20606

Database Recovery in the Design Environment:
Requirements Analysis and Performance

Evaluation

Zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften
von der Fakultit fiir Informatik
der Universitit Karlsruhe (Technische Hochschule)

genehmigte

Dissertation

yon

SABI

asz3227v2

Cirano Iochpe
Mestre em Ciéncia da Computagio

aus Porto Alegre, Brasilien

Tag der miindlichen Priifung: 12.12.1989

Erster Gutachter: Prof. Dr.-Ing. Peter Lockemann

Zweiter Gutachter: . Prof. Dr.-Ing. Andreas Reuter
v I S

P

CP/PECS



Gedruckt mit Unterstiitzung des Deutschen Akademischen Austauschdienstes (DAAD)



A "Pequena”,
pelo grande apoio, dedicagdo e entusiasmo



Acknowledgements

The present work has been developed as part of a Ph.D. course at the Computer Science
Department of the University of Karlsruhe. It has been supported by the Deutscher
Akademischer Austauschdienst (DAAD), to which I am very grateful.

I would like to especially thank Prof. Dr. P. Lockemann for the chance he gave me to
carry out this work as a member of his group of researchers. He has always encouraged
me and his comments on my work were very helpful. I am also indebted to Prof. Dr. A.
Reuter for the fruitful discussions and helpful advices on the basis of which many good
results were achieved.

I would also like to thank my colleague Giinter von Biiltzingsloewen for the productive
discussions and the support he gave me throughout my stay at the Forschungszentrum
Informatik (FZI) in Karlsruhe. I am also very grateful to Angelika Kotz, Ralf Kramer,
Peter Liedtke, Michael Schryro, Martin Haas, Herbert Schickle, and Guido Moerkotte for
the good ideas they always gave about the work. I am thankful to Nelson M. Mattos,
Taisy Weber, Raul Weber, and Lia G. Golendziner for their motivation and (long
distance) support.

I'am indebted to the students Holger Schmid, Andreas Tenginsky, Holger Diehl, Mathias
Kiister, and Wolfgang Weber who helped to implement the whole simulation system
which constitutes a basic tool for the development of my work. I would also like to thank
the secretaries Helga Gerstner, Eva Mai, Beatrice Kuch, and Marlis Heilmann for their
decisive support to the realization of this work.

I would like to especially thank my wife Eliete for her support and the great patience she
demonstrated during these almost five years in West Germany. Finally, I am deeply
indebted to my parents who showed me the way and always gave me the motivation and
support to follow it.






Abstract

In the past few years, considerable research effort has been spent on data
models, processing models, and system architectures for supporting
advanced applications like CADICAM, software engineering, image
processing, and knowledge management. These so-called non-standard
applications pose new requirements on database systems. Conventional
database systems (i.e. database systems constructed to support business-
related applications) either cope with the new requirements only in an
unsatisfactory way or do not cope with them at all. Examples of such new
requirements are the need of more powerful data models which enable the
definition as well as manipulation of fairly structured data objects and the
requirement of new processing models which better support long-time data
manipulation as well as allow database system users to exchange non-
committed results.

To better support new data and processing models, new database systems
have been proposed and developed which realize object-oriented data models
that in turn support the definition and operation of both complex object
structures and object behavior. In design environments as the ones
represented by CAD applications, these so-called non-standard database
systems are usually distributed over server-workstations computer
configurations. While actual object versions are kept in the so-called public
database on server, designers create new objects as well as new object
versions in their private databases which are maintained by the system at the
workstations. Besides that, many new design database system prototypes
realize a hierarchy of system buffers to accelerate data processing at the
system’s application level. While the storage subsystem implements the
traditional pagelsegment buffer to reduce the number of 1/0-operations
between main memory and disk, data objects are processed by application
programs at the workstation at higher levels of abstraction and the objects are
kept there by so-called object-oriented buffer managers in special main
memory representations.

The present dissertation reports on the investigation of database recovery
requirements and database recovery performance in design environments. The
term design environment is used here to characterize those data processing
environments which support so-called design applications (e.g. CADICAM,
software engineering). The dissertation begins by analyzing the common
architectural characteristics of a set of new design database system
prototypes. After proposing a reference architecture for those systems, we
investigate the properties of a set of well known design processing models
which can be found in the literature. Relying on both the reference
architecture and the characteristics of design processing models, the
dissertation presents a thorough study of recovery requirements in the design
environment. Then, the possibility of adapting existing recovery techniques to
maintain system reliability in design database systems is investigated. Finally,
the dissertation reports on a recovery performance evaluation involving
several existing as well as new recovery mechanisms. The simulation model
used in the performance analysis is described and the simulation results are
presented.






Contents

List of Figures

Chapter I: Introduction
1.1 Database Systems for Business-Related Applications ................

Chapter II:

1.1.1 Some Important Properties of Business-Related

APPHCAtONS ....ovuiiiiiiniiniiniiieienianneiireteranereeneenes

1.1.2 Some Architectural Characteristics of Standard Database

SYSIEINS wevuieiiiiniireenineeeeniiiraerennaerrrieeerri e ananns

1.2 Database Systems for Non-Standard Applications ....................
1.2.1 Some Important Characteristics of Design Applications ......

1.2.2 The Computer System Supporting the Design

Environment ... e
1.2.3 Database Systems for the Design Environment ................

1.3 Main Objectives of the Research Work  ..........cccecevvvvnennnan..
1.4 The Structure of the DiSSertation .............ccceeeeeeeeeernnnenn..
A Reference Architecture for Design Database Systems..................
2.1 Example of a (short) design transaction ................cceveneenenn..
2.2 The POSTGRES Database SYStem  ..........ccceeeevneenrennennenn.
2.3 The Darmstadt Data Base System (DASDBS)..............oeeeenenn.
2.4 The R2D2 Interface of the AIM System ...............ceeunevernnennn
2.5 The PRIMA Database System Prototype  ..........c.ccvuvenennnn.

2.6 A Reference Model for Database Systems with Buffer

Hierarchies .........ccciiiiiiiiiiiiiriniiiiniies ceierrneeeeeiaeannes
2.7 Distribution Aspects of Non-Standard Database Systems............
2.7.1 Abstraction Levels for Cooperation .........cccevveeniennnnns
2.7.2 Supported Transaction Classes ....... .ccceuvererriensenrannnns
2.7.3 Transaction Management Strategies ...............eeueenennes

2.7.4 Controlling the Cooperation Between Server and

WOTKSIAtION ..eveirernirnrrnrrieneenernernerenernernerneseensnenes

..................................................................



Chapter III: Transaction Models for Design Applications  .........cccc.eeeueevnernnennnns 35

3.1 Isolated CHECKOUT/IN Operations ............cccceceueeveeenccurcnnens 36
3.2 Related CHECKOUTY/IN Operations ..........cceceeeuervucennncennacannes 38
3.3 Conversational Desi gn Transactions ...........ccceeveucveniiniinnienanns 39
3.4 Engineering TransaCtionS  ..........ccceeeen cveenvnvienennenenenesennennnns 41
3.5 Group Transactions  .......c.eeveiveiiuniiinaiereieeencerneenneennenennnns 43
3.6 Generalizing the Design Processing Models..........cceeviuninnrinnnnnene. 45
3.6.1 Main Characteristics of the Design Processing Models ............ 45
3.6.2 Generalizing the Processing Models Reviewed..................... 46
3.6.3 Properties of the General Design Processing Models .............. 49
Chapter IV: Database Recovery Requirements in the Design Environment................ 51
4.1 Recovery Situations in the Design Environment
4.1.1 Undesired Events in the Design Environment.......................
4.1.2 A Failure Model for the Design Database System...........c...... 53
4.2 Recovery Protocols for the Design Database System...................... 54
4.2.1 Further Assumptions about the Design Database System.......... 55
4.2.2 The Basic Actions of the Recovery Protocols..........c.cueeeeennens 57
4.2.3 Some Procedures to Simplify the Description of the
Protocols ... e eeeriie e b e aaenas 58
4.2.4 Recovery Protocols Based on Transaction Serializability.......... 60
4.2.5 Recovery Protocols Based on Object-Oriented Two-Phase
LOCKING «ivviiiniiiiiiiiiiiiiiiiiiiieccineiecicneesee s caeaennes 65
Chapter V: Analyzing Exlstmg Database Recovery Techniques in the Design
EnVITONMENE ..euvviiiiiniiiniiiiniiiiiiiieniiriii sttt eeii s e eeaeeeanesenaenss 73
5.1 Existing Recovery Techniques and Their Correctness in
Design Database SYStemMS  ......c.ccueeuueeueinns cenreriereernerierreasnnns 73
5.1.1 Applying Existing Recovery Techniques to GM1 .................. 73
5.1.2 Applying Existing Recovery Techniques to GM2 .................. 74
5.1.3 Applying Existing Recovery Techniques to GM3 .................. 75
5.2 An Empirical Performance Evaluation of Recovery in
Design Database Systems  ......ccoceviuiiuieiris corieneanranencancneanes 75
5.2.1 Some Transaction Management Alternatives for the Design
Environment  ......cooiviiiiiiinininiin 75
5.2.2 Evaluating Conventional Transaction-Oriented Recovery
TechniqUES ....cc.ovevvnienniieniernerenieineeanonenane ceerrenennns 78
5.2.3 Evaluating Nested Transaction-Oriented Recovery
MecChaniSms .......euuiiiiiiiiiiiiiiiiuiiiiiieii e eees 86
5.2.4 Further Recovery Classification for the Design
ENVITONIMENt  ..ivviiuiieniiniiniieiinceniiineientneanecnacaaas 91
5.2.5 Summarizing the Conclusions of the Empirical Recovery
Evaluation  ....ceceuiiiiiiiiiiiiiiiiii e e e e eaaans 93



Chapter VI: Simulating Recovery Techniques in a Design Database System.............. 97

6.1 Establishing the Goals of the Performance Evaluation..................... 97
6.2 A Simulation Model for Recovery Performance Evaluation.............. 101
6.2.1 GM1’s Realization in the Simulation Model........................

6.2.2 The Architecture of the Server’s Simulation Network
6.3 Describing the Simulation Scenarios ................ccoeeeevneeivennnnns
6.4 Main Results of the Recovery Performance Evaluation
6.4.1 Recovery Cost in the Design Environment ..........ccccuueeunn.nn.
6.4.2 The Effects of Different Transaction Classes on the
Simulation Results  ......ccceuieiriiniiet vevrieerennieeiinnnnin, 115
6.4.3 Relative Processing Capacity of the Server Node.................. 116
6.4.4 Recovery Performance on the Basis of Different
Simulation SCENArios ...........cceevevrrues vevererinreeeernnnnnnnnn. 117
6.4.5 Comparing Disk Space Occupancy for the various
Recovery Mechanisms  .......cvcvvinieieueeniicinerninenennennenes 124
6.4.6 Extra Simulation Scenarios with Low CPU Capacity ............. 125
6.4.7 Simulating Higher CPU Capacity at the Server Processmg
NOGE tiviiiiiiiriiiiii e cerrteee e re e r e eaen 128
6.4.8 Recovery Performance in a Design Cooperation
EnVifONmMENnt  .....eevvvuiiiiiiieeeeninnnnseuseeneeeeennnenneeeennnns 132
6.4.9 Summarizing the Main Results of the Simulation Study .......... 134
Chapter VII: CONCIUSIONS ......ecevvrerrerrreuerensreereererrrereessmssnsnesneseessssnsnnneses 137
7.1 Summarizing the DiSSErtation ............ccvveurernnerieinneunennerneennse 137
7.2 Comparison with other WOorks ...........ccecvvevrernivnneeeneeeineeennenn. 141
7.3 Some Open Questions and Plans for Future Work........................ 141
BibHOGIAPRY ...uuvuiiiiiiiiiiiiiiiiiiiiticie ettt teee e e et ee b enaaeeen 143






Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

1.1:
1.2:
1.3:
1.4:
2.1:
2.2:
2.3:
2.4:
2.5:
2.6
2.7:
2.8:
3.1:
3.2
3.3:
3.4:
3.5:
3.6:
3.7
4.1:
4.2:
4.4;
4.5:
4.6:
5.1:
5.2:

List of Figures

A general architecture for standard database systems............................. 5
Design environment’s computer CONfiguration............cceeveeevunervuneennnenn. 8
A layered architecture for non-standard database systems ....................... 9
A possible architecture for kernel design database systems.................... 11
Database state before the execution of T...........cceee... W 17
Database state after the execution of T........ccvveeeeeeirienienenneeeeneennnn... 18
The software architecture of POSTGRES.... .18
The software architecture of DASDBS ...........cccccevvvuneinnnnnnen. .21
The software architecture of R2D2................... .24
R2D2°s database hierarchy......... . .26
PRIMA’s software architeCture.........co..eceeeververiesrerrensereervervenneneas 27
A reference model for DBSs which realize buffer hierarchies................. 30
Isolated CHECKOUTY/IN transaction model (TM1)............cucuuvennnnnn. 36
Related CHECKOUTY/IN transaction model (TM2).....c.oeceveueeeeemevnn.. 38
Conversational transaction model (TM3)

Engineering transaction model (TM4)......... eereraisiittatieistssnrttnierenes 42
Group transaction model (TMS).....cccccievueviriereenreenieerieerenssenseennes 44
Relating the transaction models to the design work hierarchy ................. 45
The transaction properties of the general processing models .................. 50
A fail-stop model for processing nodes ........c...eeeeneereneernnennnrennensin. 54
Extending the commit protocol to cope with savepoints.........cceeeverennen 56
State transition graph for D-Tr in GM3........cccccnvvenrernerrnenrnnnrenenenne 67
A possible extension of the graph shown in Figure 4.3........................ 68
PROFEMO’s transition state diagram ............ccuveeneeenennnininenernnnennnns 69
Possible transaction management strategy for the design environment....... 77
Data structures for the shadow-version recovery example...................... 87

v



Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig,
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

5.3

5.4:

5.5:
5.6:

6.1:
6.2:
6.3:
6.4:
6.5:
6.6:

6.7:

6.8:

6.9:

6.10:

6.11:
6.12:
6.13:
6.14:
6.15:

6.16:

6.17:

6.18:

6.19:

6.20:
6.21:

Transactions and data structures for the log-oriented recovery
EXAMPIE. ittt e

Example of recovery information associated with G-Tr at the server

Classification of recovery mechanisms in the design environment...........

Classification of transaction-oriented recovery schemes proposed in
THERE8B3) e it s s e e v e ea s

GM1's implementation in the simulation model.........cc.c.cueevueeennnann..
The logical layer of the simulation NEtWOrK.......cceeveerreerrnrernneerennennns
Lock compatibility matrix for both SCH2 and SCH1 ......c..cceuueenneanen,
Data structures and transactions for the simulation example...................
The physical layer of the simulation netWork..........ccouceerieenernnenneennns
Possible values of some simulation parameters .........ccceeevuereeiunnnne.
Classification of the basic simulation SCEnarios ...........eveevveeeererneananns

Costs in microseconds for each visit of a transaction to either the
recovery, buffer manager, or mapping node..........ccceverieccrcrcrencnee

Batch transactions” average and maximum times in the server’s ready
QUEUE 1evuuriinttiiinnieinsiettssetuesessenserneneesesesecossenssssnsssannsesnnsnenns

System throughput by different checkpoint-oriented scenarios...............
System throughput by different transaction-abort scenarios..................
System throughput by different crash-oriented scenarios......................
REC2’s crash-recovery performance by different log file sizes..............

Response time in a scenario with high design transaction rate
[C10:T01 2 | USRS

Response time in a scenario with low design transaction rate
(SOTCH) c.uvviiiiiiiiiiiiiiiiecreeeeereeeterarreetieesseereareenensssaserennnsens

Response time in a scenario with short processing times at the
WOTKSEAtON 1ovvvuiiiriiinitiieiitieieeeeeneeeeetnnneeensenseraannnesssnnnnessenns

Response time in a scenario with low update transaction rate
(SOOCH) ...ttt et e se e e e e s ee e e e e e e e s ae e e e e

Effects of chained-1/O in checkpoint-oriented scenarios
(SOT/SOBCH)....uuuuuiiiniiiiiriinieaeeereereeetetiieeeeateeessirasaerarnenenes

Effects of chained-1/O in crash-oriented simulation (S07/SO8CR)...........

Average and maximum disk space consumptions by normal system
OPETALON ..eevuneiinnrerineiinieietnttristettsserensessnneernnseeneseenseennsennnne



Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

6.22:

6.23:

6.24:
6.25:
6.26:
6.27:

6.28:

6.29:
6.30:
6.31:

6.32:

6.33:

Response time in a scenario where only design transactions are
PTOCESSEA..cinniiiiiiiiiiiiiiiiiiiiiriaiaietee et tussnesrineesessasersssnnnsanns

Comparing response times when locality of access increased from
0% 10 30%.ceceiiiiiiiiiiiieniiniieieeiiiireateaeseaeseesenensrsnaeasaeseaeens

Transaction failures in a scenario with high locality of access (30%)........
Comparing response times when object mapping costs decrease ............
System throughput by high CPU capacities at the server node...............

Response time for read batch transactions by different CPU
CAPACKHES . .evvierrisiiieniiiitiituci ettt teeneeerueserteeentasennasansnsannneeses

Response time for update batch transactions by different CPU
CAPACKHES . ovvvvienieniiniuieenereeeeaneeneanerseroenessnssesssssesnersernssnsnsens

CHECKIN response time by different CPU capacities.........evevenenen.
CHECKOUT response time by different CPU capacities.....................

System throughput related to CPU capacity in a design cooperation
SCEMATIO e iiiiiiiiitiiiitieieeeee ettt e teeaaattesaaassnnnasesssnnneserssnnnenes

Response time in a design cooperation environment with low CPU
CAPACKLY .ouuevuiiiniiiniiitiiiteentiesiernierssrrenennessressnasssnsssessnesneresssnnes

Response time in a design cooperation environment with higher
CPU CPACILY ..oevvvviiiiiiiieeieteeeeieiiitiiieeeeeeeeeeressensnneneeeesssssnnnns






Chapter 1

Introduction

1.1 Database Systems for Business-Related Applications

Database system technology has basically emerged to support computer system
applications which require data to be shared among different programs. The concept of
sharing data was first introduced in the mid 1950°s through the common-areas provided
by Fortran to enable communication among different programs. In the past thirty years,
new concepts have been proposed as well as new mechanisms have been designed and
implemented to better support data sharing activities.

The need of shared databases (DBs) has first been felt by the implementors of business-
related applications. This fact can in part explain why database technology evolved
towards the development of database systems (DBSs) which are mainly concerned with
the requirements of these types of applications. Since business-oriented database systems
represent the majority of the existing DBSs, they are usually called conventional or
standard database systems. These adjectives distinguish business-oriented DBSs from
other database systems which have been designed to support other types of applications
(e.g. design applications like CAD/CAM and software engineering). The latter are usually
referred to as being non-standard (or non-conventional) DBSs.

The basic idea underlying database systems is to provide a computer system with the
capacity of both managing large amounts of persistent data in a reliable way and
permitting these data to be shared among various users. During the last thirty years,
researchers at both industry and university have developed concepts and implemented
systems to support this idea. Today’s DBSs rely on three basic abstractions: data
independence, transactions, and location independence [BrMag88]. These
abstractions form the conceptual basis for the implementation and management of large
shared databases.

Data independence represents the capacity of database systems for hiding database
implementation details from the application developers. Data independence ideally
guarantees that changes to the database (e.g. the introduction of new data types or the
deletion of existing access paths) do not affect existing application programs. Similarly,
modifications on existing applications as well as the addition of new applications to the
system should not alter the functionality of the database.

Database systems usually realize the data independence abstraction on the basis of a
stepwise refinement of the database design, that is, on the basis of a stepwise process of
capturing and representing the application’s characteristics in the database. One can
subdivide the database design process into three main steps: conceptual design, logical

1



design, and physical design. Each database design step further refines the description of
the application to the DBS made by means of earlier design steps until the details related to
the physical implementation of the database (e.g. data structures and access paths) can be
derived from the static (e.g. data types) and dynamic (e.g. transactions) properties of the
application being designed. By both requiring that the development of the application
programs rely on early design steps (i.e. those design steps which do not model the
physical implementation of the database) and realizing the physical representation of the
database on the basis of later design steps, the database system hides the details of the
physical implementation of the database from the application. In this way, data
independence is achieved.

The conceptual design is the process of representing the main application properties on the
basis of a conceptual data model (e.g. Entity-Relationship data model). The results of the
conceptual design is a formal representation of the properties of the application. This
representation is related to no particular database system, though. It can therefore be
mapped onto the specific logical model supported by the target machine.

The logical design translates the results of the conceptual design into a logical one based
on a specific logical data model such as the relational, hierarchical, or network data
model. Standard database systems support only one of these logical models. Logical data
models represent a framework for the description of data entities and relationships among
data. Besides of that, these models define sets of high-level data definition and data
manipulation operations on the basis of which the application programs are developed.
Logical data models are not concerned with the physical implementation of the database,
that is, with the definition and management of data structures and access paths for both
storage and manipulation of data.

Finally, the logical design is translated into the physical database design which describes
the implementation details of the database on the target machine. Through the physical
design, the database designer specifies the data structures where the database should be
stored and the access paths through which the data are to be retrieved.

The transaction paradigm assures the isolation of concurrent work on the database as
well as the recoverability of the database state in case of failures. In this way, the
transaction concept constitutes the basis for the support of data sharing and system
reliability in database systems. :

The transaction represents a logical unit of work that includes several properties
[HdRe83]. It is supposed to be always correct. That is, transactions which update the
database always bring it from one consistent state into another consistent state. The
transaction is atomic in that either all its statements are successfully processed or none of
its effects on the database survives. Moreover, the transaction’s work is isolated from
the work of other transactions which execute in parallel to it. That is, every running
transaction can perceive only the results of already committed (i.e. successfully
terminated) transactions. Finally, the results of committed transactions are guaranteed to
survive system failures (i.e. they are persistent).

The transaction property of isolation forms the basis for data sharing in database systems.
Since transactions access only data which have been inserted or updated by committed
transactions, and committed transactions are, by definition, always correct, transactions
access only consistent data even when they execute in parallel to other transactions.

Most standard database systems realize transaction isolation on the basis of the
serializability theory [BeHG87]. The basic idea of this theory is to resolve data access
conflicts among transactions which execute in parallel by producing serializable
schedules. A schedule is serializable if and only if the results produced by the transactions
participating in it are equivalent to the results which can be obtained by some serial
execution of these transactions. Since every transaction is considered to produce a
consistent database state when it runs alone in the system, a serial schedule of transactions

2



always produces a consistent database state. Since each serializable schedule is equivalent
to, at least, one serial schedule, serializable schedules always produce consistent database
states, t00.

The data reliability property of database systems relies on the transaction’s atomicity and
persistency properties. The atomicity property guarantees that none of the transaction’s
temporary results survives in the database in case of transaction or system failures. The
survival of results of committed transactions in case of system failure is enforced by the

persistency property.

The third abstraction on which database systems rely, namely location independence,
permits applications to access data in distributed systems without being concerned with
the location of the data and data repositories being used.

1.1.1 Some Important Properties of Business-Related Applications

In 1969, the CODASYL Database Task Group (DBTG) published the specification of the
first formal database model for business applications [CODA71]. It is a network data
model designed to cope with the processing requirements of business applications. From
the characteristics of this model, one can identify the main requirements posed by this
kind of applications. Network as well as hierarchical data models are mainly designed for
the iterative processing of lists of data. Their basic constructs are entities and relationships
(i.e. 1:N by the hierarchical model and N:M by the network data model). These models

" support a record-at-a-time processing mode. Application programs navigate within entities
from one entity instance to the other. By following relationships among entity instances,
the programs can also access entity instances of oder entities. Entity instances (and some
times relationship instances too) are represented as data records with attributes.

Although the DBTGs data model has been published in the late 1960°s, this group had
already been working on it for ten years. During this time, many new database systems
were developed which supported either a network or a hierarchical data model. At the end
of the same decade, Ted Codd of IBM developed the basis of the relational data model
which was to become a standard for the database systems of the 1980°s [Codd70].

The concept of a relation (i.e. a set of flat data records of the same type) together with set
theory, and predicate calculus form the basis of the relational data model. In this model
both entities and relationships are represented as relations. The relational model supports
N:M relationships and presents a set-at-a-time processing mode. Nevertheless, most
applications based on the relational model continue to process data in a record-at-a-time
basis, because their application pregrams are written in some procedural, general-purpose
programming language (e.g. COBOL). In this case, the relational queries and update
statements are embedded in these programs. This induces what Frangois Bancilhon calls
the impedance mismatch [Banc88]. Although the relational statements produce relations
(i.e. sets of records) as a result, the application programs must process these relations in a
tuple-at-a-time basis.

The data processing activity of business-related applications is characterized by short-
duration transactions in batch systems and short-duration dialogue steps in on-line
systems. Typically, transactions (or dialogue steps) execute in some seconds. While batch
transactions may have to process large volumes of data, dialogue steps usually manipulate
only a few data records. Anyhow, only a few short-duration operations are applied to
each data record or tuple processed. Transactions as well as dialogue steps show high
locality of data access, that is, most of them access practically the same parts of the
database.

The number of concurrent transactions in business-oriented database systems can vary

depending on the application being supported [Meye86). While a throughput of less than
one transaction per second can be tolerated by many small dialog systems (i.e. DBSs

3



connected to five or ten terminals), there exist some applications (e.g. flight reservation
systems) which require a throughput of more than two hundred transactions per second.

1.1.2 Some Architectural Characteristics of Standard Database Systems

Standard database systems are realized as either centralized or distributed computer
systems. Centralized database systems typically support either multi-user or single-user
processing modes. Distributed systems mainly realize multiprocessing environments.

In centralized systems, the whole database resides in one single processing node. In
distributed systems, the database can be distributed over various nodes, though.
Moreover, the whole database or parts of it can be replicated in distributed database
systems.

In the case of a centralized system, transactions execute at the only processing node. In
distributed systems, a transaction at one node can spawn (sub)transactions at other nodes
to access data residing there. In all cases, though, (sub)transactions executing at one
processing node directly access only the data residing on that node. Since transactions
may have to process relatively large volumes of data for short periods of time, it is more
efficient to start sub-transactions at the nodes where the desired data reside than transfer
them to the processing node where the original transaction has been started.

The architecture of database systems can be viewed as a hierarchy of hardware and
software layers [LoSc88]. Each layer of the architecture accesses data in some pre-defined
representation form at the next-lower layer’s interface (the lowest layer directly accesses
data from the stable storage device), realizes a higher data abstraction, and implements
operations on it which will be called by the next-higher system layer. In this way, the
system realizes relatively complex data models (i.e. specific data abstractions together
with the operations on them) step-by-step on the basis of very simple data representation
forms (e.g. bits on disk).

DBS users (e.g. persons at computer terminals, application programs) communicate with
the database system through one or more of its layer interfaces. Figure 1.1 shows a
general architecture for standard database.systems which implement the relational model
as it is presented in [LoSc88]. Although each layer interface supports a different data
abstraction (i.e. data model), standard database systems physically store data in main
memory using only one data representation form, namely data pages or data segments.
Higher data abstractions are realized on the basis of the data stored on pages every time
operations which use them are executed by the respective layers (i.e. the layers which
implement those data abstractions). Thus, although the architecture of standard database
systems is layered, these systems do not really store different data representation forms in
main memory. Although most standard DBSs store database operation results in form of
single data records or tuple sets in the application program’s work space in main memory,
this area cannot be considered part of the database system. Its contents can neither be
protected by the DBS nor used by it in internal activities.

The implementation of the database buffer (i.e. the main memory repository for the
database) at only one layer of the system is usually done for efficiency reasons. The time
to map one data representation form into another takes relatively long when compared to
ﬁl]]e tin:l needed by the transaction to process the data whose representation form is being
changed.



1.2 Database Systems for Non-Standard Applications

In the last few years, considerable research effort has been spent on making database
systems suitable for supporting new, more challenging applications. These so-called non-
standard applications consist in a large set of non-business-oriented applications which
pose new requirements on database system support [Lock85]. Some examples of non-
standard applications are artificial intelligence (AI), office automation, and engineering
applications, as computer aided design (CAD), computer aided manufacturing (CAM),
and computer aided software engineering (CASE). The actual investigation of non-
standard database systems aims at extending database technology to better support these
new applications.

Although standard DBS technology represents a solution for the problem of managing
large amounts of data in a shared and reliable way for non-standard applications, too, this
technology cannot cope well with other requirements of those applications. On the one
hand, applications such as CAD/CAM, office automation, CASE, or knowledge
representation need more powerful data models which support the definition and
manipulation of new types of data that are not supported by classical data models.
Examples of such data types are geometric data which are used in engineering design and
cartography applications, imagery, voice, Al knowledge representation, text, and signals
of various types. On the other hand, some non-standard applications require new database
processing models that are not supported by standard database systems. For instance,
design transactions take typically much longer than (conventional) business transactions
(e.g. days or weeks). Moreover, they may need to process non-committed data, that is,
data which have been either created or updated by transactions whose execution has not
yet terminated.

v

Set-Oriented Database Interface

Access independent, Relational Data Model

Record-Orlented Database Interface

Record-Oriented Data Model
(e.g. Network or Hierarchical Data Models)

Intemnal Record-Oriented Interface

Record/Tuple and Access Path Management

System Buffer Interface

Page/Segment-Oriented Software Layer
(system buffer manager)

Data Files Interface

Stable-Storage Management
(operating system’s drivers)

Storage Device Interface

Stable-Storage Devices

Fig. 1.1: A general architecture for standard database systems

The data objects to be defined and manipulated by many non-standard applications (e.g.
AT applications, design applications) present a more complex structure than those
processed by business-related applications. Most of them are both hierarchically
structured and composed of a number of (sub)objects which can, in turn, be composite

5



objects, too. Moreover, in some applications it is possible to find two or more objects
that, in turn, have one ore more common (sub)objects. As a consequence of that, the
database for these applications can be represented by a directed acyclic graph (DAG).
Besides, to efficiently support the manipulation of highly structured data objects, the DBS
should be able to identify them uniquely and to provide database operations which can
manipulate them as a whole (i.e. together with their subobjects). Furthermore, these
operations should be tailored to the needs of the specific application being supported.
While the hierarchical and the relational data models cannot represent the new types of
data objects in a natural way, the network data model do not support efficient operations
on them. Consequently, new data models have been proposed which try to better capture
the specific properties of non-standard applications (e.g. [DAMS86a], [LeRV87],
[Mits87], [Pist86], [RoSt87]).

Most of the new data models proposed are object-oriented. This type of data models is
based on the object concept of object-oriented programming languages. Database systems
which realize object-oriented data models are called object-oriented database systems
(OODBS:s). This type of DBS should integrate the properties of standard database
systems (e.g. persistency, concurrency, recovery) with the concepts of object-oriented
programming languages [OODS89]. For our discussion, the most important of these
concepts are complex objects, object identity, encapsulation, types or classes, and
inheritance. Depending on which object-oriented concepts the DBS realizes, OODBSs can
be subdivided into three categories [Ditt89]. The DBS is said to be structurally object-
oriented if it implements only the structural features of objects-oriented programming
languages (i.e. complex objects and object identity). On the other hand, the DBS is called
behaviorally object-oriented if it implements object behavior on the basis of classical data
models (which do not support structured objects). Concepts related to object behavior are,
for instance, encapsulation, types or classes, and inheritance. Besides increasing data
independence, both object encapsulation and types or classes enable the dynamic
expansion of the data model through the definition of new data types and new operations.
Database designers can accomodate the requirements of new applications to existing
database systems by defining data types and data operations which better capture the static
and dynamic properties of those applications. The inheritance property of object-oriented
systems enables the definition of hierarchies of data types (or classes) in the database
where subtypes can inherit common attributes (i.e. characteristics) and methods (i.e.
operations) from their ancestor types. Database systems which implement structural as
well as behavioral object concepts are called full object-oriented.

To better support new data and processing models, new DBS architectures have been
proposed. Some researchers expanded already existing database systems to allow object-
oriented processing activities (e.g. [Hal.o81]). Others expanded existing data models and
implement them on the basis of fairly new system architectures (e.g. [StR086]). A third
group works on the basis of kernel database system architectures which shall provide
basic database support (e.g. data management, concurrency control, recovery) and realize
a simpler object-oriented data model (e.g. a structurally object-oriented data model). On
top of this architecture, relying on the kernel’s interface, the system realizes an additional
layer (i.e. the application-oriented DBS layer) which copes with the special needs of the
application being supported (e.g. [DiKM85], [HMMS87], [KeWa87], [Paul87]).

Although the term non-standard applications can efficiently distinguish the group of non-
business-related applications from the group of the business-related ones, this term can
also lead to the erroneous conclusion that all non-standard applications have similar
dynamic and static properties. For instance, opposed to many design applications image
processing applications do not require new data processing models. Although image
processing activities may take longer than (conventional) business-oriented transactions,
they should not take days or weeks, as design transactions do. In the following, we
concentrate on the discussion of engineering design applications. We mainly do that
because most of the object-oriented data models proposed as well as most of the non-



standard DBS prototypes to be investigated in this work were designed to cope with this
type of applications.

1.2.1 Some Important Characteristics of Design Applications

Design applications deal with the planning, development, and relization of technical
systems. Hence, these applications are usually related to engineering activities. Examples
of design applications are the development of software systems, the design of mechanical
parts, the planning of electronical circuits, etc. Because of the ever growing extension and
complexity of design activities, computer systems have been developed to support such
applications. Most of the existing computer aided design systems consist of file servers
and software tools (e.g. graphic editors, mask compilers) which help the designer by
projecting, realizing, and testing his design work.

Concerning the distribution of tasks and personnel, the overall design enterprise presents
a hierarchical structure [BaKK85]. Normally, larger projects are subdivided into
subprojects that can, in turn, be further partitioned until the individual design subtasks
achieve the expected grade of complexity and independence from each other. The
resulting design subtasks are then executed by groups of designers. In every group, each
designer executes a part of the group’s work. Reflecting the hierarchical partitioning of
the overall design work, designers of different groups manipulate different design
objects. In most cases, designers of different groups access common data only for read
purposes [Kelt88]. The same occurs when a designer.of one group needs to access
private data of another group.

Designers working on the same group access the same data objects, though. Contrary to
users in business-related applications that access data concurrently, designers belonging
to the same group tend to cooperate during their data processing activities. That is, design
transactions may have to see results of other, not yet committed design transactions to
continue activities. As a consequence, design database systems should relax the
transaction property of isolation. The relaxation of concurrency control rules should be
done in a controlled way, though. Korth [KoKB87], for instance, proposes that
concurrency control should be exercised on an object basis and not on a transaction basis.
That is, a transaction should be allowed to release the locks it holds on an object even
before it commits, as long as the transaction or the user executing it decides that the
processed object is consistent enough to be seen by other transactions/users. .

Usually, designers belonging to the same group work in physical contiguity (e.g. in the
same room or building). Therefore, they can easily get in touch and discuss next steps of
their common design work. Designers discuss the design work also in meetings and by
means of electronic mail. The physical distribution of design groups and designers as well
as the hierarchical structure of the overall design enterprise have influence on the
configuration of computer aided design systems and, consequently, on the architecture of
database systems supporting the design environment.

1.2.2 The Computer System Supporting the Design Environment

Usually, the computer system supporting the design environment is organized as a server-
workstation computer network. Figure 1.2 ilustrates this kind of system architecture. The
processing nodes are connected through a local area network (communications
subsystem) which allows direct communication among them.

Server processing nodes work as data managers and control the data and software tools
which are global to the design enterprise. For some processing models, these data
constitute the so-called public database. Server nodes may themselves be distributed
computer systems but are treated as single entities by other processing nodes.

7



Designers process objects at the workstations which are usually located at their offices.
The workstations are based on relatively efficient CPUs (e.g. 32-bit microprocessors),
are equipped with main memory of several megabytes and a monitor which, usually, can
support graphic applications. For the (near) future, it is expected that most workstations
will be equipped with private disk units. At the workstations, disks are used to store the
designer’s private data, that is, non-committed design data (e.g. non-released design
object versions). For some processing models, these data constitute the so-called
designer”s private database.

workstation, workstation,,

1
i

communications subsystem

servernode, | - = « | server nodey,

s

Fig. 1.2: Design environment s computer configuration

1.2.3 Database Systems for the Design Environment

As already mentioned, many computer-aided design systems have already been
implemented and put on the market. Most of them are based on file servers, though,
which do not offer all the advantages of a database system, namely data independence,
concurrency control, recovery, etc. Other systems have been realized on the basis of
standard DBSs which support only conventional data models. Since these systems do not
cope well with some design application requirements on data and processing modes,
researchers are presently investigating new DBS technologies to better support the design
environment.

No matter what type of DBS is going to be integrated into the design environment, this
system will have to be a distributed one. The so-called public database system will be
implemented at the server node(s). It will manage released data object versions and other
information concerning the overall design enterprise. At every workstation, a local DBS
will manage the designers” work on their private data. Private databases will be managed
by local DBSs at workstations owning disks. Through the communications subsystem,
thg various DBSs of the overall system will exchange data from one database into the
other.

New data models for design applications support the definition and manipulation of
highly structured data objects (i.e. complex or molecular objects as they are defined in
[HaLo81] and [BaBu84]). Database systems supporting the design environment will use
objects as the unit of data transfer for the communication between computer nodes.

In contrast to database systems for business-related applications, DBSs for design
applications will not always process data at the site where they are located. Since the
designer at the workstation can process data objects for very long periods of time (i.e.
days, weeks), it is more efficient for the DBS to transfer data from the server to the
workstation instead of having to spawn sub-transactions at the server node to process
objects there on behalf of the designer at the workstation. Local DBSs will copy data
objects from the public database into the designer’s private database at the workstation by
executing so-called CHECKOUT operations [HaLo81]. To transfer objects from the
private database back into the public database, the DBS will execute so-called CHECKIN
operations. To distinguish CHECKIN operations which really update old object versions

8



in the public database from those which only release locks in that database, a so-called
UNCHECKOUT operation has been introduced [DAMO88a].

Through CHECKOUT operations as well as CHECKIN operations and UNCHECKOUT
operations, the server DBS can control concurrent access to the public data object
versions. Most of the design processing models proposed differ from each other in when
exactly these operations may be issued (e.g. [HaLo81], [LoPI83]).

A number of architectures for non-standard database systems have recently been proposed
and can be found in the literature (e.g. [HiRe85], [Depp86], [DiG187], [HMMS87],
[Paul87]). Most of these proposals rely on the architectures for standard database systems
presented in [Senk73] and [Hi#Re83].

Figure 1.3 presents a somewhat modified version of the non-standard DBS architecture
presented in [Depp86]. The highest system layer (i.e. the application layer) realizes the
application-oriented data model which can be thought of as a complex, object-oriented
data model. This model is implemented on the basis of both objects and operations of the
next-lower layer’s interface. The complex object manager, in turn, realizes a more general
and less complex object-oriented data model. This so-called internal object model usually
constitutes the uppermost interface of the DBS kernel in design database systems (e.g

[HHMMS8S]).
(end user)

Application Program

Layer 4

]' Layer 3

Layer 2

DBsS

Layer 1

Operating System of the Host Machine

Fig. 1.3: A layered architecture for non-standard database systems

The complex object manager maps complex objects onto sets of tuples or records at the
interface of its next-lower layer, namely the record manager. This system module uses the
page/segment-oriented interface realized by the buffer-and-segment manager to extract
records from and insert records onto data pages. The buffer-and-segment manager maps
pages and segments onto files at the operating systems file interface.

The segment layer can also implement the concept of physical clusters (i.e. segments). A
segment can be viewed as a set of independent data pages that can be referenced as a
single entity (i.e. a data cluster). Physical clusters are used to accelerate the transfer of
complex objects between main memory and stable storage.

Design database systems can be either especially designed to support a specific application
(i.e. tailored design DBS) or developed as kernel design database systems. Since tailored
DBSs need, respectively, to support only one application (or, at most, a group of similar
applications), the requirements posed on these systems are then well known to the DBS
designers. Hence, tailored system architectures can be optimized to guarantee system
efficiency at run time. For instance, in principle tailored design DBSs need not realize the
complex object manager as it has been explained above. Since only one application-
oriented data model is to be implemented, it could be directly constructed on the basis of

9



the record manager. Another possible system design optimization could be achieved by
letting the application layer directly determine which data should be kept together in the
same segment.

Although tailored design DBSs can be more efficient than kernel design DBSs, they must
be completely redesigned and reimplemented every time a new application must be
supported. The concept of a design DBS kernel represents an alternative to tailored
systems. Kernel design DBSs can be viewed as consisting of two main parts: the kernel
subsystem and the application subsystem. The kernel realizes a more general and less
complex, object-oriented data model (through the complex object layer). On the basis of
this data model, the application subsystem implements a data model which can better
capture the specific semantics of the application being supported. If new applications are
to be supported by the kernel design DBS, only the application subsystem must be
changed. The kernel part of the system remains the same. Moreover, the same DBS
kernel can support different application types at the same time.

As a consequence of providing various external interfaces (e.g. kernel interface,
application-oriented interface), kernel design DBSs need to support efficient main
memory access at different levels of abstraction (e.g. page/segment level, object level).
Many non-standard DBS projects have already identified this necessity of kernel systems
and try to solve the problem by realizing what we call hierarchies of system buffers (e.g.
[StRo84], [Rowe86], [DePS86], [KeWa87], [HHMMS8]). As opposed to conventional
database systems which usually realize only one buffer manager at the system’s page
level, these new systems implement, at least, two buffer managers at different levels of
abstraction (e.g. page level and application-oriented level). System buffers at lower levels
help improving the performance of the kernel, while the buffers at higher abstraction
levels support the access patterns of the application. The concept of a hierarchy of buffers
can be explained by means of Figure 1.4 which shows a somewhat modified version of
the design DBS architecture presented in [HHMMS88].

Figure 1.4 depicts the architecture of a kernel design DBS which is distributed over a
server-workstation architecture. The kernel at the server node actually works as a data
object server. It supplies data objects to the local data systems at the workstations and
integrates updated data objects back into the public database. The kernel consists of two
main layers: the object/tuple-supporting layer (1.2) and the page/cluster-supporting (L1)
layer. The local data systems at the workstations consist of two layers each: the
application layer (AL) and the object-supporting layer (OSL).

The page/segment buffer of the system is located in L1. For every CHECKOUT
operation, L2 extracts the tuples belonging to the required object from database pages at
L1’s interface. Instead of sending whole data pages to the workstation, L2 sends to OSL
only the data which form the required object. These data are transferred to the workstation
as sets of tuples. OSL keeps these sets of tuples together in a so-called object-oriented
representation at the workstation. To manage the object data in main memory (and control
the communication with the disk unit), OSL realizes a so-called object-oriented buffer
manager. At OSL’s interface, AL manipulates only data in the object-oriented
representation. Since all the object data are kept together at the workstation, design tools
can access them more efficiently.

Every time a designer at some workstation either checks in an updated object or inserts a
new object into the public database on a server, L2 maps the object-oriented
representation form of this object onto a page-oriented representation which is first kept in
the page/segment buffer controlled by L1. Later, this page/segment representation of the
object is saved on stable storage at the server node.

10



Application Layer

Object/Tuple-
Supporting Layer
(L2)

(AL)
Object-Supporting | Page/Cluster-
]Layer (OSL) ¢ Supporting Layer |
(with object buffer) | {with D?E% buffer) |

Operating System Operating System
(0S) (08)
structure of the structure of the
software system software system
at the workstation at the server node

Fig. 1.4: A possible architecture for kernel design database systems

1.3 Main Objectives of the Research Work

Relying on the characteristics of business-related applications and database systems
presented in section 1.1 as well as on the description of design applications and design
DBS environments presented in section 1.2, we can identify several important differences
between business-oriented and design database systems:

== While business-oriented data models provide means for the definition of simple data
objects (e.g. flat records or tuples) and support relatively simple database operations
either on single records or on tuple sets, the object-oriented data models proposed to
support design applications directly support the definition of highly structured data
gbjects which can be manipulated either as single entities or on a record-at-a-time
asis.

* While business-related applications are usually characterized by a high locality of
access (i.e. different users access common data frequently), the database tends to be
partitioned under groups of users in most design applications.Therefore, access
conflicts are possibly much more frequent in business-oriented database systems than
in no;1—standard ones (at least when we consider data processing activities at the server
node).

* While in business environments transactions (or dialogue steps) are of short duration
and execute concurrently following strict isolation, transactions in non-standard
environments can take very long and may have to see non-committed results of other
running transactions (i.e. they may have to cooperate with each other).

* In business-oriented systems, data are usually processed at the sites where they are
stored. This is an efficient strategy for these systems, since in most cases the activity
of transferring data to the user site could take longer than the time to execute the
transaction. In design applications, though, transactions take much longer than data
transfer activities. Therefore, it is cheaper for the system to transfer large amounts of
data to the workstation at once than to spawn sub-transactions at the server node every
time the public database must be accessed. This strategy creates so-called database
hierarchies. That is, each processing node of the system owns and controls a database.
Transactions running at one node process data in the node’s own database. If the
desired objects are located at another node (i.e. in another database), CHECKOUT
operations are started which copy them into the local database.

11



« While business-oriented DBSs usually realize only one system buffer at a lower
system level (e.g. page-oriented level) to better support locality of access, design
database systems tend to implement hierarchies of buffers locating them at various
system levels. Buffers at higher system levels are used to both reduce the number of
operations necessary to map data representation through different system levels as well
as explore locality of access at higher levels.

The architectural characteristics of the design environment also induce modifications on
already well understood DBS mechanisms such as the concurrency control subsystem or
the buffer manager. The former will have to cope with transaction cooperation issues
while the latter will have to control data in different representations in main memory.
Buffer hierarchies as well as database hierarchies will certainly create new possibilities for
recovery in database systems. As a consequence, new recovery techniques may emerge
which save and recover data at higher or even multiple levels of abstraction. On the other
hand, conventional recovery mechanisms will not be able to cope with processing
environments where transaction cooperation is allowed.

The cooperation between server and workstation in non-standard systems also represents
a new research topic in database system technology. Depending on how the database
system is distributed over the server-workstation architecture, data objects can be
exchanged between processing nodes at various levels of abstraction (e.g. at the page
level or at the object level). Furthermore, cooperation between server and workstation can
be controlled on the basis of different distributed transaction mechanisms (e.g. distributed
nested transactions).

While a lot of research effort has been spent in the investigation of appropriate
concurrency control techniques for non-standard database systems (especially for design
DBSs) (e.g. [KLMP84], [KoKB87], BaRa88], [DiiKe88], [GaKi88]), only some
investigation concerning the cooperation between server and workstation has been carried
out until now (e.g. [DeOb87], [HHHMMS88]) and even fewer studies have been reported
on recovery for non-standard database systems (e.g. [KaWe84], [WeKa84]).

During the research work which resulted in this dissertation, we analyzed database
recovery in the design environment. On the basis of the static and dynamic properties of
design applications as well as of the architecture of various OODBS prototypes, we
investigated database recovery requirements, recovery correctness, and recovery
performance in the design environment. In particular, the investigation of database
recovery in the design environment is directed at the following goals:

+ Identification of the main database recovery requirements posed by the design
environment.

« Analysis of the suitability of standard database recovery techniques/mechanisms for
design database systems.

* Identification of possible design system properties which can either restrict or even
forbid the use of standard database recovery techniques in the design environment.

» Identification of possible design system properties on the basis of which new recovery
techniques/mechanisms can be developed.

» The comparative performance study of those database recovery techniques which can
be applied to the design environment.

