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ABSTRACT

The propagation of electrostatic waves in a dense magnetized electron–positron–ion (EPI) plasma with nonrelativis-
tic and ultrarelativistic degenerate electrons and positrons is investigated. The linear dispersion relation is obtained
for slow and fast electrostatic waves in the EPI plasma. The limiting cases for ion acoustic wave (slow) and ion
cyclotron wave (fast) are also discussed. Using the reductive perturbation method, two-dimensional propagation of
ion acoustic solitons is found for both the nonrelativistic and ultrarelativistic degenerate electrons and positrons.
The effects of positron concentration, magnetic field, and mass of ions on ion acoustic solitons are shown in
numerical plots. The proper form of Fermi temperature for nonrelativistic and ultrarelativistic degenerate electrons
and positrons is employed, which has not been used in earlier published work. The present investigation is useful
for the understanding of linear and nonlinear electrostatic wave propagation in the dense magnetized EPI plasma
of compact stars. For illustration purposes, we have applied our results to a pulsar magnetosphere.
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1. INTRODUCTION

The study of electron–positron (EP) plasmas has been the
main focus of many plasma physics researchers for many
decades (Mofiz 1989; Tajima & Taniuti 1990; Berezhiani et al.
1995; Polpel et al. 1995; Pokhetelov et al. 2001). Such EP plas-
mas may exist in active galactic nuclei (AGNs), pulsars, neu-
tron stars, black holes, accretion disks, and the electrosphere of
strange stars and are also believed to be in the early universe
(Goldreich & Julian 1969; Sturrock 1971; Aron & Scharlemann
1979; Berezhiani et al. 1995; Wheeler et al. 2000; Hasegawa
et al. 2002; Aksenov et al. 2004; Cassé et al. 2004; Daligault &
Murillo 2005; Harko & Cheng 2006; Titarchuk & Chardonnet
2006; Thoma 2009; Kashiyama et al. 2011). In the early uni-
verse after the big bang, temperatures in the megaelectronvolt
range prevailed for a time up to one second. During this time,
the main constituent of the universe was EP plasmas filled with
intense radiation, neutrinos, antineutrinos, and a small amount
of ions (Misner 1973; Gibbons et. al 1983). Low-luminosity ac-
tive galactic nuclei (LLAGN) are supposed to lose their energy
coming from interiors in the form of teraelectronvolt radiation,
resulting in the possible creation of EP pairs (Brodatzki et al.
2011). When a star loses its thermal energy, it tends to col-
lapse due to gravitational pull until the electrons present inside
the core become degenerate and stop the further collapse of
the star due to degeneracy pressure. The density and temper-
ature in the interior of these compact stars become very high,
and the constituent particles may be accelerated to much higher
energy either by gravitational collapse or by an electromag-
netic field. These high-energy particles collide with each other
to produce electrons and positrons like in white dwarfs; these
pairs are produced during collapse to a neutron star (Misner
1973; Manchester & Taylor 1977; Koester & Chanmugam 1990;
Kashiyama et al. 2011). In the core of many white dwarfs the
number density may exceed 1029 cm−3 (Shapiro & Tukolsky
1983; Koester & Chanmugam 1990; Daligault & Murillo 2005;

Kashiyama et al. 2011; Lallement et al. 2011). Electron–positron
pairs are also created in the polar gaps of the pulsars (Uson &
Melrose 1996). Near the surface of a pulsar, EP pairs are pro-
duced through a cascade process (Weatherall 1997; Contopou-
los et al. 1999). In the presence of a strong magnetic field B ∼
1012 G near pulsars, electrons are accelerated to very high ener-
gies, and later they emit γ -rays due to the phenomenon known as
curvature radiation. These γ -rays have energies more than twice
the rest mass energy of electrons (2mec

2). These γ -rays are con-
verted into electrons and positrons through pair production in
the presence of an intense magnetic field. The pairs of electrons
and positrons produced in this process are further accelerated
and produce more γ -rays. However, the plasma is believed to
contain ions besides electrons and positrons (Beloborodov &
Thompson 2007a, 2007b). Ions can be created either inside the
core of the compact stars or come from outside through an ac-
cretion process (Thompson & Beloborodov 2005; Beloborodov
& Thompson 2007a, 2007b; Istomin & Sobyanin 2007).

The peculiarity of EP plasmas is that the two species have
equal masses but opposite charges. This symmetry of charge
and mass is broken in the presence of heavy ions, thus allow-
ing the propagation of both fast (electron and positron dynamic
scale) and slow (ion dynamic scale) timescale phenomena in
plasmas. The dynamics of electron–positron–ion (EPI) plasmas
are significantly different from EP plasmas. The electrostatic
and electromagnetic modes of EP plasmas are modified due to
the presence of heavy ions. For example, the Alfvén wave fre-
quency, shear flow, instability conditions, and ion temperature
gradient modes are studied in the literature for EPI plasmas
(Mirza & Azeem 2001; Pokhetelov et al. 2001). The dynamics
of drift Alfvén waves in relativistic nonuniform EP and multi-
component plasmas has been investigated (Onishchenko et al.
1999, 2000, 2001).

The study of quantum degeneracy in plasmas becomes im-
portant when the thermal de Broglie wavelengths of plasma
species become equal or larger than the interparticle distance.
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If the concentration of particles becomes too high, the inter-
particle distance becomes so small that quantum effects start
to appear. The quantum effects in dense plasmas appear due to
Heisenberg’s uncertainty principle, i.e., localizing the particles
in a small region, say ∇x, gives a momentum of ∇p ∼ h̄/∇x to
the particle, and for high density ∇x becomes small. Therefore,
electrons (positrons) have higher Fermi energy as compared to
their thermal energy. Degenerate plasma pressure appears due
to the combined effects of Pauli’s exclusion principle (fermions)
and Heisenberg’s uncertainty principle, and it depends on the
number densities of the constituent particles but is independent
of temperature (Vernet 2007). The ions remain nondegenerate
due to their heavier mass, and electrons (positrons) become de-
generate due to less inertia in comparison with ions in dense EPI
plasmas. During the last decade, there has been much interest
in the plasma physics community in studying the wave dynam-
ics of the relativistic degenerate plasmas (Mamun et al. 2010;
Khan 2012; Zobair et al. 2012; Nahar et al. 2013; Rahman et al.
2013a, 2013b; Mahmood et al. 2014). At the high density of
compact stars, the electrons (positrons) remain nonrelativistic
if their Fermi energy remains less than their rest mass energy.
For number densities in the range 1030–1034 cm−3, the elec-
trons have a Fermi energy that is comparable to or greater than
their rest mass energy, and the electron Fermi speed turns out
to be comparable to the speed of light in a vacuum. The equa-
tion of state for the degenerate electrons having nonrelativistic
and ultrarelativistic energies in the compact stars has already
been derived by Chandrasekhar (Chandrasekhar 1935, 1939). In
the case of nonrelativistic degenerate electrons (positrons), the
equation of state is such that PFe ∝ n

5/3
e and for ultrarelativistic

degenerate electrons (positrons) PFe ∝ n
4/3
e , where PFe is the

degenerate electron (positron) pressure and ne is the electron
(positron) number density. It is significant to note that the de-
generate pressure depends only on the number density. Recently,
Zeba et al. (2012) studied the nonlinear ion acoustic waves in
the dense unmagnetized EPI plasmas with ultrarelativistic de-
generate electrons and positrons. However, we are investigating
the propagation of electrostatic waves in dense magnetized EPI
plasmas with both nonrelativistic and ultrarelativistic degen-
erate electrons (positrons). The presence of a magnetic field
plays an important role in the characteristics of waves in com-
pact stars. The proper forms of Fermi temperatures for non-
relativistic and ultrarelativistic energies of degenerate electrons
(positrons) are used in this manuscript (details in Appendix A),
which have not been used in the earlier published work. Because
we are considering the very dense nonrelativistic and ultrarel-
ativistic EPI plasmas, it is necessary to check the validity of
the model to ignore the annihilation process to study the collec-
tive behavior (oscillations) of plasmas. The details are discussed
in Appendix B.

