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Synthesis of Threshold Logic Based Circuits 

 

ABSTRACT 

In this work, a novel method to synthesize digital integrated circuits (ICs) based on 

threshold logic gates (TLG) is proposed. Synthesis considering TLGs is quite relevant, 

since threshold logic has been revisited as a promising alternative to conventional 

CMOS IC design due to its suitability to emerging technologies, such as resonant 

tunneling diodes, memristors and spintronics devices. Identification and synthesis of 

threshold logic functions (TLF) are fundamental steps for the development of an IC 

design flow based on threshold logic. The first contribution is a heuristic algorithm to 

identify if a function can be implemented as a single TLG. Furthermore, if a function is 

not detected as a TLF, the method uses the functional composition approach to generate 

an optimized TLG network that implements the target function. The identification 

method is able to assign optimal variable weights and optimal threshold value to 

implement the function. It is the first heuristic algorithm that is not based on integer 

linear programming (ILP) that is able to identify all threshold functions with up to six 

variables. Moreover, it also identifies more functions than other related heuristic 

methods when the number of variables is more than six. Differently from ILP based 

approaches, the proposed algorithm is scalable. The average execution time is less than 

1 ms per function. The second major contribution is the constructive process applied to 

generate optimized TLG networks taking into account multiple goals and design costs, 

like gate count, logic depth and number of interconnections. Experiments carried out 

over MCNC benchmark circuits show an average gate count reduction of 32%, reaching 

up to 54% of reduction in some cases, when compared to related approaches. 

 

 

 

 

 

 

 

Keywords: Digital circuits, logic synthesis, threshold logic, emerging technologies.
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Síntese de circuitos baseados em lógica de limiar (threshold) 

RESUMO 

Circuitos baseados em portas lógicas de limiar (threshold logic gates – TLG) vem sendo 

estudados como uma alternativa promissora em relação ao tradicional estilo lógico 

CMOS, baseado no operadores AND e OR, na construção de circuitos integrados 

digitais. TLGs são capazes de implementar funções Booleanas mais complexas em uma 

única porta lógica. Diversos novos dispositivos, candidatos a substituir o transistor 

MOS, não se comportam como chaves lógicas e são intrinsicamente mais adequados à 

implementação de TLGs. Exemplos desses dispositivos são os memristores, spintronica, 

diodos de tunelamento ressonante (RTD), autômatos celulares quânticos (QCA) e 

dispositivos de tunelamento de elétron único (SET). Para o desenvolvimento de um 

fluxo de projeto de circuitos integrados baseados em lógica threshold, duas etapas são 

fundamentais: (1) identificar se uma dada função Booleana corresponde a uma função 

lógica threshold (TLF), isto é, pode ser implementada em um único TLG e computar os 

pesos desse TLG; (2) se uma função não é identificada como TLF, outro método de 

síntese lógica deve construir uma rede de TLGs otimizada que implemente a função. 

Este trabalho propõe métodos para atacar cada um desses dois problemas, e os 

resultados superam os métodos do estado-da-arte. O método proposto para realizar a 

identificação de TLFs é o primeiro método heurístico capaz de identificar todas as 

funções de cinco e seis variáveis, além de identificar mais funções que os demais 

métodos existentes quando o número de variáveis aumenta. O método de síntese de 

redes de TLGs é capaz de sintetizar circuitos reduzindo o número de portas TLG 

utilizadas, bem como a profundidade lógica e o número de interconexões. Essa redução 

é demonstrada através da síntese dos circuitos de avaliação da MCNC em comparação 

com os métodos já propostos na literatura. Tais resultados devem impactar diretamente 

na área e desempenho do circuito. 

 

 

 

 

 

Palavras-Chave: Circuitos digitais, síntese lógica, lógica threshold, tecnologias 

emergentes. 
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1 INTRODUCTION 

In the past five decades, the transistor scaling has resulted in an exponential increase 

of circuit integration (MOORE, 1965). Development of integrated circuits (ICs) with 

larger amount of transistors is the key for modern electronic products evolution. 

However, according to the international technology roadmap for semiconductors 

(ITRS), transistor scaling is becoming increasingly more difficult. Nanoscale metal-

oxide semiconductor (MOS) devices start to be influenced by quantum physic effects. 

These challenges motivate the investigation of new alternatives to VLSI circuit design 

(ITRS, 2011). 

Several technologies are emerging as alternatives to silicon complementary metal-

oxide-semiconductor (CMOS) transistor, targeting greater level of miniaturization, 

reduced fabrication costs, higher integration density and better performance. These 

nanotechnologies are based on different physical, electrical, magnetic and mechanical 

phenomena. They present distinct characteristics compared to CMOS technology. 

The most basic logic gates possible to implement in CMOS are NAND, NOR and 

INVERTER. Some of future nanotechnologies use different logic styles. For instance, 

the basic element of quantum cellular automata (QCA) technology is the majority logic 

gate (ZHANG et al., 2005). These differences represent a hard challenge for future IC 

design that, if well explored, can lead to advantages over CMOS. 

Threshold logic functions (TLFs) are a subset of Boolean functions composed of 

functions obeying the following principles. First, each input has a specific weight, and 

the gate has a threshold value. Second, the function output is defined by the ratio 

between the sum of the weights of ON inputs and the threshold value of the gate; if this 

ratio is equal or greater than one than the output of the gate is one. A Threshold logic 

gate (TLG) implements a TLF. Many complex Boolean functions can be implemented 

in a single TLG and any Boolean function can be implemented using a TLG network 

(MUROGA, 1971). 

In order to exploit the advantages of threshold logic in new technologies, computer 

aided design (CAD) tools that automate the design of integrated circuits directly on this 

logical style are required. The development of CAD tools for CMOS was essential to 

the evolution of this technology. There is an extra interest in the study of threshold 

circuits because networks constructed with threshold gates are almost equivalent to 

standard feed forward neural networks models using sigmoidal activation functions, 

and, thus, most of the properties and characteristics of the circuits can be extended and 

applied to neural networks (BEIU et al., 1996; SUBIRATS; JEREZ; FRANCO, 2008). 

The objective of this work is to develop methods for an integrated circuit design 

flow based on threshold logic. These methods should synthesize a TLG based circuit 
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implementation, from a given Boolean network that composes a circuit. The synthesis 

should optimize given cost functions such as number of TLGs, input weights and 

number of interconnections, in order to optimize the final circuit area and performance. 

1.1 Motivation 

Static CMOS and pass transistor logic (PTL) are logic styles used in current digital 

IC design based in MOS transistor. From a functional point of view, such logic styles 

are able to implement any Boolean function in a single gate, through series and parallel 

associations (ignoring the inversions). Obviously, electric characteristics, like the 

number of transistors in series, limit the functions which are efficiently implemented 

(WESTE; HARRIS, 2009). 

Some logic styles suffer limitations on the set of functions that can be implemented 

in a single gate. For instance, null convention logic (NCL) is able to implement only 

threshold logic functions (TLF). In the other hand, such logic style has potential benefits 

in asynchronous IC design. Logic styles proposed for emerging technologies like 

memristors, spintronics devices, resonant tunneling devices (RTD), quantum cellular 

automata (QCA) and single electron tunneling devices (SET) are also limited to 

implement only TLFs. 

CAD tools currently used in digital IC design were developed to optimize CMOS 

logic style based circuits. Hence, such tools do not explore specific TLF properties. In 

this sense, TLG based circuits can be optimized when synthesized through CAD tools 

focused in threshold logic (ZHANG et al., 2005; GOWDA et al., 2011). 

An important property in TLGs, is the possibility to implement different Boolean 

functions only changing the weight inputs and the threshold value. For instance, Figure 

1.1 presents a TLG implemented using RTDs, where each RTD area corresponds to one 

input weight or to the threshold value. Suppose all the input weights be equal to 1 and 

the threshold value equal to 5. It corresponds to the Boolean function f=abcde, the five 

input AND (AVEDILLO; J.M., 2004). Decreasing the threshold value to 4, the gate 

implements the function f=abcd+abce+abde+acde+bcde.  Table 1.1 shows different 

functions can be implemented by keeping all input weights equal to 1 and just 

decreasing the threshold value. 

 
Figure 1.1: TLG implemented using RTDs. 

Table 1.1: Different functions implemented by adjusting the threshold value of the 

gate in Fig. 1.1. 

threshold = 5 f=abcde 

threshold = 4 f=abcd+abce+abde+acde+bcde 

threshold = 3 f=abc+abd+abe+acd+ace+ade+bcd+bce+bde+cde 

threshold = 2 f=ab+ac+ad+ae+bc+bd+be+cd+ce+de 
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threshold = 1 f=a+b+c+d+e 
In order to explore the property described above, it is essential to know if a given 

Boolean function can be implemented in a single TLG, i.e., if the function is a TLF.If 

this is the case, is is also necessary to determine the TLG input weights and the 

threshold value for the gate. The ensemble of these tasks is called threshold logic 

identification. 

If a given Boolean function is not a TLF, a network composed of more than a single 

TLG is required to implement the function. For instance, the function f=ab+cd is not a 

TLF. Figure 1.2 presents two different TLG networks to implement this function, using 

different number of TLGs. The ability to synthesize optimized TLG networks is another 

fundamental requirement for CAD tools focused in threshold logic. 

 
 

Figure 1.2: Two different TLG networks implementing the function f=ab+cd. 

1.2 Standard cell IC design flow  

An integrated circuit (IC) design flow is a sequence of operations that transform the 

intention of IC designers into GDSII layout data. The major approaches for modern chip 

design flow are: custom design, field programmable gate array (FPGA), standard cell-

based design and platform/structured application-specific integrated circuit (ASIC) 

(WESTE; HARRIS, 2009). 

The standard cell methodology is a common practice for designing (ASICs) with 

mostly digital-logic content. A standard cell is a group of transistor and interconnect 

structures that provides a Boolean logic function (AND, OR, XOR or inverter, e.g.) or a 

storage function (flip-flop or latch). The functional behavior is captured in form of a 

truth table or Boolean algebraic equation (for combinational logic) or a state transition 

table (for sequential logic). The standard cell methodology allows one group of 

designers to focus on the high-level (functional behavior) aspect of digital design, while 

another group of designers focus on the implementation (physical) aspect (MICHELLI, 

2003). 

1.2.1 Logic synthesis in the standard cell flow 

Logic synthesis is the step of integrated circuit design flow that defines the logic 

used to implement a design. Current state-of-the-art logic synthesis tools are commonly 

described as tools to synthesize multi-level circuits, which have an arbitrary number of 

gates on any path between a primary input and a primary output (MICHELLI, 2003; 

WEST; HARRIS, 2009). The main goals of logic synthesis tools can be divided into 

two major services provided to VLSI circuit design teams. The first service is an 

automatic translation of a high-level circuit description, usually in a Hardware 

Description Language (HDL), into logic designs in the form of a structural view. 
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Additionally, as a second service, logic synthesis  tools also try to optimize the resulting 

circuit in terms of cost functions, while satisfying design constraints required by the 

designers. Typical cost functions include chip area, power consumption, critical path 

delay and the degree of testability of the final circuit. Design constraints imposed by 

users can include different timing requirements on different input/output paths, required 

frequency, output loads, etc (MICHELLI, 2003; WEST; HARRIS, 2009; SASAO, 

1997; GEREZ, 1999). 

The logic synthesis step is commonly divided into two major tasks: the technology 

independent optimizations and the technology-dependent optimizations. Figure 2.2 

depicts the logic synthesis flow for cell-based VLSI circuit designs. The main tasks 

performed in the technology-independent stage are Boolean minimizations, circuit 

restructuring and local optimizations. In the second stage, the technology-dependent 

one, the generic circuit resulting from stage one is mapped to the standard cell library in 

the technology mapping and trade-off optimizations are performed using all the 

information from the characterized cells, such as gate sizing, delay optimizations on 

critical paths, buffer insertion and fanout limiting (SASAO, 1997). 

Technology mapping, also known technology binding, is an important phase in the 

technology-dependent optimizations. The technology mapping is the process by which 

the technology-independent logic circuit is implemented in terms of the logic elements 

available in a particular technology library of standard cells (MICHELLI, 2003; WEST; 

HARRIS, 2009; MARQUES et al., 2009). Each logic element is associated with 

information about delay, area, as well as internal and external capacitances. The 

optimization problem is to find an implementation meeting some user defined 

constraints (as a target delay) while minimize other cost functions, such as area and 

power consumption. This process is frequently described as being divided into three 

main phases: decomposition, matching and covering (MICHELLI, 2003; WEST; 

HARRIS, 2009; MARQUES et al., 2009). 

1.2.1.1Decomposition 

In this phase, the data structure for the technology mapping, called subject graph, is 

created. The specification of this new representation relies strongly on the mapping 

strategy adopted. Some approaches break the graph into trees. Others, focus on applying 

structural transformations such that the subject graph has similar structural 

representations as the cells from the library (MICHELLI, 2003; WEST; HARRIS, 2009; 

MARQUES et al., 2009). Another objective of this phase is to ensure each node of the 

subject graph does have at least one match against the cells of the library. Thus, the 

method assures that there exists a way to associate all portions of the subject to at least 

one cell from the library, thus guaranteeing a feasible solution. 

1.2.1.2Pattern Matching 

In the pattern matching phase, the algorithms try to find a set of matches between 

each node of the subject graph and the cells in the technology library. Two main 

approaches are commonly used, described as follows (MICHELLI, 2003; WEST; 

HARRIS, 2009; MARQUES et al., 2009): 

Structural matching identifies common structural patterns between portions of the 

subject graph and cells of the library. Most approaches reduce the structural matching 

problem to a graph isomorphism problem. Due to the reduced size of cell graphs, which 

limit the portion of the subject graph to be inspected for graph isomorphism, the 
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computational time to determining the isomorphism (commonly intractable) can be 

neglected. Boolean matching performs the matching considering Boolean functions of 

the same equivalence class. It usually performs the matching using binary decision 

diagrams (BDD) by trying different variable orderings, until a matching is found. 

Boolean matching is computationally more expensive than structural matching, but can 

lead to better results. 

1.2.1.3Covering 

Once the whole subject graph has been matched, the final phase of technology 

mapping needs to cover the entire logic network choosing among all the matches a 

subset that minimizes the objective cost function and produce a valid implementation of 

the circuit. The cost function is often the total area, the largest delay, the total power 

consumption, or a composition of these (MICHELLI, 2003; WEST; HARRIS, 2009; 

MARQUES et al., 2009). 

Technology mapping transforms the technology-independent circuit into a network 

of gates from the given technology (library). The simple cost estimation performed in 

previous steps is replaced by a more concrete, implementation-driven estimation during 

technology mapping. These costs can be further reduced afterwards, through technology 

dependent optimizations. Technology mapping is constrained by several factors, such as 

the availability of gates (logic functions) in the technology library, the drivability of 

each gate in its logic family and the delay, power and area of each gate (MICHELLI, 

2003; MARQUES et al., 2009).  

