

Evento	Salão UFRGS 2014: FEIRA DE INOVAÇÃO TECNOLÓGICA DA UFRGS – FINOVA
Ano	2014
Local	Porto Alegre
Título	MONTAGEM DE SISTEMA DE MEDIDAS MAGNÉTICAS ALTERNATIVO BASEADO EM DETECÇÃO A LASER PARA O AGFM (Alternating Gradient Force Magnetometer)
Autores	ITALO MARTINS OYARZABAL ANSELMO MARIANI NETO Vinicius Cappellano de Franco
Orientador	JOAO EDGAR SCHMIDT

Resumo do Projeto

Atualmente, no LAM se utiliza um sistema de medição de magnetização de amostras baseado em um cristal piezoelétrico. Propõe-se um novo método de medição a ser utilizado no magnetômetro AGFM (*Alternating Gradient Force Magnetometer*).

O sistema proposto é baseado em detecção da oscilação da amostra, submetida a um campo magnético, por um PSD (Position Sensitive Detector). Um feixe colimado de LASER incide na amostra paralelo à sua direção de oscilação, de forma que as diferentes posições dentro da oscilação da amostra resultem em diferentes posições do feixe refletido no momento em que incide no detector. O PSD gera sinais de tensão elétrica variáveis, de acordo com a posição na qual um feixe incide sobre sua superfície. Dessa forma, é possível monitorar a oscilação da amostra magnética com um sistema externo e menos frágil mecanicamente.

Para a realização desse projeto, foi necessário o entendimento de todo o processo atual, além do desenvolvimento e montagem tanto da fonte de laser quanto do sensor de posição utilizados. Além disso, a maior dificuldade do trabalho reside em ajustes mecânicos de ângulo e posicionamento dos instrumentos no espaço disponível para a realização do projeto, assim como um entendimento de como o novo sistema gera o sinal de tensão e como esse sinal pode ser transmitido para o computador e interpretado de uma forma similar ao sistema por piezoelétrico.

Por esses fatores, a obtenção das curvas de magnetização da amostra ainda não está em condições de ser comparada com as curvas do sistema antigo. Trata-se de um método inovador e que não possui garantia de sucesso, visto que é uma tentativa de substituição de um método já existente por algo nunca tentado. Como o projeto é também meu trabalho de diplomação no curso de engenharia física, ainda estou trabalhando para poder conseguir melhor qualidade nas curvas de magnetização.

A seguir, algumas imagens dos instrumentos:

PSD: AGFM: Fonte de LASER:

