Integrating a VHDL Dilalect into the
AMPLO Design Framework

por
Fliavio Rech Wagner

RP nQ 137 DEZEMBRO 1990

Trabalho desenvolvido com apoio do GCNPq
e da IBM Brasil

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
PAS-GRADUACARO EM CIENCIA DA COMPUTACAO
A fiv. Osvaldo Aranha, 99
90.210 — Porto Alegre — RS — BRASIL
Telefone: (051i2) 271999
Telexs - (@854) 2680 - CCUF BR
FAX: (0512) 244164
E-MAIL: silvia@sbu.ufrgs.anrs.br
PGCCasbu.ufrgs.anrs.br

Correspondénciat UFRGS-CPGCC
Caixa Postal 415014
90005 — Porto Alegre — RS — BRASIL

SABI

Il

85234588

Editor: Ingrid E. S. Jansch Porto

Sedeciias s SBO /1T

AMPLD

i*“”gwﬁkéh«/ Q%«e~¥uég H oadie S e

TUFRES)
R E@E ?IL'\ 'k \}/:\/-u»;q,; ay .-A: ol

o - . 7, Tl
FIRLIDTRQCY

He CHalialia
7
FL A3MY
/ J
OnRIGHEM ﬂﬁ’l‘h. 1'”‘“(‘ \\
FUNDO: FEORN.

IT CPace

UFRGS

Reitor: Prof: TUISKON DICK

Pro-reitor de Pesquisa e Pos-Graduacao: Prof. ABILIO A. BAETA NEVES

Coordenador do CPGCC:Prof. Ricardo A.
Comissao Coordenadora do CPGCC Prof.
Prof.
Prof?
Prof.
Prof.
Prof.

da L. Reis

Carlos Alberto Heuser
Clesio Saraiva dos Santos
‘Ingrid J. Porto

José Mauro V. de Castilho
Ricardo A. da L. Reis
Sergio Bampi

Bibliotecaria CPGCC/CPD: Margarida Buchmann

Contents

1

3.3 Design methodology management

Introduction

The AMPLO data model

The VHDL data model
Comparing the design languages

Comparing the data models
5.1 Toolintegration
5.2 Design refinement management

5.4 Configuration management

.......................

Definition of a VHDL dialect for AMPLO

Final remarks

i

© oo oy W

Al U IV

Abstract

This report compares the data representation and management models
of the AMPLO design framework and of the hardware description language
VHDL. It is argued that the AMPLO concepts are superior regarding impor-
tant framework requirements, such as the tool integration process, the manage-
ment of the design methodology and of the design refinement processes, and
the efficiency of the design tools. The AMPLO data model is oriented to an
extensible family of uniform languages, that are dedicated to various design
levels and models. The main features of a VHDL dialect which holds the full
language modelling range and fits the AMPLO data model are defined, so that
the language can be integrated into the framework. The dialect imposes a more
restricted discipline to the hierarchical decomposition of systems.

Sumadrio

Este relatério compara os modelos de representagado e geréncia de dados do
ambiente de projeto AMPLO e da linguagem de descrigio de hardware VHDL.
E argumentado que os conceitos de AMPLO sdo superiores em relagio a impor-
tantes requisitos de ambientes de projeto, tais como o processo de integragio
de ferramentas, a geréncia da metodologia de projeto e do processo de refina-
mento de projeto e a eficiéncia das ferramentas de projeto. O modelo de dados
do AMPLO é orientado a uma familia extensivel de linguagens uniformes, que
sao dedicadas a vdrios niveis e modelos de abstracio. Sio estabelecidas as
principais caracteristicas de um dialeto VHDL que mantém todo o espectro
de modelagem da linguagem e se adapta ao modelo de dados do AMPLO, de
modo que a linguagem possa ser integrada ao ambiente. Este dialeto impde
uma disciplina mais restrita para a decomposigdo hierdrquica de sistemas.

1 Introduction

CAD frameworks have been proposed in recent years to support the integration of -
suites of tools for different design levels. They should ideally guarantee automatic
data consistency, offer mechanisms for uniformly integrating new tools, and support
design and data management. Among them, we can mention ADAM, from USC
[1], FACE, from GE [2], OCT, from Berkeley [3], the CADLAB Workstation C\VS
[4], and the IMEC open system architecture [5].

