59385 -

DESIGN METHODOLOGY MANAGEMENT IN DESIGN
FRAMEWORKS

Flavio Rech Wagner

RP n? 166 NOVEMBRO/91

"Trabalho realizado com o apoio do CNPg".

I\B|

& Llf!ll\lllll\li

UNIVERSIDADE FEDERAL DO RTIO GRANLDE DO SUL
Av. Bento Gongalves, 9500 - Agronomia
91501 ~ Porto Alegre — RS - BRASIL
Telefones: (0512) 36-8399/39-1355 -~ Ramal 6161
Telex: (051) 2680 - CCUF - BR
FAX: (0512) 24-4164
E-mail: PGCC @ VORTEX.UFRGS.BR
Correspondéncia: UFRGS-CPGCC
Caixa Postal 15064
91501 - Porto Alegre — RS — BRASIL

UFRGS
INSTITUTO £ 11" “RMATICA

EARL

BIBLIU £CA

Editor: Ricardo Augusto da Luz Reis (interino)

\M$&£AQJM&MEA,§%Q ﬂj

A\MM(LJL»J—Q Loéy‘;)(o)

(e e e - \mn.lﬂo&oﬁ,g@a M <&D

QMP% 3. 9%403, a4,

UFRGS
INSTITUTO DE INFORMATICA >
RIBRFTOTECA
N2 CHAMADA N2 REG :
FLRAYS 20120
DaTA
2M, 03, Y
ORIGEM : DATA : PRECG:
» 06/ A2 /8] | ¢l 20.000,00
FUNDO: FORN.:
ceGCe cfPgec
UFRGS

Reitor: Prof. TUISKON DICK
Pré-Reitor de Pesquisa e Poés-Graduagdo: Prof. ABILIO BAETA NEVES

coordenador do CPGCC: Prof. Ricardo A. da L. Reis

Comissdo Coordenadora do CPGCC: Prof. Carlos Alberto Heuser
Prof. Clesio Saraiva dos Santos

Profa. Ingrid Jansch Pérto

Prof. José Mauro V. de Castilho

Prof. Ricardo A. da L. Reis

Prof. Sergio Bampi
Bibliotecaria CPGCC/II: Margarida Buchmann

Design methodology management in design
frameworks

This report has been submitted for publication outside of UFRGS and will probably be copyrighted
if accepted for publication. It has been issued as a Rescarch Report for carly dissemination of its
contents and will be distributed outside of UFRGS up to one year after the date indicated in the
cover page. In view of the transfer of copyright to the outside publisher, its distribution outside of
UFRGS prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by'reprinm or legally obtained copies of the article
(e.g., payment of royalties).

< Abstract

This paper iz a tutorial on design methodology management (dmm) in design frame-
works for VLSI systems and other complex electronic systems. The motivation for
such functionality in design frameworks is discussed. Several models and mechanisims
for dmm are reviewed and compared, according to a proposed taxonomy for classi-
fying the different approaches. The taxonomy is based on the two main aspects of
methodology management: the control of the task flow and the control of the object
representations created during the design process. Also considered are the framework
tool integration capabilities.

Keywords
Design frameworks. Design methodology management. Task flow management.
'Tool integration.

Resumo

Este trabalho é um tutorial sobre geréncia de metodologias de projeto em ambientes de
projeto de circuitos VLSI e outros sistemas eletronicos complexos. A motivagio para
esta funcionalidade em ambientes de projeto é discutida. Varios modelos e mecanis-
mos de geréncia de metodologias de projeto sdo revistos e comparados, seguindo uma
taxonomia proposta para a classificacio das diferentes abordagens. Lsta taxonomia é
baseada nos dois aspectos principais da geréncia de metodologias: o controle do fluxo
de tarefas e o controle das representagoes de objetos criadas ao longo do processo
de projeto. Também sio considerados os recursos de integracio de ferramentas dos
ambientes.

Palavras-chave
Ambientes de projeto. Geréncia de metodologias de projeto. Geréncia de {luxo de
tarefas. Integragio de ferramentas.

i

1 Introduction

The main objective of frameworks for the design of VISI circuits and other complex
clectronic systems is Lo provide means for building specific environments that are
oriented towards different architectures, technologies, and design methodologies. A
framework must allow the integration qgf tools from different sources, aiming at design
data consistency and user interface uniformity. A framewaork must also provide other
services, such as data management (data sharing, access control, version control,
and long transaction mechanism), intertool communication, and design methodology
management. Examples of frameworks that partially or totally support these goals
are Oct [11], from Berkeley, Cadweld [3], from Carnegie-Mellon, and CWS [8], from
the Cadlab in Germany, as well as some recent comercial products (e.g. the Open
IFramework from Cadence and the ValidFrame from Valid).

The main feature of a design framework is the provision of a uniform data model
for design data representation [19], which supports the representation of digital sys-
tems as complex objects, taking into account aspects like composition of sub-objects,
hicrarchy, and instantiation of objects.

A design framework must allow for multiple representations for a design obJect
In the scope of this tutorial, we will designate the organization of these multiple
representations as the object control structure [20]. Different representations for a
design object can correspond to

e design alternatives (e.g. a standard-cell or a gate-array approach)

o design views, i.e. representations of the same object at different abstraction
levels (algorithmic, RT, logic, layout, etc)

o design revisions, i.e. consecutive refinements or improvements of the same ob-
ject.

