
' b ^ v

>>

Integrating a VHDL DIalect into the
AMPLO Design FraMework

por

Flávio Rech Uagner

RP nS i37 DEZEMBRO 1990

Trabalho desenvolvido COM apoio do CNPq
e da IBM Brasil

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
PÓ8-6RADUACS0 EM CIÊNCIA DA COMPUTAÇÃO
Av- Osvaldo Aranhtt, 99
90.210 - Porto Alegre - RS - BRASIL
Telefones (0512) 271999
TelexS («51> 2680 - CCUF BR
FAXs (0512) 244164
E-MAILs si Iviá8sbu.u-Frgs.anrs.br

P6CC8sbu.ufrgs.anrs.br

Correspondências UFRBS-CPOCC
Caixa Postal 1501
90001 - Porto Alegre - RS BRASIL

SABj

UFRGS 05234588

Editor: Ingrid E. S. Jansçh Porto

sòo / r r
A-M P l o

J - » - — C i - o ^ J ; |-j c--\.c::è<.<.y> ,..

F Bt o S.
iS-. li.-1'

F I B Z . í n T W Ç
M» CBSMMSÁ

f L 3 C ? 3 3 3
D -x."'.; !

/ /
ORIGEM:

x>
DATA: _
lU/ 1 / 9 \

inUiiCO:
e r á (O O Q O O

FUNDO: 1 rORN.:

X X 1 C P 6 C C

UFSGS
Réítor; Prof: TUISKON DICK
Pró-reitor de Pesquisa e PÓs-Graduação: Prof. ABÍLIO A. BAETA NEVES
Coordenador do CPGCC:Prof. Ricardo A. da L. Reis
Comissão Coordenadora do CPGCC; Prof. Carlos Alberto Heuser

Prof. Clesio Saraiva dos Santos
Prof? Ingrid J. Porto
Prof. José Mauro V. de Castilho
Prof. Ricardo A. da L. Reis
Prof. Sérgio Bampi

Bibliotecária CPGCC/CPD: Margarida Buchmann

Conten t s
1 I n t r o d u c t i o n 1

2 T h e A M P L O d a t a m o d e l 2

3 T h e V H D L d a t a m o d e l 3

4 C o m p a r i n g t h e des ign l a n g u a g e s 4

5 C o m p a r i n g t h e d a t a m o d e l s 5
5.1 Tool integratlon 6
5.2 Design refinement management 6
5.3 Design methodology management 8
5.4 Configuration management 9

6 D e f i n i t i o n of a V H D L d ia lec t f o r A M P L O 10

7 F i n a l r e m a r k s 15

11

AW u !!' I 3 1

Abst rac t

This report compares the da ta representation and management models
of the A M P L O design framework and of the hardware description language
\ HDL. It is argued tha t the A M P L O concepts are superior regarding impor-
tant framework requirements, such as the tool integration process, the manage-
ment of the design methodology and of the design refinement processes, and
the eíRciency of the design tools. The A M P L O da t a model is oriented to an
extensible family of uniform languages, tha t are dedicated to various design
leveis and models. The main features of a VHDL dialect which holds the full
language modelling range and fits the A M P L O da ta model are defined, so tha t
the language can be integrated into the framework. The dialect imposes a more
restricted discipline io the hierarchical decomposition of systems.

S u m á r i o

Este relatório compara os modelos de representação e gerência de dados do
ambiente de projeto A M P L O e da linguagem de descrição de hardware VHDL.
E argumentado que os conceitos de A M P L O são superiores em relação a impor-
tantes requisitos de ambientes de projeto, tais como o processo de integração
de ferramentas, a gerência da metodologia de projeto e do processo de refina-
mento de projeto e a eficiência das ferramentas de projeto. O modelo de dados
do A M P L O é orientado a uma família extensível de linguagens uniformes, que
são dedicadas a vários níveis e modelos de abstração. São estabelecidas as
principais características de um dialeto VHDL que mantém todo o espectro
de modelagem da linguagem e se adapta ao modelo de dados do A M P L O , de
modo que a linguagem possa ser integrada ao ambiente. Este dialeto impõe
uma disciplina mais restri ta para a decomposição hierárquica de sistemas.

1 In t roduc t i on
CAD frameworks have been proposed in recent years to support the integration of
suites of tools for different design leveis. They should ideally guarantee automatic
da ta consistency, oífer mechanisms for uniformly integrating new tools, and support
design and data management. Among them, we can mention ADAM, from USC
[1], FACE, from GE [2], OCT, from Berkeley [3], the CADLAB Workstation CWS
[4], and the IMEC open system architecture [5].

