BAZIRD -0

DESIGN METHODOLOGY MANAGEMENT
IN THE S8TAR FRAMEWORK

por

Flavio Rech Wagner
Arnaldo H. Viegas de Lima
(IBM Brasil - Centro cCientifico Rio)

RP-170 Dezembro/91

I 1
|Trabatho realizado com o apoio do CNPq e da IBM Brasil|
L 1

['S

UNIVERSIDADE FEDERAL DO RIO GRANDE DO S8UL
POS-GRADUAGAO EM CIENCIA DA COMPUTAGAO

Av. Bento Gongalves, 9500 - Agronomia

91501 - Porto Alegre - RS - BRASIL

Telefone: (0512) 36-8399/39-1355 ~ Ramal 6161

Telex: 051) 2680 - CCUF BR ( s
¢ ) o | \ SABiI

1

|

Correspondéncia: UFRGS-CPGCC J

- i Imu’ HW
Caixa Postal 15064 @52

E-MAIL: PGCCQVORTEX.UFRGS.BR
. 34723
91501 - Porto Alegre - RS - BRASIL

YN ’fﬁjfi'i'?.?z%ATICA
BIBLIOTECA




Editor: Ricardo Augusto da Luz Reis (interino)

'«

ﬁW%NNd*IQ\%&&)

CAD: Siolevnan d«& e

WMW&L@ Ve
A&(c%, |.0®.0%.00 - &

UrRe C 5
INSTITUTO DE INFORMATICA
BRIBLIQTECA
Ne CHAMADA Ne RLG.:
~
YL 2ASA D 11S
. DATA
Q\(/QQL/ 3 ‘
ORXGEM:D IpaTa: PRECO: '
A4 /04792 | Crdl 4O ooQ=o
FUNDO: FORN.: .
CPGCC CPgCC
UFRGS

Reitor: Prof. TUISKON DICK

Pré6-Rejitor de Pesquisa @ PAs~-Graduagido: Prof. ABILIO BAETA NEVES

Coordenador 4o CPGCC: Prof. Ricardo A, 4a L. Reis

COmissio Coordenadoya do CPGQC: Prof. Carlos Alberto Heuser
Prof. Clesio Ssaraiva dos Santos
Profa. Ingrid Jansch Poérto
Prof. José Mauro V. de Castilho
Prof. Ricardo A. da L. Reis
Prof. Sergio Bampi

Bibliotecdria CPGCC/II: Margarida Buchmann



Design Methodology Management in the STAR
Framework

This report has begn submitted for publication outside of UFRGS and will probably be copyrighted
if accepted for publication. It has been issued as a Research Report for early dissemination of its
contents and will be distributed outside of UFRGS up to one year after the date indicated in the
cover page. In view of the transfer of copyright to the outside publisher, its distribution outside of
UFRGS prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article
(e.g., payment of royalties).



Abstract

The design methodology management (dmm) model of the STAR framework is pre-
sented. As opposed to other approaches, where dmm is based only on design flow
control, in STAR it is achieved through a coupling of task flow control and design
data representation features, thus obtaining both design guidance and automatic,
methodology-oriented data consistency. The core of a STAR design methodology are
control structures that hierarchically organize object alternatives, views, and revisions
according to design strategies that are specific for each object. Design methodologies
can be derived in a hierarchical way, through specialization of the control structures.
The task flow management follows a condition-driven approach.

Keywords
Electronic design automation. Design frameworks. Design methodology manage-

ment. Design flow management.

Resumo

O modelo de geréncia de metodologias de projeto do ambiente STAR é apresentado.
Ao contririo de outras abordagens, onde esta geréncia é baseada apenas no controle
do fluxo de tarefas, no STAR ela é alcancada através de uma combinagéo do controle
do fluxo de tarefas com aspectos de representagiao de objetos de projeto, obtendo-
se assim tanto conducac do projeto como uma consisténcia de dados automatica e
orientada & metodologia. O niicleo de uma metodologia de projeto STAR sdo es-
truturas de controle que organizam hierarquicamente as alternativas, vistas e revises
dos objetos de projeto de acordo com estratégias que séo especificas para cada objeto.
Metodologias de projeto podem ser derivadas de um modo hierdrquico, através da
especializagdo das estruturas de controle. A geréncia do ﬂuxo de tarefas segue uma
abordagem dirigida por condigdes, A