Most systems offer a single sequential representation for the version evolution
for handling alternatives, views, and revisions. Some systems, however, permit the
distinction between the different situations, either in some restricted way [11,15] or
in a general, flexible way [20], where the control structure is an integral part of the
data representation model supported by the framework.

A design methodology is a set of design rules that either enforce or guide the
design activities performed by the user, so as to obtain design objects with desired
properties, both meeting design constraints and achieving design goals. Rules can
express.

e tasks that must be executed when the design process arrives at a given state (this
state can be for instance expressed in terms of some design object properties)

e alternative design approaches that can be followed from a given design state,
as well as criteria for deciding between the possible design paths (again, these
crieria can involve design object properties)

e design representations that must be created under given conditions (e.g. a repre-
sentation at a more detailed design level or alternatives that must be compared
according to some trade-offs).

Design methodology management is the control of the design process, so that it
conforms to the established rules. It can be achieved by controlling the task flow
and/or the design object representations created during the design process.

~ The rest of this tutorial is organized as follows. Section 2 discusses design method-
ology management and its main functions. This section provides the basis for classi-
fying design methodology management approaches into three dilferent classes. These
classes are then analyzed in sections 3 thru 5. Examples of design methodology
management approaches for these classes are also reviewed and discussed. Section 6
discusses the tool encapsulation issue, which is strongly related to the design method-
ology management. Final remarks are given in Section 7.

2 Fundamentals of design methodology manage-
ment

Design methodology management is the control of the design process, so that the
desired object representations are created, the design constraints are met, and the
design goals are achieved. It can be realized by controlling either the task flow or
the various design object representations created during the design process. In the
former case, the framework capabilities are related to design guidance, while in the
latter case design methdology management is achieved mainly by automatically main-
taining methodology-related data consistency. In the following, we describe design
methodology management features according to cach of these approaches.

2.1 Task flow

A design methodology contains a set of tasks that must be executed in order that the
desired objects are obtained. Each design methodology may need a particular set of
tasks, as the following examples illustrate.

Example 1 In the case of the layout design of a data path in a standard-cell ap-
proach, the following tasks must be executed: mapping from an initial structural
description into the cells of a library, partitioning of cells into bands, positioning of
cells inside the bands, routing between bands, design rule checking, electrical param-
eter extraction followed by a timing evaluation, and netlist extraction followed by a
netlist comparison with the structural description.

Example 2 In the layout design of a control part in a random logic approach,
tasks include: multi-level logical minimization of an initial set of boolean equations,
technology related optimization and mapping, manual layout generation, design rule

checking, electrical parameter extraction followed by a timing evaluation, and netlist
extraction followed by a netlist comparison with the structural description obtained
after the technology mapping.

Other layout design approaches, such as a data path design using a gate-array
methodology or a control part design using a PLA strategy, would need other sets of
tasks. ,

Many design environments allow the user to define the task sequencing either
in an explicit or in an implicit way. The explicit task flow definition [2,5,6] follows
an algorithmic (or equivalent model, such as a graph or a Petri net) description
of the task sequencing, eventually offering the possibility of conditional branches,
iterations, and parallel executions. In the implicit task flow definition, tasks are
exccuted when certain input objects are available [17], when certain conditions hold
[21,3], or according to rules that select the next task [1].

Fiduk et al [6] give a very extensive list of functionalities that can be performed
by a tool that controls the task sequencing. These functions, that will not be detailed
here, are totally or partially implemented by the systems covered by this tutorial.

Design guidance A mechanism for the management of the task flow is much more
interesting when it offers also design guidance. This means that the system helps
the designer to decide which is the best (or most promising) task flow to be followed.
In order to give valuable help, the system must have knowledge about the design
constraints to be met, the design goals to be achieved, the tool capabilities as related
to the tasks to be executed, and about the design data itself. Design guidance is
related to two main capabilities: automatic task and tool selection and automatic
task backtracking.
For the automatic task selection, three capabilities can be offered:

e The system identifies alternative tasks that can be executed from the current
design point, based on the knowledge about the conditions that must hold in
order that each task is executed. Conditions may involve only the existence of
certain design object representations, or more complex object properties.

e The system selects the most promising alternative task. The choice can be
based either in knowledge about task capabilites or in result estimations.

¢ The system selects the best suited tool for the next task, if several tools, with
different properties, can be chosen for the same task.

The following examples illustrate the functionalities related to automatic task
selection. :

Example 8 After a cell manual layout design, the system identifies three tasks
to be exccuted: design rule checking, netlist extraction, and electrical parameter
extraction. The condition for executing any of these tasks is the existence of the cell

layout representation. If the system could also rely on data qualities for identifying
the next tasks, the nelist extraction and the electrical parameter extraction could
depend on a “good” layout (a layout which has successfully passed the design rule
checking).