This article is organized in the following manner. In Section 2,
the basic dynamic equations are described for studying the
electrostatic waves in magnetized dense EPI plasmas. The
dispersion relation of both slow and fast electrostatic waves
propagating in dense magnetized EPI plasmas is obtained
with nonrelativistic and ultrarelativistic degenerate electron
(positron) energy limits in Sections 3 and 4, respectively. The
ZK (Zakharov–Kuznetsov) equation for the propagation of two-
dimensional ion acoustic solitons is obtained using the reductive
perturbation method in Section 5. The numerical plots and
results using the dense plasma parameters of a compact star
are discussed in Section 6. Finally, the conclusion is presented
in Section 7.

2. SET OF NONLINEAR DYNAMIC EQUATIONS

We are considering a dense EPI plasma embedded in
a constant magnetic field B0, which is assumed along the
x̂-axis, i.e., B0 = B0x̂. The ions are taken to be inertial and non-
degenerate due to their heavy mass in comparison with electrons
and positrons. The electrons and positrons are assumed to be in-
ertialess and fully degenerate to behave as a quantum fluid. The
basic set of nonlinear dynamic equations for ions are written as
follows:

∂ni

∂t
+ ∇. (niui) = 0, (1)

∂ui

∂t
+ (ui .∇) ui = − e

mi

∇φ +
e

mic
(ui × B0) .

The momentum equations for inertialess degenerate electrons
and positrons are given by

∇φ = 1

ene

∇pFe, (2)

∇φ = − 1

enp

∇pFp, (3)

where pFe and pFp are Fermi pressures of degenerate electrons
and positrons, respectively. The electrons and positrons also
gyrate around the magnetic field, but due to their lesser mass,
small gyro-radius, and very high gyro-frequency as compared
with the massive ions, they are more tightly bound to magnetic
field lines. Therefore, the one-dimensional motion of degenerate
electron and positron fluids is a valid assumption.

The Poisson equation is written as

∇2φ = 4πe(ne − np − ni). (4)

The electric field intensity is defined as E = −∇φ (where φ
is the electrostatic potential). The velocity of the ion fluid is
ui = (uix, uiy, uiz); ni, ne, and np are the densities of ions,
electrons, and positrons, respectively; mi, e, and c are the ions
mass, charge of an electron, and speed of light, respectively.
The plasma rotational effects are ignored in the present model
because the rotation of the pulsars is very low (on the order
of millisecond−1) in comparison with the ion gyro-frequency,
which is on the order of 1013–1016 s−1 (Gregory et al. 1994).

Consider the obliquely propagating wave in the X-Y plane,
i.e., ∇ = (∂/∂x, ∂/∂y, 0) in magnetized dense EPI plasmas. The
above set of dynamic equations can be written in the component
form as follows:

∂ni

∂t
+

∂(niuix)

∂x
+

∂(niuiy)

∂y
= 0, (5)

∂uix

∂t
+

(
uix

∂

∂x
+ uiy

∂

∂y

)
uix = − e

mi

∂φ

∂x
, (6)

∂uiy

∂t
+

(
uix

∂

∂x
+ uiy

∂

∂y

)
uiy = − e

mi

∂φ

∂y
+ Ωiuiz, (7)

∂uiz

∂t
+

(
uix

∂

∂x
+ uiy

∂

∂y

)
uiz = −Ωiuiy, (8)

(
∂2

∂x2
+

∂2

∂y2

)
φ = 4πe (ne − np − ni). (9)
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On the ion dynamics scale the electrons and positrons are
assumed to be inertialess and follow the magnetic field lines.
Therefore, the x̂ component of the normalized momentum
equations for electrons and positrons is given by

∂

∂x
φ = 1

nee

∂

∂x
PFe (10)

∂

∂x
φ = − 1

npe

∂

∂x
PFp, (11)

where Ωi = eB0/mic is the ion gyro-frequency.
The expression for the Fermi pressure PFe of electrons in

dense plasmas is derived by Chandrasekhar (1939), which is
given as PFe = (πm4

ec
5/3h3) × [(2α3

F − 3αF )(α2
F + 1)1/2 +

3 sinh−1 αF ], where αF = pF /mec is the normalized rel-
ativistic factor and is related to plasma number density by
αF = (ne/nc)1/3 with nc � 5.9 × 1029 cm3 being a normalizing
density defined with quantities such as c (speed of light), me
(mass of electron), and h (Planck’s constant). The two limiting
cases of nonrelativistic and ultrarelativistic degenerate electron
pressures can be retrieved from the above expression by im-
posing the conditions αF → 0 and αF → ∞, respectively,
which gives PFe = (3/π )2/3(h2/20 me) n

5/3
e (nonrelativistic de-

generate case) and PFe = (3/π )1/3(hc/8)n4/3
e (ultrarelativistic

degenerate case). Because a positron has the same mass as an
electron but only has the opposite charge, the same expressions
of Fermi pressures for degenerate positrons in the nonrelativis-
tic and ultrarelativistic limits remain valid, and only electron
density ne changes to positron density np.

3. DISPERSION RELATION FOR NONRELATIVISTIC
DEGENERATE EPI PLASMA CASE

In order to find the dispersion relation for the nonrelativistic
degenerate case of electron and positron quantum fluids, we
assume that the perturbations are of the form ei(k.x−ωt) (where
k2 = k2

x +k2
y). The x-components of the momentum equation for

an inertialess degenerate electron and positron quantum fluid in
the nonrelativistic limit are given as

∂

∂x
φ = h2

12 eme

(
3

π

)2/3

n−1/3
e

∂

∂x
ne, (12)

∂

∂x
φ = − h2

12 emp

(
3

π

)2/3

n−1/3
p

∂

∂x
np. (13)

Here me = mp, and the Fermi pressure for a nonrelativis-
tic degenerate fluid of the jth species is PFj = (3/π )2/3

(h2/20 mj ) n
5/3
j (j = e, p).

Using the set of dynamic Equations (5)–(9) and (12) and (13)
in the linearized form, we find the dispersion relation as follows:

ω4 − ω2

(
Ω2

i +
C2

s k
2

λ2
F k2 + C1

)
+

C2
s k

2
xΩ2

i

λ2
F k2 + C1

= 0. (14)

The four roots of the quartic equation are given as

ω2
± = 1

2

(
Ω2

i +
C2

s k
2

λ2
F k2 + C1

)

± 1

2

[(
Ω2

i +
C2

s k
2

λ2
F k2 + C1

)2

− 4C2
s k

2
x

λ2
F k2 + C1

]1/2

, (15)

where Cs = √
2kBTFe/mi is the ion acoustic speed, λF =√

2kBTFe/4πe2ni0 is the Fermi length of the system, p =
np0/ne0 is the ratio of positron to electron equilibrium density,
and C1 = 3 (1 + p1/3)/2 (1 − p). The Fermi temperature
TFe is defined for a nonrelativistic degenerate electron gas
by the following relation: TFe = EFe/kB = p2

F /2mekB =
(h̄2/2mekB) (3π2ne0)2/3 (Chandrasekhar 1939). The effect of
positron density appears in the constant C1. The positive sign
of the frequency (ω+) corresponds to the fast electrostatic
wave, whereas the negative sign (ω−) corresponds to the
slow electrostatic wave in dense magnetized EPI plasmas.
The limiting cases for obliquely propagating waves in the
parallel and perpendicular directions to the magnetic field B0
are described below.

