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ABSTRACT
‘Gate level simulators are those which simulate
digital logic circuits composed only of basic gates such
as NAND's, NOR's, etc. There are two basic types of gate
level similatorsi compiled enes, in which the leogic structure
is directly translated into a sequence of instructions of
the host computer, and table-driven ones, in which the
logic structure is translated into a table structuré, which
is then interpreted by a simulation program. Table-driven
simulators can assume any delay values for the gates. Not
only single propagation delays can be considered, but also
more complicated models, which include inertial delays,
differing transition ‘times, rise and fall times, etc.
Accurate design verification can be obtained only if
multiple-valued logic is used.
Key-words: Gate level simulation, compiler-driwven anditable
-driven simulation, timing models, simulation

algorithm.

RESUMO

Simuladores a nivel de portas logicas sao aqgueles
que simulam circuitos 1ldgicos digitais compostos apenas de
portas logicas elementares como NANDs, NORs, etc. Existem <
dois tipos basicos de simuladores: compilados, nos guais a
estrutura logica & traduzida diretamente para uma sequéncia
de instrﬁgSes do computador hospedeiro, e dirigidos por ta-—
bela, nos quais a estrutura logica & traduzida para uma es-
trutura de tabelas, que & entao interpretada por um progra-
ma simulador. Simuladores dirigidos por tabela podem assu-
mir quaisquer valores para os tempos de propagagao das por-—
tas logicas. Nao apenas tempos de propagacgao simples podem
ser considerados, mas também modelos mais complicados, gue
incluem tempos de propagagao inerciais, diferentes tempos
de transicgdo, tempos de subida e descida, etc. Verificagao
acurada do precjeto sO pode ser obtida se ldgica com multi-
plos valores for usada.

Palavras-chave: Simulagao a nivel de portas logicas, simula
¢ao de codigo compilado e dirigida por tabe
las, modelos de comportamento temporal, al-
goritmo de simulacgao.
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1. INTRODUCTION

This paper is a tutorial about techniques employed
in gate level simulators. It tries to present in a simple
way the models, algorithms and data strucutures which are

currently (or were) used.

No considerations are made about system characteristics,
like implementation language, input description language (Eo
specify elements and interconnections of the circuit) and
translation {(to generate the data structures to be processed).
These features are mainly dependent on the user needs and on
the facilities offered in the installation where the simulator
is implemented. Other surveys cover these aspects [BRE 76]

[SZY 751

Furthermore, no emphasis is placed on hazard and
race considerations, because this is the subject of digital
logic texts. The reader which knows these concepts wil be
able to correctly choose the simulation model, among those
described in this paper, to meet his needs. More sophisticated
techniques of hazard and race detection, using 5- and 8-valued
logic, can be found in the references [BRE 76] [WAG 84]

Finally, this paper does not cover simulation
techniques for the functional level [SZY 73] [CHA 74], which
is considered as an abstraction of the gate level, because
this level imposes some severe modification in the models

employed at the gate level.
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2. ZERO DELAY SIMULATION

In zero delay simulators [HAR 67] [SES 62] the
propagation time through all devices is assumed to be zero.
As a consequence, only a logic verification of the circuit
can be made, i.e., the boolean equations which correspond to
the circuit are evaluated. No timing analysis is made, and
so problems like races and hazards cannot be detected. For
example, consider the simple circuit shown in Fig. 1. Due
to the propagation delay of the inverter, when the input A
switches from 0 to 1 a short 0 pulse could be generated at
the output C. However the zero delay model wiil not predict

such hazard.

R bl P
A c s—':;:‘Tr}:__ & T o

B
delay =t2 C —>{tz Eﬁ:i__j c
delay=t, ] g ==
a) on example circuit b) the actual behavior c) the predicted behavior
in a zero delay simulator
Figure | - Zero delay simulation

The circuit must be levelized to provide a correct
ordering in the boolean equation evaluation. Levelizing
consists in assigning a level number to each element in the
circuit. If Li is the level of element i, and if an element
a has inputs from elements b, ¢ and d, then La = 1 + max (Lb,
ILc, Ld). Furthermore, all feedback loops must be identified
and broken. The circuit is modeled in a canonical form like
in Fig. 2. The level 0 is assigned to all primary inputs Xi.
An example of a levelized circuit is shown in Fig. 3.
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Figure 2 - Circuit model in a zero delay simulation
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Figure 3 - A levelized circuit

Simulation is carried out by the following
algorithm. All level 1 elements are evaluated first, then
all level 2 elements and so on. After all elements have been
evaluated, the values of feedback signals are interrogated to
determine if they have changed. All logic levels ahead of a

¥
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feedback break point which changed must be evaluated again.
This process is repeated until the circuit has stabilized.

After that a new input vector is taken and processed.

It is easy to imagine that an oscillation can occur,
and the circuit does not stabilize, i.e., after each simulation
pass through all levels some feedback line has different values
(alternates between 0 and 1). A solution to the problem is to
stop the evaluation after a period of time specified by the
"user, to print a warning message and to abandone the current
input vector. Another solution is, when the oscillation is
detected, to assign a value "unknown" to the lines which are
oscillating and to proceed with the simulation. We will see

3-valued logic techniques in sections 13 and 14.
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3. COMPILER-DRIVEN SIMULATORS [HAR 67] [SES 62]

In general, zero delay simulators are of the
compiled variety, in which the evaluation of the boolean
expression is compiled into instructions of the host computer.
In Fig. 4 we have an example of a simple logic circuit and
the computer instructions generated to simulate this circuit
in an hypothetical computer. We see that levelizing is
needed to obtain the correct ordering of the instructions.

LOAD A
AND B
STORE X
Cc
Y

OR
STORE
COM
a) the circuit STORE

N

b) the compiled codse

Figure 4 - Compiler-driven simulation

The structure of the simulator is shown in Fig. 5.
The preprocessor must identify and break the feedback lines
and levelize the circuit. It receives the circuit description
in some appropriated input language. The code generator
converts the yet levelized circuit description into a sequence
of host machine instructions. After that, the description will
be treated as any other computer program, which can be loaded

and executed.

executable
d:zi;:";o preprocessor cod? loader t+——3> network
pUan it description

Figure5 - Structure of a compiler-driven simulator
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4. STIMULUS BYPASS

Stimulus bypass is a technique developed by Hardie
and Suhokie [HAR 67] for a compiler-driven simulator, and
consists in the bypassing of specific computer instructions
which correspond to a logic block for which it can be
determined that no state change will occur. For example,
suppose the flip-flop of Fig. 6a. If it is known that inputs
S and R are in their inactive states (value 0), then all
instructions which correspond to the evaluation of signals
N1 and N2 do not need to be executed, because the flip-flop
certainly cannot change its state. Obviously, we will need
some instructions to test the bypass condition. This little
loss of memory, however, will be compensated by a great time
saving. Fig. 6b shows the compiled code for the flip-flop,

where the first three instructions test the bypass condition.