1.4 The Structure of the Dissertation

The remainder ot this dissertation is organized as follows. In chapter 2, we discuss the
software architecture of design database systems. We do that by first presenting the
architecture of some design database system prototypes which are described in the

12



literature. Then, relying on the architecture of those systems, we derive a reference
architecture for database systems in the design environment. In chapter 3, we investigate
some well known design processing models which have been proposed in the literature.
On the basis of these models, we identify the main characteristics of different transaction
management strategies which have been proposed for the design environment. The
reference DBS architecture to be derived in chapter 2 as well as the general design
processing models to be derived in chapter 3 are used in the following chapters as a basis
for our investigation of database recovery in design database systems.

In chapter 4, we analyze database recovery requirements in the design environment. First,
a failure model for design database systems is derived which distinguishes the failure
modes that should be coped with by the recovery component at the database system level
from those which should be treated by other subsystems of the design environment.
Then, a set of recovery protocols which can guarantee database reliability is presented and
explained. At this point of the dissertation, we distinguish recovery activities in design
DBSs which use transaction serializability as a correctness criterion for concurrency from
those recovery activities in database systems which allow transactions to cooperate (i.e.
exchange non-committed results).

In chapter 5, we investigate the correctness and performance of various existing (and well
known) recovery techniques in the scope of the design environment. Besides that, we
comment on some newly proposed recovery algorithms which may improve database
system performance in that environment. In chapter 6, we report on the performance
analysis of a set of recovery algorithms in a design environment which is based on a
server-workstation computer system. We simulated the behavior of some recovery
techniques (selected from the ones in chapter 5) in a kernel design database system. The
simulation model is based on the reference system architecture of chapter 2 and on the
general design processing models of chapter 3. Chapter 7 concludes the dissertation. In
this chapter, we summarize the work presented in the prior chapters, compare it with the
work of others, and discuss some open questions and plans for future work.

13



14



Chapter2

A Reference Architecture for Design Database
Systems

In the present chapter, the architectures of various non-standard database system
prototypes are investigated. Through the study of these architectures, we try to both better
understand the static properties of design DBSs (i.e. their structure) and identify common
architectural properties of these systems. Relying on the similarities presented by the
prototypes studied, we propose a reference model for design DBS architectures at the end
of this chapter. Finally, we discuss some of the main aspects involved in the distribution
of design DBSs over server-workstation computer systems and propose a distributed
architecture for the reference model. In the following chapters, we will rely on the
reference model derived here to investigate recovery requirements posed on non-standard
database systems by the design environment as well as to carry out a performance
analysis of various recovery techniques applied to these systems.

Verhofstad has been probably the first author to propose an architecture for database
systems that realizes a buffer hierarchy [Verh79]. His database architecture is a layered
one where the lowest layer is represented by the hardware systems and each upper layer -
represents an abstract machine that implements one ore more abstract data types on the
basis of other, less complex abstractions which are, in turn, implemented by lower
system layers.

Each software layer of the database architecture consists of a data storage structure, a set
of operations for creating, destroying, modifying, and examining the structure, and an
algorithm to map the values of the data structure into values of the abstract type being
implemented. On the basis of this system architecture, Verhofstad proposes a recovery
mechanism for database systems that relies on the recoverability of specific data types.
The recoverability of every type is supported by the respective layer which implements it
and is to be considered part of the abstract type implementation.

In the architecture proposed by Verhofstad, the storage structures supported by the
different system layers form a storage hierarchy where each storage structure stores the
same data (or parts of it) in a different representation (i.e. in a different level of
abstraction). Since all these storage structures are supposed to be kept in main memory,
they constitute a buffer hierarchy.

In [Reut80], Reuter comments on Verhofstad s database system architecture. He argues
that this architecture can be used in the study of database systems but not as a reference
architecture for existing systems, since no database system at that time realized a buffer
hierarchy. Reuter’s argument is valid yet. Standard database systems usually realize only
one system buffer (e.g. page-oriented buffer). When higher data abstractions (e.g. tuples)
are materialized in main memory, they are kept in temporary storage spaces (e.g.

15



registers, program work spaces) which are not directly controlled by the DBS and,
consequently, are not related to buffer management or recovery functions.

Although standard database systems seem to work efficiently without a buffer hierarchy,
many non-standard DBS researchers have, at least, felt the necessity of such a
mechanism. Since the data abstractions to be realized by higher system layers have
become much more complex, many researchers feel that the system would become too
inefficient if higher abstractions were to be frequently derived from lower data
abstractions.

Performance studies with non-standard DBS prototypes have, at least partly, confirmed
this hypothesis. For instance, a test with the DAMOKLES database system [DAMS86b] on
top of a SUN 3/60 computer has revealed that some 15.000.000 machine instructions
must be executed to CHECKOUT an object consisting of 50 subobjects of 50 bytes each.
This makes some 300.000 instructions per subobject. Using the same computer, it takes
only 20 machine instructions to both access and update a record residing in main memory
whose address can be found in a hash table (which is also in main memory).

The CHECKOUT operation is expensive, because it involves a number of complex
suboperations. For instance, for each (sub)object O being checked out, the system must
check if any other of its ancestors has been checked out before. If this is the case, the
system should not allow two ancestor objects to be checked out in conflicting access
modes. Likewise, the system must investigate all subobjects of O in order to check if any
of them has already been checked out on behalf of another one of its ancestors. Many of
these suboperations are realized through transitive closures which consume very much
CPU time. Besides that, the object and the subobjects being checked out may have to be
organized in a specific main memory representation in order to be processed at the
workstation. CHECKIN operations which either insert new objects or bring updated ones
back into the public database may become very expensive, too. They may have to map the
main memory representation of complex objects onto database page, update access paths
for updated (sub)objects, and release CHECKOUT locks which are kept in stable storage.

In the following, we comment on various database system prototypes which realize buffer
hierarchies. We compare their system architectures with the non-standard DBS
architecture shown in Figure 1.3. The dynamical properties of the prototypes being
presented (i.e. how they implement operations on the database) will be explained through
an example of a design transaction.

2.1 Example of a (short) design transaction

To present our transaction example (T), we first need to describe the database on which it
operates. It consists of two overlapping (i.e. non-disjoint [BaBu84]) data objects of type
LIST. This data type is described below.

LIST u= List_ Nr Node_List

List Nr u=  integer

Node_List = Node | Node Node_List
Node = N_NrN_Data N_Next
N_Nr = integer

N_Date = date

N_Next = integer

16



The object type LIST represents composed objects. Each list instance consists of an
attribute which identifies it (Lis¢_Nr) and a set of (sub)objects of type Node. Moreover,
the LIST type allows the existence of overlapping list instances (as well as of circular list
instances). Figure 2.1 depicts the graphical representation of L1 and L2 which are both
objects of type LIST . L1 and L2 have two common subobjects, namely the nodes N1
and N2.

L1 = {N1,N2,N3,N4}
L2 = {N2,N3,N§,N6}

Fig. 2.1: Database state before the execution of T

On the basis of the database described above, we can define the transaction T. We
suppose the designer interactively works with a graphic editor (GE) at a workstation. On
his behalf, GE reads a specific list from the database and displays it graphically on the
screen. The designer browses over the list and, sometimes, executes update operations on
it. At the end of T, GE must ensure that the updated version of the list is brought back
into the database.
Transaction T can be described as follows:

Ol: Begin_Of_Transaction (BOT)

02: Get (L1); Access_Mode (browse, update)

03: Show_In_Detail (N2)

O4: N2.N_Data := ‘new-value”

05: Show_In_Detail (N3)

06: Remove N3 from all lists (i.e. delete N3 in the database)

O7: Insert N7 into L1 between (N2,N4)

08: End_Of_Transaction (EOT)
Figure 2.2 depicts the state of the database after the execution of T.

2.2 The POSTGRES Database System

POSTGRES is a so-called extensible database management system. It is being developed
at the University of California at Berkeley. Its data model is an extension of the relational
model which can be used to realize some constructs of semantic data models [RoSt87].
POSTGRES supports the definition and operation of abstract data types, the use of user-
defined procedures as tuple attributes, and attribute inheritance among object types. With

17



these extensions to the relational model, it is also possible to represent non-disjoint as
well as recursive data objects in the database. POSTGRES also supports temporal queries
against the database. For this purpose, the system realizes a tuple version mechanism
which enables various versions of a same tuple to coexist in the database.

L1 = {N1,N2,N4,N7}
L2 = {N2,N5,N6}

Fig. 2.2: Database state after the execution of T

The system-defined attribute type' POSTQUEL can be applied to relational tuples and
represents, at the same time, user-defined procedures (which are written either in
POSTQUEL [HeSW75] or some procedural programming language) as well as the results
of their execution. Moreover, the POSTGRES user can define new database operations
(i.e. methods) which are implemented by the system as user-defined procedures.
POSTGRES stores the compiled code of POSTQUEL attributes and user-defined
methods in the database. In addition, the system realizes a mechanism which controls
changes in the definition and in the results of POSTQUEL attributes and methods.

Figure 2.3 illustrates the software architecture of POSTGRES. It consists of two main
components: the POSTMASTER and the POSTGRES server [StRo86], [Rowe86].
POSTMASTER manages the database in stable storage, implements the page-oriented
system buffer, and realizes transaction management activities. This layer corresponds.to
the buffer-and-segment manager module of the general system architecture shown in
Figure 1.3. One POSTMASTER component will be installed at every computer node of a
POSTGRES database system.

POSTQUEL Interface

communication between user program and
POSTMASTER; realization of the object | POSTGRES-

cache server (one per
user program)

internal tuple-oriented interface

transaction management; tuple version

management;  alertftrigger mechanism;| | POSTMASTER

stable storage management '(;r:‘a per computer
o)

Fig. 2.3: The software architecture of POSTGRES

18



Many of the functions realized by POSTMASTER (e.g. lock management, event/trigger
mechanism) will be executed by so-called demon processes. These are system processes
which run in parallel to user processes. Demon processes can be suspended and restarted
later on, depending on the actual system load.

POSTGRES realizes a three-layer storage hierarchy. Old tuple versions are kept on optical
disks while current data are stored on magnetic disks. The third layer of the storage
hierarchy is represented by the main memory of the system, parts of which should also be
stable.

The POSTGRES server (which is also called run-time system) forms the higher layer of
the POSTGRES two-layer architecture and uses the POSTMASTER as a backend. This
layer corresponds to the four upper layers of the general architecture of Figure 1.3. There
exists one POSTGRES server associated with every active user program in the system.
The servers are realized as independent processes which control the execution of database
operations on behalf of user programs. Although each server supports the execution of
only one user program, it can process various database operations in parallel [StRo86].

Each running POSTGRES server maintains a so-called object cache [Rowe86]. The
object cache is an object-oriented buffer which relies on the portal concept [StRo84]. In
the cache, the server stores temporary transaction results (as sets of tuples) as well as
frequently accessed results of POSTQUEL attributes and user-defined methods (as sets of
tuples or multirelations). The object cache has not been completely realized in the actual
POSTGRES implementation. Update operations are not directly executed in the cache.
Tuples are first updated on pages (at the page-oriented buffer) and then brought into the
cache again.

Concerning the classification of recovery strategies in [H#Re83], the recovery mechanism
of POSTGRES can be defined as (non-atomic, steal, force, toc). Transaction results are
forced to the database on disk at transaction commit.

Since the system maintains demon processes which are continually removing tuple

versions created by transactions which have been backed out, almost no recovery activity

is necessary to either abort transactions or restore the database state after system crashes.

E{Io;eover, POSTGRES will support recovery from media failure on the basis of mirrored
isks. -

One of the possible ways of modeling our database example in POSTGRES is presented
below. The description of each list node defined in the database is kept in the Nodes
relation. Each node-next-node relationship is kept as a tuple in the Next_Node relation.
Each existing List is described by a single tuple in the Lists relation. Tuples of this
relation consist of two attributes. One attribute of type char (i.e. string of characters) and
another one of type POSTQUEL. The latter represents a user-defined procedure and its
current result at the same time. The list_procedure returns either a list of nodes or the
empty set.

Create Nodes (N_Nr=char[2], N_Data=char{}])
Key (N_Nr)

Create Next_Node (L_Nr=char[2], N_Nr=char[2], N_Next=char[2])
Key (L_Nr, N_Nr)

Create Lists (L._Nr=char[2], List=list_procedure)
Key (L_Nr)

19



Define type list_procedure is
Retrieve (Chain = n.N_Nr, n.N_Data, x.N_Next)
from n in Nodes, x in Next_Node
where x.L_Nr = $.L_Nr and x.N_Nr = n.N_Nr.
(note: $ identifies the current list in Lists)

The POSTQUEL attribute List of the Lists relation represents for each list tuple the set of
nodes that compose it. POSTGRES keeps the compiled code of list_procedure in the
database. Moreover, by means of demon processes the system executes the procedure for
each tuple in Lists and stores the resulting tuple sets as materialized views in the database.
When a user program accesses the relation Lists, the POSTGRES server associated to it
pre-fetches the List subrelations and stores them in the object cache.

By executing the operation O2 of T, the server brings the list L1 into the object cache.
Since the operations O3 and OS5 only read data, they can be directly executed in the object
cache. The operations 04, O6, and O7, on the other hand, must be processed in the page
buffer. Their results are then brought into the cache.

The operation O6 (i.e. the deletion of node N3 in the database) causes the attribute List in
all tuples of the Lists relation to be marked invalid. On the basis of a deferred-update
mechanism, these attributes will be once again calculated either the next time they are
accessed or at a moment when the system becomes idle. By the end of T, all data it
updates must have been copied to stable storage.

2.3 The Darmstadt Data Base System (DASDBS)

The DASDBS is a non-standard database system prototype formerly being designed and
implemented at Darmstadt University. It actually represents a family of database systems
where a database system kernel supports various, application-specific system modules.

The DASDBS s kernel provides an extended relational data model at its interface, namely
the NF2 data model (where NF2 stands for Non-First Normal Form) [ScWe861. This
model supports the definition of relation-valued tuple attributes. Thus, subobjects can be
expressed as subrelations in the database. For the manipulation of the resulting hierarchies
.of relations, the model provides a set of recursive relational operations (i.e. the NF2
relational algebra). The NF2 data model supports only disjoint complex objects, that is,
objects which have no common (sub)objects.

DASDBS has a three-layer software architecture as it is shown in Figure 2.4. The two
lower system layers (i.c. SMM and CRM) build the kernel of DASDBS The uppermost
layer (i.e. AOM) supports application-specific data models. Compared with the layers of
the general architecture in Figure 1.3, SMM corresponds to the buffer-and-segment layer
while CRM integrates the functions of the record manager, complex object manager, and
query processor. Finally, AOM realizes the application layer.

The stable memory manager (SMM) controls the data organization on disk and realizes the
data transfer between this device and the system on the basis of the block concept
[DePS86). That is, sets of pages which are stored at neighboring addresses on disk can
be transferred to/from disk in only one I/O-operation. The block concept is also known as
"chained-I/O" SMM manages a page/segment-oriented system buffer and supports a set-
oriented page interface.

Relying on SMM s interface, the complex record manager (CRM) realizes the NF2 data
model. NF2 tuples are actually represented in the database as sets of flat tuples together

20



with CRM information about their logical connections. Since NF2 objects are always
disjoint, complex objects can be represented as object trees in the database. CRM takes
advantage of the relative simplicity of the data model and stores object trees as a whole on
adjacent database pages. These pages form the so-called object clusters which then can be
read from disk or written to it in only a few I/O-operations. In this way, the time to
read/write complete objects is reduced in the system.

application-oriented DBS interface

Application-specific Object Manager: Each
exemplar of this layer realizes a data model
which copes with the specific requirements
of some application.

AOM

set-oriented NF2-Interface

0|

Complex Record Manager: system’s record-|
oriented layer. Realizes the NF2 data model|
and Implements the system’s object buffer CRM

set-oriented page interface

Stable Memory Manager: system’s page-
oriented layer. Controls the database on
disk and realizes the page/segment buffer SMM

Fig. 2.4: The software architecture of DASDBS

CRM realizes a set-oriented NF2 interface, that is, higher system layers can define and
manipulate sets of NF2 tuples at CRM s interface. To reduce the impedance mismatch
between the CRM and AOM programming environments, DASDBS realizes an object
buffer as part of CRM’s interface [Paul87]. The object buffer can store NF2 tuple sets
which then can be accessed in a tuple-at-a-time manner by the application-specific system
modules. There exists one object buffer for each user transaction in the system, that is,
these data repositories are not shared among transactions. Besides retrieve and browsing
operations, CRM also implements some update operations which directly manipulate data
in the object buffer. One of the main goals of DASDBS is to implement the whole set of
CRM operations on the basis of the object buffer.

By a possible distribution of DASDBS over a server-workstation architecture, the object
buffer could support the communication between the public database system at the server
node(s) and the local database systems at the workstations [DePS86].

The application-specific object manager (AOM) realizes the application’s view of the data
and supports user transactions. AOM layers rely on the DASDBS kernel interface (i.e.
CRM s interface) to realize application-specific data models (e.g. office-filing model
[PSSW87]). These models should capture the specific semantics of the applications they
support, Application-oriented data types and operations are realized by AOM in the form
of abstract data types on the basis of NF2 relations. AOM also implements application-
oriented access paths which are not realized by lower system layers. On the basis of
AOM, DASDBS can support behavioral object orientation.

DASDBS implements a multi-level transaction management strategy [Wei87a]. Multi-level

transactions represent a special case of nested transactions [Moss81] and rely on the open-
transaction concept which is described in [Trai83] and was implemented in System R

21



[Gray81]. In a multi-level transaction environment, each level of the nested transaction
hierarchy is associated with a specific system layer. Therefore, each of these system
layers realizes a transaction manager which controls the execution of the (sub)transactions
that are associated with the layer.

In DASDBS, user transactions are controlled by AOM. These transactions (which will be
called AOM-transactions from now on) are composed by one ore more operations of the
AOM interface. AOM operations are implemented by AOM on the basis of CRM
operations. The CRM transaction manager considers each set of its operations that
implements a specific AOM operation to constitute a CRM transaction. Each CRM
operation is, in turn, partly realized by a set of SMM operations. The SMM transaction
manager considers sets of SMM operations that support CRM operations to be SMM
transactions.

Multi-level transaction management can improve transaction parallelism by avoiding so-
called pseudo conflicts. These are access conflicts which can happen in lower system
layers, although they do not exist in (and could be avoided by) higher layers. A typical
example of pseudo conflict is the one of two concurrent transactions (e.g. transactions ta
and tb) which update different data records that are stored on the same data page. If
transaction management is realized only at the page level and ta accesses the page before
th, the latter will have to be blocked (or even backed out) during the whole execution of
the former (supposing strict two-phase locking). In a multi-level transaction environment
(at the record level and page level, for instance), th will be blocked only for the time ta is
either reading a value from or writing a value to the page, because the transaction manager
at the system’s record level knows that the two transactions are actually processing
different data objects.

To cope with multi-level concurrency control, the recovery mechanism of DASDBS must
also be distributed over different system layers [Wei87b]. SMM saves page updates at the
commit phase of every SMM-transaction. In this way, this layer guarantees both partial
and global redo recovery in case of system crash or media failure (see [HidRe83] for
explanations on this terminology). Partial and global undo recovery are supported by the
recovery managers of higher system layers (i.e. CRM and AOM) which save undo
information about their respective transactions.

When defining our database example in DASDBS, we must have in mind that overlapping
data objects (e.g. L1 and L2) are not supported by this system. One possible way to
define the list objects using the NF2 data model is presented below. Tuples in Lists
represent existing objects of type List. For each tuple in Lists, L_Nodes contains all node-
next-node relationships related to the respective list object. Tuples in Nodes describe all
existing objects of type Node. For each tuple in Nodes, N_Owners contains all node-list
relationships related to the respective node object.

Crate Lists  ( L_Nr=char{2],
L_Nodes=(N1_Nr=char{2], N2_Nr=char{[2] )
)
Create Nodes ( N_Nr=char{2], N_Data=char{],
N_Owners=(NL_Nr=char{2])
)
(note: both L_Nodes and N_Owners are relation-valued tuple attributes and
represent subobjects of Lists tuples and Nodes tuples, respectively)

Since the kernel of DASDBS does not realize logical access paths, the relation Nodes will
be used by AOM as an index. On the basis of this relation, AOM can also control the data
redundancy introduced in the system. Each tuple in Nodes describes a 1:N relationship
between a list node and all the lists to which it belongs.

22



To read the ring list L1 into the private object buffer OB, AOM executes O2 (which is
expressed in a SQL-like query language) at CRM s interface:

02: Select into the Object_Buffer OB Lists.all
where Lists.L_Nr = "L1"

The complex record manager, in turn, starts a CRM-transaction which executes the AOM
operation. It identifies in which cluster the list L1 is stored and reads it via the SMM
interface. The stable memory manager starts an SMM-transaction which identifies the
cluster address on disk and reads it into the page/segment buffer in one I/O-operation. The
CRM-transaction, then, reads L1 data into OB.

By analysing the L_Nodes subrelation of L1 in OB, AOM can decide which tuples of the
Nodes relation should be read from disk. After doing that, AOM starts another operation
to read the required Nodes tuples. To execute this operation, CRM starts a new internal
transaction which reads one ore more page clusters via SMM. These read operations, in
turn, cause SMM to start new SMM-transactions.

The browsing operations O3 and OS5 as well as the simple update operation O4 and the
insertion of node N7 (by O7) can be directly executed in OB. Although O6 can be partly
executed in OB, this operation must be complemented as OB s updates are mapped onto
database pages at T commit, since O6 also implies the change of other data which are not
stored in OB (e.g. the list L2). At commit time (O8), CRM must transfer all data which
have been updated in OB to SMM. This procedure, in turn, involves the execution of
new SMM-transactions.

2.4 The R2D2 Interface of the AIM System

The Relational Robotics Database System with Extensible Datatypes (R2D2) has been
developed at the University of Karlsruhe in cooperation with the IBM Heidelberg
Scientific Center. This system realizes an abstract data type (ADT) facility on the basis of
the NF2 data model. R2D2 supports the execution of ADT operations which are called
from inside of Pascal programs [KeWa87]. To accelerate data processing activities at the
application level, R2D2 transforms the NF2 representation of database objects into some
equivalent Pascal representation of them. Therefore, application programs can directly
process dabase objects in the user address space.

The R2D2 system is being built on top of the AIM-P database system prototype
[KuDG87] to be used as a specialized object-oriented database system supporting
engineering applications. The Advanced Information Management Prototype (AIM-P) has
been developed at the IBM Heidelberg Scientific Center. It is a non-standard DBS which
realizes the NF2 data model. This system presents a layered system architecture and was
designed to support server-workstation environments.

The software architecture of R2D2 is shown in Figure 2.5. Its two lower layers represent
the AIM-P system. AIM-P’s architecture resembles the DASDBS kernel system. Its lower
software layer manages the database on disk and realizes the page-oriented buffer. The
next higher layer incorporates a set of system modules which together realize the NF2
interface.

In [KiiDG87], an object buffer for AIM-P’s higher software layer is described. An object

buffer instance at the server node stores NF2 data objects during their construction as well
as during their reintegration into the database after user processing activities. The user at
the workstation processes objects in another object buffer instance which is realized at that

23



processing node. The object buffer concept has not been realized in the actual AIM-P
version, though.

AIM-P realizes transaction management at the tuple level which is represented in Figure
2.5 as part of the NF2 system layer. This layer supports a tuple-oriented locking
mechanism and a recovery mechanism that relies on the multi differential-file concept
described in [SeLo76] and [HaKK81]. A complete description of this mechanism can be
found in [KHED89].

The third and highest layer realizes the user interface of the system. Currently, AIM-P
supports two distinct user interfaces: the application programming interface (API) and the
R2D?2 interface. API implements an embedded NF2 interface. It embeds both DDL and
DML statements of the NF2-oriented database language HDBL into the programming
language Pascal [ErWa86], [ErWa87]. The R2D2 interface realizes an extended HDBL
which supports the definition and operation of ADTs

R2D? interface

Realizes an ADT facility on the basis of the
INF2 data model. Supports NF2 and ADT 2
jons imbedded in Pascal programs. | | R2D?

Yy layer

P

set-oriented NF2-interface

AIM-P°s higher system layer: Realizes the
following system modules: query processor,
complex object manager, and record
manager. Implements the system’s recovery
mechanism at the server node.

AIM-P’s higher
Y layer

page-oriented interface

Controls the database on disk and
the page/segment buffer AIM-P’s lower
system layer

Fig. 2.5: The software architecture of R2D2

The whole system realizes a so-called database hierarchy. While the AIM-P modules
realize a kernel DBS which controls the public database at the server computing node, the
R2D2 layer manages the local database at the workstation. There exists one local database
for every active application program in the system. Figure 2.6 which has been taken form
[KeWa88] depicts R2D2’s database hierarchy.

Besides controlling the data transfer between databases as well as the data processing
activities at the workstation, R2D2 also realizes a locking scheme for CHECKOUT and
CHECKIN operations and implements a recovery mechanism for nested transactions
running at that processing node [DiiKe88], [Ries89].

Engineering transactions execute in R2D2 according to the following processing scheme.
NF2 data objects are checked out of the public database on the server through the
execution of ADT operations. AIM-P builds the NF2 representation of the objects being
checked out and stores them in a file (i.e. the result table) on disk, after they have been
locked in the public database. When the whole set of NF2 objects being checked out have
already been written to the result table, this file is transferred to the workstation. At the

24



workstation, the result table is stored on disk and represents a part of the user’s private
database (i.e. the local database). The second part of the private database is represented by
the object cache. The cache is an object-oriented system buffer locatéd in the address
space of the application programm in main memory. Through the execution of fetch and
pre-fetch operations which are started by the application program, R2D2 reads NF2
objects in the local database, translates them into Pascal data structures, and brings them
into the object cache. The application program, then, can process the resulting Pascal data
structures in the cache.

Database objects in Pascal representation are mapped back to their NF2 representation in
the local database either if this operation is explicitly invoked by the application program
or when the object cache becomes full (release operation). Depending on the lock mode
being applied to the CHECKOUT -operation, updated NF2 objects can be propagated to
the public database on the server either during transaction execution or at transaction
commit [DiiKe88]. As with CHECKOUT operations, the system uses the result table to
transfer updated data objects from the local DB at the workstation into the public DB at the
server during CHECKIN.

Our database example can be defined as an abstract data type at the R2D2 interface. The
control of data redundancy cannot be integrated into the definition of the ADT, though,
since the ADT facility relies upon the NF2 data model. By defining an ADT, the user must
specify both its data structure and the operations it must support. The user must declare
the NF2 and the Pascal representations of each ADT. ADT operations may invoke
operations on other ADTs. A possible alternative of modeling the database example in
R2D2 js presented below.

Create ADT Lists
{
Structureis  (
L_Nr=charf2],
L_Nodes=(L_NNr=char[2], L_NNext=char[2})
)
Operations are:  insert_node_in_list (L,_Nr, L_NNr, prior, next); ... ;
)
Create ADT Nodes
{
Structure is  (
N_Nr=char[2], N_Data=char[],
N_Owners=(N_LNr=char[2])
)
Operations are:  insert_owner_in_node (N_Nr, N_LNr); ... ;
} .

Operation O2 of T is equivalent to a CHECKOUT in R2D2. By the execution of 02, the
NF?2 representation of the list object L1 is first built in the server’s main memory and
stored in the result table. After that, the result table is transferred to the workstation where
itis integrated into the local database. If O2 is started by the application program and the
pre-fetch option is set, R2D2 immediately transforms the NF2 representation of L1 into its
Pascal representation and stores it in the application program’s private object cache. After
the completion of 02, all other operations of T but O6 can be executed by the application
program directly in the cache. Since O6 modifies data objects which are neither in the
object cache nor in the local database (e.g. L2), this operation must also be executed in

25



the public database. From what has been published in the literature, it became not clear
whether O6 will be executed on the server node even before T terminates or only at T
commit. .

main memory
p'::;:h’ release private database
local DB
CHECK-OUT CHECK-IN
| global DB I public database

Fig. 2.6: R?2D2"s database hierarchy

At the end of T at the latest, the system maps the updates back onto the NF2 format,
stores them in the result table and sends this file to the server node. There, AIM-P
propagates the results to the database by storing updated NF2 tuples onto pages of the
public database.

2.5 The PRIMA Database System Prototype

The PRIMA project was developed at the University of Kaiserslautern. Its main objective
is the construction of a DBS prototype to support engineering applications [HMMS87].
PRIMA is being realized as a kernel database system supporting the Molecule Atome Data
Model (MAD) [Mits87]. On the basis of this general purpose object-oriented data model,
application-oriented system layers should be realized to support application-specific
requirements.

MAD supports structural object orientation. It provides means for the definition as well as
the manipulation of data objects as structured sets of elementary building blocks
[HiiMi88]. The model supports the dynamic definition of object types as well as the
derivation of new types from the composition of existing ones. MAD permits the creation
of non-disjoint object instances and supports N:M object relationships. The model
provides a descriptive SQL-like query language (MQL) which provides set-oriented object
processing facilities.

Figure 2.7 illustrates PRIMA ‘s software architecture. It consists of the kernel database
system and the application-specific layer which realizes the application model interface.
Conceptually, the kernel system implements three levels of abstraction which are built on
top of each other forming a hierarchical architecture. The software layers that implement
such levels of abstraction, namely the data, access, and storage systems, map MAD
objects onto data blocks kept on external storage.

26



Compared to the system layers of the general architecture presented in Figure 1.3, the data
system combines the features of both the query processor and the complex object manager
while the access system is equivalent to the record manager, and the storage system
realizes the functions of the buffer-and-segment manager.

application-specific data model

Realizes the application data model on the
basis of an ADT facility. Implements both the

object butter and cursor hierarchies. ;’:f::‘z“""

set-oriented molecule interface (MAD)

Translates MQL queries into molecule-at-a-
time processing plans, optimize them, and

executes them at the atom interface. data

set-oriented atom interface

[Realizes a record-onented data
LDL model, controls referential integri-
ty in the database, and provides
interface : jtuning mechanisms to improve
|system efficiency. access

set-oriented page interface

Controls the database on disk and realizes|
the page/segment buffer. Supports different
page sizes, page sequences, page sets, and| |storage

age contest function. system

Fig. 2.7: PRIMA s software architecture

The lowest layer, namely the storage system, realizes a set-oriented page interface and
implements the system’s page/segment-oriented buffer. This layer supports five different
page sizes: 0.5, 1, 2, 4, or 8 Kbytes.

The storage system interface offers its users (e.g. the access system) three different page
set concepts [HMMS87]. The page sequence concept resembles the page cluster
concept. It treats an arbitrary number of pages as a whole. Page sequences are supported
by a cluster mechanism of the underlying file system. It guarantees that pages belonging
to the same page sequence are stored at neighboring addresses on disk and are transferred
to and from disk in a few I/O-operations (i.e. chained-I/O).

The second concept implemented by the storage system is the one of a page set. It may
be used by higher system layers to FIX/UNFIX a number of pages (or page sequences)
in the page/segment buffer at the same time. Finally, the storage system supports the
page contest concept on the basis of which higher layers can implement data
redundancy in the database (see below). By receiving a list of some/all pages which store
copies of a specific record, the storage system calculates the cost of accessing each of the
pages and decides, on the basis of a cost analysis, which copy of the record should be
provided to the user.

Based on the storage system interface, the access system realizes a set-oriented atom

interface which supports the retrieval and update of single atoms (i.e. typed data records)
as well as of atom sets. On the basis of so-called reference atom attributes, this system

27



guarantees referential integrity in the database. This type of attribute is used to represent
relationships between atoms. PRIMA supports back references automatically.
Relationship information is kept replicated in all atoms involved. If the user updates this
information in one atom, the access system actualizes the other atoms which participate of
the relationship.

This system also implements tuning mechanisms which enable the physical organization
of the database on disk to be tailored to the special needs of the application. The database
administrator has access to these mechanisms through the Load Definition Language
(LDL). Through the tuning mechanisms the user can, for instance, define database views
which should be materialized on disk or demand that atom instances of specific types be
kept duplicated (or replicated) in the database so that they can be accessed together with
their respective ancestor objects more efficiently. The tuning mechanisms also support the
definition of application-specific access paths and sort orders. To reduce response time
the access system realizes a deferred update strategy to update atom copies. New
references to an updated atom must always yield its most up-to-date copy, though.

The data system maps the molecule-oriented interface onto the atom-oriented interface of
the access system. It consists of two main components: the query processor and the
molecule manager. The former checks user queries for syntatic and semantic correctness,
tries to optimize their execution plan, and translates them into data processing plans which
rely upon the one-molecule-at-time interface of the molecule manager. This system
component consists of two parts. The molecule-type-specific optimization tries to create
an optimal processing plan for the query on the basis of existing access paths, sort orders,
and data replication. The second part of the molecule manager, namely the molecule
processing, executes the processing plans which are developed by the optimizer.

While PRIMA s kernel system supports structural object orientation by means of the
MAD data model, the application-oriented layer (AL) supports behavioral object
orientation through the realization of application-specific abstract data types which, in
turn, rely on the underlying MAD model [HiiMi88]. Application data objects are realized
by AL through objects defined at the MAD level (i.e. at the kernel’s interface). The
definition of application-oriented algorithms which describe the behavior of application
objects is implemented by AL as MQL queries. The encapsulation of application objects
and the operations associated with them results in a kind of ADT facility which is
provided to the application at the AL interface.

The software architecture of the application layer was presented in [HiiMi88]. To support
the definition and efficient operation of ADTs, AL realizes the concepts of object buffer
and cursor hierarchy. MQL query results (i.e. MAD molecules and atoms) are stored in
the object buffer in a special main memory representation. In this special format, data
objects can be processed by further ADT operations more efficiently. Such operations
navigate through highly structured molecules in the object buffer by means of hierarchies

. of cursors. Each cursor of a cursor hierarchy can visit only the (sub)objects located at a
specific level of the corresponding object hierarchy. When a cursor is moved by an ADT
operation from one (sub)object onto the other, AL automatically updates the positions of
all its subordinate cursors at their respective levels.

Since the MAD data model supports the definition of non-disjoint objects, we can model
our database example as a single molecule type. First, the atom types Node and List are
defined using MQL statements. Then, the materialization of the list L1 in the database (on
the basis of the atom definitions) is achieved through an LDL statement.

Define ATOM Type Node
( N_S : identifier, /* surrogate: created and maintained by the system */
N_Nr : char[2],
N_Data . char[],
N_Next : set_of (ref_to ( Node.N_Prior)),

28



N_Prior : set_of (ref_to ( Node.N_Next)),

N_Lists : set_of (ref_to ( List.L_Nodes))
)
keys_are (N_Nr)
Define ATOM Type List
( LS ¢ identifier, /* surrogate: created and maintained by the system */
L_Nr : char[2],
L_Nodes : set_of (ref_to ( Node.N_Lists))
)
keys_are (L._Nr)
Define static molecule type List L1
From List

Where L_Nr= 1LY’

At the interface of the application layer, the operations of T can be defined as
parameterized ADT operations which access molecules of type List_L1 and the atoms
related to them. As an example, we define O2 below.

Interface: O2 ( List_Name : char[2])
Body: Select (into the object buffer) all
From List_Name

After list L1 has been brought into the object buffer, all following operations of T but 06
can be completely executed there. Since O6 manipulates data which are not stored in the
object buffer (e.g. list L2), this operation must be complemented by the kernel system
(possibly at T commit).

2.6 A Reference Model for Database Systems with Buffer
Hierarchies

In the previous sections, we have discussed the software architecture of various non-
standard database system prototypes which either suggest to or actually have buffer
hierarchies to support complex object processing. Buffer hierarchies have also been
implemented by systems which try to integrate existing object-oriented programming
environments with database environments. The Object eXchange Service module (OXS)
described in [PaJF89], for instance, supports the translation of the main memory
representation of Lisp data objects into a stable storage representation which can be
managed by the Flavors database system. OXS implements a buffer hierarchy in much the
same way R2D2 does.

From the systems discussed above, we can conclude that a reference model for non-
standard DBSs which implement buffer hierarchies should basically consist of a three-
layer software architecture as the one shown in Figure 2.8. The lowest layer (L1) would
manage the database in stable storage and realize a set-oriented page interface which
would abstract from details concerning data organization on external storage devices. To
provide efficient access to database pages, L1 should be able to transfer sets of pages as a
whole between disk and main memory and support a page/segment-oriented buffer to
reduce 10 activity.

The second layer (L2) would rely on the page interface implemented by L1 to realize a
structurally object-oriented data model. In both DASDBS and R2D2, this data model is the

29



NF2 model. In PRIMA, on the other hand, it is represented by the MAD model. Both
models provide structural but not behavioral object orientation, since they provide means
for defining and manipulating highly structured data objects as a whole but do not support
features as encapsulation, user-defined types or classes, or inheritance. L2 should be
designed to support two complementary functions. First, it should be able to construct the
main memory representation of complex objects out of their representation on database
pages and map them back onto pages. On the basis of the main memory representation of
objects, L2 would implement the operations it provides at its interface.

application-oriented DBS interface

Realizes an application-specific, bet

lobject-oriented data mode! on the basis of
lan ADT facility. Objects of L2's data model
lare encapsulated together with operations
[describing their behavior. L3

set-oriented molecule interface

Realizes a structural object-oriented model.
(Objects are built on the basis of related|| |,
records stored on database pages.

set-oriented page interface

[Controls the data organization on disk and
|realizes the system’s page abstraction. L1

Fig. 2.8: A reference model for DBSs which realize buffer hierarchies

The uppermost system layer (L3) would realize the application-oriented data model. Such
a data model should be able to capture and represent the specific semantics of the
application. Relying on the structurally object-oriented model implemented by L2, L3
would support behavioral object orientation. As in R2D2 and PRIMA, this could be done
through the implementation of an ADT facility which would support user-defined
operations on data objects of the L2 interface.

‘When comparing our reference model with the general non-standard DBS architecture of
Figure 1.3, it becomes clear that L3 realizes the application layer, L2 implements the
functions of the query processor, complex object manager, and record manager, and L1
implements the buffer-and-segment manager. We decided to allocate the complex object
and record managers in the same layer (i.e. L2), because we feel the functions of these
two software modules can be integrated to improve system performance.

An important decision concerning the buffer hierarchy of the reference model is the one
related to the location of the object buffer in the system architecture. While some systems
see the object-oriented buffer as an extension of L2 (e.g. POSTGRES and DASDBS),
there are others which consider it to be an integral part of L3 (e.g. R2D2 and PRIMA).

Actually, PRIMA s object buffer also represents an extension of the kernel interface,
since it is used to represent molecules of the MAD data model. On the other hand, it is
controlled by the application layer. In [HHMMS88], where considerations about the
distribution of PRIMA over a server-workstation architecture are presented, the object
buffer together with the cursor hierarchy concept are implemented at the workstation by
yet another software module (i.e. the object-supporting layer) which supports the
application-oriented layer, controls the local database at the workstation, and realizes the

30



communication between the local data system and the kernel system at the server node
(see Figure1.4). R2D2’s object cache, on the other hand, is really part of the application-
oriented layer. The Pascal representation of database objects is not even known at the NF2
interface. If the object buffer of AIM-P had been implemented, R2D2 would actually have
realized a three-level buffer hierarchy.

We decided to represent the object buffer in our reference model as an extension to the
interface of L2. As part of the structurally object-oriented interface, the object buffer can
also be used to improve data communication between system modules in case the
reference model is distributed over a server-workstation computer system.

2.7 Distribution Aspects of Non-Standard Database Systems

As already mentioned, database systems supporting the design environment will probably
be distributed over server-workstation computer configurations. In this section, we
discuss some important aspects concerning the distribution of database software in the
design environment.

The DBS software can be either completely replicated in every processing node of the
underlying computer system or distributed according to the functions which are executed
at each node. While it is relatively easy to identify internal interfaces in kernel
architectures on the basis of which the distribution of the database software could take
pla(l:(e, the task of distributing the software modules of tailored design DBSs can become a
tricky one.

If we imagine a server-workstation system where the server processing node does not
directly support application programs and a kernel database system similar to our
reference model, it would possibly be a good choice to place the DBS kernel at the server
site and implement the application-oriented system layer at the workstation. In this case,
the distribution of the DBS software would follow a functionality criterion.

Since objects are kept in the local database of the workstation during the design
transaction, another DBS layer must be provided at this node to control the local database
and to communicate with the kernel system at the server node. Some real systems solve
this problem by installing a copy of the kernel system at the workstation ([DeOb87],
[DAMS88b]). Application objects, then, are mapped through the whole DBS architecture
every time they are read from disk or written to it during the design transaction. A
possibly more efficient solution could be to implement a simpler software module on the
bottom of the application layer which can directly save complex objects on disk whithout
having to change their data representation. That is, objects are written to disk in their main
memory format. The PRIMA prototype follows this strategy by the implementation of the
workstation data system [HHMMSS].

2.7.1 Abstraction Levels for Cooperation

The cooperation between server and workstation can be explained as follows. The
application programs run at the workstation and are supported by the application layer.
This layer relies on some DBS software (e.g. DBS kernel or another type of object-
supporting software layer) to access the necessary objects in the local database. Every
time the application layer requests an (complex) object that is not stored in the local
database at the workstation, a CHECKOUT operation must be started. Before the design
transaction terminates, updated objects must be copied into the public database at the
server node. This is done through CHECKIN operations.

31



Server and workstation can exchange data at different abstraction levels of the DBS
architecture. In [DeOb87], the alternatives for communication have been subdivided into
single-level cooperation and multi-level cooperation. As the name suggests, single-level
cooperation implies that the whole server-workstation cooperation is realized at only one
abstraction level of the database architecture. Multi-level cooperation, on the other hand,
implies that data are transferred at various levels of abstraction.

The cooperation between server and workstation in DAMOKLES, for instance, is
completely implemented at the complex object layer of the system [DAM88b]. That is, for
CHECKOUT the workstation sends its request as a complex object request (i.e. EODM
statement [DAM86a]) and the server sends the workstation the required object in its main
memory representation. For CHECKIN, the workstation sends the server updated
EODM-objects. PRIMA, on the other hand, realizes a multi-level cooperation strategy.
For CHECKOUT, requests are transmitted by the workstation as complex object queries
and CHECKOUT data are transferred by the server in the form of sets of complex objects
(i.e. sets of molecules) [HHMMS88). For CHECKIN, the workstation sends the server
only sets of updated records (i.e. sets of atoms). In [DeOb87], another multi-level
cooperation strategy has been proposed. For CHECKOUT, requests are sent as complex
object queries but CHECKOUT data are transferred in form of sets of pages. For
CHECKIN, the server receives a set of modified pages as well as some meta information.
The meta information is then used to update higher-level data abstractions (e.g. index
entries for tuples). This cooperation strategy is suitable for DBS implementations where a
copy of the kernel system is installed at the workstation. In this case, both server and
workstation present all layers of the DBS architecture.

2.7.2 Supported Transaction Classes

To realize integrated information systems, non-standard DBSs must be capable of
executing both, design and conventional transactions. In the case of a kernel design DBS,
we can imagine that the software at the workstation would be developed to support only
design applications, while the DBS kernel at the server node would execute
CHECKOUTY/IN operations as well as conventional, short transactions (e.g. relational
queries and short update operations).

2.7.3 Transaction Management Strategies

Because of the long duration of design transactions, it would be unacceptable to control
transaction parallelism in design systems on the basis of optimistic algorithms, since the
costs of design transaction backout would be very high. Therefore, most systems plan to
realize some locking method to control parallelism among design transactions.

Usually, standard database systems realize the concurrency control mechanism at a
specific layer of the DBS architecture. For lock-oriented synchronization techniques,
concurrency control is often implemented at the page level of the system. In this way, the
overhead represented by lock management activities is kept low because the granularity of
locks is large (in comparison to record locking, for instance) and, consequently, fewer
locks are necessary. On the other hand, page locking strategies usually force the system to
lock more data than it actually needs (e.g. by requesting one record, the whole page
where this record is kept on will be locked for the transaction). As a consequence,
parallelism can be reduced.

In design systems which exchange data between server and workstation at the page level,
the locking mechanism must be realized at the page level, anyhow. Page locks are
acquired during CHECKOUT operations and released only when the objects are checked
back into the public database.

32



Design database systems which exchange data at higher levels of abstraction (e.g. record
level or complex object level) can implement multi-level transaction managers ([Lync83],
[Wei87b]) to improve parallelism at the server node. In this case, locks on pages are kept
only for the time needed to either build the object representation by CHECKOUT or map
updated objects back onto database pages by CHECKIN. During the time objects are
processed at the workstation, only record locks or object locks are kept at the server
system. It is expected, that multi-level transaction management can significantly improve
parallelism in database systems [Wei87a].

2.7.4 Controlling the Cooperation Between Server and Workstation

When designing a distributed design database system, it must be decided how the
cooperation between server and workstation will be controlled. This cooperation is
materialized by the execution of CHECKOUT and CHECKIN operations as well as by
remote queries which are started at the workstation and processed by the public system at
the server node.

There are, at least, two ways of controlling the cooperation between server and
workstation [HHMMS8S8]. In the first alternative, the public system is not really aware of
the existence of the design transaction at the workstation. CHECKOUT and CHECKIN
operations as well as remote queries are started at the workstation as independent, short
transactions (i.e. so-called recovery transactions) which spawn sub-transactions at the
server node. The execution of these distributed transactions is synchronized by means of
a two-phase commit protocol. Therefore, at the end of a remote operation at the server, all
locks it holds in the public database are released (supposing concurrency control at the
server is realized by locking). By this alternative of cooperation control (flat transaction
management), the design transaction inherits neither locks nor recovery information from
committing remote operations. In this case, long duration locks (e.g. CHECKOUT locks)
are not controlled by the database system but must be managed by the users themselves
(for instance, in the form of tuples of some special relation as the OBJECTLOCK relation
proposed in [LoP183]).

The cooperation between server and workstation can also be realized on the basis of a
distributed nested transaction mechanism as , for instance, the one proposed in [HR087]
which follows the nested transaction paradigm of [Moss81]. When the design transaction
starts its first remote operation at the server node, the public system becomes aware of its
existence and creates a so-called agent transaction for the design transaction at that node.
The public system considers all remote operations started by the design transaction as
sub-transactions of its agent at the server node. That is, the agent inherits results, locks,
and recovery information from all remote operations which commit. If the design
transaction aborts, the public system aborts its agent at the server node. Recovery
information is used to restore the original state of the public database, locks held by the
agent are released, and the agent is deleted. If, on the other hand, the design transaction
commits at the workstation, the public system commits the agent at the server node and
releases its locks in the public database. Thus, results of committed CHECKIN
operations and remote queries are made public at the server node, only if the
corresponding design transactions commit.

2.7.5 The Distributed Version of the Reference Architecture

The decisions about the distribution of our reference DBS architecture over a server-
workstation computer system rely on the distribution aspects discussed above and are
presented below.

Regarding the distribution of the database software over the various processing nodes, we
chose the alternative followed by the PRIMA project [HHMMS88]. Both kernel layers (i.e.

33



L1 and L2) would be realized at the server node, while the application-oriented layer (i.e.
L3) would be implemented at the workstation. As with PRIMA, we would not realize a
copy of the kernel system at the workstation to control the local database. A special
system layer (i.e. the object-supporting layer) would be constructed between L3 and L2,
instead. This extra layer should support L2"s data model at the workstation (for instance,
by supporting a local version of the object buffer). Moreover, the object-supporting layer
would also support the communication with the kernel system at the server node. Figure
14 depli(cts the distribution of the reference DBS architecture over a server-workstation
network.