Hardware description languages are valuable tools i design environments. They
are needed in order to cope with the growing complexity of digital systems. HDLs
help design the system architecture from a high abstraction level and guide the
synthesis process down to the physical implementation. VHDL (6] is an IEEE
proposed standard which is gaining wide acceptance in industry and academia.

The AMPLO framework (7] [8] has been under development at the Federal Uni-
versity of Rio Grande do Sul, Brazil, since 1987. Currently, it integrates a family
of uniform HDLs, that are oriented to discrete, structural and behavioral design
levels, and offers a general, multi-level simulation mechanism for these levels.

This report compares the AMPLO and VHDL data representation and man-
agement models. It is shown how the AMPLO concepts are related to important
framework requirements (the tool integration process, the management of the de-
sign methodology and of the design refinement processes, and the efficiency of the
design tools). The AMPLO framework is oriented to an extensible family of com-
patible design languages that are specialized for the various abstraction levels. A
VHDL dialect which holds the full language modelling range and fits the AMPLO
data model is defined, so that it can be integrated into the framework. It im-
poses a more restricted discipline to the hierarchical decomposition of systems. A
simulator for the dialect, to be integrated into the AMPLO milti-level simulation
environment, is under development [9].

Although both systems have been already described elsewhere, a brief review
of their underlying data models is first presented, in order to set the basis for the
comparison.

2 The AMPLO data model

Every digital system is modelled in AMPLO as a net of agencies [10]. An agency
can be a module of any complexity, from a single logical gate to a processor. This is
a strong structural model. Agencies can communicate with each other only through
their interface signals. Data types are assigned to all interface signals.

Agency descriptions can be either primitive or composite. AMPLO requires
the assignment of a design level to a primitive agency as an attribute of it. Special-
ized HDLs define design levels. Constructs from different languages cannot be used
inside the same primitive agency. Composite agencies are nets of occurrences of
other agencies. Occurrences of primitive agencies that are described at various de-
sign levels can be used together in composite descriptions. In order to interconnect
signals at the interfaces of different agencies, type compatibilities between signal
data types of distinct design languages must be defined. Composite agencies are
described through special language constructs, based on the CASCADE language
[11].

In the current AMPLO implementation, three languages are available for prim-
itive descriptions: LACO (a version of LASSO [12]), which supports behavioral
descriptions through control graphs; KAPA (a version of KARL [13]), for struc-
tural RT descriptions; and NILO, oriented to the logic and switch levels. These
languages have uniform syntactical and semantic structure.

Composite descriptions are stored in the database as complex objects [14] so that
the database system explicitly handles all information about the modularity and
hierarchy of design objects. The data structure representing the internal function
of primitive agencies is not represented in the data model. _

Each agency can have many associated design alternatives, corresponding to’
different interface definitions. For each design alternative, any number of design
versions can be described. Versions can be either primitive or composite descrip-
tions.

Composite descriptions can contain either occurrences of alternatives (dynamic
configurations [15]) or occurrences of versions (static configurations). In the
former case, versions must be assigned to the occurrences before the agency descrip-
tion can be used by some design tool. _ -

In a top-down design approach, alternatives can temporarily remain without
associated design versions. An agency, with its first alternative, can be declared
inside the composite description which instantiates it.

The version concept of AMPLO is used with three different purposes: a) rep-
resentations of a module at various design levels; b) multiple implementations for
a module (e.g. a fast ALU, a small ALU, etc); c) design evolution in time, i.e.,
consecutive improvements of the same implementation. Other environments, such
as the DAMASCUS system [16], offer separate management concepts for supporting
these distinct situations.)

3 The VHDL data model

VHDL is a hardware description language developed under a DoD contract and
proposed as a standard by the IEEE. Sev eral commer(:lal products supporting the
language are now available. '

Design objects in VIIDL are modeled as design entities, that are described
through an interface and one or several architectural bodies, corresponding to
many possible representations or implementations for them. Three different design
styles are available in describing architectural bodies. The behavioral style de-
scribes an entity as a collection of communicating processes. The dataflow style
uses concurrent assignment statements. The structural style describes an inter-
connection of components, that are occurrences of other entities. These three design
styles can be used together inside an architectural body. Regular descriptions can
be generated through iteration. Classes of similar entities can be defined through
generic parameters, to which values are assigned when the entity is instantiated.
Generics can be used to describe variable structures, such as interface signals with
variable bit lengths and regular structures of variable size. :