: LOAD s
s OR bypass
" SKIP IF ZERO #-H2 | condition
—1 N oap P
AND N2
OR s
com
5 AND p2
OR R
R ‘STORE N2
AND Pi
a) flip-flop OR S
com
STORE NI

b) the compiled code

Figure 6 - Stimulus bypass
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5. SELECTIVE TRACE [ULR 69]

Let us define the active part of a circuit as those
circuit elements whose inputs are changing at a determined
moment. In Fig. 7, be A1 the active part of circuit N at t1.
Usually this active part is between 2 and 10% of the total
number of elements in the circuit [BRE 76], but a ratio of
1% was also reported [HAR 67]. The outputs of elements in
A1 are connected to the inputs of another elements, which
form the subset B1 of N. However, the activity which takes
place in A1 will affect only a subset of B1 at t2, say A2.
This subset will be the new active part of N. So, "logical
activity may be viewed as a vehicle which travels on narrowly
confined but continuously shifting paths of activity through
an otherw.se idle digital network" [ULR 69]. Such paths of
activity suggest a simulation technique which follows these
paths and avoids idle elements. Ulrich [ULR 69] has called
it "exclusive simulation of activity", but it is nowadays
often called "selective trace" [SZY 75]. It would be wasteful
to simulate all the logic when only a small portion of the

circuit is going to change.

f| ' fz t3
Figure 7 -  Exclusive simulation of activity

Let us define an event as a change in value of a
signal line. The output of a stable element will only change
value when one or more of its inputs change value. Hence, an

element needs only be simulated when an event occurs at one
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of its inputs. For this reason, this technique is also
called "event-directed simulation" [BRE 76].
A e

Almost the totality of simulators developed in
.the last decade use this technique. As we shall see later
(section 8), it needs some scheduling mechanism to order
the events in some data structure and to search for the
next event to be executed. Bening [BEN 79] alerts that,
depending on the kind of logic network organization, the
event management can cause such time overhead that levelized
logic evaluation would be faster for this network. This would
be true for pipelined logic networks, where over 90% of their

gates must be evaluated between each clock period.
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6. TABLE-DRIVEN SIMULATORS

There is a basic requirement for the implementation
‘0of the selective trace technique. We must know what are the
elements connected to the output of an element (let us call
these elements as the "fan-out elements") to see what is
the effect of an event occuring at the output of this element.
In Fig. 8, when an event occurs at the output of element i,
we have to evaluate element J, but then also the other
inputs to element j, say elements k and 1, need to be
known. Hence, we need also a fan—-in list for each element
(let us call the fan-in elements as those connected to
the inputs of a certain element). For these reasons, event-
—directed simulators employ a special data or table structure,
to reflect the interconnections of the circuit, and are

called then "table-driven".

D__i____j_j fan-out list; ={j}

fan-in listj ={i.k.1}

k
l

Figure 8 - Fan-in and fan-out lists

This table structure allows the simulation control
program to identify and schedule for future evaluation only
the elements which are affected by the currently active
elements. This technique seems like the stimulus bypass
adopted in compiler-driven simulation because both avoid the
evaluation of inactive elements. However, in the stimulus
bypass technique we need to evaluate a few instructions which
correspond to the inactive element to see that it does not
need to be evaluated at all. Here, because of the table
structure, the paths of potential activity are automatically
followed, since idle elements receive no input signals and
consequently are not scheduled for evaluation. In compiler-

driven simulators we make a static levelizing, before the

o

U F R G
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simulation begins. Here, the table structure forces the
evaluation of the elements in the correct order automatically,

and for this reason we speak about a "dynamic levelizing"

[BRE 76] .

In compiler-driven simulators, the network structure
is interspersed within the instructions which evaluate the
element outputs. In table-driven simulators, the structure
is given in form of tables, which contain fan-in and fan-out
lists for each element. The evaluation routine for each
element (see section 12) is separated from the network
structure, and needs a pointer to it in the table structure,

together with the fan-in and fan-out lists.
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7. UNIT DELAY SIMULATION

Unit delay simulators assume that the propagation
delay time is non-zero and the same for all devices. They :
operate with two queues, one for the elements which are to
be evaluated at the current simulated time, and other for.
those to be evaluated at the next time step. 'The elements
in the current time step queue (CTSQ) are evaluated and its
fan-out elements are put in the next time step queue (NTSQ).
When all elements in the CTSQ were evaluated, the simulated
time is incremented, the NTSQ becomes the CTSQ, and the old
CTSQ is cleared to become now the new NTSQ. The selective
trace technique is naturally employed, and so also the table-

—driven approach.

As with zero delay simulators, the networks is
expected to stabilize between application of .input patterns.
If this does not occur, it means that an oscillation is

present due to some timing problem.

In Fig. 9 we have the simulation algorithm of a
unit delay simulator |BRE 76|. La is the CTSQ and Lb the
NTSQ. The switching of these two gqueues at each time step
is made by the variables a and b which alternate between 0
and 1. The simulator works with two queues LO and L1. Each
entry in a queue is a pair (i, Vv'(i)), where i is an
active element (possibly a pointer to some entry in a table,
where is contained information about the element, such as
its type, its fan-in list, its fan-out U(i) and its present
output logic value v(i)) and v'(i) is its new logic value,
to be assigned at the next time step. Oscillation is assumed
if a and b are interchanged more than K times between
application of two consecutive input patterns, where K is
specified by the wuser. Fig. 10 shows a simple circuit,
with the computations carried out by the simulation

algorithm and the resulting timing_diagram.
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Begin

Il la«<O, b=1I

2 L Read in iniiial state information ]
o B

3 [ Read in new input paH’ernJ

For each line i such that v(i)#v'(i),
put (i,v'(i) )on list La
[

Is La

Yes empty P

No
5 | Scan La and replace v(i)by v'(i) |
v

Scan La. For each i in La, evaluate each element j
6 of U(i). If element j changes state, put (j,v'(j)) on
list LLb. Destroy La

7 [ Interchange a,b. Increment simulationfime.j

No oscillation

Check for
osciilation

oscillation

e

Figure 9 - Simulation algorithm for
unit delay model

In Fig. 1 we have seen that the zero delay model
is not capable of detecting even a simple hazard. In Fig. 11
we see the same circuit as in Fig. 1, assumed to have a
unit delay in all gates, and the computations carried out by
the algorithm of Fig. 9. We see that the hazard is correctly
predicted in line C, corresponding to the 0 to 1 transition
in line A. So, since there is a finite delay associated with
each gate, the unit delay model allows some race and hazard
analysis to be performed. However, the most hazards and races
are due to the difference in propagation delays of gates,
‘and this kind of timing condition cannofkéetetecd by this

model - [WAG 84].. .
V FRG S
T e
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Initialization

. a<«0, be|
cvit)e1, v(2)«0, v (3)=0, v(4)«I

time=1

v )=0, V' (2)=1I

. Le= { ko), tz))
.v(1)=—=0, v(2)=1I

o {(3.1)} * Lo={}
. a=l, b=0O

time=2

Lv(3)=—|
Le= {la0] ), L1739 }
< a==0, =1

time=3

.v(4)=0
: L|={}, Lo:{}

. a=|, b=0

b) computations ( numbers according
to the blocks in Fi_ure 9)

