
5<3'6S5 -K

DESIGN (CmXlQLOG^ MMfâGEWENT IN EESIGN
ERRtEWQRKS

por

Flávio Rech Wagner

EP n9 166 NCfVEMBRO/91

"Trabalho realizado com o apoio do CNPq".

UFRGS

SABi

05234785

UNIVERSIIÍVDE lEDERAL DO RIO GRANDE DO SUL
POS-GKADURÇSD em c i ê n c i a da OGWLTIÍÇÃD
Av. Bento Gonçalves, 9500 - Agronomia
91501 - Porto Alegre - PS - BRASIL
Telefones: (0512) 36-8399/39-1355 - Ramal 6161
Telex: (051) 268,0 - CCUF - BR
FAX: (0512) 24-4164
E-mail; PGCC ft VOREEX. UFRGS. BR
Correspondência: UFPGS-CPGOC

Caixa Postal 15064
91501 - Porto Alegre - RS - BRASIL

U F R G S

I N S T I T U T O O : I R R J S M Â T I C A
B I B L I O ; £ C 4

Editor: Ricardo Augusto da Luz Reis (interino)

(W L . o c o . - , W i O . .
' - OrCXO

a
U F R G S

INSTITUTO DE IMFORMÁTICA
B I P, T , T O T E C A

N2 CHAMADA N)e RtG :
m

D ATA:
^ / 0 3 Í j / Q Q J i

ORIGEM;
D

DATA ;
OG/ >12 /4>| PREÇO: Cr-H 20.000,0°

FUNDO:
o ? < i c c

FORN.:

c f q c c

'3 . 0^,o3.00~-é?

UFRGS
Reitor: Prof. TUISKON DICK
Frô-Reitor de Pesquisa e Pôs-Graduação: Prof. ABÍLIO BAETA NEVES
Coordenador do CPGCC: Prof. Ricardo A. da L. Reis
Comissão Coordenadora do CPGCC: ^rof. Carlos Alberto Heuser

Prof. Clesio Saraiva dos Santos
Profa. Ingrid Jansch Pôrto
Prof. José Mauro V. de Castilho
Prof. Ricardo A. da L. Reis
Prof. Sérgio Bampi

Bibliotecária CPGCC/II: Margarida Buchmann

D e s i g n m e t h o d o l o g y m a n a g e m e n t in des ign
f r a m e w o r k s

This report has been submit ted for publication outside of UFRGS and will probably be copyriglifced
if accepted for publication. II. has bcen issiied as a Research Report for carly dissciiiiiiatioii of its
contents and will be distributed outside of UFRGS up to one year after the date indicated in the
cover page. In view of the transfer of copyright to the outside publisher, its distribution outside of
UFRGS prior to publication should be limited to peer communications and specific requests. After
outside i)ublication, requests ishould be filled oídy by rejirints or Icgally obtaiiied copies of the article
(e.g., payment of royalties).

'C ' '

Abs t rac t

This paper ic a tutorial on design methodology rnanagement [drnm) in design frame-
works for VLSI systems and other complex electronic systems. The motivation for
such functionality tu design frameworks is discussod. Scveral iiiodels and iticcluuiisins
for dmm are reviewed and compared, according to a proposed taxonoiny for classi-
fying the diíTerent approaches. The taxonomy is based on the two main aspects of
methodology rnanagement: the control of the task ílow and the control of the object
representations created during the design process. Also considered are the framework
tool integration capabilities.

Keywords
Design frameworks. Design methodology rnanagement. Task flow management.
Tool integration.

R e s u m o

Este trabalho é um tutorial sobre gerência de metodologias de projeto em ambientes de
projeto de circuitos VLSI e outros sistemas eletrônicos complexos. A motivação para
esta funcionalidade em ambientes de projeto é discutida. Vários modelos e mecanis-
mos de gerência de metodologias de projeto são revistos e comparados, seguindo uma
taxonomia projDosta para a classificação das diferentes abordagens. Esta taxonornia é
baseada nos dois aspectos principais da gerência de metodologias: o controle do fluxo
de tarefas e o controle das representações de objetos criadas ao longo do processo
de projeto. Também são considerados os recursos de integração de ferramentas dos
ambientes.

Palavras-chave
Ambientes de projeto. Gerência de metodologias de projeto. Cerência de (luxo de
tarefas. Integração de ferramentas.

11

U F B G S

í ! í í U I : L i \J í

1 I n t r o d u c t i o n
rl,he iriaiii objcctive of fiatncworks for the design of VLSI circuits cind other complex
clcctroiiic ayslenis is to provide nieans for building sp(x:ific enviroumeuts tliat are
oriented towards diíferent architectures, technologies, and design methodologies. A
frainework niust allow tlie integration qf tools from diíFerent sources, aiming at design
data coMfiiatciicy and uscr intcrfacc uniforinily. A frainowork imist also provide other
services, such as data management (data sharing, access control, version control,
and long transaction mechanism), intertool communication, and design methodology
management. Examples of frameworks that partially or totally support these goals
are Oct [11], from Berkeley, Cadweld [3], from Carnegie-Mellon, and CWS [8], from
the Cadlab in Germany, as well as some recent comercial products (e.g. the Open
Framework from Cadence and the ValidFrame from Valid).

The main feature of a design framework is the provision of a uniform data model
for design data representation [19], which supports the representation of digital sys-
tems as complex objects, taking into accoimt aspects like composition of sub-objects,
liierarchy, and instantiation of objects.

