

Evento	Salão UFRGS 2014: SIC - XXVI SALÃO DE INICIAÇÃO CIENTÍFICA DA UFRGS
Ano	2014
Local	Porto Alegre
Título	Síntese de partículas nanoestruturas de ZnO, CuO, ZnFe2O4 e CuFe2O4 através do método por combustão em solução
Autor	MÁRCIA CRISTINA DOS SANTOS
Orientador	CARLOS PEREZ BERGMANN

O objetivo deste trabalho foi sintetizar pós nanométricos de óxido de zinco (ZnO), óxido de cobre II (CuO), ferrita de zinco (ZnFe₂O₄) e ferrita de cobre (CuFe₂O₄). Para isso, utilizou-se o método de síntese por combustão em solução. Este método consiste, basicamente, na combinação dos reagentes em meio aquoso, sendo eles, um agente complexante (combustível) e um agente oxidante (geralmente nitratos metálicos), este último responsável pela oxidação do combustível, resultando em um produto seco, frequentemente cristalino e desaglomerado. Sendo assim, primeiramente, os nitratos utilizados (Fe(NO₃)₃.9H₂O, Cu(NO₃)₂.3H₂O e Zn(NO₃)₂.6H₂O) foram misturados com água suficiente para sua dissolução, mantendo sob aquecimento e agitação Após, foi adicionado o combustível (glicina), e realizada a homogeneização da mistura. As soluções precursoras foram preparadas com diferentes quantidades molares de combustível: i) deficiente (-25%); ii) estequiométrica (E) e iii) rica (+25%). As soluções foram levadas a um forno elétrico do tipo mufla até a auto-ignição. Após a obtenção, os óxidos nanométricos foram caracterizados quanto às fases cristalinas formadas e tamanho de cristalito, através de difração de raios X. A morfologia dos pós obtidos foi analisada por microscopia eletrônica de varredura (MEV) e microscopia eletrônica de transmissão (MET), enquanto a variação da área superficial específica em função do tamanho de cristalito foram medidos pelo método single-line e/ou por MET. Com os resultados obtidos, pode-se concluir que é possível obter os pós em escala nanométrica com o método utilizado para a síntese dos mesmos.