Figure 10 - Simulation run example for the unit delay model

i

el

a ) example circuit

c¢) timing diagram

Figurell -

~oobhw N

~ o

Initialization

.a=—0, b=|
. v(a)=0, viB)=—I, v(c)=—I

time=|

.V'(A)=—1

. Le= {(A.I)}

Lv(a)=1

. Li1= {(B,0),{c.0) }, Le={}
. a=1|, b=—0

time=2

.v(B)=—0O,vic)=0
Jlke® {le, 1)}, Li={}
s a=0, b=|

time=3

.vic)=—1I
=] }. Lo:{}

Ja==ls b0

b ) computations ( numbers according
to the blocks in Figure 9 )

Hazard detection in unit delay simulation
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8. ASSIGNABLE DELAY AND TIME FLOW MECHANISM

The unit delay model can handle some simple cases -
of hazards and races. However, for a more precise design
verification, we need more accurate and realistic timing
models. The actual delays in a circuit are distributed
over a widerrange of values, which can depend on the number
of device fan-ins and/or fan-outs or in differences in
device technology. In an assignable delay model, we can
assign different delays to each device in the network. This.
has many consequences: 1) the user has to assign these
delays in the network input description (or assume that
each kind of device has always the same delay, what is not
a very realistic assumption); 2) the delay of each device
has to be stored in the table structure which represents the
network, together with other information about the device:

and 3) we need another simulation algorithms.

The assignable delay model implies a simulation
algorithm much different from those used in zero and unit
delay simulators. When an element i is processed because
one of its inputs has.changed value (selective trace) and
it is determined that its output line will change its value,
then this output line must be scheduled to change at time
tc + D, where tc is the current.simulated time and D the
delay associated with the element. This corresponds to an
event being placed in a space for future events, and of
course this space will have at some moment events scheduled
for many different future times. Furthemore, as time
proceeds, we must access the next event to be executed, it
means, the event in this space which has the smallest
schedule time. The technique used to schedule and unschedule
events (we shall see in section 10 that this is also
necessary in some cases) and to access the next event is

called the scheduling mechanism, or the time flow mechanism.
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9. TIME-MAPPING

There are no references about distribution of
events over time in digital logic simulation. Hovewer,
compared to another kind of systems, it can be said that
digital systems require in general a large number of events,
and that they present a dense distribution, i.e., there are
events at nearly all time steps and it can occur any number
of simultaneous events at each time step. This kind of
distribution leads to a special kind of time flow mechanism
which is well suited to digital logic (see Fig. 12). The
events are stored in lists, one for each time step, and
these lists are pointed out by a linear list (the Time Queue
|SZY 75|), where consecutive nodes point to consecutive time
steps. Thus, each node in the Time Queue is called a time
sliot.;

ti-1
ti e—+—>feventn | e}—>jevent nt1]| e4—> ---

ti+i

list of simultaneous event at ti

Figurel2 - Time-Mapping technique

As time proceeds, events yet executed are no more
needed. A dynamic allocation of memory |KNU 68| is probably
needed in association with this time flow mechanism. The
events use space from a commom free area, and after they
are processed, the space they occupied is returned to this

area.
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The scheduling mechanism used here is a time-to-
-address mapping technique. Be dx the delay of the simulated
element which output line is detected to change and thus
must be scheduled in the Time Queue. Be t the basic time
interval between time slots, selected as the greatest
common divisor of all element delays. Since dx is a multiple
of t, dx/ t is directly added to the current time tc and
the result is both the time of the predicted signal change
and the address of the time slot into which the corresponding
event must be inserted. We will refer us to this time flow

mechanism as the time-mapping technigque [ULR 69].

Now we have a problem. How long must be the Time
Queue, in order to handle all the events which can occur
in a complete simulation run ? This certainly will be a
prohibitive memory space. We have to limit the Time Queue
to some extent, and adopt some algorithm to map events which
are scheduled to occur out of the c—rrent time frame of the
Time Queue. We will describe two basic approaches to the
solution. Recently, more sophisticated time flow mechanisms
have been proposed, like the converging lists data structure

[ULR 76], but they will not be covered here.

9.1. Timing Wheel

The timing wheel [BRE 76] is a cyclic list of
lenght L. Limiting the list length to L, we have a time
frame of the timing wheel (i.e., the time interval which
currently corresponds to the time slots) from t to t+L-1,
where t is the current time associated with the first time slot
of the wheel. For events which are to be scheduled out of
this time frame, an entry must be made in an overflow events
list. Whenever one full rotation of the timing wheel is

completed, two things are done: 1) the time frame is
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adjusted to t+L to t+2L-1, and 2) the overflow list is
scanned and any entries which can now be placed onto the

timing wheel are transferred.

As simulated time proceeds, and a time slot t' is reached,
the time slots from t to t' are no more needed in this cycle.

As t' approaches t+L, less time slots in the current time

frame are .useful and more events must be scheduled in

the overflow list. A solution to avoid this inefficiency

is to re-scale the time associated with the time slots each

half revolution around the timing wheel. Thus, when t'

reaches t+L/2, the time associated with the first half of

the wheel is re-scaled to correspond to t+L to t+3L/2-1.

An implemented example of this concept is the
Time Queue of the TEGAS-2 system [SZY 75]. It is a list
with 2*Z entries (see Fig. 13). Each entry is a pointer to
an Event Notice List. The current time slot is pointed by
PT (Present Time). The number of cycles yet occurred through
the Time Queue is stored in MTC. Each cycle is a pass through
the first 2 time slots of the Time Queue. Thus, the current’
simulated time since the beginning of the simulation run

is 8= MIC * & 4+ P ~ 1:

The current time frame of the time Queue goes from
MTC*Z to MTC*Z + 2*Z-1. Events which are to be schedule out
of this frame are stored in the MTEL (Macro Time Event List),
together with their simulated time, and ordered by
increasing time. The first event in the Event Notice List
at time slot Z+1 is always a special event MTEL UPDATE. When
PT reaches Z+1 the MTEL UPDATE is executed and cause the

following actions:

a) pointers from Z+1 to 2*Z replaces pointers from

= to Z:
b) pointers from Z+1 to 2*Z are cleared;
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c) MIC is incremented;

d) PT is set to 1;

e) a new MTEL UPDATE is scheduled at 2%Z+1;

f) the MTEL is scanned. Each event found which
will be in the new time frame of the Time Queue
is removed from the MTEL and stored in the
Event Notice List which corresponds to the time
slot for the event.

l I .
Event Notice List
P> o——1—> fedo| |epes| [X]
pA pA "
Z+l e———t——>I MTEL UPDATE | &>« +* PT—=Z+| % F
o e
2z 2z Ve

a)Time Queue

b) activity at PT= Z+I

Figurel3 - Time Queue inthe TEGAS-2 system

9.2. At-loop

The At-loop [ULR 69] is also a circular list, where

each time slot points to a list of simultaneous events.

However, the
delay in the
if ti is the

an element x

length L of the loop is made equal to the greater
network dividéd by At, the basic time step. Thus,
current time, and dx the delay associated with

to be be scheduled, the time slot is found by

the addition of ti and dx/At, using a modulo L addition,

and this time is always within the current time frame, which
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goes from ti to ti+L-1l. The mechanism really does an
automatic and permanent re-scaling of the time associated
with the time slots, in contrast with the timing wheel,

where the re-scaling is made once each L/2 time steps.

