

Evento	Salão UFRGS 2014: SIC - XXVI SALÃO DE INICIAÇÃO CIENTÍFICA DA UFRGS
Ano	2014
Local	Porto Alegre
Título	Avaliação in vitro dos mecanismos protetores da frutose 1,6 bifosfato em cultivo de pseudoilhotas pancreáticas
Autor	KETLEN DA SILVEIRA MORAES
Orientador	FATIMA THERESINHA COSTA RODRIGUES GUMA

Co-autores: ELVIRA ALICIA APARICIO CORDERO, TATIANA AMARAL GUERRA, NANCE BEYER NARDI

O Diabetes mellitus (DM) compreende um conjunto de doenças metabólicas caracterizadas por altos níveis de glicose sanguínea, causados pela não produção, produção insuficiente ou falta de resposta à insulina produzida pelas células β-pancreáticas. A linhagem murina MIN6 assemelha-se qualitativamente e quantitativamente as células β-pancreáticas e também expressam o antígeno SV40. Sendo assim, esta linhagem apresenta, resposta a glicose e a outros secretagogos. As "pseudo-ilhotas" (PIs) são formadas através de agregação espontânea das células MIN6 apresentando crescimento tridimensional. A frutose 1,6-bisfosfato (FBP) é conhecida por suas ações citoprotetoras e anti-inflamatórias. Objetivo: Avaliar o crescimento e desenvolvimento de PIs em presença de diferentes concentrações de frutose 1,6-bisfosfato (FBP). Metodologia: As monocamadas de células MIN6 foram mantidas em meio DMEM (11,2mM de glicose), 10% soro bovino fetal, 1% L-glutamina 200mM, 1% de penicilina e 1μl/250mL de β-mercaptoetanol. Para formação de PIs as células MIN6 foram semeadas (densidade 2x10⁴ cel/mL) em placas de petri e suplementadas com diferentes concentrações de FBP (5mM; 2,5mM; 1,25mM; 0,62mM, 0,30mM e controle: 0mM). A formação e mensuração de PIs foi acompanhada por observação ao microscópio de contraste de fase. O tamanho das PIs foi determinado utilizando-se um retículo acoplado a ocular do microscópio. As PIs foram agrupadas por tamanho: pequenas (0,01x0,09µm), médias (0,10x0,19µm) e grandes (0,20x0,30µm). A determinação do tamanho das PIs foi realizada por três observadores diferentes que contaram e mediram 100 PIs/por placa no 7°, 10°, 12° e 15° dias de cultura. Resultados: Observamos que tanto nos grupos tratados com FBP, quanto no controle a formação de PIs inicia no quinto dia após o plaqueamento e que o tamanho máximo atingido pelas PIs não foi alterado pelo tratamento. Na primeira contagem (7º dia) cerca de 50% das PIs contadas, em todos os grupos experimentais, foram classificadas como pequenas. As contagens seguintes mostraram claramente o crescimento das PIs, com aumento do número de PIs médias e grandes e decréscimo no número de pequenas. No 10° e 12° dia verificou-se que os grupos 0,62 e 0,30 mM de FBP apresentavam maior percentual de PIs médias que o grupo controle. Já na quarta contagem (15º dia), encontramos maior número de PIs grandes no grupo controle. Também observamos que nas concentrações de 0,62 mM e 1,25mM de FBP a predominância de PIs médias e o aparecimento de novas PIs pequenas na concentração de 0.30mM. Conclusão: Observamos que o tratamento com baixas concentrações de FBP (0,30 e 0,62 mM) acelerou a formação de PIs pequenas e médias e que após 15 dias em cultura as PIs atingiram o tamanho máximo de crescimento e logo começam a morrer.