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A b s t r a c t 

The design methodology management (dmm) model of the STAR framework is pre-
sented. As opposed to other approaches, where dmm is based only on design flow 
control, in STAR it is achieved through a coupling of task flow control and design 
data representation features, thus obtaining both design guidance and automatic, 
methodology-oriented data consistency. The core of a STAR design methodology are 
control structures that hierarchically organize object alternatives, views, and revisions 
according to design strategies that are specific for each object. Design methodologies 
can be derived in a hieraxchical way, through specialization of the control structures. 
The task flow management follows a condition-driven approach. 

Keywords 
Electronic design automation. Design frameworks. Design methodology manage-
ment. Design flow management. 

R e s u m o 

O modelo de gerência de metodologias de projeto do ambiente STAR é apresentado. 
Ao contrário de outras abordagens, onde esta gerência é baseada apenas no controle 
do fluxo de tarefas, no STAR ela é alcançada através de uma combinação do controle 
do fluxo de tarefas com aspectos de representação de objetos de projeto, obtendo-
se assim tanto condução do projeto como uma consistência de dados automática e 
orientada à metodologia. O núcleo de uma metodologia de projeto STAR são es-
truturas de controle que organizam hierarquicamente as alternativas, vistas e revisões 
dos objetos de piojeto de acordo com estratégias que são específicas para cada objeto. 
Metodologias de projeto podem ser derivadas de um modo hierárquico, através da 
especialização das estruturas de controle. A gerência do fluxo de tarefas segue uma 
abordagem dirigida por condições, ^ 

Palavras-chave 
Automação do projeto de sistemas eletrônicos. Ambientes de projeto. Gerência de 
metodologias de projeto. Gerência de fluxo de tarefas. 



Design Methodology Management in the STAR Framework 

1 I n t r o d u c t i o n 
The main objective of CAD frameworks is to provide means for buildlng specific envlron-
ments that are oriented lowards diíFerent architectures, technologies, or design method-
ologies. A framework must allow the integration of tools frorn distinct sources, aiming at 
design data consistency and usor inierfaite uniforinity, vvhile oírering design niotfiodology 
management and data management facilities. 

One of the most important features expected from design frameworks is a unified data 
model for the representation of complex design objects. Most of the proposed or existing 
frameworks and data models allow a correct representation of complex objects [1,2,3,4]. 
However, they do not offer flexible mechanisms for representing the variety of possible 
relationships between ali dimensions of the design evolution process, such as views at 
various abstraction leveis, hierarchically related alternative design solutions, and revisions 
for each alternative/view. 

A mechanism for design methodology management is among the most important re-
sources to be oífered by design frameworks. A design methodology is a set of design rules 
that either enforce or guide the design activities performed by the user, so as to obtain 
design objects with desired properties. Many papers have described alternative approaches 
for implementing design methodology management mechanisms in recent years [5,6,7,8,9]. 
These approaches mainly rely on the management of the task flow, offering facilities for 
task selection, task sequencing (with conditional branching and iteration mechanisms), 
and automatic task execution and backtracking. Some systems [5,6,7] enhance the task 
flow management with knowledge about design constraints, goáls, toòls, and data. How-
ever, tools operate on isolated files, so that these systerhs do not oífer the automatic data 
consistency that may be achieved by a unified data mbdel. 

The STAR framework implements a powerful and flexible data model, based on the 
GARDEN model, that supports the managemént of the diversé replresentations created for 
the design objects during the design process [10]. The data mOdel allows the organization 
of these rcpresentations in a hierarchical structure, whicli cán adccjuately describe tlie 
relationships between the design evolution altc^natives. 