After the technology mapping phase, the physical synthesis is performed. This 

layout generation step receives the netlist resultaing from logic synthesis, which 

contains the list of standard cell instances and interconnections, as well as the physical 

library information. The major steps performed in physical synthesis are floorplaning, 

placement and routing. After completion of each step in physical and logical synthesis, 

verification routines are performed. The physical synthesis output is the layout, which is 

sent for the tape-out. The described standard cell design flow is showed in the diagram 

of  (MICHELLI, 2003; WEST; HARRIS, 2009). 

 

Figure 1.3: Logic synthesis flow, inside a standard cell based ASIC flow. 

1.3 Threshold logic design flow 

Studies in threshold logic gates are increasingly regaining interest due to the 

characteristics of some new nanodevices. In standard CMOS logic style, the basic gates 
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are INVERTER, NAND and NOR. However, in some emerging technologies, the most 

basic logic gates which can be implemented are intrinsically threshold logic gates. This 

means that more complex Boolean functions can be implemented with the same cost of 

implementing a NAND or NOR gate. 

However the current EDA tools are developed for standard CMOS circuits and are 

not prepared to explore the benefits of the threshold logic. Therefore it is necessary to 

establish an alternative design flow that performs a threshold logic synthesis, i.e., to find 

an optimized circuit implementation composed of threshold logic gates. 

 presents a proposal for threshold logic synthesis flow. The RTL description is not 

changed, as well as the Boolean network elaboration. Technology independent 

optimizations are also performed by traditional academic tools, such ABC 

(BERKELEY, 2013) and SIS (SENTOVICH et al., 1992). The methods focused on 

threshold logic synthesis start from the optimized Boolean network. 

The goal is to generate a TLGs netlist which implements the given Boolean 

networks (which compose the complete circuit). The technology mapping does not use a 

specific pre-characterized cell library. An approach known as library-free mapping is 

used, where a set of allowed functions that can be used as cell is defined (REIS, 1999; 

MARQUES et al., 2007). The set of allowed functions in this case is defined by the 

functions that are threshold logic, i.e., functions that can be implemented by a single 

TLG, called threshold logic functions (TLF). 

In order to perform such library-free technology mapping two methods are required. 

The first one must be able to determine if a given Boolean function is a TLF, as well as 

to compute the input weights and the threshold value. This task is called threshold logic 

identification. The second method should be responsible for the technology mapping, 

seeking an implementation for the circuit that minimizes the cost functions, such as the 

number of TLGs and logic depth. This task is called TLG network synthesis and the 

result is a TLG netlist. 

The proposed logic synthesis methods do not restrict the physical implementation of 

threshold logic gates to some specific technology. It is possible to determine which cells 

should be built to be used in the circuit. Thereafter the physical synthesis can be 

performed using either traditional place and routing methods, or methods focused in 

threshold logic or in the chosen nanotechnology. 
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Figure 1.4: Threshold logic synthesis flow. 

1.4 Objectives 

The major objective of this work is to propose methods to allow design flows that 

explore benefits of TLFs. Two methods are proposed and detailed in Chapters 3 and 4. 

The first contribution is a heuristic method to perform identification and synthesis of 

TLFs. The objective is to identify if a given Boolean function is TLF. Such input 

weights and threshold value must be calculated by the proposed method. This task is 

called TLF identification and determines if the given Boolean function can be 

implemented as a single TLG. 

When there is no solution for the identification problem, i.e., if the identification 

method determines that the given Boolean function is not a TLF, another method, able 

to synthesize TLG networks is required. This is the second contribution of this work. 

The method is responsible to synthesize a group of interconnected TLGs which 

implement the target Boolean function. The synthesis should minimize the cost 

functions, like number of TLGs, logic depth and number of interconnections. The 

proposed method is based on a principle called functional composition (FC). The 

algorithm associates simpler sub-solutions with known costs, in order to produce a 

solution with minimum cost. An optimized AND/OR association between threshold 

networks is proposed and it allows the functional composition to reduce the cost 

functions. 

Table 1.2 lists the main works addressing threshold logic synthesis. Discussions 

about their advantages and bottlenecks are presented in chapters 3 and 4, as well as 

results comparison among such works and the proposed methods. 

Table 1.2: Main works addressing threshold logic circuit synthesis. 
 Avedillo 

(2005) 

Zhang  

(2005) 

Subirats 

(2008) 

Gowda

(2011) 

Palaniswamy 

(2012) 

Neutzling 

(2014) 

TLF 

Identification 

   

✓ ✓ ✓ 

TLG Network 

Synthesis 
✓ ✓ ✓ ✓ 

 

✓ 

 

1.5 Thesis Organization 

The remaining of this thesis is organized as follows. Chapter 2 presents background 

information regarding Boolean functions, TLFs and TLGs. This chapter provides the 

reader basic and consolidated knowledge needed to understand the contributions 

presented in this dissertation. Chapter 3 describes the proposed method for 

identification and synthesis of TLFs. Given a target Boolean function, the proposed 

method verifies if such function is a TLF. In this case, the prosed method returns the 

function threshold value and the input weights. Chapter 4 presents a method for 

synthesis of TLG networks which is used to synthesize non-TLF functions. This method 

maps a given Boolean network into an optimized netlist of threshold logic gates 

minimizing different cost functions. Finally, Chapter 5 presents the conclusions of this 

dissertation and discusses possible future work. 
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2 PRELIMINARES 

This chapter is organized into three main sections. The first one presents some basic 

concepts on threshold logic and logic synthesis. These fundamentals are useful to 

facilitate the understanding of this work. The second part consists in a review of 

threshold logic gates implementations that have been proposed in the literature, based 

on MOS transistors and nanodevices. Finally, two widespread application of threshold 

logic gates are presented, one using resonant tunneling diodes and another using null 

convention logic style which serves as the basis for a kind of asynchronous circuits. 

2.1 Basic concepts 

2.1.1 Boolean cofactors 

Cofactor operation is a very basic and significant operation over Boolean functions. 

Let us define cofactor as the following: 

Let f: B
n
 → B be a Boolean function and x = {x0,…,xn} the variables in support of f. 

The cofactor of f with respect to xi is denoted as f(x1,…,xi=c,…,xn) where c ∈ {0, 1} 

(BOOLE, 1854). It is also possible to define as positive cofactor the operation where a 

variable receive the Boolean constant 1. The opposite is defined as negative cofactor, 

and is when a variable receives the Boolean constant 0. For presentation sake, let 

f(x1,…,xi=c,…,xn) ≡ f(xi=c). 

It is not an easy task to enumerate all methods that take advantage of the cofactor 

operation. One of the most important examples is the Shannon expansion, where a 

function can be represented as a sum of two sub-functions of the original (SHANNON, 

1948): 

 f (x1,…,xn) = !xi · f(xi=0) + xi · f(xi=1) (2.2) 

2.1.2 Unateness 

The unateness behavior is an intrinsic characteristic of Boolean functions. It enables 

us to know the behavior of each variable, as well the behavior of the entire function. Let 

f be a Boolean function. The unateness behavior of a variable xi in f can be obtained 

according to the following relations: 

 α = f (xi=1) (2.3) 
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 β = f (xi=0) (2.4) 

 γ = α + β (2.5) 

 don't care: α ≡ β (2.6) 
 positive unate: α ≡ γ (2.7) 
 negative unate: β ≡ γ (2.8) 
 binate: α ≠ β ≠ γ (2.9) 
   

We say that a Boolean function is unate if all its variables are either positive or 

negative unate. In the case when at least one variable were binate, the Boolean function 

is considered binate. Unate Boolean functions are of special interest for this work. 

Unateness is an important characteristic in the threshold logic identification. All TLF 

are unate functions. Therefore, if a function has binate variables, the function cannot be 

TLF. The TLF identification method first of all, verify the function unateness. If a given 

function is binate, this function is not a TLF. 

2.1.3 Irredundant sum-of-products 

An expression is called sum-of-products (SOP) when such expression corresponds to 

product terms joined by a sum (OR) operation. An irredundant sum-of-products (ISOP) 

is a SOP where no product term can be deleted or simplified without changing the logic 

behavior of the function. Unate functions have unique ISOPs (BRAYTON et al., 1984). 

2.1.4 Threshold Logic Function 

Threshold logic functions are a subset of Boolean functions which respects the 
following operation principle. Each input has a specific weight, and the gate has a 
threshold value. If the sum of ON (input value equal 1) input weights is equal or greater 
than the threshold value, the output gate value is ‘1’. Otherwise, the output is ‘0’. This 
operating behavior can be expressed as (MUROGA, 1971): 

      𝑓 = { 
1, ∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

≥ 𝑇

0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 
(2.1) 

where xi represents each input value {0,1}, wi is the weight of each input, and T is the 
threshold value. TLF also can be called ‘linearly separable’ function. 

2.1.5 Threshold Logic Gate 

Threshold logic gate is an electronic circuit that implements a TLF. A TLG is 
completely represented by a compact vector [w1,w2,…,wn;T], where w1,w2,…,wn are the 
input weights and T is the function threshold. For instance, the corresponding TLG of the 
functions ƒ= x1.x2.x3 and g = x1˅x2˅x3 are [1,1,1;3] and [1,1,1;1], respectively. Notice 
that the symbol “˅” will be used, in some cases, to represent the OR operation, instead of 
the symbol “+” in order to avoid misunderstanding with the arithmetic sum. 

TLG can implement complex functions, such as ƒ = x1 x2 ˅ x1 x3 ˅ x2 x3 x4 ˅ x2 x3 x5 
which corresponds to the TLG ƒ = [4,3,3,1,1;7]. For this reason, an important advantage 
of threshold logic is to reduce the total number of gates used in the circuit (MUROGA, 
1971; ZHANG et al., 2005). Figure 2.1 presents some TLG examples 
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Figure 2.1: Some examples of TLGs. 

2.1.6 Threshold Logic Functions Properties 

All TLF are unate functions. Therefore, if a function has binate variables, the function 
cannot be TLF. However not all unate functions are TLF (MUROGA, 1971). The 
function ƒ = (x1.x2)˅(x3.x4) is a simple example of unate function that is not TLF.  

If the given logic function contains negative variables, these variables can be 
manipulated in the same way as functions having only positive variables in order to 
identify if it is a TLF or not. If ƒ(x1,x2,…,xn) is TLF, defined by [w1,w2,…,wn;T], then its 

complement 𝑓(̅x1,x2,…,xn) is also TLF, defined by [-w1,-w2,…,-wn;1-T]. This process is 
illustrated in Figure 2.2. 

If a function is TLF and NOT gate (inverter) is available, then it is possible to obtain a 
realization by using TLG with only positive weights by selectively negating the inputs 
(MUROGA, 1971).  

 
Figure 2.2: Threshold logic properties (MUROGA, 1971). 

2.1.7 Classes of Boolean function 

Boolean functions can be grouped into classes of functions. Given a set of all 

functions with up to n variables, they can be grouped in classes of functions. As 

illustrated in Figure 2.3, Boolean functions can be grouped considering the 

complementation (negation) of its inputs (x), permutation of its inputs (y) and/or 

inversion (negation) of its output (z). The NP class represents the set of equivalent 

functions obtained by negating and permuting the inputs (HINSBERGER; KOLLA, 

1998). 

 
Figure 2.3: Types of Boolean equivalence used to group functions in classes 

(HINSBERGER; KOLLA, 1998). 
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2.1.8 Chow’s Parameters 

Chow’s parameters are a particular set of parameters used to define the relationship 

among the weights of TLF. Given a function ƒ(x1,x2,…,xn), we call mi the number of 

entries for which ƒ(xi) = 1 and xi = 1, and ni the number of entries for which ƒ(xi) = 1 

and xi = 0. The Chow’s parameter pi of a variable xi, explained in (AVEDILLO; J.M.; 

RUEDA, 1999; MUROGA, 1971), is given by: 

𝑝𝑖 = 2𝑚𝑖 − 2𝑛𝑖 (2.10) 

Figure 2.4 shows the Chow’s parameter computation, using the function 

f=x1x2˅x1x3x4 as example. The correlation among pi and pj values of two the input 

variables induces the correlation among the weights wi and wj of the input variables xi 

and xj, respectively. If pi > pj then wi > wj (MUROGA, 1971). 

x1 x2 x3 x4 ƒ 
 

 

0 0 0 0 0  
 

0 0 0 1 0  m1 = 5 and n1 = 0 

0 0 1 0 0  p1 = 10 

0 0 1 1 0   

0 1 0 0 0  m2= 4 and n2 = 1 

0 1 0 1 0  p2 = 6 

0 1 1 0 0   

0 1 1 1 0  m3 = 3 and n3 = 2 

1 0 0 0 0  p3 = 2 

1 0 0 1 0   

1 0 1 0 0  m4 = 3 and n4 = 2 

1 0 1 1 1  p4 = 2 

1 1 0 0 1   

1 1 0 1 1   

1 1 1 0 1   

1 1 1 1 1   

Figure 2.4: Calculating Chow’s parameters value for function f=x1x2˅ x1x3x4.  

2.2 TLG Physical Implementations 

Researches on neural networks (NNs) go back sixty years ago. The key year for the 

development of the “science of mind” was 1943 when the first mathematical model of a 

neuron operating fashion: the threshold logic gate was invented (MCCULLOCJ; PITTS, 

1943) . In the last decades, the tremendous impetus of VLSI technology has made 

neurocomputer design a really lively research topic. Researches on hardware 

implementations of NNs and on threshold logic in particular, have been very active. In 

this section we will focus only on different approaches that have been tried for 

implementing TLG in silicon. Effectiveness of TLG as an alternative technology to 

modern VLSI design is determined by the availability, cost and capabilities of the basic 

building blocks. In this sense, many interesting circuit concepts for developing CMOS 

compatible TLGs have been explored. As the number of different proposed solutions 

reported in the literature is on the order of hundreds, we cannot mention all of them 

here. Instead, we shall try to cover important types of architectures and present several 

representative examples (BEIU, 2003). 
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Recently, many other approaches have been used for implementing TLG: charge-

coupled devices, optical, and even molecular (BEIU; QUINTANA; AVEDILLO, 2003). 

The main emerging future devices used to implement TLGs are the spintronics, 

memristors, single electron tunneling (SET), resonant tunneling devices (RTDs), 

quantum cellular automata (QCA) (ZHANG et al., 2005) (GAO; ALIBART; 

STRUKOV, 2013). 

2.2.1 CMOS Threshold logic Latch 

A threshold logic latch (TLL) cell illustrated in Figure 2.13 has three main 

components. (1) A differential amplifier (2 cross coupled NAND gates), (2) two 

discharge devices and (3) left and right input networks. The relevant output nodes are 

N1 and N2. The actual circuit has these two nodes as inputs to an SR latch (not shown) 

and an internal buffering of the clock (not shown). The circuit is operated in two phases: 

reset (clk = 0) and evaluation (clk 0 → 1). When clk = 0, the two discharge devices pull 

nodes N5 and N6 low, which results in N1 and N2 being pulled high. All the paths to the 

ground (through M7 andM8) are disconnected. Note that the transistors M5 and M6 are 

ON. Now assume that input signals are applied to the left and the right input networks 

such that the number of devices that are active in the left and the right input networks 

are not equal. A signal assignment procedure will ensure that this will always be the 

case. Without loss of generality assume that the left network has more ON devices than 

the right network. Therefore the conductance of the left network is higher than that of 

the right network (SAMUEL; KRZYSZTOF; VRUDHULA.S., 2010; KULKARNI; 

NUKALA; VRUDHULA, 2012).  