Components used in an architectural body can be bound to a given de31gn
entity through either a configuration specification inside this body or a separate
configuration body. The architectural body can be partially bounded, if only
a design entity is selected for a component; fully bounded, if also an architectural
body of the design entity is selected; or open, if the binding is done later through
a configuration body. :

4 Comparing the design languages

VHDL has been defined as a unique language for supporting many design dimensions
and levels, whereas AMPLO supports an extensible family of languages, each one
specialized for a distinct design level. While in VHDL the user can describe an
. architectural body by mixing three different design styles, a specific language (or
- level) must be assigned to each AMPLO object version. This restriction should not
be meant as a drawback of the AMPLO languages. VHDL has in reality only two
built-in “primitive” design levels (behavior and dataflow), since its structural style
corresponds to the composite versions of AMPLO. Other primitive levels can be
defined in VHDL through user-defined data types, which have no intrinsic semantics,
thus resulting in lesser tool efficiency. This easy-to-use and powerful extension
method, although very useful for obtaining more modelling power, can lead to
a proliferation of dialects, each one representing a particular design level which
is defined for a more efficient tool building. A synthesis program which accepts
any VHDL description as input, for example, is today still unavailable. Synthesis
packages have been implemented, however, for special VHDL subsets or modelling
strategies. As another example, VDL doesn’t have built-in primitive RT structural
constructs, as KARL [13}, which would be ideal for expressing the outcome of a high
level synthesis program.

AMPLO, in turn, allows the integration of any number of problem-specific lan-
guages, that can be defined to simultaneously achieve modelling power and maximal
efficiency of the design tools. The proliferation of languages (or dialects) is as possi-
ble in AMPLO as in VHDL, since the user tends to prefer language constructs and _
models that are problem-oriented. The fundamental differences between both lan-*-
guage approaches lie in two facts. First, the set of languages in AMPLO is known
by the design environment, which can thus use this knowledge for management
purposes, as discussed in the next section. Second, the AMPLO languages have
built-in primitives, that are not implemented by user-defined data types and oper-
ations. This approach promotes language efficiency at the cost of implementation
complexity.

Although it does not offer any mechanism for defining new design languages
with uniform grammar and semantics, ANMPLO does not restrict the use of such
mechanisms. The CONLAN approach [17] could be used for that purpose, as it has
been done for building the CASCADE [11] family of languages.

The languages that are now implemented in AMPLO have been defined, how-
ever, with the restricted goal of validating the framework principles. Therefore,
they lack offering more powerful language mechanisms. Packages and regular struc-
~ tures (of fixed size), that are for example supported in VHDL, would be valuable
in extending the modelling power of the languages and their user-friendliness.

-5 Comparing the data models

Table 1 summarizes the relationships between the AMPLO and VHDL data repre-
sentation and management concepts.

CONCEPTS

VHDL

AMPLO

Main design objects

Design entities

Agencies

Associating many interfaces
to the same design object

Not possible

Alternatives of an agency

Associating many represen-
tations to the same design
object

Architectural bodies of
an entity

Versions of an alternative

Static configurations

Full binding: selection

‘of architectural bodies of

design entities

Instances of versions

Dynamic configurations

Partial binding: selec-
tion of design entities

Instances of alternatives

Not available

itive constructs in a design
object description

Open configurations Components without
binding -
Mixing structure with prim- | Possible Not possible

Defining the design level of
an object representation

Not possible

Mahdatory

Parameterized objects (in-
cluding variable structures)

Available (generics)

Not available

Table 1: Relationship between data management concepts of AMPLO and VHDL

The AMPLO data model shows two main modelling restrictions when compared
to VHDL. First, “structural” descriptions cannot be used together with primitive
constructs from some design level inside the same object description. Second, a
specific language (level) must be associated with each primitive object description,
so that constructs from distinct levels cannot be mixed.

These restrictions have been defined so that the data model better responds
to important framework requirements, namely the tool integration process, the
design methodology management, the design refinement process management, and
the efliciency of the design tools. This last issue has been already discussed in the

previous section. The other topics are considered below.

5.1 Tool integration

The AMPLO data model shows “coarse” granularity. It is based on general objects
(agencies), which do not have intrinsic semantic power, and handles only exter-
nal agency attributes (name, interface signals, design level) and interconnections
between agencies in composite descriptions. The integrity constraints related to
the design primitives are checked by the tools. The AMPLO database is accessed
through an object-oriented interface [18], which allows the manipulation of design
objects (agency alternatives and versions), while maintaining integrity constraints
that relate them to each other.