A design framework must allow for multiple representations for a design object.
In the scope of this tutorial, we will designate the organization of these multiple
representations as tlie object control structure [20]. DiíFereiit representations for a
design object can correspond to

• design alternatives (e.g. a standard-cell or a gate-array approach)

• design views, i.e. representations of the sarne object at diíferent abstraction
leveis (algorithmic, RT, logic, layout, etc)

• design rcvisions, i.e. conseciitive refinements or improvements of the same ob-
ject.

Most systems offer a single seqiiential representation for the version evolution
for handHng alternatives, views, and revisions. Some systems, however, permit the
distinction between the different situations, either in some restricted way [11,15] or
in a general, flexible way [20], where the control structure is an integral part of the
data representation model supported by the framework.

A design methodology is a set of design rules that either enforce or guide the
design activities performed by the user, so as to obtain design objects with desired
properties, both rneeting design constraints and achieving design goals. Rules can
express:

• tasks that must be executed when the design process arrives at a given state (this
state can be for instance expressed in terms of some design object properties)

• altcrnative design approaches that can be followed from a given design state,
as well as criteria for deciding betwíxjn the possible design paths (again, these
crieria can involve design object properties)

• design representations tliat must be created under given conditions (e.g. a repre-
sentation at a more detailed design levei or alternatives tliat must be compared
according to some trade-oíFs).

Design methodology management is the control of the design process, so that it
conforms to the established ruies. It can be achieved by controlling the task ílow
and/or the design object representations created during the design process.

The rest of this tutorial is organized as follows. Section 2 discusses design method-
ology management and its main functions. This section provides the basis for classi-
fying design methodologj' management approaclies into three diíTerent classes. These
classes are then analyzed in sections 3 thru 5. Examples of design methodology
management approaches for these classes are also reviewed and discussed. Section 6
discusses the tool encapsulation issue, which is strongly related to the design method-
ology management. Final remarks are given in Section 7.

2 F u n d a m e n t a i s of des ign m e t h o d o l o g y m a n a g e -
m e n t

Design methodology management is the control of the design process, so tliat the
desired object representations are created, the design constraints are met, and the
design goals are achieved. It can be realized by controlling either the task ílow or
the various design object representations created during the design process. In the
former case, the framework capabilities are related to design guidance, while in the
latter case design methdology management is achieved mainly by automatically main-
taining methodology-related data consistency. In the following, we describe design
methodology mauageinent features according to e;u:li of tliese approaches.

2.1 Task flow
A design methodology contains a set of tasks that must be executed in oí der that the
desired objects are obtained. Each design methodology may need a particular set of
tasks, as the following examples illustrate.

E x a m p l e 1 In the case of the layout design of a data path in a standard-cell ap-
proach, the following tasks must be executed: mapping froin an initial structural
description into the cells of a library, partitioning of cclls into bands, positioning of
cells inside the bands, routing between bands, design rule checking, electrical param-
eter extraction followed by a timing evaluation, and netlist extraction follovved by a
netlist comparison with the structural description.

E x a m p l e 2 In the layout design of a control part in a random logic approach,
tasks include; multi-level logical minimization of an initial set of boolean equations,
technology related optimization and mapping, manual layout generation, design rule

checking, electrical parameter extraction followed by a timing evaluation, and netlist
extraction followed by a netlist comparison with the structural description obtained
aftcr the tedinology mapping.

Other layout design approaches, such as a data path design tising a gate-array
methodology or a control part design usifig a PLA strategy, would need other sets of
tasks.

Many design environments allow the user to define the task sequencing either
in an explicit or in an implicit way. The explicit task flow definition [2,5,6] follows
a.n algorithrnic (or equivalent model, such as a graph or a Petri net) description
of the task sequencing, eventually oíFering the possibility of conditional branches,
iterations, and parallel executions. In the implicit task flow definition, tasks are
cxccutcd whcn certain input objccts are available [17], whcn certain cpnditions hold
[21,3], or according to rules that select the next task [1].

Fiduk et al [6] give a very extensive list of functionalities that can be performed
by a tool that controls the task sequencing. These functions, that will not be detailed
hcre, ar<; (.otaily or partially iinpleincnted by the systeins covered by this tutoria!.

Design guidance A mechanism for the management of the task flow is much more
interesting wlien it oíTers a,lso design guidance. This means that the system helps
the designer to decide which is the best (or most promising) task flow to be followed.
In order to give valuable help, the system must have knowledge about the design
constraiiits to be met, the design goals to be achieved, the tool capabilities as related
to the tasks to be executed, and about the design data itself. Design guidance is
related to two main capabilities: automatic task and tool selection and automatie
ta,sk ba.cld,rackiiig.

For the automatic task selection, three capabilities can be ofFered:

• The system identifies alternative tasks that can be executed from the current
design point, baseei on the knowledge about the conditions that must hold in
order that each task is executed. Conditions may involve only the existence of
certain design object representations, or more complex object properties.

• The system selects the most promising alternative task. The choice can be
based either in knowledge about task capabilites or in result estimations.

• The system selects the best siiited tool for the next task, if severa! tools, with
different properties, can be chosen for the same task.

The following examples illustrate the functionalities related to automatic task
selection.

E x a m p l e 3 After a cell manual layout design, the system identifies three tasks
to be executed; design rule checking, netlist extraction, and electrical parameter
extraction. The condition for executing any of these tasks is the existence of the cell

layout representation. If the system could also rely on data qualities for identifying
the next tasks, the nelist extraction and the electrical parameter extraction could
depend on a "good" layout (a layout which has successfully passed the design rule
checking).