Example 4 When a finite state machine description for a control part design is cre-
ated, the system identifics two possible following tasks: two-level logic minimization,
which would lead to a PLA-based design, and multi-level logic minimization, which
would be the entry point for a random logic design. The choice could be based on a
knowledge about the current design state (which is the available area for the control
part, which is the maximum allowed delay, and how many termns and literals do the
input equations contain), as well as about task capabilities (which are the expected
area and delay for the given input equations in the case of the PLA and random logic
approaches). It must be noted that in each of the possible approaches a completely
different task sequence will be followed.

Example 5 Irom a bchavioral, algorithmic description, the system must generate
an RT structure. It must schedule operations in time frames and allocate registers,
functional units, and interconnections. Three different tools can be called for execut-
ing this high-level synthesis task, each one based on a different synthesis strategy:
list scheduling, where a hardware allocation constraint is specified and the algorithm
attempts to minimize the total execution time; force-directed scheduling, where a
global time constraint is specified and the algorithin attempts to minimize the re-
sources; and left edge algorithm, which minimizes the number of registers under time
constraints. The choice may be based on the particular design constraints, such as
maximum expected operation time or pre-defined number of registers, and on the
relative performance of the tools. As opposed to the previous example, the same
task sequence will follow after this task, no matter what tool has been chosen for the
high-level synthesis.

The other main capability which is related to design guidance is the automatic
backtracking to a previous design point, either to restore design consistency, when
design changes occur, or to analyze other alternatives, when constraints cannot be
met or goals are not achieved. It is needed that the system restores (at least from the
user viewpoint) the state of the design data base in that previous point. Automatic
backtracking is illustrated by the two following examples.

Example 6 In a layout design, suppose that the user has already completed the
design rule checking, the parameter extraction, and the timing evaluation. The user
is not satisfied with the obtained timing performance, and decides to manually change
the layout. Since the former extracted parameter values are no longer valid, and there
is no certainty whether the new layout follows the design rules, the system decides
to re-execute the design rule checking and the parameter extraction, restoring the

consistency between the layout and the parameter values.

Example 7 In the high-level synthesis situation, the list scheduling strategy, which
gives minimum execution time, has been chosen. A topology evaluator indicates
however that the final area will be too large, mainly due to an excessive number of
registers. The system decides to backtrack the design process, and selects the left edge
algorithm, maintaining the obtained execution time as a constraint, but searching for
a minimum number of registers.

Automalic backtracking for the purpose of restoring the design consistency may
be unnecessary if the designer uses already existing version and configuration control
mechanisms. In the case of Example 6, the layout change would be commited as a

‘new layout, version. Since the parameter values were related to the old layout version,
the design consistency is maintained: there is no parameter values yet obtained for
the new layout version. Configuration control can be used as explained in the next
example.

Example 8 The designer creates a structural composition of a data path, by select-
ing given representations for the ALU, the register file, the shifter, and so on. Since
the simulation of this composition gives bad timing estimates, the designer decides to
change the ALU. The structural composition is no longer valid, neither the obtained
timing estimates. The system would have to backtrack in order to repeat these two
steps. Inconsistency can be casily avoided by using version and configuration control.
The structural data path composition contains instances of ALU, register file, and
shifter object types. In the first try, the designer selects a given version of each of
these object types and builds a possible data path configuration. In the second try,
the designer only changes the version selection for the ALU, thus building a new
data path configuration. Timing estimates are now consistent with their respective
configurations.

2.2 Control of object representations

A design methodology intends to create design object representations that show de-
sired propertics. Because of their complexity, the desired objects must be designed
in a modular way. Furthermore, the design must follow an hierarchy of abstraction
levels. Tt is thus necessary to create various representations for the desired objects as
well as for several auxiliary sub-objects. The two following examples are the coun-
terpart of examples 1 and 2, respectively, when the system controls the design object
representations, and not the tasks needed for this creation.

Example 9 For the standard-cell layout design of a data path, the following object
representations must be created: an initial structural representation in terms of cells
ol a given library; a layout representation with cells partitioned into bands; a layout

TR ik I

representation with cells positioned inside the bands; a final layout representation
after the routing between bands; an extracted netlist; and a structural representation
with the timing parameters extracted and back-annotated from the layout.

Example 10 For the random logic design of a control part, the following object
representations are needed: an initial set of boolcan equations; the boolcan cquations
after multi-level minimization; a structural representation alter technology-relaled
optimization and mapping; the manually generated layout; an extracted netlist; the
structural representation with the timing parameters extracted and back-annotated
from the layout.

Data consistency Wahile the task flow control can be enhanced with design guid-
ance, the creation of the design object represcntations can be controlled so that
the objects maintain the desired consistency. Most systems support automatic data
consistency by offering a unified data representation model. This model supports
modularity, hierarchy, and instantiation, as well as multiple representations for the
same object, corresponding to design alternatives, views, and revisions.

Data models offers various possible control structures. The Oct manager [11] or-
ganizes cells as groupings of views. Each view has a contents facet, where the basic
interface as well as the actual cell view description are stored, and many interface
facets, that define aspects that are externally visible for particular tasks. The DAM-
ASCUS system [15], in turn, organizes design objects as groupings of representations
at different abstraction levels. Each representation contains a set of design alterna-
tives, and for each alternative there is a graph of revisions. Diflerent control structures
offer distinct capabilities with regard to the automatic data consistency they provide.
Data models with a fixed control structure offer the same kind of data consistency
for all applications running on the framework. This is illustrated by the following
example.