The coarse granularity of the AMPLO data model implies a “loose” tool inte-
gration, as in the IMEC Open Architecture [5]. The data model is not influenced
by the design levels at which primitive agencies can be described. A loose tool
integration mechanism avoids a severe re-definition of the data schema when a new
. design level, with its repertoire of primitive constructs, is integrated.

Although the AMPLO framework does not yet offer high level user interface fa-
cilities for allowing an easy extension of the design environment, when a new design
level (language) is to be integrated, they could be provided at a low implementation
cost. A new language should be inserted into a list of available design levels and,
eventually, new interface signal data types should be declared, together with their
compatibility with already defined data types.

A “tight” tool integration would be possible with a “fine grain” data model,
which expresses design primitives such as registers and gates and relationships be-
tween them. In this case, each tool access to a data item is mapped into database
. -accesses. ..The database system can check integrity constraints related to the de-
sign primitives. In order to integrate a new design level, the data model must be
severely extended. A fine grain data model can be specified only for geometric and
structural representations, because it is almost impossible to establish relationships
involving behavioral primitives.

Since the structural and functional design styles can be used together inside an
architectural body, a fine grain data model cannot be specified for VHDL. Further-
more, the VHDL language extension mechanism, based on user-defined constructs,
avoids the definition of a semantically rich coarse data model.

3

5.2 Design refinement management

In VHDL, components can be incrementally added to a behavioral description.
-Component ports can be connected to any signals declared inside the architectural
body, also when these signals have no structural meaning. Therefore, an underlying
data model could not exactly represent the system hierarchy, including the precise
interconnections between signals at the interfaces of components, and the associ-
ated database system could only partially control the consistency of the structural
refinement process. This is not the case in AMPLO, where the data model forces a

complete structural decomposition in a one-step procedure.

architecture structure_1i of traffic_light_égﬁtroller is
signal ...;
signal Start_Timer : Data_Type := ’'0’;

component Timer_Section
generic (...);
port (Start : in Data_Type; ...);
end component; ;
i
begin
Controller_Process:
process
begin
case ... is
when ... =>
if ... then
Start_Timer <= transport not Start_Timer;
end if;

end case;
end process;

Timer_Struct : Timer_Section
generic map (...)
port map (Start_Timer, ...);

end structure_1;

Figure 1: Mixing structure with behavior in VHDL

The VHDL fragment in Figure 1, extracted from [19], illustrates this point.
The architectural body structure_! of the entity traffic_light_controller contains a
component Timer_Struct which is bound to the entity Timer. A component port
of Timer_Struct is connected to signal Start_Timer, whose value is set in behavioral
statements of a process declaration, which is not structurally defined inside the
architectural body. »

As an additional point, AMPLO does not allow regular structures of variable
length. Although this is a powerful modelling mechanism, it complicates the man-
agement of the design refinement process and inhibits the exact representation of

(f

the design hierarchy.

5.3 Design methodology managerent

A design methodology [20] is a sequence of transformations in a design space
which is defined by three axes (behavior, structure, and geometry). Points in the
design space correspond to abstraction levels. Design managers have been pro-
posed to enforce particular design methodologies (e.g. in the CMU Cadweld [21]
and USC ADAM [22] environments). ’

Research is being carried on in order to support in AMPLO the definition of
design methodologies through the specification of integrity constraints to be auto-
matically verified by the database system. Such a scheme for implementing design
managers has also been proposed in [23], based on an event-triggering mechanism.

In AMPLO, a design methodology to be specified with such a technique can
only refer to the values of agency attributes that are externally visible. The main
visible -attribute of an AMPLO object is its description level. - The example in
Figure 2 shows a script, inspired by the DECOL (Design Control Language) [24]
templates of the OASIS system from MCNC, which defines the initial part of a
design methodology based on the AMPLO data model. In this script, the “*’ is
to be replaced in a particular design by an object name. The ‘$’ means that any
version can be selected for the referenced object. Design level identifications (or
‘comp’ for composite descriptions) are used as suffixes for the object names.