Example 4 When a finite state machine description for a control part design is cre-
atcd, the system identiíic.s two possiblc followiiig tasks: two-lovcl loglc iiiininiizalíon,
which would lead to a PLA-based design, and rnulti-level logic minirriization, which
would be the entry point for a random logic design. The choice could be based ou a
knowledge about the current design state (which is the available area for the control
part, which is the maxiiaurn allowed delay, and how many terms and literais do the
input equations contain), as well as about task capabilities (which are the expected
area and delay for the given input equations in the case of the PLA and random logic
approaches). It niust be noted that in each of tlic possible approaclies a cornpletely
diíFerent task sequence will be followed.

Example 5 Frorn a behavioral, algorithniic description, the system must generate
an RT structure. It must schedule operations in time frames and allocate registeis,
functional units, and interconnections. Three diíferent tools can be called for execut-
ing this high-level syntliesis task, each one based on a diíferent synthcsis strategy:
list scheduling, where a hardware allocation constraint is specilied and the algorithrn
attempts to minimize the total execution time; force-directed schedtding, where a
global time constraint is speciíied and the algorithin attempts to minimize the re-
sources; and left edge algorithrn^ which minimizes the number of registers under time
constraints. The choice may be based on the particular design constraints, such as
maximum expected operation time or pre-defined number of registers, and on the
relative performance of the tools. As opposed to the previous example, the same
task sequence will follow after this task, no matter what tool has been chosen for the
high-level synthesis.

The other main capability which is related to design guidance is the automatic
backtracking to a previous design point, either to restore design consistency, when
design changes occur, or to analyze other alternatives, when constraints cannot be
met or goals are not achieved. It is needed that the system restores (at least frorn the
user viewpoint) the state of the design data base in that previous point. Automatic
backtracking is illustrated by the two following exam[)les.

Example 6 In a layout design, suppose that the user has already completed the
design rule checking, the parameter extraction, and the timing evaluation. The user
is not satisfied with the obtained timing performance, and decides to manually change
the layout. Since the former extracted parameter values are no longer valid, and there
is no certainty whether the new layout follows the design rules, the system decides
to re-execute the design rule checking and the parameter extraction, restoring the

consistency between the layout and the parameter values,

E x a m p l e 7 In the high-level syiithesis situation, tlie lisl scheduling strategy, which
gives rnininiuin cxeciition time, lias been chosen. A topology evaluator indicates
however that the final area will be too large, mainly due to an excessive number of
registeis. The systern (lecidcs to backtrack the design process, and selects the left edge
algorillini, maiiitaining the obtained execution time as a constraint, but searching for
a minimum number of registers.

Automatic backtracking for the pur|)ose of restoring the design consistency may
be unnecessary if the designer uses already existing version and configuration control
mechanisms. In the case of Example 6, the layout change would be commited as a
new layout version. Since the parameter values were related to the old layout version,
the design consistency is maintained: there is no parameter values yet obtained for
the new layout version. Configuration control can be used as explained in the next
example.

E x a m p l e 8 The designer creates a structural composition of a data path, by select-
ing given representations for the ALU, the register file, the shifter, and so on. Since
the simiihition oC this composition gives ba.d timing estimates, the designer decides to
change the ALU. The structural composition is no longer valid, neither the obtained
timing estimates. The system would have to backtrack in order to repeat these two
steps. Inconsistency can be easily avoided by using version and configuration control.
The structural data path composition contains instances of ALU, register file, and
shifter object types. In the first try, the designer selects a given version of each of
these object types and builds a possible data path configuration. In the second try,
the designer only changes the version selection for the ^^LU, thus building a new
data path configuration. Timing estimates are now consistent with their respective
configurations.

2.2 Contro l of objec t representa t ions
A design methodology intends to create design object representations that show de-
sired properties. Beca,use of their complexity, the desired objects must be designed
in a modular way. Furthermore, the design must follow an hierarchy of abstraction
leveis. It is thus necessary to create various representations for the desired objects as
well as lor several auxiliary sub-objects. The two following examples are the coun-
terpart of examples 1 and 2, respectively, when the system controls the design object
re])resentations, and not the tasks needed for this creation.

E x a m p l e 9 For the standard-cell layout design of a data path, the following object
representations must be created: an initial structural representation in terms of cells
oi a givcii library; a layout representcvtion with cells partitioned into bands; a layout

íH P O U r í
i"

representation with cells i^ositioned inside the bands; a final layout representation
after the routing between bands; an extracted netlist; and a structural representation
with the timing parameters extracted and back-annotated frorn the layout.

E x a m p l e 10 For the random logic design of a control part, the following object
representations are needed: an initial set of boolean eqnations; the boolcaii equations
after multi-level niininiization; a structural representation after tcchnology-rclatcd
optimization and mapping; the manually generated layout; an extracted netlist; the
structural representation with the timing parameters extracted and back-annotated
from the layout.

D a t a consis tency While the task ílow control can be enhanced with design guid-
ance, the creation of the design object representations can be controlIcd so that
the objects maintain the desired consistency. Most systems support autoinalic data
consistency by ofFering a unified data representation model. This model supports
modularity, hierarchy, and instantiation, as well as multiple representations for the
same object, corresi^onding to design alternatives, views, and revisions.