3.1. Wave Propagation Parallel to the Magnetic Field

In order to study wave propagation in a direction parallel to
the magnetic field B0, we put ky = 0 in Equation (15) to obtain
the following two roots:

ω2
+ = Ω2

i , ω2
− = C2

s k
2
x

λ2
F k2

x + C1
. (16)

The plus root is just a frequency, so it can be neglected; the
second root is the dispersion relation for an ion acoustic wave
propagating along the magnetic field. The effect of positron
density appears in the constant C1. Applying the condition
λ2

F k2
x 
 C1 (long wavelength limit), we get for the ion acoustic

wave ω−/kx = Cs/
√

C1, which is the phase speed of the IAW in
a dense EPI plasma. The phase speed of the IAW decreases with
the increase in positron density in a dense EPI plasma because
the value of C1 increases. Similarly for the short wavelength
case, we have λ2

F k2
x � C1 and ω−/kx = ωpi , which is the ion

plasma frequency.

3.2. Wave Propagation Perpendicular to the Magnetic Field

In order to find the electrostatic wave propagating in a
direction perpendicular to the magnetic field B0, we put kx = 0
in Equation (15) and get

ω2
+ = Ω2

i +
C2

s k
2
y

λ2
F k2

y + C1
ω2

− = 0. (17)

The plus root gives the dispersion relation for an ion cyclotron
wave (ICW), whereas the slow wave vanishes. The effect of
positron density appears in the constant C1. Again applying
the condition λ2

F k2
x 
 C1 of a long wavelength limit, we

obtain ω+/ky =
√

Ω2
i /k2

y + C2
s /C1, which is the phase speed

of an ICW in a dense EPI dense plasma. Similarly for a short
wavelength limit, we have λ2

F k2
x � C1 and ω+ =

√
Ω2

i + ω2
pi ,

which is the upper hybrid ion frequency in a dense magnetized
EPI plasma.

4. DISPERSION RELATION FOR ULTRARELATIVISTIC
DEGENERATE PLASMA

In order to find the dispersion relation for ultrarelativistic
degenerate electrons and positrons, we can write the momentum
equations for electron and positron quantum fluids, respectively:

∂

∂x
φ = hc

6e

(
3

π

)1/3

n−2/3
e

∂

∂x
ne (18)
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∂

∂x
φ = −hc

6e

(
3

π

)1/3

n−2/3
p

∂

∂x
np, (19)

where Fermi pressure for an ultrarelativistic degenerate fluid of
the jth species is PFj = (3/π )1/3 (hc/8) n

4/3
j (j = e, p).

Using the set of dynamic Equations (5)–(9), (18), and (19) in
the linear limit, we find the dispersion relation for the sinusoidal
electrostatic perturbations in a dense magnetized EPI plasma
for the ultrarelativistic case as follows:

ω4 − ω2

(
Ω2

i +
C2

s k
2

λ2
F k2 + C2

)
+

C2
s k

2
xΩ2

i

λ2
F k2 + C2

= 0. (20)

The four roots of the above quartic equation are

ω2
± = 1

2

(
Ω2

i +
C2

s k
2

λ2
F k2 + C2

)

± 1

2

[(
Ω2

i +
C2

s k
2

λ2
F k2 + C2

)2

− 4C2
s k

2
x

λ2
F k2 + C2

]1/2

, (21)

where C2 = (1/hc) (π/3)1/3 (6C2
s n

−1/3
e0 mi) (1 + p2/3/1 − p).

The Fermi temperature (TFe) for an ultrarelativistic degenerate
electron gas is proportional to n

1/3
e0 , and it is described by the

following relation: TFe = EFe/kB = c/kB(3h3ne0/8π )1/3

(Vernet 2007) (for its derivation please see Appendix A as
well). The effect of positron density appears in the constant C2.
The positive sign of the frequency (ω+) corresponds to the fast
electrostatic wave, whereas the negative sign (ω−) corresponds
to the slow electrostatic wave in dense magnetized EPI plasmas
for ultrarelativistic degenerate electrons and positrons. The
limiting cases for obliquely propagating electrostatic waves in
the parallel and perpendicular directions to the magnetic field
B0 are obtained as follows.

4.1. Wave Propagation Parallel to the Magnetic Field

In order to find the electrostatic waves propagating in the
parallel direction to B0, we put ky = 0 in Equation (21) to get

ω2
+ = Ω2

i ω2
− = C2

s k
2
x

λ2
F k2

x + C2
. (22)

The plus root of ω gives the ion gyro-frequency, which is
nonpropagating, so it can be neglected. The minus root of ω
gives the dispersion relation of an ion acoustic wave (IAW). The
long wavelength condition λ2

F k2
x 
 C2 gives the phase speed of

an IAW as ω−/kx = Cs/
√

C2. The effect of positron density on
an IAW appears in the constant C2. The phase speed of the IAW
decreases with the increase of positron concentration in dense
EPI plasmas. This happens because C2 increases by increasing
the value of p, and as a result the phase velocity of the IAW
decreases. For the short wavelength condition λ2

F k2
x � C2, we

have ω− = ωpi , which is of course the ion plasma frequency.

4.2. Wave Propagation Perpendicular to the Magnetic Field

To study the propagation of electrostatic waves in the perpen-
dicular direction to the magnetic field in a dense EPI magnetized
plasma, we put kx = 0 in Equation (21), which gives

ω2
+ = Ω2

i +
C2

s k
2
y

λ2
F k2

y + C2
ω2

− = 0. (23)

The positive root gives the dispersion relation for an ion
cyclotron wave (ICW), whereas the negative root vanishes.
Now applying the long wavelength condition λ2

F k2
x 
 C2,

we get ω+/ky =
√

Ω2
i /k2

y + C2
s /C2, which is the phase speed

of an ICW in ultrarelativistic EPI dense magnetized plasmas.
The positron density effect appears in C2, which increases by
increasing the positron density p in EPI plasmas, and as a result
the phase speed of an ICW decreases. In the limit of short
wavelength, we have λ2

F k2
x � C2 and ω+ =

√
Ω2

i + ω2
pi , which

is the upper ion hybrid frequency in a dense magnetized EPI
plasma.

5. DERIVATION OF ZAKHAROV–KUZNESTOV (ZK)
EQUATION

In this section we derive the Zakharov–Kuznetsov (ZK) equa-
tion using a reductive perturbation method to study the two-
dimensional propagation of a nonlinear electrostatic wave in the
X–Y-plane. The ZK equation will be derived in a dense magne-
tized EPI plasma with two extreme conditions of nonrelativistic
and ultrarelativistic degenerate electrons and positrons. The set
of Equations (5)–(9) is written in the dimensionless form as

∂ñi

∂ t̃
+

∂(ñi ũix)

∂x̃
+

∂(ñi ũiy)

∂ỹ
= 0, (24)

∂ũix

∂ t̃
+

(
ũix

∂

∂x̃
+ ũiy

∂

∂ỹ

)
ũix = −∂φ̃

∂x
, (25)

∂ũiy

∂ t̃
+

(
ũix

∂

∂x̃
+ ũiy

∂

∂ỹ

)
ũiy = −∂φ̃

∂y
+ Ωũiz, (26)

∂ũiz

∂ t̃
+

(
ũix

∂

∂x̃
+ ũiy

∂

∂ỹ

)
ũiz = −Ωũiy, (27)

(
∂2

∂x̃2
+

∂2

∂ỹ2

)
φ̃ =

(
ñe

1 − p
− pñp

1 − p
− ñi

)
. (28)

The variables appearing in the above equations having a tilde
are all dimensionless, where time and space variables are nor-
malized by inverse ion plasma frequency ω−1

pi and system Fermi
length λF , respectively (defined in the above section). The nor-
malization of ion, electron, and positron density (ni, ne, np) is
done by their equilibrium densities (ni0, ne0, np0), respectively.
The perturbed velocity of the ion fluid and electrostatic potential
are normalized by ion acoustic speed Cs and kBTFe/e, respec-
tively. The dimensionless parameter Ω is defined as Ωi/ωpi .