Hardware description languages are valuable tools iri design environments. They
are needed in order to cope with the growing complexity of digital systems. HDLs
help design the system architecture from a high abstraction levei and guide the
synthesis process down to the physical implementation. VHDL [6] is an IEEE
proposed standard which is gaining vvide acceptance in industry and academia.

The AMPLO framework [7] [8] has been under development at the Federal Uni-
versity of Rio Grande do Sul, Brazil, since 1987. Currently, it integrates a family
of uniform HDLs, that are oriented to discrete, structúral and behavioral design
leveis, and oífers a general, multi-level simulation mechanism for these leveis.

This report compares the AMPLO and VHDL data representation and man-
agement models. It is shown how the AMPLO concepts are related to important
framework requirements (the tool integration process, the management of the de-
sign methodology and of the design refinement processes, and the efRciency of the
design tools). The AMPLO framework is oriented to an extensible family of com-
patible design languages that are specialized for the various abstraction leveis. A
VHDL dialect which holds the full language modelling range and fits the AMPLO
data model is defined, so that it can be integrated into the framework. It im-
poses a more restricted discipline to the hierarchical decomposition of systems. A
simulator for the dialect, to be integrated into the AMPLO mülti-level simulation
environment, is under development [9].

Although both systems have been already described elsewhere, a brief review
of their underlying data models is first presented, in order to set the basis for the
comparison.

2 T h e A M P L O d a t a mode l
Every digital system is modelled in AMPLO as a n e t of agenc ies [10]. An agency
can be a module of any complexity, from a single logical gate to a processor. This is
a strong structural model. Agencies can communicate with each other only through
their interface signals. Data types are assigned to ali interface signals.

Agency descriptions can be either p r i m i t i v e or c o m p o s i t e . AMPLO requires
the assignment of a design levei to a primitive agency as an at tr ibute of it. Special-
ized HDLs define design leveis. Constructs from diíferent languages cannot be used
inside the same primitive agency. Composite agencies are nets of occurrences of
other agencies. Occurrences of primitive agencies that are described at various de-
sign leveis can be used together in composite descriptions. In order to interconnect
signals at the interfaces of difFerent agencies, type compatibilities between signal
da ta types of distinct design languages must be defined. Composite agencies are
described through special language constructs, based on the CASCADE language
[11]-

In the current AMPLO implementation, three languages are available for prim-
itive descriptions: LAÇO (a version of LASSO [12]), which supports behavioral
descriptions through control graphs; KAPA (a version of KARL [13]), for struc-
tural RT descriptions; and NILO, oriented to the logic and switch leveis. These
languages have uniform syntactical and semantic structure.

Composite descriptions are stored in the database as complex objects [14] so that
the database system explicitly handles ali information about the modularity and
hierarchy of design objects. The data structure representing the internai function
of primitive agencies is not represented in the data model.

Each agency can have many associated des ign a l t e r n a t i v e s , corresponding to
difFerent interface definitions. For each design alternative, any number of d e s i g n
v e r s i o n s can be described. Versions can be either primitive or composite descrip-
tions.

Composite descriptions can contain either occurrences of alternatives (d y n a m i c
c o n f i g u r a t i o n s [15]) or occurrences of versions (s t a t i c c o n f i g u r a t i o n s) . In the
former case, versions must be assigned to the occurrences before the agency descrip-
tion can be used by some design tóol.

In a top-down design approach, alternatives can temporarily remain without
associated design versions. An agency, with its first alternative, can be declared
inside the composite description which instantiates it.

The version concept of AMPLO is used with three difFerent purposes: a) rep-
resentations of a module at various design leveis; b) multiple implementations for
a module (e.g. a fast ALU, a small ALU, etc); c) design evolution in time, i.e.,
consecutive improvements of the same implementation. Other environments, such
as the DAMASCUS system [16], ofFer separate management concèpts for supporting
these distinct situations.

3 T h e V H D L d a t a model
VHDL is a hardware description language developed under a DoD contract and
proposed as a standard by the IEEE. Several comrnercial products supporting the
language are now available.