Data models offers various possible control structures. The Oct manager [11] or-
ganizes cells as groupings of views. Each view has a contents facet, where the basic
interface as well as the actual cell view descriptiou are stored, and many interface
fáceis, that define aspects that are externally visible for particular tasks. The DAM-
ASCUS system [15], in turn, organizes design objects as groupings of representations
at diíFerent abstraction leveis. Each representation contains a set of design alterna-
tives, and for each alternative there is a graph of revisions. Diíferent control structures
oíFer distinct capabilities with regard to the automatic data consistency they provide.
Data models with a íixed control structure oífer the same kind of data consistency
for ali applications running on the framework. This is illustrated by the following
example.

Example 11 In the AMPLO data model [7], for each agency (a design object), there
are many alternatives, corresponding to various possible interface definitions for the
object. Many versions can be defined for each alternative, corresponding to views at
different abstraction leveis, diíferent architectures or iinplernentations for the object,
or revisions of a given view / architecture / implementation. Ali representations under
a given alternative share the same interface definition. When a new representation is
created for an object (for instance an RT structural description is synthesized from a
behavioral one), the system automatically checks if the interface definition has been
maintained.

Flexible data models, in turn, allow each application to define the best suited
control structure for each design object, as in the case of the CWS [8], NELSIS [18],
and GARDEN [20] frameworks. The system can therefore support a rnethodology-
specific data consistency. In the GARDEN d/ita jnodel, rei)rcsentations for a üesign

object can be organized as a hierarcliy of ViewGroups. Each ViewGroup can define
UserFields (user- or methodology-defined attributes) and interface aspects that are
automatically shared by ali representations below. Views can be appended at any
levei of the ViewGroup hierarchy. The following example shows that a methodology-
specific data consistency can be achieved by defining a suitable GARDEN control
structure. ,

E x a m p l e 12 An 32-bit operational block is designed in a full-custom approach as
an array of 32 1-bit wide horizontal slices. Each slice is composed as an abutment of
cells like an A LU, a shifter, and a register file. Two data busses must horizontally
traverse the slices, crossing the left and right boundaries of ali cells at exactly the
same height (relative to the bottom of the slice). For each data bus, this height, as
well as tlio irnplomcntation laycr and the layout track widi h, have their values deíined
a,s Userl,1ields of a ViewGroup wliich gathers ali representations of an object OPSlice
(corresponding to the 1-bit wide slices) that are related to its layout design. Layout
Views under this ViewGroup must necessax-ily follow these design constraints, since
they inherit these UserField values.

2.3 Classifying t h e approaches
A comparison between different approaches to design methodology management can
be best understood by rnaking it clear that this framework function should not only
provide a mechanism for sequencing the design tasks, but rather also guide or enforce
the design process in order to meet the design constraints and to achieve the desired
design goals, xuhile maintaining the overall data consistency.

Four basic approaches to design methodology management can be identified, ac-
cording to the achievernent of the above goals they provide:

• dmm through task flow control

• dnun through task flow control enhanced with design expertise

• dmm by controlling the object representations created during the design process

• dmm by coupling the task flow management with the control of the object
representations.

Thesíí approaches will be detailed and exemplified in the next sections. Since
the third approach corresponds to using a unified data model without any additional
mechanisms for design methodology management, it will not be considered in the
aiialysis.

Table 1 surnmarizes the main design methodology management features of the
systems reviewed in this tutoria!.

APPROACH TASK FLOW CONTROL OBJECT CONTROL

Chiueh task flow control
& Katz

Ulysses enhanced task
flow control

Cadweld enhanced task
flow control

ADAM
DPE

FACE

STAR

enhanced task
flow control

coupling task
flow control with
version control

coupling enhanced
task flow control
with control of

object representa-
tions

design history:
- user-directed backtracking
- interactive plan building

rule-based:
- centralized task scheduling
- hierarchical tasks

rule-based:
- distributed task scheduling
- hierarchical tasks

rule-based plan building:
- automatic pre- and post-

estimation
- automatic backtracking

data-driven:
- graph with dependencies

between tasks and
object views

condition-driven

none

file-based

file-based

file-based

single
versioning
of object
views

methodology-
specific
control

structures

Table 1: Design methodology managernent approaches

3 Task flow m a n a g e r n e n t
In the íirst approach, there is only a mechanism for sequencing the design tasks. It
may contain capabilities for the definition and automatic execution of task sequences,
inckiding conditioiial braiiching and iteration, and for storing and r(,p(,;iting n.scr-
defined "ad-hoc" sequences. Since a "pure" task flow control does not help meeting
the design constraints and achieving the design goals, it should not in fact be classified
as a "design methodology managernent" approach. Examples are the CFI approach
and the design history manager from Berkeley, as well as cornmercial products, such

*

)

as the OpeuFramework from Cadence and tlie VcdidFramc from Valid.

C A D F r a m e w o r k In i t i a t ive Design methodology management with emphasis on
the task sequencing is best represented by the CFI approach. According to the CFI
- CAD Framework Initiative, a consortium of companys and research centers whose
goal is to standardize tlie main aspecta of design frameworks - a design methodology
[6] is a "sequenced set of operations employed in the execution of a given function",
while design methodology management "is related to the execution and contx-ol of
methodologies used in the design process".