5.1. Nonrelativistic Degenerate Electrons and Positrons Case

In order to derive the ZK equation for a nonrelativistic fully
degenerate EPI plasma, we use the following dimensionless
x-components of momentum equations of an inertialess degen-
erate electron and positron quantum fluid:

∂

∂x̃
φ̃ = βeNRñ−1/3

e

∂

∂x̃
ñe (29)

∂

∂x̃
φ̃ = −p2/3βeNRñ−1/3

p

∂

∂x̃
ñp (30)

where βeNR = (h2/12 kBmeTFe) (3/π )2/3 n
2/3
e0 .

We omit the tilde from all of the dimensionless variables in
the above set of equations for simplicity in the calculations.
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In order to find the nonlinear perturbation solution of the
above Equations (24)–(30) and to obtain the ZK equation for a
two-dimensional electrostatic soliton in dense EPI plasmas, we
use the following stretching for independent variables (space
and time) (Kourakis et al. 2009):

X = ε1/2 (x − λt) , Y = ε1/2y, τ = ε3/2t, (31)

where all of the perturbed quantities are expanded in a power
series of ε given below

uix = εu
(1)
ix + ε2u

(2)
ix + ε3u

(3)
ix + · · · ,

uiy = ε3/2u
(1)
iy + ε2u

(2)
iy + ε5/2u

(3)
iy + · · · ,

uiz = ε3/2u
(1)
iz + ε2u

(2)
iz + ε5/2u

(3)
iz + · · · ,

ni = 1 + εn
(1)
i + ε2n

(2)
i + ε3n

(3)
i + · · · ,

ne = 1 + εn(1)
e + ε2n(2)

e + ε3n(3)
e + · · · ,

np = 1 + εn(1)
p + ε2n(2)

p + ε3n(3)
p + · · · (32)

Using Equations (31) and (32) in the set of dynamic
Equations (24)–(30) and collecting the coefficients of different
powers of ε, we get the following equations:

− λ∂Xu
(1)
ix + ∂Xφ(1) = 0, (33)

− λ∂Xn
(1)
i + ∂Xu

(1)
ix = 0, (34)

u
(1)
iz = 1

Ω
∂Y φ(1). (35)

After integrating the above equations and applying the boundary
conditions, i.e., X → ∞, u

(1)
ix , and n

(1)
i → 0, we have

u
(1)
ix = φ(1)

λ
(36)

n
(1)
i = φ(1)

λ2
. (37)

The lowest order terms of the electron and positron momentum
Equations (29) and (30) give

n(1)
e = φ(1)

βeNR

(38)

n(1)
p = − φ(1)

p2/3βeNR

. (39)

The lowest order term of the Poisson equation is given as
follows:

n(1)
e

1 − p
− pn(1)

p

1 − p
= n

(1)
i . (40)

Using Equations (37), (38), and (39) in the above equation, we
get an expression of phase speed of the wave λ as follows:

λ = ±
(

βeNR (1 − p)

1 + p1/3

)1/2

. (41)

Here it is important to note that λ depends on positron density
through p = np0/ne0. The phase velocity of the wave decreases
by increasing the positron density in dense EPI plasmas. The
dimensional form for phase speed of the wave is given by

λNR = ±
[

(3/π )2/3 h2n
2/3
e0 (1 − p)

6mime(1 + p1/3)

]1/2

, (42)

which is exactly equal to the phase speed of an IAW in
dense magnetized EPI plasmas as derived in Section 3.1, i.e.,
ω−/kx = Cs/

√
C1 is obtained in the long wavelength limit.

Now the collection of next higher order terms of ε from the
ion continuity and momentum equations relates the first-order
and second-order perturbed quantities as follows:

λ∂Xn
(2)
i −∂Xu

(2)
ix −∂Y u

(2)
iy = ∂τn

(1)
i +∂X

(
u

(1)
ix n

(1)
i

) = f1, (43)

λ∂Xu
(2)
ix − ∂Y φ(2) = ∂τu

(1)
ix + u

(1)
ix ∂Xu

(1)
ix = f2, (44)

u
(2)
iy = λ∂Xu

(1)
iz = f3, (45)

u
(2)
iz = −λ∂Xu

(1)
ix = f4, (46)

∂Xφ(2) − βeNR∂Xn(2)
e = −1

3
βeNRn(1)

e ∂Xn(1)
e = f5, (47)

∂Xφ(2) + p2/3βeNR∂Xn(2)
p = 1

3
p2/3βeNRn(1)

p ∂Xn(1)
p = f6, (48)

(
n(2)

e

1 − p
− pn(2)

p

1 − p
− n

(2)
i

)
= ∂2

Xφ(1) + ∂2
Y φ(1) = f7. (49)

Using Equations (43)–(49) and (41), we obtain the following
relation:

λf1 + f2 + λ∂Y f3 +
f5

1 + p1/3
+

p1/3f6

1 + p1/3
+ λ2∂Xf7 = 0. (50)

Using the relations for the first-order quantities given in
Equations (35)–(39) in terms of one variable φ(1), we get the
following ZK equation in dimensional form:

∂τφ
(1) +ANRφ(1)∂Xφ(1) +CNR∂X∂2

Y φ(1) +BNR∂3
Xφ(1) = 0, (51)

where the nonlinear coefficient ANR, the dispersive coefficients
BNR (along the magnetic field) and CNR (perpendicular to the
magnetic field) in the dimensional form are given by

ANR = e

λNRmi

[
3

2
+

(1 − p) (p−1/3 − 1)

6(1 + p1/3)2

]
, (52)

BNR = λ3
NR

2

λ2
F

C2
s

, (53)

CNR = λ3
NR

2ω2
pi

(
1 +

ω2
pi

Ω2
i

)
. (54)

The independent variables of space (X, Y) and time (τ ) have the
dimensions in ZK Equation (51). The dependent variable φ(1)

has the dimension of the electrostatic potential. The anisotropy
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of the problem in the presence of magnetic field under consid-
eration is manifested by the fact that only the coefficient CNR
is dependent on the magnetic field through ion gyro-frequency
Ωi , whereas the coefficients ANR and BNR in the ZK equation are
independent of an external magnetic field.

The travelling wave solution of Equation (51) in the form
of obliquely propagating ion acoustic solitons in a dense
magnetized EPI plasma is obtained as follows:

φ(1) = 3U

ANRlx
sec h2

[
lxX + lyY − UT

W

]
, (55)

where the transformed coordinate ξ in the comoving frame is
defined as ξ = lxX + lyY − UT , where U is the speed of
the nonlinear structure and lx and ly are the direction cosines
that satisfy the condition l2

x + l2
y = 1. The following boundary

conditions are used for the localized structure: φ(1) → 0,
∇φ(1) → 0, and ∇2φ(1) → 0 as ξ → ∞. The width of the
soliton structure is W =

√
4lx(BNRl2

x + CNRl2
y)/U , and the

amplitude is given by (3U/ANRlx). Therefore, the presence of
positrons in a dense magnetized EI plasma modifies the IA
soliton’s amplitude as well as its width.

5.2. Ultrarelativistic Degenerate Electrons and Positrons Case

In order to derive the ZK equation for ultrarelativistic fully
degenerate EPI plasmas, we use the following equations for the
x components of momentum equations for degenerate electrons
and positrons:

∂

∂x̃
φ̃ = βeURñ−2/3

e

∂

∂x̃
ñe (56)

∂

∂x̃
φ̃ = −p2/3βeURñ−1/3

p

∂

∂x̃
ñp, (57)

where βeUR = hc (3/π )1/3 n
1/3
e0 /6kBTFe. We will omit the tilde

from all of the dimensionless quantities for simplicity in the
following calculations.