Palavras-chave

Automagédo do projeto de sistemas eletlomcos Ambientes de projeto. Geréncia de
metodologias de projeto. Geréncia de fluxo de tarefas.
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Design Methodology Management in the STAR Framework

1 Introduction

The main objective of CAD frameworks is to provide means for building specific environ-
ments that are oriented towards different architectures, technologies, or design method-
ologies. A framework must allow the integration of tools from distinct sources, aiming at
design data consistency and user interface uniformity, while roﬂ'cring design methodology
management and data management facilities. o

One of the most important features expected from design frameworks is a unified data
model for the representation of complex design objects. Most of the proposed or existing
frameworks and data models allow a correct representation of complex objects {1,2,3,4].
However, they do not offer flexible mechanisms for representing the variety of possible
relationships between all dimensions of the design evolution process, such as views at
various abstraction levels, hierarchically related alternative design solutions, and revisions
for each alternative/view.

A mechanism for design methodology management is among the most important re-
sources to be offered by design frameworks. A design methodology is a set of design rules
that either enforce or guide the design activities performed by the user, so as to obtain
design objects with desired properties. Many papers have described alternative approaches
for implementing design methodology management mechanisms in recent years [5,6,7,8,9].
These approaches mainly rely on the management of the task flow, offering facilities for
task selection, task sequencing (with conditional branching and iteration mechanisms),
and automatic task execution and backtracking. Some systems’ [6,6,7] enhance the task
flow management with knowledge about design constraints, goals, tools, and data. How-
ever, tools operate on isolated files, so that these systems do not ‘offer the automatic data
consistency that may be achieved by a unified data model.

The STAR framework implements a powerful and flexible data model, based on the
GARDEN model, that supports the management of the diverse representations created for
the design objects during the design process [10]. The data model allows the organization
of these representations in a hierarchical structure, which can aquuatcl) describe the
relationships between the design evolution alteFnatives. S

The flexibility of the STAR data model is the foundation for'a design methodology
management model which is based on a coupling between the task flow control and the
management of the design representations and not only on the task flow control. The
model relies on the possibility of deflning, for each design object, a specific organization
for its various design representations, reflecting both the descriptions created by the par-
ticular tasks to be executed for the object design and the relationships between them.
STAR supports a conditipn-driven task flow model, based on the specification of input /
output relationships between tasks and design object properties. The model also offers the
possibility of specialization of design methodologies in a hierarchical way. The combination
of these features, which is not found on-other systems, offers not only design guidance, but



also automatic methodology-oriented data consistency.

The rest of the paper is organized as follows. Section 2 reviews the STAR dala model
and briefly discusses its advantages regarding other systems. The model for design method-
ology management is described in detail in Section 3. An example which illustrates its
main features is presented in Section 4. Section 5 compares the STAR concepts for design
methodology rﬁanagement with other approaches. Finally, section 6 summarizes the main
points of the STAR design methodology management model and draws some conclusions.

2 The STAR data model

One of the key features of the STAR framework is a powerful data model, that is not
aflected by the design methodology nor enforce a particular one. This model is strongly
based on the GARDEN data model {10]. It provides a flexible way for supporting complex
design objects and for managing the various representations created along the dimensions of
the design evolution (allernatives, views, and revisions). This feature allows the system to
implement, according to user- or methodology-defined criteria, many different conceptual
schemes for representing the design evolution. A direct result of such strategy is the ability
cxhibited by the system in modeling and controlling different design methodologies in a
natural and efficient way.

Control structures — In the STAR data model, all design objects are placed in a
single Repository, divided into Libraries of Design objects. Fach Design can contain
an arbitrary number of ViewGroups and Views. The ViewGroups define simple grouping
objects that may also contain any number of ViewGroups and Views, building a tree-like
hierarchical control structure, as shown in Figure 1.

ViewGroups are nothing more than groupings of objects, gathering other ViewGroups
and Views according to user- or methodology-defined criteria. The fact that Views can
be defined at any level of the control structure offers an unlimited number of ways for
organizing different descriptions of the Design. As the system does not enforce any grouping
criterion, it is left to the user or to the design methodology to decide how the Views will
be organized.