Design objects in VIIDL are modeled as des ign e n t i t i e s , that are described
through an i n t e r f a c e and one or several a r c h i t e c t u r a l b o d i e s , corresponding to
many possible representations or implerhentations for them. Three diíTerent design
styles are available in describing architectural bodies. The b e h a v i o r a l style de-
scribes an entity as a collection of communicating processes. The d a t a f l o w style
uses concurrent assignment statements. The s t r u c t u r a l style describes an inter-
connection ofcomponents, that are occurrences of other entities. These three design
styles can be used together inside an architectural body. R e g u l a r descriptions can
be generated through iteration. Classes of similar entities can be defined through
g e n e r i c p a r a m e t e r s , to which vaiues are assigned when the entity is instantiated.
Generics can be used to describe variable structures, such as interface signals with
variable bit lengths and regular structures of variable size.

Components used in an architectural body can be bound to a given design
entity through either a configuration specification inside this body or a separate
c o n f i g u r a t i o n b o d y . The architectural body can be p a r t i a l l y b o u n d e d , if only
a design entity is selected for a component; f u l l y b o u n d e d , if also an architectural
body of the design entity is selected; or o p e n , if the binding is done later through
a configuration body.

4 Compar ing t h e design languages
VHDL has been defined as a unique language for supporting nnany design dimensions
and leveis, whereas AMPLO supports an extensible family of languages, each one
specialized for a distinct design levei. While in VHDL the user can describe an
architectural body by mixing three different design styles, a specific language (or
levei) must be assigned to each AMPLO object version. This restriction should not
be meant as a drawback of the AMPLO languages. VHDL has in reality only tvvo
built-in "primitive" design leveis (behavior and dataflow), since its structural style
corresponds to the composite versions of AMPLO. Other primitive leveis can be
defined in VHDL through user-defined data types, which have no intrinsic semantics,
thus resulting in lesser tool efficiency. This easy-to-use and powerful extension
method, although very useful for obtaining more modelling power, can lead to
a proliferation of dialects, each one representing a particular design levei which
is defined for a more efficient tool building. A synthesis program which accepts
any VHDL description as input, for example, is today still unavailable. Synthesis
packages have been implemented, however, for special VHDL subsets or modelling
strategies. As another example, VHDL doesn't have built-in primitive RT structural
constructs, as KARL [13], which would be ideal for expressing the outcome of a high
levei synthesis program.

AMPLO, in turn, allows the integration of any number of problem-specific lan-
guages, that can be defined to simultaneously achieve modelling power and maximal
efficiency of the design tools. The proliferation of languages (or dialects) is as possi-
ble in AMPLO as in VHDL, since the user tends to prefer language constructs and
models that are problem-oriented. The fundamental differences between both lan-'
guage approaches lie in two facts. First, the set of languages in AMPLO is known
by the design environment, which can thus use this knowledge for management
purposes, as discussed in the next section. Second, the AMPLO languages have
built-in primitives, that are not implemented by user-defined da ta types and oper-
ations. This approach promotes language eflRciency at the cost of implementation
complexity.

Although it does not offer any mechanism for defining new design languages
with uniform grammar and semantics, AMPLO does not restrict the use of such
mechanisms. The CONLAN approach [17] could be used for that purpose, as it has
been done for building the CASCADE [11] family of languages.

The languages that are now implemented in AMPLO have been defined, how-
ever, with the restricted goal of validating the framework principies. Therefore,
they lack oífering more powerful language mechanisms. Packages and regular struc-
tures (of fixed size), that are for example supported in VHDL, would be valuable
in extending the modelling power of the languages and their user-friendliness.

5 C o m p a r i n g t he d a t a models
Table 1 summarizes the relationships between the AM,PLO and VHDL data repre-
sentation and management concepts.

C O N C E P T S VHDL AMPLO
Main design objects Design entities Agencies
Associating many interfaces
to the same design object

Not possible Alternatives of an agency

Associating many represen-
tations to the same design
object

Architectural bodies of
an entity

Versions of an alternative

Static configurations Full binding: selection
of architectural bodies of
design entities

Instances of versions

Dynamic configurations Partia! binding: selec-
tion of design entities

Instances of alternatives

Open configurations Components without
binding

Not available

Mixing structure with prim-
itive constructs in a design
object description

Possible Not possible

Defining the design levei of
an object representation

Not possible Mandatory

Parameterized objects (in-
cluding variable structures)

Available (generics) Not available

Table 1: Relationship between data management concepts of AMPLO and VHDL

The AMPLO data model shows two main modelling restrictions when compared
to VHDL. First, "structural" descriptions cannot be used together with primitive
constructs from some design levei inside the same object description. Second, a
specific language (levei) must be associated with each primitive object description,
so that constructs from distinct leveis cannot be mixed.

