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Abstract

It is frequent to face estimation problems when dealing with mineral deposits 
involving multiple correlated variables. The resulting model is expected to reproduce 
data correlation. However, is not guaranteed that the correlation observed among 
data will be reproduced by the model, if the variables are estimated independently, 
and this correlation is not explicitly taken into account. The adequate geostatisti-
cal approach to address this estimation problem  is co-kriging which requires cross 
and direct covariance modeling of all variables, satisfying the LMC. An alternative is 
to decorrelate the variables and estimate each independently, using for instance, the 
minimum/maximum autocorrelation factors (MAF) approach, which uses a linear 
transformation on the correlated variables, transforming them to a new uncorrelated 
set. The transformed data can be estimated through kriging. Afterwards, the esti-
mates are back-transformed to the original data space. The methodology is illustrated 
in a case study where three correlated variables are estimated using the MAF method 
combined with kriging and through co-kriging, used as a benchmark. The results 
show less than a 2% deviation between both methodologies.

Keywords: minimum/maximum autocorrelations factors; geostatistics; kriging.

Resumo

Na indústria mineira, a estimativa de múltiplas variáveis correlacionadas é co-
mum, na qual os modelos devem reproduzir a correlação exibida pelos dados. Porém,  
se as variáveis forem estimadas individualmente por krigagem e a informação da cor-
relação não for incorporada explicitamente, não há garantia de que a correlação obser-
vada nos dados será reproduzida. A abordagem clássica para estimativa de múltiplas 
variáveis correlacionadas, cokrigagem, exige um modelo que satisfaça as condições de 
positividade impostas pelo modelo linear de corregionalização, condição que torna 
essa metodologia extremamente laboriosa, quando há mais de duas variáveis.  Uma 
alternativa à cokrigagem é descorrelacionar as variáveis e as estimar de forma inde-
pendente. Para isso, pode-se utilizar de fatores de mínimas/máximas autocorrelações 
(MAF), aplicando-se uma transformação linear nos dados, transformando-os em ou-
tro conjunto descorrelacionado. Os novos fatores calculados, a partir dos dados, po-
dem ser estimados através de krigagem individualizada.  Essa metodologia é ilustrada 
por meio de um estudo de caso, no qual três variáveis correlacionadas são estimadas, 
aplicando krigagem aos MAF, denominados de KMAF. A cokrigagem é utilizada, 
aqui, como referência. Os resultados apresentam menos de 1% de desvio relativo.
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1. Introduction

Geostatistical applications deal-
ing with multiple, possibly-correlated 
variables are becoming more frequent in 
mineral resources estimation. If there is a 
spatial correlation between two or more 
variables and one variable is more sampled 
than the others (i.e., a heterotopic situa-
tion), then the densely sampled variable 
can be used in combination to estimate 
the other, under-sampled variables. The 
classic approach to multivariate prob-
lems in grade estimation is co-kriging 
(MARECHAL, 1970), which considers 
not only direct covariances, as in ordinary 
and simple kriging (MATHERON, 1963), 
but also the cross-covariances between ev-
ery variable in the data set. Consequently 
this approach capitalizes on the existing 
correlation between all variables and 

provides a more accurate estimate. Never-
theless, one of the great drawbacks in the 
use of co-kriging is the need to satisfy the 
linear model of co-regionalization (LMC), 
which requires the direct and cross vario-
grams to be a linear combination of basic 
structures. This assumption guarantees 
that the linear combination variance is 
always positive (GOOVAERTS, 1997). To 
build a valid LMC is not trivial, and in fact 
it is difficult when dealing with more than 
two correlated variables. Consequently, 
there is a need for simpler yet accurate and 
precise alternatives to handle multivariate 
estimation problems. One such approach 
is principal component analysis (PCA) 
(PEARSON, 1901), where an observation 
vector, φ(u)=[U1(u),U2,...UN(u)], is rotated 
in space through a linear transformation 

that takes the N  variables in the data set 
to a new space where they are no longer 
correlated. As a consequence, each factor 
can be treated independently, avoiding the 
need to satisfy the LMC, and reducing the 
problem to one of ordinary kriging. PCA, 
however, has a limitation: decorrelation is 
not guaranteed for a non-zero separation 
vector, h, unless there is an intrinsic cor-
relation between the data (BANDARIAN 
ET AL., 2008). An alternative to PCA is 
the minimum/maximum autocorrelation 
factors (MAF) approach (SWITZER and 
GREEN, 1984), which, like PCA, applies 
a linear transformation to the data set tak-
ing it to a new space where no correlation 
is present. In this new space, decorrelation 
is guaranteed for all data separated by a 
non-zero vector, h .