The At-loop offers two advantages over the timing
wheel. First, there is no need of an overflow list, and
therefore we gain in space. Second, there is no need of a
special event which transfers events from the overflow list
to the timing wheel. This event (the MTEL UPDATE in the
TEGAS—-2 system) causes an overhead of time which does not
exist in the At-loop. However, there could be one drawback
in the At-loop approach, namely, how great must be L? If
it is too great, there could be an advantage in the timing

wheel, where we have a compromise between time and memory.

Determination of wvalues for Ot and L is left to the

user. It's wise to follow these basic rules:

1. all element delays must be of the form dx=Dx* t,
where Dx is a positive integer and serves as a delay constant

for element x.

2. the Greatest Common Divisor (GCD) of the element

delays is the optimum (largest) wvalue for At.

3. the maximum element delay constant dmax should

not exceed L.

4. L should be kept as small as possible.

: o F " Q s

L.t
cpD/PGLL
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10. TIMING MODELS

10.1 Propagation delay

This is the simplest timing condition which can be
processed, and is the one we are considering so far in the
assignable delay model. The input signal change to a gate
is considered to propagate through the gate, and the
change appears at the output only tp time units later, as we
see in Fig. 14. The signal transitions are assumed to be
instantaneous. All the inputs have the same time effect on
the output, that is, all have the same propagation delay.
Because of this, the gate can be modeled as in Fig. 15,
with a functional part free from delay and a delay part
associated only with the output. When an input change
occurs, the gate is immediately evaluated and the new
output value is scheduled as an event at the current time

plus the propagation delay.

0->| changing
e input ad
output I“‘fp"“*j

a) a switching gate b ) waveforms

Figure 4 - Propagation delay model

P —
: pure pure
inputs I —> output
5 [function delay

Figure 5 -  Gate model with propagation delay
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Some gate level simulators allow the representation
of flip—flops [EVA 78]. Flip-flops, however, have inputs with
different functional and time effects on the output.

For example, the clear input forces the output to 0 after

a propagation delay tc, the preset input forces the

output to 1 after a propagation delay tp, and the clock
input causes the output to follow the input after a
propagation delay tck. It is obvious that the model of Fig.
15 cannot be used, because the output delay is different
for each input. A more realistic model would associate the
delays with the inputs, as in Fig. 16. Furthermore, flip-
—flops have other timing conditions such as data setup and
hold times and minimum pulse widths for clock, clear and
preset inputs. These conditions will not pe covered here.
Evans [EVA 78] presents a general algorithm for processing
flip-flops with all these conditions. In general, gate level
simulators adopt a gate equivalent representation for flip-

—flopSk

input | —>| delay lAJ————é{funcﬁonl

input 2 ——> _delay2 |—>{ function 2 F\\\\\~S;

output

input n —>[ delay n_|——>{ function n

Figure |6 - Modelfor inputs with different time and functional
effects at the output




22

10.2 Inertial delay

An input signal must have some minimum width to
give a device the needed energy in order to force an output
change. This minimum width is called the inertial delay
[BRE 76] AI of the device. In Fig. 17 we see the effect of
the inertial delay on a device. If the input signal width
is greater than AI, the device behaves as it had a
propagation delay AI. If, however, the input signal time
width is smaller than AI, the event yet scheduled to occur

at ti+AI must be unscheduled and the output remains unchanged.

fe—> | ——>] le<nl—sd
input input
L—AI——>| e——Al—
output output \x
cancelled event
a) input pulse width>Al b) input pulse width< Al
Figure!7 - Inertial delay model

Here a complication arises in our simulation
algorithm. When the input goes back to 0 at tj, we must
know: 1) that an event is scheduled at ti+AI, and 2) that
this event must be cancelled. The answer to the second
question is easy: always when an input transition makes
the future output value equal to the present value. The
answer to the first question requires an improvement in
the data structure which represents the network and the

event. This is shown in the next section.

This inertial delay model is a very simplified one.
It can be shown that it does not give the response given by a
real gate, when the input changes in very small .intervals,

sistematically smaller than the gate inertial delay.
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10.3 Differing transition delay times [EBA 71]

An improvement in the propagation delay model towards
a more realistic modeling is the possibility of assigning
different delays to the negative-going and positive-going
transitions. These parameters, given in data sheets as tphl
and tplh, respectively, are shown in Fig. 18. They are not
difficult to model in event-driven simulators. According to
the output change direction, an event is scheduled after tphl
or tplh time units. However, this model introduces a
possibility which is ilustrated in Fig. 19, where some device
(with non-inverting logic) has a tplh of 10 time units and
a tphl of 5 times units. Suppose that the device receives
an input signal like in PFPig. 19b. At tl the input goes from
0 to 1. A corresponding 0 to 1 transition is scheduled to
occur in the output at tl1+10. At tl1l+3, however, the input
goes back to 0. This would require a 1 to 0 transition in the
output scheduled to tl+3+5 = t1l+8. At this point, hovewer, the
output will be still 0. In other words, the input pulse is
narrower than necessary to switch the output. Thus, the event
at tl+8 is not scheduled, and the previous scheduled event

at tl+10 must be cancelled.

input ——-r__!—_
output , -44
—>| tplh |e——>{ tphl je—

Figurel8 -  Different transition delay times
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input output input l | }1- -j_

output
tplh=10 ] tohl
) t,+3 t+s
tphl=5 tplh——>
Vi, fo e . G
a) anon-inverting device with b) aconflicting timing condition

different transition delays
Figure 19 - A conflicting timing conditionin a non-inverting device
with different transition delay times

This event cancellation problem can be stated with

three questions:

1. when do we know that a possible existing future

event must be cancelled?

2) how do we know that there is a scheduled future

event for this output? and

3) how do we find the scheduled future event for
the output, which must be unscheduled? This event is in some
list pointed out by some time slot of the Time Queue, and a
linear search through the Time Queue would be time consuming.

We present a solution adapted from Tokoro et al [TOK 78].

The events in the Time Queue which belong to the same
signal are chained together and a pointer to the beginning of
the chain is maintained in the entry corresponding to the
signal in the circuit description table (see Fig. 20). The
place where a new event must be inserted in the chain is
found. To accomplisn this objective, each event also has

stored the time associated with it. Be PV (Preceding Value) the
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value of this signal in the event immediately before the
place where the new event must be inserted. If there is no
such event, PV is the current output value. Be SV (Scheduling
Value) the value of the signal in the new event to be
inserted. If PV = SV, then the new event is not scheduled and
any subsequent events in the chain for this signal are
cancelled.

A very simple solution to the task of unscheduling
events is, instead of removing the nodes (that is, adjusting
peinters), only to mark the cancelled events with a flag.
When the corresponding time slot is processed, the flag is

detected in the node and the event is just skipped.

signal | fan-in |fan-out|current value|. -

P
2

s

ti o———>---  —3{ signaln | e4—>...

|
new value L ‘
i Circuit Description Table

tj e—Ll>... —>{ signaln}et—=>---
new value

t) | »

Time Queue

.

Figure 20 - Table and event structure for event cancellation
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10.4 Ambiguity region

The propagation delay model presented in section
10.1 allows the user to select a different delay for each
gate. We know from the data sheets that mininum and maximum
propagation delays are specified for each type of gate. In
simulating a network with many gates of the same type, we
could assign for each one a different delay, within the
range found in the data sheets. However, before the circuit
is built, we do not know what is the exact delay of each
gate of the same type, and hazard pulses and races can appear

exactly due to unexpected relations among delays in the circuit.