The various perturbed quantities of Equations (24)–(28)
and (56) and (57) are expanded in different orders of ε with
the use of the reductive perturbation method. After collecting
the first-order terms of ε of Equations (56) and (57), we find

n(1)
e = φ(1)

βeUR

, (58)

n(1)
p = − φ(1)

p1/3βeUR

. (59)

Similarly, the next higher order terms of ε give

∂Xφ(2) − βeUR∂Xn(2)
e = −2

3
βeURn(1)

e ∂Xn(1)
e , (60)

∂Xφ(2) + p1/3βeUR∂Xn(2)
p = 2

3
p1/3βeURn(1)

p ∂Xn(1)
p . (61)

The ion continuity and ion momentum equations along with
the Poisson equation are the same as we previously used in
the case of the nonrelativistic degenerate EPI plasma in the
previous section. Here, we use the expressions for ion continuity,
momentum, and the Poisson Equations (24)–(28) along with

Equations (58)–(59) to get the phase speed of the wave as
follows:

λ = ±
(

βeUR (1 − p)

1 + p2/3

)1/2

.

The dimensional form of the wave phase speed is written as

λUR = ±
[

(3/π )1/3

6mi

(1 − p)

(1 + p2/3)
n

1/3
e0 hc

]1/2

,

which is same phase speed as for an IAW for a dense magnetized
plasma with ultrarelativistic degenerate electrons and positrons
as obtained in the limiting case in Section 4.1, i.e., ω−/kx =
Cs/

√
C2.

Using the higher order set of dynamic Equations (43)–(46),
(49), (60), and (61), we obtain the ZK equation for a dense mag-
netized EPI plasma for the case of ultrarelativistic degenerate
electrons and positrons in terms of φ(1) as follows:

∂τφ
(1) +AURφ(1)∂Xφ(1) +CUR∂X∂2

Y φ(1) +BUR∂3
Xφ(1) = 0, (62)

where the nonlinear coefficient AUR and the dispersive coeffi-
cients in the parallel and perpendicular directions to the mag-
netic field, i.e., BUR and CUR, respectively, in the dimensional
form are given by

AUR = e

λURmi

[
3

2
+

(1 − p)
(
p1/3 − 1

)
3(1 + p2/3)2

]
(63)

BUR = λ3
UR

2

λ2
F

C2
s

(64)

CUR = λ3
UR

2ω2
pi

(
1 +

ω2
pi

Ω2
i

)
. (65)

The independent variables of space (X, Y) and time (τ ) have
dimensions in ZK Equation (51), and the dependent variable φ(1)

has the dimension of the electrostatic potential. The anisotropy
of the problem under consideration is manifested by the fact
that only the coefficient CUR is dependent on the magnetic field
through ion gyro-frequency Ωi , whereas coefficients AUR and
BUR in the ZK equation are independent of the external magnetic
field.

The traveling wave solution φ(1) of Equation (62) for an
obliquely propagating ion acoustic soliton is obtained as follows
(Kourakis et al. 2009):

φ(1)(X, Y, τ ) = 3U

AURlx
sec h2

[
lxX + lyY − UT

W

]
, (66)

where the transformed coordinate ξ in the comoving frame is
defined as ξ = lxX + lyY − UT , where U is the speed of
the nonlinear structure and lx and ly are the direction cosines
that satisfy the condition l2

x + l2
y = 1. The following boundary

conditions are used for the localized structure: φ(1) → 0,
∇φ(1) → 0, and ∇2φ(1) → 0 as ξ → ∞. The width of the soliton
structure is W =

√
4lx(BURl2

x + CURl2
y)/U , and the amplitude

is given by (3U/ANRlx). Therefore, the presence of positrons
in a dense EI magnetized plasma modifies the IAW soliton’s
amplitude as well as its width.
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6. NUMERICAL PLOTS AND RESULTS

In this section, we obtain the numerical plots for limiting cases
of nonrelativistic and ultrarelativistic degenerate dense EPI plas-
mas that can exist in a pulsar magnetosphere. The density
regimes for the plasma to be nonrelativistic and degenerate (elec-
trons and positrons) is roughly 1026 cm−3 < ne0 < 1029 cm−3,
whereas at the densities well above 1030 cm−3 the electrons as
well as positrons become ultrarelativistic (Rasheed et al. 2001;
Sabry et al. 2012). We now consider the application of the
present study to the pulsar atmosphere, and it is necessary to
mention here that the density parameters of the pulsar atmo-
sphere used for the plots are not certain (Aron & Scharlemann
1979; Shapiro & Tukolsky 1983; Tajima & Taniuti 1990; Gure-
vich et al. 1993; Thoma 2009; Laing & Diver 2013). However,
it is likely to appear in these regions. The characteristics of the
linear and nonlinear propagation of electrostatic waves are of
importance for developing a deeper insight into the underlying
pulsar radiation physics.

6.1. Results for Nonrelativistic Degenerate
Electrons and Positrons

In order to study the nonrelativistic degenerate plasma case,
we have considered the magnetic field 108 G, density of elec-
trons ne0 = 1028 cm−3, and thermal temperature T = 2 × 107 K
of a dense star. In order to check the degeneracy condition for
electrons, the value of TFe should be greater than the system
thermal temperature T. At the given value of electron density
ne0 = 1028 cm−3 and a typical value of positron concentration
p = 0.6, the Fermi temperatures of the electrons, positrons, and
ions turn out to be TFe = 1.95 × 108 K, TFp = 1.38 × 108 K,
and TFi = 1.109 × 105 K, respectively. The Fermi tempera-
ture of ions remains less than the system thermal tempera-
ture; therefore, the ion fluid remains nondegenerate, whereas
electron–positron fluids become degenerate. The parameter cor-
responding to degeneracy χj = TFj/T (where j = e, p, i)
comes out to be χe � 1 and χp � 1, whereas for ions
χi 
 1. The Coulomb coupling parameter for ions is defined as
Γi = e2/kBT di where di = (3/4πni0)1/3 is the mean interionic
distance. In the case of hydrogen ion H+ fluid, using the same
dense plasma parameters, we have the numerical values of the
Coulomb coupling parameter for ions, electrons, and positrons,
Γi = 0.290, Γe = 0.029, and Γp = 0.029, respectively. There-
fore, Γj 
 1 (j = e, p, i) holds, so we can assume that the
correlations among ions (i.e., ion crystallization effect), elec-
trons, and positrons in dense plasmas are ignored, and we can
apply a fluid model for these three different species.

The nonrelativistic condition for degenerate electrons and
positrons holds if their Fermi energy (which is related to the
densities of the species) is much less than the rest mass energy of
the species, i.e., kBTFα 
 mαc2 (α = e, p). The Fermi energies
for degenerate electrons and positrons for the above dense EPI
plasma turn out to be kBTFe = 2.7 × 10−8 erg and kBTFp =
1.91 × 10−8 erg, respectively, which are much less than their rest
mass energies, i.e., mec

2 = 8.18 × 10−7 erg (where me = mp).
In the presence of a very strong magnetic field, the energy of
degenerate electrons and positrons in the direction perpendicular
to the magnetic field is not continuous. The energy of the
degenerate electrons and positrons in the perpendicular direction
is quantized into Landau levels. The critical value of magnetic
field for which the energy of degenerate electrons begins to
split into Landau levels is Bc = m2

ec
2/eh̄ = 4.414 × 1013 G.

Istomin & Sobyanin (2007). For the nonrelativistic degenerate
electrons case, the energy of these Landau levels is given by
(2l + 1) h̄Ωce Chabrier et al. (2006), where l is the number of the
Landau level, l = 0, 1, 2, 3, . . .. The lowest Landau level l = 0
energy for degenerate electrons is h̄Ωce, which turns out to be
1.84 × 10−11 erg. Therefore, h̄Ωce 
 (kBTFe, kBTFp) (where
me = mp) holds, and the quantization into Landau energy level
for electrons and positrons can safely be ignored in the present
model.

