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Abs t rac t 

This paper ic a tutorial on design methodology rnanagement [drnm) in design frame-
works for VLSI systems and other complex electronic systems. The motivation for 
such functionality tu design frameworks is discussod. Scveral iiiodels and iticcluuiisins 
for dmm are reviewed and compared, according to a proposed taxonoiny for classi-
fying the diíTerent approaches. The taxonomy is based on the two main aspects of 
methodology rnanagement: the control of the task ílow and the control of the object 
representations created during the design process. Also considered are the framework 
tool integration capabilities. 

Keywords 
Design frameworks. Design methodology rnanagement. Task flow management. 
Tool integration. 

R e s u m o 

Este trabalho é um tutorial sobre gerência de metodologias de projeto em ambientes de 
projeto de circuitos VLSI e outros sistemas eletrônicos complexos. A motivação para 
esta funcionalidade em ambientes de projeto é discutida. Vários modelos e mecanis-
mos de gerência de metodologias de projeto são revistos e comparados, seguindo uma 
taxonomia projDosta para a classificação das diferentes abordagens. Esta taxonornia é 
baseada nos dois aspectos principais da gerência de metodologias: o controle do fluxo 
de tarefas e o controle das representações de objetos criadas ao longo do processo 
de projeto. Também são considerados os recursos de integração de ferramentas dos 
ambientes. 

Palavras-chave 
Ambientes de projeto. Gerência de metodologias de projeto. Cerência de (luxo de 
tarefas. Integração de ferramentas. 
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1 I n t r o d u c t i o n 
rl,he iriaiii objcctive of fiatncworks for the design of VLSI circuits cind other complex 
clcctroiiic ayslenis is to provide nieans for building sp(x:ific enviroumeuts tliat are 
oriented towards diíferent architectures, technologies, and design methodologies. A 
frainework niust allow tlie integration qf tools from diíFerent sources, aiming at design 
data coMfiiatciicy and uscr intcrfacc uniforinily. A frainowork imist also provide other 
services, such as data management (data sharing, access control, version control, 
and long transaction mechanism), intertool communication, and design methodology 
management. Examples of frameworks that partially or totally support these goals 
are Oct [11], from Berkeley, Cadweld [3], from Carnegie-Mellon, and CWS [8], from 
the Cadlab in Germany, as well as some recent comercial products (e.g. the Open 
Framework from Cadence and the ValidFrame from Valid). 

The main feature of a design framework is the provision of a uniform data model 
for design data representation [19], which supports the representation of digital sys-
tems as complex objects, taking into accoimt aspects like composition of sub-objects, 
liierarchy, and instantiation of objects. 

A design framework must allow for multiple representations for a design object. 
In the scope of this tutorial, we will designate the organization of these multiple 
representations as tlie object control structure [20]. DiíFereiit representations for a 
design object can correspond to 

• design alternatives (e.g. a standard-cell or a gate-array approach) 

• design views, i.e. representations of the sarne object at diíferent abstraction 
leveis (algorithmic, RT, logic, layout, etc) 

• design rcvisions, i.e. conseciitive refinements or improvements of the same ob-
ject. 

Most systems offer a single seqiiential representation for the version evolution 
for handHng alternatives, views, and revisions. Some systems, however, permit the 
distinction between the different situations, either in some restricted way [11,15] or 
in a general, flexible way [20], where the control structure is an integral part of the 
data representation model supported by the framework. 

A design methodology is a set of design rules that either enforce or guide the 
design activities performed by the user, so as to obtain design objects with desired 
properties, both rneeting design constraints and achieving design goals. Rules can 
express: 

• tasks that must be executed when the design process arrives at a given state (this 
state can be for instance expressed in terms of some design object properties) 

• altcrnative design approaches that can be followed from a given design state, 
as well as criteria for deciding betwíxjn the possible design paths (again, these 
crieria can involve design object properties) 



• design representations tliat must be created under given conditions (e.g. a repre-
sentation at a more detailed design levei or alternatives tliat must be compared 
according to some trade-oíFs). 

Design methodology management is the control of the design process, so that it 
conforms to the established ruies. It can be achieved by controlling the task ílow 
and/or the design object representations created during the design process. 