Example 11 Inthe AMPLO data model [7}, for each agency (a design object), there
are many alternatives, corresponding to various possible interface definitions for the
object. Many versions can be defined for each alternative, corresponding to views at
different abstraction levels, different architectures or implementations for the object,
or revisions of a given view / architecture / implementation. All representations under
a given alternative share the same interface definition. When a new representation is
created for an object (for instance an RT structural description is synthesized from a
behavioral one), the system automatically checks if the interface definition has been
maintained.

Flexible data models, in turn, allow each application to define the best suited
control structure for each design object, as in the case of the CWS [8], NELSIS [18],
and GARDEN ([20] frameworks. The system can therefore support a methodology-
specific data consistency. In the GARDEN data model, representations for a Design

object can be organized as a hierarchy of ViewGroups. Ilach ViewGroup can define
UserF'ields (user- or methodology-defined attributes) and interface aspects that are
automatically shared by all representations below. Views can be appended at any
level of the ViewGroup hierarchy. The following example shows that a methodology-
specific data consistency can be achieved by defining a suitable GARDEN control
structure. ,

Example 12 An 32-bit operational block is designed in a full-custom approach as
an array of 32 1-bit wide horizontal slices. Each slice is composed as an abutment of
cells like an ALU, a shifter, and a register file. Two data busses must horizontally
traverse the slices, crossing the left and right boundaries of all cells at exactly the
same height (relative to the bottom of the slice). For each data bus, this height, as
well as the implementation layer and the layout track width, have their values defined
as Userlields of a ViewGroup which gathers all representations of an object OPSlice
(corresponding to the 1-bit wide slices) that are related to its layout design. Layout
Views under this ViewGroup must necessarily follow these design constraints, since
they inherit these UserField values.

2.3 Classifying the approaches

A comparison between different approaches to design methodology management can
be best understood by making it clear that this framework function should not only
provide a mechanism for sequencing the design tasks, but rather also guide or enforce
the design process in order to meet the design constraints and to achieve the desired
design goals, while maintaining the overall data consistency.

Four basic approaches to design methodology management can be identified, ac-
cording to the achievement ol the above goals they provide:

e dmm through task flow control
o dmm through task flow control enhanced with design expertise
e dmm by controlling the object representations created during the design process

e dmm by coupling the task flow management with the control of the object
representations.

These approaches will be detailed and exemplified in the next sections. Since
the third approach corresponds to using a unified data model without any additional
mechanisms for design methodology management, it will not be considered in the
analysis.

Table 1 summarizes the main design methodology management features of the
systems reviewed in this tutorial.

APPROACH
Chiueh task flow control
& Katz
Ulysses enhanced task
flow control
Cadweld enhanced task
flow control
ADAM enhanced task
DPE flow control
FACE coupling task
flow control with
version control
STAR coupling enhanced

task flow control

with control of

object representa-
tions

TASK FLOW CONTROL

design history:
- user-directed backtracking
~ interactive plan building

rule-based:
- centralized task scheduling
- hierarchical tasks

rule-based:
- distributed task scheduling
~ hierarchical tasks

rule-based plan building:
- automatic pre- and post-

estimation
- automatic backtracking

data-driven:

- graph with dependencies
between tasks and
object views

condition-driven

OBJECT CONTROL

none

file-based

file~based

file-based

single
versioning
of object

views

methodology-
specific
control
structures

Table 1: Design methodology management approaches

3 Task flow management

In the first approach, there is only a mechanism for sequencing the design tasks. It
may contain capabilities for the definition and automatic execution of task sequences,
including conditional branching and iteration, and for storing and repeating user-
defined “ad-hoc” sequences. Since a “pure” task flow control does not help meeting
the design constraints and achieving the design goals, it should not in fact be classified
as a “design methodology management” approach. Examples are the CFI approach
and the design history manager from Berkeley, as well as commercial products, such

as the OpenIframnework from Cadence and the ValidFrame from Valid.

CAD Framework Initiative Design methodology management with emphasis on
the task scquencing is best represented by the CFI approach. According to the CFI
~ CAD Framework Initiative, a consortium of companys and research centers whose
goal is to standardize the main aspects ol design frameworks — a design methodology
[6] is a “sequenced set of operations employed in the execution of a given function”,
while design methodology management “is related to the execution and control of
methodologies used in the design process”.

In the CFT approach, design methodology management can be decomposed into
three main functions:

e tool integration - how to describe atomic tools (data requirements, argument
delinition, characterization of the command set for the user, CPU and memory
requirements, etc)

o task flow — how to describe sequences of tasks (task data dependencies, hierar-
chical tasks, flow control through conditional branches, selections and iterations,
concurrent execution of tasks)

¢ execution environment — how to execute task sequences, relating them to the
invocation of atomic tools (selection of the best tool for a given task, automatic
invocation of tools, storing of and queries to the history of tool executions,
backtracking and error recovery).

This approach emphasizes an operational view of the execution of design method-
ologies, as well as the tool encapsulation aspect, which will be discussed in Section 6.