 

Figure 2.5: A threshold logic latch (TLL) cell (SAMUEL; KRZYSZTOF; 

VRUDHULA.S., 2010). 

When the clock switches from 0 to 1, the discharge devicesM11 and M12 are turned 

off. Node N5 will start to rise first, which will turn on M7 and turn off M1. As a result, N1 

will be discharged through devices M5 and M7. The delay in the start time for charging 

node N6 due the lower conductance of the right input network allows N1 to turn on M3. 

Thus, even if N2 starts to discharge initially, its further discharge is quickly impeded as 

M3 turns on, and N2 is quickly pulled back to 1. Therefore output node Vout is 1 and 

𝑉𝑜𝑢𝑡̅̅ ̅̅ ̅̅ ̅ is 0. Note that by proper sizing of the pull-down devices in the differential 

amplifier, the cell can be made to achieve a very good noise margin. The input 

transistors are best kept at the minimum size to reduce the power consumption. 

(SAMUEL; KRZYSZTOF; VRUDHULA.S., 2010) 
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2.2.2 Spintronics 

An architecture for threshold gate is based on the integration of conventional 

MOSFETs and a Spintronic device, known in the literature as Spin Transfer Torque - 

Magnetic Tunneling Junction (STTMTJ) device (NUKALA; KULKARNI; 

VRUDHULA, 2012). The novel feature of this architecture is that the STT-MTJ device 

is intrinsically a primitive threshold device, i.e., it changes its state when the magnitude 

of the current through the device exceeds some threshold value. This simple property, 

when exploited, leads to an extraordinary simple realization of a complex threshold 

gate, referred here as an STL cell.  

Recent works discuss the usage of STT-MTJ in logic computation, such as (ZHAO; 

BELHAIRE; CHAPPERT, 2007), (GANG et al., 2011), (PATIL et al., 2010). All 

previous works on STT-MTJ for logic use it for storage (logic 0 or 1) or as resistive 

networks to perform single logic gates. In contrast, the method described in (NUKALA; 

KULKARNI; VRUDHULA, 2012)  employs a single STT-MTJ device in conjunction 

with MOSFETs to build complex threshold function, and is illustrated in Figure 2.14. 

 

Figure 2.6: Spintronic Threshold Logic (STL) cell (NUKALA; KULKARNI; 

VRUDHULA, 2012). 

The cell operates in the following manner. The signals WR, RD_i, and PR are 

pairwise complementary, i.e., no two of them are in a high level at the same time. 

Initially, PR is asserted and the current flows into the NMOS transistor (NM1) through 

the STT-MTJ device from B to A. The flow of current brings the STT-MTJ in the anti-

parallel or high resistance state. When the WR is asserted, certain amount of current (I), 

flows through the STT-MTJ device, depending on the number of ON PMOS transistors 

(P1 to PN shown in Figure 2.14). If the current I is larger than a switching current Ic, 

then the STT-MTJ device switches to the low resistance state. Otherwise it remains in 

high resistance state. This is the write phase of the cell. When the WR pulse goes low, 

no current flows through the STT-MTJ device and, since the device is non-volatile, the 

state is maintained. 

Reading the state of STT-MTJ is done by asserting the RD_i pulse. When RD_i goes 

high, transistor NM3, whose source is connected to the STT-MTJ device, and transistor 

NM2, connected to the STT-Ref, are enabled. The drains nodes of these two transistors 

N5 and N6 are the two outputs of the STL cell and they are connected to the sense 

amplifier to evaluate the state of the STT-MTJ device. 

2.2.3 Memristors 

Leon Chua (1971)  proposed a fourth fundamental device, the memristor, which 

relates charge q and flux φ in the following way: 
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𝑀(𝑞) =
𝑑(𝜑(𝑞))

𝑑𝑞
 (2.11) 

The parameter M(q) denotes the memristance of a charge controlled memristor, 

measured in ohms. It has been observed that the memristance at any particular instance 

depends on the integral of current or voltage through the device from negative infinity 

to that instance. Thus, the memristor behaves like an ordinary resistor at any given 

instance, where its resistance depends on the complete history of the device (CHUA, 

1971; STRUKOV et al., 2008; WILLIAMS, 2008). 

The key idea is to use memristors as weights of the inputs to a threshold gate. For a 

threshold gate using memristors as weights, if Vi and Memi are the voltage and 

memristance at the input i, then the output Y is, 

      𝑌 =

{
 

 

  

1, 𝑖𝑓     ∑
𝑉𝑖

𝑀𝑒𝑚𝑖
≥ 𝐼𝑟𝑒𝑓

0, 𝑖𝑓     ∑
𝑉𝑖

𝑀𝑒𝑚𝑖
< 𝐼𝑟𝑒𝑓

 (2.12) 

The voltages applied at the inputs of a TLG are converted into current values which 

are then summed up by connecting all the wires together. This sum of all weighted 

currents is then compared with a threshold or reference current Iref. The memristance 

value can be selected by applying an appropriate voltage over a period of time. A TLG 

using memristors as weight is shown in Figure 2.15 (RAJENDRAN et al., 2010). 

 

Figure 2.7: MTL gate which uses the memristors as weights and Iref as the threshold 

(RAJENDRAN et al., 2010). 

2.2.4  Single Electron Tunneling (SET) 

SET has been receiving increased attention because it combines large integration 

and ultra-low power dissipation (GHOSH; JAIN; SARKAR, 2013). The use of SET 

technology for TLGs has been advocated, and several implementations have been 

presented. A basic minority SET gate is shown in Figure 2.16. It consists of a double-

junction box (CL and two Cj junctions), three input capacitors, and an output capacitor. 

Vd is the bias voltage. Three input voltages V1, V2 and V3, are applied to Node 1 

through the input capacitors. These capacitors form a voltage summing network and 

produce the mean of their inputs at Node 1. The double-junction box produces the 

minority-logic output on Node 1 by the following rule. If the voltage at Node 1 exceeds 

a threshold, an electron will tunnel from the ground to Node 1 via Node 2, and make the 

voltage at Node 1 negative. Otherwise, the voltage at Node 1 will remain positive. 

Logic 1 and 0 are represented by a positive and negative voltage of equal magnitude. 

An SET minority gate can also implement a two input NOR or a two-input NAND gate 
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by setting one of its inputs to an appropriate logic value (OYA et al., 2002; ZHANG et 

al., 2005; SULIEMAN; BEIU, 2004). 

 

Figure 2.8: Single Electron Tunneling (SET) minority gate. 

2.2.5 Quantum Cellular Automata (QCA) 

The quantum cellular automata (QCA) have been one of the promising 

nanotechnologies in the future. The analysis and simulation of QCA circuits has many 

challenges. It involves larger computational complexity. Quantum dots are 

nanostructures created from standard semi conductive materials. These structures are 

modeled as quantum wells. They exhibit energy effects even at distances several 

hundred times larger than the material system lattice constant. A dot can be visualized 

as well. Once electrons are trapped inside the dot, it requires higher energy for electron 

to escape. Quantum dot cellular automata is a novel technology that attempts to create 

general computational functionality at the nanoscale by controlling the position of 

single electrons (WALUS; BUDIMAN; JULLIEN, 2004; ZHANG et al., 2004). The 

fundamental unit of QCA is the cell created with four quantum dots positioned at the 

vertices of a square (WALUS et al., 2004). The electrons are quantum mechanical 

particles. They are able to tunnel between the dots in a cell. The electrons in the cell that 

are placed adjacent to each other will interact. As a result, the polarization of one cell 

will be directly affected by the polarization of its neighbors  

Figure 2.17 shows quantum cells with electrons occupying opposite vertices. These 

interaction forces between the neighboring cells are able to synchronize their 

polarization. Therefore, an array of QCA cells acts as wire and it is able to transmit 

information from one end to another Thus, the information is coded in terms of 

polarization of cell. Polarization of each cell depends on polarization of its neighboring 

cells. To perform logic computing, we require universally a complete logic set. We need 

a set of Boolean logic gates that can perform AND, OR, NOT and FANIN and FAN 

OUT operations. The combination of these is considered as universal because any 

general Boolean function can be implemented with the combination of these logic 

primitives. The fundamental method for computing is building a majority gate. 

(WALUS et al., 2004; ZHANG et al., 2004; ZHANG et al., 2005).  

 

Figure 2.9: Quantum Cellular Automata majority gate (ZHANG et al., 2005). 

The majority gate produces an output that reflects the majority of the inputs. The 

majority function is a part of a larger group of functions called threshold functions. 
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Threshold functions work according to inputs that reaches certain threshold value before 

output is asserted. The majority function is most fundamental logic gate in QCA 

circuits. In order to create an AND gate, we simply fix one of the majority gate input to 

0 (P = -1). To create OR gate we fix one of inputs to 1 P = +1. The inverter or NOT gate 

is also simple to implement using QCA (WALUS; BUDIMAN; JULLIEN, 2004).  

2.2.6 NCL: Threshold Logic for asynchronous circuits 

NULL Convention Logic (NCL) is a clock-free, delay-insensitive logic design 

methodology for digital systems (FANT, 2005; MOREIRA et al., 2014). Unlike 

previous asynchronous design approaches, NCL circuits are very easy to design and 

analyze. In NCL, a circuit consists of an interconnection of primitive modules known as 

M-of-N threshold gates with hysteresis. All functional blocks, including both 

combinational logic and storage elements, are constructed out of these same primitives. 

The designer simply specifies an interconnection of library modules in order to obtain a 

desired computational functionality. The circuit operates at the maximum speed of the 

underlying semiconductor device technology (SMITH; DI, 2009). 

The primitive element that we consider is an M-of-N threshold gate with hysteresis, 

which we refer to as simply an M-of-N gate. The abstract symbol for an M-of-N gate is 

shown in Figure 2.18. The cases of interest are those where M ≤ N. An M-of-N gate is a 

generalization of both Muller C-element and Boolean OR gate. Specifically, for N > 1, 

an N-of-N gate corresponds to an N-input Muller C-element. On the other hand, a 1-of-

N gate corresponds to an N-input Boolean OR gate. The cases where both M > 1 and M 

< N are novel and have no counterparts in the literature (FANT, 2005; MALLEPALLI 

et al., 2007).  

 

Figure 2.10: General structure of a M-of-N NCL gate (MALLEPALLI et al., 2007). 

The M-of-N gates operate on signals that can have two possible abstract values, 

which we refer to as DATA and NULL. In the normal mapping arrangement, DATA 

corresponds to a logic-1 voltage level while NULL corresponds to a logic-0 voltage 

level. The reverse mapping is also possible, as are mappings into units of current. 

There are two important aspects of the M-of-N gate, namely threshold behavior and 

hysteresis behavior. The threshold behavior means that the output becomes DATA if at 

least M of the N inputs have become DATA. The hysteresis behavior means that the 

output only changes after a sufficiently complete set of input values have been 

established. In the case of a transition to DATA, the output remains at NULL until at 

least M of the N inputs become DATA. In the case of a transition to NULL, the output 

remains at DATA until all N of the inputs become NULL (SMITH; DI, 2009). 

2.2.6.1Transistor-Level Implementation 

NCL threshold gates are designed with hysteresis state-holding capability, such that 

after the output is asserted, all inputs must be “deasserted” before the output will be 

“deasserted”. Therefore, NCL gates have both set and hold equations, where the set 

equation determines when the gate will become asserted and the hold equation 
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determines when the gate will remain asserted once it has been asserted. The set 

equation determines the gate functionality as one of the 27 NCL gates (subset of 

threshold functions)[f], whereas the hold equation is the same for all NCL gates, and is 

simply all inputs ORed together. The general equation for an NCL gate with output f is 

f=set+  𝑓 ̅• hold), where 𝑓 ̅ is the previous output value and f is the new value. Take the 

TH23 gate for example. The set equation is AB + AC + BC, and the correspondent hold 

equation is A + B + C; therefore the gate is asserted when at least 2 inputs are asserted, 

and it then remains asserted until all inputs are deasserted (MALLEPALLI et al., 2007). 

NCL gates can also be implemented in a semi-static fashion, where a weak feedback 

inverter is used to achieve hysteresis behavior, which only requires the set and reset 

equations to be implemented in the NMOS and PMOS logic, respectively. The semi-

static TH23 gate is shown in Figure 2.20. In general, the semi-static implementation 

requires fewer transistors, but it is slightly slower because of the weak inverter. Note 

that TH1n gates are simply OR gates and do not require any feedback, such that their 

static and semi-static implementations are exactly the same. 

Transistor-level libraries have been created for both the static and semi-static 

versions of all the NCL gates used in the design. For the static version, minimum widths 

were used for all transistors to maximize gate speed. However, for the semistatic 

version, larger transistors were required to overcome the weak feedback inverter to 

obtain proper gate functionality and reduce the propagation delay (MALLEPALLI et 

al., 2007). 

 

Figure 2.11: Semi-static CMOS implementation of a TH23 gate: f = AB+AC+BC 

(MALLEPALLI et al., 2007). 

2.2.7 Resonant Tunneling Devices (RTD) 

RTDs can be considered the most mature type of quantum devices, which are used 

in high-speed and low-power circuits (CHOI et al., 2009; PETTENGHI; AVEDILLO; 

QUINTANA, 2008). They operate at room temperature and have an III–V large scale 

integration process (SUDIRGO et al., 2004; LITVINOV, 2010). The incorporation of 

RTDs into transistor technologies offers the opportunity to improve the speed and 

compactness of large scale integration. RTDs exhibit a negative differential resistance 

(NDR) region in their current–voltage characteristics, which can be exploited to 

increase the functionality implemented by a single gate significantly. It reduces the 

circuit complexity in comparison to conventional MOS technologies (AVEDILLO; 

QUINTANA;.ROLDAN, 2006).  
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RTD-based circuits rely on utilizing a threshold logic gate called monostable–

bistable logic element (MOBILE) which combines a pair of series connected RTDs with 

hetero junction field-effect transistors (HFETs) to achieve input–output isolation and 

functionality (MAEZAWA; MIZUTANI, 1993).  A series connection of three or more 

RTDs, which is a multi-threshold-threshold gate (MTTG), has been employed to 

implement more complex functions than TLG. Compared to the Boolean logic, TLG 

and MTTG can increase circuit functionality and reduce circuit levels and gate numbers 

[8]. To support the design of RTD gates, various RTD models have been proposed in . 

The MOBILE, shown in Figure 2.21(a), is a rising edge triggered current controlled 

gate, which consists of two RTDs connected in series and it is driven by a switching 

bias voltage Vclk. When Vclk is low, both RTDs are in the on-state S0 and the circuit is 

mono-stable, as shown in Fig. 2.22(b). When Vclk increases to an appropriate value, it 

ensures that the RTD with smaller peak current switches first from the ON-state to the 

OFF-state. The MOBILE can reach two possible states S1 and S2, which is referred to 

bistable, as shown in Fig. 2.22(c) (WEI; SHEN, 2011). Output becomes stable at S1 and 

generates a low value if the load RTD has a smaller peak current. Otherwise, the output 

switches to S2 with a high value Logic functionality can be achieved by embedding an 

input stage, which modifies the peak current of one of the RTDs (BHATTACHARYA; 

MAZUMDER, 2001). 