The actual descriptions of a design object ate stored at the Views, that are the leaves
of the tree structure. STAR supports three types of Views: HDL, for behavioral repre-
sentations of the design aobject (e.g. in any hardware description language), Layout, used
for symbolic, schematic, and mask Jevel descriptions, and MHD (Modular Hierarchical
Descriptions), for modular representations, composed by sub-objects that are instances of
other objects. While IIDL and Layout Views can also contain sub-objects, they do not
handle the exact interconnections between them, as in the MHD Views. As opposed to
the MHD Views, they contain a file where specific design data, handled as a bit string by
the STAR DBMS, is stored.

The time evolution of the design object is expressed at the View level as an acyclic graph
of ViewStates. STAR also provides a simple TimeStamp mechanism to control the
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Figure 1: The STAR data model — primary control structure

evolution of cbjects placed outside the ViewState scope (e.g. interface pins’and attributes
defined at the Design and ViewGroup nodes).

Other features — Processes, that gather technological related information, can be
attached to Libraries, Designs, ViewGroups, or Views. The attachment is inherited by
all objects in the control structure that are descendants of the node where the Process is
attached to.

Another charactenstlc of the model is the support for multlple interfaces for a design
object. Instead of enforcing that interface Ports must be defined at a particular node of
the control structure, such as Design or View, the model allows Port definitions at any level
of the structure (Desngn ViewGroup, View, or View State) Since the control structure can
be depicted as a tree, the actual interface presented at any node is the composition of all
Ports defined alang the path from the root (Design) to the node. Port attributes can also
be added at any node of the hierarchy. There is no inheritance of Port characteristics from
ViewState to ViewState, only directly from the View to each ViewState.

DesignInstances (sub-modules inside a View) can be occurrences of Components,
defined inside the same View. A reference to another object can be done through a Com-
ponent, so that it is valid for all its Designlnstances, or through each Designlnstance.
It is possible to reference Designs, ViewGroups, Views (dynemic configurations [L1]), or
ViewStates (stalic configurations). It is also possible to let Components and Designln-
stances without references, thus building open configurations, as in VHDL [12]. Dynamic
and open configurations must be later resolved through special configuration descriptions.
A configuration manager allows the user to resolve configurations according to object at-
tributes, as in [13], selecting specific ViewStates of certain Designs for the Components or

DesignlInstances.



Objects can also be grouped together according to user- or methodology-defined cri-
teria using the Correlation concept. The Correlation can be viewed as an extension of
the equivalence concept [11], with a generic grouping criterion and support for gathering
heterogeneous objects such as Designs and ViewStates.

Each STAR object may contain an arbitrary number ol UserFields (attributes), that
can hold any type of information and can contain another collection of UserFields. User-
Fields defined at a particular node of the control structure can be optionally inheritable
by the node descendants. STAR design objects can be also parameterized.

Auxiliary Objects, that are necessary for specific applications, may be also defined.
Examples are stimuli and result files, for simulation, technology files, for design rule check-
ing, and testability measures, for testability analyzers.

Model analysis — The ViewGroup concept allows the definition of hierarchical control
structures that, combined with the Port inheritance mechanism, presents two important
properties. First, ViewGroups can be thought as design alternatives, grouping all rep-
resentations that correspond to a given design decision and storing the attributes and
interface pins that are common to them. The data model thus guarantees that all rep-
resentations related to a given design alternative hold these common properties. Second,
ViewGroups can be used to build a hierarchy of design levels, so that a design alternative
can be appended to the abstraction level where it makes sense.

The properties of ViewGroups and Views, combined with the Correlations and the Port
and UserField inheritance, build a powerful mechanism for creating different organization
strategies for the object representations (alternatives, views, and revisions). The flexibility
achieved with these properties supports control structures that are not available with other
data models. It also allow:s the mapping to STAR of a variety of control structures [10].

We call the general STAR data model, as shown in Figure 1, a primary control struc-
ture, while control structures built on top of it are secondary ones. For example, a
VHDL-like secondary control structure is simply achieved by mapping architectural bodies
to Views, by directly linking these Views to the Design (the root of the control structure),
without using ViewGroups, and by storing the interface definition at the Design. An Oct-
like secondary control stritcture can be obtained, as shown in Figure 2, by mapping an
Oct-View OV into a STAR-ViewGroup VG, while the Contents Facet of OV; is mapped
into both a unique ViewGroup VG under VG; and a View V./ under VG, V Gy stores
the basic object interface definition, while ¥, stores the Facet contents. Other Interface
Facets of OV; are mapped into STAR-Views V;; under VG,.; and can add new interface
attributes.
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Figure 2: l\lappm;_., the Oct control structure to STAR

3 The STAR model for design methodology manage-
ment

A design methodology is a set of design rules that either enforce or guide the design
activities performed by the user, so as to obtain design _objects,_'with desired properties.
Rules can express:

e tasks that must be executed when the design process arrives at a given state (this
state can be for instance expressed in terms of some design object properties);

e alternative design approaches that must be followgd‘ from a given désign state, as
well as criteria for deciding between the possible design paths (again, these criteria
can involve design object properties); '

e design representations that must be created under given conditions, e.g. a representa-
tion at a more dctailed design level or alternatives that must be compared according
to some trade-offs.

