XXVI SIC UFRGS

BRUNA BARSÉ, MAURICIO MOURA DA SILVEIRA (orientador) LABORATÓRIO DE BIOPROCESSOS - INSTITUTO DE BIOTECNOLOGIA UNIVERSIDADE DE CAXIAS DO SUL, CAXIAS DO SUL – RS E-mail: bbarse@ucs.br SIGLA DO PROJETO: BioH₂

Uso de glicerol residual da produção de biodiesel na obtenção de 2,3-butanodiol por Enterobacter aerogenes

INTRODUÇÃO GLICEROL - Subproduto do biodiesel, na ordem de 10% em

relação a produção do biocombustível (Silva et al., 2009). **2,3-BUTANODIOL** – Composto com potencial de aplicação

na indústria química e como combustível.

 Pode ser produzido por via fermentativa (gêneros Klebsiella e Enterobacter)

a partir de glicerol (Celinska et al., 2009).

OBJETIVO

Avaliar o uso de glicerol residual, em comparação ao produto comercial, para o crescimento microbiano e a produção de 2,3-butanodiol por Enterobacter aerogenes ATCC 13048 em ensaios conduzidos em frascos sob agitação

MATERIAL E MÉTODOS

Microrganismo: Enterobacter aerogenes ATCC 13048. Meio dos ensaios e do inóculo foi o descrito por Pirt e Callow (1958) - (PC). Os inóculos foram realizados com 5mL de meio, 20g/L de glicerol comercial ou residual, a 37°C, por 24h, pH 6,5.

Os cultivos foram conduzidos em agitador de bancada, sob agitação recíproca (300rpm), em frascos Erlenmeyer de 500mL, contendo 100mL de meio a 37°C.

Concentrações iniciais das fontes de glicerol (S_0): 20, 40 e 60 g/L

PC (g/L): $(NH_4)_2SO_4 = 7.2$ $CaCl_2.6H_20 = 0.09$ $(NH_4)_2HPO_4 = 6.0$ $FeSO_4.7H_2O = 0.0225$ KOH = 0.45 $ZnSO_4.7H_2O = 0.0075$ EDTA= 0.51 $MnSO_4.7H_2O = 0.0038$ $MgSO4.7H_{2}O = 0.30$

Biomassa: medida de absorbância, a 520nm, e conversão em massa/volume com uma curva de calibração.

Glicerol: método colorimétrico descrito por Carra (2012) para quantificação de sorbitol e adaptado para glicerol

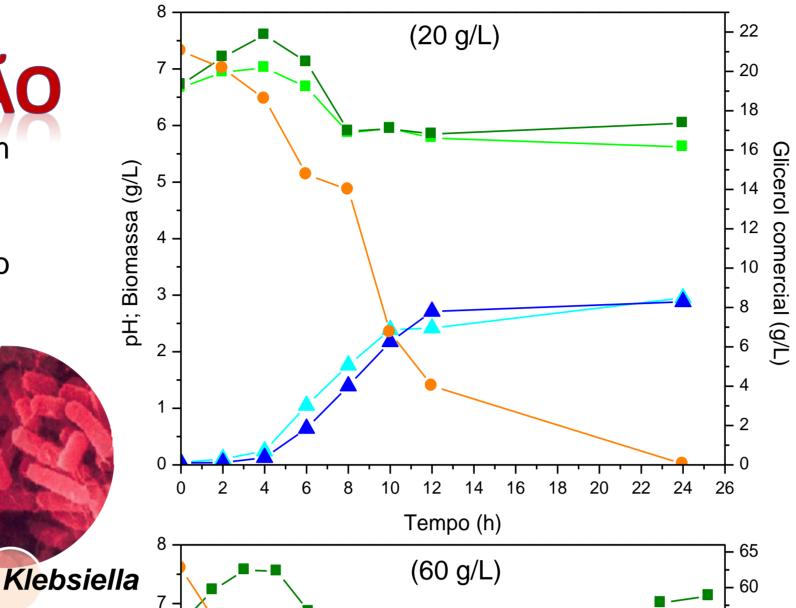
Produtos: cromatografia líquida de alta eficiência