In tiu! CFI approach, design methodology management can be decomposed into
three main functions:

• tool integration - how to describe atomic tools (data requirements, argument
definition, characterization of the command set for tlie user, CPU and memory
requirements, etc)

• task flow - how to describe sequences of tasks (task data dependencies, hierar-
chical tasks, flow control through conditional branches, selections and iterations,
concurrent execution of tasks)

• execution environment - how to execute task sequences, relating them to the
invocation of atomic tools (selection of the best tool for a given task, automatic
invocation of tools, storing of and queries to the history of tool executions,
backtracking and error recovery).

This approach emphasizes an operational view of the execution of design method-
ologies, as well as the tool encapsulation aspect, which will be discussed in Section 6.

Berke ley Chiueh and Katz [2] present a model of design history that extends pre-
vious work at the University of Berkeley, the Oct manager [11] and a version server
[12].

Design process management is defined as the "support to the creation of alternative
design evolutions, while maintaining multiple and simultaneous design contexts, each
one of them with its design objects and history of operation sequences".

An activity is a grouping of tasks (tool invocations), ordered in time as a tree,
so that each task can have many succeeding tasks in the activity. A node in the
tree defines a design point, that univocally identiíies a consistent state of the design
data base. A cursor indicates the current design point. The tree is built as the user
executes new tasks. At any moment, the user can roll the cursor back to a previous
design point, thus creating a new branch in the tree from that node. In this new
current design point, the user can access only the data defined at that data base
state.

This system allows the user to create, modify, and reuse design methodologies in
an interactive way during the design process.

Ã

The design methodology concept in this system is somehow related to design
data management [19]. The "design points" offer a functionality that is obtained in
other systems by "configurations" (in Oct [16]) or "TimeStamps" (in GARDEN [4]),
that also allow recovering a consistent data base state from a previous time frame.
However, no relationship with control structures associated to the design objects is
established (in other words, design dftta management is realized without the explicit
ii.se of control structures), and tlic system does not give any direct help for achieving
the desired design qualities.

4 E n h a n c e d t a s k flow m a n a g e m e n t
ín the second approach, which is followed by the Ulysses [1] and Cadweld [3] systems,
as well as in the ADAM Design Planning Engine [13], the task flow control is enhanced
with knowledge about the design constraints, goals, tools, and data. This knowledge
may be used for the purposes of automatic tool selection and antomatic backtracking,
as already discussed in Section 2.

These systems are not based on an underlying unified data model, so that tools
operate on isolated files. While this allows for an easier tool integration, it prevents
the system from supporting an automatic data consistency. The quality of the design
depends solely on the completeness of the knowledge representation.

Ulysses Ulysses [1], developed at the Carnegie-Mellon University, was the first en-
vironment to cope with design methodology management. The system is based on a
hlackhoard model, a data base storing design data and parameters for tool scheduhng.
Each tool is a knowledge source (KS) for the blackboard, asynchronously activated
(;a,ch time that the data in tlie blackboard match certain rules, that are also stored
in the same data base. Tools communicate with each other through files posted to
and retrieved from tlie blackboard. The blackboard also contains rules that express
design consistency checks to be permanently verified. The schednler is a special KS,
implemented as an expert system, which monitors the blackboard, verifies which
rules match the data, and chooses the next tool to be activated, following conflict
resolution parameters when several KSs are potentially executable. Tasks may be
hierarchically described as compositions of other tasks / tools, by using commands
such as do-while, if-then-else and for-each, as well as parallel commands. The RPOL
[Rating Policy Module) is another KS that calculates ratings for design points along
the design process always when the blackboard is updated. The RPOL compares
these ratings periodically, switching the design process to the most promising point.

Ali KSs, including the scheduler and the RPOL, as well as the rules and the
scheduling parameters, are described through a specialized high-level language, called
scripts.

Cadweld rl,lie Caclweld environmont [3] was also devclojjed a.t the Carnegie-Mellon
University, as an evolution oí Ulysses, still using the blackboard concept. Cadweld,

10

however, does not have a centralized scheduler. For each tool a CTKO (CAD Tool
Knowledge Object) is built, containing iiiformation about functionalities and capabil-
ities of the tool, as well as sets of activalion patterns to wliich the tool can respond.
ííach CTKO standly monitors the blackboard. When an activation pattern matches
the data in the blackboard, the tool candidates for execution. Tasks can be hierar-
chically described. A task can post requests to the blackboard, to which other tasks
OI- tools niay voluntecr. The candidate tasks / tools are inspected regarding their
capabilities, and the most promising one is selected. After the execution, the task
which requested the service may inspect the resulting objects to determine if the de-
sign constraints liave been met. If not, the task may decide to backtrack the design.
If the execution has succeeded, the resulting files are posted to the blackboard.

A D A M The DPE {Design Planving Engine) [13] is a design methodology manager
dcveloped for the ADAM environinerit [9], from the University of Southern Califórnia.
DPE is an expert system that builds, evaluates, and dinamically executes design plans.
From an initial state, and by using knowledge about the tools that can be applied to
this state, DPE builds a possible plan. From evaluations that are calculated for each
alternative path in the plan, obtained by fast evaluators, the DPE chooses a path
to be followed. Later, more precise evaluators will either confirm the choice or let
the DPE return to a previous point and choose a new path. From the new obtained
design state, the DPE repeats the process of building a design plan.