Berkeley Chiueh and Katz [2] present a model of design history that extends pre-
vious work at the University of Berkeley, the Oct manager [11] and a version server
[12].

Design process management is defined as the “support to the creation of alternative
design evolutions, while maintaining multiple and simultaneous design contexts, each
one of them with its design objects and history of operation sequences”.

An activity is a grouping of tasks (tool invocations), ordered in time as a tree,
so that each task can have many succeeding tasks in the activity. A node in the
tree defines a design point, that univocally identifies a consistent state of the design
data base. A cursor indicates the current design point. The tree is built as the user
executes new tasks. At any moment, the user can roll the cursor back to a previous
design point, thus creating a new branch in the tree from that node. In this new
current design point, the user can access only the data defined at that data base
state.

This system allows the user to create, modify, and reuse design methodologies in
an interactive way during the design process.

9

v ‘;, :“,*- ﬂ[;\

The design methodology concept in this system is somehow related to design
data management [19]. The “design points” offer a functionality that is obtained in
other systems by “configurations” (in Oct [16]) or “TimeStamps” (in GARDEN [4]),
that also allow recovering a consistent data base state [rom a previous time frame.
However, no relationship with control structures associated to the design objects is
established (in other words, design data management is realized without the explicit
use of control structures), and the system does not give any direct help for achieving
the desired design qualities.

4 Enhanced task flow management

In the sccond approach, which is followed by the Ulysses [1] and Cadweld [3] systems,
as well as in the ADAM Design Planning Engine [13], the task flow control is enhanced
with knowledge about the design constraints, goals, tools, and data. This knowledge
may be used for the purposes of automatic tool selection and automatic backtracking,
as already discussed in Section 2.

These systems are not based on an underlying unified data model, so that tools
operate on isolated files. While this allows for an easier tool integration, it prevents
the system from supporting an automatic data consistency. The quality of the design
depends solely on the completeness of the knowledge representation.

Ulysses Ulysses [1], developed at the Carnegie-Mellon University, was the first en-
vironment to cope with design methodology management. The system is based on a
blackboard model, a data base storing design data and parameters for tool scheduling.
Each tool is a /mowlea’ge source (KS) for the blackboard, asynchronously activated
cach time that the data in the blackboard match certain rules, that are also stored
in the same data base. Tools communicate with each other through files posted to
and retrieved from the blackboard. The blackboard also contains rules that express
design consistency checks to be permanently verified. The scheduler is a special K8,
implemented as an expert system, which monitors the blackboard, verifies which
rules match the data, and chooses the next tool to be activated, following conflict
resolution parameters when several KSs are potentially executable. Tasks may be
hierarchically described as compositions of other tasks / tools, by using commands
such as do-while, if-then-else and for-each, as well as parallel commands. The RPOL
(Rating Policy Module) is another KS that calculates ratings for design points along
the design process always when the blackboard is updated. The RPOL compares
these ratings periodically, switching the design process to the most promising point.

All KSs, including the scheduler and the RPOL, as well as the rules and the
scheduling parameters, are described through a specialized high-level language, called
scripts.

Cadweld The Cadweld environment [3] was also developed at the Carnegie-Mellon
University, as an evolution ol Ulysses, still using the blackboard concept. Cadweld,

10

however, does not have a centralized scheduler. For each tool a CTKO (CAD Tool
Knowledge Object) is built, containing information about functionalities and capabil-
ities of the tool, as well as sets of activalion patterns to which the tool can respond.
Each CTKO standly monitors the blackboard. When an activation pattern matches
the data in the blackboard, the tool candidates for execution. Tasks can be hierar-
chically described. A task can post requests to the blackboard, to which other tasks
or tools may volunteer. The candidate tasks / tools are inspected regarding their
capabilities, and the most promising one is selected. After the execution, the task
which requested the service may inspect the resulting objects to determine if the de-
sign constraints have been met. If not, the task may decide to backtrack the design.
If the exccution has succeeded, the resulting files are posted to the blackboard.

ADAM The DPE (Design Planning Engine) [13] is a design methodology manager
developed for the ADAM environiment [9], from the University of Southern California.
DPE is an expert system that builds, evaluates, and dinamically executes design plans.
From an initial state, and by using knowledge about the tools that can be applied to
this state, DPE builds a possible plan. From evaluations that are calculated for each
alternative path in the plan, obtained by fast evaluators, the DPE chooses a path
to be followed. Later, more precise evaluators will either confirm the choice or let
the DPE return to a previous point and choose a new path. From the new obtained
design state, the DPE repeats the process of building a design plan.

Similarly to the scheduler of the Ulysses environment, it is the DPE itself that
selects the next tool to be executed, by using information that is available to it. While
in Ulysses this information is generated by a single specialized tool that is periodically
executed, the DPE automatically activates evaluation tools that are specific for each
state of the design plan in order to obtain the desired information. The DPE creates
a design plan upon which backtracking can be executed, as in the Berkeley work. In
that case, however, it is the user that decides the return to a previous point, while
the DPE perform this function automatically, according to evaluations that are fired
by the system itself.