A model suggested to accurately handle this delay
interval specified in data sheets assumes, as shown in Fig. 21,
that the output response of a device is unknown (or ambigucus)
during the interval between the minimum and maximum possible
delays. This is known as the delay ambiguity model [SZY 70]
[CHA 71} . This model requires that we represent, instead of
two-valued signals (binary 0 and 1), three-valued signals
(0, 1 and unknown, which we will represent by u), and also
that we have a algebra to perform logical operations among
signals. This algebra is depicted through 3 operators (AND,
OR, NOT) in Fig. 22. The internal representation and evaluation

of three-valued signals is considered in section 14.

input output
lumblguous
region

§
e
delay min= A, A, )

delaymax= Ao

a) anon-inverting device b) timing diagram for the ambiguity
' region model

Figure2l - Ambiguity region model
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| u or_0O | u
o| o I
0 (0] u NoT._© | u
o} I u I I I I I 0 u
(0] u u u u | u
Figure22 - Three-valued algebra

A simple example (adapted from [SZY 70]) shows that
the ambiguity region model can detect a hazard. In the network
of Fig. 23a, the inverters are supposed to have a minimum delay
of 4 and a maximum delay of 6 time units, while the AND gate
has respectively 3 and 5 time units. A 0 to 1 transition
occurs in line A at t=0, and a 1 to 0 transition in line B
at t=1. Fig. 23b shows the resulting timing diagram if a
nominal delay is used for the devices (5 for the inverters and
4 for the AND gate). We see that no output is expected at line
E. Fig. 23c shows what happens when we apply the ambiguity
region model. A hazard is predicted to line E between times 8
and 11, that is, a hazard pulse could happen in this interval

if inverter C had a delay 2 time units greater than inverter D.

The ambiguity region model has one serious drawback.
It gives erroneous results (too pessimistic) depending on the

network [BRE 76] [BEN 79].

The error is due to two factors:

1. the actual delays of the gates are constant,
between the minimum and maximum values. The model, however,
implies that the gate, during the same simulation run, can

have different wvalues.
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A i}’%_j
O—>|att=0 E

B ——D)fdeloy=(3..5)
|I-=>0Oatt=|

delay=(4..6)
a) circuit to be simulated

A_L A_l
i | |
i g g 1
D - D W7/
B || ]| 1| | zz
il I3} ol FeA I
o | 5 6 o | 4 5 6 7 8 I
b) predicted behavior with nominal ¢ ) predicted behavior with ambiguity
delays region model

Figure 23 - Hazard detection with the ambiguity region model

2. a signal transition at some point occurs at a well
determined moment within the ambiguity region. The model,
however, allows that a signal transition affects different
paths which emanate from this point as it occurred at

different moments for each path.

This can be seen in the network of Fig. 24a, where
all inverters are supposed to have a delay between 2 and 3
time units. Due to the simulation of the previous logic, the
input signal A carries with it an ambiguity region. In Fig. 24b
we suppose that this region has a width of 1 time unit. We see
that no signal change is predicted at output E. In Fig. 24c,
however, we assume an ambiguity region of 2 time units for
signal A. A hazard is predicted at the output E between times
6 and 8. Thus, this hazard prediction depends on the input
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ambiguity interval. This happens because the network has a
point of reconvergent fan-out: the output E in this case

is the union of two paths emanating from the same source.
If the input transition occurs at t=0, signal C can appear
earlier at t=4; if the input transition occurs at t=2,
signal D can appear later at t=5. Thus, this coincidence of
signals C and D between t=4 and t=5 can exist only if the
input transition occurs at different moments for each path,

what is impossible in reality but is allowable by the model.

A [}B_- c ;
o e e

a) circuit tobe simulated

(delays=2..3)
A__bzzz
l ! B A
7 c_| ! V27227
[ |
D ' /0 | D |2
|
: wav : | || e
ot [ [ | | i [
0L 2 4 7 (0] 2 4 5 6 8
b) predicted behavior with input c) predicted behavior with input
ambiguity region of { time unit ambiguity region of 2 time units
Figure 24 - Pessimistic results using the ambiguity region model

Breuer and Friedman [BRE 76] suggest an alternative
to process minimum and maximum delays, using a Monte Carlo
approach [GOR 78]. The propagation delay of each type of device
is given by some statistic distribution. The delay of each
gate could be selected randomly between the minimum and maximum

values. For each set of randomly selected delays would be carried
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out a simulation run. Of course this method would be exhaustive
and time consuming. Magnhagen [MAG 77] snows a much more
sophisticated implementation, in which each signal delay is
given by a probability function and the gates are evaluated

accordingly by a probabilistic calculation.
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10.5 Rise and fall times

A further improvement towards a more realistic modeling
is to represent and process rise and fall times. In Fig. 25a we
have the definition of these two times. A way of modeling them
is to assume that, during the transition time, the signal is
in the unknown state (yet defined in the last section), as

in Fig. 25b.

——-——-«_/—_——\\—-——-—— R
*)I risetime fall time l(‘
|

waveform

u u

) = b) modeled

waveform
Figure25 - Modeling rise and fall times

A solution to include rise and fall times in the
scheduling mechanism is proposed by Tokoro et al [TOK 78],
in conjunction with differing transition delays. All changing
signals are supposed to pass through the unknown state. The
model, according to Fig. 26 (suppose a non-inverting device),
allows the user to assign different values for the delays Al,
A2, A3 and A4, which are respectively the propagation delays
for the 0 to u, u to 1, 1 to u and u to 0 transitions (not
appropriately, these delays are called in the model,
respectively, minimum rise time, maximum rise time, minimum
fall time and maximum fall time). It is easy to see that the

predicted output rise time will be

td - t3 = t2 + A2 - (£1 + Al) = t2-tl + (A2-Al)
Arise in + (A2 - Al)

A rise out

N rise out
and also that

A fall out = Afall in + (A4 - A3).
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In other words, the output rise (fall) time is equal
to the input rise (fall) time plus some specified value
A2 - Al (A4 - A3), which can be even equal to zero, if
Al =A2 (A3 = A4).

u I U :
input O input l 0

I—U_J— ‘37108
output O output 0
e ol
Arisein A2 Afallin A4 —=
a) scheduling the output rise time b ) scheduling the output fall time

Figure 26 - Including rise and fall times in the scheduling mechanism

This model, however, is not accurate, because
actually the output transition time is not dependent on the
input transition time in such a way. It was suggested [BEN 79]
[KOC 69] a much more precise modeling, in which the output
transition time for each device type is obtained from a table
as a function of the input transition time and the number of
loads on the output, as in Fig. 27. One such a table is needed

for each transition direction.

output loads
f- e M
: X X Xz Xi3 o0 Xip
input Xz X21 Xz2 Xzz *** Xom
transition X3 X3 Xz2 Xzz ** Xzm
time : : Lt e :
Xn | Xnmi Xnz Xn3z -+ Xnm

Figure 27 - Output transition time table
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11. PARALLEL SIMULATION

In gate level simulation, each signal has only 2
possible values (excepting three-valued simulation, which
we shall see in section 14), and thus can be stored in
only one bit of the host computer. To avoid lost of space,
we could think, for a computer with B bits per word, in
storing B signals in a word. This, however, would difficult
the simulation, because many bit string manipulations would

be required, and the processing would be time consuming.