Design methodology management is the control of the creation of the design object
representations and of the execution of the required design tasks so that the objects and
tasks conform to the established rules.

The definition of a design methadology in the STAR framework is based on three
main prin¢iplcs' the definition of control structures for the design objects (a conceptual
scheme fo; an appllcatlon) the task specification, and the hierarchization of the design
methodologies. ‘ ’ '



Conceptual scheme = A design methodology is primarily based on secondary control
structures, that organize all representations that can be created for the design objects of
a given application. Each design object can have a different control structure, depending
on the particular design strategy to be applied to it.

The most important aspect of a control structure is its overall topology, i.e. how
ViewGroups and Views are hierarchically organized. This topology is defined by criteria
for organizing design representations, that can limit the number or types of ViewGroups
and/or Views to be placed under a given ViewGroup or under the Design.

A conceptual scheme can include UserField specializations for the object control struc-
tures (area, power, geometric attributes, view types, etc), definitions of Auxiliary Objects
(test vectors, testability measures, simulation results, etc), which in turn can also have
their own UserFields, and Correlations (equivalence relationships, relationships between
Auxiliary Objects and ViewStates from which they have been created, etc).

Restrictions can refer to Ports, configurations, and Processes. A methodology can de-
cide at which nodes of the control structure Ports are to be defined. In the Oct-like control
structure of Figure 2, for instance, Ports can be defined only at the Views V,; and V.
A methodology can also restrict the possible configurations of a Designlnstance, avoiding
dynamic configurations, for instance. Finally, a methodology can specify a particular as-
sociation of Processes to other objects. It can be decided, for instance, that Processes are
always attached to Designs, so that all ViewGroups and Views of each Design have the
same Process, but different Designs of a same Library may have different Processes.

Task flow — Task flow is expressed through a condition-driven model, where input-
“output relationships between tools and design data properties are specified. These rela-
tionships can involve “qualities” of the design objects, such as the values of their attributes.
These qualities must be explicitly defined in the control structures for these objects. A
tool is eligible for execution when its input data, with the desired qualltlos is available.
The choice among many executable tools is left to the user.

Each task is specified by a 5-uple { task name, tool name, input condilions, outpul
objecls, task goals }. The same tool can be used in many different tasks. The input
condilions list the objects that must exist in order that the task is eligible for execution,
eventually specifying properties that these objects must additionally hold. The output
objects list object represeantations, Auxiliary Objects, and Correlations that are created

* by the task. Task goals describe the properties expected from the objects alter the task
execution. If the goals ape not achieved, the task “fails”, though the outputl objects are
still created. A later execution of jhe same task can succeed, if the input objects have
changed (either new versipns have heen created for them or new configuralions have been
selected) or if properties from othey objects, used in the specification of the task goals,
have changed due to the execution of other tasks. A design methodology has achieved its
overall goals if all its tasks have been executed and none of them is marked as “failed”.

This task flow model thus does not impose particular design sequences in order to meet
design constraints and achieve design goals, but rather let to the user expertise the choice



of the best solutions to particular problems faced during the design process.

Hierarchies of methodologies — Design methodologies can be organized in a hierar-

chical way. A new design methodology can be derived from a previous one: -

¢ by specializing (cithcr by extending or restricting) the control structures of the pre-
vious methodology, i.e. by building new secondary control structures from alrcad)
existing ones;

e by defining new Design objects (and their control structures), Auxiliary Objects, and
Correlations;

e by adding new tasks.

Once a control structure topology has been restricted by a given design methodology, a
new secondary control structure to be derived from it cannot violate the restriction rules.
It cannot neither remove already defined VlewGroups and Views, but it can add new
View Groups, Views, and attributes. o

A design task is defined at a given level of the methodology hierarchy. The task
definition must be therefore consistent with all properties and restrictions of the design
methodology to which it belongs, handling objects, object representations, and attributes
defined by the methodology.