The rest of this tutorial is organized as follows. Section 2 discusses design method-
ology management and its main functions. This section provides the basis for classi-
fying design methodologj' management approaclies into three diíTerent classes. These 
classes are then analyzed in sections 3 thru 5. Examples of design methodology 
management approaches for these classes are also reviewed and discussed. Section 6 
discusses the tool encapsulation issue, which is strongly related to the design method-
ology management. Final remarks are given in Section 7. 

2 F u n d a m e n t a i s of des ign m e t h o d o l o g y m a n a g e -
m e n t 

Design methodology management is the control of the design process, so tliat the 
desired object representations are created, the design constraints are met, and the 
design goals are achieved. It can be realized by controlling either the task ílow or 
the various design object representations created during the design process. In the 
former case, the framework capabilities are related to design guidance, while in the 
latter case design methdology management is achieved mainly by automatically main-
taining methodology-related data consistency. In the following, we describe design 
methodology mauageinent features according to e;u:li of tliese approaches. 

2.1 Task flow 
A design methodology contains a set of tasks that must be executed in oí der that the 
desired objects are obtained. Each design methodology may need a particular set of 
tasks, as the following examples illustrate. 

E x a m p l e 1 In the case of the layout design of a data path in a standard-cell ap-
proach, the following tasks must be executed: mapping froin an initial structural 
description into the cells of a library, partitioning of cclls into bands, positioning of 
cells inside the bands, routing between bands, design rule checking, electrical param-
eter extraction followed by a timing evaluation, and netlist extraction follovved by a 
netlist comparison with the structural description. 

E x a m p l e 2 In the layout design of a control part in a random logic approach, 
tasks include; multi-level logical minimization of an initial set of boolean equations, 
technology related optimization and mapping, manual layout generation, design rule 



checking, electrical parameter extraction followed by a timing evaluation, and netlist 
extraction followed by a netlist comparison with the structural description obtained 
aftcr the tedinology mapping. 

Other layout design approaches, such as a data path design tising a gate-array 
methodology or a control part design usifig a PLA strategy, would need other sets of 
tasks. 

Many design environments allow the user to define the task sequencing either 
in an explicit or in an implicit way. The explicit task flow definition [2,5,6] follows 
a.n algorithrnic (or equivalent model, such as a graph or a Petri net) description 
of the task sequencing, eventually oíFering the possibility of conditional branches, 
iterations, and parallel executions. In the implicit task flow definition, tasks are 
cxccutcd whcn certain input objccts are available [17], whcn certain cpnditions hold 
[21,3], or according to rules that select the next task [1]. 

Fiduk et al [6] give a very extensive list of functionalities that can be performed 
by a tool that controls the task sequencing. These functions, that will not be detailed 
hcre, ar<; (.otaily or partially iinpleincnted by the systeins covered by this tutoria!. 

Design guidance A mechanism for the management of the task flow is much more 
interesting wlien it oíTers a,lso design guidance. This means that the system helps 
the designer to decide which is the best (or most promising) task flow to be followed. 
In order to give valuable help, the system must have knowledge about the design 
constraiiits to be met, the design goals to be achieved, the tool capabilities as related 
to the tasks to be executed, and about the design data itself. Design guidance is 
related to two main capabilities: automatic task and tool selection and automatie 
ta,sk ba.cld,rackiiig. 

For the automatic task selection, three capabilities can be ofFered: 

• The system identifies alternative tasks that can be executed from the current 
design point, baseei on the knowledge about the conditions that must hold in 
order that each task is executed. Conditions may involve only the existence of 
certain design object representations, or more complex object properties. 

• The system selects the most promising alternative task. The choice can be 
based either in knowledge about task capabilites or in result estimations. 

• The system selects the best siiited tool for the next task, if severa! tools, with 
different properties, can be chosen for the same task. 

The following examples illustrate the functionalities related to automatic task 
selection. 

E x a m p l e 3 After a cell manual layout design, the system identifies three tasks 
to be executed; design rule checking, netlist extraction, and electrical parameter 
extraction. The condition for executing any of these tasks is the existence of the cell 



layout representation. If the system could also rely on data qualities for identifying 
the next tasks, the nelist extraction and the electrical parameter extraction could 
depend on a "good" layout (a layout which has successfully passed the design rule 
checking). 

Example 4 When a finite state machine description for a control part design is cre-
atcd, the system identiíic.s two possiblc followiiig tasks: two-lovcl loglc iiiininiizalíon, 
which would lead to a PLA-based design, and rnulti-level logic minirriization, which 
would be the entry point for a random logic design. The choice could be based ou a 
knowledge about the current design state (which is the available area for the control 
part, which is the maxiiaurn allowed delay, and how many terms and literais do the 
input equations contain), as well as about task capabilities (which are the expected 
area and delay for the given input equations in the case of the PLA and random logic 
approaches). It niust be noted that in each of tlic possible approaclies a cornpletely 
diíFerent task sequence will be followed. 

Example 5 Frorn a behavioral, algorithniic description, the system must generate 
an RT structure. It must schedule operations in time frames and allocate registeis, 
functional units, and interconnections. Three diíferent tools can be called for execut-
ing this high-level syntliesis task, each one based on a diíferent synthcsis strategy: 
list scheduling, where a hardware allocation constraint is specilied and the algorithrn 
attempts to minimize the total execution time; force-directed schedtding, where a 
global time constraint is speciíied and the algorithin attempts to minimize the re-
sources; and left edge algorithrn^ which minimizes the number of registers under time 
constraints. The choice may be based on the particular design constraints, such as 
maximum expected operation time or pre-defined number of registers, and on the 
relative performance of the tools. As opposed to the previous example, the same 
task sequence will follow after this task, no matter what tool has been chosen for the 
high-level synthesis. 

The other main capability which is related to design guidance is the automatic 
backtracking to a previous design point, either to restore design consistency, when 
design changes occur, or to analyze other alternatives, when constraints cannot be 
met or goals are not achieved. It is needed that the system restores (at least frorn the 
user viewpoint) the state of the design data base in that previous point. Automatic 
backtracking is illustrated by the two following exam[)les. 

Example 6 In a layout design, suppose that the user has already completed the 
design rule checking, the parameter extraction, and the timing evaluation. The user 
is not satisfied with the obtained timing performance, and decides to manually change 
the layout. Since the former extracted parameter values are no longer valid, and there 
is no certainty whether the new layout follows the design rules, the system decides 
to re-execute the design rule checking and the parameter extraction, restoring the 



consistency between the layout and the parameter values, 

E x a m p l e 7 In the high-level syiithesis situation, tlie lisl scheduling strategy, which 
gives rnininiuin cxeciition time, lias been chosen. A topology evaluator indicates 
however that the final area will be too large, mainly due to an excessive number of 
registeis. The systern (lecidcs to backtrack the design process, and selects the left edge 
algorillini, maiiitaining the obtained execution time as a constraint, but searching for 
a minimum number of registers. 

Automatic backtracking for the pur|)ose of restoring the design consistency may 
be unnecessary if the designer uses already existing version and configuration control 
mechanisms. In the case of Example 6, the layout change would be commited as a 
new layout version. Since the parameter values were related to the old layout version, 
the design consistency is maintained: there is no parameter values yet obtained for 
the new layout version. Configuration control can be used as explained in the next 
example. 

E x a m p l e 8 The designer creates a structural composition of a data path, by select-
ing given representations for the ALU, the register file, the shifter, and so on. Since 
the simiihition oC this composition gives ba.d timing estimates, the designer decides to 
change the ALU. The structural composition is no longer valid, neither the obtained 
timing estimates. The system would have to backtrack in order to repeat these two 
steps. Inconsistency can be easily avoided by using version and configuration control. 
The structural data path composition contains instances of ALU, register file, and 
shifter object types. In the first try, the designer selects a given version of each of 
these object types and builds a possible data path configuration. In the second try, 
the designer only changes the version selection for the ^^LU, thus building a new 
data path configuration. Timing estimates are now consistent with their respective 
configurations. 