 

 
  

(a) (b) (c) 

Figure 2.12: MOBILE: (a) basic circuit, (b) monostable state, and (c) bistable state 

(WEI; SHEN, 2011).  

2.3 Final Considerations 

This chapter presented several proposals to implement TLGs, using different devices 

and structures. In order to explore the features of threshold logic, an IC design flow with 

algorithms focused in this logic style is necessary. Chapters 3 and 4 present methods to 

address two crucial steps of a TLG based design flow.  
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3 THRESHOLD LOGIC IDENTIFICATION 

An essential task to establish a design flow based on threshold logic gates (TLG), is 

to determine whether a Boolean function is a threshold logic function (TLF), i.e., if the 

function can be implemented using a single TLG. Furthermore, threshold logic 

identification aims to find the correct TLG which implements the Boolean function by 

calculating the corresponding input weight and the threshold value of the gate. 

In this chapter, a new method for threshold logic identification is proposed. Section 

3.1 reviews the related methods and presents a brief discussion about each strategy. 

Section 3.2 explains in detail each step of the proposed method and Section 3.3 

demonstrates two practical examples to demonstrate it. Finally, Section 3.4 presents 

experimental results, comparing to the results from the state-of-the-art approaches in 

this field. The efficiency in the number of identified TLF and runtime of each method is 

verified. 

3.1 Related Work 

Most of methods proposed for threshold logic identification aims to solve a system 

of inequalities, generated from the truth table, using integer linear programming ILP 

(AVEDILLO; J.M., 2004; ZHANG et al., 2005; SUBIRATS; JEREZ; FRANCO, 2008). 

ILP provides optimal results. However, such a strategy becomes unfeasible when the 

number of variables increases because the number of inequalities to be solved increases 

exponentially with the number of input variables. Heuristic methods, on the other hand, 

are not optimal but present a significant improvement in execution time.  

The first heuristic (non-ILP) method known to identify threshold logic functions was 

proposed by Gowda et al., in (GOWDA; VRUDHULA; KONJEVOD, 2007), and 

improved afterwards in (GOWDA; VRUDHULA, 2008) and (GOWDA et al., 2011). 

This method is based on functional decomposition and a min-max factorization tree. 

The target function is decomposed into simpler subfunctions until they can be directly 

characterized (AND, OR, 0, 1). These subfunctions are merged by respecting some TLF 

properties.  The main limitation of this method is the reduced number of TLF identified. 

Moreover, it represents a very time consuming process and presents a strong 

dependence to the initial expression structure, including the ordering of the initial tree. 

In (PALANISWAMY; GOPARAJU; TRAHOUDAS, 2010), it is presented a 

method based on the modified Chow’s parameters. The basic idea is assign to each 

input a weight value that is proportional to the Chow’s parameter. This method has been 

later improved, in (PALANISWAMY; GOPARAJU; TRAHOUDAS, 2012), and can be 

considered as the state-of-the-art work in TLF identification. However, the bottlenecks 

of these approaches are also the number of identified functions and the fact that the 
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assigned input weights are not always the minimum possible values. Those non-

minimal weights can impact the final circuit area (ZHANG et al., 2005). 

3.2 Proposed Method 

In the proposed method, a complete system of inequalities is also built using similar 

strategy to ILP inequalities generation algorithms. However, unlike ILP-based 

approaches, the inequalities system is not actually solved. Instead, the algorithm selects 

some of the inequalities as constraints to the associated variables to compute the 

variable weights in a bottom-up way. After this assignment, the consistency of the 

complete system is verified in order to check if the weights have been correctly 

computed. 

As mentioned before, if a function is not unate then it is not TLF. Therefore, the 

algorithm first checks the unateness property of the function. A negative variable can be 

changed to a positive one if the weight signal is inverted, and this amount is subtracted 

from the threshold value. Without loss of generality, the proposed algorithm starts from 

a positive unate function. 

For a better understanding, the algorithm has been split into eight steps, which are 

illustrated in Fig. 3.1 and summarized in the following: in step (1), the ordering of the 

variable weights is identified; step (2) generates the inequalities; step (3) creates the 

system of inequalities; in step (4), the simplification of the inequalities set is executed; 

in step (5), the association of each variable to some inequalities is performed; step (6) 

assigns the variable weights and the consistency of the solution found is verified; if the 

given Boolean function is confirmed as TLF, then the threshold value is calculated in 

step (7); in step (8) is performed an eventual adjusting of the variable weights when it is 

necessary. 

Variable ordering 

computation

 Inequalities system

generation

Simplification of 

inequalities

Weight assignment 

and result 

consistency check

Unate Boolean 

function

Variable weight 

adjustment

Association of 

inequalities for 

each variable

Threshold 

Logic Function 

parameters

Step (1) Step (2) Step (4)

Step (5)Step (6)Step (7)Step (8)

Creation of 

inequalities

Step (3)

Function threshold 

value computation

 

Fig. 3.1. Flow chart of the proposed algorithm for TLF identification. 

3.2.1 Variable weight order 

In the proposed method, is essential to know the variable weight ordering, since this 

information is used in the inequalities simplification and weight assignment steps. A 

well-known manner to obtain such an ordering is through the Chow’s parameters 
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[Chow 1961; Muroga 1971]. The correlation between the Chow’s parameters pi and pj 

of two variables xi and xj induces the correlation between the respective weights wi and 

wj, i.e., if pi > pj then wi > wj [Muroga 1971]. 

A new algorithm to obtain a variable weight ordering (WVO) parameter is proposed. 

WVO parameters provide similar variable weight ordering of Chow’s parameter, 

although the absolute parameter values are possibly different. The proposed WVO 

parameters are calculated directly from the ISOP and, being simpler and faster to 

compute. Such parameters are based on max literal computation, proposed in [Gowda et 

al. 2011].  

Given an ISOP representation of a function f, the largest variable weight of the 

target TLF is associated to the literal that occurs most frequently in the largest cubes of f 

(i.e., the cubes with fewer literals). In the case of a tie, it is decided by comparing 

frequency of the literals in the next smaller size cubes. 

The proposed algorithm defines for each cube a kind of weight, corresponding to the 

cube size. Such weight is added to the VWO parameter of the variables present in the 

cube. The variable weight ordering is associated to the ordering of these VWO 

parameters, computed for each variable. The pseudo algorithm of this step is described 

in Algorithm 1. The time complexity of Algorithm 1 is O(m·n), being m the number of 

cubes and n the number of variables. 

 Algorithm 1 Compute the variable weight order 

 Input: function f with n variables represented by an ISOP F with cube set C that contains m cubes 
 Output: list VWO parameters list_VWO  in ascending order 

1 initialize all values of list_VWO  as zero 

2 for each cube c ∈ C do 
3          lit = |c| 

4         for each  xi ∈ c do 

5                add mn-lit  in list_ VWO[xi] 
6         end for 
7 end for 
8 order(list_ VWO) 
9 return list_ VWO 

 

For instance, for the given Boolean function defined by the following ISOP: 

ƒ = (x1·x2)˅(x1·x3·x4) (3.1) 

the calculated values of variables x1, x2, x3, and x4 are 6(2
2
+2

1
), 4(2

2
), 1(2

1
) and 

1(2
1
), respectively, whereas the Chow’s parameters of this variables would be 10, 6, 2 

and 2, respectively. Notice that the same ordering is obtained in both calculations. Thus, 

in this case, the algorithm initially assigns the weight of the variables x3 and x4, then, 

afterwards, the weight of the variable x2 is assigned, being the weight of variable x1 the 

last one to be defined. 

3.2.2 Generation of inequalities 

Equation (1) defines the relationship between the variable weights and the threshold 

value of a TLF. If the function value is true (‘1’) for certain assignment vector, then the 

sum of weights of this assignment is equal to or greater than the threshold value. 

Otherwise, the function value is false (‘0’), i.e., the sum of weights is less than the 

threshold value. From this relationship, it is possible to generate the inequalities 

associated. For instance, given the truth table of the function from equation (3), the 

relationship between variable weights and the threshold value is shown in Table I. 
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Table 3.1. Inequalities from truth table representing function defined by equation 

(3.1). 

x1 x2 x3 x4 ƒ   Inequality 

0 0 0 0 0   0 < T 
0 0 0 1 0   w4 < T 
0 0 1 0 0   w3 < T 

0 0 1 1 0   (w3 + w4) < T 
0 1 0 0 0   w2 < T 
0 1 0 1 0   (w2 + w4) < T 
0 1 1 0 0   (w2 + w3) < T 

0 1 1 1 0   (w2 + w3 + w4) < T 
1 0 0 0 0   w1 < T 
1 0 0 1 0   (w1 + w4) < T 

1 0 1 0 0   (w1 + w3) < T 
1 0 1 1 1   (w1 + w3 + w4) ≥ T 
1 1 0 0 1   (w1+ w2) ≥ T 

1 1 0 1 1   (w1+ w2 + w4) ≥ T 
1 1 1 0 1   (w1 + w2 + w3) ≥ T 
1 1 1 1 1   (w1 + w2 + w3 + w4) ≥ T 

 

Some relationships in Table I are redundant due to the fact that some inequalities are 

self-contained into another inequalities. For instance, since we havethe relation 

(w1+w2) ≥ T and the variable weights are always positive, so the relation 

(w1+w2+w3) ≥ T is redundant. The irredundant information is the lesser assignments 

(i.e., the lesser weight sum) that make the function true (‘1’) and the greater 

assignments (i.e., the greater weight sum) that make it false (‘0’). Notice that an 

assignment vector A(a1,a2,a3...an) is smaller than or equal to an assignment vector 

B(b1,b2,b3…bn), denoted as A ≤ B, if and only if ai ≤ bi for (i = 1,2,3,…,n). For example, 

the assignment vector (1,0,0,1) is lesser than the assignment vector (1,1,0,1), whereas 

the assignment vectors (0,1,0,1) and (1,1,0,0) are not comparable. 

In our method, these redundancies are avoided using two ISOP expressions, one for 

the direct function and another for the negated function. In the example, the least true 

assignment vectors are (1,1,0,0) and (1,0,1,1), and the greatest false assignment vectors 

are (1,0,1,0), (1,0,0,1) and (0,1,1,1). Therefore, the algorithm creates only (w1+w2) and 

(w1+w3+w4) in the greater side, and (w1+w3), (w1+w4) and (w2+w3+w4) in the lesser 

side. The ISOP from f and f’ are considered as inputs of the method. Each sum of 

variable weights greater than the function threshold value is placed in the greater side 

set, whereas each sum of weights which is less than the threshold value belongs to the 

lesser side set. Table 3.2 shows these two sets for the illustrative example in equation 

(3.1). 

 

Table 3.2. Greater side and lesser side sets for function described in Table 3.1. 

greater side    lesser side 

(w1+w2) ≥ T > (w1+w4) 

(w1+w3+w4) ≥ T > (w1+w3) 

--- 
 

T > (w2+w3+w4) 

 

This procedure is described by the pseudo algorithm in Algorithm 2. The time 

complexity of Algorithm 2 is O(m+m’), where m is the number of cubes in the ISOP of 

function f and m’ is the number of cubes in the ISOP of the negated function f ’. 
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 Algorithm 2 Generation of inequalities sides 

 Input: ISOP form of function f and negated function f ’ 
 Output: two sets of inequalities sides, a set ineq_greater and a set ineq_lower 

1 for each cube c ∈ C 

2            create inequality_side S from c 

            add S in ineq_greater 
3 end for 
4 for each cube c ∈ C ’ 

5            create inequality_side S from c 
            add S in ineq_lower 
6 end for 
7 return <ineq_greater, ineq_lower> 

 

3.2.3 Creation of inequalities system 

The pseudo algorithm that represents the creation of the system of inequalities is 

presented in Algorithm 3. The instruction compose_inequality creates a new inequality 

from the two inequality sides. Each greater side element is greater than each lesser side 

element because the greater side elements are greater than (or equal to) the threshold 

value, whereas the lesser side elements are smaller than that. The inequalities system is 

generated by performing a kind of Cartesian product of the greater side set and the 

lesser side set. 

Table 3.3 shows the six inequalities generated for the Boolean function illustrated in 

Table 3.1. Notice that if the procedure had taken into account all truth table 

assignments, 55 inequalities would be generated. The time complexity of Algorithm 3 is  

O(m·m’),  where m is the number of cubes in the ISOP of function f  and m’ is the 

number of cubes in the ISOP of negated function f ’.  

 

Table 3.3. Inequalities system generated for function described in Table 3.2. 

# Inequality 

1 (w1+w2) > (w1+w4) 

2 (w1+w2) > (w1+w3) 

3 (w1+w2) > (w2+w3+w4) 

4 (w1+w3+w4) > (w1+w4) 

5 (w1+w3+w4) > (w1+w3) 

6 (w1+w3+w4) > (w2+w3+w4) 

 

 Algorithm 3 Inequalities generation 

 Input: two sets of inequalities,  a set ineq_greater and a set ineq_lower 

 Output: set of inequalities ineq_set 

1 set_ineq = ∅ 

2 for each inequality_side g ∈ ineq_greater 

3           for each inequality_side l ∈ ineq_lower 

4                   ineq = compose_inequality(g,l) 
5                   add ineq in set_ineq 

6            end for 
7 end for 
8 return <set_ineq> 
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3.2.4 Simplification of inequalities 

Besides generating only irredundant inequalities, the proposed algorithm also 

simplifies each inequality and eventually discards some of them. The inequalities 

simplification process is performed through four basic tasks, as shown in Fig. 3.2. 

Merge of variable 

with similar Chow’s 

parameter

(updated variables)

Elimination of 

variables that appear 

in both sides of 

inequalities

Elimination of 

inequalities with 

no elements in the 

lesser side

Elimination of 

inequalities with a 

single element on 

each side

 

Fig. 3.2. Sequential tasks for inequalities simplification. 

The method assumes that if two variables have similar VWO parameters value then 

they present the same weight (this has not been proved for functions with more than 

seven of variables) [Muroga et al. 1971]. Based on this assumption, the algorithm 

creates a new reduced set of variables where each variable corresponds to a VWO 

parameter value. These variables are called updated variables, and are represented by 

A, B, C, etc., where ‘A’ corresponds to the variable with the greatest VWO parameter 

value. 

Reducing the number of variables allows a reduction in the amount of inequalities 

and, consequently, it decreases the algorithm runtime. Table 3.4 shows the created 

updated variable for the function described in equation (3), where the new number of 

variables is now three instead of four. Table 3.5 presents the new inequalities system 

with the updated variables. This domain transformation is described in Algorithm 4. 

The time complexity of this step is O(n²), being n the original number of variables. 

Table 3.4. Updated variables based on the VWO parameter of variables from 

equation (3.1). 

Input 

weight 

VWO 

parameter 

Updated 

variable w1 10 A 

w2 6 B 

w3 and w4 2 C 

 

Table 3.5. Inequalities system from Table 3.3 represented by the new updated 

variables. 