The flexibility of the STAR data model is the foundatioh for a design methodology 
management model which is based on a coupling between the task flow cuntrol and the 
management of the design rcpresentations and not only on the task flow control. The 
model relies on the possibility of deflning, for each design object, a specific organization 
for its vtirioiis design repn;scntatioa31 reflecting both the descriptions created by the par-
ticular íaskg to be execiited for the object design and the relationships between them. 
STAR supports a conditipn-driven task flow model, based on the specification of input / 
output relationships between tasks and design object properties. The model also oírers the 
possibility of specialization of design methodologies in a hierarchical vvay. The cornbination 
of these features, which is not found on other systems, oíFers not only design guidance, but 



also automatic methodology-oriented data consistency. 
The rcst of the paper is organized as follows. Section 2 rcviews the S I All data rriodcl 

and brieíly discusses its advantages regarding other systerns. The riiodel for design niethod-
ology rnanagement is descrlbed in detail in Section 3. An exanriple which iUustrates its 
main fcatures is presentcd in Section 4. Section 5 compares the STAR concepts for design 
methodology rnanagement with other approaches. Finally, section 6 surnrnarizes the rnain 
points of the STAR design methodology rnanagement model and dravvs some conclusions. 

2 T h e STAR d a t a model 
One of the key features of the STAR framework is a powerful data rnodel, that is not 
aírected by the design methodology nor enforce a particular one. This itiodel is strongly 
based on the GARDEN data rnodel [10]. It provides a flexible way for supporting complex 
design objects and for managing the various representations created along the dimensions of 
the design evolution [aliernatives, views, and revisions). This feature allows the systern to 
implement, according to user- or methodology-defined criteria, many different conceptual 
schernes for representing the design evolution. A direct result of such stratcgy is the ability 
exhibited by the system in modeling and controlling diífercnt design rnetliodologies in a 
natural and efficient way. 

Con t ro l s t r u c t u r e s — In the STAR data model, ali design objects are placed in a 
single Repos i to ry , divided into Librar ies of Design objects. Each Design can contain 
an arbitrary number of V i e w G r o u p s and Views. The ViewGroups define simple grouping 
objects that may also contain any number of ViewGroups and Views, building a tree-like 
hierarchical control siructure, as shown in Figure 1. 

ViewGroups are nothing more than groupings of objects, gathering other ViewGroups 
and Views according to Uíjer- or rnethodology-defined criteria. The fact that Views can 
be defined at any levei of the control structure oífers an unlimited number of ways for 
organizing diíFerent descriptions of the Design. As the system does not enforce any grouping 
criterion, it is left to the user or to the design methodology to decide how the Views will 
be organized. 

The actual descriptions of a design object are stored at the Views, that are the leaves 
of the tree structure. STAR supports three types of Views: HDL, for behavioral repre-
sentatioiis of the dcsjgn objccfc (e,g. in Íiny hardware description languago), Layout , used 
foF syrpbolic, schematic, and mask Jevel descriptions, and M H D (Modular Hierarchical 
Descriptions), for modular representations, corriposed by sub-objects that are instances of 
other objects. VVhile IIDL and Layout Views can also contain sub-objects, they do not 
handle the exact interconnections between them, as in the MHD Views. As opposed to 
the MHD Views, they contain a file vvhere specific design data, handied as a bit string by 
the STAR DBMS, is stored. 

The time evolution of the design object is expressed at the View levei as an acyclic graph 
of V iewSta te s . STAR also provides a simple T i m e S t a m p mechanism to control the 

/ 
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Figure 1: The STAR data model - primary control structure 

evolution of objects placed outside the VicwState scope (e.g. interface pins and attribules 
defined at the Design and ViewGroup nodes). 

O t h e r f e a t u r e s — Processes , that gather technological related information, can be 
attached to Libraries, Designs, ViewGroups, or Views. The attachment is inherited by 
ali objects in the control structure that are descendants of the node where the Process is 
attached to. 

Another characteristic of the model is the support for rnultiple interfaces for a design 
object. Instead of enforcing that interface P o r t s must be defined at a particular node of 
the control structure, such as Design or View, the model allows Port definitions at any levei 
of the structyre (Design, ViewGroup, View, or ViewState). Since the control structure can 
be depicted fls a tree, the actual interface presented at any node is the composition of ali 
Ports defined along the path froni the root (Design) to the node. Port attributes can also 
be added at any node of the hiej-archy- There is no inheritance of Port characleristics from 
ViewState to ViewState, only directly from tha View to each ViewState. 