Many alternatives have been suggested to efficiently
use all host computer word bits. We could think in processing
the same network for B different input patterns in parallel,
or for B different initial states in parallel [BRE 76] . Another
efficient and more useful solution is to process B faults in
parallel [THO 75]. Fault simulation is needed for test
generation and is normally provided in gate level simulators.
All these three alternatives suppose the same network being
processed for B different conditions. The simulation is
carried out as if we had B different machines. For thése reason,
signal values associated with one machine cannot affect the
processing of the other machines, and thus we cannot use
arithmetic operators (which have carry effect) in the element
evaluation, only logical operators which maintain the

independence among word bits.

Another solution is used in functional simulation
[szy 73]. In this context, signals are normally associated with
values stored in registers of X bits. Since in general all bits
of a register are transformed in the same way by the circuit,
it would be wasteful to consider each register bit as an
independent signal and to process it separately from the others.
It is quite natural to store all X bits in a single word and
to process them in parallel. Of course we need X § B, and we will

not use the remaining B -« X bits.
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12. ELEMENT EVALUATION

Always when an output change occurs at a gate, all
gates connected to it (its fan-out elements) must be
evaluated. There are three basic methods which are used to

evaluate gate functions.

The first and more obvious method is to develop
a special subroutine (written in assembler or any high-level
language) for each device type, as shown in Fig. 28 for an
AND gate. The subroutine receives parameters like a pointer
to the gate fan—-in list, the number of gate inputs and the
output signal name. A pointer to the subroutine exists in
the table structure, in the entry corresponding to the gate
in the circuit description table (see section 15). This
method allows parallel simulation (see section 11), but the
evaluation time required increases linearly with the number

of gate inputs.

AND (numben-of-inputs, fan-in-List, output-name);
integen numbern-of-inputs;
arnay gan-LAin-LAsxt;
boolean output-name;
begin
integen 4L, Xx;
L & numben-of-Anputs; X « 1;

while L # §

do begin
X«X and fan-in-List [i];
L« L -1
end;

output-name < X
end;

FIGURA 28 - Evaluation subroutine for an AND gate
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The second method counts the number of dominant
inputs to the gate [SCH 72]. For example, a 0 input is
dominant in an AND gate. If we know how many inputs are
equal to zero, we know the output value. This method does
not require a fan-in list associated with each gate, only
a variable where the dominant input count is stored. The
subroutine for an AND gate seems like in Fig. 29. It receives
as parameters the input count, the new input value which
propagates to the gate, and the output signal name. This method
does not allow parallel evaluation, but the evaluation time

required is independent of the number of gate inputs.

AND (input-count, new-input-value, output-name);
integen Anput-count;
boolean new-Ainput-value, output-rame;
begin
4if new-Ainput-value = 0
Zhen input-count «input-count + 1

else Ainput-count <« input-count - 1,

A  Anput-count =0
then output-name & 1
else output-name « 0

end;

FIGURE 29 - Input count evaluation for an AND gate

The third method is the fastest, but will require a
large amount of memory. It uses a table look-up [ULR 72]. Input
parameters to the evaluation subroutines, like gate type, new
input state and current output state, are compressed into a
n-bit argument and used as a pointer to a table, where for each
argument value is found an action to be taken. Fig. 30 shows
a simple example. We suppose that we have two possible gate
types (AND and OR), with only two inputs. A 4-bit argument
is formed. The first bit is the gate type, the following bit
is the current output value and the last two bits are the new
input value. A l6-entry table is then formed. This table can
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be much more sophisticated. For example, if we include in
the argument information about whether the gate is yet
scheduled or not, we could make inertial delay processing.
For a device like a flip-flop, with timing considerations
such as data setup and hold times and minimum pulse widths
and with inputs with different functional effects (clock,
clear, preset), a table could be built which could include
several schedule and unschedule actions. A further advantage
of this method is that all devices in the circuit are

evaluated by an unique subroutine.

argument action

0 000 nothing
0.0 6 1 nothing |
&o 19 nothing
0011 schedule output=1 at tc+ip£h (AND)
0100 schedule output=0 at tc+tph£ (AND)
g:1-0 1 o
0110 N
R nothing
1.0 00 nothing
e R | schedule output=1 at Ic'*tpzh (OR)
1010 "
ant-l 4
Lol .0 schedule output=0 at tc'+tph£ (OR)
N T nothing
-3 1 nothing
i o nothing

—

I L—new <input value

curnent output value
0: AND
{1: OR

FIGURE 30 - Table look-up evaluation
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13. INITIALIZATION

To begin a simulation run, the network must be in
some specified initial state. Each signal in the network must
be assigned some value. One solution would be to assign the
same value (0 or 1) to all signals, but this could lead to
some inconsistencies, like the input and output of an inverter
set to the same value. The other solution would be a consistent
assignment to all signals, but this approach would be very

hard to accomplish by the user in large circuits.

One intermediate solution is to assign specified values
only to the input signals [EVA 78]. A zero delay simulation is
then performed as initialization phase, until the circuit has
reached a stable state. After stabilization, the circuit state
is displaved and the user can see if a value assignment was

made for all signals.

A better and more realistic solution is to assign
some specified values (0 or 1) to selected signals in the
circuit, and automatically set to u ("unknown") all remaining
signals [ULR 72]. As before, a zero delay simulation is
performed from this initial state. After stabilization, the user
can see if any signals remain at the undefined state. An
alternative to avoid a too long initialization is to allow

each signal to emit a single u to 0 or u to 1 transition.

It can happen, however, that some specified state is
destroyed by the signal propagation during initialization. This
can be seen in Fig. 31. If the user assigns a value 0 to signal
C, signals A, B and D would be suposed equal to u. After a single
transition in each gate, signal D would be set to 1 (a dominant
input equal to 0) and signal C to u (inputs 1 and u, output u
according to the rules in Fig. 22), and thus the user specified

C=0 would be destroyed.
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u
A O-=>u c
u—>|
D
A
Figure 31 - Inconsistent initialization

The LAMP system [CHA 74] avoids this situation using
a 4-valued simulation: 0, 1, 2 (non-propagating unknown) and
3 (propagating unknown). Value 2 is used only in the
initialization phase. As we can see in the truth table for a
2-input NAND gate in Fig. 32a, a value 2 in one input maintains
the output equal to its vprevious value, except if we have a
value 0 (dominant) in the other input. Thus, wvalue 2 does not
propagate through the circuit and does not destroy any user
assigned initial state. Value 3 is the normal unknown value,
as we can see in Fig. 32b, and is used during the remaining
simulation. In Fig. 31, if the user assigns a 0 to signal C,
and all other signals are equal to 2, D will be set to 1
(NAND of 2 and 0 is 1), but the feedback will not change C
(NAND of 2 and 1 is the previous value).

inputs | output inputs output
2 0 | S O |
2 | Q 3 | 3
2.2 Q 3 2 Q
) Q S 3 3
@) non-propagating b) propagating
unknown unknown

Figure 32 -  4-valued logic for a stable initialization
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14. THREE-VALUED REPRESENTATION AND SIMULATION

In this section we will present three models of
internal representation of three-valued variables and
evaluation of logical functions with these wvariables. Of
course, it is common to all 3 models the use of two bits to
represent one 3-valued signal. However, they differ in how
these bits are stored in the host computer words (the word
formats), in how they are encoded and how logical operations
are performed. In all models we will assume parallel
simulation, i.e., we will “represent many signals in
the same host computer word (see section 11 for the meaning

of these signals represented in parallel).