# Inequality 
1 (A+B) > (A+C) 

2 (A+B) > (A+C) 
3 (A+B) > (B+C+C) 
4 (A+C+C) > (A+C) 

5 (A+C+C) > (A+C) 
6 (A+C+C) > (B+C+C) 

 

The inequalities simplification occurs when the variable weight appears on both 

sides of certain inequality. When it happens, this variable is removed from such 

inequality. For instance, consider the inequality (A+C+C) > (B+C+C). This inequality 

can be simplified by removing C, so resulting on the inequality A > B. This procedure is 

illustrated in Table 3.6. The resulting set of inequalities is presented in Table 3.7. 
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Since all variable weights are positive, the algorithm discards the inequalities that 

have null weight (i.e., weight equal to zero) in the lesser side. These inequalities are not 

useful because they only confirm that the weights are positive.  

 Algorithm 4 Domain transformation for simplification 

 Input: set of variables V, set of VWO parameters C, set of inequalities set_ineq 

 Output: set of inequalities set_ineq’ with updated variables, grouped by VWO values 

1 set_ineq’ := ∅ 

2 for each VWO c ∈C 

3         vc := ∅ 

4         for each variable v ∈ V 

5              if (VWO(v) = c) 
6                 add v in vc 

7              end if 
8         end for 
9         v’ := get_first_element(vc) 
10         create tuple t < c , v’ > 
11         add t in T 

12 end for      
13 set_ineq’ := set_ineq 

14 for each inequality ineq ∈ set_ineq’         

15         change_variables (ineq,T) 

16 end for      
17 return set_ineq’ 

 

Table 3.6. Simplification of inequalities from Table V. 

# Inequality 

1 (A+B) > (A+C) 

2 (A+B) > (A+C) 

3 (A+B) > (B+C+C) 

4 (A+C+C) > (A+C) 

5 (A+C+C) > (A+C) 

6 (A+C+C) > (B+C+C) 

 

Table 3.7. Resulting set of inequalities from Table VI. 

# Inequality 

1 B > C 

2 B > C 

3 A > C+C 

4 C > - 

5 C > - 

6 A > B 

 

The inequalities which contain only one element in each side are checked only once 

directly using the VWO parameters. If one of these inequalities is not consistent, the 

function is defined as not TLF, because the VWO parameter ordering is not respected. 

For instance, for inequality (1) in Table 3.7 (B > C), the variables are replaced by the 

VWO parameter values, obtaining 6 > 2. In this case, the inequality respects the VWO 

parameter order and is discarded.  

Notice that until this moment: 

 the method is not assigning the input weights yet; 

 the method is not able to determine if the function is TLF yet; 
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 it is only possible to determine some functions that have been identified as 

non TLF.  

After all these simplifications, the set of useful inequalities can be significantly 

reduced. In the demonstration example, described in Table 3.1, the only remaining 

inequality is the number 3 in Table 3.7, A > (C+C), which will be the only inequality to 

be used in the assignment step. The reduction in the number of inequalities is one of the 

key points of the proposed method, since the weight assignment is based on inequalities 

manipulation. However, such a simplification becomes the method heuristic, i.e., some 

discarded inequality could be essential for the correct solution. It generates false 

negatives for functions with more than six variables. The pseudo algorithm of the 

complete inequalities simplification process is shown in Algorithm 5. The time 

complexity of this step is O(n·log(n)·m·m’), being n the number of variables, m the 

number of cubes in the ISOP of function f  and m’ is the number of cubes in the ISOP of 

the negated function f ’. 

 Algorithm 5 Inequalities simplification 

 Input: set of inequalities set_ineq 

 Output: simplified set of inequalities set_ineq_simplified 

1 set_ineq_simplified := ∅ 

2 for each inequality ineq  ∈ set_ineq 

3         split ineq in greater and lesser side 

4         for each variable v1 ∈ greater_side 

5              for each variable v2 ∈ lesser_side 
6                   if (v1 = v2) 

7                          remove(v1, greater_side) 
8                          remove(v2, lesser_side) 
9                   end if 
10              end for 
11         end for   
12         if  lower_side is not empty 

13                ineq := compose_inequality (greater,lesser) 
14               add ineq in set_ineq_simplified 

15         end if 
16 end for 
17 return set_ineq_simplified 

 

3.2.5 Association of inequalities to variables 

Before computing the variable weights, the tuple <variables,inequalities> 

associating the variables with some of the inequalities is created. By making so, each 

variable points to inequalities in which the variable is present on the greater side. This 

relationship is exploited in the weight assignment step, discussed in the next section. 

However, the function defined by equation (3.3), used as example in the description of 

previous steps, is not appropriate to illustrate how this procedure because the simplified 

set has only one inequality. For a better visualization of this step, in Fig.3.3 is shown an 

example of one of this kind of relationship for the following function:  

 

ƒ =(x1·x2·x3)˅(x1·x2·x4)˅(x1·x3·x4)˅(x1·x2·x5)˅(x1·x3·x5)˅(x1·x4·x5)˅(x1·x2·x6) 

˅(x1·x3·x6)˅( x2·x3·x4)˅(x2·x3·x5) 
(3.4) 
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A > D + B
A > D + C
A > C + C

A + B > D + C + C
A + C + C > D + B + B

A + C > D + B
B + B > D + A

B > D + C
B + C > A

B + B > D + C
D

variables

inequalities

 

Fig. 3.3. Example of relationship associating variables and inequalities of function in 

equation (3.4). 

 

3.2.6 Variable weights assignment 

The variable weight assignment step receives the updated set of variables, after the 

domain transformation, ordered by the VWO parameters, as well as the inequalities and 

relationships defined in the previous section. The first task is to assign minimum values 

for each variable. The variable with the lowest VWO parameter value is assigned by 1, 

the second smallest one by 2, and so on. In the example from Table III, the initial 

tentative weights are C = 1, B = 2 and A = 3. 

The algorithm iterates all variables, in ascending order. Each variable points for a set 

of inequalities, as explained in step 3.5. The consistency of each inequality is verified, 

being performed by checking whether the sum of the current values of the greater side 

variables is greater than the sum of the current values of the lesser side variables. 

If any of these inequalities is not consistent, then the value of the variable under 

verification may be incremented, trying to make it valid. When the value of this variable 

is incremented, the value of the variables with greater VWO parameter may also be 

incremented in order to maintain the ordering. For instance, considering the case (A+C) 

> (B+B+B), increasing the value of C would never turn the inequality consistent 

because it also increases the values of A and B, i.e., (A+1+C+1) > (B+1+B+1+B+1). In 

this sense, the lesser side cannot increase more than the greater side. 

The decision whether the weight of a variable should be incremented or not is 

performed as follows. When the value of the variable is incremented, the sum of the 

greater side must increase more than the lesser side. By doing so, the weight values 

tend to converge to a solution that becomes consistent the inequality. This procedure is 

executed for each variable, increasing the variable values when necessary and 

respecting a limit proportional to the number of variables. At the end, a single check is 

performed over the original system by replacing the variables by the values found. If all 

inequalities are consistent, then the values represent the right variable weights. If at least 

one inequality is not consistent, then the method sets that the function is not TLF. This 

ensures that the method does not find false positive solutions. 

In the previous example, illustrated in Table 3.7, only one inequality, A > (C+C), 

remains to the assignment step. The assigned weights were C = 1, B = 2 and A = 3. The 

equation is consistent with these values, and so no increment is required. These updated 
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variable values are assigned to the corresponding variable weights, resulting in w1=3 

w2=2, and w3=w4=1. Table 3.8 shows the original system with the assigned values. 

Table 3.8. Original system, from Table 3.6, with the computed variable weights. 

# Inequality 

1 (3+2) > (3+1) 

2 (3+2) > (3+1) 

3 (3+2) > (2+1+1) 

4 (3+1+1) > (3+1) 

5 (3+1+1) > (3+1) 

6 (3+1+1) > (2+1+1) 

 

Since all inequalities are consistent, the computed values are accepted as a valid 

solution of the system. Algorithm 6 shows the pseudo algorithm of the assignment step. 

The time complexity of this step is O(n·m·m’), being n the number of variables, m the 

number of cubes in the ISOP of function f  and m’ is the number of cubes in the ISOP of 

the negated function f ’.  

 Algorithm 6 Weights assignment 

 Input: list of variables list_variables, relationship of variables and associated inequalities set_ineq  
 Output: set of variables v with assigned values 

1 n = 1 
2 correct = false 
3 for all variable v ∈ list_variables do 

4      v = n 
5      n= n++ 
6 end for   
7 for each variable v ∈ list_variables do 

8     set_ineq = get_ineq_by_variable (v) 

9     for each inequation ineq ∈ set_ineq 

10           correct = verify_consistency(ineq) 
11           while (correct = false OR v < limit) 
12               v = v++ 

13               increment_greater_variables(v, list_variables) 

14               correct = verify_consistency(ineq) 
15           end while     
16      end for   
17 end for  
18 return list_weight_VWO 

 

3.2.7 Function threshold value calculation 

After checking whether the weights have been assigned correctly, the algorithm 

calculates the function threshold value. In a TLF represented through an ISOP form, the 

sum of weights of the variables contained in each product is equal to or greater than the 

function threshold value. Therefore, the threshold value is equal to the least sum of 

weights of the greater side set. In the example defined by equation (3) and in Table I, 

the threshold value is 5, obtained from the greater side element of any inequality in 

Table 3.8 (in this case, all greater sides have equal sum). The final solution for such a 

given Boolean function is [3,2,1,1;5]. 

3.2.8 Variable weights adjustment 

When a variable is incremented, an already checked inequality can become 

inconsistent. One way to identify and prevent the occurrence of this problem is 

explained in the following. 
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For instance, for a given function, let us consider that the growing ordering of the 

updated variable is D, C, B and A, where A has the highest weight value and D has the 

lowest weight value. At a certain time, the algorithm has checked the inequalities 

associated to D, C and B variables. The inequalities associated with variable A are 

checked and an inconsistency determines that the value of this variable needs to be 

incremented. However, there is an inequality, (B+C+D) > A, that has already been 

checked. By increasing the value of variable A, the inequality that had been considered 

consistent can become inconsistent. 

This kind of problem can occur when a variable in the lesser side of the inequality 

has greater value than any variable value in the greater side. In our investigation, it was 

observed that this occurs in less than 2% of the 6-input functions and never occurs in 

functions with fewer variables. As the consequence, in these cases the minimum weight 

values are not guaranteed. 

In order to solve this problem, a relationship represented by the tuple 

<variable,inequalities>, where variables point to inequalities, similarly as presented in 

step (5), and is called reverse relation. If a variable x is on the lesser side and its VWO 

parameter value is greater than any VWO parameter of the greater side variables, then 

this information is recorded on the relationship tuple. In the assignment step (6), when 

the method specifies that a variable must be incremented, this reverse relation may also 

be consulted. 

At the moment of incrementing a variable, the method:  

 checks if there is an inequality associated to this variable in the reverse relation;  

 checks if this inequality becomes inconsistent after the increment of variable x; 

 (if so) increments the greatest value variable of the greater side, and makes the 

inequality consistent again. This is done recursively for the variables with VWO 

greater than the VWO of variable x. 

It is important to notice that, whenever the value of some variable is incremented, 

the value of the higher variables must also be incremented, i.e., the ordering must be 

maintained. A demonstration of this improvement is presented in Section 3.3.2.  

3.3 Case studies 

In the previous section, the method proposed for threshold logic function 

identification was described. The example from equation (12), used to demonstrate the 

algorithms, is quite simple, having been adopted just to simplify the explanation and 

facilitate the understanding of the procedure steps. However, the importance and impact 

of each step can be subestimated with such a simple example. In this section, two more 

complex functions are used as case studies to illustrate the main gains and benefits of 

our approach.  

3.3.1 First case 

Let us consider the following function: 

 ƒ=(x1·x2)˅(x1·x3)˅(x1·x4)˅(x2·x3)˅(x2·x4)˅(x1·x5·x6) (3.5) 

The first step is to compute the VWO parameter for each variable and sort them, as 

shown in Table 3.9.  
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Table 3.9. VWO parameter values for function of equation (5). 

VWO parameter Variables 
2 x5, x6 

14 x4, x3 
30 x2 
34 x1 

 

The given function described in equation (3.5) presents 64 possible assignment 

vectors since it has six variables. Among these assignments, 23 are false and 41 are true. 

If all truth table assignments are taken into account, then the system comprises 943 

inequalities. However, as it was discussed before, the method considers the ISOP 

expression as input and generates only the greatest false assignments and the least true 

assignments. The greater side and lesser side sets for this case are presented in Table 

3.10. Afterwards, the Cartesian product between the greater side and the lesser side is 

performed, and 24 inequalities are obtained, as showed in Table 3.11. In the next, the 

algorithm creates the updated variables, based on repeated VWO parameters, and 

replaces the variable weights, as shown in Table 3.12. The simplification is then 

performed by removing variables that appear in both sides of the inequalities. The 

simplified set of inequalities is shown in Table 3.13. 

Table 3.10. Inequalities generation for the first case study in equation (5). 

Greater side  Lesser side 

w1 + w2 

>   T   > 

w3 + w4 + w5 + w6 

w1 + w3 w2 + w5 + w6 

w1 + w4 w1 + w6 

w2 + w3 w1 + w5 

w2 + w4 --- 

w1 + w5 + w6 --- 

 

Table 3.11: Original inequalities system for the first case study in equation (5). 

# Inequality # Inequality 

1 w1+w2  >  w3+w4+w5+w6 13 w2+w3  >  w3+w4+w5+w6 

2 w1+w2  >  w2+w5+w6 14 w2+w3  >  w2+w5+w6 

3 w1+w2  >  w1+w6 15 w2+w3  >  w1+w6 

4 w1+w2  >  w1+w5 16 w2+w3  >  w1+w5 

5 w1+w3  >  w3+w4+w5+w6 17 w2+w4  >  w3+w4+w5+w6 

6 w1+w3  >  w2+w5+w6 18 w2+w4  >  w2+w5+w6 

7 w1+w3  >  w1+w6 19 w2+w4  >  w1+w6 

8 w1+w3  >  w1+w5 20 w2+w4  >  w1+w5 

9 w1+w4  >  w3+w4+w5+w6 21 w1+w5+w6  >  w3+w4+w5+w6 

10 w1+w4  >  w2+w5+w6 22 w1+w5+w6  >  w2+w5+w6 

11 w1+w4  >  w1+w6 23 w1+w5+w6  >  w1+w6 

12 w1+w4  >  w1+w5 24 w1+w5+w6  >  w1+w5 

 

Table 3.12. Updated variable created for each VWO parameter value for the first 

case study in equation (5). 

Variable 

weights 

VWO 

parameter 

Updated 

variable w1 34 A 
w2 30 B 

w3 and w4 14 C 
w5 and w6 2 D 
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For the variable weight assignment, the method selects only inequalities that have 

more than one weight in the lesser side, and discards repeated inequalities. Table XIV 

presents the selected inequalities for the given example. We have only 8 inequalities 

against 943 inequalities whether a conventional method would be used and against 24 

inequalities present in the original generated system. 

Table 3.13: Simplified inequalities system, from Table XI, using updated variables, 

from Table 3.12. 

