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Abstract

This report presents the data model for the design framework STAR. STAR is an open
{framework for the design of electronic circuits and systems, that provides powerful
facilitics for data and design riianagement, as well as for cooperation among designers,
The data model is the basis for preserving data consistency throughout the design
process. It allows different organizations for the multiple representations of a design
object that are created during this process. This flexibility allows the framework to
support various data and design management schemes. The data model is specilied
through the Plasma language, a semi-formal system specially developed for this task.

Keywords
Electronic design automation. Design frameworks. Data representation model.

Resumo

Este relatério apresenta o modelo de dados do ambiente de projeto STAR. STAR é um
ambiente aberto para o projeto de sistemas e circuitos eletronicos, que oferece recursos
poderosos para a geréncia de dados e de projeto, assiin como para a cdoperacio entre
projetistas. O modelo de dados é a base para a preservaciao da consisténcia dos
dados ao longo do processo de projeto. Ele permite diferentes organizagles ‘para as

- multiplas representagdes de um objeto de projeto criadas ao lengo deste processo.
Esta flexibilidade permite que o ambiente suporte vdrios esquemas de geréncia de
dados e de projeto. O modelo de dados é especificado através da linguagem Plasia,
um semi-formalisino desenvolvido especialmente para esta tarefa.

Palavras-chave - }
Automagéo do projeto de sistemas eletronicos. Ambientes de projeto. Modelo de -

representagdo de dados. - " T : e
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1 Introduction

Design frameworks aim at the integration of tools so as to guarantee the overall con-
sistency of the process of designing circuits and systems, They are typically based on
three main interfaces. The data interface, which allows access to a common data base,
uses a uniform data model for representing complex objects at various abstraction
levels. The user interface offers graphical facilities thal make possible the uniformiza-
Lion of the user interaction style. The system interface, finally, offers facilitics for tool
execution that are typically found in operating systems. Examples of frameworks
that partially or totally support these features are Oct (1], from Berkeley, FACE [2],
from GE, Cadweld [3], from Carnegie-Mellon, and CWS [4), from the Cadlab.

The development of the STAR framework [5] is a joint eflort of the UFRGS and
the IBM Rio Scientific Center which is based on previous experience of these groups
in the field of design frameworks (the AMPLO environment |6, at the UFRUS, and
the GARDEN environment (7], at IBM). The STAR framework will support the most
important features expected from systems effectively open to the integration of tools
aimed al various applications, architectures, and technologics. STAR will be based
on a data model which is derived from the GARDEN model and which has been
shown to support superior concepts with regard to other frameworks [8]. The STAR
framework will offer special facilities for data and design methodology management,
and for cooperation between designers.

This report presents the STAR data model in its entirety, in a semi-lormal way,
by using an ad-hoc specification language. The report describes the objects, their
atiributes, and the relationships between them, but it does not describe the opera-
tional part of the model, i.e. the functions that can be applied for manipulating these
objects (functions for finding, creating, removing, or modilying objects, as well as
lunctions for navigating through the objects according to the relationships between
them). This operational description will be the subject of a following report. -An
overall description of the STAR framework can be found elsewhere [5].

This report is organized as follows. In Scction 2, the semi-formal specilication
language Plasma is presented. Section 3 then completely presents the STAR data
model by using Plasma. Section 4 discusses issucs related to the configuration of

objects.






2 The specification languagé Plasma

Plasma is an ad-hoc specification language, specially designed for the specification of
the STAR data model '. Plasma supports abstraction concepts that can be mapped
to well-known modelling concepts like aggregation, generalization, and association.
However, since the only goal of Plasma is to serve as a means of unambiguosly spec-
ifying the STAR data model, there i$ no intent of obtaining a general purpose spece-
ification language. It is not argued that Plasma is a formal language, neither that
its mechanisms are complete, orthogonal, or even consistent with each other. They
will be presented and explained through examples, not through formal syntactical
and scmantic description. These examples, although coming fromn the digital systems
area, have no relationship to the STAR concepts. '

| 2.1 Notation

The following notation is used in the specification of the Plasma language:

1. Words beginning with a lower case are reserved words;

™o

Words beginning with an upper case are user-defined words, like object names; -
AR

w

[ ] means an optional item
4. { } means an iteration — zero or more occurrences of the item

5. { }® means a limited iteration - minimum of @ and maximum of b occurrences
of the item

2.2 Objects and attributes

Elements of a Plasma description are objects and attributes. Objects are the main
components of a data model, like entitics in a /R diagram. Attribules serve to model
properties of objects. Attributes do not have autonomous existence, as opposed
to objects. Deciding whether to model a data model element as an object or as
an attribute is a matter of nodelling purpose. In the following STAR data model
specification, for instance, Ports (interface signals of hardware modules) are modelled
as attributes of design objects, although one could perlectly describe them as objects.
However, attributes can be inherited by objects from other objects, and this property
was decisive in the modelling choice for Ports.

Objects and attributes can be complex elements, that can be formed by composi-
tion of sub-elements (aggregations).

Object and atiribute declarations in Plasma are like type definitions in program-
ming languages. Many instances of an object or attribute type can exist in a concrete
system represented through the data model specified in Plasma.

1Plasma is the state of the material which constitutes a star during its birth phase.



2.3 Aggregatlons

. An element can be an agglegatlon of othel obJectq and attnlmtes Attul)ulos can be
single or composite. Component objects are specificd through the contains sentence,
while attributes are declared by the has sentence. An element declaration can have
any number of such sentences. There must be one sentence for each component object
or attribute type. Figure U illustrales the declaration of components and attributes.
Adder and Subtractor are components-of the object ALU, while Interfacelnvelope
and BitWidth are its attributes. InterfaceEnvelope is a'composite attribute.