Model 1 [BRE 76] [THO 75]

In the first model, the three logical wvalues are
encoded as in Fig. 33a, and one signal is stored in each
two adjacent bits of the host computer word, as in Fig. 33b.
If we have two parallel values A and B as in Fig. 33c, we see
that we can directly evaluate C=A.B and C=A+B to obtain logical
AND and OR, but when we try to evaluate the logical NOT using
bit complementation, we obtain a invalid code 10 as complement
of 01. One solution would be, after any complementation, to
search for 10 bit pairs and change them to 01. However, this
solution requires bit string manipulations and is time consuming.
A better solution is to represent the signals as in Fig. 34a, in
which the first bit of each bit pair is in the first half-word,
and the second bit in the second half-word. This representation
does not affect AND and OR operations, but now the NOT operation
is simpler, requiring only a word complementation and an

interchanging of both half-words, as we see in Fig. 34b.
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logic | internal
value code A=0 O O I ¥ u |ooloojoo[||l||lod
(I) (I)(I) B=Oluluu[oo[u]oﬂu]onlod
2 A AB=000 1| u u [oo]Jooloolit1]oi]o1]
not used {510
diencoding A+B=0 1t u I 1 u [oolit]Jor]it]ii]or]
a— '/'\
Azt 1 1t oou [iifiilii]ooloollio})
=
¢) evaluating logic functions
loolitforfuir]
signall ..... sinal4

b ) word format

Figure 33 - 3-valuedlogic, model |

1o 1 | oitl Az 0 u 'l ulooio]oiir ]

Complementing

signal | signal2 signal 3 signal 4 l T ] 500 ]
a) word format Interchanging half-words
A=1 uo v [1ooof 1101}

b ) evaluating logical NOT

Figure 34 - 3-valued logic, alternative to model |

Model 2 [TOK 78] [THO 75]

In the second model, each parallel value A is stored in
two words of the host computer, the Indeterminate Flag Word Ai
and the Value Word Av, as in Fig. 35. If one bit in Ai is O,
then the corresponding bit in Av carries the logié value 0 or 1.
If the bit in Ai is 1, then the bit value is indeterminated,
no matter what is the value of the corresponding bit in Av. As
an alternative, we can use 4-valued signals [TOK 78]: 0, 1, "up"
and "down". In this case, if the bit in Ai is 1, then the
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corresponding bit in Av indicates "up", if equal to 1,

or "down", if equal to 0.

A u u
(down) (up)
value word Av | O | | o ||
indeterminate flagwerd Ai | O | O | | |
Figure 35 - 3-valued logic, model 2 encoding and word format

Logical function evaluation is a little more
cemplicated than in model 1. The following equations must be
used (see examples in Fig. 36):

AND: Cv Av . Bv
Ci=Ai ,Bi+ Ai . Bv + Bi . Av, i.e., the result is

unknown if both values are unknown, or if one is unknown and

M

the other is equal to 1.

OR: Cw Av + Bv

Ci=21i .Bi+2al . Bv +Bi . A&v, i.e., the result is
unknown if both values are unknown, or if one is unknown and
the other is equal to 0. In the example, the term Ai.Bi seems to
be redundant, but it must remain if we represent the unknown

by 1L and not by 01, as in the example.

NOT: Cv Av
Cili="Ad



Model 1 has easier AND and OR operations, while model 2 has
an easier NOT operation and an easier translation from the

external (user) to the internal representation (and vice versa).

o001 1w av:[eoerie]  Ai:[Geeseri ]
8:0 1w tuu  ev:-[emmiee] e =[Feraii ]

Ai.Bi 000001
AitBv ocooooo
AV'Bi ooooto0

C=AB=0 O O | u u Cv=Av.Bv=]oo00100 Ci-

AEB& 000001
Ai.Bv 000001
brpadl,

Av.Bi 001001

i

CZA*B=0 | u | | u Cv=AwBvV: Ci
C=A=lI | | O Ou cveAv:=[11to01 | Ci=Ai
Figure 36 - 3-valued logic, model 2, evaluating logic functions

Model 3 [ALI 78]

Model 3 also uses two words to represent a parallel
value, with corresponding bits in the words representing one
signal. The enconding is shown in Fig. 37. This enconding allows
a simple logical evaluation, according to the following equations:

AND: cl = al . bl, c0O = a0 + b0
OR: * el = al & Bil, eh = &g . bo
NOT: cl = a0 ;s c0 = al.

Fig. 38 shows the correctness o0f these expressions.
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volue| a® a!
(o} N 5)
| 0 |
u | |

notusedf] O O

Figure 37 - 3-valued logic, model 3 encoding

20001 1 ¢ o= [11o01 ] at = [ooo i1}

b=0 1 uluuy bo= [1o1oir ] bt=[orivii |

csa.b =00 Ol u u = a%b° = cl=a'.b! =

c¥a+b 0 | ul | u c=¢.b°* c=at+b = [0 ]

c=@ =1 1100u c>=a' = [ooo0 111 | c=a°= [ 11001 |
Figure 38 - 3-valued logic, evaluating logic functions

Apart from being the model with easier logical
evaluation, this model allows also a very easy calculation
of any logical expressions. If we have a general expression
y = £(x1, X2, ..., xi), we obtain yl from y and y0 from y
simply replacing in the expressions for y and y each xi by xil
and each xi by xi0, as we can see for an EXOR operation in
Fig. 39. It is easy to see that the evaluation expressions
for the operators AND, OR and NOT were obtained from this

general rule.



y'= a'b% a°b!
yo: 0'b'+ a°b®

a) obtaining the
expressions for
y! and y°

Figure 39 -

ac00O0Il1lu

b=01 uluu

y=a®b=01 uOuu

44

o™
b=

o°.+b° 101001
al’b! 000111

75

b) evaluating y! and y°

o'.+b° 00001 |
a° b! oi11001

-y'=louou| I

Evaluating the EXOR function with model 3
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15. TABLE STRUCTURES AND SIMULATION ALGORITHMS

We have seen that gate level simulators which make
accurate modeling of timing conditions are in general event
-driven and have two basic requirements: a scheduling (or
time flow) mechanism and a table structure, which reflects
the network interconnections and element descriptions. In
general this table structure must contain the following
information about each gate (we assume that each device, or

gate, has only one output signal):

- element type - this acts as an index to the element

evaluation subroutine (see section 12);

- logic value of output signal, one bit for 2-valued
simulation, 2 bits for 3-valued simulation;

- propagation delay associated with the output - for more
sophisticated timing models, see section 10.3 for

improvements in the table structure;

- number of inputs - if we consider gates with different
number of inputs as instances of the same gate type, then
this number is a parameter needed by the evaluation subroutine;

- pointer to the element fan-in list;
- number of fan-out elements;
- pointer to the element fan-out list;

The simulation algorithm will be determined by the nature

of the table structure, as we shall see in the next sections.