1 A+B > C+C+D+D 13 B > C+D+D 

2 A > D+D 14 C > D+D 

3 B > D 15 B+C > A+D 

4 B > D 16 B+C > A+D 

5 A > C+D+D 17 B > C+D+D 

6 A+C > B+D+D 18 C > D+D 

7 C > D 19 B+C > A+D 

8 C > D 20 B+C > A+D 

9 A > C+D+D 21 A > C+C 

10 A+C > B+D+D 22 A > B 

11 C > D 23 D >   

12 C > D 24 D >   

 

Table 3.14: Selected inequalities, from Table 3.13, for the variable weight 

assignment step. 

1 A+B > C+C+D+D 13 B > C+D+D 

2 A > D+D 14 C > D+D 

5 A > C+D+D 15 B+C > A+D 

6 A+C > B+D+D 21 A > C+C 

 

Fig. 9 illustrates the variable weight assignment. At first, the variables are assigned 

with minimum values, respecting the ordering defined by the respective VWO 

parameters. These values are A = 4, B = 3, C = 2 and D = 1, as indicated in Fig. 3.4(1). 

Since there are any inequality pointed by variable D, the method accepts the value 1 for 

such variable and starts to verify the inequalities pointed by C. This way, the inequality 

#13 from Table XIV turns to be not consistent, and so increasing the variable value of C 

this inequality becomes consistent, as indicated in Fig. 3.4(2). The updated value of 

variable C is 3, and with this value all of the inequalities containing variable C are 

consistent. 

C++

A+B> C+C+D+D

A> D+D

A> C+D+D

A+C> B+D+D

B> C+D+D

C> D+D

B+C> A+D

A> C+C

B++ B++

A=4

B=3

C=2

D=1

(1)

(2) (3) (4)

4+3> 2+2+1+1

4> 1+1

4> 2+1+1

4+2> 3+1+1

3> 2+1+1

2> 1+1

3+2> 4+1

4> 2+2

5+4> 3+3+1+1

5> 1+1

5> 3+1+1

5+3> 4+1+1

4> 3+1+1

3> 1+1

4+3> 5+1

5> 3+3

6+5> 3+3+1+1

6> 1+1

6> 3+1+1

6+3> 5+1+1

5> 3+1+1

3> 1+1

5+3> 6+1

6> 3+3

7+6> 3+3+1+1

7> 1+1

7> 3+1+1

7+3> 6+1+1

6> 3+1+1

3> 1+1

6+3> 7+1

7> 3+3

 

Fig. 3.4. Variable weight assignment for the first case study in equation (3.5). 
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Next, the method checks the inequalities pointed by B. The verification concludes 

that the inequality #14 from Table XIV is inconsistent. Incrementing once the value of 

variable B does not become the inequality valid, as indicated in Fig. 3.4(3), but 

decreases the difference between the sums of the two sides. The increment is performed 

again, and the current values are B = 6 and A = 7, as indicated in Fig.3.4 (4), making all 

inequalities pointed by B becomes consistent. Finally, the method checks the 

inequalities pointed by A and verifies that such inequalities are also valid with the 

weights A = 7, B = 6, C = 3 and D = 1. 

After computing all variable weights, the algorithm identify the function threshold 

value. The value is obtained from the least sum of weights value in the greater side set. 

In this case, the threshold value is equal to 9 from any of the weight sums in Table 3.11, 

(w2 + w4), (w2 + w3) or (w1 + w5 + w6). 

The final check is then performed over the original inequalities system presented in 

Table 3.11 (i.e., before the simplification) with the assigned variable weights. All 

inequalities are verified consistent, so the right solution found is w1 = 7, w2 = 6, w3 = 3, 

w4 = 3, w5 = 1, w6 = 1 and T = 9. 

Due to the bottom-up characteristic of our approach, the variable weights and 

function threshold value found are the minimum possible. It is a quite relevant feature 

since impacts directly on the area of corresponding TLG. In the Palaniswamy’s method 

[2012], for instance, the solution found for the same TLF is [9,8,4,4,1,1;11]. 

3.3.2 Second case 

A second case study is presented to demonstrate the eventual improvement 

discussed in Section 3.8, exploiting the reverse relation concept. Let us consider the 

Boolean function represented by the following ISOP: 

f = (x1·x2·x3)˅(x1·x2·x4)˅(x1·x3·x4)˅(x1·x2·x5)˅(x1·x3·x5)˅(x1·x4·x5)˅(x1·x2·x6) 

                  ˅(x2·x3·x4)˅(x2·x3·x5)˅(x2·x4·x5) 
(3.6) 

Table 3.15 shows the relationship between the variable weights, the corresponding 

VWO parameters and the created updated variables. 

Table 3.15 Updated variable created for each VWO parameter value of the second 

case study in equation (6). 

Variable 

weights 

VWO 

parameter 

Updated 

variable w1, w2 34 A 
w3, w4, w5 30 B 
w6 14 C 

 

To simplify such explanation, the process of generation and simplification of 

variables is not presented. Table 3.16 shows the system using the updated variables, 

already simplified. 

Table 3.16: Simplified inequalities for the weight assignment step of the second case 

study in equation (6). 

1 B+B > A 

2 A > C+B 

3 A+A > B+B+B 

4 A+A > C+B+B 
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For this case, as discussed in Section 3.5, the relationship associating the inequalities 

of the system with variables that appear in the greater side would be variable B pointing 

to the inequality #1 and variable A pointing to the inequalities #2, #3 and #4, from 

Table 3.16. 

Inequality #1 in Table 3.16 presents the characteristics described in Section 3.8, 

where the variable with the greatest value appears in the lesser side of the inequality. 

This information is stored in the reverse relation, with variable A pointing to this 

inequality. This means, when it is necessary to increase the value of variable A, it is 

required to check if this inequality has not become inconsistent. Whether the inequality 

has become inconsistent, the variable with the greatest value of greater side, in this case 

variable B, must also be incremented. 

The weight assignment process occurs as illustrated in Fig. 10. First of all, the 

variables are assigned with minimal weights C = 1, B = 2 and A = 3, as indicated in Fig. 

3.5(1). Since there are no inequalities to be checked associated with variable C, the 

value 1 is accepted. To check the current value of variable B, the inequality (B+B) > A 

is verified and, at this moment, it is consistent. Then, the value 2 is accepted for variable 

B. 

Finally, the inequalities pointed by variable A are verified. The inequality 

(A+A) > (B+B) is inconsistent. The increasing of the value of variable A would make 

valid the inequality, as indicated in Fig. 3.5(2). However, since there is the inequality 

(B+B) > A in reverse relation, it is necessary to verify if this inequality remains valid. 

With B = 2 and A = 4, the inequality is inconsistent. This means that when the process 

increments the value of variable A, the value of variable B must also be incremented, 

becoming equal to 3, as indicated in Fig. 3.5(3). 

The current values are A = 4, B = 3 and C = 1. Looking at the inequalities pointed 

by variable A, the method checks that the inequality A > (B + C) is inconsistent. Hence, 

the value of the variable A is incremented again and the inequality becomes valid. At 

this time, the increment does not make inconsistent the inequality (B+B) > A, as 

indicated in Fig. 3.5(4). The new value of variable A is accepted and the solution found 

is A = 5, B = 3 and C = 1. When replacing these values in the original variable weights, 

it is possible to check the consistency of the original system with all inequalities and, 

therefore, the solution is valid. The final solution is w1=w2=5, w3=w4=w5=3, w6=1 and 

the function threshold value is equal to 11. 

A++

B + B > A

A > C + B

A + A > B + B + B

A + A > C + B + B

2 +2 > 3

3 > 1 + 2

3 + 3 > 2 + 2 + 2

3 + 3 > 1 + 2 + 2

2 +2 > 4

4 > 1 + 2

4 + 4 > 2 + 2 + 2

4 + 4 > 1 + 2 + 2

3 + 3 > 4

4 > 1 + 3

4 + 4 > 3 + 3 + 3

4 + 4 > 1 +3 + 3

3 + 3 > 5

5 > 1 + 3

5 + 5 > 3 + 3 + 3

5 + 5 > 1 +3 + 3

B++ A++

A=3

B=2

C=1

(1) (2) (3) (4)

 

Fig. 3.5. Variable weight assignment for the second case study in equation (6). 
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3.4 Experimental Results 

Three sets of experiments were carried out in order to validate and compare our 

results to the ones from existing related algorithms available in the literature. In the first 

experiment, the efficiency of the proposed method is evaluated in terms of the number 

of TLF identified. The execution time of the method is evaluated in the second 

experiment, calculating the average runtime per identified function. In the third 

experiment, the functions (k-cuts) identified in the synthesis of opencores, used as 

benchmarking, are analyzed for both the effectiveness and the runtime of TLF 

identification. The platform used was Intel Core i5 processor with 2GB main memory. 

3.4.1 Identification effectiveness 

The main goal of threshold logic function identification methods is to maximize the 

number of TLF identified, representing their effectiveness. The enumeration of all TLF 

with up to eight variables has been already calculated by Muroga, in [1970], being used 

as reference in this work.  

In [2008], Gowda et al. presented the first method to identify TLF without using 

linear programming, afterwards improving it in [2011]. The approach presented by 

Palaniswamy et al., in [2012], provides better results. Table 3.17 shows the 

experimental results. 

Table 3.17. Number of TLF identified by each method. 

Number of 

variables 

Muroga 

[1970] 

Gowda 

[2008] 

Palaniswamy 

[2012] 

Proposed 

method 

TLF TLF % TLF % TLF % 

1 2 2 100 2 100 2 100 
2 8 8 100 8 100 8 100 
3 72 72 100 72 100 72 100 
4 1,536 1,248 81.3 1,536 100 1,536 100 
5 86,080 36,800 42.8 75,200 87.4 86,080 100 
6 14,487,040 1,447,040 10.0 9,424,000 65.1 14,487,0

40 

100 
 

For functions with up to three variables, all mentioned methods identify 100% of 

existing TLF. Moreover, Gowda’s method identifies 81.3% and 42.8% of four and five 

variables, respectively. For functions with five and six variables, Palaniswamy’s method 

identified 87.4% and 65.1% of TLF, respectively, whereas our method identified 

correctly all existing ones in both sets. To the best of our knowledge, that is the first 

non-ILP method able to identify correctly all TLF with up to six inputs.  

As for more than six variables the set of functions becomes impractical to be 

evaluated, we used the NP representative class of functions. The results are shown in 

Table XVIII. Notice that for all the universe of TLF with seven variables our approach 

identifies almost 80% of them, whereas the other methods identify less than 35%. 
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Table 3.18: Number of TLF identified for each method considering NP 

representative class of functions. 

Number 

of variables 

Muroga  

[1970] 

Gowda  

[2008] 

Palaniswamy  

[2012] 
Proposed method 

TLF TLF % TLF % TLF % 

1 1 1 100 1 100 1 100 
2 2 2 100 2 100 2 100 
3 5 5 100 5 100 5 100 
4 17 15 88.2 17 100 17 100 
5 92 52 56.5 84 91.3 92 100 
6 994 181 18.2 728 73.2 994 100 
7 28,262 573 2.0 9,221 32.6 22,477 79.5 

 

3.5 Runtime efficiency 

In the second experiment, the execution time was evaluated by calculating the 

average runtime spent to identify each TLF. The results are shown in Table XIX. These 

values demonstrate that the proposed method is comparable to the Palaniswamy’s 

method [2012]. For all NP functions up to seven variables, the average execution time 

to identify each function was less than one millisecond.  

The time complexity of the method is dominated by the inequality simplification 

performed in step 3.4 The time complexity of such a computation is O(n·log(n)·m·m’), 

being n the number of variables, m the number of cubes in the ISOP of function f  and 

m’ is the number of cubes in the ISOP of the negated function f ’. The scalability of our 

method has been verified through a random set of five thousand threshold logic 

functions from eight to eleven variables, also shown in Table 3.19. 

 

Table 3.19. Average runtime per TLF identification for each number of variables. 

Number of variables 1 2 3 4 5 6 7 8 9 10 11 

Runtime (milliseconds) 0.3 0.2 0.3 0.4 0.5 0.4 0.6 0.7 0.7 0.8 0.9 

 

When the number of variables increases, solving the inequalities system by linear 

programming becomes quite expensive. Fig. 3.6 illustrates the scalability of our 

heuristic method in comparison to the exponentially behavior of ILP approaches. The 

results were obtained taking into account the set of functions ‘44-6.genlib’, which 

comprises 3,503 unate functions with up to sixteen variables [Stentovich et. al. 1992]. 

Notice that the average runtime per function is presented for subsets of different number 

of variables and in a logarithm scale in Fig. 3.6. 

The ILP method execution time has a significant increase from eight variables, and 

reaches tens of seconds for sixteen variables. On the other hand, the proposed approach 

spends only few milliseconds for this number of variables. The difference is about four 

orders of magnitude. This benchmark is composed by functions which are the basis of 

standard cells libraries and, therefore, are widely used by technology mapping engines 

in the logic synthesis of digital integrated circuits. Our method identifies correctly all 

TLF in this set, emphasizing again the algorithm effectiveness. 
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Fig. 3.6. Average runtime per function, for number of variables, considering the set 

of unate Boolean functions ‘44-6.genlib’ [Stentovich et. al. 1992]. 

3.5.1 Opencore circuits 

In the last experiment, the cut enumeration was performed using the ABC tool 

[Berkeley 2014] over six opencore circuits [Pistorius et al. 2007], generating a set of 

3.66 million of Boolean functions with up to 11 variables. A profile summarizing the 

number of TLF found by both the proposed method and ILP-based method is presented 

in Table XX. 

Table 3.20. Analysis of k-cuts (n-variable functions) obtained from the synthesis of 

opencores circuits. 

k Cuts 
Unate 

(unate/total) 

TLF - ILP 

(TLF/unate) 

TLF - proposed 

(proposed/ILP) 

Runtime (ms) 

(ILP) 

Runtime (ms) 

(proposed) 

2 90 72 (80%) 72 (100%) 7 (100%) 0.46 0.08 (18%) 
3 1,613 637 (39%) 637 (100%) 637 (100%) 0.44 0.09 (21%) 
4 28,169 9,818 (35%) 8,227 (84%) 8,227 (100%) 0.47 0.10 (20%) 

5 180,166 82,891 (46%) 53,216 (64%) 53,216 (100%) 0.56 0.11 (19%) 
6 446,580 208,278 (47%) 99,976 (48%) 99,976 (100%) 0.75 0.12 (16%) 
7 624,192 252,042 (40%) 101,039 (40%) 101,023 (99%) 1.19 0.17 (14%) 
8 654,727 233,872 (36%) 86,708 (37%) 86,671 (99%) 2.03 0.25 (12%) 

9 605,959 190,054 (31%) 68,872 (36%) 68,619 (99%) 4.18 0.48 (12%) 
10 568,520 158,133 (28%) 57,176 (36%) 56,852 (99%) 9.76 1.60 (16%) 
11 550,753 138,132 (25%) 51,192 (37%) 50,875 (99%) 26.46 4.08 (15%) 

 

In the third column of Table 3.20is shown the quantity (and percentage) of unate 

functions among the k-cuts (i.e., n-variable functions) obtained from the synthesis of the 

opencores. Remember that only unate functions are candidate to be TLF. An amount of 

TLF in the unate functions set was identified through the ILP-based method, 

representing the total number of TLFs possible, as shown in the fourth column in Table 

3.20. In the fifth column in Table 3.20 is given the number of TLF identified by our 

method, demonstrating its effectiveness. Moreover, the execution time was around one 

fifth when compared to ILP method. 