2. Methodology

Theoretical Foundations

The Minimum/Maximum Autocor-
relation Factors was first used to sepa-

rate noise and signal components from 
multispectral images obtained by remote 
sensors (SWITZER and GREEN, 1984).
According to Switzer and Green (1984), 

MAF consists in transforming a multivari-
ate random vector φ(u)=[U1(u),U2,...UN(u)] 
into a set of linear combinations that are 
independent from each other,

Mi(u) = at
i φ(u) (1)

(3)

(4)

(5)

(2)

where at
i is the transpose eigenvector 

of the transformation matrix A , such that 
the MAF factors Mi(u) show increasing 
autocorrelation with increscent i; in other 
words, the factor shows higher spatial 

autocorrelation than the factor M2 (u)
(SWITZER and GREEN, 1984).

The MAF factors are obtained 
through a spectral decomposition of the 
matrix  , where   is the covariance matrix 

Cov
φδ

Cov-1
φ
, where Cov

φ
 is the covariance 

matrix for φ(u) for h=0 and Cov-1
φ  is its 

inverse. Cov
φδ 

is the covariance matrix for 
differences of vectors separated by h=δ ; 
in other words,

Cov
φ
= Cov[φ(u), φ(u)]

and  Cov
φδ 

= Cov[(φ(u)-φ(u+δ)), (φ(u)-φ(u+δ))] = 2Γ
φ  

(δ)

B e i ng  t he  ra ndom ve c tor 
φ(u)=[U1(u),...,UN(u)]T stationary and 

composed of two components, for ex-
ample, signal  S(u) and noise N(u) such that 

φ(u)= S(u)+ N(u), the variance-covariance 
matrices are given by:

where Γ
φ
(δ) is the variogram matrix for h = δ.

Cov[N(u), N(u)] = CovN(0) = Cov0

Cov[S(u), S(u)] = CovS(0) = Cov1

Cov[φ(u), φ(u)] = Cov0+Cov1 = Cov
φ

Cov[N(u), N(u + h)] = CovN(h) = ρ
0
(h)Cov0

Cov[S(u), S(u + h)] = CovS(h) = ρ
1 
(h)Cov1

Cov[φ(u), φ(u + h)] = Cov
φ 
(h) = ρ

0
(h)Cov0+ ρ

1 
(h)Cov1

being, Cov0, Cov1 and Cov
φ
 the 

variance-covariance matrices for h = 0  If 
φ(u)= S(u)+ N(u)  can be represented by a 
two structure linear model of co-region-

alization, the spatial covariance matrices, 
for a separation vector h , are given by:

where ρ
0
(h) and ρ

1 
(h) and are spa-

tial correlation functions such that ρ
1 
> 

ρ
0
 for all h. Being CovN(h) is the noise 

component covariance, CovS(h)  the 

signal component covariance and Cov
φ 

(h) the vector composed by the sum of 
the noise and signal components covari-
ance. Cov0 and Cov1 are the two covari-

ance structures of the co-regionalization 
model. For h = δ , this results in:
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Cov[φ(u) - φ(u + δ)], (φ(u), φ(u + δ))] = 2 Cov
φ
(1 - ρ

1 
(δ)) + 2 Cov0(ρ1 

(δ) - ρ
0 
(δ)) = 2Γ

φ 
(δ) (6)

where Γ
φ 
(δ) is the variogram matrix for h = δ.