These restrictions have been defmed so that the data model bettef responds
to important framework requirements, namely the tool integration process, the
design methodology management, .the design refinement process management, and
the efficiency of the design toòls. This last issue has been already discussed in the
previous section. The other topics are considered below.

5.1 Tool in tegra t ion
The AMPLO data model shows "coarse" granularity. It is based on general objects
(agencies), which do not have intrinsic semantic power, and handles only exter-
nai agency attr ibutes (name, interface signals, design levei) and interconnections
between agencies in composite descriptions. The integrity constraints related to
the design primitives are checked by the tools. The AMPLO database is accessed
through an object-oriented interface [18], which allows the manipulation of design
objects (agency alternatives and versions), while maintaining integrity constraints
that relate them to each other.

The coarse granularity of the AMPLO da ta model implies a "loose" tool inte-
gration, as in the IMEC Open Architecture [5]. The da ta model is not influenced
by the design leveis at which primitive agencies can be described. A loose tool
integration mechanism avoids a severe re-definition of the da ta schema when a new
design levei, with its repertoire of primitive constructs, is integrated.

Although the AMPLO framework does not yet ofFer high levei user interface fa-
cilities for allowing an easy extension of the design environment, when a new design
levei (language) is to be integrated, they could be provided at a low implementation
cost. A new language should be inserted into a list of available design leveis and,
eventually, new interface signal da ta types should be declared, together with their
compatibility with already defined data types.

A "tight" tool integration would be possible with a "fine grain" da ta model,
which expresses design primitives such as registers and gates and relationships be-
tween them. In this case, each tool access to a da ta item is mapped into database
accfisses. The database system can check integrity constraints related to the de-
sign primitives. In order to integrate a new design levei, the da ta model must be
severely extended. A fine grain da ta model can be specified only for geometric and
structural representations, because it is almost impossible to establish relationships
involving behavioral primitives.

Since the structural and functional design styles can be used together inside an
architectural body, a fine grain da ta model cannot be specified for VHDL. Further-
more, the VHDL language extension mechanism, based on user-defined constructs,
avoids the definition of a semantically rich coarse da ta model.

5.2 Design re f inement m a n a g e m e n t
In VHDL, components can be incrementally added to a behavioral description.
Component ports can be connected to any signals declared inside the architectural
body, also when these signals have no structural meaning. Therefore, an underlying
da ta model could not exactly represent the system hierarchy, including the precise
interconnections between signals at the interfaces of components, and the associ-
ated database system could only partially control the consistency of the s tructural
refinement process. This is not the case in AMPLO, where the da ta model forces a

6

complete structural decomposition in a one-step procedure.

architecture structure_l of traffic_light_controller is
signal ...;
signal Start_Tinier : Data_Type := 'O';

component Tiiner_Section
generic (...);
port (Start : in Data_Type; ...);

end component;
I

begin
Controller_Process:
process
begin

case ... is
when ... =>

if ... then
Start_Timer <= transport not Start_Timer;

end if;

end case;

end process;

Timer_Struct : Timer_Section
generic map (...)
port map (Start_Timer, ...);

end structure_l;

Figure 1: Mixing structure with behavior in VHDL

The VHDL fragment in Figure 1, extracted from [19], illustrates this point.
The architectural body s i ruc iur t - i of the entity irafficJighLcontroller contains a
component T imerS t ruc i which is bound to the entity Timer. A component port
of T imerS t ruc i is connected to signal SiarLTimer, whose value is set in behavioral
s tatements of a process declaration, which is not structurally defined inside the
architectural body.

As an additional point, AMPLO does not allow regular structures of variable
length. Although this is a powerful modelling mechanism, it complicates the man-
agement of the design refinement process and inhibits the exact representation of

the design hierarchy.

5.3 Design me thodo logy m a n a g e m e n t
A des ign m e t h o d o l o g y [20] is a sequence of transformations in a design space
which is defined by three axes (behavior, structure, and geometry). Points in the
design space correspond to abstraction leveis. D e s i g n m a n a g e r s have been pro-
posed to enforce particular design methodologies (e.g. in the CMU Cadweld [21]
and USC ADAM [22] environments).

Research is being carried on in order to support in AMPLO the definition of
design methodologies through the specification of integrity constraints to be auto-
matically verified by the database system. Such a scheme for implementing design
managers has also been proposed in [23], based on an event-triggering mechanism.