ALU contains Adder
contains Subtractor
_has lnterfaceEhVelope
has BitWidth
InterfaceEnvelope has HorizDimension
+ has VertDimension

Figure 1: Component and attribute sentences

Sentences can specily optional atiributes and components, as well as multiple
attributes and components of the same type, as shown in Figure 2.. The object
ALU contains many components of type InterfaceSignal and an optional component
of type Overllowl"I. It also has many optional attributes of type TimingParameter.
The attribute InterfaceEnvelope has many sub-attributes of type Vertice and optional
sub-attributes of types HorizDimension and VertDimension.

ALU contains { InterfaceSignal }7
[ contains OverflowFF |
* ~has { TimingParameter } N
-has InterfaceEnvelope RN ‘
InterfaceEnvelope has { Vertice }}
- [ has HorizDimension }
L T T [has VertDlmensmn] ,

Flgme 2 Optlonal and multzple components and’ dlllll)ut('q

2.4 Generalization and association

An object can be a generalization of other objects (alled sub- objects and also an
association of these same sub-objects. As a generalization, the object has attributes
that are inherited by the sub-objects. Inhérited attributes are listed in an inheritanee
clause, specified within the symbols {{ and }}. The attribules defined in such a

3



clause do not need to be defined through a has sentence. There are two different
types of inheritances, that will be discussed later on. ‘As an association, the object
has attributes that are not inherited by the sub-objects. _

‘Generalization objects in Plasma can be versioned (see subsection 2.9 oir object
versioning). Objects Y; generahzed by X can mhent dxﬂerent attribute va,lues flom
dlﬂelent versions of X,

- In the-example in Figure 3, Avithmlile mient is a generalization and an association
of objects of type Adder. Attribute BitWidth of ArithmElement is inherited by all
objects of type Adder, while attribute Designer is not.

ArithmElement has Designer

is generalization of Adder
{{ inherited BitWidth }}

Figure 3: Generalization and association

.An object can be a generalization of different sets of sub-olijects simultaneously.
Simultaneous generalizations can be specified through a single generalization sentence.
In Figure 4, both object lypes Adder and Sul)tmctm mh(nl llu' dttul)uto ”I(WIdl.ll

of ArlthmElement

ArithmElement is generalization of -{ Adder Subtractor }
{{ inherited BitWidth }}

Iigure 4: Generalization of dilferent sets

Sub-objects of a generalization / association are identificd by a hierarchical, pre-
fixed naming convention. At each level of the hieratchy, an object is identified by pre-
ceding its name by the names of all its ascendants up in the hierarchy. 1n the example
in Figure 5, suppose an ALU object with Name ALUI. A sub-object ALU-Version
of this ALU, with Name VI, has a composed Name ALULVI. A sub-object ALU-
Revision of this ALU- VelSlOll with Name R1, has a composed Name ALUI VI.RI

ALU has Name
is generalization of ALU-Version
ALU- Verslon has Name
is generallzatlon of ALU Revision °

1* 1guxe Nammg conventlon

v



2.5 References and scope of definition

An aggregation can also contain references to other clements. Relerences can be done
to either objects or attributes. A reference is like a pointer in a programming language.
1t does not define a new object or attribute, but states that an element has some sort
of relationship with another element. A reference is specificd through the reference
sentence. It contains a label (the reference identifier), followed by a colon and the
name of the referenced clement. Relerences are always considered as attributes of
elements. An attribute of another object can be referred to by a prefixed notation.
In the example of Figurc 6, Addl is an attribute of ALU which makes reference to
another object Adder, while Celll containg a reference to the attribute PortLayer of

(J@“Q

ALU has. reférence Addl : Adder
Celll has reference RefLayer : Cell2 . PortlLayer

Figure 6: Relerences

An attribute which is defined in an’objeet X is also known in all sub objects
that are hierarchically contained in X. In Figure 7, FlipFlop makes a relerence to
an attribute DesignStyle, which is defined in DataPath, that hierarchically contains
FlipFlop, while a reference to ClockScheme of (()nllolBIO(k which is uniclated to

- llpl' lop, must l)c done Hnoug,h a pl(‘llX(‘(] notation, ‘ ’

DataPath has DesignStyle
contains { Register }}
Register contains { FlipFlop }7}
ControlBlock has ClockScheme
FlipFlop has reference FFStyle : DesugnStyle
has reference CKScheme : ControlBIock CIockScheme

Figure 7: Relerences and scope of definition

2.6 Alternative definitions

Sometimes it is desirable, for modelling purposes, to introduce an element which is
a synonim for any of a list of alternative elements. This can be done by the alias
sentence. In the example shown in Figure 8, FlipFlop can be replaced by any of the

objects JK-FF, D-FF, and RS-FF.

(&1



Regiéfer céntaing {vFlipFlop 3¢ '
FlipFlop is { JK-FF/ D-FF / RS-FF }

Figure 8: Alternative delinitions

2.7 Inheritance tyi)es

Sub-objects in a ge nuuluzlmn seulence can inherit attributes of the geue mllmllun
objects according to two different inheritance rules. ,

It must be noted that generalizations can be applied in a mscaded way, as shown
in Figure 9. MemoryElement is said to be an ascendant of R(g,lstvl, while Memo-
ryElement and Register are ascendants of D-Register. Attributes can be inherited
from all ascendants of an object. D-Register is said to be a descendant of both

~ MemoryElement and Register.