Although multi-level strategies for the cooperation between server and workstation seem
to be more appropriate in terms of data communication load, we feel that the realization of
multi-level cooperation strategies could possibly degrade system performance because of
the mapping activities associated to them. However, we have implemented a simulation
model on the basis of our reference architecture that permits the analysis of single-level
and multi-level cooperation strategies. Within the context of this work, we have simulated
only a single-level cooperation strategy at the complex object level, though.

Since the integration of information systems (as shared databases, computer networks,
etc) is a reality already, we feel that design database systems will have to support the
coexistence of long-duration and (conventional) short transactions to cope with different
database applications which will process related data in the same enterprise.

In the following chapters, we discuss further distribution aspects concerning dynamic
properties of the reference model derived here (e.g. transaction management).

34



Chapter 3

Transaction Models for Design Applications

In this part of the dissertation, we review five of the best known design processing
models which have been proposed in the literature and use them as a basis for the
classification and generalization of design transaction models. Before describing the
models, though, we discuss the main reasons why design transactions cannot be realized
as conventional transactions, that is, why the (conventional) transaction paradigm cannot
cope well with all the processing requirements of design applications.

A transaction is defined as a unit of work to be carried out by the DBS [Date83] or as an
execution of a program that accesses a shared database [BeHG87]. In fact, the transaction
paradigm as described in [Gray78] represents a special unit of work, namely one which
guarantees that user actions either bring the database to a consistent state [Gray80] or are
not executed at all. Besides of being atomic and guaranteeing database consistency, the
conventional transaction represents the unit of work isolation in multiprogramming
environments, and its results must survive failures if the transaction commits. Therefore,
the transaction represents, at the same time, the units of atomicity, isolation, consistency,
and durability of transaction-oriented processing environments.

The transaction model as described above copes well with the characteristics of user work
in so-called business-related database applications where transactions are typically of
short duration (i.e. terminate in a few seconds). For short transactions, it is acceptable
that they are completely backed out in case of failures, or that they are blocked during the
execution of other transactions which access common data.

The conventional transaction model is not suitable to represent the design transaction in
design applications such as CAD/CAM or software engineering, though. As already
stated at the beginning, user work in design applications can span longer periods of time.
Complete rollback would then be unacceptable. Moreover, these applications are
characterized by cooperative work among users. The isolation property of transactions
should, therefore, be relaxed in some cases.

To support the above mentioned and yet other requirements of design applications, new
processing models have been proposed which respectively associate the properties of the
conventional transaction with different units of user work. Since the new processing
models are partially based on the transaction paradigm and aim at representing larger units
of work in design applications, they are conventionally called design or long transaction
models.

By the description of the processing models which follows, we will distinguish several
transaction types. Conventional transactions which are executed at the server node will
also be called short transactions (S-Tr), because they represent relative short units of
work (e.g. single database operations) which are executed by the public system on behalf
of the designer at the workstation. On the other hand, conventional transactions which are

35



executed at the workstation will also be called recovery transactions (R-Tr) because, in
most cases, they solely represent a unit of recovery for the processing models. Other
(sub)transaction types will be introduced during the description of the design transaction
models which follows. Since most of the processing models to be reviewed here do not
have a specific name, we will identify them through their main characteristics.

3.1 Isolated CHECKOUT/IN Operations

The isolated CHECKOUT/IN transaction model (TM1) has been first proposed in
[HaLo81]. This model is perhaps the simplest one and basically relies on the conventional
transaction paradigm. Figure 3.1 illustrates the dynamical characteristics of the isolated
CHECKOUT/IN transaction model.

The designer processes data objects in his local, private database at the workstation. The
local database system controls the user work at that processing node. When the user
wants to process an object which is not present in the private database, he starts a remote
(sub)transaction at the server node that executes a CHECKOUT operation. Similarly,
when the user wants to commit his changes on an object (or insert/delete an object), he
checks it back into the public database (through another remote transaction).

wor B(F;Tr) cau:T1 : E(H{Tr) B(H=-Tr) ur;o : E(H{Tr) a(n;q-r) 1?1 : E(Rl;Tr)
s
I i P P
j io i i oo i
LA 1 ok v
Bs-T) | EST) - BST) | EST B(ST) | E(ST)
1 T T T L) T ] 1

server

T
|Isolation interval of object 1 1 (tme)
L

S-Tr: short trans.; R-Tr: recovery trans.; B(Tr): begin trans.; E(Tr): end trans.; OUT: checkout; IN: checkin;
UPD: short update operation.

Fig. 3.1: Isolated CHECKOUTY/IN transaction model (TM1)

The fact that the designer may sometimes need to manipulate data directly in the public
database (e.g. queries and short update operations on sets of tuples or records) is not
directly modeled by TM1. One can easily conclude, though, that the designer must start
(sub)transactions in the public system to execute those operations, t00.

In the isolated CHECKOUT/IN model, the notion of design transaction is known neither
to the public system nor to the local system. Both systems execute conventional
transactions. The execution of transactions which spawn sub-transactions at the public
system can be controlled either by means of some version of the two-phase commit
protocol [MoAb86] or through the realization of the nested transaction concept {Moss81].
In Figure 3.1 as well as in all other figures of this chapter which depict dynamic
properties of design processing models, we suppose that transactions which span
processing nodes follow a two-phase commit protocol. That is, for simplicity reasons we
assume a flat distributed transaction mechanism in the models to be explained. This can be
clearly depicted from the figures. See, for instance, Figure 3.1. By receiving a "start
CHECKOUT" message from the workstation (which is part of a recovery transaction
there), the public system starts a short transaction (B(S-Tr)) at the server node to copy the
desired data from the public database into the private database at the workstation. By

36



finishing this task, the public system sends the workstation an "ok" message and waits
for a reply to either abort or commit the short transaction (E(S-Tr)).

Since conventional transactions release all their locks at transaction end, CHECKOUT
locks cannot be automatically managed by the public system, They are long-duration
locks that must be held even after the CHECKOUT sub-transaction commits. The
designers must maintain a global CHECKOUT lock file in the public database, instead.
This file must be updated by the CHECKOUTY/IN sub-transactions themselves. Thus, the
designers are responsible for the control of both long-duration locks and the system’s
CHECKOUT lock file. On the one hand, this solution can lead to a better synchronization
of the design work, since the designers have a better knowledge about who may access
objects concurrently and when it can be done. On the other hand, the public system
cannot automatically guarantee any synchronization protocol (e.g. serializability)
anymore,

Furthermore, the isolated CHECKOUT/IN model does not relate the actions of the same
design transaction (i.e. the actions which are started by the same designer) on different
public objects. Conventional transactions represent the only units of atomicity and
durability at both the public and the local systems. Thus, it is, for instance, impossible for
the database system to automatically rollback the whole designer's work.

If no objects have been checked back into the public database yet and no short update
transaction has been executed on his behalf at the server node, the designer can back out
his whole work by simply deleting his local, private database and releasing locks in the
CHECKOUT lock file of the public database. Otherwise, he must start compensation
(sub)transactions in the public system to rollback possible CHECKIN and short update
operations at the server. The task of rolling back committed CHECKIN operations can be
simplified if the public system treats updated objects as new object versions as it is, for
instance, proposed in [KSUWS85]. In this case, the designer can back out CHECKIN
operations by deleting the new object versions created in the public database.

Problems may arise, though, if other users have already copied the new created versions
into their private databases. TM1 does not prevent the occurrence of the so-called
cascading-abort effect [BeHG87). This effect can take place when transactions can see
temporary or incomplete results of other transactions. These results can be considered to
be consistent only if the transaction which created them commits. In a conventional data
processing environment (e.g. business environment) which relies on transaction
serializability, the recovery mechanism would back out all transactions which accessed
temporary results of a transaction being aborted. In the design environment, this could
represent 2 huge waste of time and work done. A less drastic solution would be to inform
the transactions that the object versions they manipulate have become invalid. The
designers, then, have a chance to decide whether they can save some of the work done or
must roll back their entire transactions. Furthermore, if transaction serializability is to be
enforced, the system or the designers themselves should avoid that design transactions
which see temporary results commit before the transactions which generated those results.

For TM1, the conventional transaction also represents the unit of isolation for queries and
short update operations in the public system. By object processing activities, the unit of
isolation in the public database is represented by their respective CHECKOUT/IN time
intervals. :

In the literature, no special synchronization mechanism at the workstation is presented for
TML. For local systems which can process recovery transactions concurrently, it is
assumed that conventional synchronization techniques (e.g. short-duration locking) will
be implemented. In this case, the unit of isolation at the workstation would also be
represented by the conventional transaction.

As with most of the other design transaction models, explanations about how and when to
check as well as to enforce design consistency by TM1 cannot be found in the literature.

37



Since every short transaction at the public system as well as recovery transaction at the
local system represents only a part of the overall design work, it might be impossible to
enforce design consistency either in the public database or private database at the end of
every one of these transactions. In most systems, design consistency will be tested and
enforced by the application layer through the execution of test procedures (which can, for
instance, be realized through event/trigger mechanisms [Kotz881). Since the decision of
how and when to test design consistency is taken in higher system levels, we do not
associate the concept of short or recovery transactions with these tasks. Thus, we
conclude that short and recovery transactions can only guarantee database consistency for
lower levels of abstraction (e.g. record-oriented level [HiRe83]). By the isolated
CHECKOUT/IN model, design consistency is considered to be responsibility of the
application and should be enforced, at the latest, at the end of the overall design work.

On the basis of the description above, we can conclude that TM1 does not fully support
the notion of a design transaction. The public system sees the design work as a set of
independent processing steps on different objects. Moreover, no features are presented to
support the hierarchically structured design environment. That is, designers cannot
exchange non-committed results or commit results only for some group of other
designers. The next design processing model to be presented can be seen as an extension
of TM1 that captures the notion of design transaction in the public database.

3.2 Related CHECKOUT/IN Operations

The related CHECKOUT/IN model (TM2) has been described in [DAMS88a] and
implemented in the DAMOKLES database system. TM2 assumes the same design
environment as TM1. What distinguishes TM2 from TM1 is that the former introduces the
notion of a design transaction (D-Tr) at the public system. Figure 3.2 depicts the
dynamical characteristics of TM2.

work. BR-T)ouT, E(R-T)  BQR-TH IN,  E(R-TH B(R-Tr) UPD E(R-T)
station——t T t t 1 —t+— t t —t—t
P a P X P
i io H i o i Ed i o i
L ' LG { i vt
BsT) | E(S-Th) B(S-Tr) | EST) P B(STH) | ESTH
server t -+ + —+— + —t+—t
B(D-Tn) E(D-Tr) (time)
, D-Tr {
1isolation interval of object 1 "

Note: D-Tr stands for design transaction

Fig. 3.2: Related CHECKOUT/IN transaction model (TM2)

The public system starts a D-Tr on behalf of the designer either by request or when it
receives the first-remote operation from the workstation. Objects are processed by the
designer at the workstation. Every time the designer needs to process an object which is
not present in his local, private database, he starts.a (sub)transaction at the public system
which checks the wanted object out. All those CHECKOUT/IN operations executed at the
public system on behalf:of the designer are considered: part of the his D-Tr. On the other
hand, queries and short update operations in the public database that might be started by
the designer are not modeled by TM2 at all.

38



D-Tr can be viewed as the top-level transaction of a two-level nested transaction
hierarchy. D-Tr holds CHECKOUT locks for objects which are manipulated by recovery
transactions at the workstation. These locks are released when the associated objects are
checked back into the public database. The designer terminates his work at the public
system by executing a COMMIT D-Tr operation. When this occurs, the public system
verifies if all objects checked out have already been checked back in. If this test yields
true, the system commits D-Tr; otherwise, the designer receives a corresponding message
and D-Tr is kept active.

Although the public system can use D-Tr to automatically guarantee object isolation even

after the (sub)transactions which have executed CHECKOUT operations commit, it

cannot use D-Tr as a unit of atomicity for the design transaction, since the designer may

check objects back into the public database at any time. Thus, all those problems related to

recovery in TMI1 are also present in TM2, namely the recovery mechanism must cope

gvitllnc the cascading-abort effect and cannot provide for automatic design transaction
ackout.

At both the public and the local systems, D-Tr represents the unit of consistency for the
overall design work. Although this aspect is not discussed in the literature, it is easy to
understand that database consistency at lower abstraction levels can already be enforced in
the public database by CHECKIN. On the other hand, overall design consistency can
only be tested and guaranteed at the end of D-Tr.

As by TM1, the conventional transaction represents the unit of atomicity and durability in
the public system as well as in the private system. It could also be used as the unit of
isolation for queries and short update operations at the server node. The unit of isolation
for object processing is represented by the CHECKOUT/IN time interval.

Since TM2 does not model data processing at the private system in detail, it is not certain
if a work unit for isolation is needed for that system. It would only be true, if recovery
transactions could run in parallel at the workstation. As with TM1, cooperative work
among designers is not modeled by TM2, either. Therefore, design results must first be
checked into the public database (and made accessible to all designers), before another
designer can copy them into his private database.

3.3 Conversational Design Transactions

The conversational design transaction model (TM3) has been presented in [LoPI83]. It
assumes the same system configuration and DBMS architecture as TM1 and TM2. TM3
can also be understood as being an extension of TM1.

TM3 introduces the notion of a conversational transaction (C-Tr) in the local, private
database. C-Tr represents the overall design effort of the designer and is comparable to D-
Tr in TM2. There are some important differences between both design transactions,
though. While D-Tr exists in the public system, C-Tr is controlled by the local system at
the workstation. Furthermore, TM3 models the design transaction in such a way that
updated objects are accessible to other designers only if C-Tr commits. Conversational
design transactions follow a strict two-phase CHECKOUT lock protocol.

Figure 3.3 depicts the dynamical characteristics of C-Tr. The local system treats the user
work as a (long) design transaction (i.e. a C-Tr). From inside his C-Tr, the designer may
start a set of recovery transactions which process objects in the local database. When the
designer needs to get an object from the public database, he starts a short (sub)transaction
in the public system which executes a CHECKOUT operation.

39



Since queries and short update operations in the public database are not modeled by TM3
(as it is the case by TM1 and TM2, too), these operations are not considered part of C-Tr.
Moreover, the only way to integrate them into the conversational transaction model is to
represent them as remote (sub)transactions at the public system.

mvs‘".""" OUIT, E(R-Tr) B(Hl-Tr) ouT, ) E(R;Tr) savolpolnt mr:)n B(R‘-Tv) |r‘1“<_4") . E(Rl-Tr)
Ll L] L)

station 8 (c'-Tr) ' E(Cl-'l'r)
fi ’
i

C-Tr

£33
£
£

i
|
'
B(S-Tr)

server }

-

E(

-

]

e
4+ P wecencchaee 4o
E
2
2
AR

m
4% weaevotae.

Tr)

=
[ R B

7)

isolation interval of oblect n __ (time)
llwlurkm intervat of object 1 E

Note: C-Tr stands for conversational transaction

Fig. 3.3: Conversational transaction model (TM3)

[ RSP &
i S Pt

-+ et
A7 R—

All design objects which are checked out of the public database for update as well as those
created during the design work are checked back into the public database through a global
CHECKIN operation which is executed at the end of C-Tr. Thus, at most one CHECKIN
operation can be executed from inside a conversational transaction.

In [HHMMB88], the conversational design transaction model has been expanded and ideas
of how to implement it have been presented. Since some of the new properties which
have been added to the model can influence recovery activity, they will be presented here,
t00. According to the expanded version, designers can issue other commands from inside
the C-Tr besides starting recovery transactions: SAVEPOINT, RESTORE, SUSPEND,
and RESUME. The SAVEPOINT command forces the actual state of C-Tr to be saved.
The RESTORE command rolls back C-Tr to a previously generated savepoint. The
SUSPEND command creates a savepoint for C-Tr and (temporarily) terminates it. The -
RESUME command restarts C-Tr at the last SUSPEND savepoint issued.

For TM3, the conventional transaction represents the unit of atomicity and durability in
the public system. CHECKOUTY/IN time intervals, in turn, represent the unit of isolation
for object processing. C-Tr also represents the unit of design consistency in the public
database. Since all object updates processed by the designer during his C-Tr are checked
into the public database at once, all necessary design consistency tests can be executed
inside the (sub)transaction which executes the CHECKIN operation at the public system.

The recovery transaction represents the unit of atomicity in the private system. It also
provides for durability in case of system failures at the workstation. The effects of
committed recovery transactions do not survive, though, if the designer rolls back his C-
Tr. Results of committed recovery transactions can also be made invalid, if the state of the
C-Tr is restored to a previously generated savepoint. Besides, C-Tr represents the unit of
design consistency for the private system. The designer can back out C-Tr completely by
deleting his private database and releasing associated CHECKOUT locks in the public
database.

The conversational transaction model makes design transactions appear atomic at the
public system. Thus, the recovery mechanism need not support cascading aborts. Since
TM3 does not take short update operations in the public database into consideration, the
designer can only invalidate their results by executing the respective compensation
transactions at the public system.

40



If conversational transactions are realized as nested transactions (as it is suggested in
[HEIMM88]), it is possible for the public system to automatically control long-duration
locks in the public database, since conversational transactions, then, inherit locks and
recovery information from committing sub-transactions which execute CHECKQUT
operations on their behalf. On the other hand, if a distributed flat transaction management
is realized, the public system does not become aware of the existence of the C-Tr at the
workstation and the designers must manage CHECKOUT locks by themselves, as it is
the case with TM1.

Although TM3 represents an evolution towards modeling design transactions when
compared to TM1 and even to TM2, this model does not capture some important
characteristics of the design work, namely the cooperation among designers and details of
the way objects are processed at the workstation. These characteristics are taken into
consideration by the next two design transaction models to be presented.

3.4 Engineering Transactions

The engineering transaction model (TM4) has been proposed in [KLMP84] and refined in
both [BaKK85] and [KoKB87]. It relies upon three major concepts: nested transactions,
semi-public databases associated with nested transactions, and the notion of a design
tranls(actign consisting of a set of possibly concurrent, conventional transactions at the
workstation.

TM4 introduces the notions of project transaction (P-Tr), engineering or
client/subcontractor transaction (E-Tr), and semi-public database. P-Tr characterizes the
efforts of a group of designers while E-Tr represents the design efforts of a single
designer. Project transactions run at the public system and logically partition the public
database. Each P-Tr is the root of a hierarchy of nested E-Tr. P-Tr acquires and releases
locks in the public system for all its descendants. Project transactions follow a long two-
phase locking protocol.

Figure 3.4 depicts dynamic properties of TM4. Engineering transactions are started and
executed by designers at workstations. Each E-Tr is associated with a private database
(managed by the local, private system) and a semi-public database. It is subdivided into a
set of recovery transactions. Concurrent R-Trs follow a short two-phase locking protocol.
By modeling concurrent recovery transactions at the workstation, TM4 tries to better
capture the real processing mode of design transactions in the private system. Usually, the
designer starts design-tool programs at the workstation that may execute in parallel and
even start other programs or external subroutines. The execution of each tool-program is
modeled by TM4 as a recovery transaction. Thus, recovery transactions may run in
parallel, start (sub)transactions, and access data concurrently.

Through E-Tr, the designer processes objects in his private database. To make semi-
committed object updates accessible to a selected group of designers (e.g. designers of his
own group), he moves the respective updated objects from his private database into his
semi-public database and grants the selected designers specific access rights. This
operation is called DOWNWARD COMMIT. The authorized designers, then, may copy
the semi-committed results into their own private databases through the execution of
CHECKOUT operations at the system which controls the semi-public database where the
wanted objects are located. CHECKOUTY/IN operations started from the same E-Tr
follow a long two-phase protocol. That is, the E-Tr (i.. the designer) may not execute
CHECKOUT operations anymore after it(he) has already executed some CHECKIN
operation.

41



b E-Tr i

PD- DOWN-
B(R-Tr) OUT, E(RTr) B(R-Tr) proc WARD1  E(R-Tr) B(R-Tr) N, E(R-TR)
work- ___ 3 1 1 1 'l — 1 1 1 " Il N 1 1
statont g N H U BRT) PO~ E(RTY § ' T L EET)
BEM L wroc 5T § I R
. i P
[ i 1 5 A
work N BRT) OU  wan ERTO | |
T t t 1
station2 i i H B(E-T) EET | f § omo
o I3
' i* } b—— e Pk
B(STr) E(S-Tn) B(S-Tr) | E(S-Tr)
server— } $ t —+—t—+—+
BTy {solaton interval of object  EPT
t P-Tr —~

P-Tr: project trans.; E-Tr: er g trans.; DO D: commit object; UPWARD: upward commit object;
PD-PROC: process object in the private database; spdb: semi-public database.

Fig. 3.4: Engineering transaction model (TM4)

Each E-Tr may only have one parent (that is, one immediate ancestor transaction). E-Tr’s
parent may be either another E-Tr or the P-Tr itself. Each E-Tr may check out objects of
the semi-public database of, at most, one other E-Tr. The former becomes a child of the
latter. If E-Tr only checks out objects of the public database, it becomes a direct
descendant of P-Tr (in this case the public database can be viewed as P-Tr’s semi-public
database). Through the semi-public database of its parent, though, E-Tr may indirectly
check objects out of the semi-public database of any ancestor.

To commit his E-Tr, the designer must check all processed objects back into the semi-
public database of E-Tr's parent. The parent inherits all locks held by E-Tr (i.e.
CHECKOUT locks as well as other locks). If E-Tr aborts, it releases all locks it acquired.
In this case, E-Tr's parent inherits only those locks which it already had owned, before E-
Tr has inherited them. The other locks are directly inherited by those ancestors from
which the locks were inherited. In the literature, no explanation is given about what
happens with descendant E-Trs when any of their ancestors is backed out. It would be
reasonable to think that they would, at least, be asked to release those objects which relate
them to their ancestors.

If we suppose that all semi-public databases are located at the server node and managed
by the public system as it is proposed in [KLMP84], we can derive following
observations about transaction properties in TM4. P-Tr represents the whole work of a
group of designers and can be seen as the unit of consistency for this work. P-Tr also
isolates this work from those of other groups of designers. By backing out P-Tr, the
pu'tI{lic system must rollback all active as well as committed E-Tr which are descendants of
P-Tr.

E-Tr models the design transaction. It represents the unit of consistency of the designer’s
work at the public system as well as at the private system. E-Tr also represents the unit of
isolation for all data processed by the designer during his work. If E-Tr does not follow a
strict two-phase protocol, the public system should protect the results of each CHECKIN
operation in case of system failure at the server node. Otherwise, E-Tr is also the unit of
durability for the public system.

The only work unit which must be executed atomically at the public system is the
conventional transaction. This transaction can execute either CHECKOUT/IN operations
or short update operations in any of the databases controlled by the public system. At the
private system, the recovery transaction represents the unit of atomicity, isolation, and

42



durability against system failures. Committed R-Trs can be backed out, though, if the
designer decides to rollback his E-Tr.

TM4 is the only model to be reviewed which takes into consideration that the designer
may want to process other data besides design objects from inside his E-Tr. For instance,
the designer may want to update some relation in the public database. TM4 treats all
public data in a homogeneous form. Thus, the recovery mechanism can support automatic
backout of E-Tr and P-Tr even if designers manipulate other data besides objects.

The action of backing out an engineering transaction can generate the cascading-abort
effect in two directions. E-Tr's descendants as well as ancestors must, at least, be
informed about the decision to abort it. Descendants would have to give objects back to E-
Tr (or release the corresponding Iocks). In the worst case, they would also abort.
Likewise, ancestors which have already got objects back from the aborting E-Tr would
have to decide if they can continue or must abort.

3.5 Group Transactions

The group transaction model (TM5) has been proposed in [KSUW85] and relies on the
concepts of multi-level transaction management and object version graphs. TM5 assumes
that objects are versioned and that the public system manages a global version graph for
each object in the public database.

TMS introduces the concepts of group transaction (G-Tr) and user transaction (U-Tr)
which can respectively be compared to the concepts of project and engineering
transactions. While G-Tr represents the design efforts of a group of designers, U-Tr
characterizes the efforts of one specific designer (i.e. it represents the design transaction).
G-Tr is the top-level of a two level transaction hierarchy in which user transactions appear
as sub-transactions. Locks acquired by G-Tr can be inherited by its sub-transactions. As
opposed to TM4 that associates a semi-public database with every design transaction,
TMS associates a group database with each group transaction. The user transaction is
related only to its private databases (the so-called user database).

Figure 3.5 presents the dynamic characteristics of TM5. Objects are checked out of the
public database by G-Tr and placed in the group database, where they are integrated into
local version graphs. U-Tr checks objects out of the group database and places them in its
private database. Updated objects are first checked back into the group database and,
when no other U-Tr needs them anymore, into the public database.

G-Tr acquires locks on objects in the public database while U-Tr locks data objects in the
group database. While G-Tr follows a two-phase CHECKOUTYIN lock protocol in the
public database, U-Tr is not requested to follow a two-phase protocol in the group
database. That is, U-Tr may executt CHECKOUT/IN operations in any order.
Unfortunately, no detailed explanation about the internal structure of user transactions can
be found in the literature. TM5 does not model the design work at the private system.

TMS5 models cooperative work among design transactions by introducing four commands
which can be executed from inside U-Tr. There exist two alternatives to exchange semi-
committed results. A designer can lend an object version which he checked out of the
group database to another designer by executing the GRANT command. The other
designer copies the object version into his private database by executing a FETCH
command. The designer who borrowed the object version gets all rights over it, except
the right to check it back into the group database. He must give the object version back to
its owner. This must occur before he terminates his U-Tr. Designers must execute a
RETURN command to give the rights over a borrowed object version back to its owner.
The owner copies the version back into his private database by executing another FETCH

43



command. The designer is not allowed to terminate his U-Tr, before he gets back all
object versions he has granted.

work- B(U-Tr) B(R-Tr) FEYCH; E(R-Tr) B(R-Tr) RETURN; E(R-Tr) E(U-Tg
station1 t i t t t i t !
1 !

work- B(R}-Tl) ouT, E(R:-Tr) B(Fl}-Tr) GF“{“"'I E(Rl'T) B(R}-Tr) FET=CH| 1?‘ E(H}-T’)
station2 8(U-TY) ; E(U-Ty)

[ group database ]
G-Trat B(G{Tr) Ot.|:'l" : lr?‘ : =E((§-Tr)
server Pk ; i ,: ;
pub. sys. B(SLTr) M E<s|'T’) B(Sl-Tr) H E(Sl-Tr)
at server T 4 LA

isolation Intervai of oblect 1 4

G-Tr: group trans.; U-Tr: user trans.; pub.sys.: public system; GRANT: grant another U-Tr an object; FETCH: fetch an object;
RETURN: return an object to the U-Tr which granted it.

Fig. 3.5: Group transaction model (TM5)

To exchange object versions which are not expected to be returned, designers can use the
PASS statement. As with the GRANT command, the object being passed is copied into
the database of the receiver by means of a FETCH command. In contrast to the GRANT
command, the designer who receives the object can consider it as being his property and
need not return it to it”s original owner.

At the public system, G-Tr represents the unit of consistency for the whole work of the
group of designers it represents. If G-Tr follows a strict two-phase lock protocol, it is
also the unit of isolation in the public database. Otherwise, this property is associated with
the CHECKOUTY/IN time intervals during which object versions are copied from the
public database, processed by design transactions of some group transaction, and
reintegrated into the public database once again. CHECKOUT/IN operations must be
executed atomically and their results must survive failures at the public system.

Since U-Tr need not follow a two-phase lock protocol, consistency in the group database
cannot be based on transaction serializability. Therefore, another correctness criterion for
concurrent U-Trs must be applied to the group transaction environment.

At the private system, the unit of design consistency is the U-Tr. The unit of isolation is
represented by the design work which is done from the moment the object version is
checked out of the group database until it is either checked back into it or granted/passed
to another designer. Since U-Tr is a long-duration transaction, it would be very
dangerous to use it as the unit of atomicity and durability at the private system. Thus, we
feel that by any reasonable implementation of TMS, U-Tr would consist of a set of
recovery transactions.



3.6 Generalizing the Design Processing Models

3.6.1 Main Characteristics of the Design Processing Models

All design processing models reviewed above try to capture the characteristics of the
design environment and represent them in the database system. Basically, these models
differ from one another to the extent in which they model the design environment.

While TM1 models only the object processing activity, TM2 and TM3 support the design
transaction concept which represents the complete activity of the designer and consists of
a set of related object processing steps. Finally, TM4 and TMS5 also model the cooperative
work of a group of designers through the project and group transaction concept,
respectively. P-Tr as well as G-Tr consist of a set of related design transactions which
may exchange non-committed object updates.

Figure 3.6 relates the processing models to the hierarchy of work units in the design
environment. These work units represent spheres of control in the database system.
Therefore, they can be modeled as transactions. Since these transactions form a hierarchy,
they can be represented as nested transactions, too.

object processing

design work of one designer

design work of a group of designers

Fig. 3.6: Relating the transaction models to the design work hierarchy

In the following, we present a list of the main characteristics of the design environment

which are captured by the various design processing models.

* The database is basically subdivided into a public database and a number of private
databases. The public database stores the released versions of design objects and,
maybe, other data related to the overall design enterprise. The designers work on
design object copies (i.e. non-released object versions) which are kept in private
databases. The designer may only integrate a design object copy into the public
database (either as a next released version of the object or as its only valid version)
when this copy is design object consistent. These characteristics of the design
environment are modeled by all processing models reviewed.

* The designer copies data from/into the public database on an object basis. That is,
complex/molecular objects are copied as a whole from/into the public database.
Consequently, the design object represents a possible granularity unit for concurrency
control (and recovery) purposes at the public system. This characteristic of the design
environment is modeled through the CHECKOU'T/IN operations and supported by all
processing models reviewed.

 The set of related work steps executed by the designer constitutes the design
transaction. This transaction represents a sphere of control in the design environment.
All models but TM1 model the design transaction concept. They do that in different
ways, though. While TM2 uses the design transaction concept only to support

45



automatic CHECKOUT-lock management in the public database, TM3, TM4 and TM5
model the design transaction as a unit of work at the private system which can even be
backed out by the designer.

* Besides relating object processing steps to each other at the private system, the design
transaction may also relate them to queries and short update operations which are
started by the designer at the public system and directly manipulate data in the public
database. Only TM4 models queries and short update operations in the public database
as part of the design transaction.

« Since the design transaction consists of a set of processing steps and can take long, it
should be possible to protect parts of it from system failures. TM3 and TM4 model this
characteristic of the design environment explicitly. Both models represent processing
steps as short-duration transactions which automatically guarantee atomicity and
durability in case of failures at the private system. Besides that, TM3 also models the
concept of savepoint which enables the designer to save specific design states which he
may want to restore some time later (SAVEPOINT/RESTORE statements).

* Reflecting dynamic characteristics of design tools, the private system should support
the concurrent execution of related processing steps. Moreover, it should allow
processing steps to be started by other processing steps (to model, for instance, design
activities in window-supporting systems). The design transaction, then, could consist
of a set of parallel, possibly concurrent processing steps. From the models reviewed,
only TM4 represents the design transaction in this way.

« Design cooperation is another characteristic of the design environment. Usually, a
group of designers cooperate in the same design work. In this case, semi-consistent
design parts may have to be exchanged among designers of the same group. TM4 and
TMS5 model the concept of group transaction which relates design transactions to a
higher sphere of control in the DBS. The group transaction can be viewed as the root
of a nested transaction hierarchy of design transactions. TM5 permits only two-level
transaction hierarchies. TM4 permits n-level hierarchies where each design transaction
can represent the design efforts of more than one designer (i.e. the efforts of the owner
of the design transaction and those of designers which execute descendant design
transactions).

3.6.2 Generalizing the Processing Models Reviewed

Based on the design processing models reviewed and the hierarchical structure of the
design work, we can derive three simplified design processing models which generalize
those found in the literature. Each one of the new models represents a specific class of
design processing models and will be described on the basis of the properties shown by
the models reviewed.

In the first general model (GM1) the public system views the work of the designer as a set
of independent object processing steps. These steps are represented by processing
activities executed during CHECKOUT/IN intervals. The notion of design transaction is
used at the public system only to enable the realization of long-duration locks. In the
second model (GM2), the public system views the work of the designer as a (design)
transaction which executes at a remote processing node. The design transaction follows a
strict two-phase CHECKOUTY/IN protocol to copy objects from and to the public
gata}base. The third processing model (GM3) models the design cooperation of a group of
esigners.

All three models represent the design work at the private system in the same way. The
whole activity of the designer is captured in the notion of a design transaction at the
workstation. This transaction is subdivided into a set of possibly concurrent, recovery
transactions. Moreover, these recovery transactions support what we call an internal
savepoint mechanism. Since the recovery transaction can sometimes take longer than
conventional transactions in business-related applications (e.g. when the designer creates

46



his design using a graphic tool), the designer may want to save some internal state of it
either to protect it from system failures or to restore this state later on, if he thinks it is
necessary. We make two restrictions to internal savepoints, though. First, they cannot be
generated as long as there exist active sub-transactions and/or remote operations which
were started by the recovery transaction. Secondly, they can only be restored by the user
from inside of the same recovery transaction where they were generated. These two
restrictions simplify savepoint restoration activities in recovery transaction hierarchies (see
[HiR087]). They help defining a clear scope of recovery for savepoint restoration.

At the public system, remote operations are modeled as short transactions by all general
processing models. Thus, CHECKOUT/IN operations (in the public or group database)
as well as queries and short update operations started by the designer at the workstation
are executed as isolated short transactions at the public system. In GM2 and GM3, these
transactions are logically related to each other by means of the design transaction.

3.6.2.1 The Design Transaction in GM1

At the beginning of his work, the designer starts a design transaction at the private
system. When this transaction executes its first CHECKOUT operation, the public system
notices its existence and starts controlling its execution in the public database. The design
transaction inherits CHECKOUT locks from conventional transactions which execute
CHECKOUT operations on its behalf at the public system. These locks are released when
the objects are checked back into the parent database. Short-duration locks acquired by the
execution of queries and short update operations are released at the end of the respective
short transactions. Thus, these operations are not associated with the design transaction.

In GML1, the design transaction may execute CHECKOUTY/IN operations in any order.
Moreover, objects which have been checked out must not be checked in atomically (i.e. in
only one CHECKIN operation). Therefore, the DBS cannot guarantee that the concurrent
execution of design transactions is always serializable. Consequently, design transaction
schedules may become non-recoverable [BeHG87]. Furthermore, the designer cannot
abort his design transaction. He can at most start compensation operations for committed
recovery transactions.

When the designer wants to commit his design transaction, the private system must
consult the public system. Design transactions are allowed to commit only if all objects
they have checked out of the public database have already been checked back in there.

3.6.2.2 The Design Transaction in GM2

In contrast to GM1, GM2 enforces a strict two-phase CHECKOUT/IN protocol for
design transactions. That is, all objects checked out by the design transaction are checked
back into the parent database at transaction commit. Moreover, this operation must be
atomic. Thus, every design transaction executes, at most, one CHECKIN operation at the
public system. The design transaction constitutes the unit of isolation at the public system
concerning object processing activities. As opposed to GM1, GM2 enforces recoverable
design transaction schedules at the public system. Recovery can, therefore, be based on
serializability to maintain database consistency.

Besides modeling internal savepoints for recovery transactions, GM2 introduces the
concept of external savepoints for design transactions. This savepoints save particular
states of the design transaction. These states can be restored by the designer at any time
before the design transaction terminates. To simplify savepoint restoration, we restrict
external savepoint generation to those points in time when no recovery transaction is
active at the private system.

47



3.6.2.3 Modeling Cooperative Group Work in GM3

GM3 models the cooperative work of a group of designers as a group transaction at the
public system. Similar to the group transaction of TMS, each G-Tr is associated with a
group database, respectively. As with G-Tr, the group database is also located at the
server node and controlled by the public system. We could imagine the group database
being implemented as a subset of the public database that can grow dynamically. G-Tr is
the parent transaction of all design transactions belonging to designers of a group.

Design transactions access data in the public database through the group transaction. That

is, design transactions check objects out of the group database. If the desired objects are

not there, G-Tr checks them out of the public database. Similarly, design transactions

check objects back into the group database after having processed them. Furthermore,

lbocks acquired by queries and short update transactions in the public system are inherited
y G-Tr.

While G-Tr follows a (long) strict two-phase locking protocol and a strict two-phase
CHECKOUT/IN protocol at the public system, design transactions follow a predicatewise
two-phase locking protocol, as it is presented in [KoKB87]. To enable designers to
exchange results before design transaction commit, database consistency cannot be based
on transaction serializability. In [KoKB87], the requirement of transaction serializability
is relaxed by replacing it with a requirement on preservation of the consistency constraint.
We briefly explain this concept below.

Database consistency can be described by a consistency constraint. The consistency
constraint for the database can be described in the form of a predicate. A transaction is
said to preserve database consistency if it preserves the consistency constraint when it
runs alone. The consistency constraint for the database can be expressed as a conjunction
of relatively simple consistency constraints for parts of the database. Since most
transactions only process parts of the database, they must only preserve some of the
predicates that form the consistency constraint for the whole database.

It is possible to represent every consistency constraint in the conjunctive normal form,
that is, as a conjunction of simpler predicates such that none of them contains any ands.
Each such a predicate will be called a conjunct.

We can, then, write the consistency constraint for the whole database as a set of conjuncts
related by and operators. Moreover, we can subdivide the database itself into a set of
groups of data where each group is, respectively, related to only one of the conjuncts of
the consistency constraint. Thus, the invariant of each transaction can be represented by
the conjunction of the conjuncts related to the data it manipulates. If we divide the
database in such a way that each group of data corresponds exactly to one design object,
el?d:i desggn object will be related to one of the conjuncts of the consistency constraint for
the database.

The relation between consistency constraints and groups of data is used in [KoKB87] to
synchronize concurrent execution of design transactions on an object basis. The
predicatewise two-phase locking protocol observes two-phase locking only with respect
to each group of data being manipulated. That is, data of a group cannot be locked by a
transaction if it released some lock on other data of the same group, already. On the other
hand, data objects of different groups can be locked and unlocked independently.

In the following, we assume that the design database can be subdivided into a set of
design objects, each of which being related to exactly one conjunct of the consistency
constraint for the whole database. Moreover, we further suppose that every conjunct of
the constraint is related to some design object of the database.

In GM3, design transactions exchange object updates by simply checking objects back
into the group database. They can do that at any time. They are only required not to check

48



out the same object more than once during normal execution. As with GM2, the designer
can generate external savepoints for his design transaction. He can, then, roll back design
work by either backing up D-Tr to some previously generated external savepoint or by
backing it out completely.

3.6.3 Properties of the General Design Processing Models

Since the processing models derived above can be considered as being extensions of the
conventional transaction paradigm, we can identify transaction properties for them, too.

While the transaction paradigm relates all its properties (i.e. atomicity, isolation,
correctness, and persistency) to the same unit of user work, namely the conventional
transaction, the design processing models relate these properties to different units of work
(e.g. recovery transaction, design transaction, group transaction). In this section, we
relate units of work that are modeled by the general processing models presented above to
properties that must be guaranteed by the recovery mechanism. Since we are mainly
interested in investigating database recovery requirements in the design environment, we
will concentrate our efforts on the study of those properties of the design work that can
influence recovery activity. Therefore, we will not further investigate units of consistency
in the design environment.

For each one of the general models presented above, we will discuss atomicity,
persistency in case of failures, and two other properties. The first of them is related to
either units of work or control information which should survive failures even before the
design work terminates. Contrary to the conventional transaction paradigm, the new
processing models enable designers to save internal transaction states that must be
protected against failures and should be restored on user request. Furthermore, the state
of longer transactions (i.e. design transactions and group transactions) must also survive
failures. In the following, this property will be called temporary persistency (to relate
it to and differentiate it from the persistency property of conventional transactions).

The second property to be introduced is related to the set of work units that can be backed
out by the designer (before their results are committed), In the conventional transaction
model, this set contains only one element, namely the conventional transaction itself. The
new models allow designers to roll back other units of design work as well (e.g. design
transaction and group transaction). Figure 3.7 summarizes what is described below.

3.6.3.1 Transaction Properties in GM1

In GML1, (conventional) short transactions represent the unit of atomicity and durability at
the public database. GM1 models the design transaction at that system only to relate it to
its associated CHECKOUT locks. Thus, D-Tr represents neither a unit of atomicity nor a
unit of durability at the public system. On the other hand, the design transaction
Tepresents the unit of temporary persistency at that system. That is, the state of the design
transaction (e.g. information about its associated CHECKOUT locks) must survive
system failures at the public system.

At the private system, only (conventional) recovery transactions for which no internal
savepoint has been generated must be executed atomically. On the other hand, recovery
transactions for which, at least, one internal savepoint has been generated must survive
system failures at the workstation even if they have not yet committed. In case of failures,
the recovery manager must restore their youngest internal savepoint. Thus, the design
work executed between recovery transaction begin and the last internal savepoint
constitutes a unit of temporary persistency at the workstation. Besides internal savepoints,
the state of the design transaction also represents a unit of temporary persistency at the
private system.

49



At the private system, the designer can roll back work done by either aborting the
recovery transaction or restoring R-Tr's state to a previously generated internal savepoint.
On the other hand, the designer cannot directly roll back any unit of work at the public
system. Since the designer cannot back out his design transaction, recovery transactions
always represent the unit of durability at the private system. That is, the effects of design
transactions can only be rolled back in the private database if the designer starts
compensation transactions for them.

GM1 GM2 GM3
server workstation server workstation server workstation
Atomicity Conv.-Tr Conv.-Tr Conv.-Tr Conv.-Tr Conv.-Tr Conv.-Tr
(af?aur':g:lrtzh) Conv.-Tr Conv.-Tr Conv.-Tr Conv.-Tr Conv.-Tr Conv.-Tr
Temporary D-Tr's state D-Tr’s state, D-Tr’s state,
Porsistoncy | D-Trsstate  andinmal  D-Trsstale  Momoa™  GTrssmte Moraand
* (before commit) savepoints
savepoints savepoints
work units which Conv.-Tr and Conv.-Tr, D-Tr, Conv.-Tr, D-Tr,
canbeabored | nong  theworkdone  pong  Cnaworkdono o . andwerkdone
by the designer aftor internal after Intoral after tema
savepoints or external or external
©po! savepoints savepoints

Note: Conv.-Tr stands for conventional transaction (e.g. S-Tr, R-Tr), D-Tr for design transaction, and G-Tr for graup transaction. g
Fig. 3.7: The transaction properties of the general processing models

3.6.3.2 Transaction Properties in GM2

As with GM1, conventional transactions in GM2 also represent the units of atomicity and
durability at both the public and the private systems. While the design transaction is the
only unit of temporary persistency at the public system, the private system must guarantee
this property for D-Tr as well as for external and internal savepoints.

The designer can completely back out non-committed recovery transactions as well as his
design transaction at the private system. He can also roll back work done by either
restoring R-Tr's state to some internal savepoint or backing up D-Tr to a previously
generated external savepoint. As with GM1, the designer cannot directly roll back work
done at the public system.

3.6.3.3 Properties of GM3

As with the other general models, GM3 models the conventional transaction at both public
and private systems as the unit of atomicity and durability in case of system failures. At
the public system, the work unit for which temporary persistency must be. guaranteed is
represented by the group transaction. On the other hand, the private system must
guarantee temporary persistency for D-Tr, external savepoints, and internal savepoints.

At the public system, the designer can directly back out non-committed group
transactions. At the private system, he can back out recovery transactions as well as the
D-Tr. He can also roll back work done by either restoring R-Tr's state to an internal
savepoint or backing up D-Tr to some external savepoint.

50



Chapter 4

Database Recovery Requirements in the Design
Environment

4.1 Recovery Situations in the Design Environment

In this section, we discuss possible failures in the design environment and investigate
how these failures can affect both database consistency and database system operation.
The reference system architecture derived in chapter 2 as well as the general design
transaction models presented in chapter 3 constitute the framework on the basis of which
we conduct the following discussion.

4.1.1 Undesired Events in the Design Environment

In [LaSt79], the set of all events which affect computing systems is divided into two
mutually exclusive groups: the group of desired events and the group of undesired events.
Desired events are those which make part of as well as collaborate in the correct
computing activity (e.g. transactions which produce consistent database states). Failures
in the computing system are examples of undesired events. The group of undesired events
“has been further subdivided into two categories: undesired but expected events and
undesired and unexpected events. Examples of undesired but expected events are system
crashes or failures in the communications network. Earthquake and nuclear war are
examples of undesired and unexpected events which can damage computing systems.

At least two facts make it impossible to construct systems which cope with all kinds of
undesired events. First, it is impossible to conceive all events which can occur in a system
" (nor all combinations of them). Secondly, it would be too expensive to protect systems
against all types of failures. Usually, the number and type of undesired events the system
can cope with depends on a cost-benefit compromise. s

. Undesired events can affect the computing system in two ways: they can produce an
inconsistent system state or/and reduce system availability. Systems are more or less
reliable, depending on how they can tolerate and recover from failures [MoABS6].
Mechanisms  which are built to help systems tolerate and recover from failures can be
installed in all layers of the computing system. Such mechanisms can be realized at the
hardware, operating system, database system, and application program layers.

The recovery component of a DBS should guarantee system reliability at the database

system layer. During its design, the set of failures (i.e. undesired events) it will have to
cope with must be determined. This occurs on the basis of a set of requirements like the

51



expected reliability of the overall computing system, the reliability of other system layers,
the DBS architecture, and the processing model to be realized.

A system is more or less reliable depending on how well it maintains availability and
correctness by executing its activities. To maintain availability at the database system
layer, the DBS must guarantee that transactions can continue normal execution even in
case of failures. This can be achieved only if two preconditions are satisfied. First, the
DBS must be realized as a distributed database system. That is, its algorithm executes on
a set of autonomous processing nodes. For this discussion, a processing node consists of
a processor and a storage hierarchy associated with it. Autonomous processing nodes fail
independently. That is, failures on one node do not necessarily cause other nodes to fail.
The second precondition which must be satisfied by the DBS so that it guarantees system
availability is related to the replication of the database in either some or even all processing
nodes of the computing system. Since transactions must continue normal execution even
in case of failures, they should be able to access all the data they need when either a
processing node or the communications network fails.

Although the characteristics of the design environment lead to the distribution of the DBS
(e.g. over a server-workstation computer configuration), the necessity and the costs of
data replication in this environment are not so clear. At least until now, availability seems
not to be seen as a serious problem in the design environment. The design activity is by
no means a real-time application. Design transactions take long and can be suspended
many times, before they terminate (i.e. usually, they consist of various design sessions).
On the other hand, we can think of some situations where system availability should be
preserved. For instance, the design transaction at the private system (i.e. private
processing node) depends on CHECKOUT operations. Although these operations are
supposed to be executed seldom, they synchronize the whole design work. Thus, it
would be nice if the system could guarantee the execution of CHECKOUT operations
even if the server node fails. A failure at a private node constitutes another situation where
availability could be important. The designer is not able to resume his work at another
workstation, if he cannot access his private database from that node. System mechanisms
should be provided which permit the designer to reconstruct his private database at
another processing node in case of node failure as well as in the same node in case of
media failure.

While the design database system can also be realized without mechanisms which assure
availability in case of system failures, it cannot dispense with the mechanisms which
guarantee correctness. The correctness aspect is related to the preservation of database
consistency. In standard database systems, the transaction manager is responsible for
database consistency during normal processing as well as in case of failures. Since the
new design processing models are extensions of the conventional transaction paradigm
and, at the same time, introduce more spheres of control in the processing environment,
we should investigate how these new models may influence database recovery.

We will only consider the correctness aspect of database system reliability, since this is
the most important reliability aspect for the design environment (and for other
environments, too). Besides, the maintenance of correctness in the design environment
already represents a complex problem for which many questions have not yet been
answered. These questions are related to the correctness of already existent recovery
techniques in the design environment (e.g. can they guarantee serializability only on an
object basis?) and the efficiency of those recovery mechanisms which can guarantee
correctness in this environment (e.g. how do they influence response time in certain
situations?).

To continue our investigation of database recovery requirements in the design
environment, we must decide which failures of this environment the database system
should cope with. To be able to investigate recovery requirements in detail, we should
focus only on the critical failures which can affect normal database processing. The rest of
the possible failures will be further subdivided into two categories: the failures which we

52



assume will be handled at other system layers and the ones which will be treated as
undesired and unexpected events. Before we make our assumptions, though, let us
enumerate the set of undesired but expected events which will be considered here:

* Processor Failure: There are, at least, three ways in which the processor can fail
[MoAb86]. It can simply stop working (i.e. it halts). It is also possible that the
processor continues working but presents abnormal, intermittent delays. Finally, the
processor can go insane. That is, it continues to work but generates incorrect results.

* Storage Failures: One can devise two distinct categories of database storage: volatile
(e.g. main memory) and nonvolatile storage (e.g. storage space on the basis of
magnetic disks or tapes). When the processor fails, the contents of volatile storage are
lost. Since nonvolatile storage is usually implemented as an autonomous device, it fails
independently from the processor.

* Network Failures: If we consider the communications network to be an autonomous
hardware and software system which connects processing nodes to one another, we
can assume that it fails independently from those nodes. When the network fails,
messages between nodes are not passed properly anymore.

* Nework Partitions: These failures can be caused either by a node or a network failure.
The distributed database system is partitioned into groups of processing nodes. Inside
each group, nodes can communicate with one another but no communication between
nodes of different groups is possible.

* Transaction Failures: In this failure category, we group all events together which can
interrupt the normal execution of some specific transaction. Transaction failures can be
identified either by the transaction itself (e.g. when incorrect input data is detected), by
the designer, or by the database system (e.g. by the occurrence of a deadlock involving
the transaction).

4.1.2 A Failure Model for the Design Database System

Relying on the list of undesired but expected events, we make the following assumptions
about a failure model for database systems in the design environment:

» We will use a fail-stop model to represent processing node activity at both the server
and the workstation nodes. At any time, the node is in one of three possible states:
perfect, halted, or recovery. In the perfect state, the node functions correctly. That is,
the node executes its algorithm correctly and in the expected time interval. Moreover, it
never stops and responds promptly to messages from other nodes. In the halted state,
the node halts and does absolutely nothing else. When the node is in the recovery state,
it executes a set of predefined algorithms to recover the database to a consistent state.

As opposed to [MoAb86], we relax the requirement that the node in the recovery state
may only execute recovery algorithms. Depending on the recovery technique realized,
the node can start new transactions in parallel to recovery activities [KARD88]. Figure
4.1 depicts the dynamical characteristics of the fail-stop model. At the beginning of the
processing activity, the node is in the perfect state. At some point in time, a node
failure occurs and the node halts. Some time later, the node enters the recovery state.
At this point, the database system recovers from the failure. At the end of the recovery
activities, the node enters the perfect state again.

By choosing the fail-stop model to represent processing node activity in the distributed
design database system, we assume that the other two types of processor failures
described above, namely correct processing with abnormal delays and incorrect
processing, are treated by lower layers of the computing system.

53



perfect haited recovery perfect

time

either processor failure
or non-volatile storage
failure

Fig. 4.1: A fail-stop model for processing nodes

* We will also represent storage failures in our failure model. The contents of volatile
memory are lost every time the processor fails. On the other hand, volatile memory as
well as processors remain intact when non-volatile storage fails. As with processor
failures, we also consider non-volatile storage failures to be processing node failures.
Therefore, we assume that the processing node immediately stops when storage
failures occur.

« It will further be assumed that the hardware and operating system layer provide the
database system with a reliable communications network [MoAb86]. The
communications subsystem is supposed to always deliver messages in the right order
and in the expected time interval. Furthermore, we assume that this system neither
duplicates messages nor generates spontancous messages. Finally, processing nodes
interpret network failures (e.g. partition, break down, loss of messages) as failures at
the nodes with which they want to communicate.

» All transaction failures are handled by the recovery component of the database system.
Processing situations which can require recovery activity in the scope of transactions
are deadlock situations as well as blocking situations involving CHECKOUT
operations, user-requested transaction backout, and restoring the transaction state to a
previously generated savepoint. According to the general processing models of chapter
3, deadlock situations can take place at the public and the private systems. The same
holds for blocking situations. On the other hand, we assume the designer can only
abort transactions that run at the workstation. Consequently, transactions being
executed at the public system may also have to be aborted. Finally, the generation as
well as restoration of savepoints always occur at the private system (with possible
consequences at the public system, t0o).

4.2 Recovery Protocols for the Design Database System

In this section, we present a set of integrated recovery and communication protocols
which cope with the failures derived in the last section. These protocols assume a one-
node failure model. That is, they suppose that processing nodes fail independently and
not at the same time. Moreover, it is assumed that a node does not fail while another one
is recoverying from a failure. On the other hand, the protocols support the situation where
a node fails while recoverying from a previous failure.

The recovery protocols rely on properties of the general processing models introduced in
chapter 3. Moreover, they consist of basic recovery and communication actions and
describe the database recovery activity in a general form. Therefore, this set of protocols
represents no specific implementation strategy for database recovery in the design
environment. In principle, any recovery technique intended to guarantee database
recovery in this environment should be based on these protocols, though. The protocols
describe recovery actions that cope with different recovery situations, respectively. Since
these algorithms cover recovery activities for all general processing models of chapter 3,
we believe that optimizations by specific implementations are possible.

54



4.2.1 Further Assumptions about the Design Database System

Besides the assumptions made so far, the recovery and communication protocols to be
presented here have been designed under the following additional suppositions:

» The DBS controls the execution of (sub)transactions at remote processing nodes (e.g.
server node) by enforcing an extended version of the centralized two-phase commit
protocol discussed in [MoAb86].

Recovery transactions running at the workstation can start remote operations at the
server node asynchronously. That is, the designer or the private system at the
workstation need not wait for the results of a remote operation before they can start
another remote operation at the server node.

To start a remote operation at the server, the private system sends a corresponding
start-work message and resumes its own processing work (i.e. the recovery
transaction at the workstation). By receiving a start-work message, the public system
begins executing the required task (i.e. it starts a short transaction to execute the
request). If the work at the server node terminates successfully, the public system
saves its results (i.e. the short transaction enters the prepared state) and sends the
private system an ok message. Otherwise, the public system aborts the short
transaction and sends a nok message to the private system.

If the recovery transaction terminates successfully, the private system saves its results
and waits for the messages of the public system. Note that, for each remote operation
started at the server node, the private system waits for one reply (either ok or nok) of
the public system.

In case the recovery transaction must be backed out at the workstation, the private
system sends the public system one abort message for each remote operation started at
the server node. When the public system receives an abort message, it immediately
rolls back the corresponding short transaction (no matter the state of it).

If the private system receives ok messages for all remote operations and the recovery
transaction terminates successfully, it sends the public system one commit message
for each remote operation started. When the public system receives a commit message
it commits the corresponding short transaction, if this transaction is in the prepared
state.

If the recovery transaction terminates successfully but the private system receives some
nok messages from the public system, it (or the designer) can decide either to abort the
recovery transaction and all successfully terminated short transactions, or to restart
those remote operations which failed, or even to start new (alternative) remote
operations. In contrast to the centralized two-phase commit protocol discussed in
[MoADB86], these. three alternatives are possible in our extension, because the private
system always sends the public system one transaction termination reply (either
commit or abort) for each remote operation started at the server node.

We explain our extension to the two-phase commit protocol in [MoAb86] with an
example which is illustrated in Figure 4.2. Suppose the designer develops his design
by means of a design tool. The whole execution of such a graphic program (including
remote operations) will be realized as one (possibly long) recovery transaction at the
private system. Suppose further that the design being developed relies on objects Oy
and Oy. First, the private system starts a CHECKOUT operation at the public system
to copy O into the private database. After Oy is sent to the workstation and the server
has saved its related CHECKOUT locks in a local log file, the public system sends an
ok message to the private system and the design tool begins processing O at the
workstation. Note that, at this point in time, the server has not yet committed the short
transaction which executes the CHECKOUT operation related to O) at the server node.
Before checking out O, the design tool generates an internal savepoint (isvp) for the
recovery transaction. If the CHECKOUT (sub)transaction which should copy O3 fails
at the public system, the design tool can decide either to back out the recovery
transaction completely, or to restore R-Tr’s state to the previously generated savepoint

35



and try to copy O2 again (or start another CHECKOUT operation to copy, for
instance, object O3). The second alternative helps preserving the work already done on

the basis of 0.
prvate system at e public system on server
workstation
B(R-Tr)
start
ouT(0,)
send msg start work (O) =) getmsg, B(S-Tr,)
walt for transfer O,
reply save locks
get msg () send msg
generate
isvp
do next
———=lsvp work
start
OUT(0,)
send msg start work (Q2) =) getmsg, B(S-Try)
wait for cannot grant
reply O,’s locks
get msg L QO send msg, E(S-Try)
decide what
to do next
do next
alternative 1 b
alternative 2
abort work
send msg pork Q) —d) gst msg, E(S-Tr,)
release
Oy’s locks
E(R-Tr) O

state transition: ——————e alternative path: ———=saee=
send/recelve message
and new state:

Note: isvp stands for Internal savepoint and msg stands for message.

Fig. 4.2: Extending the commit protocol to cope with savepoints

* Remote transactions which execute CHECKOUT operations at the public system
cannot be blocked forever. If the desired object has already been locked by another
transaction in an incompatible mode, the remote (sub)transaction checking out this
object is aborted by the public system and a nok message (possibly together with
some explanation) is sent to the private system. The designer, then, must decide what
to do next.

» CHECKIN operations are executed by special recovery transactions (i.e. CHECKIN
recovery transactions). These transactions execute no other operations. On the basis of
this assumption, we can simplify the recovery protocols. This simplification leads to
no loss of generality by the protocols, though.

« Remote (sub)transactions can be executed asynchronously. That is, remote operations
which are started by the same recovery transaction can be executed in parallel at the
server node.

56



In case the recovery protocols are applied to an environment which realizes the GM3
design processing model, the public system will always request design transactions to
abort, if they try to copy objects either from or into the group database of an inexistent
(e.g. aborted) group transaction.

We assume the transaction manager of the database system associates a state record
with every transaction which is started in the design environment. Moreover, every
data system related to the execution of a transaction (e.g. the public system) keeps its
own version of the transactions state record. Thus, every system involved in the
transaction execution can keep track of exactly those informations about the transaction
it needs.

In systems which realize either GM1 or GM2, we assume that the state record kept by
the public system for a design transaction contains, at least, information about the
objects the transaction checked out (e.g. object identifier, lock mode, version number,
if the object has already been checked back into the public database).

At the private system, the state record of the design transaction is assumed to store the
list of committed short update operations which have been started from inside of it as
well as information about external savepoints. We also suppose that the private system
keeps state records for running recovery transactions, too. These records mainly store
information about internal savepoints as well as remote operations which have been
started from inside these transactions.

In systems which realizes the GM3 processing model, we suppose the public system
associates one state record with every running group transaction. Every G-Tr state
record contains information about the state of the respective design (sub)transactions at
the public system as well as the objects and locks of the respective group database.

4.2.2 The Basic Actions of the Recovery Protocols

In the following, we introduce a set of processing primitives which form the basis of our

integrated recovery and communication protocols. Later on in this section, a specific

sequence of processing primitive calls will be associated with every recovery situation.

El"lflle ﬁrg; three primitives to be presented are based on the recovery actions proposed in
4Re83].

Undo (tr): Partial-UNDO action described in [HiRe83]; it rolls back the work unit ¢7.
Gundo (ser): Global-UNDO action; all work units which are elements of set are
backed out; set imposes a partial order on its elements.

Redo (set): Combines the effects of the Partial-REDO and Global-REDO actions. That
is, the results of all work units which are elements of ser will be restored in the
database. set imposes a partial order on its elements.

Restore (transaction state): Restores the state record of some transaction. At the same
time, this primitive can use the data kept by this record to restore other system
informations (e.g. public system’s lock table), too.

Delete (data structure): Deletes some data structure of the system (e.g. private
database) and releases storage space related to it.

Restart (1r): Restarts the execution of the work unit #r.

Decide (first option or second option): This primitive represents a decision to be
taken by the designer. Either the first option or the second option will be executed.
Inform (information): Shows some information to the designer (e.g. the list of all
committed short update operations which have been started from inside the design
transaction).

Msg (receiver,msg.explanation): Sends the processing node identified by receiver the
message (i.e. character string) represented by msg and, possibly, some explanation
about the reasons for sending the message (explanation). In the following, we use the

57



character "&" to represent the string concatenation operator inside the message
processing primitive. Further, we consider all operands of & to be character strings.

« Receive (msg): Presents the processing node the message msg which has been sent to
this node by means of a Msg statement

« Wait (wait-for clause): Represents a waiting time for the recovery mechanism. The
wait-for clause indicates what the recovery should wait for.

4.2.3 Some Procedures to Simplify the Description of the Protocols

Since some specific sequences of processing actions are executed by various of the
recovery protocols to be presented, we decided to describe them here as procedures that
can be called by the protocol programs. These procedures as well as the protocols
themselves are described by means of a Pascal-like programming language. Note that
upper-case characters are used to begin new statements. Moreover, comments on the code
can be written using either the "Comment” statement or inserting them between a "/*"
string and a "*/" string.

« PROCEDURE ACTION1 (R-Tr ):

Comment: Actionl is executed by the private system at the workstation. If
R-Tr has previously generated at least one internal savepoint, this
procedure restores R-Tr’s state to its youngest savepoint.
Otherwise, R-Tr is completely backed out;

Begin

If R-Tr has at least one internal savepoint

then Restore (R-Tr’s state to its youngest savepoint)
else Undo (R-Tr);
remoteop := Select those R-Tr’s remote operations which should be undone;
For every remote operation OPj in remoteop do
Msg (server node, 'abort-operation'& OPi’s identifier);
Inform (list of undone operations, cause: abort-or-restore savepoint);
End; /* actionl */

« PROCEDURE ACTION2 ( private system’s messages ):

Comment: Action2 is executed by the public system at the server node. By
receiving a set of abort messages from the private system at the
workstation, the public system aborts the corresponding S-Trs.
Every message received contains two informations. First, it
indicates which operation should be executed (i.e. the abort
operation, in this case). Secondly, the message contains the
identifier of the remote operation associated with the S-Tr which
should be aborted;

Begin
While Receive (msg = 'abort-operation’) do

Undo (the S-Tr associated with OPi’s identifier);
End; /* action2 */

58



» PROCEDURE ACTION3:

Comment: Action3 is processed by the private system at the workstation to
back out all running R-Tr. This procedure is called in three
situations: by rolling back D-Tr to an external savepoint, by
completely aborting D-Tr, and by aborting a group transaction;

Begin

For every running R-Tr do

Begin
Undo (R-Tr);
remoteop := Select all remote operations which have been started by R-Tr;
For every operation OP; in remoteop do
Msg (server node, "abort operation'& OP; s identifier);
End; /* for */
End; /* action3 */

» PROCEDURE ACTION4 ( ctr, aborting, public-or-group-database ):

Comment: Action4 is executed by the private system to either CHECKIN or
UNCHECKOUT objects in two possible situations: by backing
up D-Tr’s state to an external savepoint or by aborting D-Tr. The
parameters aborting and public-or-group-database are both
boolean. ctr is a set of committed transactions;

Begin

outset := Select all objects which have been checked out by some R-Tr in ctr;

For every object O; in outset do :

If aborting
then Msg (server node, UNCHECKOUT'& O;’s identifier);
/* check O into the public database without changes -> UNCHECKOUT */
else Begin /* restoring D-Tr’s state to an external savepoint */
Inform (outset);
Decide (either check Oj in the public database without changes
or Maintain Oj in the private database);
End; /* else */

shortupd := Select all committed remote update operations which have been started by
some R-Tr in ctr;

Inform (shortupd);

For every operation OP; in shortupd do

Decide (either Start a compensation operation for OP; or Do-Nothing);

Wait (for all necessary responses of the server node);

End; /*action4 */

+ PROCEDURE ACTIONS:

Comment: Action$ is executed by the public system at the server node when
a D-Tr is either backed up to an external savepoint or completely
backed out by the designer at the workstation;
Begin
While Receive (msg = 'UNCHECKOUT") do
Release CHECKOUT locks for object with O;’s identifier in the public database;
End; /* action5 */

59



+ PROCEDURE ACTIONG6 (remote operation’s identifier):

Comment: Action6 may have to be executed by the private system at the
workstation whenever either a deadlock or a blocking situation
occurs at the server node;

Begin

Identify the R-Tr related to the remote operation”s identifier;

Inform (long-duration blocking or deadlock at the public system);

Decide (either Undo (R-Tr) or Restore (R-Tr’s state to an internal savepoint));

End; /* action6 */

» PROCEDURE ACTIONT7 (inset ):
Comment: Action7 is executed by the public system at the server node when
a D-Tr is either backed up to an external savepoint or it is aborted,
and the DBS realizes the GM3 processing model; inset
represents a set of data objects which have been checked back
into the database by some transaction.

Begin
For every object Oj in inset do
Begin
transset := Select all other design transactions which have checked Oj out of the
group database after D-Tr had updated it;
For every transaction Ty in transset do

Case Ti.state of
Begin
suspended:  Append (msg = 'invalidated object'& O;’s identifier) to Tk s
state record at the public system;
aborted: Do-Nothing;
active: Msg (Tk s node, 'invalidated object'& O;’s identifier);
ready: Begin

Tk’s state := active;
Inform the design administrator (Tk is active again, Oj has

been invalidated);
End; /* ready */
End; /* case */
End; /* for every O; ¥/
End; /* action7 */

4.2.4 Recovery Protocols Based on Transaction Serializability

After describing the main operations to be executed by the recovery protocols as well as
defining the most frequently executed sequences of these operations in the form of
procedures, we are ready to present the protocols themselves. In this section, we
introduce those integrated recovery and communication protocols which are based on and
support serializable transaction schedules. Algorithms of this group guarantee the
maintenance of transaction serializability in case of failures. In the next section, we will
present those recovery protocols which are based on object-oriented two-phase locking
protocols.



On the basis of our failure model, we can specify for each one of the general processing
models proposed in chapter 3 the recovery protocols which are necessary and sufficient to
guarantee database consistency in case of failures. If the DBS realizes GM1, the recovery
manager must be capable of executing the following tasks:

« Transaction undo for S-Tr at the server node and R-Tr at the workstation.
* Restore the state of R-Tr to some previously generated internal savepoint.

¢ Transaction redo for D-Tr at the server and at the workstation, S-Tr redo at the server,
and R-Tr redo at the workstation.

Since under GM2 D-Tr is atomic at the server node, the recovery manager should also
support D-Tr backout in this environment besides realizing the recovery actions listed
above. Moreover, in the GM2 environment the recovery manager must also support the
generation and restoration of external savepoints for D-Tr.

In the GM3 environment, the recovery manager must realize all the activities listed above,
too. It must take into consideration, though, that the operations to abort D-Tr as well
restore D-Tr’s state to an external savepoint must be based on object-oriented
serializability. Besides, the GM3 environment requires that the recovery manager be able
to restore G-Tr’s state in case of a system crash at the server node and abort G-Tr on user
Tequest.

In the following, we present a set of ten recovery protocols. They respectively recover the
state of the database system in the following situations: node failure at the public system,
node failure at the private system, deadlock situation at the public system, deadlock
situation at the private system, blocking situation at the public system, backing up R-Tr’s
state to an internal savepoint, user-requested R-Tr backout, backing up D-Tr’s state to an
external savepoint, user-requested D-Tr backout, and user-requested G-Tr backout.

The protocol to back up D-Tr to some external savepoint as well as the one which aborts -
D-Tr are only valid for systems which realize the GM2 processing model. In the next
subsection, we introduce two equivalent protocols which rely on object-oriented two-
phase locking to respectively restore D-Tr’s state to some external savepoint and back out
D-Tr in the scope of the group transaction (i.e. GM3).

In the following, we will not present algorithms for data saving activities. Depending on
the recovery technique to be realized, data saving activities can be very different (e.g.
compare these activities by log techniques and by shadow techniques). We suppose that
enough information is saved during normal system execution so that the recovery
protocols can be correctly executed in case of failures.

4.2.4.1 Recovery by Node Failure at the Public System’s Site

* Public system’s actions:

Comment: After node restart, the public system identifies the transactions
which were running or had already committed before the crash.
Corresponding messages are sent to the respective private
systems. Besides that, the public system executes undo as well as
redo actions on behalf of those transactions;

- ctr := Select the group of committed S-Tr;
- ptr := Select the group of prepared S-Tr;
/* non-committed transactions which already saved results */
- utr := Select the group of unsaved S-Tr;
/* transactions which are neither in ctr nor in ptr ¥/
- Gundo (utr);
- Redo (ctr U ptr);

61



- Case transaction model of

Begin

GM1: GM2: Restore (the state records of all running D-Tr);

GM3: Restore (the state records of all running G-Tr);

end; /* case */
- For every S-Tr in utr do

Msg (user node,'nok'& identifier of the remote operation related to S-Tr,failure);
- For every S-Tr in ptr do

Msg (user node,'ok'& identifier of the remote operation related to S-Tr,failure).

¢ Reaction at the private system:
- If (msg = 'ok")
then if the R-Tr related to the corresponding remote operation is committed
then Msg (server node,'commit operation'& remote operations identifier)
else Do nothing
else if (msg = 'nok’)
then ACTION1 (R-Tr related to the corresponding remote operation).

4.2.4.2 Recovery by Node Failure at the Private System’s Site

Comment: When recoverying from a node failure, the private system
analyzes those transactions which were running or had already
terminated by the time the crash occurred. Committed R-Trs are
redone, while interrupted ones which have a savepoint are backed
up to the youngest savepoint. Both running transactions without
savepoint and aborted transactions are completely backed out.

« Private system’s actions:
- ctr := Select the group of committed R-Tr;
- str:= Select the group of R-Tr which are not in ctr but have at least one
internal savepoint;
- utr := Select the group of R-Tr which are neither in ctr nor in str;
- For every R-Tr in (str U utr) do
ACTION1 (R-Tr);
- Redo (ctr);
- Restore (D-Trs state record).

* Reaction at the server node:
- ACTION2 (ACTION1 s messages).

4.2.4.3 Deadlock Situation at the Public System

» Public system’s actions:
-.Select a short transaction to be aborted (victim S-Tr);
- Undo (victim S-Tr);
- If only short-duration locks are involved in the deadlock situation
then Restart (victim S-Tr)
else Msg (user node,'nok'& remote operation’s identifier,deadlock).

62



Reaction at the private system:
- ACTIONG (the remote operation s identifier sent by the public system).

4.2.4.4 Deadlock Situation at the Private System

Comment: Since it is possible that recovery transactions execute concurrently
at the private system, deadlocks can take place at the workstation,
too. In case of a deadlock, the private system simply selects a R-
Tr to be aborted, rolls it back, and inform the public system to
abort those remote operations started from inside the victim R-Tr;

Private system’s action:
- Select a victim R-Tr to be aborted;
- ACTIONI1 (victim R-Tr).

Reaction at the public system:
- ACTION2 (ACTION1 s messages).

4245 Blocking Situation at the Public System

Public systems actions:
- If the S-Tr to be blocked waits for short-duration locks /* no CHECKOUT locks */
then block (S-Tr) /* independent of the operation it executes */
else begin
Undo (S-Tr);
Msg (user node, nok'& identifier of the remote operation related to S-Tr,
long-duration blocking);
end.

Reaction at the private system:
- ACTIONG (remote operation’s identifier sent by the public system).

4.2.4.6 Backing Up R-Tr to an Internal Savepoint

Private system’s actions:

- Restore (R-Trs state to a previously defined internal savepoint);

- For every remote operation OP; which must be undone do
/* those which have been started from R-Tr after the generation of the savepoint */
Msg (server node,'abort-operation'& OP;’s identifier).

* Reaction at the server node:
- ACTION?2 (private system’s messages).

4.2.4.7 User-Requested R-Tr Backout

Private system’s actions;
- Undo R-Tr);
- remoteop := Select all remote operations which have been started by R-Tr;

63



- For every operation OPj in remoteop do
Msg (server node,'abort-operation'& OP;’s identifier);
- Inform (list of undone operations).

« Reaction at the server node:
- ACTION?2 (private system’s messages).

4.2.4.8 Backing Up D-Tr to an External Savepoint (Only valid for GM2)

Comment: When restoring the state of D-Tr to a previously defined external
savepoint, the private system must abort all currently running R-
Trs, roll back the effects of all committed R-Trs which executed
at the workstation after the generation of the savepoint, and ask
the server node to abort all non-committed remote operations
which were started after the savepoint generation. Furthermore,
the private system must inform the designer about those
committed remote operations which have been started at the
server node by recovery transactions which must be undone. The
designer, then, must decide, if compensation operations must be
started for those remote operations;

« Private system’s actions:
- ACTION3;
- ctr := Select all committed R-Tr which have been started after savepoint generation;
- Gundo (ctr in the private database);
ACTION4 (ctr, aborting := false, public-database);

* Reaction at the server node:
- ACTION2 (ACTION3’s messages);
- ACTIONS (ACTION4 s messages).

4.2.4.9 User-Requested D-Tr Backout (Only valid for GM2)

« Private system’s actions:

- ACTION3;
-ctr:= Select all committed R-Tr which have been started from inside of D-Tr
since D-Tr begin;

ACTION4 (ctr, aborting := true, public-database);
- Msg (server node,D-Tr abort'& D-Tr’s identifier);
- Delete (private database).

« Reaction at the server node:
- ACTION2 (ACTION3s messages);
- ACTIONS (ACTION4’s messages);
- Receive (msg = 'D-Tr abort');
- D-Tr (D-Tr’s identifier).state := aborted.



4.2.4.10 User-Requested G-Tr Backout (Only valid for GM3)

Comment: When aborting G-Tr, the public system at the server node must
first request all yet running design transactions which are
descendant of G-Tr to abort. Then, the public system releases the
locks held by G-Tr in the public database and deletes the group
database on server.

« Public system’s actions:
- For all running G-Tr’s design (sub)transactions do
Msg (user node,'abort-D-Tr'& D-Tr’s identifier,G-Tr-abort);
- Release G-Tr’s locks in the public database;
- Delete (group database);
/¥ if the group database is realized as a part of the public database, then */
/¥ restore the state this part was in when G-Tr began ¥/
- Inform design administrator (G-Tr has been aborted);
- Receive and Execute all requests made by private systems processing related D-Trs.

< Reaction at private nodes which run G-Tr’s design (sub)transactions:
- ACTION3;
- shortupd := Select all committed short update operations started from inside D-Tr;
- Inform (shortupd);
- For every operation OP; in shortupd do
Decide (either Start a compensation operation for OP; or Do-Nothing);
- Wait (for all necessary responses of the server node);
- Delete (private database);
- Inform (D-Tr aborted).

4.2.5 Recovery Protocols Based on Object-Oriented Two-Phase Locking

In our study, database recovery in systems which realize the GM3 processing model must
support D-Tr backout and external savepoints in an environment where database
consistency is preserved on the basis of a object-oriented two-phase lock protocol. The
recovery mechanism must, therefore, be able to cope with cascading aborts.

To better understand and follow the design activities of the group transaction in GM3, we
can represent its dynamical characteristics using a directed graph G. Every design
(sub)transaction of G-Tr is represented as a node of G. Design transactions are inserted in
G when they are created. A D-Tr is removed from G either when it commits or aborts.

The edges of G respectively represent sets of object exchange activities in G-Tr. Each
object exchange activity can be expressed as a triple of the form (D-Tryx,D-Try,0;") where
D-Try identifies the transaction which created the new version V of object O;j and D-Try
identifies one of the transactions which checked O;Y out of the group database, after it had
been checked back in there by D-Try.

The edge E(x,y) of G represents the set of all object exchange activities between D-Trx
and D-Try which have the former transaction as their origin. Therefore, every edge of G
can be expressed as a triple of the form (x,y,sxy) where sxy is the set of all object versions
which have been created by D-Try and checked out by D-Try. Note that the term object

65



version is used here to identify specific object states. Contrary to TMS, GM3 does not
require that G-Tr be realized on the basis of an object version mechanism.

We explain the directed graph G with the following example which is illustrated in Figure
4.3. For this example, we assume that object updates are represented as new object
versions in the group database. Suppose G-Tr consists of the set D={T,T2,T3,T4,Ts)} of
design (sub)transactions and the group database GDB. At G-Tr begin, the state of GDB is
expressed by the object set 0S={011,021,031}. T; checks O11 out of GDB, creates a
new version of it (i.e. 012), and checks it back into GDB. Meanwhile, T3 checks O;!
out, updates it, and checks 032 into GDB. T3 copies 012, 022, and O3! into its private
database. It creates the new object versions O3 and O32 and checks them into GDB, too.
T4 checks 013 out of GDB and processes it. Ts copies O32 into its private database and
creates the object version O33. After being checked into the group database, O33 is
checked out by Ts. i

As GM3 was derived in chapter 3, we explained that design transaction synchronization
follows the so-called predicatewise two-phase protocol of [KoKB87] and supposed that
the relationship between the objects of the database and the conjuncts of the consistency
constraint associated with it represents a bijective function. A transaction can, therefore,
check a new version of an object into the group database as soon as this version preserves
the conjunct related to the object being updated. Since transactions are non-two-phase,
they can execute CHECKIN operations at any time.

(%)

@ Y

Fig. 4.3: Representing G-Tr as a directed graph

There are, at least, two situations where the designer may want to either back out the
design transaction or back it up to some external savepoint: he can either realize that his
design is not logically correct (with respect to the application) or conclude that some new
object version that he checked in does not really preserve the consistency constraint (it is
possible that not all predicates can be automatically tested by the system).

It is possible that other design transactions get involved in the process of rolling back
work of a specific design transaction. If, for instance, T1 must be aborted, then T3 and
possibly T4 will have part of their works rolled back, too. T1 backout already represents
a complex task when all involved transactions are active. How can it be done, if some of
these transactions have already committed? We solve this problem by introducing a new
state for design (sub)transactions in G-Tr, namely the ready state.

A design transaction always is in exactly one of six states: non-existent (i.e. D-Tr has
not yet been created), active, suspended (i.e. D-Tr has been temporarily deactivated by
the designer), ready (i.e. the designer has notified the system of his intention to commit
D-Tr), aborted, or committed. Figure 4.4 shows the state transition diagram for design

transactions in GM3. :



Instead of directly committing his design transaction T, the designer transfers to the
system the control over it by executing the READY-TO-COMMIT statement. The system
brings the transaction into the ready state by checking all its updated objects for which no
CHECKIN operation have been executed back into the public database.

non-

Fig. 4.4: State transition graph for D-Tr in GM3

T’s transition into the committed state depends on the state of other design transactions.
‘We suppose the public system maintains a directed graph G for G-Tr (as part of the state
record of this transaction). By analyzing G, the public system can decide the next state
transition of each ready design transaction in G-Tr. If any of the transactions from which
T saw results aborts, T must be brought back into the active state and the designer must
be informed that some of the object versions he used in his design are not valid anymore.
The designer, then, can decide either to continue executing T on the basis of other object
versions or to abort it. This same procedure might also have to be executed for T if some
transaction from which T saw results backs up to a previously generated external
savepoint. While conventional recovery techniques must resolve conflicts as the ones
described above by forcing cascading aborts in the group transaction environment,
recovery based on the G graph supports partial rollback of involved transactions. By
allowing ready design transactions to be reactivated, the G graph can prevent significant
parts of the design work from being backed out in case of failures in the group transaction
environment.

A design transaction can enter the committed state only when all its ancestor transactions
in G have either committed or are able to do that. Let us take the commit process of T3 in
Figure 4.3 as an example. When the designer terminates his design work, he declares T3
to be in the ready state. T3 directly depends on Ty and T to commit. Indirectly, T3
depends on both Ts (and on itself) to commit.

Let us first consider the case where all ancestors of T3 enter the ready state. By entering
the ready state, T1 can automatically commit because it has no ancestors. If T} commits, it
is removed from G and will not be further considered in the commit process of T3. Since
T saw some updates of Ts, it can commit only if T5 commits. The latter depends on T3
to commit, though. This constitutes a cycle in G. Cycles of ready design transactions in G
can be broken only when all ancestors of all nodes in the cycle achieve the ready state.

Figure 4.5 shows a possible expansion of the graph shown Figure 4.3. Looking at this
expansion, it is easy to understand why not only the nodes involved in the cycle but also
their ancestors must be in the ready state for T3 to commit. If either Tg or T7 aborts or
backs up to some external savepoint, T5 might have to be brought back into the active
state. This might cause T, to enter the active state, too. If, as a consequence, T, decides
to abort, T3 will have to be reactivated (i.e. will not be committed).

If any ancestor of T3 aborts, the public system must analyze all paths that connect the
aborting transaction with T3 to decide if this transaction must be reactivated or not. If T3

67



has checked out any of the objects processed by the aborting transaction, it must
immediately re-enter the active state. Otherwise, the reactivation of T3 will depend on the
final state of ancestor transactions that re-entered the active state.

(043 09 (03%) 03

0,3 0,2 03
O
Fig. 4.5: A possible extension of the graph shown in Figure 4.3

Now let us go back to Figure 4.3 and discuss the situation where the designer backs up
T3 to some external savepoint ESVP. Suppose ESVP has been generated at some time
between O32’s CHECKIN and O;3’s CHECKIN. Thus, by restoring the state of T3 to
ESVP, 013 must be invalidated and all transactions which have checked it out of the
group database must roll back the work done on its basis.

In the directed graph of Figure 4.3, only T4 has checked O13 out of GDB. If T4 is in the
aborted state, its work has been rolled back already. If it is active, its owner (i.e. the
designer) must be informed that O3 became an invalid object version. If T is suspended,
the system must somehow wait until the designer reactivates it to inform him of what
happened. Finally, if T4 is ready to commit, the system must return it to the active state
and inform either its owner or the overall design administrator that O13 has been
invalidated. From what has been explained above, it is easy to understand that T4 could
not be in the committed state by the time T3 is backed up to ESVP. Since the system
synchronizes design transaction work on an object basis, descendant transactions which
have checked out objects which had been released in GDB, before the corresponding
transaction has issued an external savepoint, need not be bothered by the respective
RESTORE operation. Thus, neither Ts nor T, gets involved in the restoration of ESVP.

There exist some similarities between the prepared state of the two-phase commit
protocol and the ready state associated with the G graph. Both represent transaction
states where the transaction has already concluded its work but must wait for external
events to really commit it. The ready state differs from the prepared state, though, in that
from the latter the transaction can only commit or abort its work, while from the former
the transaction can also go back into the active state.

There are yet other differences between the two-phase commit protocol for distributed
transactions and the commit protocol proposed for GM3. The two-phase protocol places
the decision to commit the whole transaction hierarchy on the coordinator transaction and
forces all transactions to commit at the "same time" (i.e. when the immediate ancestor
terminates). Furthermore, this protocol does not permit that transactions have more than
one immediate ancestor (i.e. transaction hierarchies always build a tree-like dependency
graph). The commit protocol proposed here for design transactions in GM3 uses no
coordinator, allows transactions to have more than one immediate ancestor, and permits
(sub)transactions to commit at different points in time.

The transaction cooperation concepts proposed for GM3 also differ from the traditional
nested transaction concept presented in [Moss81]. Similar to normal distributed

68



transactions, nested transactions can build only tree-like hierarchies. That is, every sub-
transaction can have only one parent (immediate ancestor), from which it can see
temporary results (by inheriting the parent locks). Further, the traditional nested
transaction concept does not allow ancestor transactions to see temporary results of their
own sub-transactions. In [HdRo087], nested transaction environments which permit that
ancestors see temporary results of their children (sub-transactions) have been investigated
but no complete protocol has been proposed to handle these environments.

In [PROFS85], the architecture of a distributed operating system is presented that integrates
the nested transaction concept with a modified version of the two-phase commit protocol
for distributed transactions. Figure 4.6 shows the state diagram for transactions in
PROFEMO. In the active state, the (sub)transaction executes its algorithm normally. At
the end of its work, the transaction enters the completed state. In this state, locks can be
released and inherited to the ancestor transaction which, then, can see the sub-transaction
results as well as allow other sub-transactions to further process them.

saved for may release H

Undo (Tr) - locks E Redo (Tr) impossible
i
v

states of the commit process

Fig. 4.6: PROFEMO’s transition state diagram

In PROFEMO, users can decide which transactions of the nested hierarchy should
participate in the committing process. Those completed sub-transactions from which
ancestors have already seen results need not be involved in the expensive commit process.
By committing an ancestor which has already acquired the locks of its completed sub-
transactions, PROFEMO actually commits those sub-transactions, too.

The nesting of transactions as well as commit and abort processes in the distributed
environment are controlled by means of a so-called recovery graph in PROFEMO. This
graph is based on the ideas presented in [Davi78] and [Rand78]. Although the recovery
graph keeps track of transaction dependencies much in the same way the G graph
proposed to represent the group transaction does, the former has always a tree-like
structure, since every sub-transaction in PROFEMO can acquire locks by only one
ancestor transaction. The recovery graph does not keep track of the specific objects being
exchanged by transactions as the G graph does, because sub-transactions in PROFEMO
must always backout if their ancestor aborts.

The completed transition state proposed in [PROF85] cannot be compared with the
ready state proposed for design transactions in GM3. First, although transactions in the
completed state can already release locks held, their results have not yet been saved by the
system. Secondly, from the completed state transactions cannot return to the active state
anymore. They must enter either the prepared or the aborted state.

Actually, the nested transaction theory cannot cope well with the group transaction
concept because design transactions can also be only partially dependent from each other.
That 1s, design transactions may exchange semi-committed results without having to
establish a parent-child relationship for that. This "partial dependency" of design
transactions is expressed by the ready state introduced here and the possibility of
transactions which are in the ready state to reenter the active state.

69



After having described how transaction cooperation in GM3 can be realized, we can
introduce the recovery protocols to restore the state of D-Tr to some external savepoint
and to abort D-Tr in GM3. Both protocols are based on object-oriented two-phase locking
and have been designed for the case transaction cooperation in GM3 is implemented as
described above.

4.2.5.1 Backing Up D-Tr to an External Savepoint (Only valid for GM3)

Comment: Although this algorithm pursues the same goals as the one
presented in paragraph 4.2.4.8, it does it in an environment
where D-Tr updates which must be rolled back may have been
seen by other design transactions, already;

» Private system’s actions:
- ACTIONS;
- ctr := Select all R-Tr which have committed after the savepoint generation;
- Gundo (ctr in the private database);
- ACTION4 (ctr, aborting := false, group-database);
- Msg (server node,'esvp'& D-Tr’s identifier & esvp’s identifier).
/* esvp stands for external savepoint */

» Reaction at the server node:
- While receive Msg (receiver,msg,explanation) do

Case msg of
Begin
abort-operation: Undo (corresponding S-Tr);
UNCHECKOUT(Oj): Release CHECKOUT locks for Oj in the group
database;
start-short-update: Start a S-Tr to execute a short update operation;

esvp(D-Tr-id,esvp-id): Begin /* the term id stands for identifier */
: inset := Select all objects which have been checked in
by D-Tr, after the savepoint generation;
ACTIONT7 (inset);
End; /* generate external savepoint ¥/
End. /* case msg */

» Reaction at nodes of affected design transactions:
- Decide (either Restore (D-Tr’s state to some external savepoint)
or Decide (either Back-Out D-Tr or Continue D-Tr)).

4.2.5.2 User-Requested D-Tr Backout (Only valid for GM3)

Comment: Since D-Tr updates may have been seen by other design
transactions belonging to the same G-Tr, this algorithm must rely
on the group transaction’s graph G to abort D-Tr; While the
private system rolls back D-Tr at the workstation, the public
system analyzes G to identify other design transactions which
should be informed that D-Tr is being aborted;

» Private system’s actions:
- ACTION3;
- ctr := Select all committed R-Tr which had been started from inside D-Tr;

70



- ACTION4 (ctr, aborting := true, group-database);
- Delete (private database);
- Msg (server node,'D-Tr-backout'& D-Tr’s identifier).

» Reaction at the server node:
- While receive Msg(receiver,msg,explanation) do

Case msg of
Begin
abort-operation: Undo (corresponding S-Tr);
UNCHECKOUT(0y): Release CHECKOUT locks for Oj in the group
database;
start-short-update: Start a S-Tr to compensate a short update operation;

D-Tr-backout(D-Tr-id):  Begin
inset := Select all objects already checked in by D-Tr;
ACTIONT7 (inset);
End; /* msg = D-Tr-backout */
End. /* case msg of */

« Reaction at nodes of affected design transactions:

- Decide (either Restore (D-Tr’s state to some external savepoint)
or Decide (either Back-Out D-Tr or Continue D-Tr)).

7



72



Chapter §

Analyzing Existing Database Recovery Techniques
in the Design Environment

After having investigated the requirements on database recovery posed by the various
scenarios of the design environment, we can discuss how suitable specific recovery
techniques are to support design database systems. Database recovery suitability is
usually analyzed on the basis of two criteria: correctness and performance. According to
the failure model assumed for design database systems in subsection 4.1.2, a database
recovery technique is considered to work correctly in the design environment, if it
restores the database to a consistent state in case of processing node failures, stable
storage failures, or transaction failures. The basic actions which should be taken by the
recovery mechanism in each one of these situations have been already described by means
of the recovery protocols presented in chapter 4. In the present chapter, we first discuss
the correctness of existing database recovery techniques for the case they are realized in
design database systems as the ones considered in this work. This discussion will be
based on our failure model and on the set of recovery protocols of chapter 4. In the
second part of this chapter, we empirically analyze the performance of existing database
recovery techniques for the case they are realized either by the private system at the
workstation or by the public system at the server node. This performance analysis is
based on the following performance criteria:

« The overhead caused by database recovery activities during normal system operation.
« The cost of recovery in case of failures.

* The volume of recovery information which must be kept in stable storage. By recovery
information, we mean the redundant information on the basis of which the recovery
algorithm restores the database system to a consistent state in case of failures.

In chapter 6, we present the results of a recovery performance analysis based on
simulation which also relied on the criteria listed above and measured recovery costs in
terms of achieved system throughput and transaction response time.

5.1 Existing Recovery Techniques and Their Correctness in
Design Database Systems

5.1.1 Applying Existing Recovery Techniques to GM1

Nowadays, practically all existing database systems are transaction-oriented, that s, rely
on the transaction paradigm to realize reliable database processing environments.

73



Centralized DBSs implement centralized transaction management while distributed DBSs
realize distributed transaction strategies. Moreover, transaction systems can support either
conventional transactions or nested transactions. Finally, the nested transaction paradigm
can be realized at a single level of the DBS architecture (as it is proposed in [Moss81]) or
at various levels of that architecture (as the multi-level transactions in [Wei87b)).
Transaction-oriented recovery techniques were first developed to support conventional
transactions. Later, they were modified to support extensions to this paradigm.

The GMI processing model extends the conventional transaction concept to model the
design transaction. This extension does not correspond to the nested transaction concept,
though. At the private system, the design transaction can be realized as a nested
transaction but not all sub-transactions which are started by D-Tr at the server node can be
treated as nested (sub)transactions. If, for instance, CHECKIN operations were to be
considered part of the nested D-Tr, at commit time their locks would be inherited by D-Tr
instead of being released in the public database.

In subsection 5.2.3 where we comment on existing nested transaction-oriented recovery
techniques, it will become clear that these techniques cannot distinguish "real” nested sub-
transactions (e.g. recovery transactions at the workstation) from sub-transactions which
should be treated as conventional transactions at commit time (e.g. CHECKIN operations
and short update queries in the public database). Conventional transaction-oriented
recovery techniques, on the other hand, cannot support temporary persistency of D-Tr
state. Moreover, most of the existing transaction-oriented recovery techniques do not
support savepoints, because they are designed to save only data updates (and, maybe,
locks). Without modifications, these techniques are cannot capture the state of the
computing system at savepoint generation time.

To fully support design transactions in GM1, conventional recovery techniques should be
extended to support internal savepoints at the workstation and guarantee temporary
persistency of D-Tr state at least at the public system. Logging techniques can be extended
through the introduction of new log record types that keep track of the state of the design
transaction (e.g. Begin-D-Tr, End-D-Tr). Moreover, short transaction log records must
be extended to also refer to the D-Tr on behalf of which the short transaction was started.
On the basis of these log extensions, logging and recovery algorithms can be modified to
restore the state of D-Tr in case of failures at the server node. Nested transaction-oriented
recovery techniques can be modified to exclude sub-transactions of specific types from
the nested hierarchie when they commit,

5.1.2 Applying Existing Recovery Techniques to GM2

The GM2 processing model guarantees the atomicity of D-Tr at the public system.
Therefore, nested transaction-oriented recovery techniques can cope with this processing
model without much modification. In [HHMMS$8], a nested transaction management
strategy was presented which can be applied to GM2. Nested transaction-oriented
recovery mechanisms such as the ones proposed in [Moss87] and [ARI89b] support this
transaction management strategy without much problems. These mechanisms
automatically guarantee temporary persistency of D-Tr state. On the other hand, these
mechanisms would have to be extended, though, to cope with internal and external
savepoints. Considerations about the realization of savepoint schemes in nested
transactions have been presented in [H4Ro087].

To be applied to GM2, conventional transaction-oriented recovery techniques should be
modified in much the same way they are extended to be applied to GM1. Moreover, these
techniques must also be extended to cope with external savepoints. Since external
savepoints are generated in the absence of running recovery transactions, the state of the
system at savepoint generation time can be easily captured and saved by the recovery
mechanism. Recovery mechanisms based on logging can generate external savepoints by

74



simply recording a savepoint record on the log. During external savepoint restoration, all
running R-Trs must be backed out and the effect of all R-Trs which committed after the
savepoint generation must be rolled back in the private database.

5.1.3 Applying Existing Recovery Techniques to GM3

Since GM3 relies on an object-oriented concurrency control strategy, transaction-oriented
recovery techniques cannot support this processing model without far-reaching
modifications. Besides the extensions to save and restore the state of D-Tr and G-Tr as
well as the extensions to support savepoints, existing recovery mechanisms must be
modified to cope with object-oriented synchronization. While nested transaction-oriented
recovery techniques support cascading aborts only in a restricted way (i.e. the effects of a
sub-transaction are rolled back in the database when its ancestor aborts), conventional
transaction-oriented recovery techniques do not cope with cascading aborts at all.

GM3 can be viewed as an extension of the GM1 processing model. While in GM1 D-Tr
accesses objects in the public database, it checks objects out of the group database in
GM3. The group transaction surrounds the design transaction environment and realizes
the group database on the basis of the public database, though. Transaction management
(and recovery) can be constructed on the basis of this transaction hierarchy. Object-
oriented synchronization must be taken care of only at the group transaction level. At the
design transaction level and lower levels, the system can realize the recovery component
as in GM1. At the group transaction level, the recovery mechanism can be realized on the
basis of the G graph presented in chapter 4.

5.2 An Empirical Performance Evaluation of Recovery in
Design Database Systems

As an introduction to the study of suitable recovery techniques for the design
environment, we first discuss how transaction management can be realized by the design
DBS to control and integrate the various transaction types existent in that environment.
Then, we investigate different recovery properties and select those which should improve
recovery performance while guaranteeing recovery correctness in the design environment.

5.2.1 Some Transaction Management Alternatives for the Design
Environment

On the basis of the reference architecture of chapter 2 and the design processing models
proposed in chapter 3, we now discuss how the database system could realize transaction
management to support the various transaction types present in the design environment.
According to the considerations made in subsection 2.7.3, we will suppose in the
follm{lg that concurrency control is realized by the DBS on the basis of a locking
mechanism.

As already observed in [HHMMS88], a single nested transaction mechanism could control
the execution of all transactions in the design environment. If we take a server-
workstation system based on our reference architecture for design database systems and
consider the GM3 processing model, then G-Tr would be the root of a deep nested
hierarchy including design transactions, recovery transactions at the workstation, short
transactions at the server’s object/tuple level, and subtransactions at the server’s
page/segment level. Nested transaction management in this distributed environment could
be accomplished by means of transaction agents (or bookkeepers) as they are described in

75



[Roth85], [HiRo87], [HHMMS88], and [ARI89b]. We shortly explain the idea of
transaction agents below.

When a (sub)transaction T running in a processing node N starts a subtransaction T at
another node N2, the system automatically creates an agent for T1 at Na. It is said that the
agent represents Tq at N2. Moreover, the system also creates an agent at N for each
ancestor of T (if such agents do not yet exist there). If T2 commits, the locks it holds as
well as sufficient recovery information for both redoing and undoing it are inherited to
T1’s agent, before information about T is eliminated at Na. If N3 crashes, Ts recovery
information kept by T ’s agent is used to redo T s effects in the database. If T; aborts at
Nj, recovery information kept by Ty ’s agent is used by N2 to undo T2 s updates in the
database. Then, the locks held by T1’s agent are released, and the agent is discarded. If
T} commits instead, the locks and recovery information kept by T1’s agent are inherited to
the agent of Ty s parent transaction at Nj. This step is repeated every time some of T} s
ancestors commits. When the root transaction commits, its agent is discarded at N2 and
the locks originally held by T, are released in the database.

Contrary to the original nested transaction paradigm, the system would have to realize a
somewhat modified conversational interface (see [HaR087]) between G-Tr and its D-Trs
to enable G-Tr to see D-Trs” results as well as inherit D-Trslocks, yet before design
transactions commit. Only by implementing such a mechanism, the system would be able
to guarantee design cooperation in a nested transaction environment. As already
investigated in [H#Ro87], conversational interfaces can strongly increase system
complexity. .

Representing the whole design effort as a single nested transaction can also reduce
concurrency in the system, since page locks acquired by subtransactions running at the
server’s page level are held until G-Tr terminates. Even if design transactions can release
locks before committing, page locks would be released much later than necessary. Note
that this comment applies only to systems where the abstraction level for cooperation
between server and workstation is higher than the page (e.g. the record level).

A possibly better solution for controlling concurrent work in a GM3 environment would
be to represent the design effort as a set of integrated nested and multi-level transactions.
The hierarchy formed by the group transaction and its subordinate design transactions
could be realized and managed on the basis of the group transaction graph (G) presented
in chapter 4. The whole design transaction at the workstation together with its remote
operations at the server’s object/tuple level (e.g. CHECKOUT, CHECKIN) could be
realized as a single nested transaction. Finally, the hierarchies formed by transactions at
the server’s object/tuple level and those at the server’s page/segment level could be
implemented as multi-level transactions so that page locks can be released earlier at the
public system.

Figure 5.1 depicts the integrated transaction management environment proposed above.
While design cooperation at the group transaction level would be realized in a more
flexible way, since the group transaction graph facilitates the control of cooperative work,
the nested transaction paradigm would guarantee system reliability in the distributed
environment, and multi-level transactions would allow subtransactions to release page
locks earlier.

76



distributed nested
transactions

Iy s,
/S pag ‘\\
," e o \‘~
/ oriented Tr, .,
’ .,
& .

multi-level
trans. management

Fig. 5.1: Possible transaction management strategy for the design environment

Multi-level transactions as those investigated in [Wei87a] and [Wei87b] constitute a
special case of the traditional nested transactions presented in [Moss81]. In the multi-level
transaction scheme, each level of the nested hierarchy is associated with a specific layer of
the overall system architecture. Therefore, (sub)transactions of different nesting levels
process data at different levels of abstraction. Subtransactions process and lock data
abstractions which are realized by their related system layers. As a consequence of this
architecture orientation, the realization of the multi-level transaction paradigm implies
multi-level transaction management, that is, the implementation of one complete
transaction manager (consisting of, at least, a concurrency control component and a
recovery component) for each of the system layers associated with some level of the
multi-level transactions.

DASDBS [Paul87] and MONADS [Frei89] are examples of database systems which
realize multi-level transaction schemes. As already discussed in chapter 2, DASDBS
realizes a three-layer multi-transaction management. While SMM-transactions lock and
process data pages, CRM-transactions work with complex records, and AOM-
transactions both lock and process application-specific data objects. Since each transaction
level of the nested hierarchy is related to a different sphere of control, locks are not
inherited by parent transactions when subtransactions committ. They are simply released
:}c: the com;,sponding transaction manager (in this way, concurrency can be increased in
€ system).

Another way to guarantee that page locks are released earlier on a server is to realize an
open nested transaction mechanism at that node in much the same way it was implemented
in System R [Gray81]. Open nested transaction environments differ from multi-level
transaction ones in that transaction management is realized at only one abstraction level of
the system (e.g. at the tuple level as in System R). At lower levels, the system realizes
only some simple synchronization mechanism (e.g. semaphores to control page access).

It should be clear by now that the cooperation between server and workstation could also
be realized on the basis of a flat distributed transaction mechanism using some version of
the two-phase commit protocol. This strategy can be applied in combination with any of
the processing models discussed in chapter 3. In the case cooperation between processing
nodes is realized by a flat distributed transaction scheme, each processing node of the.
system can implement transaction management almost independently from one another. In
this case, the concept of a design transaction does not even need to be realized at the

71



workstation. The designer’s work at that node can be seen as consisting of a set of
independent recovery transactions running concurrently. Only the public system at the
server node would have to be aware of the beginning and ending of the overall design
work. This problem could be solved by simply requesting the designer to inform the
server every time he either starts or terminates a design work. By applying flat distributed
transactions to support cooperation in the design environment, the public system would
have to keep track of D-Tr’s state by logging CHECKOUT and CHECKIN operations in
stable storage.

If, instead of GM3, the system realizes the GM2 processing model, no group transaction
management is necessary. Therefore, the group transaction graph and the algorithms
associated with it need not to be implemented. If, on the other hand, the design DBS
implements GM1, D-Tr needs not to appear atomic at the public system anymore. As a
consequence of this, distributed transaction management can further be simplified in the
system.

On the basis of the various alternatives for transaction management in the design
environment discussed above and relying on the transaction management model shown in
Figure 5.1, we come to the following conclusions:

» Distributed design database systems will probably realize not only one but a set of
independent recovery mechanisms which will cooperate to guarantee database system
reliability in the design environment.

* Systems realizing GM3 will have to implement recovery mechanisms based on object
serializability to support design cooperation and mechanisms based on transaction
serializability to support transaction processing at the workstation as well as at the
server node. While the latter recover the database state after failures on a transaction
basis, the former must be able to restore the database state on an object basis.

* Depending on how transaction management is realized at the workstation and at the
server node as well as on how cooperation between processing nodes is controlled, the
DBS will have to implement either flat transaction-oriented recovery, or nested
transaction-oriented recovery, or even a combination of flat transaction-oriented and
nested transaction-oriented recovery mechanisms!.

5.2.2 Evaluating Conventional Transaction-Oriented Recovery Techniques

In the past ten years, a number of important surveys on database recovery have been

published (e.g. [Verh78], [Kohl81], [HiRe83]). These studies can be subdivided into

two categories: The surveys which describe existing file recovery techniques without

relying on a specific notion of consistency (e.g. [Verh78]) and those works which use the

conventional transaction paradigm as the consistency criterion for evaluating recovery
- techniques (e.g. [HiRe83]).

In this study, we analyze only those existing recovery techniques which have been
developed to support transaction systems. This decision has been taken on the basis of
two arguments. On one hand, the recovery requirements analysis carried out in the
previous chapters has shown that database recovery in the design environment should rely
on various transaction types. On the other hand, it is a fact that practically all significant
database systems which were developed in the past twenty years (in research centers of
the university as well as in the industry) realize transaction-oriented environments.

IThe term flat transaction distinguishes the conventional transaction paradigm from the nested transaction
concept. For a thorough discussion on the differences between flat and nested transactions, the interested
reader is referred to [Moss81].

78



The classification of transaction-oriented recovery techniques presented in [HiRe83] was
largely accepted by the database community. It is based on four elementary concepts
related to dynamic properties of database systems and specific characteristics of the
recovery mechanisms themselves. We briefly explain these four concepts below.

* Propagation Strategy: This concept relies on two architectural aspects which are
present in most database systems. The first one is concerned with the way data is
transferred from main memory to stable storage (i.e. disk). Usually data are written to
disk in a page(block)-at-a-time basis. Since either single DML statements or
transactions normally affect more than one database page, it is clear that transaction
results are not transferred atomically to stable storage. The second architectural aspect
to be considered here is that, in fact, the DBS maintains a database hierarchy on disk.
At any point in time, the whole set of data stored on disk is considered to form the
physical database. Not all these data have a logical meaning to the database system at
all times, though. Some of them are, for instance, old versions of updated pages or
pages of deleted files. The subset of the physical database that have a logical meaning
to the DBS at a specific point in time is called the materialized database. At that time,
the rest of the data with some logical meaning to the system are located in main
memory. In [H4Re83], the operation of simply writing data from main memory to
stable storage (i.e. write operation) was distinguished from the operation of integrating
updated data into the materialized database (i.e. propagation operation).

If the system writes updated pages back to their original addresses on disk (i.e. update- -
in-place strategy), transaction results are integrated into the materialized database step-
by-step. Therefore, if a system crash occurs before all transaction results have been
written to disk, the materialized database becomes inconsistent. That is, only some of
the transaction s updates will be reflected in the materialized database. Systems which
do update-in-place actually write and propagate updated data at the same time. These
systems are said to realize a non-atomic propagation strategy (—~ATOMIC). To prevent
the materialized database from becoming inconsistent in the case of a system crash,
other systems follow a so-called ATOMIC propagation strategy. In these systems, all
transaction updates are first written to a set of addresses in the physical database which
are not part of the materialized database. At some later point in time, when all results
are stored on disk, already, the DBS integrates these results at once into the
materialized database. That is, the system propagates the results atomically. Usually,
atomic propagation is achieved by creating a new page table for the materialized
database or for parts of it (i.e. database segments). In the new page table, the
addresses of old page versions are replaced by the adresses of the corresponding new
page versions. The act of changing the page table’s address on disk (to reflect the
address of the new page table) can be made atomic (see [Lori77]). To distinguish old
page versions from their respective new versions, the former are called shadow pages
in the literature. Moreover, recovery mechanisms which support ATOMIC propagation
are called shadow (page) mechanisms.

In systems which realize atomic propagation, the state of the materialized database
always reflects the results of committed transactions. Since the recovery algorithm
relies only on the materialized database and on some recovery information to restore
the database state in case of a system crash, global undo recovery is not needed in
these systems. This is not true for systems which realize multi-level transactions,
though. In those systems, crash recovery must realize global undo operations at higher
levels of abstraction (e.g. tuple level) even if propagation is made atomic for lower-
level transactions (e.g. page-oriented transactions). :

Atomic propagation can be realized in, at least, two different ways. One alternative is
to propagate database updates in a transaction-at-a-time basis. Mechanisms which
implement this strategy are called transaction-oriented shadow page mechanisms. On
the other hand, the system may propagate results on the basis of disk segments (i.e.
sets of contiguous disk addresses). By associating a page table segment to each disk
segment on disk, the system may propagate database updates in a segment-at-a-time
basis. In this way updates of more than one transaction may be propagated at the same
ame.

79



* Page Replacement Strategy: This is a much simpler concept which was also used as a
basis for the recovery classification in [HiRe83]. If the page-oriented buffer manager
may substitute so-called dirty pages in the buffer (i.e. flush pages to disk which
contain updates of yet running transactions), the DBS is said to realize a STEAL policy
for buffer replacement. On the other hand, if dirty pages may not be replaced in the
page-oriented buffer, the system is said to implement a ~STEAL strategy. Similar to
the ATOMIC propagation, the ~STEAL policy also guarantees that undo recovery
operations must be processed only in main memory.

* EOT Processing: Systems which guarantee that all transaction updates are stored in the
database on disk at transaction commit are said to follow the FORCE strategy of EOT
processing. On the other hand, systems which allow transactions to commit, before all
their respective updates are stored in the database on disk are said to pursue a
—FORCE policy. No redo recovery is necessary in database systems which realize the
FORCE strategy, because the materialized database on disk always reflects the results
of all committed transactions.

e Checkpoint Strategy: Checkpointing is the activity of reducing the volume of
information needed by the recovery algorithm to restore the database state after a
system crash. Checkpoint activity basically relies on propagation activity. Checkpoint
mechanisms differ from each other in the time at which the recovery manager must
force propagation to take place as well as in how checkpointing affects normal system
operation (normal transaction processing activities). In [HdRe83), checkpoint
strategies are subdivided into four categories: transaction-oriented (TOC), transaction-
consistent (TCC), action-consistent (ACC), and fuzzy checkpoints. TOC reflects the
FORCE policy. That is, transaction updates are forced to disk at commit time. TCC
implies that checkpointing is not realized in a transaction-at-a-time basis but that all
those not yet propagated updates of committed transactions are propagated together at
regular time intervals when no user transaction is running in the system. ACC is
similar to TCC but it does not require the system to be totally quiescent during
checkpoint activity (i.e. user transactions can execute in parallel to checkpoint activity).
The system must only prevent update operations from being executed. Fuzzy
checkpoint techniques use information about the actual system state to recover it in case
of crashes. Since these techniques need to propagate less data than the others, they can
allow more parallelism during normal system operation.

Besides the aspects explained above,the survey in {HiRe83] also considered the system
level of abstraction where recovery activity takes place as well as the type of recovery
information being collected. In principle, the recovery manager may be realized at any
abstraction level implemented by the DBS. Recovery information is always collected at
the level where the recovery component is located. Thus recovery information can, for
instance, be collected at the page level, record level, etc. Moreover, no matter what the
level where recovery information is collected, this information can be of one of three
types. It can represent either a specific state of some data object (e.g before-images of data
pages) or state transitions. Recovery information can represent state transitions either
physically (e.g. the set of bits which constitute the difference between the before-image
and the after-image of an updated page) or logically (e.g. the DML statement whose
execution changed the state of a relational tuple and the index entries associated with it).

Both the level of abstraction and the type of the recovery information determine the cost of
the various recovery activities as well as the space on disk needed by the recovery
algorithm to a large extent. Let us compare recovery activity at the page level and record
level. Assuming ~ATOMIC propagation with logging, recovery at the page level will
usually log more data than recovery at the record level, since the latter writes only updated
records to the log file while the former writes the whole pages where these records are
located. Depending on how accessed records are stored in the database (e.g.distributed
over many pages or concentrated in a few pages), mechanisms which log data at higher
levels of abstraction can significantly reduce the log size. Besides that, logging at the page
level takes usually longer than logging at the record level. The mechanism at the record
level can, for instance, collect before-images and after-images in a log buffer (i.e. a

80



special buffer page) and write them together to the log file in one I/O-operation. The
recovery mechanism at the page level must always log complete data pages. Thus, if the
transaction updated ten records which are respectively stored in ten different pages and
each one of these pages can store ten records, the recovery manager at the page level will
request ten I/O-operations to save the transaction’s updates while the mechanism at the
record level will, under best conditions, require only one I/O-operation to execute the
same task. When recoverying from failures, though, recovery mechanisms at the page
level can perform much better than the ones located at higher system levels. In the case of
a system crash, for instance, the page-oriented recovery mechanism needs only to read the
before-images and after-images located on the log file and reintegrate them into the
database (i.e. copy them into the system buffer). The record-oriented mechanism, on the
other hand, must read both the updated records located on the log file and the database
pages where they were originally stored. While the log file can be read sequentially,
database pages must be read with random access.

Based on the architectural aspects described above, the performance of database recovery
techniques was analyzed in both [HzRe83] and [Reut84]. While the former work relies on
the taxonomy proposed only to informally evaluate the relative costs of transaction-
oriented recovery techniques, the latter work uses a set of analytic models to evaluate and
compare the performance of various existing recovery mechanisms when they are applied
to a centralized database system which realizes a flat transaction-oriented environment. In
this experiment, recovery performance was measured on the basis of system throughput
(i.e. number of committed transactions per unit of time).

In [AgD85b], the performance of a set of integrated concurrency control and recovery
mechanisms was investigated. The authors used the extra transaction costs produced by
recovery and synchronization protocols to compare the various mechanisms. The
following integrated mechanisms were analytically modeled and compared: log and
locking; log and optimistic synchronization; shadow pages and locking; shadow pages
and optimistic synchronization; differential files and locking; and differential files and
optimistic synchronization,

Results in [Reut84] and [AgD85b] show that recovery mechanisms which are based on
shadow pages (as the ones discussed in [Lori77) and [Gray81]) usually perform worse
than those mechanisms which realize an update-in-place strategy. This is especially true
when the page table of the system is too large to be entirely kept in main memory. The
extra I/O-operations necessary to read missing table pages from disk can represent a
significant burden during transaction processing. Systems which realize update-in-place
strategies need not use the indirection represented by page tables to find page addresses
on disk. They directly calculate disk addresses on the basis of the page numbers (i.e. the
page number also represents the page’s address on disk).

On the other hand, recovery mechanisms supporting ~ATOMIC propagation and either
STEAL or —~FORCE must follow the WAL protocol to guarantee database correctness in
case of failures. WAL stands for Write-Ahead Logging. This protocol consists of two
rules. The first rule guarantees transaction atomicity. It requires that enough information
to undo an update operation is saved at some other place on stable storage, before the
results of the update operation are propagated to the (materialized) database. The second
rule of the WAL protocol guarantees transaction persistency. It requires that enough
information to redo the transaction updates is saved on stable storage, before the
transaction is committed by the DBS. Therefore, although storage systems supporting
update-in-place need not implement page tables, the recovery mechanisms associated with
them must maintain redundant information on stable storage (on log files) to recover the
system state after failures. Sequential access to log files usually performs better than
random access to page table pages, though.

When analyzed in the scope of the design environment, atomic propagation would

possibly affect system performance at the workstation and at the server node differently.
Since locality of access in design database systems seems to be lower than in business-

81



oriented systems (each small group of designers processes its own data) and the objects
processed by design transactions can be much larger than the ones manipulated by
business-related transactions, we believe that the public system’s page table can become
much larger than it is in conventional DBSs. Therefore, we expect shadow techniques to
perform worse than logging techniques at the server node. In case of an integrated
information system where both business-related as well as design applications are
supported, shadow techniques would probably perform even worse.

At the workstation, on the other hand, the private database stores, at any point in time,
data of only one designer. Consequently, recovery transactions belonging to the same D-
Tr tend to present a very high locality of access. This high locality together with the fact
that the private database is usually much smaller than the public database induce the idea
that the private system will not have to deal with very large page tables. Therefore, atomic
propagation alone would not reduce system performance at the workstation as it would
possibly do on server. Anyway, logging-oriented recovery mechanisms further remain as
a good option for the workstation, too. In [HHMMS88], for instance, a transaction
manager for the PRIMAs private system is sketched which uses shadow versions of
objects to preserve the state they were in by CHECKOUT. Updates to the same object
(i.e. atom) are always stored at the same address on disk where the first update to this
object was written to. Furthermore, to support savepoints, object updates are also written
to a log file. Finally, to use the same object representation in main memory and on disk,
the system realizes three indirections (i.e. address tables) to separate logical object
addresses from physical ones on disk and in main memory. The mechanism outlined
above is an example of hybrid storage system and recovery algorithms which are based
on both shadow versions and logging.

Evaluation results in [Reut84] showed that recovery mechanisms which support the
STEAL policy perform worse than the ones which support only —~STEAL in standard
DBSs. This can be explained by the fact that the latter mechanisms process undo recovery
only in main memory. Consequently, they need to execute less 1/0-operations during
crash recovery activities. Moreover, these mechanisms save less redundant data (and,
consequently, perform better during normal system operation, too), because they need
recovery information only to redo transaction results. It should be clear by now, though,
that systems which support the ~STEAL policy require much larger system buffers.

Although main memory prices are continually dropping, it is expected that the size of data
objects as well as the number of concurrent transactions in the database system (i.e. the
system’s multiprogramming level) will continually increase as the price of computer
hardware decreases and database systems evolve to support more complex applications.
While the goal of constructing database systems which can process up to 1000 (short)
transactions per second has already been achieved, it is expected that design transactions
will process data objects of some megabytes. Especially in integrated information
systems, it will be difficult to construct main memories large enough to permit the
realization of ~STEAL strategies. Consequently, we believe that recovery at the server
node of design database systems will have to support undo operations on disk, too.
Maybe, the realization of virtual set/object-oriented buffers could represent a solution to
avoid STEAL in design database servers. Although it would still be possible that non-
committed updates be written to stable storage during normal system operation, no undo
recovery would be necessary in the database on disk . On the other hand, ~STEAL buffer
replacement can probably be implemented at the workstation without problems, since
concurrent recovery transactions usually process the same design objects in main memory
and the private system normally supports only one D-Tr at a time. As a consequence of
the high locality of access and the small number of objects in main memory, this device
must not be so large at the workstation as it must be on server.

82



Another result of the evaluation in [Reut84] is that recovery techniques supporting the
—FORCE policy perform better than the ones relying on FORCE when commonality? is
kept high. By high commonality as well as by high locality of access, a subset of the
database is accessed much more frequently than the rest of it. In this case, data updated by
one transaction have a great chance of being accessed again by the next running
transaction. In such an environment, the FORCE policy does not work well because the
buffer manager repeatedly flushes data to disk that will be accessed again, soon. In
environments where commonality is low, on the other hand, the I/O costs produced by
FORCE will probably not represent a heavy burden to the DBS, since the data being
propagated at EOT will hardly be accessed again by other transactions.

It is realistic to-expect that recovery algorithms supporting FORCE will perform as well as
those supporting —FORCE at the server node of a design DBS. First, as explained above
sets of design transactions usually present lower locality of access. Consequently, a lower
commonality can be expected in the page/segment-oriented buffer. Secondly, tests made
with the DAMOKLES non-standard database system have demonstrated that data
representation mapping operations dominate the costs of short transactions which execute
either CHECKOUT or CHECKIN operations at the public system. These (mapping)
operations which are processed in main memory take much longer than the extra I/O-
operations which can be caused by the realization of the FORCE strategy. Therefore, it
can be expected that the FORCE strategy will not represent a significant burden for
database servers executing CHECKOUT and CHECKIN operations. Thirdly, if the
storage system maintains data belonging to the same object (i.e. the object’s subobjects
and the description of the relationships among them) clustered in the database and realizes
a chained-1/O strategy3, forcing transaction results to disk at EOT can be acomplished by
the system in only a few I/O-operations. This would reduce the burden represented by the
FORCE strategy even further.

Since recovery transactions assume the role of recovery points for the design transaction
at the workstation [HHMM88], forcing R-Tr results at EOT accelerates crash recovery at
that node. Because of the high locality of access at the workstation and the possible
absence of mapping activity at the private system, this gain at recovery time would pay
only if the operation of propagating updates at EOT could be made cheap. Otherwise, the
FORCE strategy will certainly cause system throughput to decrease and transaction
response time to increase at the workstation. In R2D2, for instance, the recovery manager
at the workstation forces updates to disk in parallel with transaction execution [Ries89].
In this way, the system tries to reduce the I/O activity at EOT while realizing FORCE.
Maybe, a better alternative in this environment would be to combine parallel logging with
normal system operation, since the private system can write updates to the log
sequentially while forcing updates to the private database would require random access to
disk (and, possibly, some mapping operation, too). Although the strategy in [Ries89]
aims at reducing transaction response time, it does not help to increase system
throughput.

Results of the evaluation in [Reut84] have also shown that checkpointing is a very
important recovery activity in those environments where system crashes are infrequent.
Systems not realizing any checkpoint strategy tend to cause very high restart costs,
because the number of database updates which have to be repeated after each crash is not
bounded in any way. From the various checkpoint strategies analyzed, fuzzy checkpoint

2Commonality is defined in [Reut84] as being the probability that a data object will be found in the
buffer by the first time the transaction accesses it.

3The term chained-I/O stands for 1/O-operations which can transfer more than one database page from
stable storage to main memory and vice-versa. Usually, the pages which are transferred together in one
chained-I/O operation have ascending addresses on disk. For an example of a chained-I/O driver procedure,
the interested reader is referred to [WeNP87].

83



came out as the one which guarantees best recovery performance. Although algorithms
which realize fuzzy checkpoint strategies present a higher (software) complexity and
usually need to collect and to control more information about the database state than
algorithms which implement simpler checkpoint strategies (e.g. the propagation of
updated buffer contents), the fact that fuzzy checkpointing can take place in parallel to
normal system operation overrides the extra costs and helps to increase overall recovery
performance specially in systems with large buffers.

Neither the new system architectures of design DBSs nor the new processing models
which are realized by these systems seem to represent new aspects of the database
environment that could refute the results of Reuter’s analysis concerning checkpointing.
We believe that fuzzy checkpoints will guarantee best recovery performance at the public
system at the server as well as at the workstation.

Another result in [Reut84] is that recovery mechanisms which log data at higher levels of
abstraction usually perform better than those which log data pages. This was observed in
those processing environments where system crashes occur infrequently as well as in
those which presented high fault rates. When interpreting these results, one must have in
mind, though, that most of the page-oriented recovery mechanisms modeled in [Reut84]
either realized no checkpoint at all or implemented either a transaction-oriented or an
action-oriented checkpoint strategy. Page-oriented algorithms which do not realize some
fuzzy checkpoint strategy may have to force many pages to the database during
checkpoint or when recoverying from failures. Moreover, using normal I/O-operations
page logging becomes much more expensive than, for instance, blocked record logging.
Reuter also modeled and evaluated the DB-Cache technique [EIBa84] which is a page-
oriented recovery algorithm that realizes a fuzzy checkpoint strategy and writes pages to
the log by means of chained-1/O operations. The DB-Cache model showed one of the best
performances of the evaluation, although it logs pages.

We believe that page-oriented logging techniques will not perform worse than other
recovery techniques in the design environment. First, the operations to map the main
memory representation of highly structured data objects as well as tuple sets onto database
pages in design database systems take much longer than the operations to map isolated
tuples onto pages in standard DBSs. Consequently, crash recovery at the object-oriented
level of a design database system might take much longer than crash recovery at the page
level. Second, if data related to the same object are always kept clustered on disk and can
be read from as well as written into the database in only a few I/O-operations, the basic
drawbacks of page-oriented recovery techniques can be overriden. Besides, page logging
is not so expensive (in terms of log space and I/O-operations) if, in most cases, pages
respectively contain only data related to the same object. Relying on the observations
above, we expect page-oriented recovery mechanisms to perform as well as record-
oriented recovery techniques on the server. At the workstation, though, it is quite possible
that page-oriented recovery presents a poor performance as it did in Reuter’s evaluation,
since the architecture of the private system is similar to reference architecture in-[Reut84].

The architecture of the public system and the object-oriented buffer make it possible to
realize the server’s recovery manager at the object-oriented level. Although crash recovery
at this level of abstraction can take long, the recovery mechanism can reduce the burden
during normal system operation by logging sets of object updates as a whole before
objects are mapped onto database pages. This would also reduce the size of the log file
even further. Besides, the transaction manager at the server could explore the fact that
transaction results are saved at the object level to commit transactions even before their
updates are mapped onto database pages. A recovery algorithm which realizes this so-
called deferred-mapping strategy was proposed in [KARDS8]. The main objective of
deferred mapping is to reduce transaction response time by committing the transaction
before the representation mapping operations related to it are executed. These operations,
then, are executed by demon processes in parallel to other transactions. Without a
thorough investigation, it is difficult to evaluate the performance of recovery mechanisms
which support deferred mapping, though. It is also possible that deferred mapping

84



operations for committed transactions can affect the response time of the next transactions
being processed by the public system. In this case, neither response time nor system
throughput would be improved.

Although deferred mapping is not of interest for the private system considered in our DBS
reference architecture, object-oriented recovery can be considered as an alternative for the
workstation, t0o. Especially recovery algorithms which can either force or log entire
(sub)objects using chained-I/O should be investigated in more detail. This algorithms
could become even more attractive, if logging activity could take place in parallel to the
execution of the respective recovery transaction. The fact that the recovery mechanism
logs whole (sub)objects instead of single updated records should not represent a serious
drawback, because recovery information would be transferred to the log very fast
(through chained-1/O). Moreover, since every log record would contain more than one
updated record, the volume of meta information in the log file (¢.g. log sequence number,
log record type, log record size) would probably decrease.

In [AgD85b] as well as in [Reut84], recovery mechanisms which rely on logging to

protect the database against failures came out of the respective performance analysis as the

best ones. In [Reut84], these mechanisms have been further specified and investigated in

four different processing environments: high update rate with low fault rate, high update

1f'atei with high fault rate, low update rate with high fault rate, and low update rate with low
ault rate.

From the ten mechanisms analyzed in [Reut84], three came out as the "winners", that is,
the ones which guaranteed highest transaction throughput:

» The algorithm described in [Lind79] which logs page entries (e.g. tuples) and can be
described on the basis of the classification in [H4Re83] as being (rATOMIC, STEAL,
—FORCE, FUZZY).

« The so-called DB-Cache recovery algorithm proposed in [EIBa84] which logs database
pages and can be defined as being (FATOMIC, =STEAL, —FORCE, FUZZY).

A third recovery mechanism which supports a ~ATOMIC, STEAL, and -FORCE
database environment, logs page entries, and implements an action consistent
checkpoint strategy (i.e. checkpoints suspend only system operations for record
update) at regular time intervals.

The algorithm in [Lind79] differs from the last one above in that it realizes a fuzzy
checkpoint strategy. Only updated pages which have not yet been propagated since the
last checkpoint are written to disk by the actual checkpoint. DB-Cache logs at the page
level and realizes an efficient fuzzy checkpoint strategy which is based on a logically
circular log file. Checkpoint takes place only when the circular file becomes full. In this
way, checkpoint activity is proportional to user update activity. DB-Cache does not cope
well with long-duration transactions, though, because the —~STEAL strategy forces data
updates to be kept in the buffer until transaction commit. If the buffer becomes full with
non-committed updates, the system must abort the corresponding transactions. In this
way, system throughput can decrease significantly. To solve this problem, it is proposed
in [E1Ba84] that results of long-duration transactions should be kept in special log files
which store enough undo and redo information to support the STEAL strategy. DB-Cache
would possibly work well in a public system which realizes GM1 and processes only
CHECKOUT and CHECKIN operations and short queries. On the other hand, DB-Cache
will certainly perform very poorly if the cooperation between server and workstation is
realized on the basis of the nested transaction paradigm. In the GM1 environment, the
server processes only isolated short transactions. In a nested transaction environment,
short transactions which execute CHECKOUT and CHECKIN operations have to be kept
prepared at the server node until the design transaction which started them terminates at
the workstation.

85



5.2.3 Evaluating Nested Transaction-Oriented Recovery Mechanisms

Most recovery mechanisms proposed for nested transactions so far rely on the technique
presented in [Moss82]. This technique is an extension of recovery algorithms which use
shadow versions of objects to preserve database consistency in flat transaction
environments. For every running nested transaction, this technique associates one version
stack with each data object accessed by the transaction. Every time a (sub)transaction
acquires a write lock on an object, the system makes a copy of the object’s actual state and
inserts the address of this copy into the respective object stack of the nested transaction.
Besides that, the copy’s address is also associated with the (sub)transaction accessing the
object. After this operation, the (sub)transaction updates the original object version. That
is, during normal operation the system follows an update-in-place strategy of
propagation. The object’s version stack represents only the hierarchy of before-images of
the object inside of the nested transaction.

When a (sub)transaction aborts, its associated object versions are used to restore the
original states of those objects for which it holds write locks. Depending on its
implementation, the recovery mechanism either overwrites the objects” original versions
with their respective copies or substitutes addresses of original versions for those of their
copies. After that, the recovery algorithm removes those copy addresses associated with
the aborting transaction from the respective stacks. When a subtransaction commits, its
associated versions are offered to its parent. The parent transaction inherits a version, if it
is not yet associated with any other version of the same stack. Versions of objects for
which the parent already has associated versions are simply discarded.

On the basis of Figure 5.2, the following example further explains the recovery technique
proposed in [Moss82]. While (sub)transactions update database objects in the system
buffer, the recovery manager keeps before images for these objects in so-called object-
version copy stacks. In the example of Figure 5.2, the recovery mechanism creates a
version stack for O when T) acquires a write lock on that object. Before T; updates O
(i.e. creates a new version of Oy), the recovery mechanism inserts a copy of O1’s actual
version (i.e. O19) into the nested transaction’s copy stack related to this object. After that,
T is allowed to update O; s original copy in the buffer. When T3 locks O for write, a
copy of O1’s new version (i.e. O11) is inserted into the stack and related to that
transaction. After that, T3 is allowed to change Oj in the buffer. If T3 aborts, the recovery
mechanism simply takes O s before-image related to that transaction from the stack and
overwrites O} s copy in the buffer with it. If T3 commits, on the other hand, the before-
image of Oy related to it in the stack is discarded, since T (i.e. T3 s ancestor transaction)
has already updated O before and, consequently, is associated with another before-image
of O1 which is also stored in the stack. If T aborts later on, O s before-image related to
this transaction is used to restore O} s original state (i.e. O19) in the buffer. When To
acquires a write lock on O, the recovery manager notes that there exists no version stack
for O related to the nested transaction hierarchy. Thus the recovery mechanism creates a
new object-version copy stack in main memory and relates it to both the object O3 and the
nested transaction to which T belongs. Then, a copy of Oy s actual version (i.e. 029) is
inserted into that stack and associated with T5. If T, commits, the before-image of Oy
associated with it in O2’s version stack is inherited by T;. This is done, because although
the version of O3 that was created by T2 now represents O2’s actual version in the
database, O2’s original version (i.e. 020) must have to be restored in the database, if Ty
aborts later on. In the case T aborts, the before-image related to it in Oo’s version stack is
used to restore O;’s original state in the database. After that, O2s before-image as well as
O2’s version stack can be discarded by the recovery mechanism, since no other
transaction of the nested hierarchy holds write locks on that object.

Some implementations of the Moss’s vqrsion algorithm are described in [Eden82],

[LCIS87], and [MuMP83]. Most of these implementations save complete data pages as
shadow versions. Also when only the updated parts of data pages are copied as versions

86



(as it is the case by the mechanism presented in [MuMP83]), this recovery technique can
become very expensive, since objects can be big and, depending on how deep the nested
hierarchy is, many versions of the same object will have to be created by the system for
the same nested transaction. Besides, to prevent version management from increasing the
volume of I/O-operations in the system, most of the implementations of version-based
recovery techniques support only =STEAL.

In [ARI89b] where a recovery mechanism for nested transactions based on logging was
proposed, the authors used the same arguments presented in [ARI89a] to criticize
recovery mechanisms which rely on shadow techniques: very costly checkpoints, extra
(volatile and nonvolatile) space overhead for shadow copies, disturbance of the physical
clustering of data, and extra I/O-operations due to page faults related to page mapping
structures (i.e. page tables). The authors also comment on the (possibly great) system
gverhead introduced by the algorithms which control object versions inside of transaction
ierarchies.

Oy's Oy’s
verslon- version-
copy copy
stack locked O, stack

04Ty
ey B— oo,

. updated by T, 50213
Sevenert

Notes: 1) T; stands for (sub)transaction |, O for object j's version v;
2) dotted boxes represent incomplete object versions.

system buffer

Fig. 5.2:Data structures for the shadow-version recovery example

The recovery mechanism for nested transactions presented in [ARI89b] (i.e. ARIES/NT)
relies on the one proposed for flat transactions in [ARI89a] (i.e. ARIES) which, in turn,
is based on the recovery technique described in [Lind79]. From the latter, ARIES/NT
inherited the log sequence number (LSN) concept which is applied by the system to
associate database page versions with log records. From ARIES, ARIES/NT inherited the
concept of compensation log records (CLRs) which enables the system to support
operation logging (i.e. logical logging of state transitions) and novel lock modes (e.g.
lock modes based on commutativity as increment/decrement).

In [Moss87], another logging-oriented recovery technique for nested transactions was
presented. This algorithm can work only at the system’s page level, though (see
[ARI89D] for further explanation). Both ARIES/NT and the recovery mechanism
described in [Moss87] are extensions of WAL (write-ahead logging) algorithms for flat
transaction environments. They extend those algorithms basically by connecting the log
record sequences of transactions pertaining to same nested hierarchies.

In ARIES/NT, for instance, the commit record of every subtransaction is integrated into
the backward chain (BW-chain) formed by the log records belonging to the respective

87



parent transaction (see Figure 5.3). Every subtransaction commit record (C-Commit)
belongs, therefore, to two different log record chains at the same time: the
subtransaction’s BW-chain and the parent’s BW-chain. C-Commit’s field PrevLSN
points to the previous log record in the parent’s chain while the field LastLSN points to
the previous record in the BW-chain of the subtransaction.

By connecting BW-chains of nested transactions, the recovery mechanism builds so-
called backward chain trees (BWC-trees) in the log file. Every running nested transaction
is represented in the log file by a so-called backward chain forest (BWC-forest) which
consists of, at least, one BWC-tree. The first BWC-tree of a forest has the BW-chain of
the nested hierarchy’s top-level transaction (TL-transaction) as its root. The other possible
BWC-trees represent internal portions of the nested transaction which have yet running
subtransactions as their roots.

WAL-based algorithms for nested transactions redo as well as undo nested transaction
states in case of failures (e.g. system crash) by traversing the transactions” associated
BWC-forests in the log file. For each BW-chain visited, these algorithms practically take
the same actions as their counterparts in flat transaction environments.

sequential log file

T,'s BW-chain T1’s BWC-forest

e Tysupd] 30 ey
s Tys pd e G | e

«ree—{T;'s upd }o—1 7,5 BW-chain

time
active Notes: 1) T; stands for (subjtransaction i, B for begin-of-transaction log record, upd

for object update log record, and C for ransaction commit log record.
2) BW signifies backward and BWC stands for backward chain.

committed active

Fig. 5.3: Transactions and data structures for the log-oriented recovery example

In [Wei87a], on the other hand, a special recovery algorithm for multi-level transaction
environments was presented. This algorithm relies on multi-level logging to cope with
transaction backout and system crash. The recovery manager of the lowest system layer
logs before-images and after-images of updated data pages. Each higher system layer
keeps only undo information related to running transactions which execute at that layer.
This information is logged in the form of inverse operations.

To backout a transaction which executes at the system’s page level, the recovery
mechanism proposed in [Wei87a] restores the state of updated pages by replacing them
with their respective before-images which can be found in the system’s page-oriented log
file. At higher levels, the system rolls back transactions by executing inverse operations in
inverse chronological order. The inverse operations related to a transaction can be found
in the log file of the system level at which it runs. Inverse operations are executed as part
of the transaction being aborted. Since inverse operations at one system layer are partially
realized by operations (i.e. transactions) at lower system levels, locks at those levels have
to be acquired again. As a consequence, transaction backout in higher layers may involve

88



lower-level transactions in block as well as deadlock situations. Moreover, to resolve
deadlock situations, the system may have to backout inverse operations (possibly
indefinitely), too.

After a system crash, the multi-level recovery mechanism recovers the database state by
serially recoverying the state of each system layer (from the lowest to the highest layer).
First, it brings the database to a lowest-level transaction consistent state by undoing the
effects of either running or already aborted page-oriented transactions and redoing the
updates of committed page-oriented transactions. Then, in each higher system layer
transactions which were running by the time of the crash are completely backed out
(through the execution of inverse operations).

Besides presenting the drawbacks related to the execution of inverse operations at higher
levels (which actually represent side-effects of the associated multi-level concurrency
control strategy), the recovery algorithm proposed in [Wei87a] shows a poor performance
due to logging redundant recovery information at several system levels. The control and
synchronization of the different log files surely represent an extra burden to transaction
processing activities (see [Wei87b] for a thorough discussion on these topics).

If the design DBS realizes the designer’s work (i.e. the design transaction) as a
distributed nested transaction, recovery at the workstation as well as on server should rely
on logging. Based on the recovery analysis presented above, we can conclude that nested
transaction-oriented recovery techniques which rely on shadow copies would require very
large main memories and stable storage space at both server and workstation, since design
objects can be very large. Besides, the processing overhead necessary to manage internal
version hierarchies in nested transactions would certainly represent a significant burden
during normal system operation. Especially at the workstation where both processing
capacity and storage space are restricted, internal version management would possibly
reduce system throughput as well as increase transaction response times.

As already discussed in section 5.1, the public system can improve concurrency on server
either by realizing an open nested transaction mechanism or by implementing a multi-level
transaction scheme at that node. Because of the problems associated with multi-level
concurrency control as well as multi-level recovery, we believe that the open nested
transaction alternative should be preferred. In this environment, the recovery mechanism
can be realized at a single level of abstraction (e.g. tuple level). This can significantly
simplify both the construction and operation of the recovery mechanism on server.

Object-oriented recovery mechanisms, too, can rely either on logging (i.e. support
update-in-place) or on shadow versions (i.e. support atomic propagation). Object-oriented
techniques based on shadow versions represent a straightforward solution to object-
oriented recovery at the server node as well as at the workstation. On the other hand,
these techniques cause the drawbacks discussed above for transaction-oriented recovery.
If, for instance, design transactions are realized as nested transactions at the workstation,
the shadow version algorithm described in [Moss82] can be modified as to guarantee
object-oriented recovery at that node. If D-Tr is requested by G-Tr to roll back
modifications done on a specific object, the private system must proceed as follows.
First, all running recovery transactions which have locked the object or are waiting to lock
it must be aborted. Then, the object’s actual version must be deleted in the private
database. After that, the whole shadow version stack associated to the object must be
destroyed and its storage space released in the private database. Finally, D-Tr must
UNCHECKOUT the object in the public database.

89



o™
C—— G

a) Graph G’s state by D-Try"s backout

D-Tr, state:active e O,,checked-out,LSN:

D-Try stateactive s Og,checked-out LSN: y

D-Tr, state:ready O;,checked-in,LSN: x, O, checked-in,LSN:

D-Tr, state:active cee 04 checked-in,LSN: —
b) Design transactions’state records at the server node -l

begin of log I '—

[ E(in( D-Tr1, O1)) update( O1, page) E( In( D-Tr2, O1)) E(out( D-Tr4, O1))I
TL .. Jt ]

¢) Log file at the server node

Note: E stands for "end of", in for CHECKIN, out for CHECKOUT, and LSN for log sequence number

Fig. 5.4: Example of recovery information associated with G-Tr at the server node

To avoid the drawbacks of shadow version techniques, the DBS can realize object-
oriented recovery on the basis of logging techniques. In the following, we propose an
extension of ARIES/NT which also supports object-oriented recovery. We explain this
extension by supposing that the group transaction environment is realized by the public
system on the basis of a nested transaction mechanism implemented at the server’s record
level. Moreover, we assume that design cooperation is controlled on the basis of the G
graph presented in chapter 4. Besides maintaining one backward chain on the log for
every transaction of the nested hierarchy formed by G-Tr as well as by its subordinate D-
Trs and their respective short transactions, the recovery mechanism also keeps special
backward chains on the log which respectively associate log records for the same object.
Object-oriented log record chains are not bound to transaction-oriented chains. That is,
log record chains for updated objects can span log chains for transactions. For every
running D-Tr (i.e. a D-Tr which has neither committed nor aborted), the transaction
manager keeps a list of all objects that have been checked out by this transaction in its D-
Tr state record at the server node. Every object entry in this list contains, at least, the
actual status of the object (i.e. checked-out, unchecked-out, checked-in) and the address
of the youngest log record for this object which has been written on D-Tr’s behalf.

We explain D-Tr backout in a design cooperation environment using the scenario shown
in Figure 5.4. Figure 5.4 (a) depicts the state of the graph G at the time D-Tr; decides to
abort. Both D-Trj and D-Tr4 have seen non-committed results (i.e. Oy s version 1) of the
aborting transaction. While D-Tr; is already in the ready state, D-Try is running yet. By
analyzing G, the recovery mechanism concludes that D-Tr; ’s effects can be removed from
the group database, if the original version of Oj is restored therein. To achieve this goal,
the recovery algorithm takes the following steps. First, it identifies the transactions which
must be involved in this operation. Then, it analyzes the state records of those
transactions to decide which operations each one of them must execute. D-Tr4 must be

90



requested to check Oj back into the group database without changes. D-Try must be
brought back into the active state and its owner must be informed that O;! has been
invalidated. Finally the state O was in before D-Try checked it back into the group
database must be restored. This last operation is executed by the recovery algorithm itself.
It first identifies the last log record associated with Oy. It finds the address of this record
in D-Tr4’s state record. By following the backward chain for Op on the log, the recovery
algorithm keeps on restoring O1 s older states until the Begin-of-Checkout record related
to both D-Tr; and Oy is found on the log file. As with ARIES/NT, corresponding
compensation log records are written to the log as O;°s backward chain is being
processed.

Nested transaction-oriented recovery techniques applied to the workstation must also be
extended to cope with design cooperation. We can explain this on the basis of the example
given above. Suppose D-Tr4 had already modified Oy at the workstation by means of a
set of successful recovery transactions as it was requested to uncheckout that object. If the
workstation crashes after the uncheckout operation is completed, the recovery mechanism
will try to redo the effects of those committed recovery transactions which updated Oy in
the private database. This mechanism should not do that, though. First, O; cannot be
found in the private database anymore. Secondly, the effects of those recovery
transactions which only updated Oy should not be recovered. This problem can be solved
by writing a special uncheckout record for O] to the log file at the workstation. By
reading the log file backwards during crash recovery, the recovery manager finds this
record before it reads the respective commit records for those recovery transactions which
processed Oj. Therefore, it can avoid redoing the effects of those transactions when it
finds their records on the log.

5.2.4 Further Recovery Classification for the Design Environment

Besides the architectural properties considered in [H#Re83], recovery in the design
environment can be analyzed under various other aspects. Relying on our study of
recovery requirements, we can identify, at least, three other important classification
criteria for recovery in design database systems. In the following, we both present and
discuss these criteria on the basis of which recovery can further be analyzed.

* Node Cooperation: Reflecting the kernel architecture of design database systems as
well as the server-workstation computer configuration of the design environment, the
DBS can either realize a systemwide integrated recovery mechanism or implement
isolated recovery managers in each of the system’s processing nodes. Integrated
recovery algorithms as the one proposed in [KaWe84] explore the failure independence

" property of processing nodes to improve overall system reliability. For instance, to
cope with both small disks and disk crashes at the workstation, the private system’s
recovery manager can send transaction updates to be saved at the server node from
time to time. On the other hand, in case of disk crashes on server, the public system
can ask the private systems at workstations to send the CHECKOUT versions of those
objects actually being processed there.

While integrated recovery mechanisms can improve reliability in the design
environment especially in the case of hard failures, they would possibly represent an
extra burden for the communications subsystem and reduce the server’s performance,
since the public system would have to support recovery at the workstations besides
executing its own tasks. The extra burden on server would grow with the number of
workstations in the system, Integrated recovery could alternatively be realized only
among workstations, though, to prevent the extra burden on server. The private
system at the workstation could, for instance, use the designer’s think times to
broadcast transaction updates to other workstations. In case of a disk crash, the private
system would request the data to be sent back. Since possibly more than one other
workstation stored the updates (sent by the broadcast operation), the probability that all
of them be off at the time of the crash is not high.

91



Isolated recovery managers can be designed to better cope with special characteristics
of specific processing nodes. In systems where workstations have enough disk space
to store the whole private database (with all its versions), the alternative of isolated
recovery managers for server and workstation would possibly improve overall system
performance, since less communication between server and workstations would be
necessary. On the other hand, isolated recovery algorithms, too, can cope with disk
crashes at the workstation. For instance, from time to time the recovery manager at the
workstation could write transaction updates to normal data files on server by means of
remote update queries to the public database. The log files in the public database could
be created by the designer and associated to his D-Tr at the beginning of the design
work.

Transaction Cooperation: This classification criterion distinguishes recovery techniques
which are based on transaction serializability from those which permit transaction
cooperation (e.g. algorithms supporting the predicatewise two-phase protocol).
Database systems supporting design cooperation as it is defined in GM3 must
implement a hybrid recovery mechanism which can guarantee transaction serializability
for short and group transactions in the public database as well as for recovery
transactions in the private database, while supporting object serializability for design
transactions in the group database. Recovery subsystems which support either GM2 or
GMI1 can exclusively rely on transaction serializability.

If the DBS realizes GM3, the workstation’s recovery mechanism must be able to roll
back work on an object basis, too. While a transaction-oriented recovery mechanism
must be applied at the recovery transaction level at the workstation, an object-oriented
recovery mechanism must support design transaction management at that processing
node. In the following subsection, we propose an alternative to integrate transaction-
oriented recovery with object-oriented recovery at the workstation. Similar to
transaction-oriented recovery mechanisms, object-oriented recovery techniques can
also be classified on the basis of the architectural concepts considered in [HziRe83].

Group transaction management will probably be realized by the public system at the
server node. In this environment, recovery mechanisms which realize deferred
mapping will probably perform well. Since design transactions exchange non-
committed object versions by first checking them into the group database, Tecovery
based on deferred mapping could help saving mapping operations at the server node
in, at least, two distinct ways. We explain this on the basis of a recovery mechanism
which logs object versions at the object-oriented level of the public system. The
designer executing the CHECKIN operation could in addition inform the public system
that the version being checked in will soon be checked out by another designer (we
assume that designers belonging to the same group are always acquainted with each
other’s work and intensions). In this case, the system would save the updated object in
its actual representation (i.e. level of abstraction) and commit the CHECKIN
operation. When the other designer starts his (expected) CHECKOUT operation, the
server would simply read the object from the log file and send it to the workstation
without changing its representation. In this way, the public system would avoid two
actually unnecessary (possibly long-duration) mapping operations. The public system
can also reduce the number of mapping operations at the server node by automatically
waiting to map object versions which have already been checked in until the design
transactions that created them commit. If any of these objects is checked out and
checked back in by another design transaction before the transaction which created it
commits, only the version checked in later needs to be mapped onto database pages.

Transaction Paradigm: At various levels of the design environment, transaction
management can be realized in either one of two ways: on the basis of the
(conventional) transaction paradigm (and its distributed transaction extension) or by
following the nested transaction concept. The whole transaction hierarchy forming the
design transaction, for instance, can be either implemented as a distributed nested
transaction or partitioned in such a way that it forms a nested transaction at the
workstation which can start a set of flat transactions on server. While nested
transaction-oriented recovery techniques can cope with both flat and nested transaction

92



environments, flat transaction-oriented recovery mechanisms (as the ones investigated
in [HiRe83], [Reut84], [AgD85a], and [AgD85b]) can only support flat transaction
systems.

Nested transaction-oriented recovery mechanisms can further be classified on the basis
of two orthogonal criteria: recovery strategy and level of abstraction. Concerning the
recovery strategy, these mechanisms rely either on shadow versions of data or on
logging. Shadow version algorithms provide each transaction of the nesting hierarchy
with the information necessary to recover its state in case of failures independently of
other transactions in the hierarchy. Logging mechanisms maintain recovery
information integrated and centralized.

Recovery algorithms which support (conventional) nested transaction environments
usually operate at only one level of abstraction (e.g. page level). If the system realizes
a multi-level transaction scheme, though, the recovery manager must operate in all
those system levels where transaction management takes place. In the next subsection,
we analyze various existent nested transaction-oriented recovery techniques in more
detail.

5.2.5 Summarizing the Conclusions of the Empirical Recovery Evaluation

In the present section, we have first analyzed recovery for design database systems on the
basis of flat transaction-oriented recovery mechanisms. For this part of the study, we
based our considerations about recovery performance on the classification of recovery
techniques proposed in [Hi#Re83] as well as on the evaluation results of recovery
performance studies presented in {[Reut84] and [AgD85b]. Then, we have extended the
classification of recovery mechanisms for the design environment by introducing three
other classification criteria, namely how recovery mechanisms located in different
processing nodes cooperate, if the algorithms support transaction cooperation, and the
transaction paradigms which are followed by different recovery algorithms. Figure 5.5
shows the hierarchy formed by the proposed classification criteria. The triangles in this
figure represent instances of the hierarchy of concepts proposed in [HaRe83] which is
illustrated in Figure 5.6. Recovery mechanisms realized at the system’s object-oriented
level can further be subdivided into two categories: the mechanisms which support
deferred update and the ones which do not.

node

cooperation: /wm‘\ K
transaction design - design i
peraty perati cooperation
transaction
paradigm: flat nested I'lsln
levels of one  multi- one
abstraction: el level

Notes: 1) The triangle rep: the recovery i proposed in [HiRe83) which is depicted in Figure 6.6.
2) The last three clasaification criteria, namely paradigm, levele of and the classification in
[HaRe83) refer to sach racovery sul being i d in the design

Fig. 5.5: Classification of recovery mechanisms in the design environment

93



In the following, we summarize the main results of the empirical recovery evaluation
carried out in the previous subsections:

* Concerning the possible cooperation of recovery algorithms in different processing
nodes, we believe that isolated recovery mechanisms on server and at the workstation
would perform better than integrated recovery mechanisms. The latter may cause a
significant extra burden for both the communications subsystem and the public system
on server. On the other hand, integrated recovery mechanisms involving only
workstations may be able to improve reliability at the workstation without reducing
system performance very much.

« If the DBS supports design cooperation, the recovery mechanism at the server must
combine object-oriented with transaction-oriented recovery actions to cope with the
hybrid recovery environment represented by GM3. Otherwise, only transaction-
oriented recovery techniques must be realized by the public system. Depending on the
transaction management strategy selected, either a single-level or a multi-level recovery
‘mechanism will have to be realized by the public system.

* The recovery manager at the workstation must support transaction serializability only.

 Recovery techniques which support deferred mapping should perform well in the GM3
environment. In the other processing environments (i.e. GM1 and GM2), it is not clear
if the benefits of deferred mapping will override its associated extra cost.

* Nested transaction-oriented recovery should be realized in the design environment on
the basis of logging. Nested recovery techniques following the WAL principle are
expected to perform much better than those which rely on hierarchies of shadow
versions.

« Multi-level recovery mechanisms will probably perform worse than single-level
algorithms on server.

* We believe that both page and tuple logging will perform similarly on server, since
processing time will be dominated by mapping operations at that node. On the other
hand, recovery mechanisms which support object-oriented logging and deferred
mapping on server should be investigated in more detail.

« Techniques which collect recovery information at the object level can possibly work
well at the workstation, too, especially in the presence of expensive mapping
operations (as it is the case in R2D? [KeWa88]).

« Tuple logging will surely perform better than page logging at the workstation when no
expensive mapping operations take place at the private system.

* Recovery techniques which support atomic propagation will probably perform better at
the workstation than at the server node. Non-atomic propagation seems to be the best
choice for the public system. On the other hand, it is not clear if atomic propagation
performs worse than non-atomic propagation at the workstation when the private
system realizes a flat transaction environment.

* It seems more realistic to think that the page-oriented buffer manager will realize the
STEAL strategy at the server node. In this case, recovery at that node will also have to
cope with undo operations on disk. Some new DBS prototypes supporting buffer
hierarchies avoid STEAL by realizing high-level virtual system buffers, though (see
[KARDSS]). Although these systems cannot prevent non-committed data from being
flushed to stable storage, these data are not propagated to the materialized database,
Consequently, undo recovery takes place only in main memory.

= —STEAL can be realized by the private system at the workstation without much
problems, since concurrent recovery transactions present high locality of access and
the system processes only one D-Tr at a time. If =STEAL is implemented at the
workstation, recovery activity could become much cheaper at that node.

* We believe that recovery mechanisms relying either on FORCE or —~FORCE will
perform alike on server due to the expensive mapping operations which are executed at
that node. On the other hand, recovery based on —=FORCE will probably perform

94



better at the workstation, especially in combination with parallel logging or parallel
flushing strategies.

* We expect fuzzy checkpoint techniques to reduce recovery overhead on server as well
as at the workstation much in the same way they do it in business-oriented database
systems.

orocaton /\

strategy: -~ATOMIC ATOMIC

page :

replacement: STEAL -STEAL STEAL STEAL

€oT- /\ /\ /\ /\
processing:  FORCE ~FORCE FORCE ~FORCE FORCE ~FORCE FORCE ~FORCE
— /\ /\ ' l
scheme: TOC TCC ACC FUZZY  TOC TCC FUZZY  TOC TCC

Note: the missing combinations of parameters are those for which existed no recovery mechanism at the time of the classification.

Fig. 5.6: Classification of transaction-oriented recovery schemes proposed in [HiRe83]

95



96



Chapter 6

Simulating Recovery Techniques in a Design
Database System

6.1 Establishing the Goals of the Performance Evaluation

In the previous chapter, we have analyzed database recovery in the design environment on
the basis of a set of database system concepts. Some of these concepts were already used
on the classification and evaluation of recovery techniques for centralized business-
oriented database systems. Others were selected because they represent specific
architectural properties of design database systems. Relying on the results of the analysis
carried out in the last chapter, we come to the following conclusions:

« Transaction-oriented recovery techniques as they are known from business-oriented
environments cannot cope with all types of design processing environments. These
techniques must be modified to support design transaction cooperation, since
cooperating transactions also require object-oriented recovery.

+ Compared with their performance in business-oriented database systems, transaction-
oriented recovery mechanisms may perform differently in design database systems.
This is a consequence of the different architecture and processing models realized by
design database systems.

» The same recovery technique may perform differently depending on the DBS’s
processing node at which it is realized. This is a consequence of the different
architectures and processing models realized by different processing nodes (e.g. server
and workstation) of the design environment.

+ New architectural properties of design database systems (e.g. more levels of
abstraction than conventional DBS architectures, hierarchies of system buffers) make
the realization of new database recovery mechanisms in the design environment
possible (e.g. recovery at the object-oriented system level, recovery supporting
deferred mapping).

Probably, the architectural aspects which most affect recovery performance in design
database systems are the expected long-duration mapping operations at the server node
and the database hierarchy distributed over the server and the workstation. In the last
chapter, we empirically evaluated the performance of different recovery mechanisms at the
workstation and at the server node on the basis of these architectural aspects. From that
evaluation, it became clear that some evaluation results of former recovery performance
analysis based on business-oriented database systems will probably not be observed in
the design environment. On the other hand, we believe that new recovery techniques for
design database systems should be investigated in more detail.

97



As noted in chapter 5, there already exists a number of independent studies concerning the
performance of recovery techniques for database systems. Most of these studies have
investigated recovery performance only for centralized database system architectures
supporting conventional, business-oriented transaction environments, though (e.g.
[Reut84], [AgD85b]). In [AgD85a}, recovery mechanisms for multiprocessor database
machines were investigated. Although this investigation relies on a distributed database
system architecture, recovery has been analyzed in a conventional transaction
environment. The evaluation reported in [Wei87b)], on the other hand, possibly is the only
one where database recovery performance has been investigated in a multi-level
transaction environment. Nevertheless, this study considered only conventional
transactions (i.e. long-duration transactions were not simulated), and modeled the multi-
level environment without a buffer hierarchy. The work in [Wei87b} mainly compared
multi-ievel transaction management (as a whole) with single-level transaction management
for centralized database systems.

In this chapter, we present a simulation analysis of recovery performance in design
database systems. On the basis of this analysis, we tried to quantify the results of the
empirical evaluation carried out in the previous chapter. We concentrated our efforts on
the investigation of both recovery techniques which were expected to perform differently
when applied to the design environment (e.g. recovery based on FORCE) and those
recovery mechanisms which can be realized at the object-oriented level of the design
database system. Moreover, we evaluated recovery performance on the basis of a
database system which supports business-oriented as well as design transactions, since
we believe that non-standard database systems will usually have to cope with integrated
information systems, that is, systems where totally different applications which can
process common data might have to be supported at the same time.

We decided to simulate only the public system on server, because the new architectural
characteristics of design database systems in which we were mostly interested are realized
by that subsystem. The architecture of the private system, on the other hand, is either an
extension of that of the public system (i.. when the storage system supporting the
application-oriented layer at the workstation is either similar or even a copy of the DBS
kernel software?) or it is similar to the architecture of a centralized business-oriented DBS
supporting conventional transactions. In the first case, recovery requirements at the
workstation can be derived from those posed by the public system at the server node. In
the second case, recovery at the workstation can be compared with recovery in centralized
database systems and, for the latter, there already exists a number of performance studies.
Furthermore, we believe that the performance results achieved by the server simulation
will help us to analyze recovery performance at the workstation in a future work.

By analyzing the performance of recovery mechanisms at the server node of a design
database system, we were mainly interested in investigating the following questions:

* How well recovery mechanisms can cope with environments where totally different
transaction classes are supported.

* To which extent recovery can benefit from the buffer hierarchy realized by the system.

* In which level of abstraction recovery mechanisms should be realized in the system to
guarantee better performance.

* How recovery mechanisms can help to improve overall system performance in the
design environment.

Most of the simulation study were based on the GM1 design processing model. GM3 was
simulated only to test the performance of deferred mapping in environments supporting
design cooperation. Since GM2 constitutes a special case of GM1 at the server node, we

4An example of such an architecture can be found in [DeOb87).

98



believe that most of the results obtained through the simulation study can be extended to
server nodes which realize GM2.

Database recovery in the evironment described above was investigated on the basis of
three performance criteria: the way different algorithms affect system throughput3; how
transaction response time is affected by recovery activity; and how much stable storage
space is needed by each mechanism to save recovery information during normal system
operation. Note that none of the already published recovery performance studies has
investigated either the effect recovery mechanisms have on transaction response time or
how much data they need to keep in nonvolatile storage. Although the burden represented
by recovery activity in the overall transaction cost was investigated in [AgD85b],
response time during system operation has not been directly modeledS. On the other hand,
we believe that recovery mechanisms supporting the design environment will need much
more space on stable storage than recovery mechanisms in conventional DBSs do.
Therefore, especially for small and medium size design systems recovery algorithms
which save less data (in terms of number of bytes kept on stable storage) will be of
greatest interest (see [Hird87] for more explanations on this subject).

To better analyze how different recovery activities affect system performance, database
recovery was investigated in four different environments. These environments were
selected on the basis of the various failure modes considered by the failure model derived
in chapter 4. The simulation of four different system environments simplified the
evaluation of both the recovery cost associated with each individual failure mode and the
biirden represented by recovery activities during normal system operation. We present the
four environments below.

¢ Normal System Operation (NR): In this environment, transactions always execute
normally. That is, transactions never need to be aborted. Moreover, the system never
fails (i.e. no crashes occur). Finally, when analyzed in this environment, recovery
mechanisms generate no checkpoints. By the simulation of this environment, we could
evaluate the burden represented by recovery activities during normal system operation
as well as the volume of recovery information kept on stable storage when no
checkpoint activity takes place.

« Abort Environment (AB): As the name suggests, in this environment transactions can
be both rolled back and restarted until they execute to completion. On the average,
some 10% of all transactions executed in this environment abort, at least, once. As
with the normal environment, neither crashes occur nor checkpoints are generated in
the abort environment. By the simulation of this environment, we were mainly
interested in evaluating recovery cost for transaction backout.

» Checkpoint Environment (CH): In this environment transactions always execute to
completion, no crashes occur, and the recovery mechanisms are allowed to-generate
checkpoints. By the simulation of this environment, we could evaluate the cost
associated with checkpoint. activity during normal system operation. Moreover, we
could also analyze how checkpoint activity contributes to reduce the volume of
recovery information kept on stable storage.

* Crash Environment (CR): This environment produces system crashes regularly (i.e.
typically, 4 to 5 crashes per execution of 2000 transactions): Transactions never abort
and. no checkpoints are generated in this environment. By the simulation of this
environment, we were mainly interested in the evaluation of the cost associated with
crash recovery activity.

SSystem throughput was measured on the basis of the number of committed transactions per unit.of time.
6In [AgD85b], dynamical properties of the operating system supporting the DBS as, for instance,

multiprogramming level and how the execution of one transaction affects the execution of others were not
taken into consideration by the analytical models.

99



Besides defining different system environments, we generated a set of different
transaction loads by changing the values of some important load parameters. Different
load types basically differ from one another in the relation between the number of
business-oriented and design transactions they contain as well as in the update transaction
rate they present. Later in this chapter, we present the various simulated transaction loads
in more details (see section 6.3). Through the integration of different load types with
different environments, it was possible to evaluate recovery performance in a set of
processing scenarios which possibly represent most of the real scenarios in a design
environment realizing the GM1 processing model.

The selection of recovery mechanisms to be simulated followed the considerations about
recovery techniques made in chapter 5 and reflected the main goals of the performance
analysis. We evaluated only non-integrated recovery algorithms. These algorithms
guarantee correctness only for databases at the server node (e.g. the public and the group
database). They are not related to recovery activities at the workstation. In most of the
simulation experiments, the selected recovery algorithms supported non-cooperative
design environments (e.g. GM1). In some experiments, we simulated design cooperation
to some extent, though. Since we simulated the GM1 processing model most of the time
and did not model the designer work at the workstation in much detail, we selected only
flat transaction-oriented recovery techniques for simulation. Although the construction of
a simulation model for some of the selected techniques has proven to be a complex task,
the development of models for nested transaction-oriented recovery techniques would
certainly be much more complex.

We were most interested in comparing the performance of recovery mechanisms which
are implemented at different system levels. Therefore, we selected two mechanisms which
work at the page level, one which logs tuples and data records, and one which works at
the object-oriented level of the public system and supports deferred mapping. According
to the considerations in chapter 5, all recovery algorithms selected support non-atomic
propagation. To investigate the behavior of FORCE in design database systems, we
selected one technique which supports this EOT strategy. The other three recovery
algorithms support -~-FORCE. All recovery algorithms selected for simulation realize
some kind of checkpoint. Finally all selected techniques support the STEAL policy of
buffer replacement.

We analyzed the algorithm based on deferred mapping in two different operating system
environments. In the first one (OSE1), the system’s multiprogramming level is kept
constant concerning deferred mapping operations. That is, the system waits until the
mapping activity for a committed transaction is completed, before it takes another
transaction from the ready queue and starts executing it. In the second operating system
environment considered (OSE2), new transactions are taken from the ready queue and
processed by the system as soon as old transactions are committed (i.e. even before
mapping operations related to already committed transactions terminate).

Relying on the extended taxonomy of chapter 5, the algorithms chosen for analysis can be
characterized as follows.

* RECI: (-INTEGRATED, ~COOPERATION, FLAT, PAGE-LEVEL, —ATOMIC, STEAL,
—FORCE, ACC). This algorithm logs before and after images of updated database pages.
It is based on the undo/redo recovery mechanism described in [BeHG87). It generates
checkpoints either at regular time intervals or when the log achieves a previously
specified length. During checkpoint, updated pages which have not yet been
propagated since the last checkpoint are written to the database on disk.

* REC2: (~INTEGRATED, —COOPERATION, FLAT, OBJECT -LEVEL, —-ATOMIC, STEAL,
—FORCE, FUZZY). This algorithm saves updated versions of design objects and tuple
sets before these abstractions are mapped onto database pages by the public system. It
implements the log as a ring file and asks the buffer manager to flush pages (in the
buffer) to disk only when the ring file is full (as with the DB-Cache algorithm in

100



[EIBa84]). REC2 is based on the deferred mapping version of the recovery mechanism
described in [KARDSS].

¢ REC3: (SINTEGRATED, ~COOPERATION, ELAT, TUPLE/RECORD-LEVEL, —ATOMIC,
STEAL, — FORCE, ACC). REC3 is a modified version of the recovery algorithm
proposed in [Lind79]. It logs before and after images of updated data records (i.e.
atomic objects) and tuples, after updated objects and tuple sets are mapped onto
database pages. Opposed to the algorithm in [Lind79], REC3 realizes an action
consistent checkpoint strategy”.

* REC4: (-INTEGRATED, ~COOPERATION, FLAT, PAGE-LEVEL, ~ATOMIC, STEAL,
FORCE, TOC). This algorithm works at the page-level, supports FORCE and realizes a
transaction-oriented. checkpoint strategy. That is, transaction updates are always
integrated into the database on disk at transaction commit.

* RECS: (-INTEGRATED, —~COOPERATION, FLAT, OBJECT-LEVEL, ~ATOMIC, STEAL,
—FORCE, FUZZY). Actually, REC5 and REC2 represent the same recovery algorithm,
They differ from each other in that REC2 is evaluated in the OSE1 operating system
environment while RECS is analyzed in OSE2.

Through the simulation of REC2 and REC5 we could evaluate the performance of
recovery algorithms which execute at the object-oriented level of the server and support
deferred mapping. On the basis of these recovery algorithms, we were able to analyze the
performance of deferred mapping in the GM3 environment, too. Through the simulation
of REC1, we could evaluate the performance of page-oriented logging mechanisms in a
processing environment where representation mapping operations dominate transaction
processing time and the operating system supports chained-I/O. Finally, we simulated
REC4 to analyze the performance of recovery mechanisms which support FORCE in the
design environment. ‘

6.2 A Simulation Model for Recovery Performance Evaluation

In this subsection, we comment on the simulation model on the basis of which the
performance of the recovery mechanisms presented above have been analyzed. A
complete description of this model including implenientation details can be found in
[Toc89a} and. [Schm89].

As we decided to model recovery activity in the design environment, the question of what
methodology to follow arose. As already noted in [Wei87b], to be able to mathematically
handle analytical models, designers are often forced to make unrealistic assumptions
about system characteristics. Furthermore, systems which present a relative large number
of independent variables cannot be evaluated by means of analytical models at all. Pure
simulation models, on the other hand, usually are simpler to develop and realize, but they
can also lead to an unrealistic description of the system, in case designers choose incorrect
values for model parameters. ‘

The best method for analyzing the performance of computer system components seems to
be the evaluation of their functionality in real systems on the basis of real transaction
loads. In some studies where new system architectures are to be analyzed in an existing
transaction environment, simulation models were combined with so-called real transaction
reference strings (e.g. [H4PR85]). These are logs containing sequences of write and read
operations executed by real transactions running on a real computer system. The reference
strings, then, are used as input in computer simulation models. As we developed our
system model, there was neither an existing design DBS similar to the one we wanted to

7 This algorithm was identified as “2.2°in [Reut84]

101



investigate nor a reference string of design transactions. Therefore, we decided to develop
a simulation model for our design environment and generate transaction loads based on
some already existing informations about design transactions in centralized, single-user
design DBSs (e.g. DAMOKLES [DAM86b]).

The simulation model constructed relies on the reference architecture for design database
systems presented in chapter 2. It models a server-workstation computer system where
the server and the workstations communicate through a reliable communications network.
Although our model can simulate cooperation between server and workstation (i.e.
transfer of data between these nodes) at various levels of abstraction, we simulated only
cooperation at the object level. That is, the server sends the workstation complete objects
by CHECKOUT and receives from that node complete objects by CHECKIN.

The database system simulated supports two different transaction classes: conventional,
short-duration batch transactions and long-duration design transactions. Batch
transactions execute at the server node completely. Design transactions execute at
workstations and spawn subtransactions on server to either check out objects of the public
database or check in updated objects back in there. At the server node, batch transactions
as well as CHECKOUT and CHECKIN operations are processed in the object/set-
oriented buffer supported by the system’s object/tuple-oriented layer. Batch transactions
are processed in the same way as in KARDAMOM: transaction updates are applied to
selected tuple sets which are mapped back to database pages by transaction termination.
CHECKOUT and CHECKIN operations are executed as in DAMOKLES. By
CHECKOUT, the object’s main memory representation is constructed in the server’s
object buffer and sent to the workstation. By CHECKIN, the object’s updated version is
brought into the server’s object buffer and mapped onto database pages later on.

The server simulation model developed supports multi-level transaction management. The
transaction managers of both system layers can lock either whole page clusters or single
pages or subobjects or even complete objects. We used only page locks at both system
levels so that page locks were kept on server for objects which were checked out by
designers at workstations. By selecting the page as the lock granule, we assured correct
execution of the algorithms which log at the page level. To further simplify the simulation
model, cooperation between server and workstations is realized by means of a flat
distributed transaction mechanism which relies on a two-phase commit protocol.

6.2.1 GM1’s Realization in the Simulation Model

6.2.1.1 Design Transactions at the Workstation

GML1 allows the designer at the workstation to check objects back into the (public)
database at the server node at any time. Figure 6.1 depicts the dynamical properties of
GML1 in the simulation model. Although the kernel system relates CHECKOUT locks to
the design transaction, it releases these locks as soon as the respective objects are checked
back into the public database.

GM1's design transaction (D-Tr) is started by the designer at the workstation. It consists
of a sequence of object-oriented composed operations (OCOP) followed by a set of
relational operations (ROP). The set of ROPs can be empty. In our performance study,
design transactions executed only object-oriented operations while batch transactions
processed relational tuples.

Each OCOP consists of a sequence of three recovery transactions (R-Tr). The first R-Tr
starts a CHECKOUT operation at the server node. By this operation, a specific complex
object (Oi) is copied from the public database into the private database at the workstation.
By receiving D-Tr’s first CHECKOUT request, the public system creates a state record
for the design transaction at the server node. After the CHECKOUT R-Tr has committed,

102



the designer starts a PROCESS R-Tr. This recovery transaction processes Oi at the
workstation's object-oriented buffer. After completely processing Oi, the designer starts a
so-called CHECKIN R-Tr which is responsible for copying Oi back into the public
database on server. By receiving a corresponding message from this transaction, the
public system starts a short transaction (S-Tr) on server to actually check Oi into the
database. If Oi has not been updated at the workstation, S-Tr only releases its locks;
otherwise, S-Tr also maps Oi’s main memory representation onto database pages.

After all design transaction's OCOPs have been executed, the designer starts executing the
set of relational operations. ROPs are also executed serially. Every ROP consists of only
one recovery transaction. This R-Tr executes either a query or a short update operation
directly in the public database. Since each query as well as each short update operation is
completely executed in only one server call, there is no need to relate the locks which are
acquired for these operations to the design transaction.

GM1's design transaction is considered to be terminated when all its OCOPs and all its
ROPs have been executed. The DBS kernel blocks neither CHECKOUT operations nor
ROPs which get involved in lock conflicts. The kernel simply aborts these operations and
sends the respective workstation a message, instead.

When the workstation receives an abort message, the designer starts either another OCOP
or another ROP. He tries to restart the aborted operation only when all other operations
have already been executed. In the case there are no more operations to be executed, the
dgzigner keeps on restarting the aborted operation until it can be executed at the server
node.

6.2.1.2 Remote Operations and Batch Transactions at the Server Node

Until now, we have only explained design transaction execution at the workstation in
more details. In the following, we explain data processing activities at the server node.
Every remote operation is processed by the kernel system as a short transaction (S-Tr).
Short transactions execute at the server’s object/tupe level and can start subtransactions
(SS-Tr) at the server’s page/segment level to read or write database pages. Design
transactions inherit CHECKOUT locks from those S-Trs which execute CHECKOUT
operations on their behalf. The DBS kernel releases CHECKOUT locks in the public
database when the respective CHECKIN S-Trs commit.

As already explained in the last section, the kernel does not only execute remote
operations of design transactions. It also processes batch transactions. Batch transactions
are directly started at the server node. Everyone of these transactions consists of a
sequence of (short) relational operations. These operations are similar to the ROPs of
design transactions. The kernel executes relational operations of batch transactions as
short transactions (i.e. at its object/tuple level). At the end of a relational operation, the
kernel checks if there is a next operation to be executed on behalf of the batch transaction.
When all operations of the batch transaction have already been executed, the kernel
commits it. Depending on the commit protocol being used (which, in turn, depends on the
recovery algorithm being tested), the server can map relational updates which are
processed in the object buffer onto database pages either after every batch transaction’s
operation or only at transaction commit. In any case, though, relational updates must be
saved at the end of each relational operation.

Contrary to object-oriented operations and ROPs of design transactions, batch
transactions can be blocked by the public system when some of their relational operations
participates in a lock conflict. Deadlock prevention is realized at the server node by means
of a timeout mechanism. After being blocked for a previously specified period of time,
batch transactions are aborted and brought back into the server’s ready queue for restart.

103



1°pOU UOHIR[NUIS Y3 UF UoTIeIuaWafdur S, [IND :1°9 “Brd

‘jensy ofied 9,100108 8y} 18 "SUE.} LioYS © JO "SuRNGNS
“14°SS Herey 1olqo/eidni 5. 16Ase8 Syl 1E ‘SURI HOUS 111-S {UOIEIRYIOM OU} TE “SUEI) KIBADOR! LI 1-H I0AIGS 04 18 Lope uBieep 8,008n 11-Q Y| UORORSURA eteuNLe (1))3 g uondesves uBeq (1)1 )G

un) ) , . N N : biake)
[ T T T 1 T 8,000008
(L-ssh3 {i-ssie (ir-ss)3 (1-sslg (11-88)3 (11-sska
! ! ¢ ' | |
F i m " w wa ; —
[ ' 1pejgouo ¢ 1 i [
i m DO NONOOYS  § m 00| MO 81§ | m
*ua)z i i sosearelilq | ! ol J1a | I (rae
i 1 i ' i i 1 '
b} g g ——— 2
(41-8)3 . (80d) (seidny (s8d) (). (11-g)3 (85d) (wefoo) (s6) (). (11-5)3 (869 (wefao) (86d) (y) . .
( 52 consou o oo C.@m C“&m praliv C.@m S orvos g 1 (oL .@m
i ! : ! : i
o | o m |
{ H ' H ! i
i i ! H i H
i ! : i H :
P w 3 + - _* 1 1 4 1 Il * 1 4 uoneEs

T T T T T T T T T T T oM
(w3 opmelddn (y-udg (W3 Wd®N (1-W)g  (1-W)3 ssa00ud (LW (L-H)3 (olaollno (11-y)g

104



6.2.2 The Architecture of the Server’s Simulation Network

The server network was realized in two layers. The lower (physical) layer simulates
hardware as well as operating system functions. These functions are realized by the host
machine on top of which the DBS kernel (i.e. the public system) is installed. The higher
(logical) layer of the simulation model represents the whole design environment (i.e. the
kernel DBS, the communications network, and the private systems at the workstations).
In the following, we describe each network layer. Then, we present the run-time
parameters which control network simulation.

6.2.2.1 The Network's Logical Layer

Figure 6.2 shows the logical layer of the simulation network. In this figure, boxes
represent simulation nodes and arrows model communication between nodes. Simulation
nodes represent software modules that process transactions. The network's logical layer
can further be subdivided into three (sub)networks: a network representing the
workstations, another one for the communications subsystem, and a third network
representing the kernel software at the server processing node.

Each simulation node implements a set of operations. These operations form the node's
interface. In Figure 6.2, the interface of each simulation node is represented by the
operations which identify the arrows pointing to the node. Transactions are passed from
node to node until they are completely processed. Each simulation node processes
transactions sequentially and maintains an internal queue where incoming transactions are
kept until they can be processed by the node.

Each simulation node is identified by a specific mnemonic associated with it. Thus, TG
stands for transaction generator, User for user node, CS for communications
subsystem, TM for transaction manager, SCH for scheduler, RM for recovery manager,
RD for restart delay, BM for buffer manager, and MAP for mapping module. Besides
simulation nodes and communication arrows, the simulation networks's logical layer
presents two external queues: the ready queue (RQ) and the Levell-Queue.

We suppose the reader is familiar with the functions of most of the software modules
cited above. Perhaps the only nodes which deserve a more detailed explanation are both
User and MAP. The user node models the work of designers at workstations. This node
simulates the execution of PROCESS recovery transactions. Moreover, the user node
determines the next operation to be started on D-Tr’s behalf and controls the end of design
transactions. PROCESS recovery transactions are simulated in the user node by means of
time delays.

MAP simulates the operations which build the main memory representation of objects
and tuple sets out of sets of database records and tuples, respectively. Moreover, MAP is
also responsible for mapping transaction results in main memory representation onto
database pages. Costs of MAP operations are expressed in number of CPU instructions.

Following the reference architecture of chapter 2, the simulation network representing the
kernel software can further be subdivided into two (sub)networks, each one of them
representing one of ‘the server's software layers (i.e. L1 and L2 in Figure 1.4). The
network which is built by the ready queue and the nodes TM2, SCH2, RD2, and RM2
models the server’s object/tuple-oriented layer (1.2). The rest of the nodes which simulate
kernel software modules together with the Levell-Queue model the server's
page/segment-oriented layer (L1).

105



Morstations

[ E(design Tn) TG(n)
User rolback(RTr) Bidesignatch Tr)
(n)
ok/nok(rollback(RTr)) Ebatch Tr)
CS(n)
RBS kemel & the server.node.
BT RD2
RQ(mel)
restart(STn)
E(batch Tr)/
ok/nok (outin/short)/ by
ok/nok(rolbadk(RTr)) - — -
™2 |, ! SCH2 save(abort:ST) RM2
==
L + acki . focks) '
{out . 4 . .
) start
(read/upd/build/map) recovery
start{read/updiuild/map) algorithm
RD1
Levell
l Queue restart(SS-Tr)
dJ dbuikd locked/uniocked {abort-datalsaved _—
™1 - ) | SCH1 save-abort-SSTr RM1
I {mapped/updated)saved/(SSTr-commit-datajsaved I
get-for
(read/upd/build/map)
(tuplesjread
8M1 y il MAP say Jated)
(objectbuitt
Note (1): the meta symbol "/ is used to sep i ges as well as operations and parameters;
Note (2): TG(n) stands for ion g and indi that n work are active in the system; User represents
the user work at the workstation; CS stands for icati RQ rep! the server’s ready queue; the

indices on the other nodes indicate whether they are located in the server’s lower tayer (1) or in its upper layer (2); TM stands for
transaction manager; SCH stands for scheduler; RD represents a delay before the restart of some transaction; RM stands for
recovery manager; BM stands for butfer manager, MAP represents the module which changes the object’s representation.

Fig. 6.2: The logical layer of the simulation network

106



The box for the recovery algorithm represents no simulation node. Recovery activity
actually is simulated by both RM1 and RM2. We designed the box for the recovery
algorithm only to make clear that RM2 and RM1 can cooperate with each other by the
implementation of the recovery algorithm. Moreover, depending on the recovery
technique being simulated, either RM1 or RM2 can even become unnecessary.

Besides being activated by other simulation nodes, recovery nodes can be directly
activated by the simulation supervisor. By means of the crash delay run-time parameter
(Dcrash) the time interval between any two consecutive system crashes can be passed to
the supervisor. The simulation system automatically controls this delay and informs the
recovery nodes when a system crash occurs. Instead of using delays to control checkpoint
generation, checkpoints were made dependent on the log file’s size. That is, the recovery
nodes generate a new checkpoint every time the log becomes full. The log file’s size is
passed to the simulation system by means of a run-time parameter (Log-Size).

No object-oriented buffer manager has been modeled in the simulation network. It was
assumed that object buffer size in both server and workstation is large enough so that no
virtual memory management for the object buffer is necessary in either of the two
processing nodes.

Transaction load is generated off-line. TG only reads transactions from the load file,
introduces them in the simulation network (begin-transaction operation), and receives
committed transactions from other nodes. By controlling both the number of committed
transactions and the end of the load file, TG can identify the end of the simulation. Figure
6.2 associates TG with an index in parentheses (n). It represents the number of active
users being simulated. At any time during the simulation, each of these n users is
executing one transaction (of any class).

Both scheduler nodes (i.e. SCH2 and SCH1) realize locking mechanisms to
synchronize concurrent transactions. Transactions can access data in one of three modes:
read mode (r), write mode (w), and read-intention-to-write mode (riw). The use of the
riw lock mode depends on the state of a specific simulation parameter (Lock-Upgrade). If
this parameter is set to TRUE, the data which will be updated later on are first locked in
riw mode; otherwise, these data are directly locked in write mode. riw locks are upgraded
to write locks only when the transaction decides to update the data at the server. Figure
6.3 presents the lock compatibility matrix for the set of lock modes associated with the
simulation network.

rorw, riwg W

rp | ok - ok* -
rg | ok - - -
riw | ok - - -
w - - R -

- Note: r stands for read mode, w for write mode,
and riw for read-intention-to-write mode; the
indices d and b stand for design transaction and
batch transaction, respectively; the focks on the
figure left skie are being requested.

* only if the corresponding write lock has not
yet been requested

Fig. 6.3: Lock compatibility matrix for both SCH2 and SCH1

107



We complement our description of the kernel network s logical layer with an example. By
this example, we make the following assumptions. The kernel software implements a
multi-level transaction manager at both, L2 and L1. In L2, short transactions (S-Tr) are
synchronized on the basis of tuple locks. L1°s (sub)transaction manager realizes a page
locking mechanism.

Figure 6.4 shows a design database example as well as the record of a design transaction
(D-Tr), and the record of a batch transaction (B-Tr). D-Tr checks a complex object (Iob1)
out, processes it at the workstation, and checks it back into the public database later on.
After that, D-Tr reads one relational tuple (Reli.tups). B-Tr which we suppose begins
when D-Tr starts reading Relj.tup5 reads two tuples (Relj.tups and Relj.tupg) and
updates one of them.

TG reads D-Tr’s record (DR) from the load file, sets its actual state to start-transaction,
and sends it to the communications subsystem. CS identifies DR s actual destination. It
must be sent to the server’s ready queue. Before doing that, CS stores DR in an internal
queue, though. After a simulation time delay which represents the communication delay,
CS sends DR to RQ. The ready queue controls the multiprogramming level (mpl) of the
kernel system. mpl’s value is determined by a run-time parameter (mpl) at the beginning
of the simulation run. DR is kept in RQ until the number of transactions running in the
public system becomes smaller than mpl. At this moment, DR is sent to TM2.

/DB‘ﬁ.SJ"i'“\

Projy org
lo'b‘ m!h
(Isoby, Isob,) (tupsg, tupg, tupy, tupg)
(tup1,tup2) (1upg,tup,)
clu, -> lob, clu, -> Rely
pagy Pags

pag, 04

3

D-Tr: {out(lob,), process(lob,), in(lob,.Isob, ), read(Rel, .tups)}
B-Tr: {read(Rel,.tupg, Rel,.tupg), write(Rel, .tups)}

Fig. 6.4: Data structures and transactions for the simulation example

TM2 notices that DR just began, identifies its first operation, associates DR with a
CHECKOUT S-Tr, sets DR’s state to read-lock, and sends DR to SCH2. This
simulation node, then, tries to lock the tuples belonging to the object being checked out by
D-Tr (i.e..tupy, tup2, tup3, and tup4 in cluster cluj). If any of these tuples is already
locked, SCH2 changes DR s state to restart-op and sends DR back to the transaction
manager; otherwise, the scheduler grants CHECKOUT S-Tr the requested tuple locks,

108



sets DR s state to read-locked, and sends DR back to TM2. From this node, DR is sent
to the server’s lower layer. It enters this layer through the Level1-Queue and is analyzed
by TML. This node identifies DR’s actual state (szart-build), envelops DR in an SS-Tr,
and sends it to SCH1. The scheduler locks pag] and pag2, changes DR’s state to read-
locked, and sends DR back to the transaction manager. This node sends DR further to the
buffer manager. BM1 searches for the requested pages in the page/cluster-oriented
buffer. In case clu] is not present in the buffer, BM1 starts an I/O-operation to copy this
cluster from disk into the buffer. After making the requested cluster accessible in the
buffer, BM1 sets DRs state to build and sends DR to the mapping simulation node.
MAP calculates how many CPU instructions are needed to build the object-oriented
representation of Iobj, changes DR s state to object-built and sends DR back to TM1 (via
the CPU simulation node of the network's physical layer). DRs state, then, is set to
unlock-pages and the record is given the scheduler. SCHI1 releases both pag]’s and
pag2’s locks, changes DR's state to unlocked, and sends DR back to TM1. This
transaction manager sends DR to TM2, after committing the SS-Tr related to it.

Before being sent back to the user node via communications subsystem, DR is processed
by RM2. This node associates S-Tr’s tuple locks with D-Tr and saves them as
CHECKOUT locks (possibly in a special log file). Ioby is processed in the user node
further. User calculates the processing time for this object on the basis of the number of
records belonging to it. DR is kept in the user node during this time interval. At the end of
the process time, User sets DR s state to start-in and sends DR back to TM2 via CS and
ready queue. TM2 creates a CHECKIN S-Tr and relates it to DR. After that the
transaction manager changes DR’s state to save-checkin and sends DR to the recovery
manager. If the recovery technique being simulated saves object updates before they have
been mapped onto database pages, this action is executed by RM2 at this point in time;
otherwise, the recovery manager simply sets DR s state to checkin-saved and sends DR
back to TM2. DR is further sent to the server’s page/segment layer where Iob1 “s updates
are mapped onto pagi and pag2. At the end of both the data mapping and the possible
data saving operations at L1, DR is sent back to L2. Then, SCH2 releases D-Tr’s tuple
locks and sends it back to RM2 via the transaction manager. RM2 invalidates D-Tr's
CHECKOUT locks and sends DR back to TM2. This node commits the CHECKIN S-Tr
and sends DR to the user node.

User searches the next operation to be executed on D-Tr’s behalf. It is a query. tups
must be read in the public database. User sets DR’s state to start-short and sends DR
back to TM2. The transaction manager starts a new S-Tr for DR and sends it to the
scheduler. SCH2 locks tups and sends DR to the server’s lower layer via TM2. We can
imagine that TG introduces B-Tr in the simulation network in paraliel to the above
operations. When SCH2 tries to lock both tups and tupg on behalf of B-Tr, it identifies
the lock conflict with DR’s S-Tr. B-Tr, then, is blocked during the execution of DR’s S-
Tr. That is, B-Tr’s transaction record (BR) is kept in SCH2s block list until D-Tr’s
tuple locks are released in the public database.

When the scheduler releases the locks held by DR’s S-Tr, it unblocks B-Tr, grants it the
locks for tups and tupg, changes the state of BR to read-locked, and sends it back to the
transaction manager which, in turn, sends BR to the server’s lower layer. TM2 receives
BR back, after tup5 and tupg have already been read out of pag3 and copied into a tuple
set for further processing. TM2 changes BR’s state to write-lock and sends BR to the
scheduler. SCH2 upgrades the lock mode of the locks held by B-Tr and sends BR back
to the server’s page/segment layer via transaction manager. If the recovery technique
being simulated saves updated tuples, before they are mapped onto pages, RM2 executes
this activity before BR is sent to TM1; otherwise RM1 saves data updates, after the
mapping node has copied tup5’s new version onto pag3. After doing that, the recovery
manager sends BR back to TM1. The transaction manager notices that the updated tuples
have just been saved and sends BR to the scheduler. SCH1 releases B-Tr’s page lock
and sends BR back to the server’s tuple/object layer via TM1. After B-Tr’s tuple locks

109



léave been released by SCH2, TM2 commits B-Tr and sends it’s BR back to TG via
S.

6.2.2.2 The Physical Layer of the Kemel Network

To simulate finite computing resources at the server processing node, we mapped those
simulation nodes representing kernel software modules (e.g. TM2) onto another
simulation network that models CPU and disk resources. This network represents the
physical layer of the server processing node. It’s layout is sketched in Figure 6.5.
Besides RD2 and RD1, all simulation nodes modeling kernel software are treated by the
physical layer as operating system processes which consume services of both CPU and
disk units. The idea of modeling the server node as a hierarchy of simulation networks is
based on the simulation models presented in [Care83], [CaSt84], and [AgCL87] for the
evaluation of concurrency control algorithms in centralized database systems.

Figure 6.5 shows how process execution is modeled by the kernel’s physical layer. Idle
logical nodes, that is, simulation nodes of the logical layer which are processing no
transaction records (TR) at the moment wait in the physical layer's idle node. When a
simulation node SN receives a TR, it moves into the CPU s input queue. By entering the
CPU, SN processes TR. This processing activity is simulated through CPU time delays.
Since each process receives only a finite slice of the CPU time (which is measured in
number of CPU instructions), it is possible that SN must re-enter the CPU more than
once until it can completely process TR. If SN concludes that 1/O-operations must be
executed on TR’s behalf, it first identifies the disk on which the needed data are stored
and, then, moves into the input queue of the corresponding disk unit. Every I/O-operation
consists of a data transfer operation and a sequence of operating system operations. Thus,
SN must come back to the CPU, after the data transfer operation has been executed. After
completely processing TR, SN tests if there is another transaction record to be processed.
If no new TR is waiting in SN’s input queue at the kernel’s logical layer, SN moves back
into the idle node of the physical layer; otherwise, SN moves into the CPU’s input queue
and starts processing the next transaction record. The simulation supervisor program
awakes logical nodes waiting in the idle node of the physical layer when some new TR is
brought into their input queues.

Disk,

g
)

=
®-C

®

CPU

Fig. 6.5: The physical layer of the simulation network

1

—
(=]



6.2.2.3 Simulation Network's Run-Time Parameters

As it can be derived from the explanations above, specific characteristics of different
simulation runs can be established through a set of run-time parameters. This set can be
subdivided into three different groups of parameters. The first group expresses costs as
time delays. These parameters are mainly used in modeling I/O-operations,
communication delays, user processing times, block and timeout delays, etc. The second
group represents those parameters which express costs in quantities of CPU instructions.
Most parameters of this type model costs for logical simulation nodes. The third group of
parameters model the system architecture itself. The parameter establishing the server’s
multiprogramming level and the one expressing the number of active users
(terminals/workstations) in the system are examples of parameters belonging to this third

group.

Figure 6.6 shows a list of some important run-time parameters of the simulation network
with possible values associated with them. CPUbuild/map fixes the number of
instructions per data record necessary to build/map a design object. Similarly,
CPUread/write establishes the number of instructions per tuple necessary to build/map
a tuple set. CPUrec fixes the costs for processing a data record or tuple in main memory.
Duser determines how long the designer processes each data record (of a complex
object) at the workstation. Dio establishes the duration of I/O-operations on database
disks. Dlogio fixes the time necessary to either read data from or write data to the log file
(on the log disk). If Chained-1/O is set to TRUE, every I/O-operation can transfer up to
one cluster of data pages from/to disk. If this parameter is set to FALSE, instead, every
I/O-operation can transfer only one page from/to disk. As the name implies, Buffer-
Size fixes the size of the server’s page/segment-oriented buffer. Finally CPU-Speed
indicates how many CPU instructions are executed per simulated microsecond.

CPUbuild/map 300000 instr | Duser 1800 ms/tuple | Chained-lIO TRUE
CPUread/write 25000 instr | Dio 30 microseconds | Buffer-Size 4 Mbytes
CPUrec 20 instr | Dlogio 15 microseconds | CPU-Speed 10 MIPS

Fig. 6.6: Possible values of some simulation parameters

6.3 Describing the Simulation Scenarios

As already explained in section 6.1, we investigated the cost of different recovery
activities separately. To do that, four basic simulation scenarios were defined: the normal
system operation, the transaction abort, the system checkpoint, and the system crash
environments. Transactions were forced to back out in the transaction abort environment
by reducing the allowed transaction blocking time. After the blocking time had elapsed,
transactions were forced to abort due to the timeout mechanism realized by the public
system to prevent the occurrence of deadlocks. Since only business-oriented transactions
could be blocked at the server node, they were the only ones which aborted by the
simulation of the transaction abort environment. Checkpoints were forced in the system
checkpoint environment by limiting the maximum size of the log file on disk. Depending
on the recovery mechanism being simulated in that environment, the maximum log size
was achieved sooner or later. The volume of information kept on stable storage by each of
the simulated recovery mechanisms was analyzed on the basis of the normal system
operation environment for which no log size limit was set. The number of system crashes
which should occur during simulation was set by means of a run-time parameter which

111



expresses the time interval between two consecutive crashes. Since crash recovery took
longer by some mechanisms and no system crash was allowed to occur during crash
recovery, the number of crashes was not always the same by every simulation of the
system crash environment.

We also wanted to investigate recovery performance under different transaction load
characteristics. Similar to the performance evaluation in [Reut84], we were interested in
analyzing recovery performance in processing environments which present either a high
or a low frequency of update transactions, since recovery activity is closely related to the
update activity in the database system. Therefore, three load parameters were varied as to
produce four different transaction load types. These parameters respectively determine the
number of design transactions (as well as the number of business-oriented transactions) in
the load, the number of update transactions, and how much of the read data is actually
updated by update transactions. We present the four basic transaction load types below.

* Loadl: High update transaction rate (80%) and high volume of updated data (80% of
the transaction’s read data) combined with high design transaction rate (33%).

* Load2: High update transaction rate and high volume of updated data combined with
low design transaction rate (about 10%).

* Load3: Low update transaction rate (30%) and low volume of updated data (51% of
the transactions read data) combined with high design transaction rate.

* Load4: Low update transaction rate and low volume of updated data combined with
low design transaction rate.

load and run-time

parameter combinations
transaction high frequency , low frequency
mix of design trans. of design trans.
orocess ime /\
(workstation) /long\ /Iong\ /shm\
:Jggata trans. /bw\ };h\ /low\ /m< /low\ high
chained-io yes no yes no  yes no  yes no yes no yes no
simulation
scenario S01 S02 S03 S04 SO5 S06 SO07 S08 S09 S10 S11 S12

Fig. 6.7: Classification of the basic simulation scenarios

Although 33% seems not to represent a high design transaction rate in the overall
transaction load, it should be considered that each design transaction starts 6 short
transactions at the server node (i.e. 3 CHECKOUT and 3 CHECKIN operations) while
cach business-oriented (batch) transaction represents only one S-Tr in the public system.
Load files of type Loadl, for instance, force the server node to execute 1851
CHECKOUT $-Trs, 1851 CHECKIN S-Trs, 300 read-only batch transactions, and 1083
update batch transactions. Each transaction load file generated for simulation relies on one
of the load types described above and consists of 2000 transactions.

To simulate different operating system environments as well as different designer

behaviors, we also varied the values of some run-time simulation parameters. By varying
the processing time at the workstation (i.e. the duration of the PROCESS R-Tr) and

112



maintaining the multiprogramming level at the server node constant, we controlled the
number of active workstations and terminals which were simulated. This number varied
between 10 and 87. On the other hand, we simulated operating systems which support
chained-I/O and those which supported only page-oriented I/O-operations, because we
were interested in investigating how chained-J/O affects the performance of page-oriented
logging mechanisms. By combining the values of different run-time simulation
parameters, four basic run-time parameter settings were produced:

« Setting I: Long-duration PROCESS R-Tr (i.e. 3 minutes per object at the workstation)
combined with chained-I/O.

o Setting 2: Long-duration PROCESS R-Tr combined with simple I/O-operations.

+ Setting 3: Short-duration PROCESS R-Tr (i.e. 1 minute per object at the workstation)
combined with chained-I/O.

* Setting 4: Short-duration PROCESS R-Tr combined with simple I/O-operations.

By most of the simulation runs, the values of all other run-time parameters were made
dependent of the setting type selected. All combinations of run-time as well as load
parameters were calculated to produce simulation runs where transaction processing
activities consume some 85% of the system resources (i.e. CPU and disks). The
remainder 15% of computer resources were supposed to be consumed by other operating
system’s activities (e.g. garbage collection). CPU capacity on server was usually kept by
9 MIPS. By the simulation of some extra scenarios, we increased CPU capacity ( e.g. 15
as well as 25 MIPS) to change the proportion between DBS CPU time and operating
system CPU time. In this way CPU idle time was increased and more parallelism between
user transactions and deferred mapping operations was achieved.

By combining different load types with the various run-time parameter settings, we
obtained 12 different simulation scenarios. Figure 6.7 depicts the main characteristics of
these scenarios. We did not consider the combination of high design transaction rate with
short-duration PROCESS R-Tr, because this scenario seemed to be similar to the one
where low design transaction rate is combined with long-duration PROCESS R-Tr. By
combining these twelve scenarios with the four simulation environments presented in
section 6.1, we produced a set of 48 basic scenarios. 240 simulation runs were necessary
to investigate the behavior of the five recovery algorithms in these 48 different processing
scenarios. On the basis of the results obtained through these set of simulation runs, we
decided to investigate the performance of the recovery mechanisms in a number of extra
scenarios where the values of some other (load as well as run-time) parameters were
varied independently. All extra scenarios which were simulated were based on scenario
S03. We were very interested in analyzing recovery performance for this scenario in more
detail, because it combines high design transaction rate and high update transaction rate
with long-duration PROCESS R-Tr and chained-I/O. We believe that most of the future
integrated information systems will present these properties, too. The following extra
scenarios were created to complement our simulation study:

« SEI: The scenario SO3CH was simulated with a transaction load consisting of 2000
design transactions (i.e. design transaction rate = 1.0).

+ SE2: In this scenario, the locality of access presented by design transactions as well as
batch transactions was raised from 10% to 30%.

« SE3: To investigate recovery performance in processing environments where mapping
operations take not so long, we produced a scenario where these operations have a cost
of 128000 machine instructions per database record instead of the original 384000
instructions. The original cost of representation mapping operations which was applied
to all other simulation scenarios is based on the cost of these operations in the
DAMOKLES database system.

+ SE4: By the simulation of this scenario, the server’s CPU capacity was set to 11
MIPS. As already explained above, we wanted to investigate the performance of
recovery mechanisms which support deferred mapping in processing environments
with higher CPU capacity. Actually, because of the high costs associated with

113



CHECKOUT and CHECKIN operations, database systems supporting integrated
information systems will have to rely on servers with much higher processing
capacities than the 9 MIPS simulated in the other scenarios. This will not be difficult
even for microprocessor-based, centralized server processing nodes, though. The 32-
bits microprocessor Motorola M68040, for instance, should be brought to the market
at the end of 1989 and will be able to process some 24 million instructions per second.
Through the simulation of scenario SE4, we investigated the behavior of recovery
mechanisms by a little increase on the CPU capacity (i.e. some 20%). Other scenarios
were designed for the analysis of recovery performance under higher CPU capacities
(e.g. SE5 and SE9).

* SES: In this scenario, the server’s processing capacity was set to 25 MIPS. We
simulated this scenario for the same reasons which led us to simulate SE4.

+ SE6: This as well as the next extra scenario to be presented were used to investigate the
effects of deferred mapping in a design cooperation environment. In this scenario, we
supposed that 20% of the CHECKIN operations executed at the server node bring
non-committed design object versions into the group database. These object versions,
then, are soon checked out by other designers.

¢ SE7: This scenario is similar to SE6 but CPU capacity is set to 25 MIPS here.

* SE8: In this scenario the maximum log size was set to the half of its normal value. On
the basis of this scenario, we simulated SO3 combined with the system crash
environment (CR) to investigate how a smaller ring file can affect crash recovery time
for REC2 and RECS.

* SE9: This scenario is based on SO3CH but presents a CPU capacity of 50 MIPS.
* SEI0: This scenario is based on SE6 but presents a CPU capacity of 11 MIPS.
*+ SE11: This scenario is based on SE1 but presents a CPU capacity of 15 MIPS.

6.4 Main Results of the Recbvery Performance Evaluation

In the present section, we first present some of those evaluation results of the simulation
analysis of recovery algorithms that can be generalized for all (or almost all) processing
scenarios simulated. Then, we describe selected simulation results which apply either to
specific recovery techniques or to special simulated scenarios. The whole set of
simulation results classified by simulation scenario can be found in [Toc89b].

6.4.1 Recovery Cost in the Design Environment

Recovery has proven not to be the most resource consuming component of the public
system. This was true for all recovery mechanisms simulated. System components such
as the buffer manager or the mapping module consumed a lot more CPU time than the
recovery modules. This observation was confirmed even by the simulation of scenarios
with a high update transaction rate. For instance, by the simulation of REC1 in scenario
SO01CH (i.e. SO1 with checkpoint generation) RM1 was visited 4918 times by batch
transactions. On the average, by every visit the transaction waited about 10.5ms to be
processed by RM1 and was processed in some 0.13ms. In the same simulation run,
transactions waited about 102.8ms in BM1’s internal queue and were processed by
MAP in some 512ms. Design operations (CHECKOUT and CHECKIN) waited even
longer. While each design operation was kept in RM1°s queue for almost the same time
as batch transactions were, it waited 149ms in BM1’s queue on average and was
processed by MAP in about 8.5 seconds.

114



550000 1

500000 - il .

450000

400000

350000

300000 2N

1seC. 550000 AR O

200000 // D e

150000 ~

100000 v 4

50000 peme mE Qe
0 3 ®- - 'J
SO1CH S03CH S05CH SO7CH S09CH
“0- RM14RM2 O BMt - MAP

Fig. 6.8: Costs in microseconds for each visit of a transaction to either the recovery,
buffer manager, or mapping node

Figure 6.8 shows three curves of costs. They depict the costs of recovery activities,
buffer management, and mapping operations in various simulation scenarios,
respectively. These costs are related to batch transactions only. They represent the average
time a transaction spends at the respective simulation node by each visit to this.node. The
average time includes both the time during which the transaction waits to be'served and
the service time itself. It is easy to note that the mapping time is almost constant for all
simulation scenarios. This can be explained by the fact that the objects read as well as
those written by the transactions, respectively, have the same size for all simulation
scenarios. Both BM1 and recovery costs depend on the scenario being simulated, though.
Buffer management costs are higher in scenarios with high read-only batch transaction
rates. In these scenarios, data is read but not updated. Therefore, the number of accesses
to the same data in the page-oriented system buffer is reduced and the probability with
which next data accesses will require I/O-operations increase. Recovery activities reach
their highest costs by the simulation of SO3CH. This scenario presents the highest design
transaction rate combined with high update transaction rate. By the simulation of all
scenarios shown in Figure 6.8, though, recovery costs were always significantly lower
than the costs of other system activities. In principle this can be explained by the high
costs of mapping operations and buffer management. On the other hand, waiting times
were very high in the simulation network, because of the relative low CPU capacity of the
server (i.e. 9 MIPS).

6.4.2 The Effects of Different Transaction Classes on the Simulation
Results

The simulation study has shown that transaction execution can take much longer in
integrated database system environments which support very different transaction classes.
Growing response times could be observed especially by the execution of batch
transactions. The ones simulated in our study take about 3 seconds when they execute
alone on server. Simulated together with design transactions, these batch transactions
took up to 4 minutes to be completely processed (this occurred, for instance, by the
simulation of update batch transactions in SO3CH).

115



140000000

O,
120000000 l\
100000000 .@Q
80000000 o
HS8C. 0000 \ ﬁ—)—.
‘mm \
20000000 |
0 l M -
SO1CH S03CH SO5CH SO7CH

I @~ AVG.WAITTIME ©O- MAXWAIT.TIME - AVGRESP.TIME |

Fig. 6.9: Batch transactions” average and maximum times in the server’s ready queue

Batch transactions spent great part of their execution time waiting in the ready queue of
the server node. Since the multiprogramming level at the public system was kept low
(e.g. up to 10 transactions) and both CHECKOUT as well as CHECKIN operations
practically consumed all system resources, starting batch transactions were often kept in
the ready queue for long periods of time, before they were allowed to really enter the
system. The graphic in Figure 6.9 shows both maximum and average times spent by
batch transactions in the server’s ready queue during the simulation of various scenarios.
Moreover, the graphic also shows the curve for batch transaction average response time in
those scenarios. The time spent by batch transactions in the ready queue mostly depended
on the design transaction rate as well as on the update transaction rate, and the number of
terminals being simulated. By the simulation of SO1CH, for instance, 43% of the
response time was wasted in the ready queue on average. The maximum time in that
queue even exceeds the average response time for batch transactions in SO1CH. This can
mainly be explained by the high number of both long-duration CHECKOUT operations
and active terminals (38) in this scenario. By the simulation of SO3CH, the waiting time
in the ready queue dropped to some 17% of the total response time. This reduction on the
waiting time was only in part caused by the reduction on the number of simulated
workstations (25). Another important cause of it is the fact that the number of
CHECKOUT operations which were aborted by the server increased. Since the update
transaction rate in SO3CH is higher than the one in SO1CH, design transactions tend to
retain acquired CHECKOUT locks for longer periods of time. As a consequence, the
number of new CHECKOUT operations which are rejected because of access conflicts is
higher in SO3CH (601) than in SO1CH (126). Waiting batch transactions are brought into
the public system faster when running CHECKOUT operations terminate early. Finally,
in SO5CH the average time spent by batch transactions in the ready queue represents
28.5% of their total response time. Although this time is not shorter for SO7CH, it
represents only 15.4% of the response time in that scenario. This can be explained by the
high update transaction rate of S07CH s transaction load. That is, since most transactions
in SO7CH update the data they read, they usually take longer than transactions which
execute in SOSCH, since this scenario presents a low update transaction rate.

6.4.3 Relative Processing Capacity of the Server Node

In scenarios which presented both high design transaction and high update transaction
rates, REC2 reduced response time for update batch transactions by 25%. On the other
hand, it increased response time for CHECKOUT by 15% in these scenarios. Only by
increasing CPU capacity, it was possible to reduce response time for all transaction
classes at the same time. By increased processing capacity, the server could execute
transactions faster. This had two consequences. First, running remote design operations
(e.g. CHECKOUT) did not consume almost all server resources anymore. Moreover,
since remote operations were processed faster, batch transactions did not have to wait in

116



the ready queue for so long. On the other hand, by higher CPU capacity, the public
system could reduce the thrashing effect among batch transactions. That is, the number of
blocked (and also aborted) transactions was reduced on server, since access conflict times
became shorter. This last effect of increased CPU capacity is depicted in the graphic of
figure 6.10. The lower curve shows how the number of blocked (batch) transactions
decreases as CPU capacity increases. The higher curve in this graphic shows, on the
other hand, that the number of CHECKOUT operations which fail in the public system
due to access conflicts practically remains constant while processing capacity increases.
This can be explained by the fact that access conflicts among design transactions are of
longer duration and also depend on the time during which design objects are processed at
the workstation.

In most of the simulation experiments realized, the server’s CPU capacity was set to 9
MIPS and the transaction load simulated was designed to consume 85% of the server’s
processing capacity with a multiprogramming level of 10 transactions. Simulation results
showed that operating system’s activity (e.g. queue management) consumed much more
than the 15% of CPU capacity reserved for them. As a consequence of that, thrashing as
well as waiting times in the ready queue increased. This characteristic of some simulation
runs made it difficult to identify small differences in the behavior of the recovery
mechanisms investigated. Therefore, we decided to simulate some scenarios on the basis
of more powerful server processing nodes. Later in this section, we compare the results
obtained by the simulation of the same scenarios using different CPU capacities.

700
b
600 ©.

Nr. of 400
rans. 359

L v\
F \0“_0
9MIPS 11 MIPS 25 MIPS 50 MIPS

I ®- Blocked.Batch.Tr O~ Op.Failure{Design)

Note: these results were obtained by the simulation of REC1

Fig. 6.10: Relating the number of blocked and aborted transactions to CPU capacity

6.4.4 Recovery Performance on the Basis of Different Simulation
Scenarios

In the following, we rely on the classification of simulation scenarios shown in Figure
6.7 to present some general results of our recovery evaluation. Mainly as a consequence
of both the long waiting times spent by transactions in the server’s ready queue and the
long-duration mapping operations executed by the server, recovery activities did not
influence system throughput very much even when CPU capacity was increased.
Furthermore, the different recovery mechanisms affected system throughput in a similar
way. They showed much more differences in what concerned transaction response time.
Figure 6.11 relates system throughput with recovery for various checkpoint-oriented
scenarios when CPU capacity is kept by 9 MIPS. These scenarios respectively present
different design transaction rates. It is easy to note that the recovery strategy has
practically no influence on the system throughput during normal system operation. By
scenarios where transactions may be rolled back, different recovery mechanisms can

117



affect system throughput differently, though. Figure 6.12 relates throughput in some
transaction-abort scenarios with the recovery techniques simulated. While throughput
almost remains constant for SO3CH, it increases by the simulation of REC2 in both
SO07AB and S11AB. By most of the simulated scenarios, REC2 has reduced the response
time of update batch transactions while increasing the processing time of other
transactions. Since the former transactions respectively represent 53.1% and 54.5% of the
transaction loads associated to SO7AB and S11AB, REC2 allowed a little increase of
system throughput in these scenarios.

It is interesting to note how the processing time at the workstation can affect the
performance of RECS by low CPU capacity at the server node. Figure 6.12 shows that
while REC5’s performance is similar to that of REC3 and REC4 in scenario S07AB, it
relatively decreases in scenario S11AB. By committing design transactions sooner and
allowing new transactions to start in parallel to mapping operations, RECS5 increases the
processing load on server. This load becomes even greater when objects which are
transferred to the workstation return to the server sooner. This is exactly what happens by
the simulation of S11AB. Consequently, the number of access conflicts in the public
database increases and more transactions must be either blocked or aborted.

Although recovery mechanisms based on deferred mapping can help to increase system
throughput in environments with high abort transaction rates, they cannot compete with
other recovery techniques in environments where system crashes occur frequently. These
mechanisms recover the system state after a crash by reading updated design objects and
tuple sets from the log and forcing them to be mapped on database pages. Since much of
the logged data had already been mapped once before the crash occurred, these new
mapping operations represent an extra burden to the database system. Figure 6.13 shows
how transaction throughput is affected by the various recovery algorithms when different
system-crash scenarios are simulated. An interesting observation related to this figure is
that REC4’s performance does not differ from that of REC1 and REC3 very much.
Although these two other mechanisms execute more complex crash recovery algorithms
than REC4, these algorithms must be processed relative seldom. On the other hand, most
of the I/O-operations realized by REC1 and REC3 during crash-recovery activities are
executed by REC4 during transaction commit processing.

8¢,
. = n - -
0,225 l
0215 2 & 5 °
0,205
0,195
0,185
0,175
0,165
0,155 ® ° o o ®
REC1 REC2 REC3 REC4 RECS

[ ®- S03CH O- SO7CH M- S11CH |

Fig. 6.11: System throughput by different checkpoint-oriented scenarios

While the system achieves almost the same throughput by the simulation of REC1,
REC3, and REC4 in all crash-recovery scenarios, its throughput considerably decreases
by the simulation of REC2 and REC5. Note that this decrease in the system throughput

118



was reduced when REC2 and RECS5 were simulated with a smaller log file (i.e. a 400
pages long ring file instead of a 800 pages long one). By realizing a smaller ring file on
disk, REC2 and RECS5 could reduce the number of objects and tuple sets stored on the log
at any point in time. Therefore, less data had to be remapped onto database pages in case
of a system crash. In this way, REC2 and RECS5 could restore the state of the database
faster, when the system crashed. We believe that REC2 and REC5 would allow even
better system throughput, if log size had been more carefully chosen. The reduction of the
log length has also affected transaction response time in SO3CR. Figure 6.14 shows how
the response time of the various transaction classes decreased when the log length was
reduced by the simulation of REC2 and RECS. While the execution time of batch
transactions and CHECKOUT operations was reduced by about 9.5%, the response time
of CHECKIN operations was decreased in about 30 seconds (i.c. 27% of the total
execution time).

Let us now analyze how the recovery mechanisms affect transaction response time in the
different simulation scenarios. In most of the simulation runs, those recovery mechanisms
which were realized at the server’s page or tuple level showed a similar behavior. They
affected the response time of the different transaction types almost in the same way. This
behavior can in part be explained by the fact that these mechanisms require mapping
operations to be processed as part of the transaction execution. Since mapping operations
take very long, the differences among REC1, REC3, and REC4 affect transaction
response time only marginally. The mechanisms which support deferred mapping, on the
other hand, have influenced response time very much. Different transaction types were
influenced differently, though. REC2 usually reduces the response time of update batch
transactions by the cost of increasing the response time of other transactions (especially
CHECKOUT operations). RECS5, on the other hand, considerably reduces the response
time of CHECKIN operations but increases the time of both read batch transactions and
CHECKOUT operations. By allowing update transactions to be committed before their
associated mapping operations take place, REC2 and RECS5 force the response time of
those transactions to be reduced. The deferred mapping operations, then, are executed in
parallel to other transactions by demon processes. In this way, the server’s
multiprogramming level is increased, although the server’s processing capacity remains
the same. Consequently, the thrashing in the system increases and the execution of other
transactions takes longer. The overload caused on the server by demon processes can be
reduced only if the server’s processing capacity is increased.

./
sec.

0,23

— .
022

(o N—
0,21 L7—— ——s vy >

02
0,19

0,18
017
0,18

015 4
REC1 REC2 REC3 REC4 RECS

+

[o-soaAs ©0- S07AB I-snAel

Fig: 6.12: System throughput by different transaction-abort scenarios

119



Figure 6.15 compares response times obtained by the simulation of the various recovery
mechanisms in SO3CH. This scenario presents both high design transaction and update
transaction rates and long-duration processing activity at the workstation. Simulation
results are compared on the basis of the transaction response times obtained with REC1.
While REC2 reduces the processing time of update batch transactions by 25.2%, it
increases the response time of CHECKOUT operations by 14%. Note that in scenario
S03CH CHECKOUT operations represent 36.4% of the transaction load while update
batch transactions make only 21.3% of the load. REC3 and REC4 produce similar
response times. These times are comparable to the ones obtained by the simulation of
RECI. Although REC3 logs less data than REC1, the former executes a more complex
algorithm to manage its log buffer. The time REC4 saves by not having to generate
checkpoints is offset by the extra I/O-operations executed during transaction commit.
Although RECS reduces CHECKIN response time by 54% and this operation contributes
with 36.4% of the total transaction load, this recovery mechanism increases the response
time of all other transaction types.

1.7

sec.
gﬁg °. ) e—
0.21 éMO———-O&‘
02 1™ ® ®
019 SN e N
0:15 \ 5 / \0
017
0,16
,
015 “WD——WWUN
014 - \'
013 Bt Pl o
0,12 v v .
RECH REC2 REC3 REC4 RECS
®- S11CR ©- S07CR B. S03CR/log: D SO3CR/log:
400 pgs 800 pgs

Fig. 6.13: System throughput by different crash-oriented scenarios

Let us now analyze transaction response time in environments which present low design
transaction rates. Figure 6.16 shows response time differences which were observed by
the simulation of SO7CH. Besides presenting a low design transaction rate, this scenario
shows a high update transaction rate and long duration processing activity at the
workstation. Once again, the results obtained by the simulation of REC1 do not differ
very much from those observed by the simulation of REC3 and REC4. Since most of the
mapping operations in SO7CH process sets of tuple instead of complex objects, they
usually take shorter than, for instance, mapping operations in SO3CH. Consequently,
some differences among REC1, REC3, and REC4 can be better noted. REC3, for
example, has better times for update batch transactions (which represent 53.1% of the
load) and CHECKIN operations, because it logs less data than REC1. REC4 produced
worse response times than REC1 for almost all transaction types, because it forces
updates to disk during transaction commit. While the log file is written sequentially,
REC4 uses random access to force udates to the database on disk. Sequential write
operations on disk usually take shorter than random access, since in most cases the write
head needs not to be moved (i.e. is kept over the same disk track). REC2 reduced the
response time of most transactions by 14.1%. On the other hand, it increased the
processing time of 38.8% of the transactions by almost 30%. RECS reduced response
time of CHECKIN operations by 60% but increased processing time of read batch
transactions by 44%.

120



batch.read batch.upd checkin checkout
(5.9%) (21,3%) (36,4%) (36,4%)

I! REC2/log: 800 pgs [l RECZ log: 400 pgs I

Fig. 6.14: REC2’s crash-recovery performance by different log file sizes

Figure 6.17 depicts response time difference in S11CH. In this scenario, PROCESS R-Tr
takes only 1 minute at the workstation. Therefore, objects are checked back into the public
database sooner. Since S11CH presents a high transaction update rate, most of the objects
checked in at the server node had first been updated by the designer at the workstation.
Consequently, REC3 reduced the response time obtained by REC1 for CHECKIN
operations, because it logs only updated tuples instead of whole pages (i.e. it executes
less 1/O-operations than REC1). The same occurred with the response time of update
batch transactions. REC2 reduced CHECKIN response time in the same proportion it
increased CHECKOUT response time. On the other hand, REC2 reduced the time of
update batch transactions by 11.1% while increasing the processing time of read batch
transactions by 42.8%. Finally, RECS5 repeated its usual performance by reducing
CHECKIN response time very much and increasing the response time of other transaction
types.

.M vatchread BB batchupd B checkin checkout
(5,9%) {21,3%) (36,4%) (36,4%)

Fig. 6.15: Response time in a scenario with high design transaction rate (SO3CH)

In scenarios which present both low design transaction and low update transaction rates,
RECS5 had the best performance. Figure 6.18, for instance, shows response time
differences observed by the simulation of SO9CH. Although RECS increased the
processing time of read batch transactions by 9.7%, this percentage represents a time
increase of only three seconds in 30 seconds. On the other hand, RECS reduced the

121



response time of all other transaction types in SO9CH. REC5s behavior can be explained
by the fact that only a few transactions updated data in SO9CH (i.e. only 36% of the
executed transactions). Therefore, fewer demon processes were started in this scenario to
execute mapping operations in parallel to other transactions. Consequently, the server was
not so much overloaded.

Descending the scenario classification tree further, we now comment on how chained-I/O
facilities affected both recovery and overall system performance. In most of the simulated
scenarios, chained-1/O influenced recovery performance only marginally. As we already
explained, the processing activity at the server node is CPU-bounded and not I/O-
bounded. Waiting times and mapping operations dominated most of the transaction’s
execution time. It is possible, though, that chained-1/O operations could have exerted a
greater influence on the system’s performance, if we had simulated larger data objects in
the public database so that the difference between the number of chained and normal J/O-
operations would have increased. The simulated object clusters consisted of four database
pages and each subobject read was stored onto two of these pages. Therefore, when
chained-1/O was simulated objects were read into the buffer or written to disk in one I/O-
operation. For the same read/write operation, two I/O-operations were needed when
normal input/output devices were simulated. That is, chained-J/O reduced the number of
access operations to disk by 50%. Nevertheless, the total number of this operations was
always kept relatively low. On the other hand, chained 1/O-operations always read two
extra database pages into the page/segment-oriented buffer, since they always bring a
whole cluster into main memory (although the objects being read are stored onto only two
of the four cluster pages).

885883,38888,

Il batchread [ batchupd [l checkin checkout
{10.7%) {53.1%) {18.1%) (18.1%)

Fig. 6.16: Response time in a scenario with low design transaction rate (S07CH)

The curves for transaction response time in Figure 6.19 show that the difference in the
number of I/O-operations had no much effect on recovery performance in checkpoint-
oriented scenarios. The curves in Figure 6.19 respectively depict response time in SO7CH
and SO8CH by the simulation of REC1 which realizes a page-oriented logging algorithm.
Both scenarios present the same design transaction and update transaction rates, are
checkpoint-oriented, and model long-duration design processing at the workstation. Only
S07CH models chained I/O-operations, though. Chained-1/O have reduced the response
time of read batch transactions a little. Since the processing time for mapping operations
in these transactions was relatively short, the difference on the number of executed I/O-
operations could be better noted. On the other hand, chained-I/O performed even worse
than normal I/O-operations by the simulation of CHECKIN operations. This result is
related to the fact that chained I/O-operations always brought 50% more data into the
buffer than it was necessary. Therefore, the buffer manager was forced to flush more data

122



to disk. This, in turn, increased the number of I/O-operations again. We believe that
chained-I/O performance is closely related to the organization of data objects in clusters.
To prevent that chained I/O-operations read too much unnecessary data into main
memory, the physical organization of the database on disk must be carefully planned.

Figure 6.20 shows the effects of chained-I/O on recovery performance in a crash-oriented
simulation scenario. By the simulation of crash-recovery activities, chained-I/O has
clearly helped to increase recovery performance. The difference between chained-I/O
performance in crash-oriented scenarios and in other scenarios can be explained by the
fact that recovery mechanisms executed more I/O-operations by crash-recovery than by
other recovery activities. It must be noted, though, that the increase of chained-I/O
performance in crash-oriented scenarios showed not the same intensity by the simulation
of recovery mechanisms which maintain smaller log files on disk as, for instance, REC3.
Furthermore, chained-I/O became even less important by the simulation of recovery
algorithms for which crash-recovery activities are CPU-bounded (e.g. REC2). Once
again, we want to emphazise that the performance of chained-1/0 would probably increase
further, if we had simulated much larger data objects.

8388E885 5858,

Il bachread [ batchupd [E checkin E3 checkout
(13,8%) (54,5%) (15,8%) (15,8%)

Fig. 6.17: Response time in a scenario with short processing times at the workstation

3o d BB BB,

W vachread JH bachupd [l checkin B checkout
(47.8%) (200%) (16,1%) (16,1%)

-25

Fig. 6.18: Response time in a scenario with low update transaction rate (SO9CH)

123.



60000000 /. °\ 4

o / N\ /.

s 1\ VA

4 N/
N/

o
40000000 I 57
35000000 + —
batch.read batch.upd checkin checkout

I @- chained.lO ©- normal.i0 |

Fig. 6.19: Effects of chained-1/O in checkpoint-oriented scenarios (S07/SO08CH)

.6.4.5 Comparing Disk Space Occupancy for the various Recovery
Mechanisms

As expected, the simulation results have shown that the page-oriented recovery
mechanism (REC1) is the one which requires most disk space to store recovery
information. Besides confirming this empirical expectation, though, the simulation study
has also quantified the stable storage space consumed by each one of the simulated
techniques. Figure 6.21 compares maximum and average log lengths for the five recovery
mechanisms. These log sizes were observed by the simulation of SO3NR. This scenario
models a normal system operation environment which presents high design transaction
and update transaction rates. By the simulation of this type of scenario, the recovery
algorithms do not generate checkpoints. Therefore, the log size can only grow during
system operation. Although the graphic of Figure 6.21 is based on the simulation of
SO3NR, the lengths of the different log files maintained this same proportion in almost all
other simulation runs.

psec,
70000000

10\ 0
S7500000 PN // °

64000000
61000000 LA

SN
000000 1o NN
52000000 4oyl AN L

0<

batch.read batch.upd checkin checkout

l @~ chained.l0 ©- normal.l0 I

Fig. 6.20: Effects of chained-I/O in crash-oriented simulation (S07/SO8CR)

124



By the simulation of RECI1, the log size achieved the mark of 18489 logged data pages.
The maximum size of the log file by the simulation of both REC2 and RECS5 was 8150
pages. REC3’s maximum log size was kept by 7576 pages. Since REC4 simply forces
transaction updates to disk at commit time, it does not need to maintain extra recovery
information on a log file. During commit, REC4 first writes the transaction updates to a
special area on disk. This so-called intention list of updates is used in the case of a system
crash to guarantee atomicity for the transaction-oriented checkpoint generated by REC4 on
the basis of the FORCE strategy. The intention list on disk is discarded by REC4 as soon
as the transaction commits. Therefore, intention lists were not considered to be a log file
for the purposes of quantifying storage space consumption for the recovery mechanisms.

The simulation results show that, on the average, REC2 and REC5 consumed only 44%
of the disk space used by RECI1 to store recovery information. REC3’s average space
requirement on disk was even more modest (i.e. 41%). It must be noted, though, that
while REC2 and RECS saved complete data objects on the log, REC3 stored only updated
records on that file. REC2 and RECS could keep their log files small because they saved
whole data objects or tuple sets as single log records. Thus, these algorithms did not write
so much log control data to disk as REC3 did. The latter recovery mechanism stored
every updated tuple on the log as a single record. Moreover, REC2 and RECS could have
kept the log even smaller, if only the updated parts of objects and tuple sets were to be
saved on stable storage.

disk
pages

18000

15000 4

REC1 REC2 REC3 REC4 RECS

Il Max.Log.Size (inpages) E Avg.Log.Size (in pages) |

Fig. 6.21: Average and maximum disk space consumptions by normal system operation

6.4.6 Extra Simulation Scenarios with Low CPU Capacity

Based on the results obtained by the simulation of the 12 original scenarios (which are
described in Figure 6.7), we decided to investigaté recovery performance in the design
environment under some other conditions. Besides analyzing the effects of increased
server processing capacity on recovery performance, we were also interested in evaluating
recovery in environments where only design transactions are processed. Moreover,
scenarios where transactions present higher access locality were simulated, too. Finally,
recovery performance was investigated in database systems which present lower costs for
mapping operations related with design transactions. In the following, we report on some
of the results obtained by the simulation of extra scenarios.

Figure 6.22 compares recovery performance on the basis of transaction response time
when the public system processes only CHECKOUT and CHECKIN operations. REC3

125



and REC4 help response time of update transactions to decrease a little bit in comparison
to the response times allowed by REC1 (i.e. respectively 0.8% and 0.5%). This can be
explained for REC3 by the fact that this mechanism logs less data than REC1. Although
REC4 also writes database pages to disk, it needs not to generate checkpoints as REC1
does. The reduction on response time for CHECKIN operations allows the designers at
workstations to start new CHECKOUT operations earlier. By low CPU capacity on
server, though, these operations are forced to wait longer in the server’s ready queue.
Consequently, the response time of CHECKOUT operations is a little bit higher by the
simulation of REC3 and REC4 than it is by the simulation of REC1 (i.e. respectively
0.6% and 0.1%). The phenomenon described above occurs with much higher intensity by
the simulation of RECS. Besides allowing CHECKIN operations to be committed before
their respective mapping operations are executed by the public system, this mechanism let
new remote operations be taken from the ready queue even before those mapping
operations terminate. As a consequence of that, the number of short transactions being
processed in parallel by the server strongly increases. New CHECKOUT operations,
then, wait not in the ready queue but in the CPU queue much longer. The result of
RECS5’s strategy in environments with low CPU capacity can be clearly seen in the
graphic of Figure 6.22. While the processing time of CHECKIN operations is reduced by
71% percent (in comparison to REC1), the response time of CHECKOUT operations is
increased by 39%.

psec.

150000000
120000000 1

90000000 1

REC1 REC3 REC4 RECS

M checkin(50%) I checkout (50%)

Fig. 6.22: Response time in a scenario where only design transactions are processed

By the simulation of a scenario where transactions present a higher locality of access (i.e.
30% instead of the 15% with which the other scenarios where simulated), we wanted to
investigate if higher locality affects REC4s performance in the same way it does in
business-oriented database systems. Furthermore, we also wanted to analyze the
performance of recovery mechanisms which support deferred mapping under higher
locality. Figure 6.23 relies on different transaction response times to compare recovery
performance under 30% locality in a scenario which presents high design transaction and
high update transaction rates (i.e. SEO2CH). Since SE02CH presents low server
processing capacity (i.e. 9 MIPS), both queue times and mapping operations dominated
transaction processing time.for all transaction types. Consequently, the fact that REC4
forces the same database pages to disk more often in SE02CH than in other simulation
scenarios had no much influence on the response time of the transactions processed. This
can be concluded on the basis of the results showed in Figure 6.23. REC4 increased the
response time for read batch transactions and CHECKIN operations only marginally in
comparison to REC1. On the other hand, REC4 even reduced the processing time of

126



update batch transactions by 3.9%. The behavior of all recovery mechanisms simulated in
SE02CH did not differ very much from the behavior they had by the simulation of other
scenarios. Maybe, REC2 was the only mechanism which somewhat benefited from the
increased locality of access. By allowing designers to start CHECKOUT operations
earlier, REC2 increased the chance which following transactions had of finding the data
they needed in the buffer. On the other hand, REC2 reduced the number of CHECKOUT
operations being aborted by the server as well as the number of blocked transactions at
that processing node. Figure 6.24 shows that while the number of aborted CHECKOUT
operations was kept by 1500 during the simulation of REC1, REC3, and REC4, this
number dropped to about 1200 by the simulation of REC2. RECS produced the highest
number of aborted and blocked transactions, though. The combination of higher
multiprogramming level (which is forced by REC5) with higher access locality naturally
leads to more access conflicts among concurrent transactions.

Now, let us comment on the way shorter-duration mappmg operations affect recovery
performance in a simulation scenario which presents high design transaction rate and high
update transaction rate. By the simulation of SE3CH, we reduced the cost of mapping
operations for CHECKOUT and CHECKIN from 384000 to 128000 machine
instructions per database record. To maintain 85% of the CPU capacity allocated to
transaction processing activities, though, we increased the number of terminals in the
system (i.e. this number was brought to 87). These changes affected the performance of
recovery mechanisms based on defferred mapping in two ways. First, shorter mapping
operations reduced the advantage of committing update transactions before mapping
operations take place. Secondly, the combination of early commit and high number of
workstations and terminals increased the time during which transactions were kept in the
ready queue of the server node. Figure 6.25 compares transaction response time in
SE3CH. While the very low CHECKIN response time which was achieved by RECS
when other scenarios were simulated is not shown by this figure, the great differences
among response times for CHECKOUT operations which were also observed by the
simulation of other scenarios were reduced during the simulation of SE3CH. That is, the
performances shown by the different recovery mechanisms tend to converge when
mapping operation times get shorter in processing environments which present high
update transaction rates.

%
60
50
40
30
20
10
04
-10 4
-20
-30
-40
-50
-60
W batchread [ batchupd [l checkin BY checkout
- (54%) (19,4%) (37,6%) (37,6%)

Fig. 6.23: Comparing response timés when locality of access increased from 10% to 30%

127



g —
200 o J— o
T ——

REC1 REC2 REC3 REC4 RECS
[0- Nr.aborted. CHECKOUT ©- Nr.blocked.batch ]

Fig. 6.24: Transaction failures in a scenario with high locality of access (30%)

‘ psec.

180000000 //

160000000 Z Z %
oo é é
1 % Z %
120000000 g é é
100000000 Z Z é
s 1 é
socoooc0 | % % 4 Z

batch.read batch.upd checkin checkout
{5.6%) {19.8%) (37.3%) (37.3%)

[Insm Kl recc @ recs H REC4 nscsl

Fig. 6.25: Comparing response times when object mapping costs decrease

6.4.7 Simulating Higher CPU Capacity at the Server Processing Node

The simulation results presented above showed that recovery algorithms located at lower
levels of the server node (e.g. REC1, REC3, and REC4) perform similarly in an
integrated information system when the server’s CPU capacity is relatively low (e.g. 9
MIPS). Since the system becomes overloaded by the execution of long-duration mapping
operations, different recovery strategies such as FORCE and ~FORCE or page logging
and tuple/record logging exert no strong influence either on the overall system throughput
or on the response time of the different transaction types simulated. On the other hand,
simulation results also made clear that recovery algorithms based on deferred mapping
cannot reduce the response time of all transaction types being simulated when the server’s
processing capacity is kept low. By the simulation of REC2, the processing time of
update batch transactions decreased considerably but the waiting time for CHECKOUT
operations in the server’s ready queue increased significantly. By the simulation of
fREChS’ ge I}lvaiting time in the ready queue decreased but transactions got stuck waiting
or the CPU.

128



Relying on the evaluation results obtained by the simulation of scenarios which present
low server processing capacity, we decided to investigate the behavior of recovery
algorithms when this capacity is increased. In the following, we comment on the results
obtained by the simulation of SO3CH with four different CPU capacities for the server: 9
MIPS, 11 MIPS, 25 MIPS, and 50 MIPS. As already explained, SO3CH combines high
design transaction rate with high update transaction rate, and long processing times at the
workstation. Besides that, this scenario models the execution of chained I/O-operations.
‘While no significant increase on throughput could be observed by the simulation of a 11
MIPS CPU, system performance was successively improved by the simulation of both a
25 and a 50 MIPS CPU at the server node. Figure 6.26 compares recovery performance
on the basis of system throughput by high CPU capacities. By 25 MIPS, REC2 allows
highest throughput. It is followed by RECS and REC1. The high server capacity helped
to reduce waiting times at the server’s ready queue as well as at the CPU. The time saved
by committing update transactions earlier was not completely transferred to read-only
transactions anymore. By greater CPU capacity, the demon processes which executed
mapping operations on behalf of committed update transactions did not interfere so much
with other (concurrent) user transactions. By the simulation of a 50 MIPS CPU at the
server node, RECS5 shows the best performance and is followed by REC1 and REC2. By
not allowing new transactions to be started before mapping operations for committed
transactions terminate, REC2 prevents the public system from making use of the whole
server capacity. On the other hand, REC3’s lower performance can be explained by the
fact that it has a more complex logging algorithm than REC1. Besides that, by the
simulation of REC3 the number of aborted CHECKOUT operations increased. REC4
performs better by 50 MIPS than by 25 MIPS because the higher CPU capacity
compensates REC4 s longer 1/O-operations.

v/
sec.

0,32

0,31

03

0,29
l

0,28 & L 4

0,27

0,26 + + + J
RECt REC2 REC3 REC4 RECS

& 25MIPS O 50 MIPS

Fig. 6.26: System throughput by high CPU capacities at the server node

Recovery performarice by increased CPU capacity can also be analyzed on the basis of
transaction response time. Figure 6.27 shows how read batch transaction time varies
when CPU capacity is increased at the server node. While the absolute time difference
between response time under RECS and REC1 decreases when CPU capacity is raised
from 9 to 11 MIPS, the time difference between response time under REC2 and REC1
increases. On the one hand, RECS helps the system to fully exploit the increase in CPU
capacity by starting new transactions at the server in parallel to mapping operations for
committed transactions. On the other hand, the server capacity is not high enough to
reduce the extra waiting time in the ready queue that is induced by REC2. Consequently,
REC2 cannot profit from the higher CPU capacity as much as REC1 does.

129



100000000 i
90000000 ¢
BO000000  frmrrrrmm
¢ <
70000000 S ~
60000000 .&R\
50000000 1 (o)
40000000 ;\\
30000000 DI
NN
20000000
10000000
e —————
0
9 MIPS 11 MIPS 25 MIPS 50 MIPS

[0- REC1L.READ ©O- REC2READ M- REC5READ |

Note: read batch transactions represented only 5.9% of the transaction load simulated

Fig. 6.27: Response time for read batch transactions by different CPU capacities

By 25 MIPS, all three recovery algorithms allow almost the same response time for read-
only batch transactions. CPU capacity has become so high that the differences among the
recovery mechanisms cannot be noted anymore. By this CPU capacity, response time for
read batch transactions achieves the level of response times in business-oriented database
systems (i.e. from two to five seconds). When CPU capacity is raised to 50 MIPS,
transaction response time drops to about one second.

P ———————
0 . —————
9 MIPS 11 MIPS 25 MIPS 50 MIPS

["‘ REC1LUPD ©+ REC2UPD 'MW+ RECS5UPD I

Note: update batch transactions represent 21.3% of the transaction load simulated

Fig. 6.28: Response time for update batch transactions by different CPU capacities

Figure 6.28 compares recovery performance on the basis of update batch transactions
when the server’s processing capacity is increased. While the time difference between
transaction response time under REC5 and REC1 decreases rapidly (e.g. from 21 seconds
by 9 MIPS down to 10 seconds by 11 MIPS), the difference between REC1 and REC2 is
reduced slowly (e.g. only five seconds by 11 MIPS). By increased CPU capacity, the
complex algorithms of REC2 and RECS are executed faster. Therefore, update
transactions can be committed even earlier. Although REC1 also benefits from more
powerful CPUs, it cannot commit update transactions so fast as REC2 and REC5 do.
Similar to the process time of read-only transactions, response times for update batch
transactions converge to almost the same value by 25 MIPS independently from the
recovery algorithm being simulated.

130



psec.
130000000
120000000
110000000
100000000
90000000

70000000
60000000 ©
50000000
40000000 rot
30000000
20000000 ri——
———
10000000 T —

0 + \aﬁhi
9MIPS 11 MIPS 25 MIPS 50 MIPS

IO- RECLIN O- REC2IN M- RECSIN |

Note: CHECKIN operations represented 36.4% of the server’s load
Fig. 6.29: CHECKIN response time by different CPU capacities

it

40000000 .%——i

9MIPS 11 MIPS 25 MIPS 50 MIPS

IO- REC1.OUT O- REC20UT B RECSOUT

Note: CHECKOUT operations represented 36.4% of the server’s load

Fig. 6.30: CHECKOUT response time by different CPU capacities

Although CHECKIN response time decreases faster under REC1 and REC2 than under
RECS, CHECKIN operations are more than 24 seconds shorter under RECS by 11 MIPS
anyhow (see Figure 6.29 for a comparison). Evén when CPU capacity is raised to 25
MIPS, RECI1 still performs worse than RECS. Only by 50 MIPS, all three recovery
mechanisms allow (almost) the same response time for CHECKIN operations at the
server node.

‘We now analyze how increased CPU capacity affects CHECKOUT response time in the
various recovery environments simulated. The curves in Figure 6.30 show how response
time for CHECKOUT operations decreases when the server’s processing capacity
increases. By 9 MIPS, response time under RECS and REC2 is about 15 seconds longer
than under REC1. By 11 MIPS, this difference drops down to 10 and 13 seconds for
REC2 and RECS, respectively. On the basis of interpolation, we calculate that the
difference in CHECKOUT response time by 18 MIPS would be around 6 seconds. By

131



this CPU capacity, CHECKOUT operations under REC1 would take about 57 seconds at
the server node. From the evaluations above, we can conclude that the advantage of
RECS concerning CHECKIN response time is kept further when CPU capacity increases,
while the advantage of REC1 concerning CHECKOUT response time decreases in
importance more rapidly. Although REC2 reduces the response time of update batch
transactions even when CPU capacity is increased, this algorithm does not permit that the
server fully utilizes the extra CPU power. Only RECS really helps to improve parallelism
at the server node.