15.1 Simple data structure [SZY 75]

An immediate way of implementing the table structure
with the requirements before listed is shown in Fig. 40. The
Circuit Description Table - CDT - - has one entry for each gate.
The index in the table is the internal name of the gate and by

this index is the gate referred in the fan-in and fan-out lists

R
BIBLIOTECA
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of other gates. Each entry contains the following information
about the corresponding gate: type, output logic value, number
of inputs, fan-in list pointer, number of outputs, fan-out
list pointer, output propagation delay. The Interconnection
Table - IT - contains the fan-in and fan-out lists which are
pointed out by the CDT. If we use parallel simulation, the
output value is stored normally in a separated Output Value
Table, and no information is needed in the CDT about this
table if we use the same indexing to identify the gates.
Primary inputs, like signal A in Fig. 40, can be considered
as dummy gates, which have an output value and a fan-out ITist,

but no inputs or propagation delay.

| ._:
a) example circuit l—' 4 F_}s_]

‘ output fan-in fan-out
index type value #inputs list #Houtputs list delay ' i
| primary input = = | d 2
2 AND 2 Lq 2 o |
3 NAND 2 e ><: 5
4q OR 2 3
5 inverter | 4
I _ | il . 1 ] ! i
Circuit Description Table Interconection
b) portion of the corresponding table structure Table

Figure 40 - Simple table structure

The simulation algorithm is depicted in Fig. 41,
and has 4 basic steps [TOK 78]: 1) time advancing and output
updating value, in which events scheduled to the current

time cause updating of output values in the CDT; 2) output



47

Step 1 - Time advancing and output value updating
clear Pnopagatian-Stach} | '
nepeat Cuwrrent-Time <« Cwvrent-Time + 1
until any scheduled event exists in the cuwrent time Lo
for every scheduled event in the cwvrent time sLot
do begin set the value of the scheduled event forn output L into
COT (4, output value);
push the output name L into Propagation-Stack;

end

Step 2 - Output value propagation
clearn Evaluation-Stack;
for every output name L Ain Propagation-Stack
do begin with CDT (4, fan-out LisZt pointer), and CDT (£, number of

outputs) find IT (5), IT (f+4), ... IT (f+numbern o4
outputs) ; :

push IT (4), ..., IT (f+number of outputs) into Evaluation-
-Stack;

end

Step 3 - Element evaluation
clear Scheduling-Stack;
for every gate name § An Evaluation-Stack
do begin with CDT (f, gan-in List pointern) and CDT (4, number of
Anputs) g4ind the Linput values (CDT (R, output
value)) to gate §;
with CDT (4, type) and the input values evaluate the gate
(g4nd its futwre output value);
Af puture output value ¢ CDT (f, output value)
then push gate name § and L5 future output value
into Scheduling-Stack;

|

A

end

Step 4 - Event scheduling

for every gate name j 4in Scheduling-Stack

do schedule (gate name, future output value) as an event in the Time
Queue at Cwuent-Time + CDT (4, propagation delay)

)

FIGURE 41 - Simubation algonithm
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propagation, in which we find the gates potentially affected

by output changes in the current time step; 3) element evaluation,
in which we evaluate all gates potentially affected to determine
which of them will really change value in the future; and 4)

event scheduling, in which these new calculated output changes

are scheduled as events in the Time Queue. The algorithm was
clearly separated in these 4 steps only for didatic purposes.
Steps 2, 3 and 4 could be carried as a single step and thus

we would not neet the Evaluation-Stack and the Scheduling-Stack.

15.2 Descriptor based table structure [ULR 69]

In this table structure approach, each element in
the circuit is represented by a descriptor, as in Fig. 42.
This descriptor contains the following information about the
element: pointers to other destinations (Ax+1l to Dw+l) of
the element input signals; pointer to output signal
destination; iﬁput logic values; output logic values; element
type; output propagation delay. The input and output pointers
form a cyclic chain for each signal in the circuit, as can
be seen in Fig. 43 for a simple circuit. In this example
some devices are flip-flops and thus have two output signals.
Numbers in parenthesis in Fig. 43a represent memory cells where
the respective pointers in Fig. 43b are stored. Take for example
element 1. Its output 1 pointer (in memory cell number 1) points
to input 1 of element 1 (memory cell 4), which in turn points
to input 2 of element 3 (memory cell 14), which points to input
1 of element 4 (memory cell 17), which finally points back to
output 1 of element 1. Thus, we have a cyclic chain (shown
in Fig. 43b), which passes through all inputs which receive
the output 1 signal of element 1. Similar chains‘exist for
all other output signals (for example, also is shown the
chain for output 2 of element 2). .



———> Dw+i
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G2 Header ~—— E|
input oufput
Dw logic values |logic value type | delay
gz gaote —>E input # | —> AX+
Ay input # 2 —> By+i
% input # 3 —> Cz+l
input # 4 ——> Dw+i
— By
e——> AX a1
a) a4-input element b) data descriptor
Figure 42 - Data descriptor organization
gate# | descriptor
(1) |H 04
(2) |H 05
@ | @ L
—> b
i Pt (5){2] o2
L
gate # 3 descriptor gate # 4descriptor
(1 {H 09 (I15){H 10
(13) 12) 1o (16) 144
14) 3 (1) (13)] 1 06 U7 0l —
i | . (42| 17 2] oz |
9) > (6) i
o ates 2
(10) (7) degcriptor
>{(17)
gy & 15) (6) {H 13
[9 7) [0l 18
(8) R
(°) | I Il
a) example circuit (10) |2 LS

'b) corresponding table structure

Figure 43 - Descriptor based table structure

This table structure introduces the following
important simplifications in the simulation algorithm steps

of Fig. 41:

5t
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tx
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Step 4 - Suppose that some output signal AO must be scheduled
to time tx. The scheduling is simply performed by exchanging
the contents of the first cell of the signal cyclic chain with
the contents of the established time slot, as can be seen in
Fig. 44a and 44b. Now suppose another signal BO must also be
scheduled to tx. The same scheduling process is used, and we
see the result in Fig. 44c. The scheduling process cuts
temporarily the cyclic chains and transforms them in part

of open-ended extendible lists for the time slots of the

Time Queue.

Time Queue
Ao Bo 15 ] //}'
R (& ] |
Al Bi =7 (B a) before scheduling
v A2 | Bo | signals Ao and Bo
A2
[ .

b ) after scheduling

Al signal Ao
Bi c) after scheduling
signal Be
Figure 44 - Scheduling mechanism in the descriptor

based table structure
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Step 2 - With the list obtained at the time slot, the output
value propagation step is automatically performed, because all
possible gates affected by the signal changes are now contained

in this 1ist.

Step 1 - If we have 2-valued simulation, the output value
updating consists in inverting all signals (outputs and inputs)

which are found in the list formed at the time slot.

Step 3 - Element evaluation is performed for all destinations
found in the list at the time slot. We have stored in each
element descriptor a redundant information about the input
values. These values could be found if we search the chains,
but the redundancy simplifies element evaluation, avoiding the

use of a fan-in list.
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