The values of the remaining parameters such as plasma fre-
quency ωpj = (4πe2nj0/mj )1/2 (j = e, p, i) for ions, elec-
trons, and positrons with ne0 = 1028 cm−3, p = 0.6, and B0 =
109 Gauss are ωpi = 8.5 × 1016 s−1, ωpe = 5.6406 × 1018 s−1,
and ωpp = 4.36919 × 1018 s−1, respectively. The ion and
electron (positron) cyclotron frequencies come out to be
Ωi = eB0/mic = 1.0 × 1013 s−1 and Ωe,p = eB0/me,pc =
1.75883 × 1016 s−1, respectively. The Fermi lengths for elec-
trons and positrons are λFe = 2.15 × 10−9 cm and λFp =
1.76 × 10−9 cm, respectively, and the ion gyro-radius at electron
Fermi temperature is ρs = Cs/Ωi = 1.83 × 10−5 cm. These val-
ues show that ρs > λFe,p > di ; therefore our assumption of the
fluid model holds for a magnetized dense EPI plasma.

In order to check whether the pair annihilation in EPI plasma
can be ignored in this model, we calculate the annihilation time
Tann = 5.0515 × 10−15 s using Equation (B1) of Appendix B
(because this formula is valid for all energies) and the electron
plasma frequency ωpe = 5.6406 × 1018 s−1 with the plasma
parameters of nonrelativistic degenerate electrons. Therefore,
Tann � ω−1

pe as we have discussed in Appendix B, and we can
ignore the pair annihilation process.

The dispersion relation (15) for a nonrelativistic degenerate
magnetized EPI is plotted in Figures 1(a) and (b) by varying
positron concentration and magnetic field intensity. In the
figures, the slow phase velocity curve corresponds to the
IAW (ion acoustic wave), while the fast phase velocity curve
corresponds to the ICW (ion cyclotron wave). The variation of
positron concentration on phase velocities of IAW and ICW
is shown in Figure 1(a). It is obvious from the plot that the
phase velocity of both waves IAW and ICW decreases by
increasing the positron density in dense EPI plasmas. Also it
is clear from Figure 1(a) that the dispersion effects of the wave
are shifted to large values of k (or small wavelengths of the
wave) by increasing the value of parameter p, i.e., enhancing the
concentration of positrons. The effect of magnetic field intensity
on the phase velocity of the ion acoustic and ion cyclotron waves
is shown in Figure 1(b). The phase velocities of both IAW and
ICW increase by enhancing the magnetic field intensity in dense
EPI plasmas. The wave dispersion effects also shift to large
value of k (or small wavelengths) with the increase in the value
of magnetic field intensity.

The soliton structures of an IAW are plotted from
Equation (55) with dense astrophysical parameters for non-
relativistic degenerate EPI plasmas as shown in Figures 1(c),
(d), and (e), respectively, by varying positron concentration,
magnetic field intensity, and mass of the ions. The decrease in
the amplitude and the width of the soliton by increasing the
concentration of positrons in dense magnetized EPI plasmas
is shown in Figure 1(c). In Figure 1(d), the IAW solitons are
plotted by varying the magnetic field intensity. The width of the
soliton decreases with the increase in the magnetic field strength.
However, the amplitude of the soliton remains the same when
varying the magnetic field. The IAW solitons are plotted for
hydrogen (H) and helium (He) ions in Figure 1(e). The width of
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Figure 1. (a) Dispersion relation (15) for a dense magnetized EPI plasma is plotted by varying positron concentration p = 0.6 (solid curve), p = 0.7 (dashed curve),
and p = 0.8 (dotted-dashed curve) at ne0 = 1028 cm−3, B0 = 109 G, for nonrelativistic degenerate electrons and positrons. (b) The dispersion relation (15) for a dense
magnetized plasma is plotted by varying magnetic field intensity, B0 = 109 G (solid curve), B0 = 2 × 109 G (dashed curve), and B0 = 3 × 109 G (dotted-dashed
curve) at ne0 = 1028 cm−3, p = 0.6, for nonrelativistic degenerate electrons and positrons. (c) The IAW soliton pulses from Equation (55) are plotted by varying
positron concentration, i.e., p = 0.6 (solid curve), p = 0.7 (dashed curve), and p = 0.8 (dotted-dashed) at ne0 = 1028 cm−3, B0 = 109 G, in a nonrelativistic dense
magnetized EPI plasma. (d) The IAW solitons from Equation (55) are plotted by varying the magnetic field intensity, i.e., B0 = 109 G (solid curve), B0 = 2 × 109 G
(dashed curve), and B0 = 3 × 109 G (dotted-dashed curve) with ne0 = 1028 cm−3, p = 0.6, in a nonrelativistic dense magnetized EPI plasma. (e) The IAW soliton
pulses from Equation (55) are plotted for hydrogen ions (solid curve) and helium ions (dashed curve) in a nonrelativistic dense magnetized EPI plasma.

(A color version of this figure is available in the online journal.)

the soliton increases with the increase in the mass of the ions in
dense magnetized nonrelativistic EPI plasmas.

6.2. Results of Ultrarelativistic Degenerate
Electrons and Positrons

We study the ultrarelativistic degenerate plasma case with the
expected astrophysical parameters of the dense EPI plasma to
be produced near the surface of pulsars (Shapiro & Tukolsky
1983; Tajima & Taniuti 1990; Gurevich et al. 1993; Beloborodov
& Thompson 2007b; Thoma 2009), i.e., n0e = 1032 cm−3,

B0 = 1012 G, and the thermal temperature of the system is T =
9 × 109 K (Rasheed et al. 2001). The positron concentrationis
varied as p = 0.6, 0.7, and 0.8. To make the study of
ultrarelativistic degenerate electrons and positrons appropriate
we take the value as roughly ne0 = 1032 cm−3. The positron
concentration is varied from p = 0.6, 0.7, and 0.8. At the
given value of electron, positron, and ion densities, i.e., ne0 =
1032 cm−3, np0 = 0.6ne0, and ni0 = 0.4ne0, the corresponding
Fermi temperatures of electrons, positrons, and ions come
out to be TFe = 3.2766 × 1010 K, TFp = 2.7636 × 1010 K,
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Figure 2. (a) Dispersion relation (21) for an ultradense magnetized EPI plasma is plotted by varying positron concentration p = 0.6(solid curve), p = 0.7 (dashed
curve), and p = 0.8 (dotted-dashed curve) at ne0 = 1032 cm−3, B0 = 1012 G, for ultrarelativistic degenerate electrons and positrons. (b) The dispersion relation (21) for
an ultradense magnetized plasma is plotted by varying magnetic field intensity, i.e., B0 = 1012 G (solid curve), B0 = 2 × 1012 G (dashed curve), and B0 = 3 × 1012 G
(dotted-dashed curve) at ne0 = 1032 cm−3, p = 0.6, for ultrarelativistic degenerate electrons and positrons. (c) The IAW soliton pulses from Equation (66) are
plotted by varying positron concentration, i.e., p = 0.6 (solid curve), p = 0.7 (dashed curve), and p = 0.8 (dotted-dashed) at ne0 = 1032 cm−3, B0 = 1012 G, for
ultrarelativistic electrons and positrons in a dense magnetized EPI plasma. (d) The IAW solitons from Equation (66) are plotted by varying the magnetic field intensity,
i.e., B0 = 1012 G (solid curve), B0 = 2 × 1012 G (dashed curve), and B0 = 3 × 1012 G (dotted-dashed curve) with ne0 = 1032 cm−3, p = 0.6, in an ultrarelativistic
dense magnetized EPI plasma. (e) The IAW soliton pulses from Equation (66) are plotted for hydrogen ions (solid curve) and helium ions (dashed curve) in an
ultrarelativistic dense magnetized EPI plasma.