PROGRAM DataPathSynthesis
INPUT = . LECO
QUTPUT *_dp.KAPA

PROGRAM ControlFlouwSynthesis
INPUT *.LACO, *_dp.KAPA
OUTPUT *_cf.LACO

PROGRAM Composition /
INPUT *_dp.$, *_cf.$ '
OUTPUT *.comp

Figure 2: Design methodology management in AMPLO

Suppose one wants to design a microprocessor mp, which is initially specified
by mp.LACO. A program DataPathSynthesis generates, from this description, an
object mp_dp. KAPA, which contains a structural RT description. From the original
specification mp_LACO and the data path description, a program ControlFlowSyn-
thesis generates mp_cf. LA CO, which contains a control flow graph. A composition

tool finally creates a composite version for mp, containing occurrences of mp_dp and
mp_cf (any versions of both objects could be selected).

Although appropriate for coarse data models, such design methodology control
cannot be achieved in VHDL. Since the language permits the use of many description

styles inside the same architectural body, the design level of an object cannot be
identified.

5.4 Configuration management

VHDL is superior to AMPLO with regard to configuration management. It supports
open configurations, whiéh have no counterpart in AMPLO, but this feature could
be added to AMPLO without conflicting with its remaining data representation
and management concepts. Generics could also be supported in AMPLO, but in a
restricted way: since the AMPLO data model does not handle variable structures,
generics could not be used with such a goal.

6 Definition of a VHDL dialect for AMPLO

A VHDL dialect, called r'VHDL (for “restricted” VHDL) is defined in order to be
integrated into the AMPLO framework. Essentially, the language must match the
- AMPLO data model. This is accomplished by imposing to VHDL a main modelling
restriction: the functional (behavior and dataflow) and structural description styles
must be used in two separated, different types of architectural bodies. The keyword
“architecture” is replaced by “structure” or “function” in the body identification,
depending on its description style.

Functional descriptions can contain the full repertoire of statements that are
related to the behavioral and dataflow styles, but cannot use components. The
structural descriptions cannot use behavioral and concurrent statements, only com-
ponent declarations and instantiations.

Since VHDL entities have interfaces attached to them, they correspond in fact
to AMPLO alternatives. Entity names are thus always followed by an alternative
number. The rVHDL analyzer must recognize identical entity names and associate
the corresponding alternatives to the same agency.

Because AMPLO does not support open configurations, configuration declara-
tions must necessarily be added to the structural descriptions. At least an entity
name must be bound to a component, but an architectural body does not need to
be selected (this corresponds to the AMPLO dynamic configurations). As an ad- -
ditional restriction, generics cannot be used with the purpose of declaring varlable.
structures.

Since AMPLO identifies design versions by numbers, the rVHDL analyzer must
.. maintain .separate tables for converting architectural body identifiers into version
numbers.

Declarations and statements that can be contained in the VHDL entity declara-
tions are stored as AMPLO user-defined attributes, that are associated with agency
alternatives. These attributes are handled by the rVHDL analyzer.

The rVHDL analyzer must also be charged of the management of packages.
These objects, which can be used by several entities, cannot be effectively integrated
into the AMPLO database system without changing its associated data model.

Although the languages that are already integrated in AMPLO have a specific,
uniform grammar, the basic VHDL grammar has not been changed. So, for example,
the designation ‘entity’ is still used instead of ‘agency’.

The use of r'VHDL is illustrated by showing its impact on the design exam-
ple presented in [19]. An agency TLC (‘traffic_light_controller’) is to be designed.
The initial specification for TLC (see Figure 3) creates the agency with its first
design alternative (an interface definition). There are no versions for this agency /
alternative at this moment.

A first version is then created by the architectural body specification (see Fig-
ure 4). It is a primitive description which uses both processes and concurrent

10

entity TLC.1 is
generic (...);
port (...);
end TLC.1;

Figure 3: Definition of agency TLC

assignments.
!
function specificatién of TLC.1 is
signal ...;
begin

Controller_Process:
process
begin

end process;
-= concurrent assignments

Timer_Process:
.process =
begin

end process;

end specification;

Figure 4: Initial functional specification of TLC

The agency is then partitioned into two components, that are bound to alterna-
tives of two new agencies, Timer and TL_Controller (see Figures 5 and 6). AMPLO
supports a top-down approach as VHDL. Therefore, both agencies could have been
declared and created (together with their first design alternatives) later in the com-
ponent declaration inside the TLC description. Since a composite version can refer
to occurrences of alternatives, these two new agencies do not need to have versions
when they are instantiated inside TLC.