Des ign ins t ances (sub-rnodules inside a View) can be occurrences of Cornponen t s , 
defined inside the sanie View. A reference to another object can be done through a Cotri-
ponent, so that it is valid for ali its Designínstances, or through each Designlnstance. 
It is possible to reference Designs, ViewGroups, Wiew^ {dynamic configurations [11]), or 
ViewStates (siaiic configurations). It is also possible to let Cornponents and Designín-
stances without references, thus building open configurations, as in VHDL [12]. Dynamic 
and open configurations must be later resolved through special configuration descriptions. 
A conjiguraiion manager allows the user to resolve configurations according to object at-
tributes, as in [13], selecting specific ViewStates of certain Designs for the Cornponents or 
Designínstances. 



Objects can also be grouped together according to user- or methodology-defiried cri-
teria using the Cor re l a t i on concept. The Correlation can be viewcd as ari cxtcrision of 
the equivalence concept [11], with a generic grouping criterion and support for gathering 
heterogeneous objects such as Designs and ViewStates. 

Each STAR object may contain an arbitrary number of UserF ie lds (attributes), that 
can hold any type of information and can contain another collection of UserFields. User-
Fields defined at a particular node of the control structure can be optionally inheritable 
by the node descendants. STAR design objects can be also paramcterized. 

Auxi l i a ry Objec t s , that are necessary for specific applications, may be also defined. 
Examples are stimuli and result files, for simulation, technology files, for design rule check-
ing, and testability measures, for testability analyzers. 

M o d e l analysis — The ViewGroup concept allovvs the definition of hierarchical control 
structures that, cornbined with the Port inheritance mechanism, presents two irnportant 
properties. First, ViewGroups can be thought as design alternatives, grouping ali rep-
resentations that correspond to a given design decision and storing the attributes and 
interface pins that are common to them. The data model thus guarantees that ali rep-
resentations related to a given design alternative hold thesc corniruni properties. Socorid, 
ViewGroups can be used to build a hierarchy of design leveis, so that a design alternative 
can be appended to the abstraction levei where it makes sense. 

The properties of VieAvGroups and Views, cornbined with the Correlations and the Port 
and UserField inheritance, build a powerful mechanism for creating diíferent organization 
strategies for the object representations (alternatives, views, and revisions). The ílexibility 
achieved with these properties supports control structures that are not available with other 
data models. It also allowis the mapping to STAR of a variety of control structures [10]. 

\Ve call the general STAR data model, as shown in Figure 1, a p r i m a r y control struc-
ture, while control structures built on top of it are secondary ones. For example, a 
VlIDL-like secondary control structure is simply achieved by mapping arciiileciural bodies 
to Views, by directly linking these Views to the Design (the root of the control structure), 
without using ViewGroups, and by stoping the interface definition at the Design. An Oct-
like secondary control structure can be obtained, as shown in Figure 2, by mapping an 
Oct-View OVi into a STAR-ViewGroup VGí^ while the Contents Facet of OV\ is rnapped 
into both a unique ViewGroup VGc/ under T G, and a View Vcj under VG c j . VG c j stores 
the basic object interface definition, while Vcj stores the Facet contents. Other Interface 
Facets of are rnapped ijito STAR-Views V{j under VGcj a i l d can add new interface 
attributes. 
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Figure 2: JNlapping the Oct control structure to STAR 

3 T h e STAR model for design methodo logy manage-
ment 

A design methodology is a set of design rules that either enforce or guide the design 
activities performed by the user, so as to obtain design objects with desired properties. 
Rules can express: 

• tasks that must be pxecuted when the design process arrives at a given state (this 
state can be for instance expressed in terms of some design object properties); 

• alternative design approaches that must be followed from a given design state, as 
well as criteria for deciding between the possible design paths (again, these criteria 
can involve design object properties); 

• design represontations that must bo created under given conditions, e.g. a representa-
tion at a more detailed design levei or alternatives that must be cornpared accordirig 
to some trade-oíTs. 