2.2 Contro l of objec t representa t ions 
A design methodology intends to create design object representations that show de-
sired properties. Beca,use of their complexity, the desired objects must be designed 
in a modular way. Furthermore, the design must follow an hierarchy of abstraction 
leveis. It is thus necessary to create various representations for the desired objects as 
well as lor several auxiliary sub-objects. The two following examples are the coun-
terpart of examples 1 and 2, respectively, when the system controls the design object 
re])resentations, and not the tasks needed for this creation. 

E x a m p l e 9 For the standard-cell layout design of a data path, the following object 
representations must be created: an initial structural representation in terms of cells 
oi a givcii library; a layout representcvtion with cells partitioned into bands; a layout 
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representation with cells i^ositioned inside the bands; a final layout representation 
after the routing between bands; an extracted netlist; and a structural representation 
with the timing parameters extracted and back-annotated frorn the layout. 

E x a m p l e 10 For the random logic design of a control part, the following object 
representations are needed: an initial set of boolean eqnations; the boolcaii equations 
after multi-level niininiization; a structural representation after tcchnology-rclatcd 
optimization and mapping; the manually generated layout; an extracted netlist; the 
structural representation with the timing parameters extracted and back-annotated 
from the layout. 

D a t a consis tency While the task ílow control can be enhanced with design guid-
ance, the creation of the design object representations can be controlIcd so that 
the objects maintain the desired consistency. Most systems support autoinalic data 
consistency by ofFering a unified data representation model. This model supports 
modularity, hierarchy, and instantiation, as well as multiple representations for the 
same object, corresi^onding to design alternatives, views, and revisions. 

Data models offers various possible control structures. The Oct manager [11] or-
ganizes cells as groupings of views. Each view has a contents facet, where the basic 
interface as well as the actual cell view descriptiou are stored, and many interface 
fáceis, that define aspects that are externally visible for particular tasks. The DAM-
ASCUS system [15], in turn, organizes design objects as groupings of representations 
at diíFerent abstraction leveis. Each representation contains a set of design alterna-
tives, and for each alternative there is a graph of revisions. Diíferent control structures 
oíFer distinct capabilities with regard to the automatic data consistency they provide. 
Data models with a íixed control structure oífer the same kind of data consistency 
for ali applications running on the framework. This is illustrated by the following 
example. 

Example 11 In the AMPLO data model [7], for each agency (a design object), there 
are many alternatives, corresponding to various possible interface definitions for the 
object. Many versions can be defined for each alternative, corresponding to views at 
different abstraction leveis, diíferent architectures or iinplernentations for the object, 
or revisions of a given view / architecture / implementation. Ali representations under 
a given alternative share the same interface definition. When a new representation is 
created for an object (for instance an RT structural description is synthesized from a 
behavioral one), the system automatically checks if the interface definition has been 
maintained. 

Flexible data models, in turn, allow each application to define the best suited 
control structure for each design object, as in the case of the CWS [8], NELSIS [18], 
and GARDEN [20] frameworks. The system can therefore support a rnethodology-
specific data consistency. In the GARDEN d/ita jnodel, rei)rcsentations for a üesign 



object can be organized as a hierarcliy of ViewGroups. Each ViewGroup can define 
UserFields (user- or methodology-defined attributes) and interface aspects that are 
automatically shared by ali representations below. Views can be appended at any 
levei of the ViewGroup hierarchy. The following example shows that a methodology-
specific data consistency can be achieved by defining a suitable GARDEN control 
structure. , 

E x a m p l e 12 An 32-bit operational block is designed in a full-custom approach as 
an array of 32 1-bit wide horizontal slices. Each slice is composed as an abutment of 
cells like an A LU, a shifter, and a register file. Two data busses must horizontally 
traverse the slices, crossing the left and right boundaries of ali cells at exactly the 
same height (relative to the bottom of the slice). For each data bus, this height, as 
well as tlio irnplomcntation laycr and the layout track widi h, have their values deíined 
a,s Userl,1ields of a ViewGroup wliich gathers ali representations of an object OPSlice 
(corresponding to the 1-bit wide slices) that are related to its layout design. Layout 
Views under this ViewGroup must necessax-ily follow these design constraints, since 
they inherit these UserField values. 

2.3 Classifying t h e approaches 
A comparison between different approaches to design methodology management can 
be best understood by rnaking it clear that this framework function should not only 
provide a mechanism for sequencing the design tasks, but rather also guide or enforce 
the design process in order to meet the design constraints and to achieve the desired 
design goals, xuhile maintaining the overall data consistency. 