Before the new T'LC description can be simulated, however, these versions must
be created. Each agency will have a primitive version, which in fact does not add

11

new design information to the first system specification, since they only encap-
sulate functions that were already specified (see Figures 7 and 8). Because the
struct version of TLC did not select versions for the agencies that are bound to its
components, this must be made through a configuration body.

entity Timer.1 is) entity TL_Controller.1i is
generic (...); port (...);
port (...); end TL_Controller.i;

end Timer.i;

Figure 5: Agencies used in the partitioning of TLC

structure struct of TLC.1 is
signal ...;

component Timer_Section:
generic (...);
port (...);

end component;

component Controller_Section:
port (...);
- ~end -component ;

for Traffic_Light : Controller_Section use
entity TL_Controller.1
port map (...);
end for;

for Timer_Struct : Timer_Section use
entity Timer.1
generic map (...);
port map (...);

end for;

end struct;

Figure 6: Structural partitioning of TLC

12

function Behavior of Timer.i is
begin

Timer_Process:
process (Start)
begin

end process;

end Behavior;

Figure 7: Functional specification of Timer

function Behavior of TL_Controller.l is
signal ...;
begin
Controller_Process:
process
begin .

end process;
-- concurrent assignments

end Behavior;
Figure 8: Functional specification of TL.Controller

The partitioning method adopted in [19] could not be used here. It first encap-
sulated the function of Timer inside a component, and then created a first structure
for TLC. In a second step, also the Contiroller function was isolated into another
component. The first step cannot be replicated in AMPLO, because the TLC de-
scription (see Figure 1) mixes the structural and behavioral styles. This modelling
restriction can be partially avoided. The incremental addition of structure can be
“simulated”, if, at each new design step which introduces structural information,
the remaining behavior is encapsulated within an auxiliary component. Besides
this restriction, however, the design process using rVHDL is essentially the same
as in VHDL, because AMPLO supports concepts that are very similar to entities,
architectural bodies, and components.

The example also shows that FVHDL holds the full modelling range of VHDL,
since all behavioral statements are still available. VHDL user-defined constructs can

13

still be used, if handled by the rVHDL analyzer, without knowledge of the AMPLO
database system. Also VHDL packages can be used in such a way, although it

would be surely better that the AMPLO database handles the relationships between
entities and packages.

14

7 Final remarks

The AMPLO data model has been defined according to important design framework
requirements:

e to permit the enforcement of specific design methodologies,

¢ to allow an easy integration of new tools, specially for new design levels, and
e to control the structural design refinement process.

This model is based on two main modelling propertiés:

¢ the explicit separati‘on between primitive and composite objects, and

¢ the explicit assignment of a design level (or language) to each primitive object
description.

The framework i1s thus oriented to a family of dedicated, compatible design
languages, that have more intrinsic semantic power and allow the construction of
more efficient design tools than systems based on a unique language. The framework
also offers a general simulation mechanism for integrating discrete levels [25] [26],
which is consistent with the data model properties.

Since VHIDL does not fit these data representation and management concepts, a
dialect rtVHDL has been defined in order to be integrated into AMPLO. This dialect
holds the full modelling range of VHDL, but imposes a more restricted discipline to
the hierarchical decomposition of systems. The development of a rVHDL simulator
“o+be integrated into the AMPLO simulation environment is now underway.

The report emphasized the properties of the AMPLO data representation and
management models. On the other hand, VHDL is a much more powerful language
than the AMPLO family of languages, that have been defined with the restricted
purpose of validating the framework principles.

15

References

[1] J. Granacki, D. Knapp, and A. Parker. The ADAM Advanced Design Au-
tomation System: overview, planner, and natural language interface. In 22nd
Design Automation Conference, ACM/IEEE, 1985.

[2] W.D. Smith et al. FACE Core Environment: the model and its applica-

tion in CAE/CAD tool development. In 26ih Design Automation Conference,
ACM/IEEE, 1989.

[3] D.S. Harrison et al. Data management and graphics editing in the Berkeley
Design Environment. In International Conference on Compuler Aided Design,
IEEE, 1986.

[4] K. Gottheil et al. The CADLAB workstation CWS - an open, generic sys-

tem for tool integration. In F.J. Rammig, editor, Tool Inlegration and Design
Environments, North-Holland, 1988.