MemoryElement is generalization of Register
Register is generalization of D-Register

Figure 9: Cascaded generalizations -

In the default znhentance 1nhented pl()])eltl(,b (attubute plus value) ale vahd:
only if they are not overriden in the definition of the descendant. In the example in
IPigure 10, the value of Cloc kFreqrency can be determined by Memory Blement and
thus inherited by Register and D-Register. T'his value can I)e however xcdclmed by

either Register or D-Register.

MemoryElement is generalization of Register‘ o -
{{ inherited ClockFrequency }} .
Reglster is generalization of D-register

Figure 10: Default inheritance

/

{

In the strict inheritance, all inherited properties must exist and be valid for each
descendant. The value of an inherited attribute cannot be defined in a sub-object
il it has been already delined at an upper level. T'his is illustrated in Figure 11,
where D-Register inherits SetUpTime from Register and ClockFrequency from Mem-
oryElement. A different value can be assigned to SetUpTime in each object of type
D-Register.  1f, however, the value of SetUpTime is already defined in a Register
object R, then it will be inherited by all sub-objects of type D-Register of 2. The
value of ClockFrequency, if already defined in a MemoryElement object, cannot be
changed by objects of type Register or I)-R.vgis!',nr.

Cor ATICA
EiTRy HYUEVA



MemoryElement is generalization of Register

' ‘ {{ strict inherited ClockFrequency }}
Register is generalization of D-Register
' {{ strict inherited SetUpTime }}

Figure 11: Strict inheritance

2.8 Data types

Non complex attributes (i.e attubutes tha,t are nol specilied as ag,g,l('g,atlons of other
attributes) must have a data type associated with them. Data types can be primitive
or composite. Primitive data types in Plasina are integer, bit-vector, file, string,
~and time. Composite data types are sets, arrays, and records. The data type of a
non-complex attribute must be defined in the has sentence. FExamples are given in
Figure 12.

RegisterFile has BitWidth : integer
has Name : string
has RegisterSet : array (1 to 8) of bit-vector
has Datalnput : record of | SetUpTime : time;
Data : bit-vector ]

Figure 12: Data types

A non-complex attribute can also have a constant value of any of the primitive or
composite data types, as shown in Figure 13. ‘

RegisterFile has BitWidth : 16 (an integer value)
has DesignStyle : standard-cell (a string value)

Figure 13: Data types with constant values

As another option, a data type can be implicitly defined by enumeration of values
or by subseting of one of the above mentioned pmml,lve data types, as illustrated in
IYigure 14.

2.9 Versmnable obJects

Plasma allows the specification of vuswnable objects, a fundamental requirement for
data models in engincering applications. This property can be attached cither to
objects, through a is versionable sentence, or 10 single attributes of objects, through



Port has Direction : { in / out / inout } (enumeration of values
' of type string )
has Delay : { 10 ns to-20 ns } (subsetmg of type time)
has Value : bit-vector {8} (a bit-veclor of 8 bits)

Figure 14: Enumeration and subseting
‘ ' .
a verstonable qualifier. In the casc ol a versionable object, any change in the value
~ of any object attribute will imply the creation of a new object version. In the case
of versionable attributes, a new object version is created only when the value of
‘a versionable attribute of the object changes. In the example shown in Figure 15,
changes in the value of Dclay or ClockFx equency W1ll create a new version of a Register
object. : - » : :

Register has Delay
has CIockFrequency
is versuonable '

Figure lo Versmna,ble ol)_]ects

e

In the next example, in Figure 16, only changes in the value of Delay will create
a new version of Register,

Regisfer has Delay version.able_ : |
has ClockFrequency

[Figure 16:. Versionable attributes

The combination of the versionable qualifier with sets of atiributes is interpreted as
follows: not only the values of the attributes are versionable, but also the composition
of the'set of attributes is versionable. In the example of FFigure 17, ALU can have
many attributes of type TimingParameter. A new version of ALU is created when:
a) the value of ParamName or ParamValue of any of the TimingParameters changes,
and b) a new attribute of type TimingParameter is created for ALU or an already
existing attribute is deleted.

This interpretation for versionable sets of attributes also holds when a whole object
is versionable and it contains such sets, as in the case of objecl Register.

Versioning can also be applied to sets of components in composite objects, as for
the object Shifter. In this case, a new version of Sluiter is cxmtul whcn a sub- object

Slnftel Slice is created or deleted.



ALU has { TimingParameter } versionable
TimingParameter has ParamName : string
has ParamValue : time
Register has { TimingParameter )
is versionable
Shifter contains { Shifter-Slice }! versionable

Tigure 17: Ver'sioﬁ_ing sets of altributes

9



3 The STAR data model

In this section all objects of the STAR data model are specified through the Plasina
language. Sometimes during the specification, it will be necessary, in order to explain
properties of the objects, to make references to other objects that will be defined only
in a later subsection.

This specification does not contain the operational part of the model, i.e. the
functions that can be applied for manipulating objects and navigating through the
objects according to the relationships between them.

3.1 Repository
"T'he Repository, whose definition is shown in Figure 18, is the collection of all objects

in the data base. It is composed of Libraries, where the design objects are stored,
and of Processes, that contain technology-related information.

Repository contains { Process }
contams { Library }?

I' |g,|u(' I8 R« pmul,uly

s
3.2 DProcesses

A Process is a collection of technology-related information which is stored in one or
- several TechTiles as bit-strings, as shown in Figure 19. The contents of the TechFiles
are directly handled by the design tools.