Users are also related to the methodology hierarchy. A user is constramed by a method-
ology to the execution of a given set of design tasks and to the mampulatlon of a given set
of design object representations. However, he/she may have the power for defining new
design methodologies by defining new objects, deriving new secondary control structures
from the methodology in which he/she has been placed, defining new tasks, and integrat-
ing new tools. Because of this possibility, it does not make sense to distinguish “users”
from “application managers” in the STAR framework. Each user is potentially also an
application manager, which defines his/her particular design emlronment

Tool integration — Although tool integration is not a function of design methodology
management, both concepts are intimately related. When an already existing tool is
integrated into a design environment, its design data must be mapped into the object
representations and attributes of the control structures specified for that environment.
The tool can in fact manipulate its design data in the most appropriate particular format,
letting the mapping into the STAR objects to a separate module. Ilowever, a new tool can
be already oriented towards a conceptual scheme implemented on the STAR framework,
so that it makes direct access to the STAR objects and attributes.

A tool which directly handles a given set of STAR objects and attrlbutgs that are
defined in a specific design methodology Al; can be used not only in tasks defined inside
M;, but also in other methodologies that have been derived from Al;. However, this tool
cannot be used in tasks defined inside other methodologies where objects and attributes it
handles are not known. The use of an external mapping allows a tool to be used in tasks
defined in different design raethodologies. '




4 Example of a design methodology

We show the application of the STAR design methodology management model in the
physical design of a 32-bit RISC microprocessor, which is composed of two main blocks,
the Operational Block (OB) and the Control Block (CB). Full-custom and cell-based ap-
proaches are /gonsidered for the Operational Block, which is designed around two data
busses. In the full-custom design, the Operational Block layout is designed as an array
of 32 horizontal 1-bit wide slices. Each slice contains 1-bit wide cells for modules like the
ALU, a register file (RFile), a barrel shifter (BS), the Program Counter (PC), etc.

In the layout design of the operational block slice, the ALU is the critical module, since
it has the largest area and delay. Figure 3 shows the control structure for the ALUSIice
object, whose main features are:

o The root contains Ports for the data busses A_Bus.and B_Bus and for the control
lines. All of them are 1-bit wide signals and have an attribute PortDirection.

e The structural representation as an interconnection of basic transistors and gates is
stored in the MIID View V-ALUSlice-Struct.

e The ViewGroup VG-ALUSlice-LO gathers all layout related representations of ALU-
Slice. It defines attributes Height, Width (cell dimensions), PowerBusWidth, Pow-
erConsumption, and MaxDelay. The values of these attributes come from previous
design steps and are used as design constraints for the ALU slice layout design. The
ViewGroup also adds Ports for VDD and GND, defines an additional line A_Bus_not
(the same for B_Bus), since the operational block layout is designed with two com-
plementary bus lines, and adds new Port attributes for the layout design. Because of
the overall topology, the data bus lines traverse the cell in the horizontal direction,
and so have right apd left coordinates, while the control lines, which traverse the cell
in the vertical direction, have top and bottom coordinates. These Ports and their
attributes are inherited by all representations under the ViewGroup.

e Two alternatives for the ALU slice layout design are compared: manual and au-
tomatic synthesis with a module generator. The representations for these alterna-
tives are stored under the ViewGroups VG-ALUSlice-Manual and VG-ALUSlice-
ModGener, respectively. The comparison is based on the arca, power consumption,
and maximal delay of the resulting layouts. VG-ALUSlice-LO has attributes Height
and Width (of the cell layout), MaxDelay, PowerBusWidth, and PowerConsumption,
that receive values coming from the winning solution.

e Views V-ALUSlice-Manual-LO and V-ALUSlice-Manual-ENL contain the layout and
the extracted netlist descriptions for the manual design, respectively.

¢ The MHD View V-ALUSlice-Extracted is generated by back-annotating to V-ALUSlice-
Struct the timing extracted from the layout.



e Equivalence relationships, shown as dotted lines in the figure, are established between
ViewStates of representations obtained by synhtesis or extraction from each other.

The design of the ALU slice is composed of many tasks: layout generation, design rule
checking, netlist extraction, fetlist comparison, electrical parameter extraction and back-
annotation, and timing evaluation. These tasks operate upon the ALUSlice representations
already shown in Figure 3.