Similarly to the scheduler of the Ulysses environment, it is the DPE itself that
selects the next tool to be executed, by using information that is available to it. While
in Ulysses this information is generated by a single specialized tool that is periodically
executed, the DPE automatically activates evaluation tools that are specific for each
state of the design plan in order to obtain the desired information. The DPE creates
a design plan upon which backtracking can be executed, as in the Berkeley work. In
that case, however, it is the user that decides the return to a previous point, while
the DPE perform this function automatically, according to evaluations that are fired
by the system itself.

5 C o u p l i n g t a s k flow w i t h o b j e c t r e p r e s e n t a t i o n
m a n a g e m e n t

Instead of specifying which and when tools must be executed, the system can control
the consistency of the objects to be created. This can be done through a unified
data model, which handles composition relationships, configuration management, hi-
erarchies of alternatives, common properties of representations, and other user- or
methodology-defined integrity constraints. Tool integration becomes clearly moi'e
complex, since a mapping between the tool data and the data model objects is needed.
Although the objects thus automatically hold the desired consistency, the system does
not give user guidance to obtain these objects, unless the data model is coupled with
an enhanced task flow management. With this coupling, the system achieves both

11

automatic data consistency and methodology-oriented user guidance. Design quali-
ties are achieved partially by the data model and partially by the task flovv control.
The knowledge about expected design properties, modelled for the specific purpose
of controlling the task ílow, is released from the burdening of representing ali design
consistencies that are already maintained by the data model.

Examples of systems that couple a task ílow inaiiagnnicnl. meclianism with data
management featuros for tlie purpose of obtaining design methodology management
capabilities are the FACE Core Environment and the STAR framework.

FACE In the FACE Core Environment [17], developed at CE, tlie functions of tíie
design methodology management are "to control ali object vieivs that are created in
the design environment, to propagate changes to the data so as to recognize if data
are updated, and to plan the sequence of tool executions that are needed for buildiiig
a given object view". A design methodology defines rules for the execution of tools
and for the construction of views, so that an "object evolution is restricted by the
methodology, that serves as a template" for the construction of the object.

A design methodology is represented by a directed acyclic graph, where the nodes
are tool invocations and design object views. The graph shows which views are
necessary for the execution of a tool and which are created by the tool. Parameters
that are needed for a particular tool invocation can be a.j)pended to the corresponding
node. The user can define methodologies through a graphical-interactive facility.

Although the FACE environment emphasizes the design methodology as resi^on-
sible for the definition of the control structure that is associated to an object, tíie
system in fact does not provide any design guidance nor automatic data consistency.
It is based on very simple version and task flow control techniques.

STAR The STAR framework [21] oíTers a design methodology management mecha-
nism based on three principies: the definition of a conceptual scheme for the applica-
tion, the specification of the task flow, and the hierarchical definition of methodolo-
gies. It oífers a methodology-oriented data consistency and a condition-driven task
flow.

The STAR framework supports a unified, flexible data model based on the GAR-
DEN data model. For each application, one can define a conceptual scheme, contain-
ing various control structures that are specialized for diíFerent design objects, auxil-
iary objects, sucli as stimuli files for simulation purposes and testability measures, and
cori^lations, that are general purpose relationships between object representations.
Control structure specialization includes defining the overall topology of ViewGroups
and Views, defining UserFields, and attaching interface aspects to the various nodes
of the control structure.

The tasks are speciíied through a condition-driven approach. Each task is a 5-
uple {task name, tool name, input conditions, output objects, task goals}. The input
conditions specify data qualities that must exist in order that the task is executed,
such as the existence of an object representation or a complex expression involving

12

UserFiclds of any objects. Tlie oiUput objects are the lepresentations, auxiliary ob-
jects, and correlations that are created by the task. The task goals specify conditions
expected after tlie task execution. If they are not acliieved, the task fails, though the
output objects are still created. A design methodology succeeds if none of its tasks
is marked as "failed".

Design methodologies can be defived in a hierarchical way. Derivation includes
specialization of already existing control structures, definition of contx-ol structures
for new objects, and specification of new tasks,

Since the STAR approach does not aim at the automatic execution of tasks, its
condition-driven task flow model relies on user expertise, only indicating tasks that
are eligible for execution. Therefore, it does not oífer facilities for automatic tool
evaluation, selection, and execution, neither for automatic task backtracking.

6 Tool e n c a p s u l a t i o n
Tool encapsulation is a generic denomination including issues that are related to the
tool invocation and to the rnapping between the tool data and the unified data model.
Tool encapsulation has been generally presented as a feature of design methodology
management [6]. It is clear, however, that tools still have to be integrated into the
Iraniework even if it does not give any support for design methodology control. These
kind of facilities should be therefore considered as an independent feature of design
frameworks.

D a t a mapp ing Frameworks that are based on an underlying unified data model
have a more complex tool integration pi-ocess, since there must be a mapping between
the data handled by the tools and the objects of the data model. This mapping can
be of course avoided, if the tool is written (or modified) for directly operating upon
the data model. Although this implementation would give better efficiency, it needs
modifications to the tool code. Furthermore, it is not cornpatible with the invocation
of the tool within diíferent environments built upon the framework, as in the case of
the hierarchically derived design methodologies in the STAR approach. Many users
seem to prefer a "plug-and-play" approach to the tool integration, where the tool
is "enca.psulated" by a rnapping function. This kind of encapsulation is generally
obtained by an extension langiiage, such as the TIDL ~ Tool Integration Description
Language in the CWS framework [10]. This langua.ge also allows the definition of
conceptual schemes, ina,pping from the tool user interface to unified user interface
resources, data base set-up (initial loading of objects), and access management aspects
(such a,s user and group rights). The scripts language of the Ulysses environment is
also an extension language.