Switzer and Green (1984) show 
that the  2Γ

φ 
(δ)Cov-1

φ 
eigenvectors are the 

same as the Cov0 
Cov-1

φ
  eigenvectors, 

however this is not a symmetric matrix 
(DESBARATS and DIMITRAKOPOU-
LOS, 2000), and its spectral decompo-

sition is not trivial; the MAFsolution, 
therefore can be obtained through five 
steps:

i.	 Calculate the variance-cova-
riance matrix of the random vector  
φ(u) = [Ui (u)] for h = 0, Cov

φ
. Perform a 

spectral decomposition on Cov
φ
 into its 

matrices of eigenvectors, H and eigenval-
ues, D such Cov

φ 
= HDHT that ;

ii.	 Calculate the principal compo-

nents V(u) such that V(u) = WT φ(u), where 
W = HD-1/2;

iii.	Calculate the variogram matrix   
ΓV(h)for h ≠ 0 of the V(u)set of components;

iv.	 Perform a spectral decomposi-
tion ΓV(h)  in its matrices of eigenvectors 
C and eigenvalues Λ;

v.	 Finally, perform the data trans-
formation φ(u) = [Ui (u)] into a set of 
MAF factors, M(u) = [Mi(u)], through the 
transformation matrix A = WC, such that  
M(u) = AT φ(u).

Once the data transformation is 
applied and the MAF factors obtained, 
kriging can be used individually on each 
factor. After the kriging of the factors 

M(u), it is necessary to back-transform 
the block model to the original data 
space. This back-transformation is given 
by φ(u) = (AT)-1 M(u), where (AT)-1 is the 

transformation matrix inverse.
In the sequence of this study, de-

veloped are the following steps:

i.	 First,the classical approach to 
multivariate grade estimation, co-kriging 
is applied to the data set in order to use its 
results as a benchmark for the case study.

ii.	 Afterwards, the MAF transfor-
mation is applied to the same data set and 
is used combined with ordinary kriging, 
herein denoted as KMAF.

iii.	Finally, the results of (i) and (ii) 
are validated and compared to verify the 
applicability of the KMAF approach for-
grade estimation of multivariate data.

Data set

The study was performed on 
the 2-D Jura data set(GOOVAERTS, 
1997), which contains 259 samples of 
seven isotopic variables, Nickel (Ni), 
Cadmium (Cd), Chromium (Cr), Cobalt 
(Co), Lead (Pb), Zinc (Zn), Copper (Cu). 
The variables of interest in this case 
study are the concentrations in ppm of 

Ni, Co, andCr, which are correlated. 
These three variables have a correla-
tion coefficient, ρCoNi = 0.75 between 
Cobalt and Nickel; ρCoCr= 0.45 between 
Cobalt and Chromium; ρNiCr= 0.69 
between Nickel and Chromium. Co-
kriging is a natural choice to estimate 
simultaneously correlated variables. The 

data has an average sampling spacing 
of 250m along X and Y directions, 
presenting clustered samples at some 
regions. To decluster the data set, the  
Voronoi Polygon algorithm (DIRICH-
LET, 1850) was used. The declustered 
data statistics are shown in Table 1.

Co Cr Ni

Mean (ppm) 9.30 35.07 19.73

Declustered 
mean (ppm)

9.45 35.65 20.7

Table 1
Statistical summary for the variables Co, 
Cr and Ni. Concentrations in ppm.

Note in Table 1 that for all case 
study variables, the declustered mean 
is higher than the original clustered 
mean. Most clusters in the data set were 

located in low-grade regions for all three 
variables, since it is an isotopic data set 
and they all have direct correlation, 
which means that all variables increase 

together; the preferential sampling 
caused a downward bias on the global 
means.

Co-kriging

The variables Co (ppm), Cr (ppm) 
and Ni (ppm) were co-estimated by 
co-kriging. The method requires di-
rect semi-variograms for Co (ppm), 
Cr (ppm) and Ni (ppm) as well as the 

cross-covariogram between Co (ppm) 
and Cr (ppm), Co (ppm) and Ni (ppm), 
Cr (ppm) and Ni (ppm). The experimen-
tal semi-variogram for Co (ppm) was 
modeled first, and this was then used 

to determine the semi-variograms for 
Cr (ppm) and Ni (ppm) and all cross-
covariograms.Table 2 summarizes the 
parameters used for the experimental 
semi-variograms.