A Process can optionally refer to many includable Processes, that are other Pro-
cesses with compatible technologies. This information can be used for the configura-
Lion of composite object descriptions. A rule could for instance state that an object
X with Process PX can contain a sub-object which is a reference to an object ¥ with
Process PY iff PY is includable in PX.

The set of includable Processes is fixed and cannot l)(, changed in consceutive
versions of the Process.

Process has Name : string versionable
contains { TechFile : file versionable
has { reference IncludableProcess : Process }

Figure 19: Processes

10



‘3.3 Libraries

A Library, defined in Figure 20, is a collection of design objects. A design object
is stored in a single Library, so that Libraries are physical, not logical, partitions of
objects. A Library can optionally have an associated Process. This Process is. then
- necessarily associated with all design objects of the Library. The design objects can
also inherit some attributes (UserFields) of the Library. Attribute inheritance can be
ol type strict or default. : o
A Library LX can optionally refer to many associated Libraries Li,...,lLn. This
information can be used for the configuration of composite object descriptions. A rule
could for instance state thal an object X from a Library L,X can contain a sub-object
which is a reference to an object Y from a Library LY iff LY is associated with LX.
The associated Process and the set of associaled Libraries are fixed and cannot

be changed in consecutive versions of the Library.

Library has Name : string versionable
[ has reference AssociatedProcess : Process ]
. has { reference AssociatedLibrary : Library }
* has { UserField versionable }
~ is generalization of Design N
{{ strict inherited AssociatedProcess; UserField 1}
{{ inherited UserField }}

- Ligure 200 Libraries

3.4 Désii'g}ils,"'?‘ | :

$a

A Design'is a single design object, like a hiicro;iroccg@r, an’ ALU, a register,. or a
gate. Its specification is shown in Figure 21. A Design inherits tle’rocvsa of the
Library in which it is contained. If such a Process is-not specified, a Process can
be directly attached to the Design. The associated Process is fixed and cannot be
“changed in consecutive versions of the Design. '

Ports that’are common to all representations of a design ohject can be stored at
the Design, which is the root node of a hierarchy of representations (called the Design
control structure). '

Designs are collectious of ViewGroups and Views, that inheril some abiributes
of the Design (Ports among them). UserField inheritance can be of type strict or
default, but Port inheritance is always of type strict. The name of any representation
of a'Design is prefixed by the Design name. v

Designs can be parameterized objects. This means that the behavior of instances
ol a Design (used in Components inside structured Views of ot her Designs) can depend
oi the value of one or more Paramelers.  Actual values cannol he assigned Lo a
Parameter when the Design is declared. "Thesk values are assigned only when the

11



instances are created. All Parameters of a Design are inherited by the ViewGroups
and Views under the Design. Parameter inheritance is always of type strict.

-Design has Name : string versionable - S =
[ has reference AssociatedProcess : Process | . ‘ -
has { Port versionable } - ¢ '
has { UserField versionable }
has { Parameter versionable } \ o o
i$ generalization of { ViewGroup ; View } ' ,

{{ strict inherited Port ; UserField; AssocnatedProcess Parameter }}
{{ mhented UserFleld }}

Figure 21: Designs

i

3.5 ViewGroups . y B

A ViewGroup, whose definition is fpund in Figure 22, is a collection of representations
for a design object that have some common plopelhos. T heqr- properties can be user-
or metliodology-delined. An attribute (noupbutclm can slun- “le(, propertics for
documentational purposes.

‘A ViewGroup inherits the Process of the Design or VlewGloup to which it belongs.
IFsuch a Process is not specilied, a Process can be directly attached to the ViewCGroup.
The associated Process and the GroupCriteria ate fixed and cannot be changed in
consecutive versions of the ViewGroup.

A ViewGroup can be further decomposed into other ViewCroups and Views, that
inherit some of its attributes. ViewGroups inherit Ports from the Design El.lld/()l ‘
ViewGroups above them in the control structure. UserField inherjtance can be of
type strict or default, while Port inheritance is always of type:strict. Ports that are’
common to all 1eplcbcnl.al|0ns gathered in a Vlew(noup can be stored at this node
of the control structure. The name of any 1epresentat10n below a ViewGroup in the
control structure is pmﬁxcd by the ViewGroup name. c .

The ViewGroup can add new Parameters to Lhe design object. They will be
inherited, in strict mode, by the ViewGroups-and Views under this ViewGroup.

3.6 Views

A View is a representation of a design object al a given abstraction level. Tts specifi-
cation is shown in Iigure 23. l'or each View there can be any munber of Vlewbtatcb,
where the concrete design data are stored. ,

A View inherits the Process of the Desngn or VlewGroup to whl(h it l)olongq If
such a Process is nol specified, a Process can be directly attac hed to the View. All

12
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ViewGroup has Name : string versionable

[ has GroupCriteria : string ]

[ has reference AssociatedProcess : Process |

has { Port versionable } ’

has { UserField versionable }

has { Parameter versionable } =

is generalization of { ViewGroup ; View }
{{ strict inherited Port ; UserField ; AssociatedProcess; Parameter }}
{{ inherited UserField }}

IMigure 22: ViewGroups

ViewStates of a View have the same Process. The assocmt('d Process is fixed and
cannot be changed in consccutive versions of the View.

Views inherit Ports from the Design and/or ViewGroups above them in the control
structure. Ports that are common to all representations gathered in a View can be
stored at this node of the control structure, Port inheritance towmds the ViewStates
is always of type strict.