Figure 4 shows the detailed specification of the layout generation task in the manual de-
sign, according to the STAR condition-driven task model. Each time this task is executed,
a new ViewState for V-ALUSlice-Manual-LO is created, as well as a Correlation between
this ViewState and the ViewState of V-ALUSlice-Struct from which it is designed. The
only condition for the task execution is the existence of a ViewState of V-ALUSlice-Struct.
Eventually, the methodology could specify that a layout should be generated only if the se-
lected ViewState of V-ALUSlice-Struct had some property, for instance an expected value
for a testability measure. The task “fails” if the ALU slice height is greater than a desired
height defined during the floorplanning process of the overall microprocessor. There is no
mandatory task sequence for correcting this problem. A new execution of the task can
succeed, either if the floorplan is re-evaluated (so that the design goal is changed) or if a
new ViewState for the ALU slice layout achieves the desired height.

Figure 5 shows the control structure for the OB object. All its layout related represen-
tations are stored under the ViewGroup VG-OB-Layout. It redefines Ports and adds new
Port attributes, as VG-ALUSlice-LO. Representations for the full-custom and cell-based
alternatives are gathered in the ViewGroups VG-OB-FullCustom and, VG-0OB-CellBased,
respectively, defined under VG-OB-Layout. VG-OB-FullCustom defines attributes Width,
Height (both receive values that result from designing the layout as an abutment of 32
1-bit wide almost identical slices, each one containing modules ALU, RFile, BS, PC, etc),
and PowerBusWV idth. This is the width of the VDD and GND-: lines, initially set to a value
to be used as a copstraint by the slice layout design, but which can be re-evaluated after
that.

Figure 6 shows the control structure for the Control Block (CB) object. It must be
noted that it is significaatly different from the control structure for the OB object, since
the Control Block layout design follows a distinct design methodology, where tasks are for
instance state assignment, logic minimization, technology mapping, and layout generation.
Random logic and PLA design alternatives are considered. As opposed to the OB control
structure, there is no ViewGroup gathering all layout representations for the CB object,
because it was decided to groyp, for each of the alternatives, the behavioral, structural, and
layout representations under a unique ViewGroup (VG-CB-RandomLogic or VG-CB-PLA,
respectively), since they have common properties.

The complete microprocessor design can be deﬁned as an hierarchy of design method-
ologies. A chief designer defines the design methodology (and so the control structure) for
the overall microprocessor. First features of the OB and CB objects are also defined at this
point, including Ports of their structural Views and main attributes. New methodologies,



defined by the designers responsible for these two objects, can then refine the respective
control structures. In the case of the OB design methodology, new objects are defined,
such as the ALU slice. Some of their basic characteristics are also already defined, such
as properties of their structural representations. A more refined control structure for the
ALU slice layout design may belong to yet another design methodology. A hicrarchy of
methodologles is thus a natural way of thinking about the microprocessor design. Each
one specializes already existing control structures and defines control structures for new
objects.
From this example, we can conclude that:

e A hierarchy of ViewGroups (as for the ALU and the Control Block) can correctly
express the evolution of the design decisions taken during the design process. Each
ViewGroup adds UserFields, Ports, and Port attributes that are specific of the cor-
responding design decision. The decision hierarchy can be strongly related to a
hierarchy of design abstraction levels.

e The design methodology imanagement is closely related to the management of the
design representations created during the design process.

e As a consequence of the previous point, secondary control structures that are specilic
for different design objects (such as Operational Block, ALU slice, and Control Block)
are needed for specifying and controlling particular design methodologies for those
objects.

e Design methodologies can be derived from already existing ones, as the designer spe-
cializes control structures for already deflined objects, creates new design objects, de-
cides their control structures, and specifies the tasks needed for their designs. These
methodologies can be hardly completely defined “a priori”, so that each designer
must be considered as an application manager lor a derived methodology.

o A “patural” task mcdel specifies which are the conditions (object representations that
must exist and/or object properties that must hold) that enable a task execution,
without indicating mandatory task sequences.

5 Comparison with other approaches

A comparison between different approaches to design methodology management can be
best understood by making it clear that this framework function must not only provide
a mechanism for sequencing the design tasks, but rather must also guide or enforce the
design process in order to meet the design constraints and to achieve the desired design
goals, while maintaining the overall data consistency.

