ao= I I I 00 I I ai = I 0001 I I I 
b =o u I u u bo = I O I O I I J b 1 = I O I I I I I I 

c =a . b =o o OI u u é'= ao+ bo = I I I O I I ci= a1. b 1 = I 0001 I I ] 

c=a+b =o u I I u c"'= if. b0 = Jl O I 001 c1= a1+ b' = I O I I I I I 

c= ã = I I 00 u co=ol = I 000 I I I cl= ao= I I 11 00 I J 

Figure 38 - 3-vatued togic, evatuating logic functions 

Apart from being the model with easier logical 

evaluationf this model allows also a very easy calculation 

of any logical expressions. If we have a general expression 

y = f(x1f x2f ••• f xi) f we obtain yl from y and yO from y 

simply replacing in the expressions for y and y each xi by xil 

and each xi by xiüf as we can see for an EXOR operation in 

Fig. 39. It is easy to see that the evaluation expressions 

for the operato~s ANDf OR and NOT were obtained from this 

general rule. 



44 

y =ab+ãb a =o o o 1 I u o"= I I I I 00 I a•= I 000 I I I 

y=ob+õb 

v b= o I u I u u bo= I I O I O I I b1= I O I I I I ll 

y 1= 01b0 +0°bl o~ b0 101001 a1.+b0 0000 I I 

yo= a1b1+ 0°b0 a1.+b 1 000 I I I 0°. b 1 OI I 00 I 

y=o$b=OI u ou u ; o= l I O I I I I I ~I= I OI I o 11 I 
a) obtaining the 

expressions for b) evoluoting y1 ond yo 
y 1 ond yo 

Figure 39 - Eva luating the EXOR function with model 3 



45 

15. TABLE STRUCTURES AND SIMULATION ALGORITHMS 

We have seen that gate level simulators which make 

accurate modeling of timing conditions are in general event 

-driven and have two basic requirements: a scheduling (or 

time flow) mechanism and a table structure, which reflects 

the network interconnections and element descriptions. In 

general this table structure must contain the following 

information about each gate (we assume that each device, or 

gate, has only one output signal): 

- element type - this acts as an index to the element 

evaluation subroutine (see section 12) ; 

- logic value of output signal, one bit for 2-valued 

simulation, 2 bits for 3-valued simulation; 

- propagation delay associated with the output - for more 

sophisticated timing models, see section 10.3 for 

improvements in the table structure; 

- number of inputs - if we consider gates with different 

number of inputs as instances of the same gate type, then 

this number is a parameter needed by the evaluation subroutine; 

pointer to the element fan-in list; 

- number of fan-out elements; 

- pointer to the element fan-out list; 

The simulation algorithm will be determined by the nature 

of the table structure, as we shall see in the next sections. 

15.1 Simple data structure [SZY 75] 

An immediate way of implementing the table structure 

with the requirements before listed is shown in Fig. 40. The 

Circuit Description Table- CDT - · has one entry for each gate. 

The index in the table is the internal name of the gate and by 

this index is the gate referred in the fan-in and fan-out lists 

U f H ti ~ 
BIBLIOTECA 

... ~ 



46 

of other gates. Each entry contains the fo11owing information 

about the corresponding gate: type, output 1ogic va1ue, number 

of inputs, fan-in 1ist pointer, number of outputs, fan-out 

1ist pointer, output propagation de1ay. The Interconnection 

Table - IT - contains the fan-in and fan-out 1ists which are 

pointed out by the CDT. If we use para11e1 simu1ation, the 

output va1ue is stored norma11y in a separated Output Va1ue 

Tab1e, and no information is needed in the CDT about this 

tab1e if we use the same indexing to identify the gates. 

Primary inputs, 1ike signa1 A in Fig. 40, can be considered 

as durnrny gates, which have an output value and a fan-out 1ist, 

but no inputs or propagation de1ay. 

o) exomple circuit 

output fon-in fon-out 
index 

I 

type 
primary input 

I # . va ue mpu s r t 4t t t 1· 15 ou pu s 1St deloy I I 

I .....,. 2 
2 
3 
4 
5 

ANO 2 ' 2 < I 
NANO 2 ' 5 

OR 2 3 
inverter I 4 

I : I 
I I 
I I 

Circuit Description Toble lnterconection 

b) portion of the corresponding toble structure Toble 

Figure 40- Simple table structure 

The simu1ation a1gorithm is depicted in Fig. 41, 

and has 4 basic steps [TOK 78]: 1) time advancing and output 

updating va1ue, in which events schedu1ed to the current 

time cause updating of output va1ues in the CDT; 2) output 



47 

Ste.p 1 - T -i..rne. a.dvanung a.nd ou;tpu;t val..ue. upda;U.n.g 

ét~ Phopa.ga;U.on-Sta.ck; 

