

Evento	Salão UFRGS 2014: SIC - XXVI SALÃO DE INICIAÇÃO CIENTÍFICA DA UFRGS
Ano	2014
Local	Porto Alegre
Título	Bactérias ambientais como agentes no combate aos biofilmes patogênicos
Autor	MARCELO JUNG EBERHARDT
Orientador	ALEXANDRE JOSE MACEDO

Biofilmes são formados por comunidades organizadas e estruturadas de microrganismos envoltos em uma matriz exopolissacarídica. Essas bioestruturas têm a capacidade de aderir-se a superfícies, como próteses, ossos e válvulas cardíacas, agindo como uma barreira física e química frente a fármacos, como os antibióticos, exigindo busca por alternativas terapêuticas. As plantas carnívoras são conhecidas pela rápida digestão de suas presas, relatos da literatura apontam a existência de simbiose com bactérias para esta tarefa. Neste sentido, acredita-se que bactérias associadas a plantas carnívoras possam ter um papel nesta rápida digestão e assim através de enzimas e/ou metabólitos possam ser capazes de dissolver biofilmes com maior eficiência. Para buscar por compostos com atividade erradicadora, foram isoladas 193 bactérias associadas a plantas carnívoras, onde 36 destas foram identificadas com atividade proteolítica, que potencialmente possuem atividade erradicadora. Após a realização de ensaios com sobrenadante de cultura das 36 bactérias selecionadas, foi verificado que frente à bactéria P.aeruginosa ATCC 27853, 4 amostras mostram atividade erradicadora, já frente à bactéria S.epidermidis ATCC 35984, 7 amostras se mostram ativas. Dentre as amostras com atividade erradicadora a bactéria de melhor atividade vem sendo estudada em cultivo de escala de bancada, utilizando-se de um biorreator com condições controladas, assim possibilitando a comparação entre a produção de metabólitos com a atividade desejada em escala laboratorial e de bancada. Também são previstos experimentos de microscopia eletrônica, além do fracionamento e purificação do composto/enzima com atividade erradicadora. Os resultados comprovam o potencial de encontrar compostos erradicadores de biofilmes infecciosos a partir de bactérias associadas a plantas carnívoras. Os compostos podem contribuir para o desenvolvimento de medicamentos que atuem no tratamento de doenças infecciosas e a disseminação de infecções crônicas, auxiliando na manutenção da vida.