Design methodology management is the control of the creation of the design object 
rcpresentatiotis and of the execution of the required design tasks so that the objects and 
tagks confprm to the established rules. 

The definition of a. design rpethodology in the STAR framework is based on three 
prinpiplqa: the defln^ion of control structures for the design objects (a conceptual 

sçhprri^ fof an application), the task specification, and the hierarchization of the design 
methodologies. 



C o n c e p t u a l scheme —̂ A design methodology is primarily based on secondary control 
structures, that organize ali representations that can be creatcd for the design objects of 
a given application. Each design object can have a diíFerent control structure, depending 
on the particular design strategy to be applied to it. 

l : he most important aspect of a control structure is its overall top(jl<)gy, i.o. how 
ViewGroups and Views are hierarchically organized. This topology is defined by criteria 
for organizing design representations, that can limit the number or types of ViewGroups 
and/or Views to be placed under a given ViewGroup or under the Design. 

A conceptual scheme can include UserField specializations for the object control struc-
tures (area, power, geometric attributes, view types, etc), definitions of Auxiliary Objects 
(test vectors, testability measures, sirnulation results, etc), vvhich in turn can also have 
their own UserFields, and Correlations (equivalence relationships, relationsliips between 
Auxiliary Objects and ViewStates from which they have been created, etc). 

Restrictions can refer to Ports, configurations, and Processes. A methodology can de-
cide at which nodes of the control structure Ports are to be defined. In the Oct-like control 
structure of Figure 2, for instance, Ports can be defined only at the Views Vcf and 
A methodology can also restrict the possible configurations of a Designlnstance, avoiding 
dynamic configurations, for instance. Finally, a methodology can specify a particular as-
sociation of Processes to other objects. It can be decided, for instance, that Processes are 
always attached to Designs, so that ali ViewGroups and Views of each Design have the 
same Process, but different Designs of a sarne Library may have diíferent Processes. 

Task flow — Task flow is expressed through a condition-driven model, where input-
output relationships between tools and design data properties are specified. These rela-
tionships can involve "qualitiíis" of the design objects, such as the values of their attributes. 
These qualities must be explicitly defined in the control structures for these objects. A 
tool is eligible for execution wrhen its input data, with the desired qualities, is available. 
The choice among many executable tools is left to the user. 

Each task is specified by a 5-uple { task name, iool narne, input condilions, outpul 
objects, task goals }. The same tool can be used in many diíFerent tasks. T h e input 
conditions list the objects that must exist in order that the task is eligible for execution, 
eventually specifying properties that these objects must additionally hold. The outpui 
objects list object representations, Auxiliary Objects, and Correlations that are created 
by the task. Task goals f|cscribe the properties expected frorn the objects after the task 
executioii. If the goals ayo not achieved, the task "fails", though the output objects are 
still creftted. A later exeí:utipn of |he same task can succecd, if the input objects have 
clianged (oithcr new versipns have bcen created for them or new configurations have been 
selected) or if properties from othei1 objects, used in the specification of the task goals, 
have changed due to the execution of other tasks. A design methodology has achieved its 
overall goals if ali its taskíi have been executed and none of thern is marked as "failed". 

This task ílovv model t|ius does rjot impose particular design sequences in order to moet 
design constraints and acjiieve (^esign goals, but rather let to the user expertise the choice 



of the best solutions to particular problems faced during the design process. 

Hie ra rch ies of me thodo log ies — Design rriethodologies can be organized in a hierar-
chical way. A new design methodology can be derived from a previous one: 

• by specializing (either by extending or restricting) the control structures of the pre-
vious methodology, i.e. by building new secondary control structures from already 
existing ones; 

by defining new Design objects (and their control structures), Auxiliary Objects, and 
Correlations; 

• by adding new tasks. 
Once a control structure topology has beeri restricted by a given design methodology, a 

new secondary control structure to be derived from it cannot violate the restriction rules. 
It cannot neither remove already defmed ViewGroups and Views, but it can add new 
ViewGroups, Views, and attributes. 