5 Coupling task flow with object representation
management

Instead of specifying which and when tools must be executed, the system can control
- the consistency of the objects to be created. This can be done through a unified
data model, which handles composition relationships, configuration management, hi-
erarchies of alternatives, common properties of representations, and other user- or
methodology-defined integrity constraints. Tool integration becomes clearly more
complex, since a mapping between the tool data and the data model objects is needed.
Although the objects thus automatically hold the desired consistency, the system does
not give uscr guidance 1o obtain these objects, unless the data model is coupled with
an enhanced task flow management. With this coupling, the system achieves both

11

automatic data consistency and methodology-oriented user guidance. Design quali-
ties are achieved partially by the data model and partially by the task flow control.
The knowledge about expected design properties, modelled for the specific purpose
of controlling the task flow, is released from the burdening of representing all design
consistencies that are already maintained by the data model.

Examples of systems that couple a task flow management mechanisim with data
management features for the purpose of obtaining design methodology management
capabilities are the FACE Core Environment and the STAR framework.

FACE In the FACE Core Environment [17], developed at GIE, the functlions of the
design methodology management are “to control all object views that are created in
the design environment, to propagate changes to the data so as to recognize if data
are updated, and to plan the sequence of tool executions that are needed for building
a given object view”. A design methodology defines rules for the execution of tools
and for the construction of views, so that an “object evolution is restricted by the
methodology, that serves as a template” for the construction of the object.

A design methodology is represented by a directed acyclic graph, where the nodes
are tool invocations and design object views. The graph shows which views are
necessary for the execution of a tool and which are created by the tool. Parameters
that are needed for a particular tool invocation can be appended to the corresponding
node. The user can define methodologies through a graphical-interactive facility.

Although the FACE environment emphasizes the design methodology as respon-
sible for the definition of the control structure that is associated to an object, the
system in fact does not provide any design guidance nor automatic data consistency.
It is based on very simple version and task flow control techniques.

STAR The STAR framework [21] offers a design methodology management mecha-
nism based on three principles: the definition of a conceptual scheme for the applica-
tion, the specification of the task flow, and the hicrarchical definition of methodolo-
gies. It offers a methodology-oriented data consistency and a condition-driven task
flow. '

The STAR framework supports a unified, flexible data model based on the GAR-
DEN data model. For each application, one can define a conceptual scheme, contain-
ing various control structures that are specialized for different design objects, auzil-
tary objects, such as stimuli files for simulation purposes and testability measures, and
correlations, that are general purpose relationships between object representations.
Control structure specialization includes defining the overall topology of ViewGroups
and Views, defining UserI'ields, and attaching interface aspects to the various nodes
of the control structure.

The tasks are specified through a condition-driven approach. Each task is a 5-
uple {task name, tool name, input conditions, output objects, task goals}. The input
conditions specify data qualities that must exist in order that the task is executed,
such as the existence of an object representation or a complex expression involving

12

UserFiclds of any objects. The output objects are the representations, auxiliary ob-
jects, and correlations that are created by the task. The task goals specify conditions
expected alter the task execution. If they are not achieved, the task fails, though the
output objects are still created. A design methodology succeeds if none of its tasks
is marked as “failed”.

Design methodologies can be derived in a hierarchical way. Derivation includes
specialization of already existing control structures, definition of control structures
for new objects, and specification of new tasks.

Since the STAR approach does not aim at the automatic execution of tasks, its
condition-driven task flow model relies on user expertise, only indicating tasks that
are eligible for execution. Therefore, it does not offer facilities for automatic tool
evaluation, selection, and execution, neither for automatic task backtracking.

6 Tool encapsulation

Tool encapsulation is a generic denomination including issues that are related to the
tool invocation and to the mapping between the tool data and the unified data model.
Tool encapsulation has been generally presented as a feature of design methodology
management [6]. Tt is clear, however, that tools still have to be integrated into the
[ramework even if it does not give any support for design methodology control. These
kind of facilities should be therefore considered as an independent feature of design
frameworks.

Data mapping Frameworks that are based on an underlying unified data model
have a more complex tool integration process, since there must be a mapping between
the data handled by the tools and the objects of the data model. This mapping can
be of course avoided, if the tool is written (or modified) for directly operating upon
the data model. Although this implementation would give better efficiency, it needs
modifications to the tool code. Furthermore, it is not compatible with the invocation
of the tool within different environments built upon the framework, as in the case of
the hierarchically derived design methodologies in the STAR approach. Many users
seem to prefer a “plug-and-play” approach to the tool integration, where the tool
is “encapsulated” by a mapping function. This kind of encapsulation is generally
obtained by an eztension language, such as the TIDL ~ Tool Integration Description
Language in the CWS framework [10]. This language also allows the definition of
conceptual schemes, mapping from the tool user interface to unified user interface
resources, data base set-up (initial loading of objects), and access management aspects
(such as user and group rights). The scripts language of the Ulysses environment is
also an extension language.

Tlie external data mapping, executed only before and after the tool, has its short-
comings, however. Besides the lower efficiency, this approach is not possible when
there must be an interaction between the tool and the data base during the tool
execution, as in the case of an interactive layout editor, which allows the interactive

13

creation and immediate re-use of cells.