Number of lags Lag size Lag  
tolerance

Number of 
directions

Angular  
tolerance

Band width

10 250m 100m 8 22.5 100m
Table 2
Experimental semi-variogram parameters
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The major anisotropy direction is 
N45 with a 1000m range and zero dip, 

the minor anisotropy direction is N135 
with a 500 m range and zero dip.The fit-

ted model is:

(7)

being the nugget effect,   the sill of the first spherical structure and   the sill of the second spherical structure. The co-regional-
ization matrices are:

C0=

0.88 1.7 2.2

1.7 24.02 6.24

2.2 6.24 7.62

C1=

0.88 0.66 2.011

0.66 18.91 0.75

2.011 0.75 5.12

C2=

11 15.3 17.85

15.31 77.74 55.16

17.85 55.16 55.04

The co-kriging parameters are presented in Table 3.

Minimum conditional 
data

Maximum conditional 
data

Azimuth
Ellipsoid 

radii

Block  
discretization 

(X/Y/Z)

2 8 N45 800m/400 m 5/5/1
Table 3
Co-kriging parameters

Kriging with MAF Transformation (KMAF)

The MAF factors were obtained 
using an algorithm based on the Meth-
odology section above. The   value used 
to calculate the variogram matrix was 
500 m, less than the range of the first 
spherical range of the semi-variogram 
and twice the average sampling spacing. 
To validate the spatial decorrelation of 
the factors, the following procedure was 
adopted. First, the factors were back-
transformed to the original values to 
check if the algorithm would bring the 
MAF factors to the original space. Next, 
the cross-correlograms of the factors 

MAF1, MAF2 and MAF3 were plotted 
in order to check their spatial decor-
relation. The next step, once the decor-
relation is verified, is to krig each factor 
independently. The block-kriged MAF 
factors are finally back-transformed to 
the original space, where the results can 
be checked and analyzed.The experi-
mental semi-variograms for each factor 
were calculated and plotted using the 
parameters in Table 2.

The spatial continuity directions 
for all three MAF factors are the same 
as the original variables: the major an-

isotropy direction is N45 with zero dip; 
the minor anisotropy direction is N135 
with zero dip.

The major range for MAF1 is 1800 
m along N45 with zero dip, the minor 
range is 1000 m along the N135 with 
zero dip.The major range for the factor 
MAF2 is 1600m along N45 with null 
dip, the minor range is 1000m along 
N135 with null dip. For MAF3 factor 
the major range is 1500m along N45 
with null dip, the minor range is 1000m 
along the N135 with null dip. The fitted 
models are:

(8)

(9)

(10)

Using these models, each factor is estimated using ordinary kriging with the parameters shown in Table 3.

3. Results and discussion

Global mean reproduction

The global mean obtained through 
both methods were compared against 
the original declustered means of Co 

(ppm), Cr (ppm) and Ni (ppm). The rela-
tive deviation,  between the estimated 
means with respect to the declustered 

data mean was used to check for global 
bias. The results are shown in Table 5.
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Declustered mean Co-kriged mean KMAF mean (err%) co-kriging (err%) KMAF

Co(ppm) 9.45 9.36 9.46 -0.95% 0.1%

Cr (ppm) 35.65 36.00 35.91 1.12% 0.72%

Ni (ppm) 20.70 20.65 20.63 -0.24% -0.33%

Table 5
Comparison of the block-model global 
mean against the declustered data mean

Note in Table 5 that both methods 
reproduced the data global mean for all 
variables,with low relative deviation 
(less than 1% deviation).The higher rela-
tive deviation was obtained through co-
kriging for Cr (ppm), which is the least 

correlated variable in the co-estimation 
system. Since the co-kriging model was 
based on the Co (ppm) variable, and 
these two variables are poorly corre-
lated; this may be an indication that the 
LMC model built is not as adequate for 

the Cr (ppm) variable as for Co (ppm). 
Even so, the relative deviation is not 
significant. Meanwhile, with respect 
to the co-kriging approach, the KMAF 
method showed less than 2% relative 
difference.

Swath Plots

Tests to check for local bias were also 
performed. The local mean behavior was 

examined using swath plots along the X 
and Y directions. Figs. 6 and 7 show swath 

plots for Co (ppm), Cr (ppm) and Ni (ppm) 
along the X and Y directions.