[5] L. Claesen et al. Open framework of interactive and communicating CAD
tools. In F.J. Rammig, editor, Tool Inlegration and Design Environmenls,
North-Holland, 1988.

(6] IEEE Standard VHDL Language Reference Manual. IEEE, New York, 1988.
[7] F.R. Wagner, C. Freitas, and L.G. Golendziner. The AMPLO sys'te:m - an

integrated environment for digital systems design. In F.J. Rammig, editor,
Tool Iniegration and Design Environmenis, North-Holland, 1988.

| [8] L.G. Golendziner and F.R. Wagner. Modeling digital systems as complex ob-
Jects. In 9th International Symposium on Computer Hardware Descriplion
Languages and their Applications, IFIP, 1989.

[9] J.H. Rech. Um Simulador VHDL para o Sistema AMPLQO. Master’s thesis,
CPGCC / UFRGS, 1990. (under development).

[10] S. Wendt. On the partitioning of computing agencies into communicating
agencies. In GI-NTG Fachlagung - Strukiur und Belrieb von Rechensysiemen,
Springer-Verlag, 1980.

[11] D. Borrione and C. LeFaou. Overview of the CASCADE multi-level hardware
description language and its mixed-mode simulation mechanisms. In 7th Inler-
nalional Symposium on Compuler Hardware Descriplion Languages and their

Applications, IFIP, 1985.

[12] D. Borrione and J.F. Grabowiecki. Informal introduction to LASSO - a lan-
guage for asynchronous systems specification and simulation. In EURO-IFIP,

1979.

16

[13] R. Hartenstein. Fundamentals of Structured Hardware Design. North-Holland,
1977.

[14] R.L. Haskin and R. Lorie. On extending the functions of a relational database
system. In SIGMOD Conference, ACM, 1982.

[15] R.H. Katz et al. Design version management. IEEE Design & Tesl, February
1987.

(16] J.A. Mulle, K.R. Dittrich, and A.M. Kotz. Design management support by
advanced database facilities. In F.J. Rammig, editor, Tool Integralion and
Design Environments, North-Holland, 1988.

[17] R. Piloty and D. Borrione. The CONLAN project: concepts, implementations,
and applications. IEEE Compuler, February 1985.

(18] K. Becker and L.G. Golendziner. Database support for a CAD environment for

digital systems design. In 8th International Conference on Computer Science,
SCCC, Santiago do Chile, 1989.

(19} R. Lipsett, C. Schaefer, and C. Ussery. VHDL: Hardware Descrzptzon and
Design. Kluwer Academic Publishers, 1989.

[20] D. Gajski and R. Kuhn. Guest’s editors introduction. IEEE Computg_:r, De-
cember 1983. -

[21] J. Daniell and S.W. Director. An object-oriented approach to CAD tool,

control within a design framework. In 26th Design Aulomation Conference,
ACM/IEEE, 1989.

[22] D. Knapp and A. Parker. A design utility manager: the ADAM planning
engine. In 23rd Design Automation Conference, ACM/IEEE, 1986.

[23] A.M. Kotz, K.R. Dittrich, and J.A. Mulle. Supporting semantic rules by a gen-
eralized event / trigger mechanism. In Iniernalzonal Conference on Ezxtending

Data Base Technology, Venice, 1988.

[24] K. Kozminski. Design Conirol in MCNC’s Open Architecture Silicon Imple-
mentation System OASIS. Technical Report TR89-54, MCNC, 1989.

[25]) F.R. Wagner. Um ambiente integrado para a simulacdo de sistemas digitais.

In IV Simpdsio Brasileiro de Concepgdo de Circuilos Integrados, SBC, Rio de
Janeiro, 1989.

[26] J.P. Figueiré. Simulador mestre para o sistema AMPLO. Departamento de
' Informatica Aplicada, UFRGS, 1990. (Trabalho de Diplomacao).

17

RP-4371*

RP—-1360

RP--135%

RP—-4134%

RP~413332

RP-41321

RP—-134¢%

RP—-130%

RP-4129¢%

RP-428¢

RP-1278

RP-126%

Relatdrios de Pesauisa

“Integrating a VHDL Dialect into the AMPLO Design
Framework”, dezembro 199¢.
F.R. WAGNER

70 Amblente de Execucio do Experimento em Programacio
Diversitdria”, novembro 1990.
R. CANANI: S.P. ZANI

“Teste Prdtico do Circuito MPC e o seu Ambiente
Técnico”, novembro, 19%99.
.. ROISENBERG: T.V. WABNER: D.A.C. BARONE

”SfNTESE'AUTOMdTICﬁ DE PARTES OPERATIVAS - Ferramentas
resultantes da implementacio do protditipo do

sintet izador automdtico de partes operativas (8aP0Q),
agosta 1990.