In AMPLO, a design methodology to be specified with such a technique can
only refer to the values of agency at t r ibutes that are externally visible. The main
visible at t r ibute of an AMPLO object is its description levei. The example in
Figure 2 shows a script, inspired by the DECOL (Design Control Language) [24]
templates of the OÁSIS system from MCNC, which defines the initial part of a
design methodology based on the AMPLO data model. In this script, the is
to be replaced in a particular design by an object name. The means that any
version can be selected for the referenced object. Design levei identifications (or
'comp' for composite descriptions) are used as suffixes for the object names.

PROGRAM DataPathSynthesis
IMPÜT *.LAÇO
QUTPÜT •_dp.KAPA

PROGRAM ControlFlowSynthesis
INPUT •.LAGO, •.dp.KAPA
OÜTPUT +_cf.LAGO

PROGRAM Composition
INPUT •_dp.$, •_cf.$
OUTPUT •.comp

Figure 2: Design methodology management in AMPLO

Suppose one wants to design a microprocessor mp, which is initially specified
by mp.LAÇO. A program DataPathSynthesis generates, from this description, an
object mp-dp.KAPA, which contains a structural RT description. From the original
specification mp-LAÇO and the da ta path description, a program ControlFlowSyn-
thesis generates mp-cf.LAÇO, which contains a control flow graph. A composition

8

tool finally creates a composite version for mp, containlng occurrences of mp-dp and
mp_c/(any versions of both objects could be selected).

Although appropriate for coarse data models, such design methodology control
cannot be achieved in VHDL. Since the language permits the use of many description
styles inside the same architectural body, the design levei of an object cannot be
identified.

5.4 Conf igura t ion m a n a g e m e n t t
VHDL is superior to AMPLO with regard to configuration management. It supports
open configurations, which have no counterpart in AMPLO, but this feature could
be added to AMPLO without confiicting with its remaining da ta representation
and management concepts. Generics could also be supported in AMPLO, but in a
restricted way: since the AMPLO data model does not handle variable structures,
generics could not be used with such a goal.

6 Definit ion of a V H D L dialect for A M P L O
A VHDL dialect, called rVHDL (for "restricted" VHDL) is defined in order to be
integrated into the AMPLO framework. Essentially, the language must match the
AMPLO data model. This is accomplished by imposing to VHDL a main modelling
restriction: the functional (behavior and dataflovv) and structural description styles
must be used in tvvo separated, different types of architectural bodies. The key word
"architecture" is replaced by "structure" or "function" in the body identification,
depending on its description style.

Functional descriptions can contain the full repertoire of statements that are
related to the behavioral and dataflow styles, but cannot use components. The
structural descriptions cannot use behavioral and concurrent statements, only com-
ponent declarations and instantiations.

Since VHDL entities have interfaces attached to them, they correspond in fact
to AMPLO alternatives. Entity names are thus alvvays followed by an alternative
number. The rVHDL analyzer must recognize identical entity names and associate
the corresponding alternatives to the same agency.

Because AMPLO does not support open configurations, configuration declara-
tions must necessarily be added to the structural descriptions. At least an entity
name must be bound to a component, but an architectural body does not need to
be selected (this corresponds to the AMPLO dynamic configurations). As an ad-
ditional restriction, generics cannot be used with the purpose of declaring variable
structures.

Since AMPLO identifies design versions by numbers, the rVHDL analyzer must
mainiain .separate tables for converting architectural body identifiers into version
numbers.

Declarations and statements that can be contained in the VHDL entity declara-
tions are stored as AMPLO user-defined attributes, that are associated with agency
alternatives. These attributes are handled by the rVHDL analyzer.

The rVHDL analyzer must also be charged of the management of packages.
These objects, which can be used by several entities, cannot be effectively integrated
into the AMPLO database system without changing its associated data model.

Although the languages that are already integrated in AMPLO have a specific,
uniform grammar, the basic VHDL grammar has not been changed. So, for example,
the designation 'entity' is still used instead of 'agency'.

The use of rVHDL is illustrated by showing its impact on the design exam-
ple presented in [19]. An agency TLC ('traffic_light_controller') is to be designed.
The initial specification for TLC (see Figure 3) creates the agency with its first
design alternative (an interface definition). There are no versions for this agency /
alternative at this moment.