The externai data mapping, executed only before and after the tool, has its short-
comings, however. Besides the lower efficiency, this approach is not possible when
there rnust be an interaction between the tool and the data base during the tool
execution, as in the case of an interactive layout editor, which allows the interactive

13

creation and immediate re-use of cells.
Kraft [14] presents an alternative approach to the tool integration, where the data

rnapping is described externally to tlie tool, but the mapping function is embedded
in tlie underlying operating system, so that each access the tool executes to its data
is automatically converted by the operating system to an access to the unified data
base. ,

Tool invocation Besides data mapping, tool encapsulation also includes abstract-
ing tool invocation details from the user. The extension language allows the encap-
sulation of aspects such as tlie path to the tool, the argurnents to be passed to it,
and the exact syntax of the command line, so that the user can call a "high levei"
abstract task.

7 F i n a l r e m a r k s
This tutorial has shown that design methodology management should not be re-
stricted to a "syntactical" task flow control, where the system only ofFers to the user
the possibility of defining and executing task sequences, as proposed in the CFI ap-
proach, for instance. Tliis sequencing may be enriched with branchings, iterations,
and concurrent executions, and the system may allow backtracking to previous design
points. However, this approach does not oíFer a "semantic" control of the task flow,
whei'e tlie system hei ps the user to clioose the most promising task sequences.

A first iinprovcmcnt to design methodology managenient consists therefore in
enhancing the task flow control with knowledge about design constraints, goals, tools,
and data,, so that the system ofFers design guidance, as in the Ulysses, Cadweld, and
ADAM environments. The system may contain resources for automatic plan building,
task and tool selection, and backtracking, ali of them based on the knowledge about
the state of the design process. This solution still has its shortcomings, since tasks
operate on isolated files, so that the system does not gua.rantee that the generated
objects maintain a desired consistency, except if this consistency could be integrated
into the system knowledge, an approach that would be either inneficient or incomplete.

A further improvement must be therefore directed into coupling the enhanced
task flow management with a unified data model, such as the model offered by the
Oct manager. A unified data model automatically holds various integrity constraints
that relate object representations to each other, such as composition and equivalence
relationships. An even better approach can benefit from a data model that allows the
definition of methodology-specific conceptual schemes, as in the STAR framework.

14

Refe rences
[1] M.L. Bushnell and S.VV. Director. VLSI CAD tool integration nsing the Ulysses

environment. In 23rd Design Automation Conference, ACM/IEEE, 1986.

[2] T. Chiueh and R.íl. Katz. Mana,^ing the VLSI design process based on a struc-
turcd hitítory framework. In F.J. Rammig and R. Waxman, editors, Snd IFIP
International Workshop on Electronic Design Automation Frameioorks, North-
Holland, 1991.

[.'{] J. Daniell and S.VV. Uirector. An object-oriented approach to CAD tool control
within a design framework. In 26th Design Automation Conference, ACM/IEEE,
1989.

[4] E.B. de Ia Quintana, G.O. Annarnmma, and R Molinari Neto. GARDEN - the
Design Data Interface. Technical Report CCR-107, IBM Rio Scientific Center,
Rio de Janeiro, 1990.

[5] A. Di Janni. A monitor for complex CAD systems. In 23rd Design Automation
Conference, ACM/IEEE, 1986.

[6] K.W. Fidnk, S. Kleinfeldt, M. Kosarchyn, and E.B. Perez. Design methodol-
ogy management - a CAD Framework Initiative perspective - . In 27th Design
Automation Conference, ACM/IEEE, 1990.

[7] L.C. Colendziner and F.R. Wagner. Modeling digital Hystems as complex objects.
In 9th International Symposium on Computer Hardware Description Languages
and their Applications, IFIP, 1989.

[8] K. Gottheil et al. The CADLAB workstation CWS - an open, generic system
for tool integration. In F.J. Rammig, editor, IFIP Workshop on Tool Integration
and Design Environments, North-Holland, 1988.

[0] J. Granacki, D. Knapp, and A. Parker. The ADAM Advanced Design Automa-
tion System: overview, planner, and natural language interface. In 22nd Design
Automation Conference, ACM/IEEE, 1985.

[10] K. Groening et al. From tool encapsulation to tool integration. In F.J. Rammig
and R. Waxman, editors, 2nd IFIP International Workshop on Electronic Design
Automation Frameworks, North-Holland, 1991.

[11] D.S. Harrison et al. Data management and graphics editing in the Berkeley
Design Environinent. In International Conference on Computer Aided Design,
IEEE, J986.

[12] R.II. Katz et al. Design version management. IEEE Design & Test, February
1987.

15

13] D.W. Knapp and A.C. Parker. A design utiiity manager: the ADAM planning
engine. In 23rd Design Automation Conference, ACM/IEEE, 1986.

14] N. Kraft. Embedded tool encapsulations. In P.J. Rannnig and II. Waxitiati, (idi-
tors, 2nd IFIP International Workshop on Electronic Design Automation Frame-
works, North-Holland, 1991.

15] J.A. Mulle, K.R. Dittrich, and A.M. Kotz. Dcsigii managciucnt support by
advanced database facilities. In F.J. Rammig, editor, IFIP Workshop on Tool
Integration and Design Environments, North-IIolland, 1988.