Four basic approaches to design methodology management can be identified, ac-
cording to the achievernent of the above goals they provide: 

• dmm through task flow control 

• dnun through task flow control enhanced with design expertise 

• dmm by controlling the object representations created during the design process 

• dmm by coupling the task flow management with the control of the object 
representations. 

Thesíí approaches will be detailed and exemplified in the next sections. Since 
the third approach corresponds to using a unified data model without any additional 
mechanisms for design methodology management, it will not be considered in the 
aiialysis. 

Table 1 surnmarizes the main design methodology management features of the 
systems reviewed in this tutoria!. 



APPROACH TASK FLOW CONTROL OBJECT CONTROL 

Chiueh task flow control 
& Katz 

Ulysses enhanced task 
flow control 

Cadweld enhanced task 
flow control 

ADAM 
DPE 

FACE 

STAR 

enhanced task 
flow control 

coupling task 
flow control with 
version control 

coupling enhanced 
task flow control 
with control of 

object representa-
tions 

design history: 
- user-directed backtracking 
- interactive plan building 

rule-based: 
- centralized task scheduling 
- hierarchical tasks 

rule-based: 
- distributed task scheduling 
- hierarchical tasks 

rule-based plan building: 
- automatic pre- and post-

estimation 
- automatic backtracking 

data-driven: 
- graph with dependencies 

between tasks and 
object views 

condition-driven 

none 

file-based 

file-based 

file-based 

single 
versioning 
of object 
views 

methodology-
specific 
control 

structures 

Table 1: Design methodology managernent approaches 

3 Task flow m a n a g e r n e n t 
In the íirst approach, there is only a mechanism for sequencing the design tasks. It 
may contain capabilities for the definition and automatic execution of task sequences, 
inckiding conditioiial braiiching and iteration, and for storing and r(,p(,;iting n.scr-
defined "ad-hoc" sequences. Since a "pure" task flow control does not help meeting 
the design constraints and achieving the design goals, it should not in fact be classified 
as a "design methodology managernent" approach. Examples are the CFI approach 
and the design history manager from Berkeley, as well as cornmercial products, such 
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as the OpeuFramework from Cadence and tlie VcdidFramc from Valid. 

C A D F r a m e w o r k In i t i a t ive Design methodology management with emphasis on 
the task sequencing is best represented by the CFI approach. According to the CFI 
- CAD Framework Initiative, a consortium of companys and research centers whose 
goal is to standardize tlie main aspecta of design frameworks - a design methodology 
[6] is a "sequenced set of operations employed in the execution of a given function", 
while design methodology management "is related to the execution and contx-ol of 
methodologies used in the design process". 

In tiu! CFI approach, design methodology management can be decomposed into 
three main functions: 

• tool integration - how to describe atomic tools (data requirements, argument 
definition, characterization of the command set for tlie user, CPU and memory 
requirements, etc) 

• task flow - how to describe sequences of tasks (task data dependencies, hierar-
chical tasks, flow control through conditional branches, selections and iterations, 
concurrent execution of tasks) 

• execution environment - how to execute task sequences, relating them to the 
invocation of atomic tools (selection of the best tool for a given task, automatic 
invocation of tools, storing of and queries to the history of tool executions, 
backtracking and error recovery). 

This approach emphasizes an operational view of the execution of design method-
ologies, as well as the tool encapsulation aspect, which will be discussed in Section 6. 

Berke ley Chiueh and Katz [2] present a model of design history that extends pre-
vious work at the University of Berkeley, the Oct manager [11] and a version server 
[12]. 

Design process management is defined as the "support to the creation of alternative 
design evolutions, while maintaining multiple and simultaneous design contexts, each 
one of them with its design objects and history of operation sequences". 

An activity is a grouping of tasks (tool invocations), ordered in time as a tree, 
so that each task can have many succeeding tasks in the activity. A node in the 
tree defines a design point, that univocally identiíies a consistent state of the design 
data base. A cursor indicates the current design point. The tree is built as the user 
executes new tasks. At any moment, the user can roll the cursor back to a previous 
design point, thus creating a new branch in the tree from that node. In this new 
current design point, the user can access only the data defined at that data base 
state. 