6.4.8 Recovery Performance in a Design Cooperation Environment

As explained at the beginning of the present chapter, we also investigated recovery
performance in a system which supports design cooperation on the basis of the GM3
processing model. Pursuing the goal of analyzing to which extent recovery can benefit
from the buffer hierarchy realized by the design database system, we decided to test how
deferred mapping can affect system performance in database systems which allow
designers to exchange non-committed results via the group database located at the server
node. For this purpose, we modified the simulation network so that every object being
checked back into the group/public database was associated with a message sent from the
workstation. This message was interpreted by TM2 at the server node as the object
arrived there. The message carried one of two contents. It either informed TM2 that its
associated object was completely processed by the designer at the workstation or told that
simulation node that the object being checked in would soon be checked out of the group
database by another designer to be processed further. The transaction manager interpreted
the received message and informed the other simulation nodes of the server about its
meaning. We simulated this version of GM3 with two different CPU capacities for the
server node: 9 MIPS and 11MIPS. In all simulation runs, 20% of the objects being
checked into the group database were associated with messages which informed TM2
that those objects would soon be checked out again. .

trans./
sec.

0,22
0.2 Ome e
I o~ 0
0,18
@
0,16 et B e
0,14
0,12

0,1 v T T N
REC1 REC2 REC3 REC4 RECS

&~ throughput by 9 MIPS ©- throughput by 11 MIPS

Fig. 6.31: System throughput related to CPU capacity in a design cooperation scenario

The graphic in Figure 6.31 compares system throughput in the GM3 scenarios simulated.
The curves in the graphic show that REC2 and RECS allowed best throughputs in both
the 9 MIPS and the 11 MIPS environments. These two recovery mechanisms were the
only ones which could understand the different semantics that CHECKIN operations
could have. By processing a CHECKIN operation, REC2 and RECS first saved the
updated object on the log and then analyzed the message associated with it. If the object
was to be checked out again soon, these recovery mechanisms sent it back to TM2

132



instead of directly sending it to the MAP simulation node. By the next time the object was
checked out, it was read from the log. The other recovery algorithms could not reduce the
number of mapping operations on the basis of the messages received from the
workstation. Since REC1, REC3, and REC4 are realized at lower system levels, they
must force mapping operations to take place in order to save data updates by CHECKIN.

§

i

AANNNNNNN
}§\~

; 4
batch.read batch.upd checkin checkout
(5.9%) (21.3%) (36.4%) (36.4%)

[. REC1 E REC2 B REC3 @ REC4 RECS_|

Fig. 6.32: Response time in a design cooperation environment with low CPU capacity

The better performance of REC2 and RECS in design cooperation environments can also
be observed by the transaction response times these mechanisms allowed there. Figure
6.32 depicts response times in the 9 MIPS GM3 scenario. For all transaction types,
REC2 allowed the lowest response time. Although REC5’s performance related to both
CHECKOUT and update batch transaction response times improved, it could not
guarantee a better response time for read batch transactions. By 9 MIPS, RECS still
causes the server to become overloaded, even if the number of design mapping operations
is redtpced in the system. On the other hand, RECS reduced CHECKIN response time
even further.

batch.read batch.upd checkin checkout
(5.9%) (21.3%) (36.4%) (36.4%)

[Iaem B REC2 B REC3 M@ REC4 Rscsl

Fig. 6.33: Response time in a design cooperation environment with higher CPU capacity

The graphic in Figure 6.33 compares transaction response time for the 11 MIPS GM3
scenario. Although REC2 still showed the best overall performance, the differences
among response time for both CHECKOUT and read batch transactions were reduced.
The former became even shorter under REC1 and REC3. As already observed in

133



subsection 6.4.7, all other recovery mechanisms can better benefit from small increases in
the CPU capacity than REC2 does. While the performance bottleneck of other recovery
mechanisms is represented by high waiting times in the CPU queue and other internal
queues of the server node, REC2’s performance depends on the reduction of the waiting
time in the server’s ready queue. This waiting time can only be reduced, though, if CPU
capacity is raised further. The performance of RECS5, on the other hand, improved a lot as
CPU capacity reached 11 MIPS. Response time for read batch transactions decreased
about 34 seconds (i.e. from 83 down to 49 seconds), while update batch transaction time
became lower under RECS than under REC1, REC3, or REC4.

6.4.9 Summarizing the Main Results of the Simulation Study

In this subsection, we recapitulate the main results of the recovery performance evaluation
presented in the prior subsections. Moreover, we relate these results to the empirical
recovery performance study made in chapter 5 and to the goals of the simulation study
which were stated at the beginning of the present chapter.

Through the simulation of five different recovery techniques in an integrated information
system, we further investigated four of the suppositions made at the end of chapter 5:

» Opposed to recovery in business-oriented database systems, recovery algorithms based
on FORCE and those algorithms based on -FORCE may perform similarly in design
database systems.

» Page-oriented logging mechanisms will probably perform as well as record-oriented
logging mechanisms at the server node of design database systems.

* Object-oriented logging mechanisms may perform well in design database systems
which realize buffer hierarchies.

* Object-oriented logging mechanisms which support deferred mapping operations at the
server node will probably perform well in design cooperation environments.

Besides these four suppositions, we were interested in investigating the following more
general questions: how recovery mechanisms perform in integrated information systems
which support both business-oriented as well as design transactions; at which level of
abstraction the recovery mechanism should be implemented at the server node to
guarantee best recovery performance; how recovery algorithms can help to improve
overall system performance in integrated information systems. Both the suppositions and
the questions above were investigated in great detail through the recovery simulation
study described in the prior sections. The main results which were obtained by this study
are listed below.

« The burden represented by the recovery activity in the system is not very significant
when compared with the cost of other system activities (e.g. buffer management, data
representation mapping operations). Therefore, system performance could not be
improved very much by simply reducing costs associated with recovery activities (e.g.
number of 1/O-operations). Consequently, most of the simulated recovery mechanisms
performed similarly. Only those recovery mechanisms which support deferred
mapping operations significantly affected system performance.

« The response time of business-oriented transactions increase very much in integrated
information systems which also support design transaction execution. The time which
short transactions spend in both the server’s ready queue and CPU queue is
proportional to the number as well as to the duration of the design operations being
processed in parallel to the short transaction at the server node. By lower CPU capacity
on server (e.g. 9 MIPS), up to 43% of the response time of batch transactions was
waisted at the server’s ready queue.

» Without increasing the server’s capacity, the only recovery algorithms which affected
waiting time in the ready queue and in the CPU were REC2 and RECS. The former
increased waiting time in the ready queue by allowing new transactions and remote

134



design operations to be started earlier at terminals and workstations but preventing new
transactions to be taken from the ready queue until mapping operations related to
committed update transactions terminated. RECS reduced waiting times in the ready
queue by permitting new transactions to execute in parallel to mapping operations for
committed transactions. By doing that, RECS increased the waiting times in the CPU
queue of the server node, though.

Since mapping operations dominated processing time at the server node, the number of
I/O-operations started by each of the recovery mechanisms being tested did not affect
system performance significantly. Consequently, recovery mechanisms based on
FORCE (e.g. REC4) performed similar to those based on —=FORCE (e.g. REC1).
Moreover, transaction response time as well as system throughput were affected by
page-logging only in especial situations (e.g. when processing time at the workstation
was kept short and design transaction rate was kept low in the load).

In transaction-abort-oriented scenarios, system throughput was usually increased by
the simulation of REC2. In crash-oriented scenarios, on the other hand, both REC2
and RECS reduced system throughput. This decrease in system throughput could be in
part avoided when the log size for REC2 and REC5 was reduced on disk. In
checkpoint-oriented simulation scenarios, all recovery mechanisms presented similar
performance.

Especially by low CPU capacity on server, no one of the recovery algorithms
simulated could present best response times for all transaction types at the same time.
As already explained, REC1, REC3, and REC4 showed very similar performance
almost always. In scenarios with low update transaction rate, REC1 reduced response
time for read batch transactions while REC4 reduced the time of update batch
transactions and CHECKIN operations. In those scenarios, REC2 reduced
CHECKOUT response time a little bit. In scenarios with low design transaction rate
and short processing times at the workstation, REC3 performed better than REC1 and
REC4, because the number of I/O-operations executed in those scenarios became
important, since the number and the duration of mapping operations decreased.

In almost all simulation scenarios, REC2 significantly reduced the response time of
update batch transactions. On the other hand, this mechanism increased response time
for both read-only batch transactions and CHECKOUT operations. In most of the
simulation runs, REC5 reduced CHECKIN response time by more than 50% by the
cost of increasing response time for CHECKOUT operations and batch transactions.
These results show that recovery based on deferred mapping cannot uniformly increase
overall system performance when CPU capacity is kept low at the server processing
node.

The simulation study has shown that the chained-I/O facility does not always help to
improve system performance. If the data organization on disk is not carefully planned
and maintained, chained I/O-operations may even reduce system performance by
forcing the buffer manager to replace more database pages in the buffer than necessary.
By the simulation of crash-oriented scenarios, though, chained-I/O has proven to be a
good help. Especially by recovery mechanisms which maintain large log files (e.g.
RECI1), chained I/O-operations helped transaction response time to be kept shorter.

Page-oriented logging algorithms require twice as much space on disk than record-
oriented or object-oriented logging algorithms. Object-logging saves space on disk by
writing object updates together to the log file as single log records. In this way, less
log control information (e.g. log record type information) must be stored on the log.

Opposed to its behavior in business-oriented database systems, recovery based on
FORCE (i.e. REC4) did not show a worse performance when the access locality of
transactions was increased from 10% to 30%. It still performed very similar to
recovery based on —FORCE (e.g. REC1). This simulation result can be explained by
the fact that I/O-operations did not affect system performance very much by the
simulation of scenarios where a great number of long-duration mapping operations are
processed.

135



By a higher access locality, REC2 improved system performance. This algorithm
allowed new transactions to be started earlier in a scenario where transactions have
more chance of accessing the same data. Therefore, the probability with which data
being accessed could already be found in the buffer increased.

REC2 and RECS increase system throughput more than the other recovery
mechanisms simulated when the server’s processing capacity is increased.

As the CPU capacity at the server increases, RECS becomes more attractive, since it
increases parallelism at that processing node. Its higher response times for read-only
transactions decrease faster than its advantage concerning CHECKIN response time.

Recovery mechanisms which support deferred mapping operations proved to perform
much better in design cooperation environments. Since these mechanisms log high-
level data abstractions, they can take advantage of the application semantics and
identify when transaction updates must be immediately mapped onto database pages
and when the related mapping operations can be delayed (and even not executed). By
the simulation of design cooperation scenarios, REC2 uniformly improved response
time for all transaction types. Besides that, both REC2 and RECS allowed best system
throughput.

136



Chapter 7

Conclusions

7.1 Summarizing the Dissertation

The present work reported on the investigation of recovery requirements in design
database systems which realize hierarchies of system buffers. This investigation was
based on the architecture of various existing design database system prototypes as well as
on a set of well known design processing models. The research work pursued the
following goals:

» The identification of main database recovery requirements posed by the design
environment.

« The analysis of the behavior of existing database recovery techniques in the design
environment.

» The investigation of possible characteristics of the design environment that either
prevent existent recovery algorithms from working properly or force them to be
modified in order to be integrated into design database systems.

« The evaluation of recovery performance in design database systems which realize
hierarchies of system buffers.

The first chapter of the dissertation explained how database requirements posed by design
applications differ from those of business-related applications. While the database of
business-related applications can be modeled by simpler data models supporting only less
structured, flat data records (e.g. tuples in the first normal form) and a few types of
relationships among them, design applications need more powerful data models which
allow the user to define and manipulate highly structured data objects (e.g. molecules).
Moreover, in these applications the user can process data for long periods of time (e.g.
days, weeks). In business-oriented applications, on the other hand, data processing
activity usually relies on the (conventional) transaction paradigm. Opposed to data
processing in design applications, conventional transactions typically execute in a few
seconds. A third important difference between conventional and design database
environments is that the latter ones may permit users to exchange results of non-
committed transactions, while transactions in conventional database systems execute
under strict isolation.

Chapter 2 reviewed the architecture of some existing non-standard database system
prototypes and discussed the way they try to cope with novel database requirements
posed by design applications. Most of the prototypes reviewed realize a multi-level
database system architecture on the basis of a server-workstation cormputer configuration.
By introducing the notions of public and private databases, these systems realize a
database hierarchy which supports the isolation of parts of the database for long periods

137



of time. The user copies the desired data objects from the public database on server into
his private database at the workstation (issuing CHECKOUT operations). While the user
updates the object copies at the workstation, the original object versions remain locked in
the public database. At the end of his work, the user issues so-called CHECKIN
operations at the server node to integrate updated object copies into the public database
and to release the locks related to them.

Most of the prototypes reviewed in chapter 2 also realize what we decided to call buffer
hierarchies. To accelerate data processing activities at the systems application level, these
prototypes implement so-called object-oriented buffers in higher system layers. By
storing data in a main memory representation known by the application, the object-
oriented buffers help the database system at the workstation to avoid costly representation
mapping operations between the application work space and the page/segment buffer at
the storage system layer. At the end of chapter 2, we proposed a reference system
architecture for design database systems which is based on the architectures of the
prototypes reviewed.

The study of design database system characteristics which was initiated in the first two
chapters of the dissertation, was complemented in chapter 3. There, we analyzed the
properties of some well known design processing models which were proposed in the
literature. Relying on some basic properties of each of those models, we identified three
different classes of design processing models and generalized them by proposing three
so-called general design models. The first one of them (GM1) models the user’s design
work at both server and workstation as a set of independent work steps, each one of them
related to a specific data object. The user can check objects out of and into the public
database at any time. GM2 models the user work at the server processing node as an
atomic transaction. CHECKOUT and CHECKIN operations follow a strict two-phase
protocol. All objects updated at the workstation are checked back into the public database
atomically. The third general model proposed supports design cooperation environments.
That is, designers belonging to the same group can exchange semi-committed results.
Together with the reference architecture proposed in chapter 2, the general models
presented in chapter 3 served as a basis for the investigations reported in the next chapters
of the dissertation.

In chapter 4, a thorough investigation of possible failures in the design evironment was
carried out. We discussed both expected and unexpected failures, suggested where in the
overall design system each specific failure type should be dealt with, and proposed a
failure model for design database systems. Relying on this failure model as well as on the
reference architecture and the general design processing models, a set of recovery
protocols was presented which should serve as a basis for the realization of database
recovery mechanisms in the design environment. Each recovery protocol presented copes
with a specific failure type or recovery situation in the design environment. Some
recovery situations supported by the protocols are transaction backout, deadlock, and
system crash at the server node as well as savepoint generation and design transaction
backout at the workstation. Besides, we distinguished recovery protocols which both rely
on and guarantee transaction serializability from those which are based on objectwise two-
phase lock. The latter ones support design environments which allow designers to
exchange semi-committed results (i.e. realize GM3). To control the execution and
recovery of related design transactions in GM3, we proposed a set of algorithms which
are based on a directed graph representing transaction relationships in the design
environment. On the basis of the so-called group transaction graph, the system can
manage (i.e. synchronize and recover) transactions in design cooperation environments.

In chapter 5, we analyzed the correctness of existing database recovery algorithms in the
various subsystems of the design environment. Besides that, an empirical performance
evaluation of various recovery algorithms was carried out on the basis of the recovery
requirements derived in the previous chapters of the dissertation. We extended the
classification of recovery algorithms proposed in [HiRe83] to better capture specific
properties of recovery in the design environment. Therefore, besides analyzing recovery

138



mechanisms on the basis of the propagation strategy they support, their behavior at
transaction commit time, the kind of buffer management strategy they cope with, and the
way they produce checkpoints, we also considered recovery properties related to both the
particular architecture of design database systems and characteristics of design
applications. We discussed, for instance, whether recovery mechanisms which integrate
recovery activities at the server node and at the workstation can perform better than
recovery algorithms which perform their activities at the server and at the workstation
separately. On the other hand, we distinguished the recovery algorithms which can
support design cooperation environments from those which are based on transaction
serializability. Finally we classified the algorithms on the basis of the transaction
paradigm they follow: the conventional transaction paradigm or the nested transaction
concept.

Besides empirically analyzing recovery performance in the design environment, we also
proposed some extensions to existing recovery techniques so that they can support either
design cooperation environments or recovery in server-workstation networks where data
objects are exchanged from one processing node to the other via CHECKOUT and
CHECKIN operations.

Some of the conclusions (and expectations) to which we came by means of the empirical
performance evaluation carried out in chapter 5 are listed below.

* Itis expected that integrated recovery algorithms at the server and the workstation will
perform worse than isolated recovery mechanisms for each processing node. We
believe that the former algorithms can overload the communications subsystem and the
server itself,

* Recovery mechanisms which support deferred mapping operations at the server node
should perform well in design cooperation environments. Since these mechanisms are
realized at higher system levels (e.g. object-oriented level), they can easily capture the
different semantics of CHECKIN operations. These mechanisms can, for instance,
distinguish CHECKIN operations which bring committed object versions into the
public database from those operations which only integrate non-committed object
versions into the group database. In some cases, the mapping operations related to a
CHECKIN operations of the latter type can be, at least temporarily, avoided.

* Opposed to the performance they present in business-oriented database systems,
recovery algorithms based on FORCE and those based on —~FORCE should perform
similarly at the server node of a design database system. The same phenomenon can
also occur between page-oriented logging algorithms and algorithms which log higher
data abstractions (e.g. data records). The expected reduction on performance
differences caused by the number of 1/O-operations produced by each recovery
technique can be explained by the fact that mapping operations will probably dominate
transaction processing time at the server node. Consequently, the server will become
CPU-bound instead of I/0-bound. Therefore, the influence of I/O-operations on
system performance tends to diminish.

The simulation study presented in chapter 6 relied on some of the results of the empirical
performance evaluation made in chapter 5. We decided to simulate some specific recovery
mechanisms in order to prove the results of that performance evaluation. For this
purpose, we designed and implemented a simulation network which models an integrated
information system supported by a design database system. This database system is
distributed over a server-workstation computer system. The database system supports
both business-oriented (batch) transactions as well as design transactions. In this
processing environment, we executed a great number of simulation experiments to
compare the performance of different recovery algorithms in the desing environment. We
were mainly interested in comparing FORCE and —FORCE as well as page-oriented
logging and record-oriented logging at the server node. Moreover, we also wanted to
investigate the performance of object-oriented recovery mechanisms which support
deferred mapping operations and, consequently, allow update transactions to commit at

139



the server even before the (costly) mapping operations related to them are processed. We
simulated recovery activities only at the server node of the system. On the other hand, we
investigated recovery performance in GM1 as well as in GM3. Some of the results
obtained by the simulation study are listed below.

» Recovery activities represent no significant burden to the system when CPU capacity is
relative low (e.g. 10 MIPS). This simulation result can be explained by the fact that
mapping operations ‘are very expensive and represent the greatest burden in the design
environment.

+ Transaction response time can strongly increase in integrated information systems
when very different transaction types are supported. Unless CPU capacity is relatively
high (e.g. 25 MIPS in our simulation study), batch transactions must have to wait for
design operations (e.g. CHECKOUT) to be processed on the server.

* In most of the simulation runs, the recovery algorithm which followed the FORCE
strategy (REC4) achieved a performance which is comparable with the performance
shown by algorithms which are based on —~FORCE. Opposed to results obtained for
conventional database environments, forcing updates to disk at transaction commit
does not significantly reduce system throughput or increase response time in the design
environment. Since mapping operations take much longer than I/O-operations, the
operation of forcing results to disk at commit time represents only a small fraction of
the overall transaction processing time.

* Recovery mechanisms which allow transactions to commit before their updates (in
main memory representation) are mapped onto database pages reduce response time for
all transaction types only in processing environments which present high CPU
capacity. Otherwise (i.e. by low CPU power), these mechanisms reduce response time
for updating transactions but increase the time of read-only transactions when
compared with recovery mechanisms which save transaction updates only after the
corresponding mapping operations have taken place. By low CPU capacity, much of
the time saved for update transactions through deferred mapping operations is
transferred to other transactions exécuting in parallel.

 Besides the recovery algorithm based on FORCE (REC4) which maintains no log file
at all, algorithms which save data records (REC3) or complete updated objects (REC2,
RECS) needed significantly less space in stable storage than algorithms which save
updated pages (REC1).

* By low CPU capacity, the choice of a recovery mechanism for the server node of a
design database system which supports an integrated information system will depend
on the specific needs of the applications being supported and on the transaction load
being processed. While recovery mechanisms based on deferred mapping can
significantly reduce the response time of update transactions (e.g. REC2 reduces the
processing time of update batch transactions in most cases and REC5 reduces
CHECKIN response time), the more conventional recovery mechanisms (e.g. those
which execute at the page level) usually guarantee better response times for read-only
transactions.

* By higher CPU capacity (e.g. 11 or 15 MIPS in our simulation study), recovery
mechanisms based on deferred mapping performed somewhat better than the other
ones at the server node. When CPU achieved a certain level of extra capacity (25 MIPS
in our simulation study), all recovery algorithms showed similar performance.

* In design cooperation environments, recovery algorithms based on deferred mapping
always performed better than the other algorithms. The former could benefit from the
semantics of CHECKIN operations to avoid the execution of unnecessary (and costly)
mapping operations. On the basis of the simulation results, we believe that transaction
management in design cooperation environments can be efficiently realized on the basis
of the group transaction graph (G) presented in chapter 4 and of an object-oriented
recovery mechanism based on deferred mapping.

140



7.2 Comparison with other Works

Although there exists a number of published works which report on recovery algorithms
for design database systems, most of them analyzed recovery requirements and describe
recovery mechanisms only for specific database systems (e.g. [KaWe84], [KLMP84],
[WeKa84], [KoKB87], [GaKi88], [Ries89]). Other works treated recovery in design
database systems in a more general way but analyzed recovery requirements only for
simpler design processing models (e.g. [Kelt88]). The present work has investigated
recovery requirements in the design environment on the basis of various general design
processing models as well as relying on a system architecture derived from the study of
various representative design database system prototypes. Furthermore, we investigated
the behavior of both existing and newly proposed recovery techniques in the design
environment.

Also a number of articles reporting on various recovery performance evaluations can be
found in the literature. Most of them investigated recovery performance in centralized,
business-oriented database systems, though (e.g. [Reut84], [AgD85b}). Recovery in
multiprocessor database machines was investigated in [AgD85a]. In this study, only
processing environments supporting short-duration transactions were considered, though.
In [Wei87a] and [Wei87b], the performance of multi-level transaction management was
compared with the performance of single-level transaction management. Although this
research work compared recovery mechanisms in a multi-level system architecture,
neither buffer hierarchies nor long-duration transactions were considered in the
investigation.

We are not aware of other works which have evaluated recovery performance in an
integrated database environment supporting conventional as well as long-duration, design
transactions on the basis of a multi-level system architecture which realizes a hierarchy of
buffers and is distributed over a server-workstation computer system. Moreover, this
research work seems to be the first one which evaluates database recovery performance
on the basis of three different criteria, namely, transaction response time, system
throughput, and log size.

Although recovery mechanisms which save data at higher levels of abstraction (e.g.
[Lind79], [ARI89a]) as well as multi-level recovery algorithms (e.g. [Verh79], [Wei89a})
have already been proposed in the literature, this work is the first one to analyze the
behavior of recovery mechanisms which save recovery information before mapping
operations take place. On the other hand, the deferred update techniques for database
systems which have been proposed in the literature (e.g. [Camm81], [DLPS85]) do not
consider the possible existence of buffer hierarchies.

The idea of controlling transaction cooperation on the basis of a directed graph has already
been proposed in [PROF85]. Transaction management in [PROF85] differs from the
approach presented here in, at least, two ways, though. First, concurrency control in
PROFEMO is based on transaction serializability while our approach relies on object-
oriented two-phase lock. Secondly, transactions waiting to commit in PROFEMO can
either commit or abort. To better support cooperative design environments, the approach
proposed here allows transactions in the ready state to be brought back into the active state
so that the designer can decide what to do next.

7.3 Some Open Questions and Plans for Future Work

This work reports on a performance evaluation of recovery techniques in the design
environment. We mainly investigated recovery performance only in environments which

141



realize the GM1 processing model, though. Following investigations should also consider
both GM2 and GM3 environments in more detail. Especially for the GM3 environment
where transaction cooperation is allowed, the performance of recovery mechanisms
relying on the group transaction graph presented in chapter 4 should be investigated more
thoroughly.

The simulation results already showed that recovery mechanisms which are realized at
higher levels of abstraction can benefit from the semantics of the application. Although we
could quantify this benefit for some design cooperation scenarios, the investigation of
how recovery mechanisms can both get and process information concerning the
application behavior also constitutes a very important and interesting topic of research
which was not covered by this work.

For all design processing models, recovery performance in environments with high CPU
capacity should be analyzed in more details. Besides that, recovery performance in
distributed server systems should be modeled and evaluated.

By simulating design environments which realize the GM2 processing model, recovery
techniques for nested transactions should be investigated, too. The coordination of
recovery actions at the server and at the workstation costitutes a very important area of
study which has not deserved much attention until now.

Finally, this work has not investigated recovery performance at the workstation at all. The
performance of new recovery techniques (as, for instance, the one in [Ries891) should be
compared with that of already existing recovery algorithms in this environment. Besides,
new recovery techniques for workstations that consider the existence of other
workstations in the system should be investigated. These techniques could alleviate
transaction load at server node in systems where not all workstations have own disk
units.

142



Bibliography

[AgCL87]
[AgD85a]
[AgD85b]

[ARI89a]

[ARI89b]
[BaBu84]

[BaKK85]

[Banc88]

[BaRa88]

[BeHG87]
[BrMa88]

[Camm81}

[Care83]
[CaSt84]

[CODA71}

Agrawal, R.; Carey, M.J.; Livny, M.: Concurrency Control Performance
Modeling: Alternatives and Implications. ACM Trans. on Database Systems,
Vol. 12, No. 4, December 1987

Agrawal, R.; DeWitt, J.D.: Recovery Architectures for Multiprocessor
Database Machines, Proc. ACM SIGMOD Int. Conf. on Management of
Data, Austin, Texas, 1985

Agrawal, R.; DeWitt, J.D.: Integrated Concurrency Control and Recovery
Mechanisms: Design and Performance Evaluation. ACM Trans. on Database
Systems, Vol. 10, No. 4, December 1985

Mohan, C. et al.: ARIES: A Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using Write-Ahead Logging.

‘IBM Research Report RJ6649, IBM Almaden Research Center, January

1989

Rothermel, K.; Mohan, C.: ARIES/NT: A Recovery Method Based on
Write-Ahead Logging for Nested Transactions. IBM Research Report
RJ6650, IBM Almaden Research Center, January 1989

Batory, D.S.; Buchmann, A.P.: Molecular Objects, Abstract Data Types,
and Data Models: A Framework. Proc.10t Int. Conf. on Very Large Data
Bases, Singapore, 1984

Bancilhon, F.; Kim, W.; Korth, H.F.: A Model of CAD Transactions.
Proc. 11th Int, Conf. on Very Large Data Bases, Stockholm, 1985

Bancilhon, F.: Object-Oriented Database Systems. Proc.7th ACM SIGART-
SIGMOD-SIGACT Symposium on Principles of Database Systems. Austin,
Texas, March 1988

Badrinath, B.R.; Ramamritham, K.: Synchronizing Transactions on
Objects. IEEE Trans. on Computers, Vol. 37, No. 5, May 1988

Bernstein, P.A.; Hadzilacos, V.; Goodman, N.: Concurrency Control and
Recovery in Database Systems. Addison-Wesley Series in Computer
Science, Addison-Wesley Publishing Company, 1987

Brodie, M.L.; Manola, F.: Database Management: A Survey. In:
Fundamentals of Knowledge Base Management Systems, J.W. Schmidt and

" C. Thanos (eds.), Springer Verlag, 1988

Cammarata, S.: Deferring Updates in a Relational Data Base System. Proc.
7th Int. Conf. on Very Large Data Bases, 1981

Carey, M.J.: Modeling and evaluation of database concurrency control
algorithms. Ph.D. dissertation, Computer Science Division (EECS),
University of California, Berkeley, Sept. 1983

Carey, M.J.; Stonebraker, M.: The performance of concurrency control
algorithms for database management systems. Proc. 10th Int. Conf. on Very
Large Data Bases, Singapore, 1984

CODASYL Database Task Group Report. Association of Computing
Machinery, New York, 1971

143



[Codd70]

[DAMS86a]

[DAMS86b]

[DAMS8a)

[DAMS8b]

[Date83]
[Davi78]

[DeOb87]

[Depp86}

[DePS86]

[DiGI87]

[DiKM835]

[DLPS85]

[DiiKe88]

[Eden82]

[E1Ba84]

Codd, E.F.: A Relational Model for Large Shared Data Banks. Comm.
ACM, Vol.13, No. 6, June 1970

Gotthard, W.: DAMOKLES - The Data Model of the UNIBASE Design
Database System. Research Report 3/86, Forshungszentrum fiir Informatik,
Karlsruhe, W.Germany, 1986 (in German)

Raupp, T. et al.: The DAMOKLES System Architecture. Cooperation
Project UNIBASE, Research Report, Forshungszentrum fiir Informatik,
Karlsruhe, West Germany, 1986 (in German)

Rehm, S. et al.: Support for Design Process in a Structurally Object-
Oriented Database System. Proc. 2nd Int. Workshop on Object-Oriented
Database Systems, Bad Miinster am Stein-Eberburg, West Germany,
September 1988

Abramowicz, K. et al.: Software Distribution in Structured Object-Oriented
Database Systems for Design Environments. Research Report,
Forschungszentrum fiir Informatik, Karlsruhe, West Germany, 1988 (in
German)

Date, C.J.: An Introduction to Database Systems. Addison-Wesley Systems
Programming Series, Addison-Wesley Publishing Company, 1983

Davies, C.T.: Data processing spheres of control. IBM Systems Journal,
Vol. 17, No. 2, 1978

Deppisch, U.; Obermeit, V.: Tight Database Cooperation in a Server-
Workstation Environment. Proc. 7th Int. Conf. on Distributed Computer
Systems, Berlin, 1987

Deppisch, U. et al.: Considering Database Cooperation between Server and
Workstation. In: Informatik Fachberichte, Vol.126, Springer Verlag,
1986 (in German)

Deppisch, U.; Paul, H.-B.; Schek, H.-J.: A Storage System for Complex
Objects. Proc. Int. Workshop on Object-Oriented DBS, Pacific Grove,
California, USA, Sept. 1986

Dittrich, K.R.; Gotthard, W.; Lockemann, P.C.. DAMOKLES-The
Database System for the UNIBASE Software Engineering Environment.
IEEE Database Engineering, March 1987

Dittrich, K.R.; Kotz, A.M.; Miille, J.A.: A Multilevel Approach to Design
Database Systems and its Basic Mechanisms. Proc. IEEE COMPINT,
Montreal, 1985

Dadam, P.; Lum, V_; Praedel, U.; Schlageter, G.: Selective Deferred Index
Maintenance and Concurrency Control in Integrated Information Systems.
Proc. 11th Int. Conf. on Very Large Data Bases, Stockholm, 1985

Diirr, M.; Kemper, A.: Transaction Control Mechanism for the Object Cache
Interface or R2D2. Proc. 3t Int. Conf. on Data and Knowledge Bases,
Jerusalém, June 1988

Jessop, W.H. et al.: An Introduction to the Eden Transaction File System.
Proc. 2nd IEEE Symposium on Reliability in Distributed Software and
Database Systems, Pittsburgh, July 1982

Elhardt, K.; Bayer, R.: A Database Cache for High Performance and Fast
Restart in Database Systems. ACM Trans. on Database Systems, Vol. 9,
No. 4, December 1984

144



[ErWa86]

[ErWa87]

[Frei89]

[GaKi88I

[Gray78)
[Gray80]
[Gray81]

[HaKK81]

[HaLo81]

[H4PR8S5]

[Hard87]

> [HdRe83]
% Recovery. ACM Computing Surveys, Vol.15, No. 4, December 1983

[HiRe85]
[H4R087]

[HeSW75]

Erbe, R.; Walch, G.: Usage of the Application Program Interface of the
Advanced In-formation Manager Prototype. Technical Note TN 86.03, IBM
Heidelberg Scientific Center, Dec. 1986

Erbe. R.; Walch, G.: An Application Program Interface for an NF2
Database Language or How to Transfer Complex Object Data into an
Application Program. Technical Report TR 87.04.003, IBM Heidelberg
Scientific Center, April 1987

Freisleben, B.: Support for Reliability in an Object-Oriented Environment.
Proc. 2nd Int. Workshop on Distribution and Objects, Karlsruhe, April
1989

Garza, J.F.; Kim, W.: Transaction Management in an Object-Oriented
Database System. Proc. ACM SIGMOD Int. Conf. on Management of Data,
Chicago, June 1988

Gray, J.: Notes on Database Operating Systems. Lecture Notes on
Computer Science, Vol. 60, Springer Verlag, New York, 1978

Gray, J.: A Transaction Model. Research Report RJ2895, IBM Research
Laboratory, San Jose, California, 1980

Gray, J.N. et al.: The Recovery Manager of the System R Database
Manager. In: ACM Comp. Surveys, Vol.13, No. 2, 1981

Hatzopoulos, M.; Kollias, J.G.; Kollias, V.J.: The application of a Number
of Differential Files to the Maintenance of Large Databases. Angewandte
Informatik 1/81 :

Haskin, R.L.; Lorie, R.A.: On Extending the Functions of a Relational
Database System. Research Report RJ3182, IBM Research Laboratory, San
Jose, California, 1981

Hiirder, T.; Peinl, P.; Reuter, A.: Performance analysis of synchronization
and recovery schemes. IEEE Database Engineering, 1985

Harder, T.: On Selected Performance Issues of Database Systems. Proc. 4th
GI/ITG-Fachtagung Messung, Modellierung und Bewertung, Erlangen (W.
Germany), Sept. 1987

Hirder, T.; Reuter, A.: Principles of Transaction-Oriented Database

Hirder, T.; Reuter, A.: Architecture of Database Systems for Non-Standard
Applications. In: Informatik Fachberichte, Vol. 94, Springer Verlag,1985
(in German)

Harder,T.; Rothermel K.: Concepts for Transaction Recovery in Nested
Transactions. Proc. ACM SIGMOD Int. Conf. on Management of Data, San
Francisco, May 1987

Held, G.; Stonebraker, M.R.; Wong, E.: INGRES - A Relational Data Base
System. In: Proc. AFIPS NCC, 1975

[HHMMS88] Hirder, T.; Hiibel, Ch.; Meyer-Wegener, K.; Mitschang, B.: Processing

[HMMS87]

and Transaction Concepts for Cooperation of Engineering Workstations and
a Database Server. In: Data & Knowledge Engineering, North Holland, No.
3, 1988

Hirder, T.; Meyer-Wegener, K.; Mitschang, B.; Sikeler, A.: PRIMA - A
DBMS Prototype Supporting Engineering Applications. Proc. 13th Int.
Conf. on Very Large Data Bases, Brighton, England, 1987

145



[HiiMi88]
[Toc89a]
[Ioc89b]
[KARDSg]

[KaWe84]
[Kelt88]

[KeWa87}1

[KeWa88]

[KHED89]
[KLMP84]
[Kohl81]

[KoKB87]

[Kotz88]

[KSUWSS]

[KiDG871

[LaSt79]

Hiibel, C.; Mitschang, B.: Object Orientation within the PRIMA-NDBS.
Proc. 20d In. Workshop on Object-Oriented Database Systems, Bad
Miinster am Stein-Eberburg (West Germany), Sept. 1988

Iochpe, C.: A DBMS Simulation Model based on both, a DBMS Kernel
Architecture and a Set of Design Processing Models. Research Report,
Forschungszentrum fiir Informatik, Karlsruhe, Feb. 1989

Iochpe, C.: Performance Analysis of Recovery Mechanisms in a Design
Database System Kernel. Research Report, Forschungszentrum fiir
Informatik, Karlsruhe, 1989 (in preparation)

Biiltzingsloewen, G.v.; Jochpe, C.; Liedtke, R.-P.; Lockemann,P.C.: Two
Level Transaction Management in a Multiprocessor Database Machine. In:
Proc. 3rd Int. Conf. on Data and Knowledge Bases, Jerusalem, 1988

Katz, R.H.; Weiss, S.: Design Transaction Management. Proc. 21th Design
Automation Conference, June 1984

Kelter, U.: Transaction Concepts for Non-Standard Database Systems.
Informationstechnik (it), No. 30, January 1988 (in Germany)

Kemper, A.; Wallrath, M.: An Object-Oriented Application Program
Interface to an Engineering Database System. Research Report No.30/87,
Faculty of Computer Science, University of Karlsruhe, Sept. 1987 (in
German)

Kemper, A.; Wallrath, M.: A Uniform Concept for Storing and
Manipulating Engineering Objects. Proc. 2nd Int. Workshop on Object-
Oriented Database Systems, Bad Miinster am Stein-Eberburg (West
Germany), Sept. 1988

Kiispert, K.; Hermann, H, Erbe, R.; Dadam, P.: The Recovery Manager of
the Advanced Information Management Prototype. Proc. 7th National
Reliability Engineering Conference - Reliability ‘89, Brighton (UK), 1989

Kim, W.; Lorie, R.A.; McNabb, D.; Plouffe, W.: A Transaction
Mechanism for Engineering Design Databases. Proc. 10th Int. Conf. on
Very Large Data Bases, Singapore, 1984

Kohler, W.H.: A Survey of Techniques for Synchronization and Recovery
in Decentralized Computer Systems. ACM Computing Surveys, Vol. 13,
No. 2, June 1981

Korth, H.F.; Kim, W.; Bancilhon, F.: On Long-Duration CAD
Transactions. Information Science, 1987

Kotz, A.M.; Dittrich, K.R.; Miille, J.A.: Supporting Semantic Rules by a
Generalized Event/Trigger Mechanism. Proc. of the Int. Conf. on Extending
Database Technology, Venice, March 1988

Klahold, P.; Schlageter, G.; Unland, R.; Wilkes, W.: A Transaction Model
Supporting Complex Applications in Integrated Information Systems. In:
Proc. ACM SIGMOD Int. Conf. on Management of Data, Austin, Texas,
1985

Kiispert, K.; Dadam, P.; Giinauer, J.: Cooperative Object Buffer
Management in the Advanced Information Management Prototype. Proc.
13th Int. Conf. on Very Large Data Bases, Brighton, 1987

Lampson, B.; Sturgis, H.: Crash Recovery in a Distributed Data Storage
System. Xerox Research Memo, Xerox PARC, April 1979

146



[LCIS87]
[LeRV87]
[Lind79]
[Lock851
[LoPI83]

[LoSc88]
[Lori77]

[Lync83]
[Meye86]

[Mits87]

[MoAb86]
[Moss81]
[Moss82]

[Moss87]

[MuMP83]}

[PaJF89]

Liskov, B.; Curtis, D.; Johnson, P.; Scheifler, R.: Implementation of
Argus. Proc 11th ACM Symposium on Operating Systems Principles,
Austin, November 1987

Lecluse, C.; Richard, P.; Velez, F.: 02, An Object-Oriented Data Model.
Proc. Workshop on Database Programming Languages, Roscoff, France,
Sept. 1987

Lindsay, B.G. et al.: Notes on Distributed Databases. IBM Research Report
RJ2571, IBM Research Loboratory, San Jose, California (USA), 1979

Lockemann, P.C. et al.: Requirements of Engineering Applications on
Database Systems. Proc. Workshop on Database Systems for Office,
Engineering, and Scientific Applications, Springer Verlag, Karlsruhe, 1985
(in German)

Lorie, R.A.; Plouffe, W.: Complex Objects and Their Use in Design
Transactions. Engineering Design Applications Proc. of the Annual
Meeting: Database Week, San Jose, California, May 1983

Lockemann, P.C.; Schmidt, J.W.: Database Handbook. Springer Verlag,
1988 (in German)

Lorie, R.A.: Physical Integrity in a Large Segmented Database. ACM Trans.
on Database Systems, Vol. 2, No. 1, March 1977

Lynch, N.A.: Multilevel Atomicity - A New Correctness Criterion for
Data‘li)ase Concurrency Control. ACM Trans. on Database Systems, Vol. 8,
No. 4, 1983

Meyer-Wegener, K.: Transaction Systems: An investigation of their
functionality, implementation strategies, and performance. Ph.D.
dissertation, University of Kaiserslautern, 1986 (in German)

Mitschang, B.: MAD - A Data Model for the Kernel of a Non-Standard
Database System. Proc. Workshop on Database Systems for Office,
Engineering, and Scientific Applications, Springer Verlag, Darmstadt, 1987
(in German)

Garcia-Molina,H.; Abbott,R.K.: Reliable Distributed Database
Management. Research Report CS-TR-047-86, Department of Computer
Science, Princeton University, August 1986

Moss, J.E.: Nested Transactions: An Approach to Reliable Distributed
Computing. Ph.D. dissertation, Dept. of Electrical Engineering and
Computer Science, MIT,1981

Moss, J.E.: Nested Transactions and Reliable Distributed Computing. Proc.
2nd IEEE Symposium on Reliability in Distributed Software and Database
Systems, Pittsburgh, July 1982

Moss, J.E.: Log-Based Recovery for Nested Transactions. Proc. 13th Int.
Conf. on Very Large Data Bases, Brighton, 1987

Mueller, E.T.; Moore, J.D.; Popek, G.J.: A Nestéd Transaction Mechanism
for LOCUS. Proc. 9th ACM Symposium on Operating Systems Principles,
Bretton Woods, October 1983

Pathak, G.; Joseph, J.; Ford, S.: Object eXchange Service for an Object-
Oriented Database System. Proc. 5th Int. Conf. on Data Engineering, Los
Angeles, Feb. 1989

147



[Paul87]

[Pist86]

[PROFS85]

[PSSW87]

[Rand78]
[Reut80]
[Reut84]

[Ries89]

[Roth85]
[RoSt87]
[Rowe86]

[Schm88}

[ScWe86]

{SeLo76]

[Senk73]
[Ston87]

[StRo84]

Paul, H.-B. et al.: Architecture and Implementation of the Darmstadt
Database Kernel System. Proc. ACM SIGMOD Int. Conf. on
Management of Data, 1987

Pistor, P.: Andersen, F.: Designing a Generalized NF2 Data Model with

SQL-type Language Interface. Proc. 12th Int. Conf. on Very Large Data
Bases, 1986

Nett, E. et al.: PROFEMO - Design and Implementation of a Fault Tolerant
Distributed System Architecture. GMD-Studien Nr 100, Geselschaft fiir
Mathematik und Datenverarbeitung MBH, Sankt Augustin (W. Germany),
1985

Paul, H.-B; Schek, H.-J; Séder, A.; Weikum, G.: Supporting the Office

Filing Service by a Database Kernel System. Proc. GI Conf, Data Base

?ystems for Office, Engineering, and Scientific Applications, Darmstadt,
987

Randell, B. et al.: State Restoration in Distributed Systems. Proc. of the 8th
FTCS, Toulouse (France), 1978

Reuter, A.: Recovery Architecture for Database Systems. Proc.of the Int.
Computing Symposium, London, Westbury House, 1980

Reuter, A.: Performance Analysis of Recovery Techniques. ACM Trans. on
Database Systems, Vol. 9, No. 4, December 1984

Riess, H.: A Recovery Mechanism for a Main Memory Resident Object
Cache. Graduation Work Report (Diplomarbeit), Informatic Faculty,
University of Karlsruhe, July 1989 (in German)

Rothermel, K.: Communication Support for Distributed Database Systems.
Proc. GI-NTG Conf. on Communication in Distributed Systems, 1985

Rowe, L.A.; Stonebraker, M.R.: The POSTGRES Data Model. Proc.13th
Int. Conf. on Very Large Data Bases, Brighton, 1987

Rowe, L.A.: A Shared Object Hierarchy. Proc. Int. Workshop on Object-
Oriented DBS, Pacific Grove, California, USA, Sept. 1986

Schmid, H.: The Development of a Non-Standard Database System
Simulation Model. Individual Study (Studienarbeit), Fakultit fiir Informatik,
Universitit Karlsruhe, April 1989 (in German)

Schek, H.-J.; Weikum, G.: DASDBS: Concepts and Architecture of a
Database System for Advanced Applications. DVSI-86-TI, Technical
College of Darmstadt, 1986

Severance, D.G.; Lohman, G.M.: Differential Files: Their Application to the
Maintenance of Large Databases. ACM Trans. on Database Systems, Vol.1,
No. 3, Sept. 1976

Senko, M.E. et al.: Data Structures and Access in Data Base Systems. IBM
Journal, No.12, 1973

Stonebraker, M.: The Design of the POSTGRES Storage System. Proc.
13th Int. Conf. on Very Large Data Bases, Brighton, 1987

Stonebraker, M.; Rowe, L.A.: Database Portals: A New Application
Program Interface. Proc.10th Int. Conf. on Very Large Data Bases,
Singapore, 1984 i

148



[StRo86]
[Trai83]

[Verh78]
[Verh79]

[Wei87a]

[Wei87b]

[WeKa84]

[WeNP87]

Stonebraker, M.; Rowe, L.A.: The Design of POSTGRES. ACM SIGMOD
Int. Conference on Management of Data, Washington, May 1986

Traiger, LL.: Trends in System Aspects of Database Management. ICOD-2,
Cambridge (UK), 1983

Verhofstad, J.S.M.: Recovery Techniques for Database Systems. ACM
Computing Surveys, Vol. 10, No. 2, June 1978

Verhofstad, J.S.M.: Recovery Based on Types. Data Base Architectures,
Bracchi and Nijssen eds., North-Holland Publishing Company - IFIP 1979

Weikum, G.: Principles and Realization Strategies of Multi-Level
Transaction Management. Research Report, Technical University of
Darmstadt 1987

Weikum, G.: Transaction Management in Database Systems with Layered
Architecture. Ph.D. dissertation, Technical University of Darmstadt, 1987
(in German)

Weiss, S.; Katz, R.H.: Recovery of In-Memory Data Structures for
Interactive Update Applications. Proc. IEEE COMPCON, 1984

Weikum, G.; Neumann, B; Paul, H.-B.: Concept and Realization of a Set-
Oriented Page-Layer for Efficient Access to Complex Objects, Proc. GI
Conf. Database Systems for Office Automation, Engineering, and Scientific
Applications, Darmstadt 1987

149






04.01.1956
1963 - 1974
1975

1975 - 1978
1977 - 1981

1978

1978 - 1979

1980
1981 - 1983

1982

1983 - 1985
1985 - 1989

1986 - heute

Lebenslauf

Cirano Iochpe

geboren in Porto Alegre, Brasilien, als Sohn des Buchhalters Isaac
Tochpe und seiner Frau Frida geb. Zatz

Besuch der Grundschule und des Gymnasium ‘Colégio Israelita
Brasileiro” in Porto Alegre

Aufnahmepriifung bei der Bundesuniversitit UFRGS (Universidade
Federal do Rio Grande do Sul), Fachrichtung Elektrotechnik

Studium an der UFRGS, Fachrichtung Elektrotechnik
Programmierer im Rechenzentrum der UFRGS

Aufnahmepriifung bei der Bundesuniversitit UFRGS, Fachrichtung
Informatik

Studium an der UFRGS, Fachrichtung Informatik

Fortbildungskurs fiir Software-Engineering des Rechenzentrums der
Bundesuniversitit UFRGS

‘Mestrado” in Ciéncia da Computagio (Master in Computer Science) an
der UFRGS

Systemanalytiker im Rechenzentrum der UFRGS

Wissenschaftlicher Mitarbeiter am Pés-Graduagido em Ciéncia da
Computagio der UFRGS

Beurlaubt zur Promotion an der Fakultiit fiir Informatik der Universitéit
Karlsruhe als DAAD-Stipendiat

Wissenschaftlicher Angestellter an der UFRGS, als “Assistente” (zweite
Stufe eines brasilianischen Hochschullehrers) in der Fachrichtung
Informatik