16] M. Silva, D. Gedye, R.H. Katz, and A.R. Newton. Protection and versioning for
Oct. In 26th Design Automation Conference, ACM/IEEE, 1989.

17] W.D. Smith et al. FACE Core Environment: the model and its applica-
tion in CAE/CAD tool development, In 26th Design Automation Conference,
ACM/IEEE, 1989.

18] P. van der Wolf et al. Data management for VLSI design: conceptual modeling,
tool integration, and user interface. In F.J. Rammig, editor, IFIP Workshop on
Tool Integration and Design Environments, North-Holland, 1988.

19] F.R. Wagner. Modelos de Representação e Gerência de Dados em Ambientes
de Projeto de Sistemas Digitais. Technical Report CCR-121, IBM Rio Scientific
Center, Rio de Janeiro, 1991.

20] F.R. Wagner and A.H. Viegas de Lima. Design version management in the GAR-
DEN framework. In 28th Design Automation Conference, ACM/IEEE, 1991.

21] F.R. Wagner, A.H. Viegas de Lima, L.G. Golendziner, and C. lochpe. STAR:
um ambiente para a integração de ferramentas de projeto de sistemas digitais.
In VI Congresso da Sociedade Brasileira de Microeletrônica, SBMICRO, Belo
Horizonte, 1991.

16

Relatórios de Pesquisa

RP-166: "Design Methodology Management in Design", novembro
1991. '
F.R. WAGNER

RP-165: "Desenvolvimento de "Asa" e "Trama"", outubro, 1991.
S.D. OLABARRIAGA; E.M. CORRÊA; C. CALLIARI; A.L.
POMPERMAYER

RP-164; "Estudo Topológico e Elétrico da Nova Célula de Base
para CIs Gate Array - Tecnologia 1.2 um", outubro,
1991.
L.R. FROSI; G.V. PAIXÃO; J.L.G. CUNHA; D.A.C. BARONE

RP-163: "Representação de Conhecimento em Engenharia do
Conhecimento", setembro, 1991.
N. EDELWEISS

RP-162: "Biblioteca de PADS Digitais CMOS 1.5 um - Versão 1",
setembro 1991.
M.K. DOSSA

RP-161; "Versões Intervalares do Método de Newton", agosto 1991.
H. KORZENOWSKI; M. LEYSER; T.A. DIVERIO; D.M. CLÁUDIO

RP-160: "Processamento Vetorial e Vetorização de Algoritmos na
Máquina Convex C210", agosto 1991.
T.A. DIVERIO

RP-159: "Um estudo de técnicas de validação e de verificação de
produtos de software", junho 1991.
N. EDELWEISS

RP-158: "Extensão das Ferramentas PIU/LINUS de especificação e
controle de interfaces com o usuário", Junho 1991.
J.P. FIGUEIRÓ

RP-157: "The Domain of Nets and the Semantic Bases of a
Notation for Nets", Abril 1991.
A.C.R. COSTA

RP-156: "Continuous Predicates and Logical Reflexivity", Abril
1991.
A.C.R. COSTA

RP-155: "TENTOS - Gerenciador de Software para
Microeletrônica", abril 1991.
F.G. MORAES; R.A.L. REIS.

RP-154: "Sistemas Especialistas para a Engenharia de Software",
Abril 1991.
H. AHLERT.

RP-153: "Estudo Comparativo e Taxonomia de Ferramentas de
Suporte à Construção de Sistemas, Abril, 1991.
H. AHLERT.

RP-152: "IMP-MAC - Emulador de Impressora Padrão Apple", Abril,
1991.
C. DE ROSE; R.F. WEBER.

RP-151: "Em direção a um modelo para representação de
aplicações de escritórios baseadas em documentos".
Abril, 1991.
D.B.A. RUIZ.

RP-150: "Implementação de Sistemas de Gerência de Banco de
Dados", Abril, 1991.
D.B.A. RUIZ.

RP-149: "Integração de Ferramentas no Sistema AMPLO: Critica e
Proposta de Extensões", março, 1991.
F.R. WAGNER.

RP-148: "Interfaces de Entrada para Teclado e Mouse", março,
1991.
J.M. DE SÁ.

RP-147: "Servidores - Guia do Usuário - Edição 1", janeiro,
1991.
A.R. TREVISAN, C. LEYEN, G. CAVALHEIRO, J.F.L. SCHRAMM,
L.G. FERNANDES, P. FERNANDES, R.M. BARRETO,
R. TEODOROWITSCH

RP-146: "Biblioteca de Células TRANCA regras ECP15/1", janeiro,
1991.
C. CRUSIUS, L. FICHMAN, M. KINDEL, C. MARCON, R. REIS

RP-145: "Manual do Usuário do Projeto TRANCA; v 1.0", janeiro
1991.
F.G. MORAES; M. LUBASZEWSKI, R.A.L. REIS

RP-144: "Manual do Sistema TRAMO Projeto TRANCA versão 1.0",
janeiro 1991.
M.A. SOTILLE; C.E.S. SOUZA; M.G.R. ARAÚJO;
M. LUBASZEWSKI; R.A.L. REIS

RP-143: "PILCHA: Projeto e Implementação de um Sistema Digital
Discreto dedicado ao controle de acesso direto a
memória", janeiro 1991.
F. AZEREDO; L. ROISENBERG; D.A.C. BARONE

RP-142: "Ambiente para Estudo' de Fractais - Relatório de
Projeto", janeiro 1991.
S.D. OLABARRIAGA; F.S. MONTENEGRO