The name of any replesentatlon below a Vxew in the contml structure is |)lCﬁX(,(J

by the View name. : : ‘
The View can add new l’alamctus to the design object. 'I'hey will be mhcutcd

in strict mode, by all ViewStates undel the View.

'View has Name : string versionable
[ has reference AssociatedProcess : Process |
has { Port versionable }
has { UserField versionable }
has { Parameter versionable }
is { HDLView / LayoutView / MHDView }

F;guxe 23: Views

There are three View types, whose definition can be found in Figure 21. The
HDLView is dedicated mainly for behavioral descriptions at high abstraction levels,
normally using some hardware description language, such as VIIDL. The MIIDView
(Modular Hierarchical Description View) is used for purely structural descriptions,
for instance at the RT, logic, or electrical level. The LayoutView, finally, is oriented
lor the geometrical description of pliysical realizations, either the layoul of integrated
circuits or of printed circuit boards.
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HDLView is generalization of ViewState _ _ -
{{ strict inherited Port ; UserField ; AssocidtedProcess; Parameter }}
{{ inherited UserField }} S :
LayoutView is generalization of ViewState . - B
' {{ strict inherited Port ; UserField ; AssociatedProcess; Parameter 1}
~ {{ inherited UserField }} _
MHDView is generalization of MHDViewState ‘ I
{{ strict inherited Port ; UserField ; AssociatedProcess; Parameter }}
{{ inherited UserField }} '

IFigure 24: View Lypes

3.7 ViewStates
ViewStates are the nodes of the control structure wheie concrete design k(',la.ta are
stored. . o o R I
The ViewStates of a given View are organized as a derivation graph, where cach
ViewState has a number of predecessor nodes and a number of successor nodes. There
is no inheritance of attributes between ViewStates. All ViewStates of a graph inherit
their attributes directly {rom-the View. The predeccssor and successor nodes of a
ViewStale are not versionable. L S e o |
Ports can be specified at the ViewState level. They are added to Ports already
specified fot’ the design object in the ascendants of the ViewState in the control
structure. Paramelers cannot be added to the design object at the ViewState level.

ViewState has Name : string versionable.
has CreationDate : time versionable
has { Port versionable }
has { UserField versionable } :
has { reference PredViewState : ViewState }

has { reference SuccViewState : ViewState }

has ViewDescription : file versionable

contains { Designlnstance versionable }

“contains { Component versionable }

is generalization of ConfigurationDefinition
{{ strict inherited UserField }}

w1

Figure 25: ViewStates for HDL and Layout Views

There are two types of ViewStates. T'he first one is related to HDLViews and
LayoutViews, and is defined in Figure 25. The concrete design data are stored as a
bitstring in a file, whose internal structure is not known at the data model, and are
handled only by the design tools. These ViewStates can also have a structural flavor,
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making references to other design objects, but the exact interconnections between
these structural sub-objects are not handled by the data model.

Although there is no apparent difference between ViewStates for 1HDLViews and
for LayoultViews, these View types are kept separate in the data model becanse of
the strong semantic dillerence between them. The semantics will be cxpressed by
particular attributes, specially those related to layout aspects, such as implementation
layers and technology rules.

The second type of ViewStale, defined in Figure 26, is the MIIDViewState, which
is related to the MHDViews. In this case, the ViewState is described in a purely
structural way. There is no lile where design data is stored. T'he data model handles
not only sub-objects that make reference to other design objects, but also the exact
interconnections between these sub-objects. :

MHDViewState has Name : string versionable
has CreationDate : time versionable
has { Port versionable }
has { UserField versionable } S
has { reference PredMHDViewState : MHDViewState }
~ has { reference SuccMHDViewState : MHDViewState }
contains { Designlnstance versionable }
contains { Component versionable }
contains { Net versionable }
is generalization of ConfigurationDefinition

L {{ strict inherited UserField }}
B i 1g,lue 96: ViewStates for MIID Views

To ViewStates of either type can be associated Conﬁgural.ionl)cﬁniv‘t'ions. These
are basically selections of objects for the sub-objects ingide a ViewState. They are
explained in detail later on. A ConfigurationDefinition inherits, in $trict mode, all
UserFields of the ViewState with which it is associated.

3.8 DemgnInstances and Components

Sub- objects contame(l in the ViewStates are called I)osng,nlns(.mua The Designln-
stances may be lns(.(mu‘s of Conmponents, which arc in turn design templates that are
locally declared, inside the ViewStates. This declaration defines only the Component
name and 1nte1facc (Poxls and their attributes). The specification of Designinstances
and (.ompononts is shown in Figures 27 and 28, respectively.

Components can be defined when there are many Designlustances ol the same
type inside the ViewState. If there is a single Designlnstance of a given type, the
nser can choose to declare it direetly, without the help of a Component delinition.