Figure 1
Swath plots of the declustered data and 
estimated block models. (a) Co (ppm) 
along the X direction; (b) Co (ppm) along 
the Y direction; (c) Cr (ppm) along the X 
direction; (d) Cr (ppm) along the Y direc-
tion; (e) Ni (ppm) along the X direction 
and (f) Ni (ppm) along the Y direction. 
The vertical axis is the variable mean 
concentration in (ppm) and the horizontal 
axis is the band width in kilometers.

Note in figure 1 that the estimated 
block models follow the local trend mean, 
and the smoothing effect is evident in all 
graphs in figure 1. In figure 1 (a) and (b) 
for Co (ppm), it is seen that the co-kriged 
block model underestimates the mean, 
and is more apparent than the one seen 
on the KMAF block model, especially 

along the Y direction, where the KMAF 
block model overlays the declustered data 
curve on most parts of the graph. For the 
Cr (ppm) variable, graphs (c) and (d), it is 
seen that the smoothing effect is similar 
for both estimated block models, as it is 
in graphs (e) and (f) for the Ni (ppm) vari-
able. In graphs (c) and (d) the estimated 

block model sometimes overestimates 
the declustered data mean while at other 
times, underestimates it, presenting very 
close behavior between the block models. 
In graphs (e) and (f), evident is the under-
estimation of the declustered data mean 
by both estimated block models, having 
also very close behavior between them.

Correlation of Variables

The correlation between the variables Co (ppm), Cr (ppm) and Ni (ppm) was checked in each interpolated block model (Table 6).

Pair Original correlation KMAF Co-kriging
Relative deviation 

for KMAF
Relative deviation 

for co-kriging

Co x Cr 0.45 0.53 0.60 17.7% 33.3%

Co x Ni 0.75 0.78 0.79 4% 5.3%

Cr x Ni 0.69 0.68 0.74 1.4% 7.2%

Table 6
Correlation coefficients for Co(ppm), 
Cr(ppm) and Ni(ppm) block models 
(KMAF and co-kriging), together with the 
deviation from the original data correla-
tion.

Note in Table 6 that the correla-
tion between the variables is better 
reproduced by the KMAF block model. 
For the Co (ppm) versus Cr (ppm) pairs, 
the original correlation was ρ = 0.45 

which is the lowest correlation coeffi-
cient amongst the variables in the data 
set. For the KMAF approach, the cor-
relation was overestimated by around 
17%. The co-kriged block model also 

overestimated this pair's correlation, 
around 33% higher than the original 
value. This overestimation is due the 
fact the block model has way more pairs 
to plot, which in case of a spurious cor-
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relation, can increase its value. As for 
the other correlations observed in the 

estimated block models, the original 
values were reproduced with less than 

a 10% relative deviation.

Cross validation

Cross validation was performed, as 
part of the result analysis for both block 
models derived from KMAF and co-
kriging. Note that for KMAF, the cross 
validation is performed on the MAF 
factors block model and afterwards, 
back-transformed to the original data 
space. For the co-kriging approach, the 
cross validation was performed ignoring 
all variables on one entire sample, so it 
is as if it was done usingthe kriging ap-
proach and no variable generated bias 
during the estimation verification.

The correlation coefficient be-

tween the estimated values through 
KMAF and the original data is ρ = 0.80 
for Co(ppm),   ρ = 0.63 for Cr(ppm) and 
ρ = 0.76 for Ni (ppm) , with a mean rela-
tive deviation (merr%) of merr%=8.5%  
for Co(ppm), merr%=6.83% for Cr 
(ppm) and merr%=-8.82% for Ni (ppm).
The co-kriging approach obtained a cor-
relation with the original data of ρ=0.79  
for Co (ppm) with merr%=9%, ρ =0.65 
for Cr (ppm) with merr%= 6.4% and 
ρ=0.79 for Ni (ppm) with merr%=8.83% 
. This shows that for this case study, 
there was no significant loss of accuracy 

in the estimates performed by KMAF 
with respect to the classical co-kriging 
approach.

Moreover, analyzed was the simi-
larity between the estimates obtained 
through both approaches. The linear 
coefficient of correlation between the 
KMAF block model and the co-kriging 
block model for all three variables ex-
ceeds for all cases. There is a great simi-
larity between the estimates obtained 
through both methods. The dispersion 
cloud is symmetric around the perfect 
correlation (x=y).

4. Conclusions
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