A design task is defined at a given levei of the methodology hierarchy. The task 
definition must be therefore consistent with ali properties and restrictions of the design 
methodology to which it belongs, handling objects, object representations, and attributes 
defined by the methodology. 

Users are also related to the methodology hierarchy. A user is constrained by a method-
ology to the execution of a given set of design tasks and to the manipulation of a given set 
of design object representations. Ilowever, he/she may have the power for defining new 
design methodologies by defining new objects, deriving new secondary control structures 
from the methodology in which he/she has been placed, defining new tasks, and integrat-
ing new tools. Because of this possibility, it does not make sense to distinguish "users" 
from '"application rnanagers" in the STAR framework. Each user is potentially also an 
application manager, which defines his/her particular design environment. 

Tool i n t eg ra t i on Although tool integration is not a function of design methodology 
rnanagement, both concepts are intimately related. When an already existing tool is 
integrated into a design environment, its design data must be rnapped into the object 
representations and attributes of the control structures specified for that environment. 
The tool can in fact rnanipulate its design data in the most a|)propriate particular forrnat, 
letting the mappiiig into the STAR objects to a separate module. Ilowever, a new tool can 
be already oriented towards a conceptual scheme implemented on the STAR framework, 
so that it makes direct access to the STAR objects and attributes. 

A tool which directly liandles ^ given set of STAR objects and attributes that are 
defined in a specific design methodology can be used not only in tasks defined inside 
i)/í, but also in other methodologies that have been derived from 71/,. Ilowever, this tool 
cannot be used in tasks defined inside other methodologies where objects and attributes it 
handles are not known. The use of an externai mapping allows a tool to be used in tasks 
defined in different design methodologies. 

m S T i í Ü T O : : : . Á T I C A 
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4 Example of a design methodology 
\Ve show the applicatioii of the STAR design methodology rnariagemerit model in the 
physical design of a 32-bit RISC microprocessor, which is composed of two main blocks, 
the Operational Block (OB) and the Control Block (CB). Full-custom and cell-based ap-
proaches are considered for the Operational Block, which is designed around two data 
busses. In the full-custom design, the Operational Block layout is designed as an array 
of 32 horizontal I-bit wide slices. Each slice contains 1-bit wide colls for modules like tfie 
ALU, a register file (RFile), a barrei shifter (BS), the Program Counter (PC), etc. 

In the layout design of the operational block slice, the ALU is the criticai module, siiice 
it has the largest area and delay. Figure 3 shows the control structure for the ALUSIice 
object, whose main foatures are: 

• ' The root contains Ports for the data busses A-Bus and B_Bus and for the control 
Unes. Ali of them are 1-bit wide signals and have an attribute PortDircction. 

The structural representation as an interconnection of basic transistors and gates is 
stored in the MIID View V-ALUSlice-Struct. 

• The ViewGroup VG-ALUSlice-LO gathers ali layout related representations of ALU-
SIice. It defines attributes Height, Width (cell dimensions), PowerBusWidth, Pow-
erConsumption, and MaxDelay. The values of these attributes come frorn previous 
design steps and are used as design constraints for the ALU slice layout design. The 
\rievvGroup also adds Ports for VDD and GND, defines an additional line A_Bus_uot 
(the same for B_Bus), since the operational block layout is designed with two corn-
plementary bus Unes, and adds new Port attributes for the layout design. Because of 
the overall topology, the data bus Unes traverse the cell in the horizontal direction, 
and so have right afid Ipft coordinates, while the control Unes, which traverse the ccll 
ip the vertical direction, have top and bottom coordinates. Thesc Ports and their 
attributes are inherited by ali representations under the ViewGroup. 