he.pe.a.t CWULe.nt-T .<..me. +- CWULe.n;t- T -i..rne. + 

un;t.,U. any .óche.dtd.e.d e.ve.nt e.xÁÁt.ó in the. cWULe.nt time. .ól!..ot 

fio ,'r.. e.vVttj .óche.dtd.e.d e.ve.nt ,Ln the. cWULe.nt time. .ól!..ot 

do be.g.{n. .óe.t the. val.ue. oó the. .óc..he.dule.d e.ve.nt fJoh outpu;t i into 

CVT ( i, o utpu;t v al..u e. ) ; 

pU.óh the. ou;tpu;t Jw.me. ,L ,i.nto Pnopaga;U.on-Sta.cl<. ; 

e.nd 

Ste.p 2 - Outpu;t va.l!..ue. pnopa.gation 

c..i!..e.aJz. Eva.l!..ua;ti.on-Stac..~ ; 

fioh e.vVttJ ou;tpu;t name. i in Pnopa.gation-Sta.c..k 

do be.g.{n. wdh CVT (i, üan-out LU:t pointe.h), and CVT (i, nwnbVt o-6 
output.ó) ôind IT (j), IT (j+il, ... IT (j+numb e.JL o{; 

output.ó ) ; 

e.nd 

pU.óh IT (j), ... , IT (j+numbVt o-6 output.ó) ,i.nto Eva.l!..u.otion­

-Sta.c..k.; 

Ste.p 3 - Ue.me.nt e.va.l!..uation 

cte.a.h Sche.duf!_,(_ng-Sta.ck.; 

fioJz. e.vVttj ga.te. name. j ,Ln Eva.l!..ua.tion-Sta.ck 

do be.gi11 wLth CVT . (j, ôan-in wt pointVL) and CVT (j, numbVt on 
input.ó) ü.{n.d the. input val..ue..ó ( CVT ( k, outpu;t 

val!..ue.)) to gate. j; 

e.nd 

wdh CVT ( j, type.) a.nd the. ,Lnput va.l!..ue..ó e.va.l!..ua.te. the. gate. 

( üind ili ôutMe. output va.l!..ue.); 

:f:1 n utMe. o utpu;t va.l!..ue. f CVT ( j, o u;tpu;t val..ue.) 

the.n pU.óh ga.te. name. j and ili fiutWLe. outpu;t val!..ue. 

J.x ~ into Sc..he.duf!_,(_ng-Sta.c..k.; 

Ste.p 4 - Eve.nt .óche.duf!_,{_ng 

fioh e.vVttj gate. name. j ,Ln Sche.duf!_,(_ng-S,ta.ck 

do .6c..he.du1e. (gate. name., fiutWLe. outpu;t va.l!..ue.) a.ó an e.ve.n;t in the. T .<..me. 

Que.ue. at CWULe.nt-T .<.me. + CVT ( j, pll.o pagatio n · de.i!..ay) 
,P,.i 

FIGURE 41 - Simulat.{on al.goll.Uhm 



48 

propagationf in which we find the gates potentia11y affected 

by output changes in the current time step; 3) e1ement eva1uationf 

in which we eva1uate a11 gates potentia11y affected to determine 

which of them wi11 rea1ly change value in the future; and 4) 

event schedu1ingf in which these new ca1cu1ated output changes 

are schedu1ed as events in the Time Queue. The a1gorithm was 

c1ear1y separated in these 4 steps on1y for didatic . purposes. 

Steps 2f 3 and 4 cou1d be carried as a sing1e step and thus 

we wou1d not neet the Eva1uation-Stack and the Schedu1ing-Stack. 

15.2 Descri ptor based tab1e structure [ULR 69] 

In this tab1e structure approachf each e1ement in 

the circuLt is represented by a descriptorf as in Fig. 42. 

This descriptor contains the fo11owing information about the 

e1ement: pointers to other destinations (Ax+1 to Dw+1) of 

the e1ement input signa1s; pointer to output signa1 

destination; input logic values; output logic va1ues; élement 

type; output propagation de1ay. The input and output pointers 

form a cyc1ic chain for each signal in the circuitf as can 

be seen in Fig. 43 for a simp1e circuit. In this examp1e 
-

some devices are f1ip-f1ops and thus have two output signa1s. 