Kraft [14] presents an alternative approach to the tool integration, where the data
mapping is described externally to the tool, but the mapping function is embedded
in the underlying operating system, so that each access the tool executes to its data
is automatically converted by the operating system to an access to the unified data
base. '

Tool invocation Besides data mapping, tool encapsulation also includes abstract-
ing tool invocation details from the user. The extension language allows the encap-
sulation of aspects such as the path to the tool, the arguments to be passed to it,
and the exact syntax of the command line, so that the user can call a “high level”
abstract task.

7 Final remarks

This tutorial has shown that design methodology management should not be re-
stricted to a “syntactical” task flow control, where the system only offers to the user
the possibility of defining and executing task sequences, as proposed in the CFI ap-
proach, for instance. This sequencing may be enriched with branchings, iterations,
and concurrent executions, and the system may allow backtracking to previous design
points. However, this approach does not offer a “semantic” control of the task flow,
where the system helps the user to choose the most promising task sequences.

A first improvement to design methodology management consists thercfore in
enhancing the task flow control with knowledge about design constraints, goals, tools,
and data, so that the system offers design guidance, as in the Ulysses, Cadweld, and
ADAM environments. The system may contain resources for automatic plan building,
task and tool selection, and backtracking, all of them based on the knowledge about
the state of the design process. This solution still has its shortcomings, since tasks
operate on isolated files, so that the system does not guarantee that the generated
objects maintain a desired consistency, except if this consistency could be integrated
into the system knowledge, an approach that would be either inneficient or incomplete.

A further improvement must be therefore directed into coupling the enhanced
task flow management with a unified data model, such as the model offered by the
Oct manager. A unified data model automatically holds various integrity constraints
that relate object representations to each other, such as composition and equivalence
relationships. An even better approach can benefit from a data model that allows the
definition of methodology-specific conceptual schemes, as in the STAR framework.

14

References

1]

[2]

(8]

[9]

[10]

M.L. Bushnell and S.W. Director. VLSI CAD tool integration using the Ulysses
environment. In 28rd Design Automation Conference, ACM/IEEE, 1986.

T. Chiueh and R.H. Katz. Managing the VLSI design process based on a struc-
tured history framework. In I.J. Rammig and R. Waxman, editors, 2nd IFIP
International Workshop on FElectronic Design Automation Frameworks, North-
Holland, 1991.

J. Daniell and S.W. Director. An object-oriented approach to CAD tool control
within a design framework. In 26th Design Automation Conference, ACM/IEEE,
1989.

E.B. de la Quintana, G.0. Annarumma, and P. Molinari Neto. GARDEN - the
Design Data Interface. Technical Report CCR-107, IBM Rio Scientific Center,
Rio de Janeiro, 1990.

A. Di Janni. A monitor for complex CAD systems. In 23rd Design Automation
Conference, ACM/IEEE, 1986.

K.W. Fiduk, S. Kleinfeldt, M. Kosarchyn, and E.B. Perez. Design methodol-
ogy management — a CAD Framework Initiative perspective ~. In 27th Design
Automation Conference, ACM/IEEE, 1990.

L.G. Golendziner and I'.R. Wagner. Modeling digital systems as complex objects.
In 9th International Symposium on Computer Hardware Description Languages
and their Applications, IFIP, 1989.

K. Gottheil et al. The CADLAB workstation CWS — an open, generic system
for tool integration. In F.J. Rammig, editor, IFIP Workshop on Tool Integration
and Design Environments, North-Holland, 1988.

J. Granacki, D. Knapp, and A. Parker. The ADAM Advanced Design Automa-
tion System: overview, planner, and natural language interface. In 22nd Design
Automation Conference, ACM/IEEE, 1985.

K. Groening et al. From tool encapsulation to tool integration. In F.J. Rammig
and R. Waxman, editors, 2nd [FIP International Workshop on Electronic Design
Automation Frameworks, North-Holland, 1991.

D.S. Harrison et al. Data management and graphics editing in the Berkeley
Design Environment. In International Conference on Computer Aided Design,
IEEE, 1986.

R.I. Katz et al. Design version management. IEEE Design & Test, February
1987.

15

[13]

[14]
[15]

[16]

17]
18]

119]

D.W. Knapp and A.C. Parker. A design utility manager: the ADAM planning
engine. In 23rd Design Automation Conference, ACM/IEEE, 1986.

N. Kraft. Embedded tool encapsulations. In IF.J. Rammig and R. Waxman, cdi-
tors, 2nd IFIP International Workshop on Electronic Design Automation Frame-
works, North-Holland, 1991.

J.A. Mulle, K.R. Dittrich, and A.M. Kotz. Design management support by
advanced database facilities. In F.J. Rammig, editor, IFIP Workshop on Tool
Integration and Design Environments, North-Holland, 1988.

M. Silva, D. Gedye, R.H. Katz, and A.R. Newton. Protection and versioning for
Oct. In 26th Design Automation Conference, ACM/IEEE, 1989.

W.D. Smith et al. FACE Core Environment: the model and its applica-
tion in CAE/CAD tool development. In 26th Design Automation Conference,
ACM/IEEE, 1989.

P. van der Wolf et al. Data management for VLSI design: conceptual modeling,
tool integration, and user interface. In F.J. Rammig, editor, II'IP Workshop on
Tool Integration and Design Environments, North-Holland, 1988.