A first version is then created by the architectural body specification (see Fig-
ure 4). It is a primitive description which uses both processes and concurrent

10

entity TLC.l is
generic (...);
port (...);

end TLC.l;

Figure 3: Definition of agency TLC

assignments.

function specificatión of TLC.l is
signal ...;

begin

Controller_Process:
process
begin

end process;

— concurrent assignments

Tiiner_Process:
process

begin

end process;

end specification;

Figure 4: Initial functional specification of TLC

The agency is then partitioned into two components, that are bound to alterna-
tives of two new agencies, Timerand TL-ConiroUer (see Figures 5 and 6). AMPLO
supports a top-down approach as VHDL. Therefore, both agencies could have been
declared and created (together with their first design alternatives) later in the com-
ponent declaration inside the T i C description. Since a composite version can refer
to occurrences of alternatives, these two new agencies do not need to have versions
when they are instantiated inside TLC.

Before the new TZ/C description can be simulated, however, these versions must
be created. Each agency will have a primitive version, which in fact does not add

11

new design information to the first system specification, since they only encap-
sulate functions that were already specified (see Figures 7 and 8). Because the
siruct version of TLC did not select versions for the agencies that are bound to its
components, this must be made through a configuration body.

entity Timer.l is entity TL_Controller.l is
generic (...); port (...);
port (...); end TL_Controller.1;

end Timer.i;

Figure 5: Agencies used in the partitioning of TLC

structure struct of TLC.1 is
signal ...;

component Timer_Section:
generic (...);
port (...);

end component;

component Controller_Section:
port (...);

'end-component;

for Traffic_Light ; Controller_Section use
entity TL_Controller.1
port map (...);

end for;

for Timer_Struct : Timer_Section use
entity Timer.l
generic map (...);
port map (...);

end for;

end struct;

Figure 6: Structural partitioning of TLC

12

function Behavior of Timer.l is
begin

Timer_Process:
process (Start)
begin

end process;

end Behavior;

Figure 7: Functional specification of Timer

function Behavior of TL_Controller.1 is
signal ...:

begin
Controller_Process:
process
begin

end process;
— concurrent assignments

end Bchávlôr;

Figure 8: Functional specification of TL.Controller

The partitioning method adopted in [19] could not be used here. It first encap-
sulated the function of Timer inside a component, and then created a first structure
for TLC. In a second step, also the ConiroUer function was isolated into another
component. The first step cannot be replicated in AMPLO, because the TZC de-
scription (see Figure 1) mixes the structural and behavioral styles. This modelling
restriction can be partially avoided. The incrementai addition of structure can be
"simulated", if, at each new design step which introduces structural information,
the remaining behavior is encapsulated within an auxiliary component. Besides
this restriction, however, the design process using rVHDL is essentially the same
as in VHDL, because AMPLO supports concèpts that are very similar to entities,
architectural bodies, and components.

The example also shows that rVHDL holds the full modelling range of VHDL,
since ali behavioral statements are still available. VHDL user-defined constructs can

13

still be used, if handled by the rVHDL analyzer, without knowledge of the AMPLO
database system. Also VHDL packages can be used in such a way, although it
would be surely better that the AMPLO database handles the relationships between
entities and packages.

14

7 Final remarks
The AMPLO data model has been defined accordlng to Important design framework
requirements:

• to permit the enforcement of specific design methodologies,

• to allow an easy integration of new tools, specially for new design leveis, and

• to control the structural design refinement process.

This model is based on two main modelling properties:

• the explicit separation between primitive and composite objects, and

• the explicit assignment of a design levei (or language) to each primitive object
description.

The framework is thus oriented to a family of dedicated, compatible design
languages, that have more intrinsic semantic power and allow the construction of
more efficient design tools than systems based on a unique language. The framework
also ofFers a general simulation mechanism for integrating discrete leveis [25] [26],
which is consistent with the data model properties.

Since VHDL does not fit these data representation and management concepts, a
dialect rVHDL has been defined in order to be integrated into AMPLO. This dialect
holds the full modelling range of VHDL, but imposes a more restricted discipline to
the hierarchical decomposition of systems. The development of a rVHDL simulator
Io fec-integrated kl to the AMPLO simulation environment is now underway.

The report emphasized the properties of the AMPLO data representation and
management models. On the other hand, VHDL is a much more powerful language
than the AMPLO family of languages, that have been defined with the restricted
purpose of validating the framework principies.

15

References
[1] J. Granacki, D. Knapp, and A. Parker. The ADAM Advanced Design Au-

tomation System: overview, planner, and natural language interface. In 22nd
Design Auiomation Conference, ACM/IEEE, 1985.