 

 

 

 

0,01

0,10

1,00

10,00

100,00

1.000,00

10.000,00

100.000,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16A
ve

ra
ge

 R
u

n
ti

m
e

 p
e

r 
Fu

n
ct

io
n

  
(m

ili
se

co
n

d
s)

 

Number of Variables 

ILP Our Approach



48 

 

 

 

4 THRESHOLD LOGIC BASED CIRCUIT SYNTHESIS 

 

 

Specific computer-aided design (CAD) tools must be available for developing TLG 

based digital integrated circuits (ICs). In this sense, one critical task is to obtain efficient 

logic networks using TLGs to implement a given Boolean function. In (ZHANG et al., 

2005), it is proposed a recursive partition of a logic function that is not TLF, and nodes 

are merged respecting fanin restrictions. Unfortunately, the quality of results is very 

sensitive to the circuit description. On the other hand, the method presented in 

(SUBIRATS; JEREZ; FRANCO, 2008) is based on the truth table description of the 

function. The algorithm computes an ordering of variables using information of on-set 

and off-set, in order to find TLFs, the algorithm uses Shannon decomposition 

(SHANNON, 1948). However, this approach provides as output a two-level TLG 

network, i.e., without fanin restriction, being more suitable for neural networks than for 

IC design. In (GOWDA et al., 2011), a factorized tree is used to generate a network of 

threshold gates. The method breaks recursively the given initial expression trees into 

sub expressions, identifying sub-tree that are TLFs and assigning the input weights. It is 

appropriate for IC synthesis using several TLGs, but represents a very time consuming 

process and presents a strong dependence to the initial expression structure, including 

the ordering of the initial tree. 

In this chapter, an algorithm is proposed to synthesize threshold networks aiming to: 

(1) minimize the threshold network size taking into account other costs besides TLGs 

count, like logic depth and number of interconnections; (2) generate more than one 

solution, considering a design cost order; and (3) eliminate the structural bias 

dependence in order to improve the quality of results. It is based on a constructive 

synthesis which associates simpler sub-solutions with known costs in order to build 

more complex networks, allowing the optimization of different cost functions other than 

just the TLG count (VOLF; JOSWIAK, 1995; KRAVETS; SAKALLAH, 1998; 

MARTINS et al., 2012). The algorithm uses a novel AND/OR association between 

threshold networks to reduce the total number of TLGs in the circuit. 

4.1 Functional Composition Method 

The functional composition (FC) method is based on some general principles, 

proposed in (MARTINS et al., 2012). These principles include the use of bonded-pair 

representation, the use of initial functions set, the association between simple functions 

to create more complex ones, the control of costs achieved by using a partial order that 

enables dynamic programming, and the restriction of allowed functions to reduce 
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execution time and/or memory consumption. These general principles are discussed in 

the following. 

4.1.1 Bonded-Pair Representation 

FC uses bonded-pairs to represent logic functions. The bonded-pair is a data 

structure that contains one functional and one structural representation of the same 

Boolean function. The functional representation is used to avoid the structural bias 

dependence, making FC a Boolean method. Generally, the functional representation 

needs to be a canonical representation like a truth table or a reduced ordered binary 

decision diagram (ROBDD) structure. The structural representation used in bonded-

pairs is related to the final implementation of the target function, controlling costs in 

such final solution. In principle, it is not a canonical implementation, because costs may 

vary. In Figure 4.1, it is illustrated an example of a bonded-pair representation with 

structural part implemented as an expression and the functional part as a truth table 

represented as an integer, considering the most significant bit the leftmost. 

 

Figure 4.1: Example of initial bonded-pairs. 

 

4.1.2 Initial Functions 

The FC method computes new functions by associating known functions. As a 

consequence, a set of initial functions is necessary before starting the algorithm. The set 

of initial functions needs to have two characteristics: (1) the bonded-pairs for the initial 

functions are the initial input of any algorithm based on FC; (2) the initial functions 

must have known costs (preferable minimum costs) for each function, allowing the 

computation of the cost for derived functions. For instance, in Fig. 3.5, it is illustrated a 

possible set of initial functions with two variables, using the bonded-pair representation 

shown in Figure 4.2.  

 

 

Figure 4.2: Example of initial bonded-pairs. 
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4.1.3 Bonded-Pair Association 

When a logic operation (e.g. logic OR) is applied to bonded-pairs, the operation is 

applied independently to the functional and the structural parts. By applying the same 

operation in functional and structural representations, the correspondence between the 

representations is still valid after such operation. The conversion of functional 

representation into a structural representation, and vice-versa, may be difficult and 

inefficient. The main advantage of the bonded-pair association is the operations 

occurring in the functional and structural domain in parallel, avoiding conversions. In 

order to maintain the control over the structural representation, avoiding inefficient 

structures and a lack of control of converting one type into another, it is used the 

bonded-pair representation. Figure 4.3 presents the association of bonded-pairs. The 

bonded-pair <F3,S3> is obtained from bonded-pairs <F1,S1> and <F2,S2>. The 

computation of the functional part (F3=F1+F2) is independent of the computation of the 

structural part (S3=S1+S2).  

 

 

Figure 4.3: Bonded-pair association example. 

 

4.1.4 Partial Order and Dynamic Programming 

The key concept of dynamic programming is solving a problem in which its optimal 

solution is obtained by combining optimal sub-solutions. This concept can be applied to 

problems that have optimal sub-structure. It starts by solving sub problems and then 

combining the sub-problem solutions to obtain a complete solution. In functional 

composition, dynamic programming is used associated to the concept of partial 

ordering. The partial ordering classifies elements according to some cost. This is done 

to ensure that implementations (the structural elements in the bonded pairs) with 

minimum costs are used for the sub-problems. Different costs can be used depending on 

the target(s) to be minimized. Using the concept of partial order, intermediate solutions 

of sub problems are classified into buckets that sort them in an increasing order of costs 

of the structural element of the bonded pair representation. This concept is illustrated in 

Figure 4.4.  
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Figure 4.4: Combining the elements of a bucket, new element are generated and 

stored in a new bucket. 

4.1.5 Allowed Functions 

The large number of subfunctions, created by exhaustive combination, can 

jeopardize the FC approach. However, many optimizations can be done to make FC 

approach feasible and more efficient. One of these optimizations is the use of the 

allowed functions. For performance optimization, a hash table of allowed functions can 

be pre-computed before starting the algorithm. Functions that are not present in the 

allowed functions table are discarded during the processing. The use of the allowed 

functions hash table helps to control the execution time and memory use of the 

algorithms. In some cases FC may achieves a better result by having more allowed 

functions than through a reduced set of these ones. For other cases, solutions can be 

guaranteed optimal even with a very limited set of allowed functions. For instance, this 

is the case of read-once factoring (MARTINS et al., 2012). 

Several effort levels can be implemented for the trade-off between memory 

use/execution time and design quality. These effort levels can vary from a limited set of 

functions to an exhaustive effort including all possible functions. An example of 

allowed functions is shown in Figure 4.5, based on the example shown in Fig. 4.4. A 

heuristic algorithm discarded the function a+b, so reducing the amount of functions 

inserted in the bucket.  

 

Figure 4.5: Some elements of Fig. 4.4 can be removed to reduce the number of 

elements in a bucket, improving memory use and execution time. 

4.1.6 General Flow 

The general flow for algorithms following the FC principles is shown in Figure 4.6. 

The first step consists in parsing the target function. Then, the initial bonded-pairs are 

generated and compared to the target function. If the target function is not found, the 

allowed functions are computed and inserted into a separated set. The initial bonded-

pairs are inserted into the buckets. Such bonded-pairs are then associated to compose 

new elements that are inserted into the next bucket, according to the corresponding cost, 

but only if they are allowed functions. These new bonded-pairs are used into the 

sequence of the associations. The process continues until the target function is found.  
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Figure 4.6: General flow of functional composition method. 

4.2 Description of Proposed Method  

The description of our synthesis method has been roughly divided into four main 

parts. First of all, the adopted data structure is shown. Next, it is demonstrated a general 

method to perform AND/OR association using TLGs without increasing the number of 

gates. A method to obtain optimal fanout-free threshold networks of Boolean functions 

having up to 4 variables is discussed. Finally, these functions are used to compose 

heuristically functions with up to 6 variables. 

4.2.1 Threshold logic bonded-pair  

Some works in logic synthesis exploit a bottom-up approach to synthesize circuits, 

as discussed in (VOLF; JOSWIAK, 1995) and in (KRAVETS; SAKALLAH, 1998). In 

this work, we use the FC constructive approach (MARTINS et al., 2012). This approach 

allows great flexibility to manipulate threshold networks due to the use of bonded-pair.  

 

 

 

f =a !b + !a b  f = T[a(1),b(-1),T[a(1),b(-1);1](2);1]  

Figure 4.7: Bonded-pair representation for threshold networks. 

The bonded-pair representation comprises the tuple {function, threshold network}. 

The function can be represented as an integer array or the root node of a binary decision 

diagram (BDD), whereas the threshold network can be represented by a subject graph or 

a particular expression that represents a threshold logic tree. Figure 4.7 shows an 

example of bonded-pair representation using an expression related to the corresponding 

logic tree. 

a b f

0 0 0

0 1 1

1 0 1

1 1 0
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4.2.2 Threshold bonded-pair association 

The bonded-pair association may guarantee the equivalence between both functional 

and structural representations. A trivial and naïve way to associate two threshold gate 

structures is to create a new TLG with 2 inputs, having the input weights equal to ‘1’ 

and the gate threshold value equal to 2 for AND operation and equal to 1 for OR 

operation. Figure 4.8illustrates such a naïve approach. However, the main drawback of 

this approach is the instantiation of a TLG to each AND/OR association, becoming too 

expensive and even unfeasible the implementation of several complex Boolean 

functions.  

  

(a) (b) 

Figure 4.8: A naïve approach for associate TLGs 

An alternative solution to reduce the overhead introduced by the naïve approach is 

to store the last operation used to synthesize the functions. Consider that AND and OR 

threshold gates have all n-input weights equal to 1, and the threshold value equal to n 

and to 1, respectively. It is easy to take advantage of these characteristics using the top 

operation of each TLG to avoid the overhead of generating an extra TLG for each 

operation, as depicted in Figure 4.9. 

 

  

(a) (b) 

Figure 4.9: An improved way approach for associating TLG 

However, this approach does not eliminate completely such overhead in the 

generated threshold network. When the top operation is different from the current 

operation, the naïve approach is performed in order to compose a new threshold 

network. An optimized method to associate bonded-pairs, avoiding such an extra TLG 

in the resulting implementation, is required to reduce the gate count. In (ZHANG et al., 

2005), a simple and efficient OR association was proposed.  These approaches are 

illustrated in Figure 4.10. 
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(a) (b) 

Figure 4.10: Proposed way for associating TLGs. 

 

The following theorem is related to perform AND association using a general n-

input TLG. 

Theorem: If a Boolean function f(x1, x2, ... , xn) is a threshold logic function, then 

h(x1, x2, ... , xn+1) = f(x1, x2, ... ,xn) ^ xn+1, being ^ the AND operation, is also a threshold 

function, where the threshold value of h (Th) is given by Th = ∑(w1,w2, ... ,wn)+ 1 and 

the input weight wn+1 of input xn+1  is wn+1 = Th – Tf., where Tf is the threshold value of f. 

Proof: Without loss of generality, assume that f has only positive unate variables. 

There is an input weight-threshold vector [w1,w2, ... ,wn;; Tf] for f , since f TLF. 

Considering h = f(x1, x2, ... ,xn) ^ xn+1, h=0 when xn+1 is assigned to 0. Therefore, the 

threshold value of h (Th) must be greater than ∑(w1,w2,… ,wn). If xn+1 is equal to 1, then 

the function h is equal to f. Therefore, wn+1 is the difference between Th and Tf.. 

To illustrate the theorem, let f1(x1,x2,x3) = x1x2 + x1x3 that is a TLF represented by 

[2,1,1;3]. Then, h1(x1, x2, x3, x4) = (x1x2 + x1x3) ^ x4 is also TLF represented by 

[2,1,1,2;5], since Th = 1+∑(w1,w2,w3) = 5 and w4 = Th – Tf = 2. 

 

4.2.2.1Example of proposed threshold bonded-pair association 

In order to demonstrate how the proposed theorem for threshold bonded-pair 

association works, an example is presented. Given two functions, being  f1(a,b) = a+b and 

being f2(c,d,e)= c+de, the equivalent TLG which implement each function is 

[T1[a(1),b(1)];1] and [T2[c(2),d(1),e(1)];2], respectively. These gates are shown in 

Figure 4.11.  

 

Figure 4.11: TLGs representing the functions f1 and f2. 

The goal of this association is perform an AND operation between f1 and f2. The 

naïve way would add one TLG in order to obtain the output function, as is shown in 

Figure 4.12. 
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Figure 4.12: The naïve way for associating the functions f1 and f2. 

By applying the proposed theorem, it is possible to save a TLG.  Instead of to add a 

TLG to perform the AND operation, the TLG T1, which implements the function f1, is 

modified.  This TLG receives one more input, and the T2 output is connected to this 

input.  This input weight is equal to the sum of all the order input weights of T1. In this 

case, the value is 2. The new  TLG threshold value is equal the sum between the old 

threshold value (1) and the new input weight (2). Then, the new TLG threshold value is 

3. The resulting TLG network is shown in Figure 4.13. 

 

Figure 4.13: The proposed method for associating the functions f1 and f2. 

 

4.2.3 Optimal 4-input threshold network generation 

In order to speed-up the synthesis process of threshold networks, an approach using 

a lookup table (LUT) containing TLGs represents an effective solution. Optimal TLG 

implementations containing all functions with up to 4 variables can be easily generated 

through a straightforward process. This approach is interesting for a mapping point-of-

view, since it is necessary a single execution to generate a full library, and the results 

are stored a priori for posterior reuse, so avoiding the matching task.  

The set used to store bonded-pairs is called bucket. The direct and negated variables 

are stored in bucket 0, since they do not have gate implementation costs. The next task 

is generating all functions that can be implemented as a single TLG. All unate functions 
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with up to n variables, being n equal or less then 4, can be provided by the identification 

algorithm in order to determine which function is TLF (NEUTZLING et al., 2013).  

Afterwards, the combinations are started, stopping when all functions with up to n 

inputs have a threshold network implementation. As the algorithm is a bottom-up 

approach, which exploits dynamic programming and initializes with all minimal cost 

functions, all implementations are guaranteed to have minimal design costs (MARTINS 

et al., 2012). 