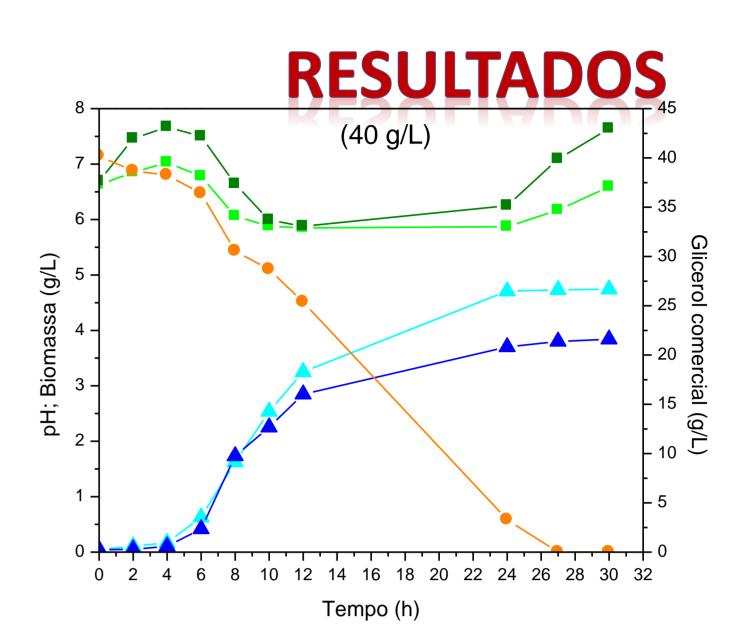
Referências

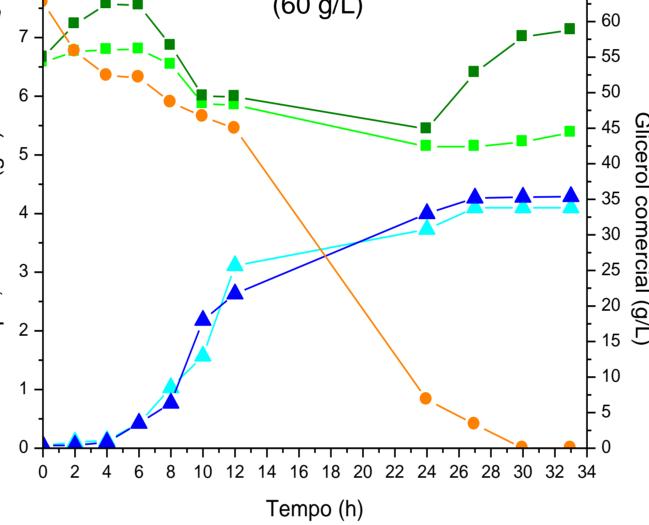
Carra, S. (2012) Estudo cinético da produção de ácido lactobiônico e sorbitol por enzimas periplasmáticas de Zymomonas mobilis. Dissert. Mest. Univ. de Caxias do Sul, RS-Brasil. Celinska, E.; Grajek, W.(2009) Biotechnological production of 2,3-butanediol—Current state and prospects. Biotechnol. Adv. 27,715-725.

Pirt, S. J.; Callow, D. S. (1958) Production of 2,3-butanediol by Aerobacter aerogenes in a single stage process. J. Appl. Bacteriol. 21,188-205.

Silva, G.P.; Mack, M.; Contiero, J. (2009) Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnology Advances, v.27; p. 30-39.


Apoio:





pH, glicerol residual pH, glicerol comercial biomassa, glicerol residual biomassa, glicerol comercial substrato, glicerol comercial

Concentração celular, de substrato e perfil de pH em função do tempo, em cultivos de Enterobacter aerogenes em meio contendo diferentes concentrações de glicerol comercial e residual.

Resultados gerais obtidos em cultivos de *Enterobacter aerogenes* em meio com diferentes fontes e concentrações de glicerol (37°C, pH 6,5, 300 rpm, 100 mL de meio)

Fonte de carbono	S _o (g/L)	X _f (g/L)	μ _{x,max} (h ⁻¹)	Y _(X/S) (g/g)
-	21,62	2,9	0,80	0,134
Glicerol	40,08	4,7	0,61	0,117
residual	60,69	4,1	0,54	0,067
	18,47	2,9	0,83	0,154
Glicerol comercial	35,23	3,8	0,76	0,107
	61,59	4,3	0,49	0,069

 S_0 - concentração inicial de glicerol residual e comercial; X_f - concentração celular final; $\mu_{x,max}$ máxima velocidade específica de crescimento; $Y_{X/S}$ - fator de conversão de glicerol em células.

Resultados gerais em termos de formação de produtos, obtidos em cultivos de *Enterobacter* aerogenes em meio com diferentes fontes e concentrações de glicerol (37°C, pH 6,5, 300 rpm, 100 mL de meio)

Fontes de	S ₀	Butanodiol	Y _{P/S butanodiol}	ρ _{butanodiol}	Etanol	Y _{P/S etanol}	ρ _{etanol}
carbono	(g/L)	(g/L)	(g/g)	(%)	(g/L)	(g/g)	(%)
	21,6	8,8	0,407	83	ND	ND	ND
Glicerol	40,0	19,2	0,463	95	3,2	0,056	11
Residual	60,6	28,1	0,479	98	6,3	0,135	27
	18,4	8,0	0,433	88	1,3	0,059	12
Glicerol	35,2	14,8	0,420	86	2,0	0,091	18
Comercial	61,5	26,3	0,427	87	3,0	0,048	10

S₀ - concentração inicial de glicerol; Y_{P/S} - fator de conversão de glicerol em produtos (butanodiol / acetoína e etanol); ρ- rendimento em 2,3-butanodiol/acetoína em relação ao máximo teórico (0,489g/g glicerol) e rendimento em etanol em relação ao máximo teórico (0,50g/g glicerol); ND - não determinado.

CONSIDERAÇÕES FINAIS

Os resultados aqui apresentados indicam a viabilidade do emprego de ambas as fontes de glicerol - comercial ou residual - na produção de butanodiol por E. aerogenes, salientando que maiores rendimentos em butanodiol e também em etanol foram obtidos com glicerol residual.