• Two alternatives for the ALU slice layout design are compared: triatiual and au-
tomatic synthesis with a modulç generator. The representations for these alterna-
tjves are stored uqder the ViewGroups VG-ALUSlice-iVIanual and VG-ALUSlice-
ModGener, respectively. The comparison is based on the area, powor consurnptiím, 
and maxiraal delay of the resulting layouts. VG-ALUSlice-LO has attributes Height 
and Width (of the cell layout), MaxDelay, PowerBusWidth, and PowerConsumption, 
that receive values corrjing from the winning solution. 

• Views V-ALUSUce-Manual-LO and V-ALUSlice-Manual-ENL contain the layout and 
the extractfíd netljsl depcriptians for the manual ciesign, respectively. 

• Thp MíJD View V-ALUSUce-Extracted is generated by back-annotating to V-ALUSlice-
Struct the timing extracted from the layout. 



• Equivalence relationships, shown as dotted lines in the figure, are established between 
ViewStates of representations obtained by synhtesis or extraction frorn each other. 

The design of the ALU slice is composed of many tasks: layout gencration, design rule 
checking, netlist extraction, netlist cornparison, electrical pararrietcr extraction and back-
annotation, and timing evaluation. These tasks operate upon the ALUSlice representations 
already shown in Figure 3. 

Figure 4 shows the detailed specification of the layout generation task in the manual de-
sign, according to the STAR condition-driven task model. Each time this task is executed, 
a new ViewState for V-ALUSlice-Manual-LO is created, as well as a Correlation between 
this ViewStàte and the ViewState of V-ALUSlice-Struct from which it is designed. The 
only condition for the task execution is the existence of a ViewState of V-A LUSlice-Struct. 
Eventually, the methodology could specify that a layout should be generated only if the se-
lected ViewState of V-ALUSlice-Struct had some property, for instance an expected value 
for a testability measure. The task "fails" if the ALU slice height is greater than a desired 
height defined during the floorplanning process of the overall microprocessor. There is no 
mandatory task sequence for correcting this problem. A new execution of the task can 
succeed, ei ther if the floorplan is re-evaluated (so tha t the design goal is rhanged) or if a 
new ViewState for the ALU slice layout achieves the desired height. 

Figure 5 shows the control structure for the OB object. Ali its layout related represen-
tations are stored under the ViewGroup VG-QB-Layout. It redefines Ports and adds new 
Port attributes, as VG-ALUSlice-LO. Representations for the full-custom and cell-based 
alternatives are gathered in the ViewGroups VG-OB-FullCustom and VG-OB-CellBased, 
respectively, defined under VG-OB-Layout. VG-OB-FullCustom defines attributes Width, 
Height (both receive values that result from designing the layout as an abutment of 32 
1-bit wide almost identical slices, çach one containing modules ALU, RFile, BS, PC, etc), 
and PonerBusWidth. This is the width of the VDJ) and GND lines, initially set to a value 
tp be used as a co[>straiiit by (.ho slice layout design, but which can be re-evaluated after 
that . 

Figure 6 shows the control structure for the Control Block (CB) object. It must be 
noted that it is significantly diíFerent from the control structure for the OB object, since 
the Control Block layout design follows a distinct design methodology, where tasks are for 
instance state assignment, logic minimization, technology mapping, and layout generation. 
Randorn loglc ai^d PJLA design alternatives are considered. As opposed to the OB control 
structure, there is no ViewGroup gathering ali layout representations for the CB object, 
because it was decided to grouip, for each of the alternatives, the behavioral, structural, and 
layout representations under a unique ViewGroup (VG-CB-RandomLogic or VG-CB-1'LA, 
respectively), since they have common properties. 

