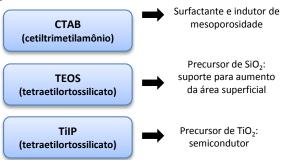


Preparação de Sólidos Inorgânicos para Degradação Fotocatalítica de Contaminantes Orgânicos

Karine Martins de Oliveira (IC), Silvana Inês Wolke (PQ)

karinemartinsoliveira@gmail.com

Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, Rio Grande do Sul, Brasil


Introdução

O desenvolvimento de processos para a degradação de contaminantes orgânicos, como o corante azul de metileno (AM), tornou-se uma área de grande importância na Química Ambiental. Dentre esses processos, está a fotocatálise heterogênea utilizando semicondutor TiO₂. Complexos metálicos oxirredutores podem ser utilizados para aumentar a eficiência desses catalisadores.

Este trabalho tem como objetivo apresentar o estudo da preparação de fotocatalisadores de SiO₂/TiO₂ impregnados com [Fe(bpy)₃]Cl₂ - cloreto de tris-2,2-bipiridinaferro (II) e avaliar a eficiência dos mesmos através de testes fotocatalíticos de degradação do AM.

Metodologia

Os materiais foram preparados pelo método solgel a 50°C, utilizando-se:

O surfactante foi removido por 2 métodos diferentes: calcinação a 500°C/4h precedida de lavagem com H₂O deionizada, e somente calcinação. Após a retirada do surfactante, prosseguiu-se com a dopagem do complexo de ferro.

Figura 2. Esquema do sistema utilizado para os testes de fotodegradação.

Os testes fotocatalíticos do corante foram realizados com lâmpada de mercúrio de 125W, e a degradação foi controlada utilizando-se espectrofotômetro UV-Vis Varian Cary 50 Conc.

Resultados e Discussão

Os tempos de meia vida dos materiais são apresentados na Tabela 1:

Tabela 1. Atividade fotocatalítica dos materiais.

Material	t _{1/2} (min)
SiO ₂	50,3
SiO ₂ lav*	39,5
SiO ₂ /TiO ₂	9,2
SiO ₂ /TiO ₂ lav*	12,1
$SiO_2 + [Fe(bpy)_3]Cl_2$	56,6
$SiO_2/TiO_2 + [Fe(bpy)_3]Cl_2$	5,4

^{*}Materiais lavados e calcinados

Os materiais de SiO₂ foram pouco eficientes, já que a sílica não possui atividade catalítica. Foi visto que os materiais de SiO₂/TiO₂, onde a remoção do surfactante foi realizada apenas através da calcinação, apresentaram maior atividade nos testes fotocatalíticos do que aqueles cuja lavagem com água deionizada foi realizada previamente.

Os melhores resultados para a fotodegradação do AM foram obtidos com materiais de SiO_2/TiO_2 impregnados com $[Fe(bpy)_3]Cl_2$.

Conclusão

O complexo $[Fe(bpy)_3]Cl_2$ é capaz de aumentar a eficiência de materiais SiO_2/TiO_2 na fotodegradação de corantes orgânicos.

Referências bibliográficas

GALDINO, N. T. Trabalho de Conclusão de Curso "Catalisador de SiO₂/TiO₂ dopado com [Fe(bpy)₃]Cl₂ para fotodegradação de fenol". 2013. 65 f

Agradecimentos