Desngnlnstance has Name : string
has { Port }
has { UserField }
[ has DeSIgnObjectRef] '
[ has PortMapping:]: <
[ has ParameterMapping ]
s versuonable ‘

Figure 27: DeSIgn-Instances

Component has Name : string

Y , has { Port }?

has { UserField }

[ has DesignObjectRef |

[ has PortMapping ]

[ has ParameterMapping |

is generalization of Designlnstance * °

- {{ strict inherited Port ; DesignObjectRef;
PortMapping;’ ParameterMapplng, UserField }}

is versmnable : :

Flgure 28: _Componéﬁté

The DesignInstances must be related to other design objects through a configura-
tion. Configurations in STAR can be expressed in many ways. A Component can be
bound to another design object. In this case, all of its DesignInstances are also bound
to this object. DesignInstances of the same Component can be however bound to dif-
ferent design objects (the two configuration options are mutually exclusive). As an
example, imagine a system containing two DesignInstances MICRO1 and MICRO2,
both instances of a Component Microprocessor. MICRO1 can'bé bound to a'design
object M-8080, while MICRO2 is bound to another design object Z-80. '

It is also possible, however, to let a Designlnstance totally unbound inside the
ViewState. In this case, the conﬁgmat]on is described by another object of the data
model (the ConﬁguratlonDeﬁmtlon object). S )

Configurations are described by three elements: a reference to a de31gn obJect
a port mapping, and a parameter mapping. Object references and port mappings
are specified in TFigure 29. The reference can be done to a specific ViewState of a
given Design, but it can also be done to any other node of the control structure of
this Design (to the Design, a ViewGroup, or a View). 'In this case, the rest of the
reference, down to a specific ViewState, must be done elsewhere (either during the
execution of some design tool or through a ConfigurationDefinition object).

The port mapping relates Ports of a given Component to the Ports of the design
object used in the configuration of this Component (or in the configuration of each
DesignInstance of this Component).
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The parameter mapping, that is needed in the case thatl the Designlnstance or
Component is bound to a parameterized object, is explained in the next section.

Y

DesignObjectRef is { reference DesignRef : Design /
reference ViewGroupRef : ViewGroup /
reference ViewRef : View /
reference ViewStateRef : ViewState }

PortMapping has { reference De5|gnObJectRef Port ;
reference Port '}

Figure 29: Object references and port mapping
4

~In the specification of PortMapping, it must be noted that “relerence Port” means
relerence to a Port of the Component where the atiribute PortMapping is delined.

In’ the above specification, it must also be noted that the values of atiributes
inherited by Designlnstances from Components can be assigned either in the Compo-
nent or in the Designlnstances themselves, according to the semantic of the Plasma
language, so that a configuration specified in the Component is inherited by all its
Designlustances.

3.9 Parameters and parameter, mapping.
Paramelers, that can be attached to design objects at the Design, ViewUroup, and

View levels, cannot be complex elements, ' T lu,y have only a name and a data type,
as shown in Figure 30..

- Parameter has Name : string L
~has ParameterType : { BasicType / UserType }’

LN

Figure 30: Parameters

The current specification of the STAR:data model does not accept parametrization
- of the structure of a design object, where the number of Designinstances and/or the
bit widths of Ports and Nets inside a design object are defined by the value of a
Parameter. This facility will be included in a next version of the data model.

The parameter mapping, specified in Figure 31, defines the values of the parame-
ters in the case that they exist in the objects bound to the Components or Designin:
stances. A Designlnstance cannot be created without an assignment ol values to all
Parameters of the object to which it is bound. If the configuration, however, is en-
tirely left to a later stage, through a ConfigurationDelinition object, this assignment,
will also be postponed. ' -
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Values assigned to a Parameter in a Designlnstance can be constant or variable.
A variable value can be the value of an attribute of the object to which the Designln-

stance belongs. Both constant and vauable values must, match the data type of the

Parameler.

ParameterMapping has o+
{ reference DemgnObJectRef UserFleld ParameterValue }}

ParameterValue is { constant / reference UserField . Value )

- Figure 31: Parameter mapping:

In the above specification,. it must. be noted that “réference UserField .- Value” in
ParamelerValue means the.value of a Userllicld in the object where ParameterMap-
ping is defined (it is defined inside Component, which is in turn defined inside either
a ViewState or a MIDViewState). S

3.10 Ports

Ports are the physical interface signals through which design objects are intercon-
nected. Ports can be single wires (see Figure 32) or bundles of wires (sce Figure 33).

In this latter:case, the wires form a vector,” whose leftmiost and riglitmost clements

must be identified by natural numbers. -

Porls can have one of three possible dll(‘(ll()llb i, out, or lmlncehoual (nounally '
associated with busses). At the layout level, the Pont direction has normally no

meaning, although it may remain defined because ol the inheritance from the control
structure above the Layoul View.

A data type can be associated with each Port. This data typeican be either a
basic data type (integer or bit-vector) or a user-defined data type.

Port is { PortBundle / PortWire }

PortWire has Name : string
[ has PortType : UserType ]
[ has PortDirection : { in / out / inout } ]
has { UserField } - I s

is versionable -

Figure 32: Port wires
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PortBundle has Name : string
[ has PortType : { mteger/ blt vector / UserType } |
[ has PortDirection :*{ in / out / inout } ]
[ has BitWidth ] o ‘ '
has { UserField }
- contains { PortWire }7
is versionable

Bi)tWidth‘lS { LeftBit : mteger, nghtBlt integer }
| o I'igure 33: Port bundles

3.11 Nets

Nets, whose specification is found in Figure 34, are the objects that model the in-
terconnections between Porls of the interface of a design object and Ports of the
Designlnstances contained in this object. A Net can connect any number of Ports.
It may connect only Ports of the Designlustances, as well as only Ports of the design
object, so that direct connections between two Ports of the interface of a design object
are possible.

A Net can be a single wire or a‘bundle of wires. In the former case, it can connect
both Ports that are single wires themselves and wires of Ports that are hundles of
wires. In the latter case, it can connect all wires of a Port or a subset of the wires
of a Port. This subset can contain any number of either isolated wires of the Port or
bundles of wires.