This system allows the user to create, modify, and reuse design methodologies in 
an interactive way during the design process. 

Ã 



The design methodology concept in this system is somehow related to design 
data management [19]. The "design points" offer a functionality that is obtained in 
other systems by "configurations" (in Oct [16]) or "TimeStamps" (in GARDEN [4]), 
that also allow recovering a consistent data base state from a previous time frame. 
However, no relationship with control structures associated to the design objects is 
established (in other words, design dftta management is realized without the explicit 
ii.se of control structures), and tlic system does not give any direct help for achieving 
the desired design qualities. 

4 E n h a n c e d t a s k flow m a n a g e m e n t 
ín the second approach, which is followed by the Ulysses [1] and Cadweld [3] systems, 
as well as in the ADAM Design Planning Engine [13], the task flow control is enhanced 
with knowledge about the design constraints, goals, tools, and data. This knowledge 
may be used for the purposes of automatic tool selection and antomatic backtracking, 
as already discussed in Section 2. 

These systems are not based on an underlying unified data model, so that tools 
operate on isolated files. While this allows for an easier tool integration, it prevents 
the system from supporting an automatic data consistency. The quality of the design 
depends solely on the completeness of the knowledge representation. 

Ulysses Ulysses [1], developed at the Carnegie-Mellon University, was the first en-
vironment to cope with design methodology management. The system is based on a 
hlackhoard model, a data base storing design data and parameters for tool scheduhng. 
Each tool is a knowledge source (KS) for the blackboard, asynchronously activated 
(;a,ch time that the data in tlie blackboard match certain rules, that are also stored 
in the same data base. Tools communicate with each other through files posted to 
and retrieved from tlie blackboard. The blackboard also contains rules that express 
design consistency checks to be permanently verified. The schednler is a special KS, 
implemented as an expert system, which monitors the blackboard, verifies which 
rules match the data, and chooses the next tool to be activated, following conflict 
resolution parameters when several KSs are potentially executable. Tasks may be 
hierarchically described as compositions of other tasks / tools, by using commands 
such as do-while, if-then-else and for-each, as well as parallel commands. The RPOL 
[Rating Policy Module) is another KS that calculates ratings for design points along 
the design process always when the blackboard is updated. The RPOL compares 
these ratings periodically, switching the design process to the most promising point. 

Ali KSs, including the scheduler and the RPOL, as well as the rules and the 
scheduling parameters, are described through a specialized high-level language, called 
scripts. 

Cadweld rl,lie Caclweld environmont [3] was also devclojjed a.t the Carnegie-Mellon 
University, as an evolution oí Ulysses, still using the blackboard concept. Cadweld, 
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however, does not have a centralized scheduler. For each tool a CTKO (CAD Tool 
Knowledge Object) is built, containing iiiformation about functionalities and capabil-
ities of the tool, as well as sets of activalion patterns to wliich the tool can respond. 
ííach CTKO standly monitors the blackboard. When an activation pattern matches 
the data in the blackboard, the tool candidates for execution. Tasks can be hierar-
chically described. A task can post requests to the blackboard, to which other tasks 
OI- tools niay voluntecr. The candidate tasks / tools are inspected regarding their 
capabilities, and the most promising one is selected. After the execution, the task 
which requested the service may inspect the resulting objects to determine if the de-
sign constraints liave been met. If not, the task may decide to backtrack the design. 
If the execution has succeeded, the resulting files are posted to the blackboard. 

A D A M The DPE {Design Planving Engine) [13] is a design methodology manager 
dcveloped for the ADAM environinerit [9], from the University of Southern Califórnia. 
DPE is an expert system that builds, evaluates, and dinamically executes design plans. 
From an initial state, and by using knowledge about the tools that can be applied to 
this state, DPE builds a possible plan. From evaluations that are calculated for each 
alternative path in the plan, obtained by fast evaluators, the DPE chooses a path 
to be followed. Later, more precise evaluators will either confirm the choice or let 
the DPE return to a previous point and choose a new path. From the new obtained 
design state, the DPE repeats the process of building a design plan. 