Numbe rs in parenthesis in Fig. 43a represent memory cells where 

the respective pointers in Fig. 43b are stored. Take for example 

element 1. Its output 1 pointer (in memory ce11 number 1) points 

to input 1 of element 1 (memory cell 4) f which in turn points 

to input 2 of e1ement 3 (memory ce11 14) f which points to input 

1 of e1ement 4 (memory ce11 17) f which fina11y points back to 

output 1 of e1ement 1. Thusf we have a cyc1ic chain (shown 

in Fig. 43b) f which passes through all inputs which receive 

the output 1 signal of element 1. Similar chains exist for 

al1 other output signa1s (for examp1ef a1so is shown the 
chain for output 2 of e1 e ment 2). 



Dw 
Cz 
By 
Ax 

DW+I 

r----> Cz+ 1 

gate ____,.. 

BY-t· l - Ax I + 
o) o 4- input element 

E 

49 

Heoder ~E I 

input output ~I t · l 
logic volues logic volue ype deloy 

input :f:l:: I ~AX+I 

input :f:t 2 -BY.f.l 
input :t:1: 3 -cz+l 
input :t:1: 4 __,.. DWtl 

b) doto descriptor 

Figure 42 - Data descriptor organization 

gate'lt I descriptor 

(I) H 04 
(2) H 05 
(3) r 1 
(4) I 14 ~ 

(5) 2 02 

gate ~ 

(li) t-:...H~ 
(12)~~ 
(13)f-!-l ~ 

3 descriptor gote H 4descriptor 

o) exomple circuit 

14) 2 

(6) 

(7) 
(8) 
(9) 

(lO) 

09 (15) H 
(16) 

06 r-~17i I 
17 f----_j M 18l 2 

gate#2 
descriptor 

H 13 
H 18 

I 
I ll 

2 15 . 

. b ~ corresponding toble structure 

Figure 43 - Descriptor based table structure 

lO 
. I 

OI f-

07 

This table structure introduces the following 

important simplifications in the simulation algorithm steps 

of Fig. 41: 



tx 

tx 

tx 

50 

Step 4 - Suppose that some output signal AO must be scheduled 

to time tx. The scheduling is simply performed by exchanging 

the contents of the first cell of the signal cyclic chain with 

the contents of the established time slot, as can be seen in 

Fig. 44a and 44b. Now suppose another signal BO must also be 

scheduled to tx. The same scheduling process is used, and we 

see the result in Fig. 44c. The scheduling proce ss cuts 

temporarily the cyclic chains and transforms them in part 

of open-ended extendible lists for the time slots of the 

Time Queue. 

Time Queue 
Ao 

Ao 

AI 

81 

J 

Bo 

© 

a) before schedul ing 
signals Ao and Bo 

b ) after scheduling 
signo! Ao 

c) after scheduling 
signo! Bo 

Figure 44 - Scheduling mechanism in the descriptor · 

based table structure 



51 

Step 2 - With the list obtained at the time slot, the output 

value propagation step is automatically performed, because all 

possible gates affected by the signal changes are now contained 

in this list. 

Step l - If we have 2-valued simulation, the output value 

updating consists in inverting all signals (outputs and inputs) 

which are found in the list formed at the time slot. 

Step 3 - Element evaluation is performed for all destinations 

found in the list at the time slot. We have stored in each 

element descriptor a redundant information about the input 

values. These values could be found if we search the chains, 

but the redundancy simplifies element evaluation, avoiding the 

use of a fan-in list. 

Acknowledgrnents 

This work was done in 1981 during a three years 

stay at the University of Kaiserslautern, Gerrnany. I appreciated 

the support of the University of Kaiserslautern and of the 

CNPq - Conselho Nacional de Desenvolvimento Cientifico e 

Tecnológico. 



52 

REFERENCES 

[ALI 78] ALIA, G., CIOMPI, P. and MARTINELLI, E. "LSI 
Component Modeling in a Three-Value Functional 
Simulation". Proceedings of ·the 15th Design 
Autome.tion Conference, Las Vegas, Jun 1978, pp. 
428-439. 

[BEN 79] BENING, L. "Deve lopmentsin Computer Simulation 
of Gate Level Physical Logic". Proceedings of 
the 16th Design Automation Conference, San Die­
go, Jun. 1979. pp.56l-567. 

[BRE 76] BREUER, M. A. and FRIEDMAN, A.D. Diagnosis & 

[ CHA 71] 

Reliable Design of Digital Systems, Computer 
Science Press-,-California·; 19 76. 