Net has Name : string
- | has BitWidth ]
has {'__Con,nectedPort R
has { UserField } : o
- is versionable :
ConnectedPort has { reference De5|gn|nstance Port / ..
- reference.Port } o
[ has ConnectedWires ]
has { UserField }
is versionable
ConnectedWIres has { ConnectedWireSets
ConnectedWIreSets is { ConnectedLeftBit : mteger;
.- ConnectedRightBit : integer }

Figure 34: Nets
Ports of the object interface as well as Ports ol the Designlnstances inside the
object can be left non-connected. Constraints related to data types, bit width, and

direction of Ports connected by a Net are not clecked by the database system. They
are supposed to be application-specific. '
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3.12  Auxiliary objects

Anxnhaxy Objects are ob]ects used to support specific apphcailons like simulation,
synthesis or test generation. Auxiliary Objects are objects other than the circuits
themselves, that are created during these various applications. Iixamples are simula-
tion stlmull simulation results, test cases, testabilily measures, synthesis restrictions,
and so on. : - .

An Auxiliary Object has a Type (such as simulation stimuli). Fypes can be
user- or methodology-defined. From the data model viewpoint, Auxiliary Objects are
handled as bit-strings, whose internal structures arc only known by the application
tools. Figure 35 shows the definition of Auxiliary Objects.

AuxmaryObject has Name : string
has Type : string
"has Contents : file
is versionable

L]

Figure 35: Auxiliary Objects. --

3.13 Correlations

A Correlation allows the specification of relationships between objects, according to
user- or methodology-defined criteria. The Correlation-criterion can be described by
a special atiribute which has only documentational purposcs (its'value is a string).
A Correlation involves two objects — left object and right obju,t ~and a relationship,
as shown in Figure 36. : SRR

Correlations can have directed relationships (fxom the ldt object to the right
object), non-directed relationships, or bidirectional felationships.

An additional, optional attribute of the relationship - the Correlation Mode -
establishes its semantics. If the Mode is “protect”, then the left object of a directed
relationship cannot be removed, while the left and right objects of a bidirectional
relationship cannot be removed. If the Mode is “remove”, then the removal of a left
object of a directed relationship implies the immediate removal of the right object,
while the removal of any object in a bidirectional relationship implies- the immediate
removal ol Lthe object at the other side. If the Correlation Mode is not specilied, no
special integrity constraint is verified by the database system.

The CorrelationMode has no meaning in the case of non-directed relationships.
In this case, removal of an object appearing in the (,onolatlon is poasnblc an(l has no

impact in the other object. -
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Correlation [ has CorrelationCriterion : string | -
has { UserField }
~ has LeftObject : CorrelatedObjectRef
has RightObject : CorrelatedObjectRef
has CorrelationDirection
[ has CorrelationMode |
is versionable
CorrelatedObjectRef is { : .
: reference LibraryRef : Library /
reference ProcessRef : Process /
reference DesignRef : Design /
reference ViewGroupRef : ViewGroup /
reference ViewRef : View /
reference ViewStateRef : ViewState /
reference PortRef : Port / = °
reference DesignlnstanceRef DesignInstance /
reference NetRef : Net / S
reference AuxObjectRef :-AuxiliaryObject /
reference CorrelationRef : Correlation }
CorrelationDirection is { o ' _
non-directed / directed / bidirectional }
CorrelationMode is { protect / remove }

Figure 36: Corrclations

A typical example of use for the Correlation is the equivalence relationship. Bquiv-
alence can be established following the automatic synthesis of a design object X from
another object Y. In this case, one could establish a Correlation with 4 directed
relationship from Y (left object) to X (right object), with “protect mode” (¥ cannot
be removed, because it is the “father” of X, but X can be removed without affecting
V). a

An equivalence can also be established following the activation of some formal
verification tool. In this case, one could create a Correlation with a non-directed
relationship between the two equivalent objects.

As another example, suppose that a simulation environment, handles Auxiliary
Objects of types Simulal.ionSl.imuli and SimulationResult, An Ausxiliary Object of
type SimulationStimuli is applied to a Design object during a simulation session,
thus creating an Auxiliary Object of type SimulationResult. In this situation, two
Correlations would be needed. The first Correlation has a non-directed relationship,
where the left object is the design object representation to be simulated and the right
object is the applied SimulationStimuli. Even if the simulated design object repre-
seutation is removed, the SimulationStimuli is maintained, since it may be used in
the simulation of another representation (for instance another ViewState of the sane
Design). In the second Correlation, the left object is the SimulationStimuli and the
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right object is the SimulationResult, and it has a directed relationship with “remove”
mode. If the SimulationStimuli is removed, then the corrslated SimulationResult is
automatically deleted. R -

3.14 UserFields and data tyj')'es_

UserFields are attributes that can be ‘attached to objects or to other UserFields.
‘Their specification is shown in Figure 37. Primitive UserFields (i.e. noi composed by
other UserFields) must have a data type. Data types can be user- or system-defined.
System-defined types are integer, bit-vector, string, file, and time. User-defined types
can be built using records, arrays, and .sets, as well by enumeration or subsctting on
other types. - ’ ' S

UserField has Name : string - L
has UserFieldType : { BasicType / UsarType }
has Value S
UserType is { set of BasicType / array of BasicType /
record of BasicType./ enumeration /=
“r subsetting / constant } . S
BasicType is { string / integer / file / bit-vector / time }

o Figure 37: UserFields
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4 Configurations