[2] W.D. Smith et al. FACE Core Environment: the model and its applica-
tion in CAE/CAD tool development. In 26ih Design Auiomation Conference,
ACM/IEEE, 1989.

[3] D.S. Harrison et al. Data management and graphics editing in the Berkeley
Design Environment. In International Conference on Computer Aided Design,
IEEE, 1986.

[4] K. Gottheil et al. The CADLAB workstation CWS - an open, generic sys-
tem for tool integration. In F.J. Rammig, editor, Tool Integration and Design
Environments, North-Holland, 1988.

[5] L. Claesen et al. Open framework of interactive and communicating CAD
tools. In F.J. Rammig, editor, Tool Integration and Design Environments,
North-Holland, 1988.

[6] IEEE Standard VHDL Language Reference Manual. IEEE, New York, 1988.

[7] F.R. Wagner, C. Freitas, and L.G. Golendziner. The AMPLO system - an
integrated environment for digital systems design. In F.J. Rammig, editor,
Tool Integration and Design Environments, North-Holland, 1988.

[8] L.G. Golendziner and F.R. Wagner. Modeling digital systems as complex ob-
jects. In 9ih International Symposium on Computer Hardware Description
Languages and their Applications, IFIP, 1989.

[9] J.H. Rech. Um Simulador VHDL para o Sistema AMPLO. Master's thesis,
CPGCC / UFRGS, 1990. (under development).

[10] S. Wendt. On the partitioning of computing agencies into communicating
agencies. In GI-NTG Fachtagung - Struktur nnd Betrieb von Rechensystemen,
Springer-Verlag, 1980.

[11] D. Borrione and C. LeFaou. Overview of the CASCADE multi-levei hardware
description language and its mixed-mode simulation mechanisms. In 7th Inter-
national Symposium on Computer Hardware Description Languages and their
Applications, IFIP, 1985.

[12] D. Borrione and J.F. Grabowiecki. Informal introduction to LASSO - a lan-
guage for asynchronous systems specification and simulation. In EURO-IFIP,
1979.

16

[13] R. Hartenstein. Fundamentais of Siructured Hardware Design. North-Holland,
1977.

[14] R.L. Haskin and R. Lorie. On extending the functions of a relational database
system. In SIGMOD Conference, ACM, 1982.

[15] R.II. Katz et al. Design version management. IEEE Design & Tesi, February
1987.

[16] J.A. Mulle, K.R. Dittrich, and A.M. Kotz. Design management support by
advanced database facilities. In F.J. Rammig, editor, Tool Integralion and
Design Environmenis, North-Holland, 1988.

[17] R. Piloty and D. Borrione. The CONLAN project: concepts, implementations,
and applications. IEEE Computer, February 1985.

[18] K. Becker and L.G. Golendziner. Database support for a CAD environment for
digital systems design. In 8th International Conference on Computer Science,
SCCC, Santiago do Chile, 1989.

[19] R. Lipsett, C. Schaefer, and C. Ussery. VHDL: Hardware Description and
Design. Kluwer Academia Publishers, 1989.

[20] D. Gajski and R. Kuhn. Gues f s editors introduction. IEEE Computer, De-
cember 1983.

[21] J. Daniell and S.W. Director. An object-oriented approach to CAD tooL
control within a design framework. In ê6th Design Automation Conference,
ACM/IEEE, 1989.

[22] D. Knapp and A. Parker. A design utility manager: the ADAM planning
engine. In 23rd Design Automation Conference, ACM/IEEE, 1986.

[23] A.M. Kotz, K.R. Dittrich, and J.A. Mulle. Supporting semantic rules by a gen-
eralized event / trigger mechanism. In Internatiojial Conference on Extending
Data Base Technology, Venice, 1988.

[24] K. Kozminski. Design Control in M C N C s Open Architecture Silicon Imple-
mentation System OÁSIS. Technical Report TR89-54, MCNC, 1989.

[25] F.R. Wagner. Um ambiente integrado para a simulação de sistemas digitais.
In IV Simpósio Brasileiro de Concepção de Circuitos Integrados, SBC, Rio de
Janeiro, 1989.

[26] J.P. Figueiró. Simulador mestre para o sistema AMPLO. Departamento de
Informática Aplicada, UFRGS, 1990. (Trabalho de Diplomação).