(A color version of this figure is available in the online journal.)

and TFi = 5.14 × 107 K, respectively. Because TFe � T ,
TFp � T , and TFi 
 T , the plasma parameters corresponding
to degeneracy for the species, i.e., χj = TFj/T (j = e, p, i),
come out to be χe � 1, χp � 1, and χi 
 1. Therefore the
ions will remain nondegenerate while electrons and positrons
become degenerate.

In order to calculate the ultrarelativistic electron and positron
energy limits, we need to compare the Fermi energies of

the electrons and positrons, kBTFα (α = e, p), with their
rest mass energies mαc2 (where me = mp). For the ul-
trarelativistic energy of degenerate electrons and positrons,
we have the following expression for the Fermi temperature
TFα = 1/kB (3c3h3nα0/8π )1/3 (Vernet 2007) of the species.
The Fermi energies of electrons and positrons turn out to be
kBTFe = 4.5217 × 10−6 erg and kBTFp = 3.8137 × 10−6 erg,
respectively, whereas their rest mass energies are
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me,pc2 = 8.18 × 10−7 erg, which shows that kBTFe, (kBTFp) �
me,pc2 (or vFα � c where vFα is the Fermi velocity of de-
generate plasma species). Therefore, the degenerate electrons
and positrons have ultrarelativistic energies in dense magne-
tized EPI plasmas. In this case the Coulomb coupling param-
eter for H+ ions is Γi = (Zie)2 /kBT di = 0.0138, where
di = (3/4πni0)1/3 = 1.813 × 10−11 cm, and for electrons and
positrons we have Γe = 0.00138, Γp = 0.00138. Therefore,
ion crystallization effects can be ignored in the present model
in such a dense magnetized plasma.

As far as the Landau quantization of degenerate electron
and positron energies in the presence of strong magnetic field
is concerned, we use the following formula to calculate the
quantization energy of Landau levels for ultrarelativistic elec-
trons and positrons: me,pc2((1 + (2l + 1)h̄ωce,p/me,pc2)1/2 − 1)
(Chabrier et al. 2006),where l is the number of the Landau level
l = 0, 1, 2, 3, . . . in dense magnetized EPI plasmas. The value
of quantized energy at the lowest Landau level (l = 0) comes
out to be 9.1 × 10−9 erg, which is much less than the Fermi en-
ergies of electrons and positrons, i.e., kBTFe and kBTFp, and the
effect of quantization of Landau energy levels for degenerate
electrons and positrons in the ultrarelativistic limits can also be
ignored in the model.

The numerical values of the plasma parameters at ne0 =
1032 cm−3 and magnetic field B0 = 1012 G are given as fol-
lows: ωpi = (4πe2ni0/mi)1/2 = 8.50 × 1018 s−1 (ion plasma
frequency), ωpe = (4πe2ne0/me)1/2 = 5.6406 × 1020 s−1

(electron plasma frequency), and ωpp = (4πe2np0/me)1/2 =
4.36919 × 1020 s−1 (positron plasma frequency). The ion, elec-
tron, and positron cyclotron frequencies at such a high mag-
netic field turn out to be Ωi = eB0/mic = 1.0 × 1016 s−1 and
Ωe,p = eB0/me,pc = 1.75883 × 1019 s−1, respectively. The
numerical values of Fermi lengths for electrons and positrons
are λFe = 1.97 × 10−10 cm and λFp = 1.61 × 10−10cm, respec-
tively. The ion gyro-radius at the electron Fermi temperature is
ρs = Cs/Ωi = 1.68 × 10−7 cm. The present values imply that
ρs > λFe > di ; therefore we can use the fluid model for an
ultradense magnetized EPI plasma at very short scale length.

In order to check whether pair annihilation in an EPI plasma
can be ignored in this model or not, we calculate the annihilation
time Tann using Equation (B1) of Appendix B and the parameters
of ultrarelativistic degenerate electrons to get a numerical value
of Tann = 9.2964 × 10−18 s at density ne0 = 3 × 1032 cm−3, the
value of electron plasma frequency ωpe = 9.7698 × 1020 s−1.
Therefore, Tann � ω−1

pe ; as we have discussed in Appendix B
we can ignore the pair annihilation process even at such a high
density.

The numerical plots of the dispersion relation (21) are plotted
for electrostatic waves in a magnetized dense EPI plasma
with ultrarelativistic energies of electrons and positrons in
Figures 2(a) and (b) for positron concentration and magnetic
field strength, respectively. In these figures, the upper curves
correspond to the phase velocities of the ICW (ion cyclotron
wave), while the lower curves correspond to the phase velocities
of the IAW in magnetized dense EPI plasmas. In Figure 2(a), the
phase velocity of both the ICW and IAW decreases by increasing
the positron concentration in an ultradense magnetized EPI
plasma. The dispersion effects for both of the waves shift to
higher values of k (i.e., at small wavelengths) by increasing
the positron concentration in such an ultradense plasma. The
increase in the phase velocity of both of the electrostatic waves,
ICW and IAW, by increasing the strength of the intense magnetic
field is shown in Figure 2(b). The wave dispersion effect also

shifts to the large values of k (or at small wavelengths) by
increasing the strength of the magnetic field in an ultradense
EPI plasma.

The soliton structures for an IAW (slow wave in a magnetized
plasma) from Equation (66) are plotted in Figures 2(c), (d), and
(e) for ultrarelativistic degenerate EPI magnetized plasmas by
varying positron concentration, magnetic field, and ion mass,
respectively. The decrease in the amplitude as well as the width
of the IAW soliton by increasing the positron concentration in
an ultradense magnetized EPI plasma is shown in Figure 2(c). In
Figure 2(d), the amplitude of the IAW soliton remains the same;
however, the width of the soliton decreases with the increase
in the magnetic field strength. The increase in the width of
the IAW soliton by increasing the mass of the ions (i.e., from
hydrogen to helium ions) in an ultradense EPI plasma is shown
in Figure 2(e). The amplitude of the IAW soliton remains the
same but the width increases with the increase in mass of the
ions in an ultradense EPI plasma.

7. CONCLUSION

We have studied the propagation of linear electrostatic waves
and IAW solitons in a dense magnetized EPI plasma with nonrel-
ativistic and ultrarelativistic degenerate electrons and positrons.
The linear dispersion relations of electrostatic waves (slow and
fast waves) in dense magnetized EPI plasmas are obtained for
both nonrelativistic and ultrarelativistic degenerate electron and
positron energy limits. The limiting cases of both the fast and
slow waves in the perpendicular and parallel directions to the
magnetic field are also discussed. Using a reductive perturbation
method, the ZK equation for an IAW soliton for a dense mag-
netized EPI plasma is obtained in dimensional form instead of
dimensionless form (as done in most of the existing literature)
in order to maintain the uniform behavior of plots in nonrela-
tivistic and ultrarelativistic energy limits. The appropriate form
of Fermi temperatures of degenerate electrons and positrons and
their relation with densities of the plasma species for nonrela-
tivistic and ultrarelativistic pressures are used in the numerical
analysis. It is noticed that the effects of positron concentration,
magnetic field strength, and different masses of ions on IAW
solitons in a dense magnetized EPI plasma are significant.