Section 3.8 introduced Components and Designlnstances. A Designlnstance is a suly-
object in a structural description of a ViewState. I, may be an occurrence of an object
Component, locally defined inside this same ViewState, or it may be defined without
veferring to a Component. Before the ViewState can be processed by any design tool
(a simulator, for instance), a design object must be selected for cacl Designlustance.
This selection is called a- configuration .process. I'his process must also include a
mapping from the Ports of the selected object to the Ports of the Designlnstance and
an assignment of values to the Parameters of the sclected object (if Parameters do
exist). - - SE | -

The selection of a design object can alternatively be done for the Components. In
this case, all Designlnstances for a given Component are related to the same design
object, and the Port mapping relates Ports of the design object with Ports of the
Component. This mapping is {ollowed by all DesignInstances of the Component. The
Parameter value assignment also holds for all Designlnstances of the Component.,

- Choosing a complete configuration for a ViewState object X implies selecting

objects Yi,...,Y,, for the Designlnstances or Components defined in X . Since each ¥;
is defined by a hierarchical control structure (Design, ViewGroup, View, ViewStale),
where at each level several alternatives may exist, specilying a configuration means
selecting, for each ¥}, one of the alternatives for each level of its control structure.
The same must be done for each sub-object contained in the particular ViewState
selected for ¥;, and so successively, until ViewStates without a further decomnposition
- are selected. . .. : - o : ' ' _

-Configurations may be static, dynamic, or open [Y). Choosing for each 17 a View-
State without sub-objects determines a static conliguration, already complete. A
dynamic configuration is obtained when a ViewState with sub-objects is sclecled, or
if only a Design, or one of its ViewGroups or Views, is selected. In this case, there
are still many possible representations for the sub-objects ¥; and thus many possible
configurations for X. The dynamic conliguration of X must e completed later on, by
making choices so that, for each Y; or sub-object contained within them, ViewStates
without sub-objects are selected. An open configuration exists when, within X, no
choice of objects is dotie for Lhe Components and/or Designlnstances of X. 'The open
configuration must be completely defined later on.

The selection of a design object for a Component (or alternatively for the De-

signlnstances) may be dircet or indirect:

e in the direct selection, the objects ¥; to be bound to the Components or De-
signlnstances are specified inside X; this possibility supports both static and
dynamic configurations;

e in the indirect selection, the specification of the objects'Y; is done (or completed)
in another special object, called a ConfigurationDefinition; this possibility sup-
ports both dynamic and open conliguraliopls.
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The ConfigurationDefinition object is thus used for completing a dynamic con-
figuration as well as for completely resolving an open configuration. It is associated
with the ViewState X to which the configuration belongs (sce Figures 25 and 26). A
ViewState may have several (/OllflglndthllDdllllthllS associated with it. ‘I'hey may
be complementary to each other, that.is, each specifies the configuration for one or
several Components or l)mlgnlns(ances of the ViewStéte: A single ConfigurationDef-
nntl(m may however specify Lhe configiration for all Components or Designlnstances.

If a ViewState X already binds objects to its Gomponents or Designlnstaiices, but
without completely specifying the configuration, as in the dynamic conﬁgmatlonq
the ConfigurationDefinition objects CDY,... (’I)" that are associated with X st
complete the configuration. For each (,omponent; or Designlnstance of X, the initial
object in ODX may be a Design, a ViewGroup, a View, or-a VlewState but the
final object must be a ViewState. If, for instance, a DesignInstance -DI; of . ’( already
refers to D VG, (a Vie w(-mup VG, of a Design 1)), the ConfigurationDeflinitions
associated with X must designate the alternatives chosen at cach level of the control
structure of D; below V(3y, until one of its ViewStates. A .

- Configurations may be nested. Therefore, a configuration may 1cfe1 to other
configurations to complement a descrlptxon Suppose that, for the already considered
DI; of X, a Conhgumtlonl)efmltlon C'DX has selected a wa V3 and its ViewStale:
175, for (omplvlmg, the relerence Ds. V(r] Let us-call YV othe (omplvlo reference Lo
this ViewState. If ¥.has sub-objects, and ConfigurationDefinitions. CDY ,...,(' DY, lld(l"
been already. created for it, then C’D" may bind a (/onﬁgunatloul)dlmtxou Cl)

DI, T

Figure 38 shows lln spunluanon ol the (,onhg,umllonl)( llnmun objects. A Con-
ligurationDefinition inherits all UserFields of the ViewState to wlnch it belongs and
may lmve addltlonal UserFields. : co

ConflguratlonDefmltton has Name - o
has { Configltem }"
: : has { UserField }
Configltem is { ComponentConfig / InstanceConfig } -
ComponentConfig has reference CompRef Component
has ObjectRef '
has PortMapping o
has ParameterMapping
InstanceConfig has reference DeslnstRef : Designinstance
has ObjectRef
has PortMapping
has ParameterMapping o
ObjectRef is { reference ViewStateRef : ViewState /
reference ConflgDefRef ConflguratlonDeflmtlon }

Figure 38: (»()nllg,ln.nlmnl)t llmlumq '
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A configuration manager for the STAR framework is under specification [10]. 1t
will cover the following aspects:
¢ to propose and implement a specialized language for the specilication ol config-
urations according to design constraints, such as- expxess:ons mvolvmg, attribute
values; - S :

“ o Lo propose and implement a u)nhg,m.nlmn luol Lhat a,lluwu the *ip((lll(dll()n of
configurations through either tlns specialized language or an. interactive dialogue
under user COllthl

1o
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