17

íiis. Eí-fisaiilaa

RP-Í37 s "Integrating a VHDL Dialect int;o the AMPLO Design
Fraiwework", dezembro 1990.
F.R. WAGNER

RP~1365 "O Ambiente de Execução do EKperimento em Programação
D i vers i tár i a" , novembro 1.990»
R. CANANIj S.P. ZANI

RP-Í35S "Teste Prático do Circuito MPC e o seu Ambiente
Técnico", novembro, 1990«
L. ROISENBERGj T.V. WAGNER í D.A.C. BARONE

RP-1348 "SÍNTESE- AUTOMÁTICA DE PARTES OPERATIVAS - Ferramentas
resultantes da implementação do protótipo do
sintetisador automático de partes operativas (SAPO),
mgosto i990n
C. De ROSE; J.L.S. JÚNIOR

RP-133S "Preliminar Thougl^its on Agents and tiieir
Development", novembro 1990.
A.C.R. COSTA

RP-1328 "Towards a Complete Conceptual models Petri Nets and
EntIty-RelationshIp", agosto 1990.
C.A. HEUSER? E.M. PERES

RP-13ÍS "PC como Terminal do ED680 <Uso e Implementação)",
agosto 1990.
S.D. OLABARRIAGA

RP-Í30S "Ferramenta para Apoio à Análise de Requisitos e
Modelagem de Sistemas de Banco de Dados", julho 1990»
M.H. YAMAGUTlf S. LOHü J.M.V. CASTILHO

RP-129s "Biblioteca de Células Tranca. Regras CMP - Parte
II", julho 1990.
A. REIS? E. E. GIFFONI; F. MORAES? R. REIS

RP-128S "Nets of Places and LinUss a coherent presentation of
Petri Nets for systems modeling". Julho 1990.
G. RICHTER? C.A. HEUSE1-?

RP~i278 "Integração do Método T.A.& A. e do Ambiente YPY na
Especificação e Prototipação de um SIE", Junho 1990»
N. EDELWEISSp J.P.M. OLIVEIRA

RP-1268 "Uma Abordagem para Prototipação de Sistemas de Banco
de Dados", junho 1990.
H. STROGULSKI; J.M. CASTILHO; O.J.C. SOUZA

RP-íííSs "Ediç;ao Revisada da Biblioteca de Células
Tranca", maio 1990.
F.B. MORAES? A.I. REIS j E.E. filFFONI? M.S.LUBASZEUSK I j
R.F. GOMESs R.A.I_. REIS

RP~i248 "Controle de Aprendizagem no Nível do Meta™
~Conl-)ec imento", abril 1990»
F.M. OLIVEIÍÍA

l;ÍP""123s "Documentação da Concep<;;ão de Percanta, Memciria Ram
Estática de i/4 l<bits", marco 1990»
J.L.K. HOLSBACHí L.O.S. FREIRE? R.P. RIBAS e D.A.C.
BARONIÜ;

RP-Í22S "Seminário de Epistemoloaia da Inteligência
Arti-ficial, 19Ü9S IA e Racionalidade", fevereiro de
1990.
A.C.R. COSTA

liP~12is "GAMINEs Gerenciador para um Ambiente de M i n i in i zag:ao e
Edição de Funções Combinacionais", Janeiro de 1990.
B.J. RIGOp S.P. ZANI e T-S. WEBER

RP-120S "Necessidades Básicas em Sistemas Operacionais Tempo
Real", dezembro de 1989.
R.M. FRICKS e I.J. PÔRTO

RP-119s "O Modelo e Revisado", dezembro de 1989.
C.S. DOS SANTOS

RP~118! "Descrição Comportamental de Hardware Concorrentes Uma
Introdução a BABEL", dezembro de 1989-
T.S. WEBER

RP-ll/it "Um Algoritmo de Reconhecimento Incrementai", outubro
de 1989.
I....6. ESPERANÇA; E.L. FAVERO? R.T. PRICE

RP-116S "Documentação da Concepção de PEALO (CADMIO um
Circuito Integrado Pré-Difundido Controlador de Acesso
Direto à Memória de um Canal para Sistemas Baseados no
Microprocessador 8085A", outubro 1989.
1„.0.S. FREIREf J.l... GONTZEL? R.P. RIBAS, A.L. COSTA,
A.A.M. FRÍÍHLICH, D.A.C. BARONE

RP--1ÍS! "Vetor Descrição do Projeto de Hardware de um Sistema
Mult imicroprocessador part̂ i Processamento Numérico",
agosto 1989.
F.R. NASCIMENTO

RP-114s "Introdução do Tempo no Ambiente para Desenvolvimento
de Bancos de Dados Dedutivos", jullio 1989.
N. EDELWEISS