F.R. Wagner. Modeclos de Representagio e Geréncia de Dados em Ambientes
de Projeto de Sistemas Digitais. Technical Report CCR-121, 1IBM Rio Scientific -
Center, Rio de Janeciro, 1991.

F.R. Wagner and A.H. Viegas de Lima. Design version management in the GAR-
DEN framework. In 28th Design Automation Conference, ACM/IELL, 1991.

F.R. Wagner, A.H. Viegas de Lima, L.G. Golendziner, and C. lochpe. STAR:
um ambiente para a integracdo de ferramentas de projeto de sistemas digitais.
In VI Congresso da Sociedade Brasileira de Microeletrénica, SBMICRO, Belo
Horizonte, 1991.

16

Relatbérios de Pesquisa

RP-166: "Design Methodology Management in Design", novembro
1991. !
F.R. WAGNER
RP-165: "Desenvolvimento de "Asa" e "Trama"", outubro, 1991.
S.D. OLABARRIAGA; E.M. CORREA; C. CALLIARI; A.L.
POMPERMAYER
RP-164: "Estudo Topoldgico e Elétrico da Nova Célula de Base
para CIs Gate Array - Tecnologia 1.2 um", outubro,
1991.

L.R. FROSI; G.V. PAIXAO; J.L.G. CUNHA; D.A.C. BARONE

RP-163: "Representacgdo de Conhecimento em Engenharia do
Conhecimento", setembro, 1991.
N. EDELWEISS

RP-162: "Biblioteca de PADS Digitais CMOS 1.5 um - Versdo 1",
setembro 1991.
M.K. DOSSA

RP-161: "Versdes Intervalares do Método de Newton", agosto 1991.
H. KORZENOWSKI; M. LEYSER; T.A. DIVERIO; D.M. CLAUDIO

RP-160: "Processamento Vetorial e Vetorizagdo de Algoritmos na
Maquina Convex C210", agosto 1991.
T.A. DIVERIO

RP-159: "Um estudo de técnicas de validagdo e de verificagédo de
produtos de software", junho 1991.
N. EDELWEISS

RP~-158: "Extensdo das Ferramentas PIU/LINUS de especificagdo e
controle de interfaces com o usudrio", Junho 1991.
J.P. FIGUEIRO

RP-157: "The Domain of Nets and the Semantic Bases of a
Notation for Nets", Abril 1991.
A.C.R. COSTA

RP-156: "Continuous Predicates and Logical Reflexivity", Abril
1991.
A.C.R. COSTA

RP-155: WTENTOS - Gerenciador de Software para
Microeletrénica", abril 1991.
F.G. MORAES; R.A.L. REIS.

RP-154: "sistemas Especialistas para a Engenharia de Software",
Abril 1991.
H. AHLERT.

RP-153:

RP-152:

RP-151:

RP-150:

RP-149:

RP-148:

RP-147:

RP-146:

RP-145:

RP-144:

RP-143:

RP-142:

"Estudo Comparativo e Taxonomia de Ferramentas de
Suporte & Construgdo de Sistemas, Abril, 1991.
H. AHLERT.

"IMP-MAC - Emulador de Impressora Padrdo Apple", Abril,
1991.
C. DE ROSE; R.F. WEBER.

"Em diregdo a um modelo para representagédo de
aplica¢des de escrit6rios baseadas em documentos",

Abril, 1991.
D.B.A. RUIZ.

"Implementag¢do de Sistemas de Geréncia de Banco de
Dados", Abril, 1991.
D.B.A. RUIZ.

"Integragédo de Ferramentas no Sistema AMPLO: Critica e
Proposta de Extensdes", margo, 1991.
F.R. WAGNER.

"Interface de Entrada para Teclado e Mouse", margo,
1991. _
J.M. DE SA.

"Servidores - Guia do Usuario - Edigdao 1", janeiro,
1991.

A.R. TREVISAN, C. LEYEN, G. CAVALHEIRO, J.F.L. SCHRAMM,
L.G. FERNANDES, P. FERNANDES, R.M. BARRETO,

R. TEODOROWITSCH

"Biblioteca de Células TRANCA regras ECP15/1", janeiro,

1991.
C. CRUSIUS, L. FICHMAN, M. KINDEL, C. MARCON, R. REIS

"Manual do Usudrio do Projeto TRANCA; v 1.0", Jjaneiro
1991.
F.G. MORAES; M. LUBASZEWSKI, R.A.L. REIS

"Manual do Sistema TRAMO Projeto TRANCA vers&do 1.0%,
janeiro 1991.

M.A. SOTILLE; C.E.S. SOUZA; M.G.R. ARAUJO;

M. LUBASZEWSKI; R.A.L. REIS

"PILCHA: Projeto e Implementa¢do de um Sistema Digital
Discreto dedicado ao controle de acesso direto a
memdéria", janeiro 1991.

F. AZEREDO; L. ROISENBERG; D.A.C. BARONE

"Ambiente para Estudo' de Fractais - Relatdério de
Projeto", janeiro 1991. :
S.D. OLABARRIAGA; F.S. MONTENEGRO