CHAPPEL, S.G. and YAU, 
Asynchronous Logic 
Gate Model", Fall 
Proceedings, 19~ 

S. S. "Simulation o f Large 
Circuits Using an Ambiguous 
Joint Computer Conference 
pp.65l-66l. 

[CHA 74] CHAPPEL, S.G., ELMENDORF, C.H. and SCHMIDT, L.D. 
,.LAMP: Logic-Circuit Simulators", The Bell 
System Technical Journal, Vol. 53, No.-s;-oct. 
1974. pp.l451-1476. 

[EVA 78] EVANS, D.J. "Accurate Simulation of Flip-Flop 
Timing Characteristics". Proceedings of the 
15th Design Autol:nation Conference, Las Vegas, 
Jun. 1978. pp.398-404. 

[ GOR 78] GORDON, G. System Simulation. Prentice.;..Hall Inc. 
Englewood Cliffs, New Jersey, 1978. 

[HAR 67] HARDIE, F.H. and SUHOKIE, R.J. "Design and Use of 
Fault Simulation for Saturn Computer Design". IEEE 
Transactions on Electronic Computers, Vol. EC-~ 
No. 8, Aug. 1967. pp.412-429. 

[KNU 68] KNUTH, D.E. The Art of Computer Programming. Vol.l, 
Addison-Wesley, Reading, Massachussets, 1968~ 

[KOC 69] KOCHLER, D. "Computer Modeling of Logic Modules Under 
Consideration of Delay and Waveshaping", Proceedings 
of the IEEE, Vol. 57, No.7, Jul.l969. pp.l294-l296. 

[ MAG 7 7] MAGNHAGEN, B. "Practical Experiences from Signal 
Probability Simulation of Digital Designs", 
Proceedings of the 14th Design Automation Conference, 
New Orleans,~u~l977. pp.216-219. 



[SCH 72] 

[SES 62] 

[SZY 70] 

53 

SCHULER, D.M. "Simulation of NAND Logic" 
· Digest of Papers of the 6th Annual IEEE Computer 

Society-rnte rnational Contere nce (COMPCON'72), 
San Francisco, Sept. 1972. pp.243-245. 

SESHU, S. and FREEMAN, D.N. "The Diagnosis of 
Asynchronous Sequential Switching Systems". 
IEEE Transactions on Electronic Compute rs, 
Vol. EC-11, No. 8-,-Aug. 1962. pp.459-465. 

SZYGENDA, S.A., ROUSE, D. and THOMPSON, E.W. "A 
Model and Implementation of a Universal Time 
Delay Simulator for Large Digital Nets", 
Spring Joint Compute r Confe r e nce, AFIPS Conference 
Proceedings, 1970~ pp.207-216. 

[SZY 73] SZYGENDA, S.A. and LEKKOS, A.A. "Integrated 
Techniques for Functional and Gate Level Digital 
Logic Simula tion". Proceedin gs of the 10th 
Design Automa tion Workshop . Portland, Jun. 
1973. pp.l5 9-172. 

[SZY 75] SZYGENDA, S.A. and THOMPSON, E.W. "Digital Logic 
Simulation in a Time-Based, Table-Driven Environment. 
Part 1: Design Verification'', Computer. Vol. 8, 
No. 3, Mar. 1975. pp.24-36. 

[THO 75] THOMPSON, E.W. and SZYGENDA, S.A. Digital Logic 
Simulation in a Time-Based, Table-Driven Environrnent. 
Part 2: Parallel yault Sirnulation''. Computer, Vol.8, 
No. 3. Mar 1975. pp.38-49. 

[TOK 78] TOI<ORO, M. et al., "A Module Level Simulation Technique 
for Systerns Composed of LSI's and MSI's". 
Proceeding s of the 15th Design Autornation 
Conference, Las Vegas;-Jun. 1978. pp.418-427. 

[ULR 69] ULRICH, E.G. Exclusive Sirnulation of Activity in 
Digital Networks", Cornmunica tions of the ACM. 
Vol 12, No. 2, Feb. 1969. pp.102-110-.--

[ULR 72] ULRICH, E.G., BAKER, T. and WILLIAMS, L.R. 
-Test Analysis Techniques Based on Logic 
Proceedings of the 9th Design Autornation 
Dallas, Jun. 1972. pp.lll-115. 

"Fault­
Sirnulation". 
Workshop, 

[ULR 76] ULRICH, E.G. "Non-Inte~ral Event Timing for Digital 
Logic Sirnulation''. Proceedings of the 13th Design 
Automation Conference, San Francisco;-Jun.-1976. 

·pp.61-67. 



54 

[WAG 84) WAGNER, F .R. "Hazard Detection in Logic Simulation". 
Internal Report. No. 1~ Universidade Federal do 
Rio Grande do Sul, Curso de Pós-Graduaçao em 
Ciencia da Computação. Nov. 84 