Ce De ROSE; Jul..8. JUNIOR

“Preliminar Thoughts on Agents and their
Development”, novembro 19%90.
N.CuR. COSTA

“Towards =a Complete Conceptual model? Petrl Nets and
Ent ltu~Relationship”, agosto 1990.
C.A. HEUSERy E.M. PERES

“pe como Terminal do ED&BO (Uso e Implementagiol”,
agosto 1i99e.
S.D. OLABARRIAGA

“Ferramenta para Apoio & Andlise de Requisitos e
Modelagem de Sistemas de Banco de Dados”, julho 1990.
M.H. YAMAGUTIp 8. LOHp J.M.V. CABTILHO

“Bibllioteca de Células Tranca. Regras CMP -~ Parte
117, julho §1990.
A. REISy E. E. GIFFONI:; F. MORAESs; R. REIS

“Nets of Places and Links? a coherent presentation of
Petri Nets for systems modeling”, Jjulho {99@.
G. RICHTERy C.A. HEUSER

“Integracio do Método T.A.& A. & do Ambiente YPY na
Especificacio e Prototipagio de um SIE”, junho 1990.
NMe EDELWEISSy JaP.M. OLIVEIRA

“Uma abordagem para Prototipagio de Sistemas de Banco
de Dados’”, Jjunho 1i990.
H. STROGULSKI: J.M. CASTILHO; 0.J.C. S0UZA

RP-12Gs

RP~1241

RP~1231

RP~12:

7S

RP-121¢

RP--120:

RP~449s

RP-118:

RP~11i7¢

RP—-4146s

RP--145s

RP~i414u

“Edi¢Ho Revisada da Biblioteca de Células

Tranca”, maio 1990.

FalBa MORAES: A.I. REIS; E.E. GIFFONI; M.S.LUBASZEWSKI:
RoF. GOMES; R.A.L. RELS

“Controle de adprendizagen no Nivel do Meta-
—~Conhecimento”™, abril 1990.
FoeMe QOLIVEIRA

“Documentacio da Concep¢fo de Percanta, Memdria Ram
Estdtica de 1/74 kbits”, margo 199@.

WelowKw HOL.SBACH: L.OJW8. FREIREy R.P. RIBAY e D.A.C.
BARONE

“Semindrio de Epistemologia da Inteligéncia
Artificial, 1989: IA e Racionalidade”, fevereiro de
1990.

A.C.R. COSTA

“GAMINE: Gerenciador para um Ambiente de MinimizagHo e
Edig80o de Fungies Combinacionais”, Jjaneiro de 1990.
Bede RIGOF SuPu. ZANI e T.8. WEBER

“Necessidades Biasicas em Sistemas Operacionais Tempo
Real”, dexembro de 1989.
R.M. FRICKS e I.J. PARTO

“0 Modelo e Revisado”, dezembro de 1989.
C.8. DOS SANTOS

“Descricio Comportamental de Hardware Concorrentes LUma
Introducio a BABEL”, dezembro de 1989.
T.8. WEBER

“Um Algoritmo de Reconhecimento Incremental”, outubro
de 198689.
... ESPERANGCA; E.L.. FAVEROy R.T. PRICE

“Document agio da Concep¢Bo de PEALO (CADMIC) um
Circuito Integrado Pré"leundjdw Controlador de Acesso
Direto & Memdria de um Canal para Sistemas Baseados no
Microprocessador 808%5A”7, outubro 1989.

.« 0.8, FREIREy J.l.. GUNTZEL; R.P. RIBAS, A.L. COSTA,
A.AMe FROHLICH, D.A.C. BARONE

“Vetor Descrig¢fo do Projeto de Hardware de um Siastema
Multimlcroprocessador para Processamento Numér ico”,
agosto 1989.

FaRe NASCIMENTO

“Introducio do Tempo no Ambiente para Desenvolvimento

- de Bancos de Dados Dedutivos”, julho 1989.

N. EDELWEISS