Four basic approaches to design methodology management can be identified:

e only task flow control

10



o task flow control enhanced with design expertise
e controlling the creation of design representations

e coupling the task flow management with the control of the creation of object repre-
sentations

In the first approach, there is only a mechanism for sequencing the design tasks. It may
contain capabilities for the definition and automatic execution of task sequences, including
conditional branching and iteration, and for storing and repeating user-defined “ad-hoc”
sequences. The CFI approach [14] follows this reasoning. Since a “pure” task flow control
does not help meeting the design constraints and achieving the design goals, it should not
in fact be classified as a “design methodology management” approach.

In the second approach, which is followed by the Ulysses [5] and Cadweld [7] systems,
as well as in the ADAM Design Planning Engine [6], the task flow control is enhanced with
knowledge about the design constraints, goals, tools, and data. This knowledge provides
two basic capabilities:

e automatic tool selection, by identifying alternative tasks that can be executed from
the current design point and by seclecting both the most promising task and tool (if
several tools, with different properties, can be chosen for the same task), e.g. based
in tool result estimations, as in the ADAM DPE;

e automatic backtracking to previous design points, either to restore design consistency,
when design changes.occur, or to analyze other alternatu es, when constraints cannot
be met or goals are not achieved.

These systems are not based on an underlying unified data model, so that tools operate
on isolated files. While this allows for an easier tool integration, it prevents the system
from supparting an automatic data consistency. The quality of the design depends solely
op the completeness of the knowledge representation.

In the third approach, instead of specifying which and when tools must be executed,
the system controls the consistency of the objects to be created. This can be done through
a unified data model, which can handle composition relationships, configuration manage-
ment, hierarchies of alternatives, common properties of representations, and other user- or
methodology-defined integrity constraints. Although the objects thus automatically hold
the desired consistency, the system does not give user guidance to obtain these objects.
Tool integration becomes clearly more complex, since a mapping between the tool data
and the data model objects is needed.

FFinally, an enhanced task flow management can be combined with mechanisms for con-
trolling the creation of object representations, achieving both automatic data consistency
and methodology-oriented user guidance. Design qualities are achieved partially by -the
data model and partially by the task flow control. The knowledge about cxpected design
properties, modelled for the specific purpose of controlling the task flow, is released from
the burdening of representing all design consistencies that are already maintained by the
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data model. Examples are the design manager of the FACE Core Environment [8] and
the STAR model. The FACE manager, however, is based on very simple version and task
flow control techniques, while the STAR framework supports a methodology-oriented data
consistency and a condition-driven task flow.

It must be noted that the STAR approach does not aim at the automatic execution of
tasks. Its condition-driven task flow model relies on user expertise, only indicating tasks
that are eligible for execution. Therefore, it does not offer facilities for automatic tool
evaluation, selection, and execution, neither for automatic task backtracking.

Tool encapsulation, which consists of a mapping between the tool data and the unified
data model and an abstraction of tool invocation details, has been presented as a feature
of design methodology management [14]. It is clear, however, that tools still have to be
integrated into the framework even if it does not give any support for design methodology
control. Tool encapsulation facilities should be therefore considered as an independent
feature of design frameworks.

6 Conclusions

A model for design methodology management in the STAR framework has been presented.
As opposed to other approaches, where design methodology management is based only on
design flow control, in STAR it is achieved by coupling a task flow control mechanism
with flexible and sophisticated features offered by the data model for handling design
representations along the various dimensions of the design evolution. The combination
of these techniques results in user guidance, while maintaining automatic, methodology-
oriented data consistency.

The paper has shown:

e that in STAR a design methodology is mainly defined by a conceptual scheme of
the application; which contains control siructures for the design objects (a control
structure organizes the design representations created along the design process);

e that specific conlrol sirucfures for different design objects, as well as a hierarchical
representation of the design decisions taken for each design object, are necessary for
a correct modelling of the design process and very useful in the design methodology
management;

o that deriving methodologies in a hierarchical way is also a very useful feature in con-
crete design situations. The derivation is obtained by specializing secondary control
structures for already existing objects, by defining control structures for new objects,
and by specifying new design tasks.

STAR supports a condition-driven task flow model, where input/output relationships
between tasks and design object properties are specified. 1t does not impose specific design
sequences, but rather enable design tasks according to the achieved properties of the design
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objects, relying on the user expertise for the selection of the most promising task sequence.
This task flow model is therefore simpler than models supported by other systems. It does
not provide facilities for automatic tool evaluation, selection, and execution.
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