Similarly to the scheduler of the Ulysses environment, it is the DPE itself that 
selects the next tool to be executed, by using information that is available to it. While 
in Ulysses this information is generated by a single specialized tool that is periodically 
executed, the DPE automatically activates evaluation tools that are specific for each 
state of the design plan in order to obtain the desired information. The DPE creates 
a design plan upon which backtracking can be executed, as in the Berkeley work. In 
that case, however, it is the user that decides the return to a previous point, while 
the DPE perform this function automatically, according to evaluations that are fired 
by the system itself. 

5 C o u p l i n g t a s k flow w i t h o b j e c t r e p r e s e n t a t i o n 
m a n a g e m e n t 

Instead of specifying which and when tools must be executed, the system can control 
the consistency of the objects to be created. This can be done through a unified 
data model, which handles composition relationships, configuration management, hi-
erarchies of alternatives, common properties of representations, and other user- or 
methodology-defined integrity constraints. Tool integration becomes clearly moi'e 
complex, since a mapping between the tool data and the data model objects is needed. 
Although the objects thus automatically hold the desired consistency, the system does 
not give user guidance to obtain these objects, unless the data model is coupled with 
an enhanced task flow management. With this coupling, the system achieves both 
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automatic data consistency and methodology-oriented user guidance. Design quali-
ties are achieved partially by the data model and partially by the task flovv control. 
The knowledge about expected design properties, modelled for the specific purpose 
of controlling the task ílow, is released from the burdening of representing ali design 
consistencies that are already maintained by the data model. 

Examples of systems that couple a task ílow inaiiagnnicnl. meclianism with data 
management featuros for tlie purpose of obtaining design methodology management 
capabilities are the FACE Core Environment and the STAR framework. 

FACE In the FACE Core Environment [17], developed at CE, tlie functions of tíie 
design methodology management are "to control ali object vieivs that are created in 
the design environment, to propagate changes to the data so as to recognize if data 
are updated, and to plan the sequence of tool executions that are needed for buildiiig 
a given object view". A design methodology defines rules for the execution of tools 
and for the construction of views, so that an "object evolution is restricted by the 
methodology, that serves as a template" for the construction of the object. 

A design methodology is represented by a directed acyclic graph, where the nodes 
are tool invocations and design object views. The graph shows which views are 
necessary for the execution of a tool and which are created by the tool. Parameters 
that are needed for a particular tool invocation can be a.j)pended to the corresponding 
node. The user can define methodologies through a graphical-interactive facility. 

Although the FACE environment emphasizes the design methodology as resi^on-
sible for the definition of the control structure that is associated to an object, tíie 
system in fact does not provide any design guidance nor automatic data consistency. 
It is based on very simple version and task flow control techniques. 

STAR The STAR framework [21] oíTers a design methodology management mecha-
nism based on three principies: the definition of a conceptual scheme for the applica-
tion, the specification of the task flow, and the hierarchical definition of methodolo-
gies. It oífers a methodology-oriented data consistency and a condition-driven task 
flow. 

The STAR framework supports a unified, flexible data model based on the GAR-
DEN data model. For each application, one can define a conceptual scheme, contain-
ing various control structures that are specialized for diíFerent design objects, auxil-
iary objects, sucli as stimuli files for simulation purposes and testability measures, and 
cori^lations, that are general purpose relationships between object representations. 
Control structure specialization includes defining the overall topology of ViewGroups 
and Views, defining UserFields, and attaching interface aspects to the various nodes 
of the control structure. 

The tasks are speciíied through a condition-driven approach. Each task is a 5-
uple {task name, tool name, input conditions, output objects, task goals}. The input 
conditions specify data qualities that must exist in order that the task is executed, 
such as the existence of an object representation or a complex expression involving 
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UserFiclds of any objects. Tlie oiUput objects are the lepresentations, auxiliary ob-
jects, and correlations that are created by the task. The task goals specify conditions 
expected after tlie task execution. If they are not acliieved, the task fails, though the 
output objects are still created. A design methodology succeeds if none of its tasks 
is marked as "failed". 

