

Evento	Salão UFRGS 2014: SIC - XXVI SALÃO DE INICIAÇÃO CIENTÍFICA DA UFRGS
Ano	2014
Local	Porto Alegre
Título	Estudo da estabilidade térmica de fibras de sisal com tratamentos alcalinos
Autor	ALEXANDRE BRANDT
Orientador	CARLOS PEREZ BERGMANN

A adesão de fibras naturais com resinas poliéster envolve interações químicas, físicas, ou ambas. O tratamento alcalino é uma técnica amplamente utilizada para modificação química da superfície das fibras celulósicas, com o objetivo de melhorar suas propriedades de adesão com resinas poliéster. Para induzir as mudanças na superfície, sem causar efeitos significativos sobre as propriedades intrínsecas das fibras, é imperativo compreender o efeito das condições de tratamento sobre a estabilidade térmica das fibras de sisal. Neste trabalho, investigamos os efeitos das condições de tratamento sobre a estabilidade térmica em tratamentos alcalinos. As Fibras de sisal (Mantas de Sisal) foram tratadas com soluções de NaOH aguoso (1%, 2%, 4%, 5% e 10%) em temperatura ambiente de 30, 60, 120 e 240 minutos. Antes das medições de estabilidade térmica, as fibras foram lavadas várias vezes com água destilada para remover o excesso de NaOH. Posteriormente, as fibras foram secas em estufa regulada para 60°C durante 24 horas. Durante a análise de DTG (Differential thermal gravimetry), as amostras foram aquecidas a 10 ° C/min, sob a atmosfera de nitrogênio (N₂) a uma taxa de fluxo de 40 ml/min no intervalo de temperatura de 25 a 600 ° C. As curvas em todas as amostras apresentaram uma pequena perda de peso desde a temperatura ambiente até 130 °C, a qual corresponde à perda de água. A curva de DTG das fibras de sisal não tratadas mostraram um ombro a 285 °C devido à decomposição da hemicelulose. Este ombro progressivamente desapareceu com força crescente dos tratamentos alcalinos. A ausência deste ombro sobre as curvas de DTG de fibras de sisal tratada é indicativo de uma maior degradação da hemicelulose e da lignina, durante este tratamento. O pico principal de DTG observado a 333°C, está atribuído à decomposição de celulose. A temperatura mais elevada desloca ΔT e, por sua vez, mais elevadas estabilidades térmicas, foram obtidos como se segue: 1% de NaOH, 120 min ($\Delta T = 18$), 4% de NaOH a 30 min ($\Delta T = 14$), 5% de NaOH a 120 min ($\Delta T = 5$), todos os tempos de tratamento (média $\Delta T = 6$). No entanto, apenas a de 1% de NaOH a 120 min de tratamento alcalino reduziu o teor de cinzas. Por outro lado, a estabilidade térmica foi reduzida após os tratamentos alcalinos 1% de NaOH a 60 min e 4% de NaOH a 60 min. Portanto, é possível aumentar a estabilidade térmica das fibras de sisal com tratamentos alcalinos com a seleção apropriada da concentração de NaOH e tempo de tratamento.