The complete microprocessor design can be defined as an hierarchy of design method-
ologies. A chief designer defines the design methodology (and so the control structure) for 
the overall microprocessor. First features of the OB and CB objects are also defined at this 
point, including Ports of their structural Viéws and main attributes. New methodologies. 



defined by the designers responsible for these two objects, can then refine the respective 
control structures. In the case of the OB design methodology, new objects are defined, 
such as the ALU slice. Some of their basic characteristics are also already defined, such 
as properties of their structural representations. A more rofincd control structure for tlio 
ALU slice layout design may belong to yct anothcr design methodology. A hierarchy of 
methodologies is thus a natural way of thinking about the microprocessor design. Each 
one specializes already existing control structures and defines control structures for new 
objects. 

From this example, we can conclude that: 

• A hierarchy of ViewGroups (as for the ALU and the Control Block) can corrcctly 
express the evolution of the design decisions taken during the design process. lOach 
ViewGroup adds UserFields, Ports, and Port attributes that are specific of the cor-
responding design decision. The decision hierarchy can be strongly related to a 
hierarchy of design abstraction leveis. 

• The design methodology management is closely related to the rnanagement of the 
design representations created duritig the design process. 

• As a consequence of the previous point, secondary control structures that are specific 
for different design objects (such as Operational Block, ALU slice, and Control Block) 
are needed for specifying and controlling particular design methodologies for those 
objects. 

• Design methodologies can be derived froni already existing ones, as the designer s[)e-
cialjzes control structures for already defined objects, creates new design objects, de-
cides their control structures, and specifies the tasks needed for their designs. These 
methodologies can be hardly completely defined "a priori", so that each designer 
must bo considered as an application manager for a derived metliodology. 

• 4 "natural" task mcdel specifies which are the conditions (object representations that 
must exist and/or i)bject properties that rnust hold) that enable a task execution, 
without iijdicating mandj^toiry task sequences. 

» 

5 Compar i son wi th o ther approaches 
A comparison between different approaches to design methodology management can be 
best understood by rnakiag it cleíir that this framework function must not only provide 
a mechanism for sequencing the design tasks, but rather must also guide or enforce the 
design process in order to meet the design constraints and to achieve the desired design 
goals, while maintaining the overall data consistency. 

Four basic approaches to design methodology management can be identified: 

• only task ílow control 
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• task flow control enhanced with design expertise 

• controlling the creation of design representations 

• coupling the task llow management with the control of the creation of object repre-
sentations 

In the first approach, there is only a mechanism for sequencing the design tasks. It may 
contain capabilities for the definition and automatic execution of task sequences, including 
conditional branching and iteration, and for storing and repeating user-deíined "ad-lioc" 
sequences. The CFI approach [14] follows this reasoning. Since a "pure" task flow control 
does not help meeting the design constraints and achieving the design goals, it should not 
in fact be classified as a "design methodology management" approach. 

In the second approach, which is followed by the Ulysses [5] and Cadweld [7] systems, 
as well as in the ADAM Design Planning Engine [6], the task flow control is enhanced with 
knowledge about the design constraints, goals, tuols, and data. This knowledge provides 
two basic capabilities: 

• automatic tool selection, by identifying alternative tasks that can be executed from 
the current design point and by selecting both the most promising task and tool (if 
several tools, with different pfoperties, can be chosen for the same task), e.g. based 
in tool result estimations, as in the ADAM DPE; 

• automatic backtrac.king to previous design points, either to restore design consistency, 
when design changes occur, or to analyze other alternatives, when constraints cannot 
be met or goals are not achieved. 

These systems are not based on an underlying unified. data model, so that tools operate 
on jsolated files, While this allows for an easier tool integration, it prevents the system 
frorn SUpporUng an automatic data consistency. The quality of the design depends solcly 
on the completeness of the knowledge representation. 

In the third approach, instead of specifying which and when tools must be executed, 
the system controls the consistency of the objects to be created. This can be done through 
a unified data model, which can handle composition relationships, configuration manage-
ment, hierarchies of alternatives, common pro|)erties of representations, and other user- or 
methodology-defined integrity constraints. Although the objects thus automatically hold 
the desired consistency, the system does not give user guidance to obtain these objects, 
Tool integration becomes clearly more complex, since a mapping between the tool data 
and the data model objects is needed. 

Fitially, an enhanced task flow rnanagcmetit can be cornbined with mechanisms for con-
trolling the creation of object representations, achieving both automatic data consistency 
and methodology-oriented user guidance. Design qualities are achieved partially by the 
data rnodel and partially by the task flow control. The knowledge about expected design 
properties, modelled for the specific purpose of controlling the task flow, is released from 
the burdening of representing ali design consistencies that are already maintained by the 
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data model. Examples are the design mariager of the FACE Core Environment [8] and 
the STAR model. The FACE managcr, houever, is based on very sirnf)le vcrsion and taslc 
ílow control techniques, while the STAR framework supports a rnethodologj -oriented data 
consistency and a condition-driven task ílow. 

It rnust be noted that the STAR approach does not aiin at the a u toma lie execution of 
tasks. Its condition-driven task ílow model relies on user cxpertise, ordy indicating tasks 
that are eligible for execution. Therefore, it does not oíTer facilities for automatic tool 
evaluation, selection, and execution, neither for automatic: task backtracking. 

Tool encapsulation, which consists of a mapping between the tool data and the uniflcd 
data model and an abstraction of tool invocation details, has been presented as a feature 
of design methodology management [14]. It is clear, however, that tools slill have to be 
integrated into the framework even if it does not give any support for design methodology 
control. Tool encapsulation facilities should be therefore considered as an independent 
feature of design frameworks. 

6 Conclusions 
A model for design methodology management in the STAR framework has been presented. 
As opposed to other approaches, where design methodology management is based only on 
design flow control, in STAR it is achieved by coupling a task ílow^ control mechanism 
with flexible and sophisticated features olfored by the data model for handling design 
representations along the various dimensions of the design evolution. The combination 
of these techniques results in user guidance, while rriaintaining automatic, methodology-
orioiitcd data consistency. 

T h e paper has s h w n : 

f tl^at in STAR a design ixtethodology is mainly defined by a conceptual scheme of 
the application, which contains control structures for the design objects (a control 
structure organizes the design representations created along the design process); 

• that specific control struciurea for diíferent design objí;cts, aa well as a hierarchical 
representation of the design decisions taken for each design object, are necessary for 
a correcí modelling of the design process and very useful in the design methodology 
management; 

• that deriving methodologies in a hierarchical way is also a very useful feature in con-
crete design situations. The derivation is obtained by specializing secondary control 
structures for already existing objects, by defining control structures for new objects, 
and by specifying new design tasks. 

STAR supports a condition-driven task ílow model, where input/output relationships 
between tasks and design object properties are specified. It does not impose specific design 
seqüences, but rather enable design tasks according to the achieved properties of the design 
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o b j e c t s , r e l y ing on t h e u s e r e x p e r t i s e for t h e s e l ec t i on of t h e m o s t p r o m i s i n g t a s k s e q u e n c e . 
T h i s t a s k flow m o d e l is t h e r e f o r e s i m p l e r t h a n rriodels s u p p o r t e d by o t h e r s y s t o m s . It d o e s 
n o t p r o v i d e fac i l i t i es fo r a u t o m a t i c too l e v a l u a t i o n , s e l ec t i on , a n d e x e c u t i o n . 
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Figure 3: The control structure of the ALUSlice object 
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task: AI.U sliçe layout genei^ation 
tool: raaslc-editor [ configuí-ation = 1.5 micra ] 
iaput: V-Al-USlice-Struct 
ouíput! ViewStftta íqs V-ALÜS3.4c«-Iíanual-LQ 

Corre^tiop: ViewState pf V-ALUSlice-Manual-jLO 
mauB^Hy designed from 
ViepState of V-ALUSlice-Struct 

goal: Height =:< 1/32 V-Microprocessor-Layout . OB-Partl . Height 
(OB-Partl is a Designlnstance within the floorplanning 
descriptioi\ of the microprocessor, corresponding to OB) 

Figure 4: Task specification for the ALU manual layout generation 
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