In the nonrelativistic dense EPI plasma having the astrophys-
ical parameters described in previous sections, we find that the
amplitude of φ

(1)
NR has a numerical value of 0.01 statvolts. If

we calculate the energy density corresponding to this value
of φ

(1)
NR to make a rough estimate, i.e., εNRφ ∼ ene0φ

(1)
NR =

1017erg cm−3, it turns out to be a very huge value. Because a
soliton is a shape-preserving structure, it may be one of the ma-
jor sources of energy transport from the interior to the exterior
of a star. When the nonlinearity term exceeds the dispersion
term, as happens on the surface of the star, the soliton structure
breaks and the energy is liberated into space. If we consider
the plasma parameters of an ultrarelativistic dense EPI plasma,
the approximate value of the energy density comes out to be
εURφ ∼ ene0φ

(1)
UR = 5.87 × 1022 erg cm−3. So we see that the

solitons in an ultrarelativistic regime have more energy density
than in a nonrelativistic regime. Therefore, when these nonlin-
ear electrostatic structures move from an ultrarelativistic (ultra-
dense plasma) to a nonrelativistic (dense plasma) regime, from
the interior to the surface of a compact star, they should liber-
ate extra energy in the form of electromagnetic waves. Hence,
energy can be transported from ultrarelativistic regimes to non-
relativistic regimes. Because the speed of ion acoustic solitons
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is very high, it is a very fast mode of energy transport from the
interior to the exterior of dense stars (or from high-density re-
gions to low-density regions) (Batani et al. 2001; Pakzad &
Javidan 2011). Our present investigation is useful for under-
standing linear and nonlinear electrostatic waves in dense EPI
plasmas in a pulsar atmosphere.
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APPENDIX A

According to the special theory of relativity, the general
relation between energy E and momentum p of a free particle is
given as

E = mc2

{(
1 +

p2

m2c2

)1/2

− 1

}
, (A1)

where m is the mass of the particle and c is the velocity of light
in free space.

A.1. Fermi Energy and Temperature in Nonrelativistic
Degenerate Plasma Case

If we assume that the particles are moving with nonrelativistic
speed, p 
 mc, then Equation (A1) gives

E = mc2

{(
1 +

p2

2m2c2

)
− 1

}
= p2

2m
. (A2)

For a degenerate plasma case, we use the expression of the Fermi
momentum pF = (

3h3n0/8π
)1/3

(Chandrasekhar 1935) in
Equation (A2) (where n0 is the number density of the particles)
to get the expression of the Fermi energy EF as

EF = p2
F

2m
= 1

2m
(3h3n0/8π )2/3, (A3)

and the Fermi temperature TF as

TF = EF

kB

= 1

2mkB

(3h3n0/8π )2/3. (A4)

Thus the Fermi energy and Fermi temperature are propor-
tional to n

2/3
0 in a nonrelativistic degenerate plasma.

A.2. Fermi Energy and Temperature in Ultrarelativistic
Degenerate Plasma Case

If we assume that the particles are moving with ultrarelativis-
tic speed, p � mc, and use this limit in Equation (A1), we have

E � mc2

{√
p2

m2c2

}
= pc. (A5)

Using the expression for the Fermi momentum pF =(
3h3n0/8π

)1/3
as described in the above section for a degener-

ate plasma in Equation (A5), we get the following expression of
Fermi energy EF

EF = pF c = (3h3n0/8π )1/3c, (A6)

and the Fermi temperature TF is given as

TF = EF

kB

= c

kB

(3h3n0/8π )1/3. (A7)

Thus we see that the Fermi energy and Fermi temperature are
proportional to n

1/3
0 in an ultrarelativistic degenerate plasma, as

is clear from the above equations.

APPENDIX B

The electron and positron, being antiparticles, have a strong
tendency to annihilate one another. There are many processes
under which these particles can annihilate. The most strong one
is the pair annihilation process, in which both of the particles
annihilate and produce two gammas as (Svensson 1982b)

e+ + e− → γ + γ ′.

In order to study the collective behavior of a plasma containing
electrons and positrons, it is necessary to find the condition to
neglect the annihilation process. Many authors have neglected
the annihilation process in the ultrarelativistic dense plasmas
(El-Taibany & Mamun 2012; Laing & Diver 2013). El-Taibany
has discussed the condition for neglecting the annihilation El-
Taibany & Mamun (2012). The general condition to ignore the
annihilation processes is

ω−1
pj 
 Tann

where ω−1
pj is the plasma frequency of the jth species (where

j = e, p, i), and Tann is the annihilation time. This condition
shows that the time for plasma oscillations should be greater
than the time for annihilation processes.

In the present case in order to neglect the annihilation process
the condition ω−1

pe 
 Tann must be satisfied. Thus the electrons/
positrons must survive for enough time to complete one plasma
period ω−1

pe before annihilation takes place. This annihilation
time can be above 1 s for a low-density laboratory plasma to
study the collective effects in EPI plasmas (Surko & Murphy
1990). However, at much higher densities and temperatures one
has to calculate the annihilation time.

The cross section for pair annihilation at nonrelativistic
energies is given by Svensson (1982b) in Equation (55) as

σ (γ ) = r2
e π

β
α 
 β 
 1,

where γ is the Lorentz factor, α is the fine structure parameter,
and β =

√
γ 2 − 1/γ . For the ultrarelativistic case

σ (γ ) = r2
e π

γ
(ln (2γ ) − 1) γ � 1.

It is clear from this expression that the cross section for
annihilation decreases with the increase in γ (at higher energies).

The expression for the pair annihilation rate ṅp (cm−3 s−1)
has been derived by Svensson (1982b) in Equation (57) as

ṅp = cne0np0πr2
e A (θ ) ,

where η = 0.5616, θ = kBTFe/mec
2 (for nonrelativistic case

θ 
 1, and for the ultrarelativistic case θ � 1) and the
asymptotic forms of A (θ ) are given by (Svensson 1982a) as
A (θ ) = π for θ 
 1 and A (θ ) = (π/2)θ−2 ln (2ηθ ) for
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θ � 1 whereas combing into a single expression, as in Equation
(59) of the reference (Svensson 1982b) gives the value of A (θ )
as

A (θ ) = π/[1 + 2θ2/ ln (2ηθ + 1.3)].

Basically this is for relativistic energies, but it is clearly
mentioned on p. 342 of said reference that this formula is true
for all temperatures. The expression deviated no more than 2%
at all energies.

The annihilation time Tann is defined as

Tann = np0(ṅp)−1.

Thus we have,

Tann = 1/ (cne0σT ) [1 + 2θ2/ ln (1.12θ + 1.3)], (B1)

where σT = πr2
e = 6.65 × 10−25 cm2 is the electron cross

section.
For the sake of application of the above formula (B1) we

discuss the following two cases.

B.1. Nonrelativistic Case

For illustration purposes, we use the following numerical
values to calculate the annihilation time for nonrelativistic
degenerate electrons and positrons:

ne0 = 1028 cm−3, kB = 1.38 × 10−16 erg/ deg (K), c =
2.997 × 1010 cm s−1, me = 9.109 × 10−28g, h = 6.6261 ×
10−27 erg−s, TFe = (1/2mekB)(3h3ne0/8π )2/3 = 1.95 × 108 K,
θ = kBTFe/mec

2 = 0.0328, ωpe = (4πe2ne0/me)1/2 =
5.6406 × 1018 s−1, σT = πr2

e = 6.65 × 10−25 cm2.
Put the above numerical values in Equation (B1) to get

Tann = [1 + 2 (0.0328)2 / ln (1.12 (0.0328) + 1.3)]

(2.997 × 1010) (1028) (6.65 × 10−25)

= 5.0515 × 10−15 s,

which shows that Tann � ω−1
pe .

B.2. Ultrarelativistic Case

For illustration purposes, we use the following numerical
values to calculate the annihilation time for ultrarelativistic
degenerate electrons and positrons:

ne0 = 3 × 1032 cm−3, kB = 1.38 × 10−16 erg/ deg (K), c =
2.997 × 1010 cm s−1, me = 9.109 × 10−28g, h = 6.6261 ×
10−27 erg−s, TFe = (c/kB) (3h3ne0/8π )1/3 = 4.7257 × 1010 K,
θ = kBTFe/mec

2 � 8.0, ωpe = (4πe2ne0/me)1/2 = 9.7698 ×
1020 s−1, σT = πr2

e = 6.65 × 10−25 cm2.
Put these numerical values in Equation (B1) to get

Tann = [1 + 2 (8)2 / ln (1.12 (8) + 1.3)]

(2.997 × 1010) (3 × 1032) (6.65 × 10−25)

= 9.2964 × 10−18 s,

which shows that Tann � ω−1
pe .
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