Design methodologies can be defived in a hierarchical way. Derivation includes 
specialization of already existing control structures, definition of contx-ol structures 
for new objects, and specification of new tasks, 

Since the STAR approach does not aim at the automatic execution of tasks, its 
condition-driven task flow model relies on user expertise, only indicating tasks that 
are eligible for execution. Therefore, it does not oífer facilities for automatic tool 
evaluation, selection, and execution, neither for automatic task backtracking. 

6 Tool e n c a p s u l a t i o n 
Tool encapsulation is a generic denomination including issues that are related to the 
tool invocation and to the rnapping between the tool data and the unified data model. 
Tool encapsulation has been generally presented as a feature of design methodology 
management [6]. It is clear, however, that tools still have to be integrated into the 
Iraniework even if it does not give any support for design methodology control. These 
kind of facilities should be therefore considered as an independent feature of design 
frameworks. 

D a t a mapp ing Frameworks that are based on an underlying unified data model 
have a more complex tool integration pi-ocess, since there must be a mapping between 
the data handled by the tools and the objects of the data model. This mapping can 
be of course avoided, if the tool is written (or modified) for directly operating upon 
the data model. Although this implementation would give better efficiency, it needs 
modifications to the tool code. Furthermore, it is not cornpatible with the invocation 
of the tool within diíferent environments built upon the framework, as in the case of 
the hierarchically derived design methodologies in the STAR approach. Many users 
seem to prefer a "plug-and-play" approach to the tool integration, where the tool 
is "enca.psulated" by a rnapping function. This kind of encapsulation is generally 
obtained by an extension langiiage, such as the TIDL ~ Tool Integration Description 
Language in the CWS framework [10]. This langua.ge also allows the definition of 
conceptual schemes, ina,pping from the tool user interface to unified user interface 
resources, data base set-up (initial loading of objects), and access management aspects 
(such a,s user and group rights). The scripts language of the Ulysses environment is 
also an extension language. 

The externai data mapping, executed only before and after the tool, has its short-
comings, however. Besides the lower efficiency, this approach is not possible when 
there rnust be an interaction between the tool and the data base during the tool 
execution, as in the case of an interactive layout editor, which allows the interactive 
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creation and immediate re-use of cells. 
Kraft [14] presents an alternative approach to the tool integration, where the data 

rnapping is described externally to tlie tool, but the mapping function is embedded 
in tlie underlying operating system, so that each access the tool executes to its data 
is automatically converted by the operating system to an access to the unified data 
base. , 

Tool invocation Besides data mapping, tool encapsulation also includes abstract-
ing tool invocation details from the user. The extension language allows the encap-
sulation of aspects such as tlie path to the tool, the argurnents to be passed to it, 
and the exact syntax of the command line, so that the user can call a "high levei" 
abstract task. 

7 F i n a l r e m a r k s 
This tutorial has shown that design methodology management should not be re-
stricted to a "syntactical" task flow control, where the system only ofFers to the user 
the possibility of defining and executing task sequences, as proposed in the CFI ap-
proach, for instance. Tliis sequencing may be enriched with branchings, iterations, 
and concurrent executions, and the system may allow backtracking to previous design 
points. However, this approach does not oíFer a "semantic" control of the task flow, 
whei'e tlie system hei ps the user to clioose the most promising task sequences. 

A first iinprovcmcnt to design methodology managenient consists therefore in 
enhancing the task flow control with knowledge about design constraints, goals, tools, 
and data,, so that the system ofFers design guidance, as in the Ulysses, Cadweld, and 
ADAM environments. The system may contain resources for automatic plan building, 
task and tool selection, and backtracking, ali of them based on the knowledge about 
the state of the design process. This solution still has its shortcomings, since tasks 
operate on isolated files, so that the system does not gua.rantee that the generated 
objects maintain a desired consistency, except if this consistency could be integrated 
into the system knowledge, an approach that would be either inneficient or incomplete. 

A further improvement must be therefore directed into coupling the enhanced 
task flow management with a unified data model, such as the model offered by the 
Oct manager. A unified data model automatically holds various integrity constraints 
that relate object representations to each other, such as composition and equivalence 
relationships. An even better approach can benefit from a data model that allows the 
definition of methodology-specific conceptual schemes, as in the STAR framework. 
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