4.2.4 Threshold network synthesis with up to 6 inputs 

The universe of 4-input functions is very limited in comparison to the one of 6-input 

functions, for example. Therefore, it is important the availability of an algorithm that 

synthesizes, even heuristically, functions with 5 and 6 inputs. In this sense, a heuristic 

threshold factoring algorithm is proposed. This algorithm is based on a Boolean 

factoring algorithm presented in (MARTINS et al., 2012). The first step for the 

synthesis of threshold network with up to 6 inputs is to check if the target function is 

TLF. If this condition is attained, the algorithm returns a TLG configuration provided 

by the identification algorithm (NEUTZLING et al., 2013).  

If the function presents 4 inputs or less, the information from the LUT comprising 

optimal 4-input threshold network can be accessed. Moreover, the algorithm starts by 

decomposing the target function into cofactors and cube cofactors, and these functions 

are stored in a set of derived functions. The next step is to obtain the implementation of 

each function in this set, calling recursively the algorithm. After all functions in the set 

have an implementation in threshold network, the second step is to combine these 

functions using AND/OR operations in order to generate new functions. This step can 

be simplified using the partial order concept and the rules presented in (MARTINS et 

al., 2012), so reducing the total number of combinations needed. These combinations 

are able to generate multiple implementations of the target function, and a cost function 

using the threshold parameters (gate count, logic depth and number of interconnections) 

is used to select the best implementation. Figure 4.14 illustrates the algorithm flow. 

 

Figure 4.14: Algorithm flow of the proposed method. 
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4.3 Experimental results 

The experimental results evaluate the efficiency of the threshold network synthesis. 

The platform used in the experiments was an Intel Core i5 processor with 2 GB main 

memory. The optimal 4-input threshold network LUT and the heuristic factoring have 

the following cost function, in this order of priority: (1) threshold gate count, (2) logic 

depth, and (3) number of interconnections. 

MCNC benchmark circuits (YANG, 1991) were decomposed and mapped in order 

to compare our results to the ones presented in (ZHANG et al., 2005) and in (GOWDA 

et al., 2011). Figure 4.15 shows the design flow applied to synthesize the circuits. For a 

fair comparison, SIS tool was used to decompose the circuits (SENTOVICH; ET AL., 

1992). Since Zhang’s method and Gowda’s method do not mention which SIS scripts 

they have applied to decompose the circuits, the scripts from (SUBIRATS; JEREZ; 

FRANCO, 2008) were chosen and adapted to generate networks with up to 6 inputs. We 

synthesized all circuits listed in (ZHANG et al., 2005), and we were able to reduce the 

threshold gate count in all MCNC benchmarks evaluated. However, for sake of 

simplicity, we present only the 20 more relevant circuits, which were implemented 

using more than 70 threshold gates. The decomposition results obtained using ABC tool 

were also omitted, although gains have been verified (BERKELEY, 2013). Circuits 

synthesized using ABC generated an increasing around 26.4% in the gate count, with a 

significant reduction in the logic depth of circa 50%. 

Circuit 

Specification 

(VHDL, 

blif,Verilog)

Logic synthesis tools 
(ABC, SIS, others)

Synthesize threshold 
networks for each node

Boolean Logic 
Network

Threshold Logic 
Circuit

 

Figure 4.15: Synthesis flow of threshold logic circuits. 

Tables 4.1 and Table 4.2 show the results of mapping threshold networks in MCNC 

benchmarks and presents the gate count reduction in the evaluated circuits, 

demonstrating the efficiency of the proposed method. The average gate count reduction 

is of circa 32%, reaching up to 54%. Nevertheless, many circuits achieved some 

improvement in the three characteristics simultaneously. We were also able to reduce or 

maintain the logic depth in the circuits presented in Table I, excepting for the 

benchmarks pair and de. In average, the logic depth decreased 19.3%. An increasing in 

the number of interconnection was expected, since the method try to use a maximum 

fanin always when it was possible. In general, this cost has also been improved due to 

the multi-goal synthesis, prioritizing the threshold gate count, logic depth and number 

of interconnections, in this order. 
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Table 4.1: MCNC benchmarks with more than 25 inputs, compared to Zhang(2005). 

Benchmark Inputs Outputs 

 

G L I 

 

G% L% I% 

i10 257 224 

 

840 31 3072 

 

53.77 11.43 47.87 

des 256 245 

 
1556 19 5210 

 
18.96 -18.75 -0.58 

i2 201 1 

 

62 6 353 

 

68.69 14.29 49.14 

i7 199 67 

 

197 3 925 

 

35.20 40.00 -13.78 

i4 192 6 

 

70 9 256 

 

5.41 -80.00 23.81 

pair 173 137 

 

563 17 2141 

 

37.93 -41.67 27.82 

i6 138 67 

 
141 3 656 

 
48.91 40.00 0.30 

x3 135 99 

 

280 7 1125 

 

36.51 0.00 25.69 

apex6 135 99 

 

279 10 1098 

 

29.55 16.67 6.07 

i8 133 81 

 

427 10 1330 

 

25.09 0.00 25.70 

i5 133 66 

 

66 5 324 

 

0.00 16.67 -24.62 

i3 132 6 

 
86 5 212 

 
45.57 16.67 54.31 

x4 94 71 

 

152 5 522 

 

19.58 37.50 7.12 

i9 88 63 

 
266 8 951 

 
3.27 0.00 -16.40 

example2 85 66 

 

151 6 538 

 

17.03 25.00 -10.02 

dalu 75 16 

 

371 11 1485 

 

54.20 52.17 42.42 

x1 51 35 

 

107 5 427 

 

47.29 28.57 41.59 

apex7 49 37 

 

78 7 322 

 

33.90 22.22 11.54 

cht 47 36 

 
73 2 237 

 
10.98 60.00 -17.33 

unreg 36 16 

 

48 2 176 

 

4.00 60.00 -31.34 

count 35 16 

 

55 11 206 

 

30.38 8.33 14.52 

term1 34 10 

 

60 7 245 

 

73.45 30.00 64.13 

my adder 33 17 

 

71 10 247 

 

26.04 44.44 18.75 

comp 32 3 

 
35 8 125 

 
57.83 0.00 59.81 

c8 28 18 

 

58 5 196 

 

31.76 28.57 14.04 

frg1 28 3 

 
36 8 154 

 
38.98 11.11 33.91 

pcler8 27 17 

 

36 4 128 

 

23.40 42.86 10.49 

lal 26 19 

 

32 4 142 

 

40.74 42.86 15.48 

TOTAL AVERAGE REDUCTION: 

 

32.80 18.18 17.16 

G=gates, L=logic depth, I= #of interconnections, G%, L%, I% = proportional reduction 
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Table 4.2: MCNC benchmarks with less than 26 inputs, compared to Zhang(2005). 

Benchmark Inputs Outputs 

 

G L I 

 

G% L% I% 

i1 25 16  14 4 49  39.13 20.00 22.22 

ttt2 24 21  62 6 256  38.00 0.00 21.71 

cordic 23 2  24 6 78  31.02 14.29 49.68 

cc 21 20  23 3 71  34.29 50.00 21.98 

cm150a 21 1  21 5 72   0.00 -25.00 6.49 

pcle 19 9  27 4 104  22.86 33.33 4.59 

sct 19 15  25 11 93  34.21 -120.00 19.13 

tcon 17 16  16 2 40  50.00 33.33 28.57 

parity 16 1  30 8 75  33.33 11.11 16.67 

pm1 16 13  16 4 58  34.43 0.00 23.68 

cm163a 16 5  15 5 56  40.00 16.67 33.33 

cmb 16 4  13 4 62  51.85 33.33 12.68 

alu4 14 8  275 22 1112  32.93 4.35 20.97 

cu 14 11  17 3 66  29.17 25.00 13.16 

cm162a 14 5  15 5 58  42.31 37.50 34.09 

cm151a 12 2  11 5 35  8.33 0.00 22.22 

cm152a 11 1  10 4 33  9.09 0.00 21.43 

cm85a 11 3  8 3 44  42.86 40.00 38.89 

alu2 10 6  134 18 307  31.98 28.00 29.09 

x2 10 7  13 4 52  13.33 0.00 22.39 

9symml 9 1  23 7 111  79.09 22.22 73.06 

f51m 8 8  24 6 118  70.73 25.00 55.64 

z4ml 7 4  12 4 51  36.84 20.00 20.31 

decod 5 16  16 1 80  33.33 66.67 -53.85 

cm82a 5 3  8 3 37  33.33 25.00 2.63 

majority 5 1  1 1 5  0.00 50.00 0.00 

cm42a 4 10  10 1 40  23.08 66.67 -17.65 

b1 3 4  5 2 13  37.50 33.33 18.75 

TOTAL AVERAGE REDUCTION: 

 

33.89 18.24 20.07 

G=gates, L=logic depth, I= #of interconnections, G%, L%, I% = proportional reduction 

The results presented in (GOWDA et al., 2011) show an improvement in threshold 

gate count compared to the results provided in (ZHANG et al., 2005). However, in 

(GOWDA et al., 2011), the authors only compare the gate count and present the results 

for MCNC circuits grouped by number of inputs. Fig. 6 shows the gate reduction of 

each approach, compared to the original netlist (ZHANG et al., 2005), which uses only 

the traditional OR and AND description. 

The graphic shown in Figure 4.16 demonstrates that the reduction in gate count is 

larger than the reduction presented in Zhang’s work and Gowda’s work, which has been 

considered in this work as the state-of-the-art threshold network synthesis approach. 

The proposed method has provided an average reduction of 51.2% in comparison to the 

original netlist, against a reduction of 23.3% and 34.8% obtained in (ZHANG et al., 

2005) and in (GOWDA et al., 2011), respectively. 
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Figure 4.16: Threshold logic circuit synthesis flow. 

4.4 Future work 

In order to establish a fair comparison to previous methods (ZHANG et al., 2005; 

SUBIRATS; JEREZ; FRANCO, 2008; GOWDA et al., 2011), circuit decomposition 

was performed using SIS tool (SENTOVICH et al., 1992). However, evaluating the 

impact of different decompositions in the final TLG circuit implementation represents 

an open research topic. A decomposition method focused in threshold logic may 

provide better results than generic approaches.  

In order to motivate and provide information for this future work, a profile 

containing of decomposed Boolean networks from MCNC benchmarks is shown in 

Figure 4.17. The nodes were grouped into three different sets: (1) single threshold 

nodes, containing nodes which correspond to threshold logic functions, i.e., nodes 

directly identified in a single TLG; (2) optimal threshold network which corresponds to 

the nodes that was already synthesized in the optimal 4-input threshold network LUT; 

and (3) heuristic threshold network, which corresponds to the remaining nodes, (i.e., 

non-TLF and with more than 4 inputs) synthesized using the factoring heuristic method. 

A future work focused in a threshold decomposition method should investigate effective 

ways to maximize the number of single threshold nodes.  

 
Figure 4.17: Profile of MCNC Boolean network nodes  
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The same experiment was performed, using ABC tool (BERKELEY, 2013), which 

is considered the state-of-the-art logic synthesis tool. The resulting profile is similar to 

the generated using SIS tool. It is illustrated in Figure 4.18. 

 

Figure 4.18: Profile of MCNC Boolean network nodes  

However, three observations about decomposition using ABC tool are important:  

-The number of TLG (gate count) using SIS tool, is less in 46 of the 56 synthesized 

benchmark, i.e., perform decomposition using ABC tool reduces the gate count only in 

10 benchmark. These cases are highlighted in Table 4.3. 

-The number of nodes in the Boolean network decomposed by ABC tool is smaller 

than the number of nodes decomposed by SIS tool in only 9 benchmarks. In such cases, 

ABC tool uses less TLGs than SIS. In one case (benchmark example2), ABC reduces 

gate count despite an increase in the number of nodes. 

- The average runtime to decompose a circuit using ABC tool is greatly reduced 

compared to SIS tool. The average runtime using ABC tool is about two orders of 

magnitude smaller. 
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Table 4.3: MCNC circuit decompositions SIS and ABC tools. 

 
Boolean network nodes TLG gate count 

benchmark SIS ABC SIS ABC 

9symml 4 41 23 88 

alu2 80 109 134 169 

alu4 158 194 275 301 

apex6 142 157 279 305 
apex7 48 55 78 82 

b1 4 4 5 5 

c8 32 28 58 56 

cc 21 21 23 24 

cht 36 36 73 73 

cm150a 6 6 21 21 

cm151a 4 4 11 12 
cm152a 3 3 10 10 

cm162a 10 10 15 15 

cm163a 7 7 15 15 

cm42a 10 10 10 10 

cm82a 3 3 8 8 

cm85a 6 6 8 10 

cmb 10 11 13 16 
comp 19 22 35 38 

cordic 17 9 24 19 

count 23 24 55 56 

cu 12 16 17 18 

dalu 181 235 371 564 

decod 16 16 16 16 

des 741 1035 1556 2089 
example2 88 94 151 146 

f51m 8 21 24 38 

frg1 28 26 36 34 

i1 17 18 14 16 

i10 495 582 840 958 

i2 57 66 62 67 

i3 82 42 86 74 
i4 46 62 70 82 

i5 66 76 66 76 

i6 74 67 141 172 

i7 67 67 197 197 

i8 213 284 427 503 

i9 136 229 266 329 

lal 23 25 32 34 

majority 1 1 1 1 
my_adder 45 25 71 65 

pair 294 338 563 597 

parity 15 5 30 20 

pcle 13 24 27 27 

pcler8 24 13 36 35 

pm1 14 16 16 18 

sct 17 21 25 28 
tcon 16 16 16 16 

term1 31 42 60 73 

ttt2 37 35 62 61 

unreg 16 16 48 48 

x1 89 89 107 105 

x2 12 14 13 16 

x3 149 167 280 284 
x4 84 109 152 153 

z4ml 5 6 12 13 
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5 CONCLUSIONS 

Threshold logic is a promising digital IC design style which allows implementing 

complex Boolean functions in a single gate, so reducing the gate count and, 

consequently, optimizing circuit area, performance and power consumption. This 

observation is more important for emerging technologies, where threshold logic gates 

are the basic logic gates for the technology. CAD tools which explore threshold logic 

features may be developed in order to establish an IC design flow based on TLGs, in 

order to make efficient use of these new technologies. In this sense, this work presented 

two main contributions. 

Firstly, an improved non-ILP algorithm to identify threshold logic functions was 

proposed. The algorithm manipulates inequalities generated from ISOP form of the 

function, to avoid using linear programming. The input weights are assigned using a 

bottom-up approach, based on the Chow’s parameter order, to compute TLG input 

weights. The algorithm identifies more functions than previous heuristic methods. The 

results demonstrate that the method is able to identify all functions with up to six 

variables. The method is suitable to be inserted in the known threshold logic synthesis 

tools without loss of efficiency, since such a frameworks limit to six the number of TLG 

inputs. The runtime per function is scalable, differently from ILP based approaches, 

enabling the application of the algorithm when the number of inputs increases. 

Secondly, a novel algorithm for synthesis of threshold networks has been proposed 

using the functional composition technique. The proposed method is based on a 

functional composition approach, being able to take into account multiple costs such as 

the number of threshold logic gates, logic depth and number of interconnections. 

Experiments over MCNC benchmark circuits show that the threshold gate count, logic 

depth and interconnections decreased 32%, 19% and 15% in average, respectively. 
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